1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
|
/* Interprocedural constant propagation
Copyright (C) 2005 Free Software Foundation, Inc.
Contributed by Razya Ladelsky <RAZYA@il.ibm.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
/* Interprocedural constant propagation.
The aim of interprocedural constant propagation (IPCP) is to find which
function's argument has the same constant value in each invocation throughout
the whole program. For example, for an application consisting of two files,
foo1.c, foo2.c:
foo1.c contains :
int f (int x)
{
g (x);
}
void main (void)
{
f (3);
h (3);
}
foo2.c contains :
int h (int y)
{
g (y);
}
int g (int y)
{
printf ("value is %d",y);
}
The IPCP algorithm will find that g's formal argument y
is always called with the value 3.
The algorithm used is based on "Interprocedural Constant Propagation",
by Challahan David, Keith D Cooper, Ken Kennedy, Linda Torczon, Comp86,
pg 152-161
The optimization is divided into three stages:
First stage - intraprocedural analysis
=======================================
This phase computes jump_function and modify information.
A jump function for a callsite represents the values passed as actual
arguments
of the callsite. There are three types of values :
Formal - the caller's formal parameter is passed as an actual argument.
Constant - a constant is passed as a an actual argument.
Unknown - neither of the above.
In order to compute the jump functions, we need the modify information for
the formal parameters of methods.
The jump function info, ipa_jump_func, is defined in ipa_edge
structure (defined in ipa_prop.h and pointed to by cgraph_node->aux)
The modify info, ipa_modify, is defined in ipa_node structure
(defined in ipa_prop.h and pointed to by cgraph_edge->aux).
-ipcp_init_stage() is the first stage driver.
Second stage - interprocedural analysis
========================================
This phase does the interprocedural constant propagation.
It computes for all formal parameters in the program
their cval value that may be:
TOP - unknown.
BOTTOM - non constant.
CONSTANT_TYPE - constant value.
Cval of formal f will have a constant value if all callsites to this
function have the same constant value passed to f.
The cval info, ipcp_formal, is defined in ipa_node structure
(defined in ipa_prop.h and pointed to by cgraph_edge->aux).
-ipcp_iterate_stage() is the second stage driver.
Third phase - transformation of methods code
============================================
Propagates the constant-valued formals into the function.
For each method mt, whose parameters are consts, we create a clone/version.
We use two ways to annotate the versioned function with the constant
formal information:
1. We insert an assignment statement 'parameter = const' at the beginning
of the cloned method.
2. For read-only formals whose address is not taken, we replace all uses
of the formal with the constant (we provide versioning with an
ipa_replace_map struct representing the trees we want to replace).
We also need to modify some callsites to call to the cloned methods instead
of the original ones. For a callsite passing an argument found to be a
constant by IPCP, there are two different cases to handle:
1. A constant is passed as an argument.
2. A parameter (of the caller) passed as an argument (pass through argument).
In the first case, the callsite in the original caller should be redirected
to call the cloned callee.
In the second case, both the caller and the callee have clones
and the callsite of the cloned caller would be redirected to call to
the cloned callee.
The callgraph is updated accordingly.
This update is done in two stages:
First all cloned methods are created during a traversal of the callgraph,
during which all callsites are redirected to call the cloned method.
Then the callsites are traversed and updated as described above.
-ipcp_insert_stage() is the third phase driver.
*/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "target.h"
#include "cgraph.h"
#include "ipa-prop.h"
#include "tree-flow.h"
#include "tree-pass.h"
#include "flags.h"
#include "timevar.h"
#include "diagnostic.h"
/* Get orig node field of ipa_node associated with method MT. */
static inline struct cgraph_node *
ipcp_method_orig_node (struct cgraph_node *mt)
{
return IPA_NODE_REF (mt)->ipcp_orig_node;
}
/* Return true if NODE is a cloned/versioned method. */
static inline bool
ipcp_method_is_cloned (struct cgraph_node *node)
{
return (ipcp_method_orig_node (node) != NULL);
}
/* Set ORIG_NODE in ipa_node associated with method NODE. */
static inline void
ipcp_method_set_orig_node (struct cgraph_node *node,
struct cgraph_node *orig_node)
{
IPA_NODE_REF (node)->ipcp_orig_node = orig_node;
}
/* Create ipa_node and its data structures for NEW_NODE.
Set ORIG_NODE as the orig_node field in ipa_node. */
static void
ipcp_cloned_create (struct cgraph_node *orig_node,
struct cgraph_node *new_node)
{
ipa_node_create (new_node);
ipcp_method_set_orig_node (new_node, orig_node);
ipa_method_formal_compute_count (new_node);
ipa_method_compute_tree_map (new_node);
}
/* Return cval_type field of CVAL. */
static inline enum cvalue_type
ipcp_cval_get_cvalue_type (struct ipcp_formal *cval)
{
return cval->cval_type;
}
/* Return scale for MT. */
static inline gcov_type
ipcp_method_get_scale (struct cgraph_node *mt)
{
return IPA_NODE_REF (mt)->count_scale;
}
/* Set COUNT as scale for MT. */
static inline void
ipcp_method_set_scale (struct cgraph_node *node, gcov_type count)
{
IPA_NODE_REF (node)->count_scale = count;
}
/* Set TYPE as cval_type field of CVAL. */
static inline void
ipcp_cval_set_cvalue_type (struct ipcp_formal *cval, enum cvalue_type type)
{
cval->cval_type = type;
}
/* Return cvalue field of CVAL. */
static inline union parameter_info *
ipcp_cval_get_cvalue (struct ipcp_formal *cval)
{
return &(cval->cvalue);
}
/* Set VALUE as cvalue field CVAL. */
static inline void
ipcp_cval_set_cvalue (struct ipcp_formal *cval, union parameter_info *value,
enum cvalue_type type)
{
if (type == CONST_VALUE || type == CONST_VALUE_REF)
cval->cvalue.value = value->value;
}
/* Return whether TYPE is a constant type. */
static bool
ipcp_type_is_const (enum cvalue_type type)
{
if (type == CONST_VALUE || type == CONST_VALUE_REF)
return true;
else
return false;
}
/* Return true if CONST_VAL1 and CONST_VAL2 are equal. */
static inline bool
ipcp_cval_equal_cvalues (union parameter_info *const_val1,
union parameter_info *const_val2,
enum cvalue_type type1, enum cvalue_type type2)
{
gcc_assert (ipcp_type_is_const (type1) && ipcp_type_is_const (type2));
if (type1 != type2)
return false;
if (operand_equal_p (const_val1->value, const_val2->value, 0))
return true;
return false;
}
/* Compute Meet arithmetics:
Meet (BOTTOM, x) = BOTTOM
Meet (TOP,x) = x
Meet (const_a,const_b) = BOTTOM, if const_a != const_b.
MEET (const_a,const_b) = const_a, if const_a == const_b.*/
static void
ipcp_cval_meet (struct ipcp_formal *cval, struct ipcp_formal *cval1,
struct ipcp_formal *cval2)
{
if (ipcp_cval_get_cvalue_type (cval1) == BOTTOM
|| ipcp_cval_get_cvalue_type (cval2) == BOTTOM)
{
ipcp_cval_set_cvalue_type (cval, BOTTOM);
return;
}
if (ipcp_cval_get_cvalue_type (cval1) == TOP)
{
ipcp_cval_set_cvalue_type (cval, ipcp_cval_get_cvalue_type (cval2));
ipcp_cval_set_cvalue (cval, ipcp_cval_get_cvalue (cval2),
ipcp_cval_get_cvalue_type (cval2));
return;
}
if (ipcp_cval_get_cvalue_type (cval2) == TOP)
{
ipcp_cval_set_cvalue_type (cval, ipcp_cval_get_cvalue_type (cval1));
ipcp_cval_set_cvalue (cval, ipcp_cval_get_cvalue (cval1),
ipcp_cval_get_cvalue_type (cval1));
return;
}
if (!ipcp_cval_equal_cvalues (ipcp_cval_get_cvalue (cval1),
ipcp_cval_get_cvalue (cval2),
ipcp_cval_get_cvalue_type (cval1),
ipcp_cval_get_cvalue_type (cval2)))
{
ipcp_cval_set_cvalue_type (cval, BOTTOM);
return;
}
ipcp_cval_set_cvalue_type (cval, ipcp_cval_get_cvalue_type (cval1));
ipcp_cval_set_cvalue (cval, ipcp_cval_get_cvalue (cval1),
ipcp_cval_get_cvalue_type (cval1));
}
/* Return cval structure for the formal at index INFO_TYPE in MT. */
static inline struct ipcp_formal *
ipcp_method_cval (struct cgraph_node *mt, int info_type)
{
return &(IPA_NODE_REF (mt)->ipcp_cval[info_type]);
}
/* Given the jump function (TYPE, INFO_TYPE), compute a new value of CVAL.
If TYPE is FORMAL_IPA_TYPE, the cval of the corresponding formal is
drawn from MT. */
static void
ipcp_cval_compute (struct ipcp_formal *cval, struct cgraph_node *mt,
enum jump_func_type type, union parameter_info *info_type)
{
if (type == UNKNOWN_IPATYPE)
ipcp_cval_set_cvalue_type (cval, BOTTOM);
else if (type == CONST_IPATYPE)
{
ipcp_cval_set_cvalue_type (cval, CONST_VALUE);
ipcp_cval_set_cvalue (cval, info_type, CONST_VALUE);
}
else if (type == CONST_IPATYPE_REF)
{
ipcp_cval_set_cvalue_type (cval, CONST_VALUE_REF);
ipcp_cval_set_cvalue (cval, info_type, CONST_VALUE_REF);
}
else if (type == FORMAL_IPATYPE)
{
enum cvalue_type type =
ipcp_cval_get_cvalue_type (ipcp_method_cval
(mt, info_type->formal_id));
ipcp_cval_set_cvalue_type (cval, type);
ipcp_cval_set_cvalue (cval,
ipcp_cval_get_cvalue (ipcp_method_cval
(mt, info_type->formal_id)),
type);
}
}
/* True when CVAL1 and CVAL2 values are not the same. */
static bool
ipcp_cval_changed (struct ipcp_formal *cval1, struct ipcp_formal *cval2)
{
if (ipcp_cval_get_cvalue_type (cval1) == ipcp_cval_get_cvalue_type (cval2))
{
if (ipcp_cval_get_cvalue_type (cval1) != CONST_VALUE &&
ipcp_cval_get_cvalue_type (cval1) != CONST_VALUE_REF)
return false;
if (ipcp_cval_equal_cvalues (ipcp_cval_get_cvalue (cval1),
ipcp_cval_get_cvalue (cval2),
ipcp_cval_get_cvalue_type (cval1),
ipcp_cval_get_cvalue_type (cval2)))
return false;
}
return true;
}
/* Create cval structure for method MT. */
static inline void
ipcp_formal_create (struct cgraph_node *mt)
{
IPA_NODE_REF (mt)->ipcp_cval =
xcalloc (ipa_method_formal_count (mt), sizeof (struct ipcp_formal));
}
/* Set cval structure of I-th formal of MT to CVAL. */
static inline void
ipcp_method_cval_set (struct cgraph_node *mt, int i, struct ipcp_formal *cval)
{
IPA_NODE_REF (mt)->ipcp_cval[i].cval_type = cval->cval_type;
ipcp_cval_set_cvalue (ipcp_method_cval (mt, i),
ipcp_cval_get_cvalue (cval), cval->cval_type);
}
/* Set type of cval structure of formal I of MT to CVAL_TYPE1. */
static inline void
ipcp_method_cval_set_cvalue_type (struct cgraph_node *mt, int i,
enum cvalue_type cval_type1)
{
IPA_NODE_REF (mt)->ipcp_cval[i].cval_type = cval_type1;
}
/* Print ipcp_cval data structures to F. */
static void
ipcp_method_cval_print (FILE * f)
{
struct cgraph_node *node;
int i, count;
tree cvalue;
fprintf (f, "\nCVAL PRINT\n");
for (node = cgraph_nodes; node; node = node->next)
{
fprintf (f, "Printing cvals %s:\n", cgraph_node_name (node));
count = ipa_method_formal_count (node);
for (i = 0; i < count; i++)
{
if (ipcp_cval_get_cvalue_type (ipcp_method_cval (node, i))
== CONST_VALUE
|| ipcp_cval_get_cvalue_type (ipcp_method_cval (node, i)) ==
CONST_VALUE_REF)
{
fprintf (f, " param [%d]: ", i);
fprintf (f, "type is CONST ");
cvalue =
ipcp_cval_get_cvalue (ipcp_method_cval (node, i))->
value;
print_generic_expr (f, cvalue, 0);
fprintf (f, "\n");
}
else if (ipcp_method_cval (node, i)->cval_type == TOP)
fprintf (f, "param [%d]: type is TOP \n", i);
else
fprintf (f, "param [%d]: type is BOTTOM \n", i);
}
}
}
/* Initialize ipcp_cval array of MT with TOP values.
All cvals for a method's formal parameters are initialized to BOTTOM
The currently supported types are integer types, real types and
Fortran constants (i.e. references to constants defined as
const_decls). All other types are not analyzed and therefore are
assigned with BOTTOM. */
static void
ipcp_method_cval_init (struct cgraph_node *mt)
{
int i;
tree parm_tree;
ipcp_formal_create (mt);
for (i = 0; i < ipa_method_formal_count (mt); i++)
{
parm_tree = ipa_method_get_tree (mt, i);
if (INTEGRAL_TYPE_P (TREE_TYPE (parm_tree))
|| SCALAR_FLOAT_TYPE_P (TREE_TYPE (parm_tree))
|| POINTER_TYPE_P (TREE_TYPE (parm_tree)))
ipcp_method_cval_set_cvalue_type (mt, i, TOP);
else
ipcp_method_cval_set_cvalue_type (mt, i, BOTTOM);
}
}
/* Create a new assignment statment and make
it the first statement in the function FN
tree.
PARM1 is the lhs of the assignment and
VAL is the rhs. */
static void
constant_val_insert (tree fn, tree parm1, tree val)
{
struct function *func;
tree init_stmt;
edge e_step;
edge_iterator ei;
init_stmt = build2 (MODIFY_EXPR, void_type_node, parm1, val);
func = DECL_STRUCT_FUNCTION (fn);
cfun = func;
current_function_decl = fn;
if (ENTRY_BLOCK_PTR_FOR_FUNCTION (func)->succs)
FOR_EACH_EDGE (e_step, ei, ENTRY_BLOCK_PTR_FOR_FUNCTION (func)->succs)
bsi_insert_on_edge_immediate (e_step, init_stmt);
}
/* build INTEGER_CST tree with type TREE_TYPE and
value according to CVALUE. Return the tree. */
static tree
build_const_val (union parameter_info *cvalue, enum cvalue_type type,
tree tree_type)
{
tree const_val = NULL;
gcc_assert (ipcp_type_is_const (type));
const_val = fold_convert (tree_type, cvalue->value);
return const_val;
}
/* Build the tree representing the constant and call
constant_val_insert(). */
static void
ipcp_propagate_const (struct cgraph_node *mt, int param,
union parameter_info *cvalue ,enum cvalue_type type)
{
tree fndecl;
tree const_val;
tree parm_tree;
if (dump_file)
fprintf (dump_file, "propagating const to %s\n", cgraph_node_name (mt));
fndecl = mt->decl;
parm_tree = ipa_method_get_tree (mt, param);
const_val = build_const_val (cvalue, type, TREE_TYPE (parm_tree));
constant_val_insert (fndecl, parm_tree, const_val);
}
/* Compute the proper scale for NODE. It is the ratio between
the number of direct calls (represented on the incoming
cgraph_edges) and sum of all invocations of NODE (represented
as count in cgraph_node). */
static void
ipcp_method_compute_scale (struct cgraph_node *node)
{
gcov_type sum;
struct cgraph_edge *cs;
sum = 0;
/* Compute sum of all counts of callers. */
for (cs = node->callers; cs != NULL; cs = cs->next_caller)
sum += cs->count;
if (node->count == 0)
ipcp_method_set_scale (node, 0);
else
ipcp_method_set_scale (node, sum * REG_BR_PROB_BASE / node->count);
}
/* Initialization and computation of IPCP data structures.
It is an intraprocedural
analysis of methods, which gathers information to be propagated
later on. */
static void
ipcp_init_stage (void)
{
struct cgraph_node *node;
struct cgraph_edge *cs;
for (node = cgraph_nodes; node; node = node->next)
{
ipa_method_formal_compute_count (node);
ipa_method_compute_tree_map (node);
ipcp_method_cval_init (node);
ipa_method_compute_modify (node);
ipcp_method_compute_scale (node);
}
for (node = cgraph_nodes; node; node = node->next)
{
/* building jump functions */
for (cs = node->callees; cs; cs = cs->next_callee)
{
ipa_callsite_compute_count (cs);
if (ipa_callsite_param_count (cs)
!= ipa_method_formal_count (cs->callee))
{
/* Handle cases of functions with
a variable number of parameters. */
ipa_callsite_param_count_set (cs, 0);
ipa_method_formal_count_set (cs->callee, 0);
}
else
ipa_callsite_compute_param (cs);
}
}
}
/* Return true if there are some formal parameters whose value is TOP.
Change their values to BOTTOM, since they weren't determined. */
static bool
ipcp_after_propagate (void)
{
int i, count;
struct cgraph_node *node;
bool prop_again;
prop_again = false;
for (node = cgraph_nodes; node; node = node->next)
{
count = ipa_method_formal_count (node);
for (i = 0; i < count; i++)
if (ipcp_cval_get_cvalue_type (ipcp_method_cval (node, i)) == TOP)
{
prop_again = true;
ipcp_method_cval_set_cvalue_type (node, i, BOTTOM);
}
}
return prop_again;
}
/* Interprocedural analysis. The algorithm propagates constants from
the caller's parameters to the callee's arguments. */
static void
ipcp_propagate_stage (void)
{
int i;
struct ipcp_formal cval1 = { 0, {0} }, cval = { 0,{0} };
struct ipcp_formal *cval2;
struct cgraph_node *mt, *callee;
struct cgraph_edge *cs;
struct ipa_jump_func *jump_func;
enum jump_func_type type;
union parameter_info *info_type;
ipa_methodlist_p wl;
int count;
/* Initialize worklist to contain all methods. */
wl = ipa_methodlist_init ();
while (ipa_methodlist_not_empty (wl))
{
mt = ipa_remove_method (&wl);
for (cs = mt->callees; cs; cs = cs->next_callee)
{
callee = ipa_callsite_callee (cs);
count = ipa_callsite_param_count (cs);
for (i = 0; i < count; i++)
{
jump_func = ipa_callsite_param (cs, i);
type = get_type (jump_func);
info_type = ipa_jf_get_info_type (jump_func);
ipcp_cval_compute (&cval1, mt, type, info_type);
cval2 = ipcp_method_cval (callee, i);
ipcp_cval_meet (&cval, &cval1, cval2);
if (ipcp_cval_changed (&cval, cval2))
{
ipcp_method_cval_set (callee, i, &cval);
ipa_add_method (&wl, callee);
}
}
}
}
}
/* Call the constant propagation algorithm and re-call it if necessary
(if there are undetermined values left). */
static void
ipcp_iterate_stage (void)
{
ipcp_propagate_stage ();
if (ipcp_after_propagate ())
/* Some cvals have changed from TOP to BOTTOM.
This change should be propagated. */
ipcp_propagate_stage ();
}
/* Check conditions to forbid constant insertion to MT. */
static bool
ipcp_method_dont_insert_const (struct cgraph_node *mt)
{
/* ??? Handle pending sizes case. */
if (DECL_UNINLINABLE (mt->decl))
return true;
return false;
}
/* Print ipa_jump_func data structures to F. */
static void
ipcp_callsite_param_print (FILE * f)
{
struct cgraph_node *node;
int i, count;
struct cgraph_edge *cs;
struct ipa_jump_func *jump_func;
enum jump_func_type type;
tree info_type;
fprintf (f, "\nCALLSITE PARAM PRINT\n");
for (node = cgraph_nodes; node; node = node->next)
{
for (cs = node->callees; cs; cs = cs->next_callee)
{
fprintf (f, "callsite %s ", cgraph_node_name (node));
fprintf (f, "-> %s :: \n", cgraph_node_name (cs->callee));
count = ipa_callsite_param_count (cs);
for (i = 0; i < count; i++)
{
jump_func = ipa_callsite_param (cs, i);
type = get_type (jump_func);
fprintf (f, " param %d: ", i);
if (type == UNKNOWN_IPATYPE)
fprintf (f, "UNKNOWN\n");
else if (type == CONST_IPATYPE || type == CONST_IPATYPE_REF)
{
info_type =
ipa_jf_get_info_type (jump_func)->value;
fprintf (f, "CONST : ");
print_generic_expr (f, info_type, 0);
fprintf (f, "\n");
}
else if (type == FORMAL_IPATYPE)
{
fprintf (f, "FORMAL : ");
fprintf (f, "%d\n",
ipa_jf_get_info_type (jump_func)->formal_id);
}
}
}
}
}
/* Print count scale data structures. */
static void
ipcp_method_scale_print (FILE * f)
{
struct cgraph_node *node;
for (node = cgraph_nodes; node; node = node->next)
{
fprintf (f, "printing scale for %s: ", cgraph_node_name (node));
fprintf (f, "value is " HOST_WIDE_INT_PRINT_DEC
" \n", (HOST_WIDE_INT) ipcp_method_get_scale (node));
}
}
/* Print counts of all cgraph nodes. */
static void
ipcp_profile_mt_count_print (FILE * f)
{
struct cgraph_node *node;
for (node = cgraph_nodes; node; node = node->next)
{
fprintf (f, "method %s: ", cgraph_node_name (node));
fprintf (f, "count is " HOST_WIDE_INT_PRINT_DEC
" \n", (HOST_WIDE_INT) node->count);
}
}
/* Print counts of all cgraph edges. */
static void
ipcp_profile_cs_count_print (FILE * f)
{
struct cgraph_node *node;
struct cgraph_edge *cs;
for (node = cgraph_nodes; node; node = node->next)
{
for (cs = node->callees; cs; cs = cs->next_callee)
{
fprintf (f, "%s -> %s ", cgraph_node_name (cs->caller),
cgraph_node_name (cs->callee));
fprintf (f, "count is " HOST_WIDE_INT_PRINT_DEC " \n",
(HOST_WIDE_INT) cs->count);
}
}
}
/* Print all counts and probabilities of cfg edges of all methods. */
static void
ipcp_profile_edge_print (FILE * f)
{
struct cgraph_node *node;
basic_block bb;
edge_iterator ei;
edge e;
for (node = cgraph_nodes; node; node = node->next)
{
fprintf (f, "method %s: \n", cgraph_node_name (node));
if (DECL_SAVED_TREE (node->decl))
{
bb =
ENTRY_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION (node->decl));
fprintf (f, "ENTRY: ");
fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
" %d\n", (HOST_WIDE_INT) bb->count, bb->frequency);
if (bb->succs)
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e->dest ==
EXIT_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION
(node->decl)))
fprintf (f, "edge ENTRY -> EXIT, Count");
else
fprintf (f, "edge ENTRY -> %d, Count", e->dest->index);
fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
" Prob %d\n", (HOST_WIDE_INT) e->count,
e->probability);
}
FOR_EACH_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
{
fprintf (f, "bb[%d]: ", bb->index);
fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
" %d\n", (HOST_WIDE_INT) bb->count, bb->frequency);
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e->dest ==
EXIT_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION
(node->decl)))
fprintf (f, "edge %d -> EXIT, Count", e->src->index);
else
fprintf (f, "edge %d -> %d, Count", e->src->index,
e->dest->index);
fprintf (f, " " HOST_WIDE_INT_PRINT_DEC " Prob %d\n",
(HOST_WIDE_INT) e->count, e->probability);
}
}
}
}
}
/* Print counts and frequencies for all basic blocks of all methods. */
static void
ipcp_profile_bb_print (FILE * f)
{
basic_block bb;
struct cgraph_node *node;
for (node = cgraph_nodes; node; node = node->next)
{
fprintf (f, "method %s: \n", cgraph_node_name (node));
if (DECL_SAVED_TREE (node->decl))
{
bb =
ENTRY_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION (node->decl));
fprintf (f, "ENTRY: Count");
fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
" Frquency %d\n", (HOST_WIDE_INT) bb->count,
bb->frequency);
FOR_EACH_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
{
fprintf (f, "bb[%d]: Count", bb->index);
fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
" Frequency %d\n", (HOST_WIDE_INT) bb->count,
bb->frequency);
}
bb =
EXIT_BLOCK_PTR_FOR_FUNCTION (DECL_STRUCT_FUNCTION (node->decl));
fprintf (f, "EXIT: Count");
fprintf (f, " " HOST_WIDE_INT_PRINT_DEC
" Frequency %d\n", (HOST_WIDE_INT) bb->count,
bb->frequency);
}
}
}
/* Print all IPCP data structures to F. */
static void
ipcp_structures_print (FILE * f)
{
ipcp_method_cval_print (f);
ipcp_method_scale_print (f);
ipa_method_tree_print (f);
ipa_method_modify_print (f);
ipcp_callsite_param_print (f);
}
/* Print profile info for all methods. */
static void
ipcp_profile_print (FILE * f)
{
fprintf (f, "\nNODE COUNTS :\n");
ipcp_profile_mt_count_print (f);
fprintf (f, "\nCS COUNTS stage:\n");
ipcp_profile_cs_count_print (f);
fprintf (f, "\nBB COUNTS and FREQUENCIES :\n");
ipcp_profile_bb_print (f);
fprintf (f, "\nCFG EDGES COUNTS and PROBABILITIES :\n");
ipcp_profile_edge_print (f);
}
/* Build and initialize ipa_replace_map struct
according to TYPE. This struct is read by versioning, which
operates according to the flags sent. PARM_TREE is the
formal's tree found to be constant. CVALUE represents the constant. */
static struct ipa_replace_map *
ipcp_replace_map_create (enum cvalue_type type, tree parm_tree,
union parameter_info *cvalue)
{
struct ipa_replace_map *replace_map;
tree const_val;
replace_map = xcalloc (1, sizeof (struct ipa_replace_map));
gcc_assert (ipcp_type_is_const (type));
if (type == CONST_VALUE_REF )
{
const_val =
build_const_val (cvalue, type, TREE_TYPE (TREE_TYPE (parm_tree)));
replace_map->old_tree = parm_tree;
replace_map->new_tree = const_val;
replace_map->replace_p = true;
replace_map->ref_p = true;
}
else if (TREE_READONLY (parm_tree) && !TREE_ADDRESSABLE (parm_tree))
{
const_val = build_const_val (cvalue, type, TREE_TYPE (parm_tree));
replace_map->old_tree = parm_tree;
replace_map->new_tree = const_val;
replace_map->replace_p = true;
replace_map->ref_p = false;
}
else
{
replace_map->old_tree = NULL;
replace_map->new_tree = NULL;
replace_map->replace_p = false;
replace_map->ref_p = false;
}
return replace_map;
}
/* Return true if this callsite should be redirected to
the orig callee (instead of the cloned one). */
static bool
ipcp_redirect (struct cgraph_edge *cs)
{
struct cgraph_node *caller, *callee, *orig_callee;
int i, count;
struct ipa_jump_func *jump_func;
enum jump_func_type type;
enum cvalue_type cval_type;
caller = cs->caller;
callee = cs->callee;
orig_callee = ipcp_method_orig_node (callee);
count = ipa_method_formal_count (orig_callee);
for (i = 0; i < count; i++)
{
cval_type =
ipcp_cval_get_cvalue_type (ipcp_method_cval (orig_callee, i));
if (ipcp_type_is_const (cval_type))
{
jump_func = ipa_callsite_param (cs, i);
type = get_type (jump_func);
if (type != CONST_IPATYPE
&& type != CONST_IPATYPE_REF)
return true;
}
}
return false;
}
/* Fix the callsites and the callgraph after function cloning was done. */
static void
ipcp_update_callgraph (void)
{
struct cgraph_node *node, *orig_callee;
struct cgraph_edge *cs;
for (node = cgraph_nodes; node; node = node->next)
{
/* want to fix only original nodes */
if (ipcp_method_is_cloned (node))
continue;
for (cs = node->callees; cs; cs = cs->next_callee)
if (ipcp_method_is_cloned (cs->callee))
{
/* Callee is a cloned node */
orig_callee = ipcp_method_orig_node (cs->callee);
if (ipcp_redirect (cs))
{
cgraph_redirect_edge_callee (cs, orig_callee);
TREE_OPERAND (TREE_OPERAND
(get_call_expr_in (cs->call_stmt), 0), 0) =
orig_callee->decl;
}
}
}
}
/* Update all cfg basic blocks in NODE according to SCALE. */
static void
ipcp_update_bb_counts (struct cgraph_node *node, gcov_type scale)
{
basic_block bb;
FOR_ALL_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
bb->count = bb->count * scale / REG_BR_PROB_BASE;
}
/* Update all cfg edges in NODE according to SCALE. */
static void
ipcp_update_edges_counts (struct cgraph_node *node, gcov_type scale)
{
basic_block bb;
edge_iterator ei;
edge e;
FOR_ALL_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
FOR_EACH_EDGE (e, ei, bb->succs)
e->count = e->count * scale / REG_BR_PROB_BASE;
}
/* Update profiling info for versioned methods and the
methods they were versioned from. */
static void
ipcp_update_profiling (void)
{
struct cgraph_node *node, *orig_node;
gcov_type scale, scale_complement;
struct cgraph_edge *cs;
for (node = cgraph_nodes; node; node = node->next)
{
if (ipcp_method_is_cloned (node))
{
orig_node = ipcp_method_orig_node (node);
scale = ipcp_method_get_scale (orig_node);
node->count = orig_node->count * scale / REG_BR_PROB_BASE;
scale_complement = REG_BR_PROB_BASE - scale;
orig_node->count =
orig_node->count * scale_complement / REG_BR_PROB_BASE;
for (cs = node->callees; cs; cs = cs->next_callee)
cs->count = cs->count * scale / REG_BR_PROB_BASE;
for (cs = orig_node->callees; cs; cs = cs->next_callee)
cs->count = cs->count * scale_complement / REG_BR_PROB_BASE;
ipcp_update_bb_counts (node, scale);
ipcp_update_bb_counts (orig_node, scale_complement);
ipcp_update_edges_counts (node, scale);
ipcp_update_edges_counts (orig_node, scale_complement);
}
}
}
/* Propagate the constant parameters found by ipcp_iterate_stage()
to the function's code. */
static void
ipcp_insert_stage (void)
{
struct cgraph_node *node, *node1 = NULL;
int i, const_param;
union parameter_info *cvalue;
varray_type redirect_callers, replace_trees;
struct cgraph_edge *cs;
int node_callers, count;
tree parm_tree;
enum cvalue_type type;
struct ipa_replace_map *replace_param;
for (node = cgraph_nodes; node; node = node->next)
{
/* Propagation of the constant is forbidden in
certain conditions. */
if (ipcp_method_dont_insert_const (node))
continue;
const_param = 0;
count = ipa_method_formal_count (node);
for (i = 0; i < count; i++)
{
type = ipcp_cval_get_cvalue_type (ipcp_method_cval (node, i));
if (ipcp_type_is_const (type))
const_param++;
}
if (const_param == 0)
continue;
VARRAY_GENERIC_PTR_INIT (replace_trees, const_param, "replace_trees");
for (i = 0; i < count; i++)
{
type = ipcp_cval_get_cvalue_type (ipcp_method_cval (node, i));
if (ipcp_type_is_const (type))
{
cvalue = ipcp_cval_get_cvalue (ipcp_method_cval (node, i));
parm_tree = ipa_method_get_tree (node, i);
replace_param =
ipcp_replace_map_create (type, parm_tree, cvalue);
VARRAY_PUSH_GENERIC_PTR (replace_trees, replace_param);
}
}
/* Compute how many callers node has. */
node_callers = 0;
for (cs = node->callers; cs != NULL; cs = cs->next_caller)
node_callers++;
VARRAY_GENERIC_PTR_INIT (redirect_callers, node_callers,
"redirect_callers");
for (cs = node->callers; cs != NULL; cs = cs->next_caller)
VARRAY_PUSH_GENERIC_PTR (redirect_callers, cs);
/* Redirecting all the callers of the node to the
new versioned node. */
node1 =
cgraph_function_versioning (node, redirect_callers, replace_trees);
VARRAY_CLEAR (redirect_callers);
VARRAY_CLEAR (replace_trees);
if (node1 == NULL)
continue;
if (dump_file)
fprintf (dump_file, "versioned function %s\n",
cgraph_node_name (node));
ipcp_cloned_create (node, node1);
for (i = 0; i < count; i++)
{
type = ipcp_cval_get_cvalue_type (ipcp_method_cval (node, i));
if (ipcp_type_is_const (type))
{
cvalue = ipcp_cval_get_cvalue (ipcp_method_cval (node, i));
parm_tree = ipa_method_get_tree (node, i);
if (type != CONST_VALUE_REF
&& !TREE_READONLY (parm_tree))
ipcp_propagate_const (node1, i, cvalue, type);
}
}
}
ipcp_update_callgraph ();
ipcp_update_profiling ();
}
/* The IPCP driver. */
void
ipcp_driver (void)
{
if (dump_file)
fprintf (dump_file, "\nIPA constant propagation start:\n");
ipa_nodes_create ();
ipa_edges_create ();
/* 1. Call the init stage to initialize
the ipa_node and ipa_edge structures. */
ipcp_init_stage ();
if (dump_file)
{
fprintf (dump_file, "\nIPA structures before propagation:\n");
ipcp_structures_print (dump_file);
}
/* 2. Do the interprocedural propagation. */
ipcp_iterate_stage ();
if (dump_file)
{
fprintf (dump_file, "\nIPA structures after propagation:\n");
ipcp_structures_print (dump_file);
fprintf (dump_file, "\nProfiling info before insert stage:\n");
ipcp_profile_print (dump_file);
}
/* 3. Insert the constants found to the functions. */
ipcp_insert_stage ();
if (dump_file)
{
fprintf (dump_file, "\nProfiling info after insert stage:\n");
ipcp_profile_print (dump_file);
}
/* Free all IPCP structures. */
ipa_free ();
ipa_nodes_free ();
ipa_edges_free ();
if (dump_file)
fprintf (dump_file, "\nIPA constant propagation end\n");
cgraph_remove_unreachable_nodes (true, NULL);
}
/* Gate for IPCP optimization. */
static bool
cgraph_gate_cp (void)
{
return flag_ipa_cp;
}
struct tree_opt_pass pass_ipa_cp = {
"cp", /* name */
cgraph_gate_cp, /* gate */
ipcp_driver, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_IPA_CONSTANT_PROP, /* tv_id */
0, /* properties_required */
PROP_trees, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_dump_cgraph | TODO_dump_func, /* todo_flags_finish */
0 /* letter */
};
|