aboutsummaryrefslogtreecommitdiff
path: root/gcc/internal-fn.cc
blob: 7c86197b0ded8dbc89e35edb3e781a8137dfc87e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
/* Internal functions.
   Copyright (C) 2011-2023 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "predict.h"
#include "stringpool.h"
#include "tree-vrp.h"
#include "tree-ssanames.h"
#include "expmed.h"
#include "memmodel.h"
#include "optabs.h"
#include "emit-rtl.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "internal-fn.h"
#include "stor-layout.h"
#include "dojump.h"
#include "expr.h"
#include "stringpool.h"
#include "attribs.h"
#include "asan.h"
#include "ubsan.h"
#include "recog.h"
#include "builtins.h"
#include "optabs-tree.h"
#include "gimple-ssa.h"
#include "tree-phinodes.h"
#include "ssa-iterators.h"
#include "explow.h"
#include "rtl-iter.h"
#include "gimple-range.h"

/* For lang_hooks.types.type_for_mode.  */
#include "langhooks.h"

/* The names of each internal function, indexed by function number.  */
const char *const internal_fn_name_array[] = {
#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) #CODE,
#include "internal-fn.def"
  "<invalid-fn>"
};

/* The ECF_* flags of each internal function, indexed by function number.  */
const int internal_fn_flags_array[] = {
#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) FLAGS,
#include "internal-fn.def"
  0
};

/* Return the internal function called NAME, or IFN_LAST if there's
   no such function.  */

internal_fn
lookup_internal_fn (const char *name)
{
  typedef hash_map<nofree_string_hash, internal_fn> name_to_fn_map_type;
  static name_to_fn_map_type *name_to_fn_map;

  if (!name_to_fn_map)
    {
      name_to_fn_map = new name_to_fn_map_type (IFN_LAST);
      for (unsigned int i = 0; i < IFN_LAST; ++i)
	name_to_fn_map->put (internal_fn_name (internal_fn (i)),
			     internal_fn (i));
    }
  internal_fn *entry = name_to_fn_map->get (name);
  return entry ? *entry : IFN_LAST;
}

/* Geven an internal_fn IFN that is a widening function, return its
   corresponding LO and HI internal_fns.  */

extern void
lookup_hilo_internal_fn (internal_fn ifn, internal_fn *lo, internal_fn *hi)
{
  gcc_assert (widening_fn_p (ifn));

  switch (ifn)
    {
    default:
      gcc_unreachable ();
#undef DEF_INTERNAL_FN
#undef DEF_INTERNAL_WIDENING_OPTAB_FN
#define DEF_INTERNAL_FN(NAME, FLAGS, TYPE)
#define DEF_INTERNAL_WIDENING_OPTAB_FN(NAME, F, S, SO, UO, T)	\
    case IFN_##NAME:						\
      *lo = internal_fn (IFN_##NAME##_LO);			\
      *hi = internal_fn (IFN_##NAME##_HI);			\
      break;
#include "internal-fn.def"
#undef DEF_INTERNAL_FN
#undef DEF_INTERNAL_WIDENING_OPTAB_FN
    }
}

/* Given an internal_fn IFN that is a widening function, return its
   corresponding _EVEN and _ODD internal_fns in *EVEN and *ODD.  */

extern void
lookup_evenodd_internal_fn (internal_fn ifn, internal_fn *even,
			    internal_fn *odd)
{
  gcc_assert (widening_fn_p (ifn));

  switch (ifn)
    {
    default:
      gcc_unreachable ();
#undef DEF_INTERNAL_FN
#undef DEF_INTERNAL_WIDENING_OPTAB_FN
#define DEF_INTERNAL_FN(NAME, FLAGS, TYPE)
#define DEF_INTERNAL_WIDENING_OPTAB_FN(NAME, F, S, SO, UO, T)	\
    case IFN_##NAME:						\
      *even = internal_fn (IFN_##NAME##_EVEN);			\
      *odd = internal_fn (IFN_##NAME##_ODD);			\
      break;
#include "internal-fn.def"
#undef DEF_INTERNAL_FN
#undef DEF_INTERNAL_WIDENING_OPTAB_FN
    }
}


/* Fnspec of each internal function, indexed by function number.  */
const_tree internal_fn_fnspec_array[IFN_LAST + 1];

void
init_internal_fns ()
{
#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) \
  if (FNSPEC) internal_fn_fnspec_array[IFN_##CODE] = \
    build_string ((int) sizeof (FNSPEC) - 1, FNSPEC ? FNSPEC : "");
#include "internal-fn.def"
  internal_fn_fnspec_array[IFN_LAST] = 0;
}

/* Create static initializers for the information returned by
   direct_internal_fn.  */
#define not_direct { -2, -2, false }
#define mask_load_direct { -1, 2, false }
#define load_lanes_direct { -1, -1, false }
#define mask_load_lanes_direct { -1, -1, false }
#define gather_load_direct { 3, 1, false }
#define len_load_direct { -1, -1, false }
#define mask_len_load_direct { -1, 4, false }
#define mask_store_direct { 3, 2, false }
#define store_lanes_direct { 0, 0, false }
#define mask_store_lanes_direct { 0, 0, false }
#define vec_cond_mask_direct { 1, 0, false }
#define vec_cond_direct { 2, 0, false }
#define scatter_store_direct { 3, 1, false }
#define len_store_direct { 3, 3, false }
#define mask_len_store_direct { 4, 5, false }
#define vec_set_direct { 3, 3, false }
#define vec_extract_direct { 0, -1, false }
#define unary_direct { 0, 0, true }
#define unary_convert_direct { -1, 0, true }
#define binary_direct { 0, 0, true }
#define ternary_direct { 0, 0, true }
#define cond_unary_direct { 1, 1, true }
#define cond_binary_direct { 1, 1, true }
#define cond_ternary_direct { 1, 1, true }
#define cond_len_unary_direct { 1, 1, true }
#define cond_len_binary_direct { 1, 1, true }
#define cond_len_ternary_direct { 1, 1, true }
#define while_direct { 0, 2, false }
#define fold_extract_direct { 2, 2, false }
#define fold_len_extract_direct { 2, 2, false }
#define fold_left_direct { 1, 1, false }
#define mask_fold_left_direct { 1, 1, false }
#define mask_len_fold_left_direct { 1, 1, false }
#define check_ptrs_direct { 0, 0, false }

const direct_internal_fn_info direct_internal_fn_array[IFN_LAST + 1] = {
#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) not_direct,
#define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) TYPE##_direct,
#define DEF_INTERNAL_SIGNED_OPTAB_FN(CODE, FLAGS, SELECTOR, SIGNED_OPTAB, \
				     UNSIGNED_OPTAB, TYPE) TYPE##_direct,
#include "internal-fn.def"
  not_direct
};

/* Expand STMT using instruction ICODE.  The instruction has NOUTPUTS
   output operands and NINPUTS input operands, where NOUTPUTS is either
   0 or 1.  The output operand (if any) comes first, followed by the
   NINPUTS input operands.  */

static void
expand_fn_using_insn (gcall *stmt, insn_code icode, unsigned int noutputs,
		      unsigned int ninputs)
{
  gcc_assert (icode != CODE_FOR_nothing);

  expand_operand *ops = XALLOCAVEC (expand_operand, noutputs + ninputs);
  unsigned int opno = 0;
  rtx lhs_rtx = NULL_RTX;
  tree lhs = gimple_call_lhs (stmt);

  if (noutputs)
    {
      gcc_assert (noutputs == 1);
      if (lhs)
	lhs_rtx = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);

      /* Do not assign directly to a promoted subreg, since there is no
	 guarantee that the instruction will leave the upper bits of the
	 register in the state required by SUBREG_PROMOTED_SIGN.  */
      rtx dest = lhs_rtx;
      if (dest && GET_CODE (dest) == SUBREG && SUBREG_PROMOTED_VAR_P (dest))
	dest = NULL_RTX;
      create_output_operand (&ops[opno], dest,
			     insn_data[icode].operand[opno].mode);
      opno += 1;
    }
  else
    gcc_assert (!lhs);

  for (unsigned int i = 0; i < ninputs; ++i)
    {
      tree rhs = gimple_call_arg (stmt, i);
      tree rhs_type = TREE_TYPE (rhs);
      rtx rhs_rtx = expand_normal (rhs);
      if (INTEGRAL_TYPE_P (rhs_type))
	create_convert_operand_from (&ops[opno], rhs_rtx,
				     TYPE_MODE (rhs_type),
				     TYPE_UNSIGNED (rhs_type));
      else
	create_input_operand (&ops[opno], rhs_rtx, TYPE_MODE (rhs_type));
      opno += 1;
    }

  gcc_assert (opno == noutputs + ninputs);
  expand_insn (icode, opno, ops);
  if (lhs_rtx && !rtx_equal_p (lhs_rtx, ops[0].value))
    {
      /* If the return value has an integral type, convert the instruction
	 result to that type.  This is useful for things that return an
	 int regardless of the size of the input.  If the instruction result
	 is smaller than required, assume that it is signed.

	 If the return value has a nonintegral type, its mode must match
	 the instruction result.  */
      if (GET_CODE (lhs_rtx) == SUBREG && SUBREG_PROMOTED_VAR_P (lhs_rtx))
	{
	  /* If this is a scalar in a register that is stored in a wider
	     mode than the declared mode, compute the result into its
	     declared mode and then convert to the wider mode.  */
	  gcc_checking_assert (INTEGRAL_TYPE_P (TREE_TYPE (lhs)));
	  rtx tmp = convert_to_mode (GET_MODE (lhs_rtx), ops[0].value, 0);
	  convert_move (SUBREG_REG (lhs_rtx), tmp,
			SUBREG_PROMOTED_SIGN (lhs_rtx));
	}
      else if (GET_MODE (lhs_rtx) == GET_MODE (ops[0].value))
	emit_move_insn (lhs_rtx, ops[0].value);
      else
	{
	  gcc_checking_assert (INTEGRAL_TYPE_P (TREE_TYPE (lhs)));
	  convert_move (lhs_rtx, ops[0].value, 0);
	}
    }
}

/* ARRAY_TYPE is an array of vector modes.  Return the associated insn
   for load-lanes-style optab OPTAB, or CODE_FOR_nothing if none.  */

static enum insn_code
get_multi_vector_move (tree array_type, convert_optab optab)
{
  machine_mode imode;
  machine_mode vmode;

  gcc_assert (TREE_CODE (array_type) == ARRAY_TYPE);
  imode = TYPE_MODE (array_type);
  vmode = TYPE_MODE (TREE_TYPE (array_type));

  return convert_optab_handler (optab, imode, vmode);
}

/* Add mask and len arguments according to the STMT.  */

static unsigned int
add_mask_and_len_args (expand_operand *ops, unsigned int opno, gcall *stmt)
{
  internal_fn ifn = gimple_call_internal_fn (stmt);
  int len_index = internal_fn_len_index (ifn);
  /* BIAS is always consecutive next of LEN.  */
  int bias_index = len_index + 1;
  int mask_index = internal_fn_mask_index (ifn);
  /* The order of arguments are always {len,bias,mask}.  */
  if (mask_index >= 0)
    {
      tree mask = gimple_call_arg (stmt, mask_index);
      rtx mask_rtx = expand_normal (mask);
      create_input_operand (&ops[opno++], mask_rtx,
			    TYPE_MODE (TREE_TYPE (mask)));
    }
  if (len_index >= 0)
    {
      tree len = gimple_call_arg (stmt, len_index);
      rtx len_rtx = expand_normal (len);
      create_convert_operand_from (&ops[opno++], len_rtx,
				   TYPE_MODE (TREE_TYPE (len)),
				   TYPE_UNSIGNED (TREE_TYPE (len)));
      tree biast = gimple_call_arg (stmt, bias_index);
      rtx bias = expand_normal (biast);
      create_input_operand (&ops[opno++], bias, QImode);
    }
  return opno;
}

/* Expand LOAD_LANES call STMT using optab OPTAB.  */

static void
expand_load_lanes_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
{
  class expand_operand ops[2];
  tree type, lhs, rhs;
  rtx target, mem;

  lhs = gimple_call_lhs (stmt);
  rhs = gimple_call_arg (stmt, 0);
  type = TREE_TYPE (lhs);

  target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  mem = expand_normal (rhs);

  gcc_assert (MEM_P (mem));
  PUT_MODE (mem, TYPE_MODE (type));

  create_output_operand (&ops[0], target, TYPE_MODE (type));
  create_fixed_operand (&ops[1], mem);
  expand_insn (get_multi_vector_move (type, optab), 2, ops);
  if (!rtx_equal_p (target, ops[0].value))
    emit_move_insn (target, ops[0].value);
}

/* Expand STORE_LANES call STMT using optab OPTAB.  */

static void
expand_store_lanes_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
{
  class expand_operand ops[2];
  tree type, lhs, rhs;
  rtx target, reg;

  lhs = gimple_call_lhs (stmt);
  rhs = gimple_call_arg (stmt, 0);
  type = TREE_TYPE (rhs);

  target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  reg = expand_normal (rhs);

  gcc_assert (MEM_P (target));
  PUT_MODE (target, TYPE_MODE (type));

  create_fixed_operand (&ops[0], target);
  create_input_operand (&ops[1], reg, TYPE_MODE (type));
  expand_insn (get_multi_vector_move (type, optab), 2, ops);
}

static void
expand_ANNOTATE (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* This should get expanded in omp_device_lower pass.  */

static void
expand_GOMP_USE_SIMT (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* This should get expanded in omp_device_lower pass.  */

static void
expand_GOMP_SIMT_ENTER (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* Allocate per-lane storage and begin non-uniform execution region.  */

static void
expand_GOMP_SIMT_ENTER_ALLOC (internal_fn, gcall *stmt)
{
  rtx target;
  tree lhs = gimple_call_lhs (stmt);
  if (lhs)
    target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  else
    target = gen_reg_rtx (Pmode);
  rtx size = expand_normal (gimple_call_arg (stmt, 0));
  rtx align = expand_normal (gimple_call_arg (stmt, 1));
  class expand_operand ops[3];
  create_output_operand (&ops[0], target, Pmode);
  create_input_operand (&ops[1], size, Pmode);
  create_input_operand (&ops[2], align, Pmode);
  gcc_assert (targetm.have_omp_simt_enter ());
  expand_insn (targetm.code_for_omp_simt_enter, 3, ops);
  if (!rtx_equal_p (target, ops[0].value))
    emit_move_insn (target, ops[0].value);
}

/* Deallocate per-lane storage and leave non-uniform execution region.  */

static void
expand_GOMP_SIMT_EXIT (internal_fn, gcall *stmt)
{
  gcc_checking_assert (!gimple_call_lhs (stmt));
  rtx arg = expand_normal (gimple_call_arg (stmt, 0));
  class expand_operand ops[1];
  create_input_operand (&ops[0], arg, Pmode);
  gcc_assert (targetm.have_omp_simt_exit ());
  expand_insn (targetm.code_for_omp_simt_exit, 1, ops);
}

/* Lane index on SIMT targets: thread index in the warp on NVPTX.  On targets
   without SIMT execution this should be expanded in omp_device_lower pass.  */

static void
expand_GOMP_SIMT_LANE (internal_fn, gcall *stmt)
{
  tree lhs = gimple_call_lhs (stmt);
  if (!lhs)
    return;

  rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  gcc_assert (targetm.have_omp_simt_lane ());
  emit_insn (targetm.gen_omp_simt_lane (target));
}

/* This should get expanded in omp_device_lower pass.  */

static void
expand_GOMP_SIMT_VF (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* This should get expanded in omp_device_lower pass.  */

static void
expand_GOMP_TARGET_REV (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* Lane index of the first SIMT lane that supplies a non-zero argument.
   This is a SIMT counterpart to GOMP_SIMD_LAST_LANE, used to represent the
   lane that executed the last iteration for handling OpenMP lastprivate.  */

static void
expand_GOMP_SIMT_LAST_LANE (internal_fn, gcall *stmt)
{
  tree lhs = gimple_call_lhs (stmt);
  if (!lhs)
    return;

  rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  rtx cond = expand_normal (gimple_call_arg (stmt, 0));
  machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
  class expand_operand ops[2];
  create_output_operand (&ops[0], target, mode);
  create_input_operand (&ops[1], cond, mode);
  gcc_assert (targetm.have_omp_simt_last_lane ());
  expand_insn (targetm.code_for_omp_simt_last_lane, 2, ops);
  if (!rtx_equal_p (target, ops[0].value))
    emit_move_insn (target, ops[0].value);
}

/* Non-transparent predicate used in SIMT lowering of OpenMP "ordered".  */

static void
expand_GOMP_SIMT_ORDERED_PRED (internal_fn, gcall *stmt)
{
  tree lhs = gimple_call_lhs (stmt);
  if (!lhs)
    return;

  rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  rtx ctr = expand_normal (gimple_call_arg (stmt, 0));
  machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
  class expand_operand ops[2];
  create_output_operand (&ops[0], target, mode);
  create_input_operand (&ops[1], ctr, mode);
  gcc_assert (targetm.have_omp_simt_ordered ());
  expand_insn (targetm.code_for_omp_simt_ordered, 2, ops);
  if (!rtx_equal_p (target, ops[0].value))
    emit_move_insn (target, ops[0].value);
}

/* "Or" boolean reduction across SIMT lanes: return non-zero in all lanes if
   any lane supplies a non-zero argument.  */

static void
expand_GOMP_SIMT_VOTE_ANY (internal_fn, gcall *stmt)
{
  tree lhs = gimple_call_lhs (stmt);
  if (!lhs)
    return;

  rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  rtx cond = expand_normal (gimple_call_arg (stmt, 0));
  machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
  class expand_operand ops[2];
  create_output_operand (&ops[0], target, mode);
  create_input_operand (&ops[1], cond, mode);
  gcc_assert (targetm.have_omp_simt_vote_any ());
  expand_insn (targetm.code_for_omp_simt_vote_any, 2, ops);
  if (!rtx_equal_p (target, ops[0].value))
    emit_move_insn (target, ops[0].value);
}

/* Exchange between SIMT lanes with a "butterfly" pattern: source lane index
   is destination lane index XOR given offset.  */

static void
expand_GOMP_SIMT_XCHG_BFLY (internal_fn, gcall *stmt)
{
  tree lhs = gimple_call_lhs (stmt);
  if (!lhs)
    return;

  rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  rtx src = expand_normal (gimple_call_arg (stmt, 0));
  rtx idx = expand_normal (gimple_call_arg (stmt, 1));
  machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
  class expand_operand ops[3];
  create_output_operand (&ops[0], target, mode);
  create_input_operand (&ops[1], src, mode);
  create_input_operand (&ops[2], idx, SImode);
  gcc_assert (targetm.have_omp_simt_xchg_bfly ());
  expand_insn (targetm.code_for_omp_simt_xchg_bfly, 3, ops);
  if (!rtx_equal_p (target, ops[0].value))
    emit_move_insn (target, ops[0].value);
}

/* Exchange between SIMT lanes according to given source lane index.  */

static void
expand_GOMP_SIMT_XCHG_IDX (internal_fn, gcall *stmt)
{
  tree lhs = gimple_call_lhs (stmt);
  if (!lhs)
    return;

  rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  rtx src = expand_normal (gimple_call_arg (stmt, 0));
  rtx idx = expand_normal (gimple_call_arg (stmt, 1));
  machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
  class expand_operand ops[3];
  create_output_operand (&ops[0], target, mode);
  create_input_operand (&ops[1], src, mode);
  create_input_operand (&ops[2], idx, SImode);
  gcc_assert (targetm.have_omp_simt_xchg_idx ());
  expand_insn (targetm.code_for_omp_simt_xchg_idx, 3, ops);
  if (!rtx_equal_p (target, ops[0].value))
    emit_move_insn (target, ops[0].value);
}

/* This should get expanded in adjust_simduid_builtins.  */

static void
expand_GOMP_SIMD_LANE (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* This should get expanded in adjust_simduid_builtins.  */

static void
expand_GOMP_SIMD_VF (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* This should get expanded in adjust_simduid_builtins.  */

static void
expand_GOMP_SIMD_LAST_LANE (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* This should get expanded in adjust_simduid_builtins.  */

static void
expand_GOMP_SIMD_ORDERED_START (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* This should get expanded in adjust_simduid_builtins.  */

static void
expand_GOMP_SIMD_ORDERED_END (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* This should get expanded in the sanopt pass.  */

static void
expand_UBSAN_NULL (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* This should get expanded in the sanopt pass.  */

static void
expand_UBSAN_BOUNDS (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* This should get expanded in the sanopt pass.  */

static void
expand_UBSAN_VPTR (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* This should get expanded in the sanopt pass.  */

static void
expand_UBSAN_PTR (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* This should get expanded in the sanopt pass.  */

static void
expand_UBSAN_OBJECT_SIZE (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* This should get expanded in the sanopt pass.  */

static void
expand_HWASAN_CHECK (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* For hwasan stack tagging:
   Clear tags on the dynamically allocated space.
   For use after an object dynamically allocated on the stack goes out of
   scope.  */
static void
expand_HWASAN_ALLOCA_UNPOISON (internal_fn, gcall *gc)
{
  gcc_assert (Pmode == ptr_mode);
  tree restored_position = gimple_call_arg (gc, 0);
  rtx restored_rtx = expand_expr (restored_position, NULL_RTX, VOIDmode,
				  EXPAND_NORMAL);
  rtx func = init_one_libfunc ("__hwasan_tag_memory");
  rtx off = expand_simple_binop (Pmode, MINUS, restored_rtx,
				 stack_pointer_rtx, NULL_RTX, 0,
				 OPTAB_WIDEN);
  emit_library_call_value (func, NULL_RTX, LCT_NORMAL, VOIDmode,
			   virtual_stack_dynamic_rtx, Pmode,
			   HWASAN_STACK_BACKGROUND, QImode,
			   off, Pmode);
}

/* For hwasan stack tagging:
   Return a tag to be used for a dynamic allocation.  */
static void
expand_HWASAN_CHOOSE_TAG (internal_fn, gcall *gc)
{
  tree tag = gimple_call_lhs (gc);
  rtx target = expand_expr (tag, NULL_RTX, VOIDmode, EXPAND_NORMAL);
  machine_mode mode = GET_MODE (target);
  gcc_assert (mode == QImode);

  rtx base_tag = targetm.memtag.extract_tag (hwasan_frame_base (), NULL_RTX);
  gcc_assert (base_tag);
  rtx tag_offset = gen_int_mode (hwasan_current_frame_tag (), QImode);
  rtx chosen_tag = expand_simple_binop (QImode, PLUS, base_tag, tag_offset,
					target, /* unsignedp = */1,
					OPTAB_WIDEN);
  chosen_tag = hwasan_truncate_to_tag_size (chosen_tag, target);

  /* Really need to put the tag into the `target` RTX.  */
  if (chosen_tag != target)
    {
      rtx temp = chosen_tag;
      gcc_assert (GET_MODE (chosen_tag) == mode);
      emit_move_insn (target, temp);
    }

  hwasan_increment_frame_tag ();
}

/* For hwasan stack tagging:
   Tag a region of space in the shadow stack according to the base pointer of
   an object on the stack.  N.b. the length provided in the internal call is
   required to be aligned to HWASAN_TAG_GRANULE_SIZE.  */
static void
expand_HWASAN_MARK (internal_fn, gcall *gc)
{
  gcc_assert (ptr_mode == Pmode);
  HOST_WIDE_INT flag = tree_to_shwi (gimple_call_arg (gc, 0));
  bool is_poison = ((asan_mark_flags)flag) == ASAN_MARK_POISON;

  tree base = gimple_call_arg (gc, 1);
  gcc_checking_assert (TREE_CODE (base) == ADDR_EXPR);
  rtx base_rtx = expand_normal (base);

  rtx tag = is_poison ? HWASAN_STACK_BACKGROUND
    : targetm.memtag.extract_tag (base_rtx, NULL_RTX);
  rtx address = targetm.memtag.untagged_pointer (base_rtx, NULL_RTX);

  tree len = gimple_call_arg (gc, 2);
  rtx r_len = expand_normal (len);

  rtx func = init_one_libfunc ("__hwasan_tag_memory");
  emit_library_call (func, LCT_NORMAL, VOIDmode, address, Pmode,
		     tag, QImode, r_len, Pmode);
}

/* For hwasan stack tagging:
   Store a tag into a pointer.  */
static void
expand_HWASAN_SET_TAG (internal_fn, gcall *gc)
{
  gcc_assert (ptr_mode == Pmode);
  tree g_target = gimple_call_lhs (gc);
  tree g_ptr = gimple_call_arg (gc, 0);
  tree g_tag = gimple_call_arg (gc, 1);

  rtx ptr = expand_normal (g_ptr);
  rtx tag = expand_expr (g_tag, NULL_RTX, QImode, EXPAND_NORMAL);
  rtx target = expand_normal (g_target);

  rtx untagged = targetm.memtag.untagged_pointer (ptr, target);
  rtx tagged_value = targetm.memtag.set_tag (untagged, tag, target);
  if (tagged_value != target)
    emit_move_insn (target, tagged_value);
}

/* This should get expanded in the sanopt pass.  */

static void
expand_ASAN_CHECK (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* This should get expanded in the sanopt pass.  */

static void
expand_ASAN_MARK (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* This should get expanded in the sanopt pass.  */

static void
expand_ASAN_POISON (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* This should get expanded in the sanopt pass.  */

static void
expand_ASAN_POISON_USE (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* This should get expanded in the tsan pass.  */

static void
expand_TSAN_FUNC_EXIT (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* This should get expanded in the lower pass.  */

static void
expand_FALLTHROUGH (internal_fn, gcall *call)
{
  error_at (gimple_location (call),
	    "invalid use of attribute %<fallthrough%>");
}

/* Return minimum precision needed to represent all values
   of ARG in SIGNed integral type.  */

static int
get_min_precision (tree arg, signop sign)
{
  int prec = TYPE_PRECISION (TREE_TYPE (arg));
  int cnt = 0;
  signop orig_sign = sign;
  if (TREE_CODE (arg) == INTEGER_CST)
    {
      int p;
      if (TYPE_SIGN (TREE_TYPE (arg)) != sign)
	{
	  widest_int w = wi::to_widest (arg);
	  w = wi::ext (w, prec, sign);
	  p = wi::min_precision (w, sign);
	}
      else
	p = wi::min_precision (wi::to_wide (arg), sign);
      return MIN (p, prec);
    }
  while (CONVERT_EXPR_P (arg)
	 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
	 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
    {
      arg = TREE_OPERAND (arg, 0);
      if (TYPE_PRECISION (TREE_TYPE (arg)) < prec)
	{
	  if (TYPE_UNSIGNED (TREE_TYPE (arg)))
	    sign = UNSIGNED;
	  else if (sign == UNSIGNED && get_range_pos_neg (arg) != 1)
	    return prec + (orig_sign != sign);
	  prec = TYPE_PRECISION (TREE_TYPE (arg));
	}
      if (++cnt > 30)
	return prec + (orig_sign != sign);
    }
  if (CONVERT_EXPR_P (arg)
      && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
      && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) > prec)
    {
      /* We have e.g. (unsigned short) y_2 where int y_2 = (int) x_1(D);
	 If y_2's min precision is smaller than prec, return that.  */
      int oprec = get_min_precision (TREE_OPERAND (arg, 0), sign);
      if (oprec < prec)
	return oprec + (orig_sign != sign);
    }
  if (TREE_CODE (arg) != SSA_NAME)
    return prec + (orig_sign != sign);
  value_range r;
  while (!get_global_range_query ()->range_of_expr (r, arg)
	 || r.varying_p ()
	 || r.undefined_p ())
    {
      gimple *g = SSA_NAME_DEF_STMT (arg);
      if (is_gimple_assign (g)
	  && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
	{
	  tree t = gimple_assign_rhs1 (g);
	  if (INTEGRAL_TYPE_P (TREE_TYPE (t))
	      && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
	    {
	      arg = t;
	      if (TYPE_PRECISION (TREE_TYPE (arg)) < prec)
		{
		  if (TYPE_UNSIGNED (TREE_TYPE (arg)))
		    sign = UNSIGNED;
		  else if (sign == UNSIGNED && get_range_pos_neg (arg) != 1)
		    return prec + (orig_sign != sign);
		  prec = TYPE_PRECISION (TREE_TYPE (arg));
		}
	      if (++cnt > 30)
		return prec + (orig_sign != sign);
	      continue;
	    }
	}
      return prec + (orig_sign != sign);
    }
  if (sign == TYPE_SIGN (TREE_TYPE (arg)))
    {
      int p1 = wi::min_precision (r.lower_bound (), sign);
      int p2 = wi::min_precision (r.upper_bound (), sign);
      p1 = MAX (p1, p2);
      prec = MIN (prec, p1);
    }
  else if (sign == UNSIGNED && !wi::neg_p (r.lower_bound (), SIGNED))
    {
      int p = wi::min_precision (r.upper_bound (), UNSIGNED);
      prec = MIN (prec, p);
    }
  return prec + (orig_sign != sign);
}

/* Helper for expand_*_overflow.  Set the __imag__ part to true
   (1 except for signed:1 type, in which case store -1).  */

static void
expand_arith_set_overflow (tree lhs, rtx target)
{
  if (TYPE_PRECISION (TREE_TYPE (TREE_TYPE (lhs))) == 1
      && !TYPE_UNSIGNED (TREE_TYPE (TREE_TYPE (lhs))))
    write_complex_part (target, constm1_rtx, true, false);
  else
    write_complex_part (target, const1_rtx, true, false);
}

/* Helper for expand_*_overflow.  Store RES into the __real__ part
   of TARGET.  If RES has larger MODE than __real__ part of TARGET,
   set the __imag__ part to 1 if RES doesn't fit into it.  Similarly
   if LHS has smaller precision than its mode.  */

static void
expand_arith_overflow_result_store (tree lhs, rtx target,
				    scalar_int_mode mode, rtx res)
{
  scalar_int_mode tgtmode
    = as_a <scalar_int_mode> (GET_MODE_INNER (GET_MODE (target)));
  rtx lres = res;
  if (tgtmode != mode)
    {
      rtx_code_label *done_label = gen_label_rtx ();
      int uns = TYPE_UNSIGNED (TREE_TYPE (TREE_TYPE (lhs)));
      lres = convert_modes (tgtmode, mode, res, uns);
      gcc_assert (GET_MODE_PRECISION (tgtmode) < GET_MODE_PRECISION (mode));
      do_compare_rtx_and_jump (res, convert_modes (mode, tgtmode, lres, uns),
			       EQ, true, mode, NULL_RTX, NULL, done_label,
			       profile_probability::very_likely ());
      expand_arith_set_overflow (lhs, target);
      emit_label (done_label);
    }
  int prec = TYPE_PRECISION (TREE_TYPE (TREE_TYPE (lhs)));
  int tgtprec = GET_MODE_PRECISION (tgtmode);
  if (prec < tgtprec)
    {
      rtx_code_label *done_label = gen_label_rtx ();
      int uns = TYPE_UNSIGNED (TREE_TYPE (TREE_TYPE (lhs)));
      res = lres;
      if (uns)
	{
	  rtx mask
	    = immed_wide_int_const (wi::shifted_mask (0, prec, false, tgtprec),
				    tgtmode);
	  lres = expand_simple_binop (tgtmode, AND, res, mask, NULL_RTX,
				      true, OPTAB_LIB_WIDEN);
	}
      else
	{
	  lres = expand_shift (LSHIFT_EXPR, tgtmode, res, tgtprec - prec,
			       NULL_RTX, 1);
	  lres = expand_shift (RSHIFT_EXPR, tgtmode, lres, tgtprec - prec,
			       NULL_RTX, 0);
	}
      do_compare_rtx_and_jump (res, lres,
			       EQ, true, tgtmode, NULL_RTX, NULL, done_label,
			       profile_probability::very_likely ());
      expand_arith_set_overflow (lhs, target);
      emit_label (done_label);
    }
  write_complex_part (target, lres, false, false);
}

/* Helper for expand_*_overflow.  Store RES into TARGET.  */

static void
expand_ubsan_result_store (rtx target, rtx res)
{
  if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
    /* If this is a scalar in a register that is stored in a wider mode   
       than the declared mode, compute the result into its declared mode
       and then convert to the wider mode.  Our value is the computed
       expression.  */
    convert_move (SUBREG_REG (target), res, SUBREG_PROMOTED_SIGN (target));
  else
    emit_move_insn (target, res);
}

/* Add sub/add overflow checking to the statement STMT.
   CODE says whether the operation is +, or -.  */

void
expand_addsub_overflow (location_t loc, tree_code code, tree lhs,
			tree arg0, tree arg1, bool unsr_p, bool uns0_p,
			bool uns1_p, bool is_ubsan, tree *datap)
{
  rtx res, target = NULL_RTX;
  tree fn;
  rtx_code_label *done_label = gen_label_rtx ();
  rtx_code_label *do_error = gen_label_rtx ();
  do_pending_stack_adjust ();
  rtx op0 = expand_normal (arg0);
  rtx op1 = expand_normal (arg1);
  scalar_int_mode mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg0));
  int prec = GET_MODE_PRECISION (mode);
  rtx sgn = immed_wide_int_const (wi::min_value (prec, SIGNED), mode);
  bool do_xor = false;

  if (is_ubsan)
    gcc_assert (!unsr_p && !uns0_p && !uns1_p);

  if (lhs)
    {
      target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
      if (!is_ubsan)
	write_complex_part (target, const0_rtx, true, false);
    }

  /* We assume both operands and result have the same precision
     here (GET_MODE_BITSIZE (mode)), S stands for signed type
     with that precision, U for unsigned type with that precision,
     sgn for unsigned most significant bit in that precision.
     s1 is signed first operand, u1 is unsigned first operand,
     s2 is signed second operand, u2 is unsigned second operand,
     sr is signed result, ur is unsigned result and the following
     rules say how to compute result (which is always result of
     the operands as if both were unsigned, cast to the right
     signedness) and how to compute whether operation overflowed.

     s1 + s2 -> sr
	res = (S) ((U) s1 + (U) s2)
	ovf = s2 < 0 ? res > s1 : res < s1 (or jump on overflow)
     s1 - s2 -> sr
	res = (S) ((U) s1 - (U) s2)
	ovf = s2 < 0 ? res < s1 : res > s2 (or jump on overflow)
     u1 + u2 -> ur
	res = u1 + u2
	ovf = res < u1 (or jump on carry, but RTL opts will handle it)
     u1 - u2 -> ur
	res = u1 - u2
	ovf = res > u1 (or jump on carry, but RTL opts will handle it)
     s1 + u2 -> sr
	res = (S) ((U) s1 + u2)
	ovf = ((U) res ^ sgn) < u2
     s1 + u2 -> ur
	t1 = (S) (u2 ^ sgn)
	t2 = s1 + t1
	res = (U) t2 ^ sgn
	ovf = t1 < 0 ? t2 > s1 : t2 < s1 (or jump on overflow)
     s1 - u2 -> sr
	res = (S) ((U) s1 - u2)
	ovf = u2 > ((U) s1 ^ sgn)
     s1 - u2 -> ur
	res = (U) s1 - u2
	ovf = s1 < 0 || u2 > (U) s1
     u1 - s2 -> sr
	res = u1 - (U) s2
 	ovf = u1 >= ((U) s2 ^ sgn)
     u1 - s2 -> ur
	t1 = u1 ^ sgn
	t2 = t1 - (U) s2
	res = t2 ^ sgn
	ovf = s2 < 0 ? (S) t2 < (S) t1 : (S) t2 > (S) t1 (or jump on overflow)
     s1 + s2 -> ur
	res = (U) s1 + (U) s2
	ovf = s2 < 0 ? (s1 | (S) res) < 0) : (s1 & (S) res) < 0)
     u1 + u2 -> sr
	res = (S) (u1 + u2)
	ovf = (U) res < u2 || res < 0
     u1 - u2 -> sr
	res = (S) (u1 - u2)
	ovf = u1 >= u2 ? res < 0 : res >= 0
     s1 - s2 -> ur
	res = (U) s1 - (U) s2
	ovf = s2 >= 0 ? ((s1 | (S) res) < 0) : ((s1 & (S) res) < 0)  */

  if (code == PLUS_EXPR && uns0_p && !uns1_p)
    {
      /* PLUS_EXPR is commutative, if operand signedness differs,
	 canonicalize to the first operand being signed and second
	 unsigned to simplify following code.  */
      std::swap (op0, op1);
      std::swap (arg0, arg1);
      uns0_p = false;
      uns1_p = true;
    }

  /* u1 +- u2 -> ur  */
  if (uns0_p && uns1_p && unsr_p)
    {
      insn_code icode = optab_handler (code == PLUS_EXPR ? uaddv4_optab
                                       : usubv4_optab, mode);
      if (icode != CODE_FOR_nothing)
	{
	  class expand_operand ops[4];
	  rtx_insn *last = get_last_insn ();

	  res = gen_reg_rtx (mode);
	  create_output_operand (&ops[0], res, mode);
	  create_input_operand (&ops[1], op0, mode);
	  create_input_operand (&ops[2], op1, mode);
	  create_fixed_operand (&ops[3], do_error);
	  if (maybe_expand_insn (icode, 4, ops))
	    {
	      last = get_last_insn ();
	      if (profile_status_for_fn (cfun) != PROFILE_ABSENT
		  && JUMP_P (last)
		  && any_condjump_p (last)
		  && !find_reg_note (last, REG_BR_PROB, 0))
		add_reg_br_prob_note (last,
				      profile_probability::very_unlikely ());
	      emit_jump (done_label);
	      goto do_error_label;
	    }

	  delete_insns_since (last);
	}

      /* Compute the operation.  On RTL level, the addition is always
	 unsigned.  */
      res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab,
			  op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN);
      rtx tem = op0;
      /* For PLUS_EXPR, the operation is commutative, so we can pick
	 operand to compare against.  For prec <= BITS_PER_WORD, I think
	 preferring REG operand is better over CONST_INT, because
	 the CONST_INT might enlarge the instruction or CSE would need
	 to figure out we'd already loaded it into a register before.
	 For prec > BITS_PER_WORD, I think CONST_INT might be more beneficial,
	 as then the multi-word comparison can be perhaps simplified.  */
      if (code == PLUS_EXPR
	  && (prec <= BITS_PER_WORD
	      ? (CONST_SCALAR_INT_P (op0) && REG_P (op1))
	      : CONST_SCALAR_INT_P (op1)))
	tem = op1;
      do_compare_rtx_and_jump (res, tem, code == PLUS_EXPR ? GEU : LEU,
			       true, mode, NULL_RTX, NULL, done_label,
			       profile_probability::very_likely ());
      goto do_error_label;
    }

  /* s1 +- u2 -> sr  */
  if (!uns0_p && uns1_p && !unsr_p)
    {
      /* Compute the operation.  On RTL level, the addition is always
	 unsigned.  */
      res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab,
			  op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN);
      rtx tem = expand_binop (mode, add_optab,
			      code == PLUS_EXPR ? res : op0, sgn,
			      NULL_RTX, false, OPTAB_LIB_WIDEN);
      do_compare_rtx_and_jump (tem, op1, GEU, true, mode, NULL_RTX, NULL,
			       done_label, profile_probability::very_likely ());
      goto do_error_label;
    }

  /* s1 + u2 -> ur  */
  if (code == PLUS_EXPR && !uns0_p && uns1_p && unsr_p)
    {
      op1 = expand_binop (mode, add_optab, op1, sgn, NULL_RTX, false,
			  OPTAB_LIB_WIDEN);
      /* As we've changed op1, we have to avoid using the value range
	 for the original argument.  */
      arg1 = error_mark_node;
      do_xor = true;
      goto do_signed;
    }

  /* u1 - s2 -> ur  */
  if (code == MINUS_EXPR && uns0_p && !uns1_p && unsr_p)
    {
      op0 = expand_binop (mode, add_optab, op0, sgn, NULL_RTX, false,
			  OPTAB_LIB_WIDEN);
      /* As we've changed op0, we have to avoid using the value range
	 for the original argument.  */
      arg0 = error_mark_node;
      do_xor = true;
      goto do_signed;
    }

  /* s1 - u2 -> ur  */
  if (code == MINUS_EXPR && !uns0_p && uns1_p && unsr_p)
    {
      /* Compute the operation.  On RTL level, the addition is always
	 unsigned.  */
      res = expand_binop (mode, sub_optab, op0, op1, NULL_RTX, false,
			  OPTAB_LIB_WIDEN);
      int pos_neg = get_range_pos_neg (arg0);
      if (pos_neg == 2)
	/* If ARG0 is known to be always negative, this is always overflow.  */
	emit_jump (do_error);
      else if (pos_neg == 3)
	/* If ARG0 is not known to be always positive, check at runtime.  */
	do_compare_rtx_and_jump (op0, const0_rtx, LT, false, mode, NULL_RTX,
				 NULL, do_error, profile_probability::very_unlikely ());
      do_compare_rtx_and_jump (op1, op0, LEU, true, mode, NULL_RTX, NULL,
			       done_label, profile_probability::very_likely ());
      goto do_error_label;
    }

  /* u1 - s2 -> sr  */
  if (code == MINUS_EXPR && uns0_p && !uns1_p && !unsr_p)
    {
      /* Compute the operation.  On RTL level, the addition is always
	 unsigned.  */
      res = expand_binop (mode, sub_optab, op0, op1, NULL_RTX, false,
			  OPTAB_LIB_WIDEN);
      rtx tem = expand_binop (mode, add_optab, op1, sgn, NULL_RTX, false,
			      OPTAB_LIB_WIDEN);
      do_compare_rtx_and_jump (op0, tem, LTU, true, mode, NULL_RTX, NULL,
			       done_label, profile_probability::very_likely ());
      goto do_error_label;
    }

  /* u1 + u2 -> sr  */
  if (code == PLUS_EXPR && uns0_p && uns1_p && !unsr_p)
    {
      /* Compute the operation.  On RTL level, the addition is always
	 unsigned.  */
      res = expand_binop (mode, add_optab, op0, op1, NULL_RTX, false,
			  OPTAB_LIB_WIDEN);
      do_compare_rtx_and_jump (res, const0_rtx, LT, false, mode, NULL_RTX,
			       NULL, do_error, profile_probability::very_unlikely ());
      rtx tem = op1;
      /* The operation is commutative, so we can pick operand to compare
	 against.  For prec <= BITS_PER_WORD, I think preferring REG operand
	 is better over CONST_INT, because the CONST_INT might enlarge the
	 instruction or CSE would need to figure out we'd already loaded it
	 into a register before.  For prec > BITS_PER_WORD, I think CONST_INT
	 might be more beneficial, as then the multi-word comparison can be
	 perhaps simplified.  */
      if (prec <= BITS_PER_WORD
	  ? (CONST_SCALAR_INT_P (op1) && REG_P (op0))
	  : CONST_SCALAR_INT_P (op0))
	tem = op0;
      do_compare_rtx_and_jump (res, tem, GEU, true, mode, NULL_RTX, NULL,
			       done_label, profile_probability::very_likely ());
      goto do_error_label;
    }

  /* s1 +- s2 -> ur  */
  if (!uns0_p && !uns1_p && unsr_p)
    {
      /* Compute the operation.  On RTL level, the addition is always
	 unsigned.  */
      res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab,
			  op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN);
      int pos_neg = get_range_pos_neg (arg1);
      if (code == PLUS_EXPR)
	{
	  int pos_neg0 = get_range_pos_neg (arg0);
	  if (pos_neg0 != 3 && pos_neg == 3)
	    {
	      std::swap (op0, op1);
	      pos_neg = pos_neg0;
	    }
	}
      rtx tem;
      if (pos_neg != 3)
	{
	  tem = expand_binop (mode, ((pos_neg == 1) ^ (code == MINUS_EXPR))
				    ? and_optab : ior_optab,
			      op0, res, NULL_RTX, false, OPTAB_LIB_WIDEN);
	  do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL,
				   NULL, done_label, profile_probability::very_likely ());
	}
      else
	{
	  rtx_code_label *do_ior_label = gen_label_rtx ();
	  do_compare_rtx_and_jump (op1, const0_rtx,
				   code == MINUS_EXPR ? GE : LT, false, mode,
				   NULL_RTX, NULL, do_ior_label,
				   profile_probability::even ());
	  tem = expand_binop (mode, and_optab, op0, res, NULL_RTX, false,
			      OPTAB_LIB_WIDEN);
	  do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX,
				   NULL, done_label, profile_probability::very_likely ());
	  emit_jump (do_error);
	  emit_label (do_ior_label);
	  tem = expand_binop (mode, ior_optab, op0, res, NULL_RTX, false,
			      OPTAB_LIB_WIDEN);
	  do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX,
				   NULL, done_label, profile_probability::very_likely ());
	}
      goto do_error_label;
    }

  /* u1 - u2 -> sr  */
  if (code == MINUS_EXPR && uns0_p && uns1_p && !unsr_p)
    {
      /* Compute the operation.  On RTL level, the addition is always
	 unsigned.  */
      res = expand_binop (mode, sub_optab, op0, op1, NULL_RTX, false,
			  OPTAB_LIB_WIDEN);
      rtx_code_label *op0_geu_op1 = gen_label_rtx ();
      do_compare_rtx_and_jump (op0, op1, GEU, true, mode, NULL_RTX, NULL,
			       op0_geu_op1, profile_probability::even ());
      do_compare_rtx_and_jump (res, const0_rtx, LT, false, mode, NULL_RTX,
			       NULL, done_label, profile_probability::very_likely ());
      emit_jump (do_error);
      emit_label (op0_geu_op1);
      do_compare_rtx_and_jump (res, const0_rtx, GE, false, mode, NULL_RTX,
			       NULL, done_label, profile_probability::very_likely ());
      goto do_error_label;
    }

  gcc_assert (!uns0_p && !uns1_p && !unsr_p);

  /* s1 +- s2 -> sr  */
 do_signed:
  {
    insn_code icode = optab_handler (code == PLUS_EXPR ? addv4_optab
				     : subv4_optab, mode);
    if (icode != CODE_FOR_nothing)
      {
	class expand_operand ops[4];
	rtx_insn *last = get_last_insn ();

	res = gen_reg_rtx (mode);
	create_output_operand (&ops[0], res, mode);
	create_input_operand (&ops[1], op0, mode);
	create_input_operand (&ops[2], op1, mode);
	create_fixed_operand (&ops[3], do_error);
	if (maybe_expand_insn (icode, 4, ops))
	  {
	    last = get_last_insn ();
	    if (profile_status_for_fn (cfun) != PROFILE_ABSENT
		&& JUMP_P (last)
		&& any_condjump_p (last)
		&& !find_reg_note (last, REG_BR_PROB, 0))
	      add_reg_br_prob_note (last, 
				    profile_probability::very_unlikely ());
	    emit_jump (done_label);
	    goto do_error_label;
	  }

	delete_insns_since (last);
      }

    /* Compute the operation.  On RTL level, the addition is always
       unsigned.  */
    res = expand_binop (mode, code == PLUS_EXPR ? add_optab : sub_optab,
			op0, op1, NULL_RTX, false, OPTAB_LIB_WIDEN);

    /* If we can prove that one of the arguments (for MINUS_EXPR only
       the second operand, as subtraction is not commutative) is always
       non-negative or always negative, we can do just one comparison
       and conditional jump.  */
    int pos_neg = get_range_pos_neg (arg1);
    if (code == PLUS_EXPR)
      {
	int pos_neg0 = get_range_pos_neg (arg0);
	if (pos_neg0 != 3 && pos_neg == 3)
	  {
	    std::swap (op0, op1);
	    pos_neg = pos_neg0;
	  }
      }

    /* Addition overflows if and only if the two operands have the same sign,
       and the result has the opposite sign.  Subtraction overflows if and
       only if the two operands have opposite sign, and the subtrahend has
       the same sign as the result.  Here 0 is counted as positive.  */
    if (pos_neg == 3)
      {
	/* Compute op0 ^ op1 (operands have opposite sign).  */
        rtx op_xor = expand_binop (mode, xor_optab, op0, op1, NULL_RTX, false,
				   OPTAB_LIB_WIDEN);

	/* Compute res ^ op1 (result and 2nd operand have opposite sign).  */
	rtx res_xor = expand_binop (mode, xor_optab, res, op1, NULL_RTX, false,
				    OPTAB_LIB_WIDEN);

	rtx tem;
	if (code == PLUS_EXPR)
	  {
	    /* Compute (res ^ op1) & ~(op0 ^ op1).  */
	    tem = expand_unop (mode, one_cmpl_optab, op_xor, NULL_RTX, false);
	    tem = expand_binop (mode, and_optab, res_xor, tem, NULL_RTX, false,
				OPTAB_LIB_WIDEN);
	  }
	else
	  {
	    /* Compute (op0 ^ op1) & ~(res ^ op1).  */
	    tem = expand_unop (mode, one_cmpl_optab, res_xor, NULL_RTX, false);
	    tem = expand_binop (mode, and_optab, op_xor, tem, NULL_RTX, false,
				OPTAB_LIB_WIDEN);
	  }

	/* No overflow if the result has bit sign cleared.  */
	do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX,
				 NULL, done_label, profile_probability::very_likely ());
      }

    /* Compare the result of the operation with the first operand.
       No overflow for addition if second operand is positive and result
       is larger or second operand is negative and result is smaller.
       Likewise for subtraction with sign of second operand flipped.  */
    else
      do_compare_rtx_and_jump (res, op0,
			       (pos_neg == 1) ^ (code == MINUS_EXPR) ? GE : LE,
			       false, mode, NULL_RTX, NULL, done_label,
			       profile_probability::very_likely ());
  }

 do_error_label:
  emit_label (do_error);
  if (is_ubsan)
    {
      /* Expand the ubsan builtin call.  */
      push_temp_slots ();
      fn = ubsan_build_overflow_builtin (code, loc, TREE_TYPE (arg0),
					 arg0, arg1, datap);
      expand_normal (fn);
      pop_temp_slots ();
      do_pending_stack_adjust ();
    }
  else if (lhs)
    expand_arith_set_overflow (lhs, target);

  /* We're done.  */
  emit_label (done_label);

  if (lhs)
    {
      if (is_ubsan)
	expand_ubsan_result_store (target, res);
      else
	{
	  if (do_xor)
	    res = expand_binop (mode, add_optab, res, sgn, NULL_RTX, false,
				OPTAB_LIB_WIDEN);

	  expand_arith_overflow_result_store (lhs, target, mode, res);
	}
    }
}

/* Add negate overflow checking to the statement STMT.  */

static void
expand_neg_overflow (location_t loc, tree lhs, tree arg1, bool is_ubsan,
		     tree *datap)
{
  rtx res, op1;
  tree fn;
  rtx_code_label *done_label, *do_error;
  rtx target = NULL_RTX;

  done_label = gen_label_rtx ();
  do_error = gen_label_rtx ();

  do_pending_stack_adjust ();
  op1 = expand_normal (arg1);

  scalar_int_mode mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg1));
  if (lhs)
    {
      target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
      if (!is_ubsan)
	write_complex_part (target, const0_rtx, true, false);
    }

  enum insn_code icode = optab_handler (negv3_optab, mode);
  if (icode != CODE_FOR_nothing)
    {
      class expand_operand ops[3];
      rtx_insn *last = get_last_insn ();

      res = gen_reg_rtx (mode);
      create_output_operand (&ops[0], res, mode);
      create_input_operand (&ops[1], op1, mode);
      create_fixed_operand (&ops[2], do_error);
      if (maybe_expand_insn (icode, 3, ops))
	{
	  last = get_last_insn ();
	  if (profile_status_for_fn (cfun) != PROFILE_ABSENT
	      && JUMP_P (last)
	      && any_condjump_p (last)
	      && !find_reg_note (last, REG_BR_PROB, 0))
	    add_reg_br_prob_note (last, 
				  profile_probability::very_unlikely ());
	  emit_jump (done_label);
        }
      else
	{
	  delete_insns_since (last);
	  icode = CODE_FOR_nothing;
	}
    }

  if (icode == CODE_FOR_nothing)
    {
      /* Compute the operation.  On RTL level, the addition is always
	 unsigned.  */
      res = expand_unop (mode, neg_optab, op1, NULL_RTX, false);

      /* Compare the operand with the most negative value.  */
      rtx minv = expand_normal (TYPE_MIN_VALUE (TREE_TYPE (arg1)));
      do_compare_rtx_and_jump (op1, minv, NE, true, mode, NULL_RTX, NULL,
			       done_label, profile_probability::very_likely ());
    }

  emit_label (do_error);
  if (is_ubsan)
    {
      /* Expand the ubsan builtin call.  */
      push_temp_slots ();
      fn = ubsan_build_overflow_builtin (NEGATE_EXPR, loc, TREE_TYPE (arg1),
					 arg1, NULL_TREE, datap);
      expand_normal (fn);
      pop_temp_slots ();
      do_pending_stack_adjust ();
    }
  else if (lhs)
    expand_arith_set_overflow (lhs, target);

  /* We're done.  */
  emit_label (done_label);

  if (lhs)
    {
      if (is_ubsan)
	expand_ubsan_result_store (target, res);
      else
	expand_arith_overflow_result_store (lhs, target, mode, res);
    }
}

/* Return true if UNS WIDEN_MULT_EXPR with result mode WMODE and operand
   mode MODE can be expanded without using a libcall.  */

static bool
can_widen_mult_without_libcall (scalar_int_mode wmode, scalar_int_mode mode,
				rtx op0, rtx op1, bool uns)
{
  if (find_widening_optab_handler (umul_widen_optab, wmode, mode)
      != CODE_FOR_nothing)
    return true;
    
  if (find_widening_optab_handler (smul_widen_optab, wmode, mode)
      != CODE_FOR_nothing)
    return true;

  rtx_insn *last = get_last_insn ();
  if (CONSTANT_P (op0))
    op0 = convert_modes (wmode, mode, op0, uns);
  else
    op0 = gen_raw_REG (wmode, LAST_VIRTUAL_REGISTER + 1);
  if (CONSTANT_P (op1))
    op1 = convert_modes (wmode, mode, op1, uns);
  else
    op1 = gen_raw_REG (wmode, LAST_VIRTUAL_REGISTER + 2);
  rtx ret = expand_mult (wmode, op0, op1, NULL_RTX, uns, true);
  delete_insns_since (last);
  return ret != NULL_RTX;
} 

/* Add mul overflow checking to the statement STMT.  */

static void
expand_mul_overflow (location_t loc, tree lhs, tree arg0, tree arg1,
		     bool unsr_p, bool uns0_p, bool uns1_p, bool is_ubsan,
		     tree *datap)
{
  rtx res, op0, op1;
  tree fn, type;
  rtx_code_label *done_label, *do_error;
  rtx target = NULL_RTX;
  signop sign;
  enum insn_code icode;

  done_label = gen_label_rtx ();
  do_error = gen_label_rtx ();

  do_pending_stack_adjust ();
  op0 = expand_normal (arg0);
  op1 = expand_normal (arg1);

  scalar_int_mode mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg0));
  bool uns = unsr_p;
  if (lhs)
    {
      target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
      if (!is_ubsan)
	write_complex_part (target, const0_rtx, true, false);
    }

  if (is_ubsan)
    gcc_assert (!unsr_p && !uns0_p && !uns1_p);

  /* We assume both operands and result have the same precision
     here (GET_MODE_BITSIZE (mode)), S stands for signed type
     with that precision, U for unsigned type with that precision,
     sgn for unsigned most significant bit in that precision.
     s1 is signed first operand, u1 is unsigned first operand,
     s2 is signed second operand, u2 is unsigned second operand,
     sr is signed result, ur is unsigned result and the following
     rules say how to compute result (which is always result of
     the operands as if both were unsigned, cast to the right
     signedness) and how to compute whether operation overflowed.
     main_ovf (false) stands for jump on signed multiplication
     overflow or the main algorithm with uns == false.
     main_ovf (true) stands for jump on unsigned multiplication
     overflow or the main algorithm with uns == true.

     s1 * s2 -> sr
	res = (S) ((U) s1 * (U) s2)
	ovf = main_ovf (false)
     u1 * u2 -> ur
	res = u1 * u2
	ovf = main_ovf (true)
     s1 * u2 -> ur
	res = (U) s1 * u2
	ovf = (s1 < 0 && u2) || main_ovf (true)
     u1 * u2 -> sr
	res = (S) (u1 * u2)
	ovf = res < 0 || main_ovf (true)
     s1 * u2 -> sr
	res = (S) ((U) s1 * u2)
	ovf = (S) u2 >= 0 ? main_ovf (false)
			  : (s1 != 0 && (s1 != -1 || u2 != (U) res))
     s1 * s2 -> ur
	t1 = (s1 & s2) < 0 ? (-(U) s1) : ((U) s1)
	t2 = (s1 & s2) < 0 ? (-(U) s2) : ((U) s2)
	res = t1 * t2
	ovf = (s1 ^ s2) < 0 ? (s1 && s2) : main_ovf (true)  */

  if (uns0_p && !uns1_p)
    {
      /* Multiplication is commutative, if operand signedness differs,
	 canonicalize to the first operand being signed and second
	 unsigned to simplify following code.  */
      std::swap (op0, op1);
      std::swap (arg0, arg1);
      uns0_p = false;
      uns1_p = true;
    }

  int pos_neg0 = get_range_pos_neg (arg0);
  int pos_neg1 = get_range_pos_neg (arg1);
  /* Unsigned types with smaller than mode precision, even if they have most
     significant bit set, are still zero-extended.  */
  if (uns0_p && TYPE_PRECISION (TREE_TYPE (arg0)) < GET_MODE_PRECISION (mode))
    pos_neg0 = 1;
  if (uns1_p && TYPE_PRECISION (TREE_TYPE (arg1)) < GET_MODE_PRECISION (mode))
    pos_neg1 = 1;

  /* s1 * u2 -> ur  */
  if (!uns0_p && uns1_p && unsr_p)
    {
      switch (pos_neg0)
	{
	case 1:
	  /* If s1 is non-negative, just perform normal u1 * u2 -> ur.  */
	  goto do_main;
	case 2:
	  /* If s1 is negative, avoid the main code, just multiply and
	     signal overflow if op1 is not 0.  */
	  struct separate_ops ops;
	  ops.code = MULT_EXPR;
	  ops.type = TREE_TYPE (arg1);
	  ops.op0 = make_tree (ops.type, op0);
	  ops.op1 = make_tree (ops.type, op1);
	  ops.op2 = NULL_TREE;
	  ops.location = loc;
	  res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
	  do_compare_rtx_and_jump (op1, const0_rtx, EQ, true, mode, NULL_RTX,
				   NULL, done_label, profile_probability::very_likely ());
	  goto do_error_label;
	case 3:
	  if (get_min_precision (arg1, UNSIGNED)
	      + get_min_precision (arg0, SIGNED) <= GET_MODE_PRECISION (mode))
	    {
	      /* If the first operand is sign extended from narrower type, the
		 second operand is zero extended from narrower type and
		 the sum of the two precisions is smaller or equal to the
		 result precision: if the first argument is at runtime
		 non-negative, maximum result will be 0x7e81 or 0x7f..fe80..01
		 and there will be no overflow, if the first argument is
		 negative and the second argument zero, the result will be
		 0 and there will be no overflow, if the first argument is
		 negative and the second argument positive, the result when
		 treated as signed will be negative (minimum -0x7f80 or
		 -0x7f..f80..0) there will be always overflow.  So, do
		 res = (U) (s1 * u2)
		 ovf = (S) res < 0  */
	      struct separate_ops ops;
	      ops.code = MULT_EXPR;
	      ops.type
		= build_nonstandard_integer_type (GET_MODE_PRECISION (mode),
						  1);
	      ops.op0 = make_tree (ops.type, op0);
	      ops.op1 = make_tree (ops.type, op1);
	      ops.op2 = NULL_TREE;
	      ops.location = loc;
	      res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
	      do_compare_rtx_and_jump (res, const0_rtx, GE, false,
				       mode, NULL_RTX, NULL, done_label,
				       profile_probability::very_likely ());
	      goto do_error_label;
	    }
	  rtx_code_label *do_main_label;
	  do_main_label = gen_label_rtx ();
	  do_compare_rtx_and_jump (op0, const0_rtx, GE, false, mode, NULL_RTX,
				   NULL, do_main_label, profile_probability::very_likely ());
	  do_compare_rtx_and_jump (op1, const0_rtx, EQ, true, mode, NULL_RTX,
				   NULL, do_main_label, profile_probability::very_likely ());
	  expand_arith_set_overflow (lhs, target);
	  emit_label (do_main_label);
	  goto do_main;
	default:
	  gcc_unreachable ();
	}
    }

  /* u1 * u2 -> sr  */
  if (uns0_p && uns1_p && !unsr_p)
    {
      if ((pos_neg0 | pos_neg1) == 1)
	{
	  /* If both arguments are zero extended from narrower types,
	     the MSB will be clear on both and so we can pretend it is
	     a normal s1 * s2 -> sr multiplication.  */
	  uns0_p = false;
	  uns1_p = false;
	}
      else
	uns = true;
      /* Rest of handling of this case after res is computed.  */
      goto do_main;
    }

  /* s1 * u2 -> sr  */
  if (!uns0_p && uns1_p && !unsr_p)
    {
      switch (pos_neg1)
	{
	case 1:
	  goto do_main;
	case 2:
	  /* If (S) u2 is negative (i.e. u2 is larger than maximum of S,
	     avoid the main code, just multiply and signal overflow
	     unless 0 * u2 or -1 * ((U) Smin).  */
	  struct separate_ops ops;
	  ops.code = MULT_EXPR;
	  ops.type = TREE_TYPE (arg1);
	  ops.op0 = make_tree (ops.type, op0);
	  ops.op1 = make_tree (ops.type, op1);
	  ops.op2 = NULL_TREE;
	  ops.location = loc;
	  res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
	  do_compare_rtx_and_jump (op0, const0_rtx, EQ, true, mode, NULL_RTX,
				   NULL, done_label, profile_probability::very_likely ());
	  do_compare_rtx_and_jump (op0, constm1_rtx, NE, true, mode, NULL_RTX,
				   NULL, do_error, profile_probability::very_unlikely ());
	  int prec;
	  prec = GET_MODE_PRECISION (mode);
	  rtx sgn;
	  sgn = immed_wide_int_const (wi::min_value (prec, SIGNED), mode);
	  do_compare_rtx_and_jump (op1, sgn, EQ, true, mode, NULL_RTX,
				   NULL, done_label, profile_probability::very_likely ());
	  goto do_error_label;
	case 3:
	  /* Rest of handling of this case after res is computed.  */
	  goto do_main;
	default:
	  gcc_unreachable ();
	}
    }

  /* s1 * s2 -> ur  */
  if (!uns0_p && !uns1_p && unsr_p)
    {
      rtx tem;
      switch (pos_neg0 | pos_neg1)
	{
	case 1: /* Both operands known to be non-negative.  */
	  goto do_main;
	case 2: /* Both operands known to be negative.  */
	  op0 = expand_unop (mode, neg_optab, op0, NULL_RTX, false);
	  op1 = expand_unop (mode, neg_optab, op1, NULL_RTX, false);
	  /* Avoid looking at arg0/arg1 ranges, as we've changed
	     the arguments.  */
	  arg0 = error_mark_node;
	  arg1 = error_mark_node;
	  goto do_main;
	case 3:
	  if ((pos_neg0 ^ pos_neg1) == 3)
	    {
	      /* If one operand is known to be negative and the other
		 non-negative, this overflows always, unless the non-negative
		 one is 0.  Just do normal multiply and set overflow
		 unless one of the operands is 0.  */
	      struct separate_ops ops;
	      ops.code = MULT_EXPR;
	      ops.type
		= build_nonstandard_integer_type (GET_MODE_PRECISION (mode),
						  1);
	      ops.op0 = make_tree (ops.type, op0);
	      ops.op1 = make_tree (ops.type, op1);
	      ops.op2 = NULL_TREE;
	      ops.location = loc;
	      res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
	      do_compare_rtx_and_jump (pos_neg0 == 1 ? op0 : op1, const0_rtx, EQ,
				       true, mode, NULL_RTX, NULL, done_label,
				       profile_probability::very_likely ());
	      goto do_error_label;
	    }
	  if (get_min_precision (arg0, SIGNED)
	      + get_min_precision (arg1, SIGNED) <= GET_MODE_PRECISION (mode))
	    {
	      /* If both operands are sign extended from narrower types and
		 the sum of the two precisions is smaller or equal to the
		 result precision: if both arguments are at runtime
		 non-negative, maximum result will be 0x3f01 or 0x3f..f0..01
		 and there will be no overflow, if both arguments are negative,
		 maximum result will be 0x40..00 and there will be no overflow
		 either, if one argument is positive and the other argument
		 negative, the result when treated as signed will be negative
		 and there will be always overflow, and if one argument is
		 zero and the other negative the result will be zero and no
		 overflow.  So, do
		 res = (U) (s1 * s2)
		 ovf = (S) res < 0  */
	      struct separate_ops ops;
	      ops.code = MULT_EXPR;
	      ops.type
		= build_nonstandard_integer_type (GET_MODE_PRECISION (mode),
						  1);
	      ops.op0 = make_tree (ops.type, op0);
	      ops.op1 = make_tree (ops.type, op1);
	      ops.op2 = NULL_TREE;
	      ops.location = loc;
	      res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
	      do_compare_rtx_and_jump (res, const0_rtx, GE, false,
				       mode, NULL_RTX, NULL, done_label,
				       profile_probability::very_likely ());
	      goto do_error_label;
	    }
	  /* The general case, do all the needed comparisons at runtime.  */
	  rtx_code_label *do_main_label, *after_negate_label;
	  rtx rop0, rop1;
	  rop0 = gen_reg_rtx (mode);
	  rop1 = gen_reg_rtx (mode);
	  emit_move_insn (rop0, op0);
	  emit_move_insn (rop1, op1);
	  op0 = rop0;
	  op1 = rop1;
	  do_main_label = gen_label_rtx ();
	  after_negate_label = gen_label_rtx ();
	  tem = expand_binop (mode, and_optab, op0, op1, NULL_RTX, false,
			      OPTAB_LIB_WIDEN);
	  do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX,
				   NULL, after_negate_label, profile_probability::very_likely ());
	  /* Both arguments negative here, negate them and continue with
	     normal unsigned overflow checking multiplication.  */
	  emit_move_insn (op0, expand_unop (mode, neg_optab, op0,
					    NULL_RTX, false));
	  emit_move_insn (op1, expand_unop (mode, neg_optab, op1,
					    NULL_RTX, false));
	  /* Avoid looking at arg0/arg1 ranges, as we might have changed
	     the arguments.  */
	  arg0 = error_mark_node;
	  arg1 = error_mark_node;
	  emit_jump (do_main_label);
	  emit_label (after_negate_label);
	  tem = expand_binop (mode, xor_optab, op0, op1, NULL_RTX, false,
			      OPTAB_LIB_WIDEN);
	  do_compare_rtx_and_jump (tem, const0_rtx, GE, false, mode, NULL_RTX,
				   NULL, do_main_label,
				   profile_probability::very_likely ());
	  /* One argument is negative here, the other positive.  This
	     overflows always, unless one of the arguments is 0.  But
	     if e.g. s2 is 0, (U) s1 * 0 doesn't overflow, whatever s1
	     is, thus we can keep do_main code oring in overflow as is.  */
	  if (pos_neg0 != 2)
	    do_compare_rtx_and_jump (op0, const0_rtx, EQ, true, mode, NULL_RTX,
				     NULL, do_main_label,
				     profile_probability::very_unlikely ());
	  if (pos_neg1 != 2)
	    do_compare_rtx_and_jump (op1, const0_rtx, EQ, true, mode, NULL_RTX,
				     NULL, do_main_label,
				     profile_probability::very_unlikely ());
	  expand_arith_set_overflow (lhs, target);
	  emit_label (do_main_label);
	  goto do_main;
	default:
	  gcc_unreachable ();
	}
    }

 do_main:
  type = build_nonstandard_integer_type (GET_MODE_PRECISION (mode), uns);
  sign = uns ? UNSIGNED : SIGNED;
  icode = optab_handler (uns ? umulv4_optab : mulv4_optab, mode);
  if (uns
      && (integer_pow2p (arg0) || integer_pow2p (arg1))
      && (optimize_insn_for_speed_p () || icode == CODE_FOR_nothing))
    {
      /* Optimize unsigned multiplication by power of 2 constant
	 using 2 shifts, one for result, one to extract the shifted
	 out bits to see if they are all zero.
	 Don't do this if optimizing for size and we have umulv4_optab,
	 in that case assume multiplication will be shorter.
	 This is heuristics based on the single target that provides
	 umulv4 right now (i?86/x86_64), if further targets add it, this
	 might need to be revisited.
	 Cases where both operands are constant should be folded already
	 during GIMPLE, and cases where one operand is constant but not
	 power of 2 are questionable, either the WIDEN_MULT_EXPR case
	 below can be done without multiplication, just by shifts and adds,
	 or we'd need to divide the result (and hope it actually doesn't
	 really divide nor multiply) and compare the result of the division
	 with the original operand.  */
      rtx opn0 = op0;
      rtx opn1 = op1;
      tree argn0 = arg0;
      tree argn1 = arg1;
      if (integer_pow2p (arg0))
	{
	  std::swap (opn0, opn1);
	  std::swap (argn0, argn1);
	}
      int cnt = tree_log2 (argn1);
      if (cnt >= 0 && cnt < GET_MODE_PRECISION (mode))
	{
	  rtx upper = const0_rtx;
	  res = expand_shift (LSHIFT_EXPR, mode, opn0, cnt, NULL_RTX, uns);
	  if (cnt != 0)
	    upper = expand_shift (RSHIFT_EXPR, mode, opn0,
				  GET_MODE_PRECISION (mode) - cnt,
				  NULL_RTX, uns);
	  do_compare_rtx_and_jump (upper, const0_rtx, EQ, true, mode,
				   NULL_RTX, NULL, done_label,
				   profile_probability::very_likely ());
	  goto do_error_label;
	}
    }
  if (icode != CODE_FOR_nothing)
    {
      class expand_operand ops[4];
      rtx_insn *last = get_last_insn ();

      res = gen_reg_rtx (mode);
      create_output_operand (&ops[0], res, mode);
      create_input_operand (&ops[1], op0, mode);
      create_input_operand (&ops[2], op1, mode);
      create_fixed_operand (&ops[3], do_error);
      if (maybe_expand_insn (icode, 4, ops))
	{
	  last = get_last_insn ();
	  if (profile_status_for_fn (cfun) != PROFILE_ABSENT
	      && JUMP_P (last)
	      && any_condjump_p (last)
	      && !find_reg_note (last, REG_BR_PROB, 0))
	    add_reg_br_prob_note (last, 
				  profile_probability::very_unlikely ());
	  emit_jump (done_label);
        }
      else
	{
	  delete_insns_since (last);
	  icode = CODE_FOR_nothing;
	}
    }

  if (icode == CODE_FOR_nothing)
    {
      struct separate_ops ops;
      int prec = GET_MODE_PRECISION (mode);
      scalar_int_mode hmode, wmode;
      ops.op0 = make_tree (type, op0);
      ops.op1 = make_tree (type, op1);
      ops.op2 = NULL_TREE;
      ops.location = loc;

      /* Optimize unsigned overflow check where we don't use the
	 multiplication result, just whether overflow happened.
	 If we can do MULT_HIGHPART_EXPR, that followed by
	 comparison of the result against zero is cheapest.
	 We'll still compute res, but it should be DCEd later.  */
      use_operand_p use;
      gimple *use_stmt;
      if (!is_ubsan
	  && lhs
	  && uns
	  && !(uns0_p && uns1_p && !unsr_p)
	  && can_mult_highpart_p (mode, uns) == 1
	  && single_imm_use (lhs, &use, &use_stmt)
	  && is_gimple_assign (use_stmt)
	  && gimple_assign_rhs_code (use_stmt) == IMAGPART_EXPR)
	goto highpart;

      if (GET_MODE_2XWIDER_MODE (mode).exists (&wmode)
	  && targetm.scalar_mode_supported_p (wmode)
	  && can_widen_mult_without_libcall (wmode, mode, op0, op1, uns))
	{
	twoxwider:
	  ops.code = WIDEN_MULT_EXPR;
	  ops.type
	    = build_nonstandard_integer_type (GET_MODE_PRECISION (wmode), uns);

	  res = expand_expr_real_2 (&ops, NULL_RTX, wmode, EXPAND_NORMAL);
	  rtx hipart = expand_shift (RSHIFT_EXPR, wmode, res, prec,
				     NULL_RTX, uns);
	  hipart = convert_modes (mode, wmode, hipart, uns);
	  res = convert_modes (mode, wmode, res, uns);
	  if (uns)
	    /* For the unsigned multiplication, there was overflow if
	       HIPART is non-zero.  */
	    do_compare_rtx_and_jump (hipart, const0_rtx, EQ, true, mode,
				     NULL_RTX, NULL, done_label,
				     profile_probability::very_likely ());
	  else
	    {
	      /* RES is used more than once, place it in a pseudo.  */
	      res = force_reg (mode, res);

	      rtx signbit = expand_shift (RSHIFT_EXPR, mode, res, prec - 1,
					  NULL_RTX, 0);
	      /* RES is low half of the double width result, HIPART
		 the high half.  There was overflow if
		 HIPART is different from RES < 0 ? -1 : 0.  */
	      do_compare_rtx_and_jump (signbit, hipart, EQ, true, mode,
				       NULL_RTX, NULL, done_label,
				       profile_probability::very_likely ());
	    }
	}
      else if (can_mult_highpart_p (mode, uns) == 1)
	{
	highpart:
	  ops.code = MULT_HIGHPART_EXPR;
	  ops.type = type;

	  rtx hipart = expand_expr_real_2 (&ops, NULL_RTX, mode,
					   EXPAND_NORMAL);
	  ops.code = MULT_EXPR;
	  res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
	  if (uns)
	    /* For the unsigned multiplication, there was overflow if
	       HIPART is non-zero.  */
	    do_compare_rtx_and_jump (hipart, const0_rtx, EQ, true, mode,
				     NULL_RTX, NULL, done_label,
				     profile_probability::very_likely ());
	  else
	    {
	      rtx signbit = expand_shift (RSHIFT_EXPR, mode, res, prec - 1,
					  NULL_RTX, 0);
	      /* RES is low half of the double width result, HIPART
		 the high half.  There was overflow if
		 HIPART is different from RES < 0 ? -1 : 0.  */
	      do_compare_rtx_and_jump (signbit, hipart, EQ, true, mode,
				       NULL_RTX, NULL, done_label,
				       profile_probability::very_likely ());
	    }
	  
	}
      else if (int_mode_for_size (prec / 2, 1).exists (&hmode)
	       && 2 * GET_MODE_PRECISION (hmode) == prec)
	{
	  rtx_code_label *large_op0 = gen_label_rtx ();
	  rtx_code_label *small_op0_large_op1 = gen_label_rtx ();
	  rtx_code_label *one_small_one_large = gen_label_rtx ();
	  rtx_code_label *both_ops_large = gen_label_rtx ();
	  rtx_code_label *after_hipart_neg = uns ? NULL : gen_label_rtx ();
	  rtx_code_label *after_lopart_neg = uns ? NULL : gen_label_rtx ();
	  rtx_code_label *do_overflow = gen_label_rtx ();
	  rtx_code_label *hipart_different = uns ? NULL : gen_label_rtx ();

	  unsigned int hprec = GET_MODE_PRECISION (hmode);
	  rtx hipart0 = expand_shift (RSHIFT_EXPR, mode, op0, hprec,
				      NULL_RTX, uns);
	  hipart0 = convert_modes (hmode, mode, hipart0, uns);
	  rtx lopart0 = convert_modes (hmode, mode, op0, uns);
	  rtx signbit0 = const0_rtx;
	  if (!uns)
	    signbit0 = expand_shift (RSHIFT_EXPR, hmode, lopart0, hprec - 1,
				     NULL_RTX, 0);
	  rtx hipart1 = expand_shift (RSHIFT_EXPR, mode, op1, hprec,
				      NULL_RTX, uns);
	  hipart1 = convert_modes (hmode, mode, hipart1, uns);
	  rtx lopart1 = convert_modes (hmode, mode, op1, uns);
	  rtx signbit1 = const0_rtx;
	  if (!uns)
	    signbit1 = expand_shift (RSHIFT_EXPR, hmode, lopart1, hprec - 1,
				     NULL_RTX, 0);

	  res = gen_reg_rtx (mode);

	  /* True if op0 resp. op1 are known to be in the range of
	     halfstype.  */
	  bool op0_small_p = false;
	  bool op1_small_p = false;
	  /* True if op0 resp. op1 are known to have all zeros or all ones
	     in the upper half of bits, but are not known to be
	     op{0,1}_small_p.  */
	  bool op0_medium_p = false;
	  bool op1_medium_p = false;
	  /* -1 if op{0,1} is known to be negative, 0 if it is known to be
	     nonnegative, 1 if unknown.  */
	  int op0_sign = 1;
	  int op1_sign = 1;

	  if (pos_neg0 == 1)
	    op0_sign = 0;
	  else if (pos_neg0 == 2)
	    op0_sign = -1;
	  if (pos_neg1 == 1)
	    op1_sign = 0;
	  else if (pos_neg1 == 2)
	    op1_sign = -1;

	  unsigned int mprec0 = prec;
	  if (arg0 != error_mark_node)
	    mprec0 = get_min_precision (arg0, sign);
	  if (mprec0 <= hprec)
	    op0_small_p = true;
	  else if (!uns && mprec0 <= hprec + 1)
	    op0_medium_p = true;
	  unsigned int mprec1 = prec;
	  if (arg1 != error_mark_node)
	    mprec1 = get_min_precision (arg1, sign);
	  if (mprec1 <= hprec)
	    op1_small_p = true;
	  else if (!uns && mprec1 <= hprec + 1)
	    op1_medium_p = true;

	  int smaller_sign = 1;
	  int larger_sign = 1;
	  if (op0_small_p)
	    {
	      smaller_sign = op0_sign;
	      larger_sign = op1_sign;
	    }
	  else if (op1_small_p)
	    {
	      smaller_sign = op1_sign;
	      larger_sign = op0_sign;
	    }
	  else if (op0_sign == op1_sign)
	    {
	      smaller_sign = op0_sign;
	      larger_sign = op0_sign;
	    }

	  if (!op0_small_p)
	    do_compare_rtx_and_jump (signbit0, hipart0, NE, true, hmode,
				     NULL_RTX, NULL, large_op0,
				     profile_probability::unlikely ());

	  if (!op1_small_p)
	    do_compare_rtx_and_jump (signbit1, hipart1, NE, true, hmode,
				     NULL_RTX, NULL, small_op0_large_op1,
				     profile_probability::unlikely ());

	  /* If both op0 and op1 are sign (!uns) or zero (uns) extended from
	     hmode to mode, the multiplication will never overflow.  We can
	     do just one hmode x hmode => mode widening multiplication.  */
	  tree halfstype = build_nonstandard_integer_type (hprec, uns);
	  ops.op0 = make_tree (halfstype, lopart0);
	  ops.op1 = make_tree (halfstype, lopart1);
	  ops.code = WIDEN_MULT_EXPR;
	  ops.type = type;
	  rtx thisres
	    = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
	  emit_move_insn (res, thisres);
	  emit_jump (done_label);

	  emit_label (small_op0_large_op1);

	  /* If op0 is sign (!uns) or zero (uns) extended from hmode to mode,
	     but op1 is not, just swap the arguments and handle it as op1
	     sign/zero extended, op0 not.  */
	  rtx larger = gen_reg_rtx (mode);
	  rtx hipart = gen_reg_rtx (hmode);
	  rtx lopart = gen_reg_rtx (hmode);
	  emit_move_insn (larger, op1);
	  emit_move_insn (hipart, hipart1);
	  emit_move_insn (lopart, lopart0);
	  emit_jump (one_small_one_large);

	  emit_label (large_op0);

	  if (!op1_small_p)
	    do_compare_rtx_and_jump (signbit1, hipart1, NE, true, hmode,
				     NULL_RTX, NULL, both_ops_large,
				     profile_probability::unlikely ());

	  /* If op1 is sign (!uns) or zero (uns) extended from hmode to mode,
	     but op0 is not, prepare larger, hipart and lopart pseudos and
	     handle it together with small_op0_large_op1.  */
	  emit_move_insn (larger, op0);
	  emit_move_insn (hipart, hipart0);
	  emit_move_insn (lopart, lopart1);

	  emit_label (one_small_one_large);

	  /* lopart is the low part of the operand that is sign extended
	     to mode, larger is the other operand, hipart is the
	     high part of larger and lopart0 and lopart1 are the low parts
	     of both operands.
	     We perform lopart0 * lopart1 and lopart * hipart widening
	     multiplications.  */
	  tree halfutype = build_nonstandard_integer_type (hprec, 1);
	  ops.op0 = make_tree (halfutype, lopart0);
	  ops.op1 = make_tree (halfutype, lopart1);
	  rtx lo0xlo1
	    = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);

	  ops.op0 = make_tree (halfutype, lopart);
	  ops.op1 = make_tree (halfutype, hipart);
	  rtx loxhi = gen_reg_rtx (mode);
	  rtx tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
	  emit_move_insn (loxhi, tem);

	  if (!uns)
	    {
	      /* if (hipart < 0) loxhi -= lopart << (bitsize / 2);  */
	      if (larger_sign == 0)
		emit_jump (after_hipart_neg);
	      else if (larger_sign != -1)
		do_compare_rtx_and_jump (hipart, const0_rtx, GE, false, hmode,
					 NULL_RTX, NULL, after_hipart_neg,
					 profile_probability::even ());

	      tem = convert_modes (mode, hmode, lopart, 1);
	      tem = expand_shift (LSHIFT_EXPR, mode, tem, hprec, NULL_RTX, 1);
	      tem = expand_simple_binop (mode, MINUS, loxhi, tem, NULL_RTX,
					 1, OPTAB_WIDEN);
	      emit_move_insn (loxhi, tem);

	      emit_label (after_hipart_neg);

	      /* if (lopart < 0) loxhi -= larger;  */
	      if (smaller_sign == 0)
		emit_jump (after_lopart_neg);
	      else if (smaller_sign != -1)
		do_compare_rtx_and_jump (lopart, const0_rtx, GE, false, hmode,
					 NULL_RTX, NULL, after_lopart_neg,
					 profile_probability::even ());

	      tem = expand_simple_binop (mode, MINUS, loxhi, larger, NULL_RTX,
					 1, OPTAB_WIDEN);
	      emit_move_insn (loxhi, tem);

	      emit_label (after_lopart_neg);
	    }

	  /* loxhi += (uns) lo0xlo1 >> (bitsize / 2);  */
	  tem = expand_shift (RSHIFT_EXPR, mode, lo0xlo1, hprec, NULL_RTX, 1);
	  tem = expand_simple_binop (mode, PLUS, loxhi, tem, NULL_RTX,
				     1, OPTAB_WIDEN);
	  emit_move_insn (loxhi, tem);

	  /* if (loxhi >> (bitsize / 2)
		 == (hmode) loxhi >> (bitsize / 2 - 1))  (if !uns)
	     if (loxhi >> (bitsize / 2) == 0		 (if uns).  */
	  rtx hipartloxhi = expand_shift (RSHIFT_EXPR, mode, loxhi, hprec,
					  NULL_RTX, 0);
	  hipartloxhi = convert_modes (hmode, mode, hipartloxhi, 0);
	  rtx signbitloxhi = const0_rtx;
	  if (!uns)
	    signbitloxhi = expand_shift (RSHIFT_EXPR, hmode,
					 convert_modes (hmode, mode,
							loxhi, 0),
					 hprec - 1, NULL_RTX, 0);

	  do_compare_rtx_and_jump (signbitloxhi, hipartloxhi, NE, true, hmode,
				   NULL_RTX, NULL, do_overflow,
				   profile_probability::very_unlikely ());

	  /* res = (loxhi << (bitsize / 2)) | (hmode) lo0xlo1;  */
	  rtx loxhishifted = expand_shift (LSHIFT_EXPR, mode, loxhi, hprec,
					   NULL_RTX, 1);
	  tem = convert_modes (mode, hmode,
			       convert_modes (hmode, mode, lo0xlo1, 1), 1);

	  tem = expand_simple_binop (mode, IOR, loxhishifted, tem, res,
				     1, OPTAB_WIDEN);
	  if (tem != res)
	    emit_move_insn (res, tem);
	  emit_jump (done_label);

	  emit_label (both_ops_large);

	  /* If both operands are large (not sign (!uns) or zero (uns)
	     extended from hmode), then perform the full multiplication
	     which will be the result of the operation.
	     The only cases which don't overflow are for signed multiplication
	     some cases where both hipart0 and highpart1 are 0 or -1.
	     For unsigned multiplication when high parts are both non-zero
	     this overflows always.  */
	  ops.code = MULT_EXPR;
	  ops.op0 = make_tree (type, op0);
	  ops.op1 = make_tree (type, op1);
	  tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
	  emit_move_insn (res, tem);

	  if (!uns)
	    {
	      if (!op0_medium_p)
		{
		  tem = expand_simple_binop (hmode, PLUS, hipart0, const1_rtx,
					     NULL_RTX, 1, OPTAB_WIDEN);
		  do_compare_rtx_and_jump (tem, const1_rtx, GTU, true, hmode,
					   NULL_RTX, NULL, do_error,
					   profile_probability::very_unlikely ());
		}

	      if (!op1_medium_p)
		{
		  tem = expand_simple_binop (hmode, PLUS, hipart1, const1_rtx,
					     NULL_RTX, 1, OPTAB_WIDEN);
		  do_compare_rtx_and_jump (tem, const1_rtx, GTU, true, hmode,
					   NULL_RTX, NULL, do_error,
					   profile_probability::very_unlikely ());
		}

	      /* At this point hipart{0,1} are both in [-1, 0].  If they are
		 the same, overflow happened if res is non-positive, if they
		 are different, overflow happened if res is positive.  */
	      if (op0_sign != 1 && op1_sign != 1 && op0_sign != op1_sign)
		emit_jump (hipart_different);
	      else if (op0_sign == 1 || op1_sign == 1)
		do_compare_rtx_and_jump (hipart0, hipart1, NE, true, hmode,
					 NULL_RTX, NULL, hipart_different,
					 profile_probability::even ());

	      do_compare_rtx_and_jump (res, const0_rtx, LE, false, mode,
				       NULL_RTX, NULL, do_error,
				       profile_probability::very_unlikely ());
	      emit_jump (done_label);

	      emit_label (hipart_different);

	      do_compare_rtx_and_jump (res, const0_rtx, GE, false, mode,
				       NULL_RTX, NULL, do_error,
				       profile_probability::very_unlikely ());
	      emit_jump (done_label);
	    }

	  emit_label (do_overflow);

	  /* Overflow, do full multiplication and fallthru into do_error.  */
	  ops.op0 = make_tree (type, op0);
	  ops.op1 = make_tree (type, op1);
	  tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
	  emit_move_insn (res, tem);
	}
      else if (GET_MODE_2XWIDER_MODE (mode).exists (&wmode)
	       && targetm.scalar_mode_supported_p (wmode))
	/* Even emitting a libcall is better than not detecting overflow
	   at all.  */
	goto twoxwider;
      else
	{
	  gcc_assert (!is_ubsan);
	  ops.code = MULT_EXPR;
	  ops.type = type;
	  res = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
	  emit_jump (done_label);
	}
    }

 do_error_label:
  emit_label (do_error);
  if (is_ubsan)
    {
      /* Expand the ubsan builtin call.  */
      push_temp_slots ();
      fn = ubsan_build_overflow_builtin (MULT_EXPR, loc, TREE_TYPE (arg0),
					 arg0, arg1, datap);
      expand_normal (fn);
      pop_temp_slots ();
      do_pending_stack_adjust ();
    }
  else if (lhs)
    expand_arith_set_overflow (lhs, target);

  /* We're done.  */
  emit_label (done_label);

  /* u1 * u2 -> sr  */
  if (uns0_p && uns1_p && !unsr_p)
    {
      rtx_code_label *all_done_label = gen_label_rtx ();
      do_compare_rtx_and_jump (res, const0_rtx, GE, false, mode, NULL_RTX,
			       NULL, all_done_label, profile_probability::very_likely ());
      expand_arith_set_overflow (lhs, target);
      emit_label (all_done_label);
    }

  /* s1 * u2 -> sr  */
  if (!uns0_p && uns1_p && !unsr_p && pos_neg1 == 3)
    {
      rtx_code_label *all_done_label = gen_label_rtx ();
      rtx_code_label *set_noovf = gen_label_rtx ();
      do_compare_rtx_and_jump (op1, const0_rtx, GE, false, mode, NULL_RTX,
			       NULL, all_done_label, profile_probability::very_likely ());
      expand_arith_set_overflow (lhs, target);
      do_compare_rtx_and_jump (op0, const0_rtx, EQ, true, mode, NULL_RTX,
			       NULL, set_noovf, profile_probability::very_likely ());
      do_compare_rtx_and_jump (op0, constm1_rtx, NE, true, mode, NULL_RTX,
			       NULL, all_done_label, profile_probability::very_unlikely ());
      do_compare_rtx_and_jump (op1, res, NE, true, mode, NULL_RTX, NULL,
			       all_done_label, profile_probability::very_unlikely ());
      emit_label (set_noovf);
      write_complex_part (target, const0_rtx, true, false);
      emit_label (all_done_label);
    }

  if (lhs)
    {
      if (is_ubsan)
	expand_ubsan_result_store (target, res);
      else
	expand_arith_overflow_result_store (lhs, target, mode, res);
    }
}

/* Expand UBSAN_CHECK_* internal function if it has vector operands.  */

static void
expand_vector_ubsan_overflow (location_t loc, enum tree_code code, tree lhs,
			      tree arg0, tree arg1)
{
  poly_uint64 cnt = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
  rtx_code_label *loop_lab = NULL;
  rtx cntvar = NULL_RTX;
  tree cntv = NULL_TREE;
  tree eltype = TREE_TYPE (TREE_TYPE (arg0));
  tree sz = TYPE_SIZE (eltype);
  tree data = NULL_TREE;
  tree resv = NULL_TREE;
  rtx lhsr = NULL_RTX;
  rtx resvr = NULL_RTX;
  unsigned HOST_WIDE_INT const_cnt = 0;
  bool use_loop_p = (!cnt.is_constant (&const_cnt) || const_cnt > 4);

  if (lhs)
    {
      optab op;
      lhsr = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
      if (!VECTOR_MODE_P (GET_MODE (lhsr))
	  || (op = optab_for_tree_code (code, TREE_TYPE (arg0),
					optab_default)) == unknown_optab
	  || (optab_handler (op, TYPE_MODE (TREE_TYPE (arg0)))
	      == CODE_FOR_nothing))
	{
	  if (MEM_P (lhsr))
	    resv = make_tree (TREE_TYPE (lhs), lhsr);
	  else
	    {
	      resvr = assign_temp (TREE_TYPE (lhs), 1, 1);
	      resv = make_tree (TREE_TYPE (lhs), resvr);
	    }
	}
    }
  if (use_loop_p)
    {
      do_pending_stack_adjust ();
      loop_lab = gen_label_rtx ();
      cntvar = gen_reg_rtx (TYPE_MODE (sizetype));
      cntv = make_tree (sizetype, cntvar);
      emit_move_insn (cntvar, const0_rtx);
      emit_label (loop_lab);
    }
  if (TREE_CODE (arg0) != VECTOR_CST)
    {
      rtx arg0r = expand_normal (arg0);
      arg0 = make_tree (TREE_TYPE (arg0), arg0r);
    }
  if (TREE_CODE (arg1) != VECTOR_CST)
    {
      rtx arg1r = expand_normal (arg1);
      arg1 = make_tree (TREE_TYPE (arg1), arg1r);
    }
  for (unsigned int i = 0; i < (use_loop_p ? 1 : const_cnt); i++)
    {
      tree op0, op1, res = NULL_TREE;
      if (use_loop_p)
	{
	  tree atype = build_array_type_nelts (eltype, cnt);
	  op0 = uniform_vector_p (arg0);
	  if (op0 == NULL_TREE)
	    {
	      op0 = fold_build1_loc (loc, VIEW_CONVERT_EXPR, atype, arg0);
	      op0 = build4_loc (loc, ARRAY_REF, eltype, op0, cntv,
				NULL_TREE, NULL_TREE);
	    }
	  op1 = uniform_vector_p (arg1);
	  if (op1 == NULL_TREE)
	    {
	      op1 = fold_build1_loc (loc, VIEW_CONVERT_EXPR, atype, arg1);
	      op1 = build4_loc (loc, ARRAY_REF, eltype, op1, cntv,
				NULL_TREE, NULL_TREE);
	    }
	  if (resv)
	    {
	      res = fold_build1_loc (loc, VIEW_CONVERT_EXPR, atype, resv);
	      res = build4_loc (loc, ARRAY_REF, eltype, res, cntv,
				NULL_TREE, NULL_TREE);
	    }
	}
      else
	{
	  tree bitpos = bitsize_int (tree_to_uhwi (sz) * i);
	  op0 = fold_build3_loc (loc, BIT_FIELD_REF, eltype, arg0, sz, bitpos);
	  op1 = fold_build3_loc (loc, BIT_FIELD_REF, eltype, arg1, sz, bitpos);
	  if (resv)
	    res = fold_build3_loc (loc, BIT_FIELD_REF, eltype, resv, sz,
				   bitpos);
	}
      switch (code)
	{
	case PLUS_EXPR:
	  expand_addsub_overflow (loc, PLUS_EXPR, res, op0, op1,
				  false, false, false, true, &data);
	  break;
	case MINUS_EXPR:
	  if (use_loop_p ? integer_zerop (arg0) : integer_zerop (op0))
	    expand_neg_overflow (loc, res, op1, true, &data);
	  else
	    expand_addsub_overflow (loc, MINUS_EXPR, res, op0, op1,
				    false, false, false, true, &data);
	  break;
	case MULT_EXPR:
	  expand_mul_overflow (loc, res, op0, op1, false, false, false,
			       true, &data);
	  break;
	default:
	  gcc_unreachable ();
	}
    }
  if (use_loop_p)
    {
      struct separate_ops ops;
      ops.code = PLUS_EXPR;
      ops.type = TREE_TYPE (cntv);
      ops.op0 = cntv;
      ops.op1 = build_int_cst (TREE_TYPE (cntv), 1);
      ops.op2 = NULL_TREE;
      ops.location = loc;
      rtx ret = expand_expr_real_2 (&ops, cntvar, TYPE_MODE (sizetype),
				    EXPAND_NORMAL);
      if (ret != cntvar)
	emit_move_insn (cntvar, ret);
      rtx cntrtx = gen_int_mode (cnt, TYPE_MODE (sizetype));
      do_compare_rtx_and_jump (cntvar, cntrtx, NE, false,
			       TYPE_MODE (sizetype), NULL_RTX, NULL, loop_lab,
			       profile_probability::very_likely ());
    }
  if (lhs && resv == NULL_TREE)
    {
      struct separate_ops ops;
      ops.code = code;
      ops.type = TREE_TYPE (arg0);
      ops.op0 = arg0;
      ops.op1 = arg1;
      ops.op2 = NULL_TREE;
      ops.location = loc;
      rtx ret = expand_expr_real_2 (&ops, lhsr, TYPE_MODE (TREE_TYPE (arg0)),
				    EXPAND_NORMAL);
      if (ret != lhsr)
	emit_move_insn (lhsr, ret);
    }
  else if (resvr)
    emit_move_insn (lhsr, resvr);
}

/* Expand UBSAN_CHECK_ADD call STMT.  */

static void
expand_UBSAN_CHECK_ADD (internal_fn, gcall *stmt)
{
  location_t loc = gimple_location (stmt);
  tree lhs = gimple_call_lhs (stmt);
  tree arg0 = gimple_call_arg (stmt, 0);
  tree arg1 = gimple_call_arg (stmt, 1);
  if (VECTOR_TYPE_P (TREE_TYPE (arg0)))
    expand_vector_ubsan_overflow (loc, PLUS_EXPR, lhs, arg0, arg1);
  else
    expand_addsub_overflow (loc, PLUS_EXPR, lhs, arg0, arg1,
			    false, false, false, true, NULL);
}

/* Expand UBSAN_CHECK_SUB call STMT.  */

static void
expand_UBSAN_CHECK_SUB (internal_fn, gcall *stmt)
{
  location_t loc = gimple_location (stmt);
  tree lhs = gimple_call_lhs (stmt);
  tree arg0 = gimple_call_arg (stmt, 0);
  tree arg1 = gimple_call_arg (stmt, 1);
  if (VECTOR_TYPE_P (TREE_TYPE (arg0)))
    expand_vector_ubsan_overflow (loc, MINUS_EXPR, lhs, arg0, arg1);
  else if (integer_zerop (arg0))
    expand_neg_overflow (loc, lhs, arg1, true, NULL);
  else
    expand_addsub_overflow (loc, MINUS_EXPR, lhs, arg0, arg1,
			    false, false, false, true, NULL);
}

/* Expand UBSAN_CHECK_MUL call STMT.  */

static void
expand_UBSAN_CHECK_MUL (internal_fn, gcall *stmt)
{
  location_t loc = gimple_location (stmt);
  tree lhs = gimple_call_lhs (stmt);
  tree arg0 = gimple_call_arg (stmt, 0);
  tree arg1 = gimple_call_arg (stmt, 1);
  if (VECTOR_TYPE_P (TREE_TYPE (arg0)))
    expand_vector_ubsan_overflow (loc, MULT_EXPR, lhs, arg0, arg1);
  else
    expand_mul_overflow (loc, lhs, arg0, arg1, false, false, false, true,
			 NULL);
}

/* Helper function for {ADD,SUB,MUL}_OVERFLOW call stmt expansion.  */

static void
expand_arith_overflow (enum tree_code code, gimple *stmt)
{
  tree lhs = gimple_call_lhs (stmt);
  if (lhs == NULL_TREE)
    return;
  tree arg0 = gimple_call_arg (stmt, 0);
  tree arg1 = gimple_call_arg (stmt, 1);
  tree type = TREE_TYPE (TREE_TYPE (lhs));
  int uns0_p = TYPE_UNSIGNED (TREE_TYPE (arg0));
  int uns1_p = TYPE_UNSIGNED (TREE_TYPE (arg1));
  int unsr_p = TYPE_UNSIGNED (type);
  int prec0 = TYPE_PRECISION (TREE_TYPE (arg0));
  int prec1 = TYPE_PRECISION (TREE_TYPE (arg1));
  int precres = TYPE_PRECISION (type);
  location_t loc = gimple_location (stmt);
  if (!uns0_p && get_range_pos_neg (arg0) == 1)
    uns0_p = true;
  if (!uns1_p && get_range_pos_neg (arg1) == 1)
    uns1_p = true;
  int pr = get_min_precision (arg0, uns0_p ? UNSIGNED : SIGNED);
  prec0 = MIN (prec0, pr);
  pr = get_min_precision (arg1, uns1_p ? UNSIGNED : SIGNED);
  prec1 = MIN (prec1, pr);

  /* If uns0_p && uns1_p, precop is minimum needed precision
     of unsigned type to hold the exact result, otherwise
     precop is minimum needed precision of signed type to
     hold the exact result.  */
  int precop;
  if (code == MULT_EXPR)
    precop = prec0 + prec1 + (uns0_p != uns1_p);
  else
    {
      if (uns0_p == uns1_p)
	precop = MAX (prec0, prec1) + 1;
      else if (uns0_p)
	precop = MAX (prec0 + 1, prec1) + 1;
      else
	precop = MAX (prec0, prec1 + 1) + 1;
    }
  int orig_precres = precres;

  do
    {
      if ((uns0_p && uns1_p)
	  ? ((precop + !unsr_p) <= precres
	     /* u1 - u2 -> ur can overflow, no matter what precision
		the result has.  */
	     && (code != MINUS_EXPR || !unsr_p))
	  : (!unsr_p && precop <= precres))
	{
	  /* The infinity precision result will always fit into result.  */
	  rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
	  write_complex_part (target, const0_rtx, true, false);
	  scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
	  struct separate_ops ops;
	  ops.code = code;
	  ops.type = type;
	  ops.op0 = fold_convert_loc (loc, type, arg0);
	  ops.op1 = fold_convert_loc (loc, type, arg1);
	  ops.op2 = NULL_TREE;
	  ops.location = loc;
	  rtx tem = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
	  expand_arith_overflow_result_store (lhs, target, mode, tem);
	  return;
	}

      /* For operations with low precision, if target doesn't have them, start
	 with precres widening right away, otherwise do it only if the most
	 simple cases can't be used.  */
      const int min_precision = targetm.min_arithmetic_precision ();
      if (orig_precres == precres && precres < min_precision)
	;
      else if ((uns0_p && uns1_p && unsr_p && prec0 <= precres
		&& prec1 <= precres)
	  || ((!uns0_p || !uns1_p) && !unsr_p
	      && prec0 + uns0_p <= precres
	      && prec1 + uns1_p <= precres))
	{
	  arg0 = fold_convert_loc (loc, type, arg0);
	  arg1 = fold_convert_loc (loc, type, arg1);
	  switch (code)
	    {
	    case MINUS_EXPR:
	      if (integer_zerop (arg0) && !unsr_p)
		{
		  expand_neg_overflow (loc, lhs, arg1, false, NULL);
		  return;
		}
	      /* FALLTHRU */
	    case PLUS_EXPR:
	      expand_addsub_overflow (loc, code, lhs, arg0, arg1, unsr_p,
				      unsr_p, unsr_p, false, NULL);
	      return;
	    case MULT_EXPR:
	      expand_mul_overflow (loc, lhs, arg0, arg1, unsr_p,
				   unsr_p, unsr_p, false, NULL);
	      return;
	    default:
	      gcc_unreachable ();
	    }
	}

      /* For sub-word operations, retry with a wider type first.  */
      if (orig_precres == precres && precop <= BITS_PER_WORD)
	{
	  int p = MAX (min_precision, precop);
	  scalar_int_mode m = smallest_int_mode_for_size (p);
	  tree optype = build_nonstandard_integer_type (GET_MODE_PRECISION (m),
							uns0_p && uns1_p
							&& unsr_p);
	  p = TYPE_PRECISION (optype);
	  if (p > precres)
	    {
	      precres = p;
	      unsr_p = TYPE_UNSIGNED (optype);
	      type = optype;
	      continue;
	    }
	}

      if (prec0 <= precres && prec1 <= precres)
	{
	  tree types[2];
	  if (unsr_p)
	    {
	      types[0] = build_nonstandard_integer_type (precres, 0);
	      types[1] = type;
	    }
	  else
	    {
	      types[0] = type;
	      types[1] = build_nonstandard_integer_type (precres, 1);
	    }
	  arg0 = fold_convert_loc (loc, types[uns0_p], arg0);
	  arg1 = fold_convert_loc (loc, types[uns1_p], arg1);
	  if (code != MULT_EXPR)
	    expand_addsub_overflow (loc, code, lhs, arg0, arg1, unsr_p,
				    uns0_p, uns1_p, false, NULL);
	  else
	    expand_mul_overflow (loc, lhs, arg0, arg1, unsr_p,
				 uns0_p, uns1_p, false, NULL);
	  return;
	}

      /* Retry with a wider type.  */
      if (orig_precres == precres)
	{
	  int p = MAX (prec0, prec1);
	  scalar_int_mode m = smallest_int_mode_for_size (p);
	  tree optype = build_nonstandard_integer_type (GET_MODE_PRECISION (m),
							uns0_p && uns1_p
							&& unsr_p);
	  p = TYPE_PRECISION (optype);
	  if (p > precres)
	    {
	      precres = p;
	      unsr_p = TYPE_UNSIGNED (optype);
	      type = optype;
	      continue;
	    }
	}

      gcc_unreachable ();
    }
  while (1);
}

/* Expand ADD_OVERFLOW STMT.  */

static void
expand_ADD_OVERFLOW (internal_fn, gcall *stmt)
{
  expand_arith_overflow (PLUS_EXPR, stmt);
}

/* Expand SUB_OVERFLOW STMT.  */

static void
expand_SUB_OVERFLOW (internal_fn, gcall *stmt)
{
  expand_arith_overflow (MINUS_EXPR, stmt);
}

/* Expand MUL_OVERFLOW STMT.  */

static void
expand_MUL_OVERFLOW (internal_fn, gcall *stmt)
{
  expand_arith_overflow (MULT_EXPR, stmt);
}

/* Expand UADDC STMT.  */

static void
expand_UADDC (internal_fn ifn, gcall *stmt)
{
  tree lhs = gimple_call_lhs (stmt);
  tree arg1 = gimple_call_arg (stmt, 0);
  tree arg2 = gimple_call_arg (stmt, 1);
  tree arg3 = gimple_call_arg (stmt, 2);
  tree type = TREE_TYPE (arg1);
  machine_mode mode = TYPE_MODE (type);
  insn_code icode = optab_handler (ifn == IFN_UADDC
				   ? uaddc5_optab : usubc5_optab, mode);
  rtx op1 = expand_normal (arg1);
  rtx op2 = expand_normal (arg2);
  rtx op3 = expand_normal (arg3);
  rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  rtx re = gen_reg_rtx (mode);
  rtx im = gen_reg_rtx (mode);
  class expand_operand ops[5];
  create_output_operand (&ops[0], re, mode);
  create_output_operand (&ops[1], im, mode);
  create_input_operand (&ops[2], op1, mode);
  create_input_operand (&ops[3], op2, mode);
  create_input_operand (&ops[4], op3, mode);
  expand_insn (icode, 5, ops);
  write_complex_part (target, re, false, false);
  write_complex_part (target, im, true, false);
}

/* Expand USUBC STMT.  */

static void
expand_USUBC (internal_fn ifn, gcall *stmt)
{
  expand_UADDC (ifn, stmt);
}

/* This should get folded in tree-vectorizer.cc.  */

static void
expand_LOOP_VECTORIZED (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* This should get folded in tree-vectorizer.cc.  */

static void
expand_LOOP_DIST_ALIAS (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* Return a memory reference of type TYPE for argument INDEX of STMT.
   Use argument INDEX + 1 to derive the second (TBAA) operand.  */

static tree
expand_call_mem_ref (tree type, gcall *stmt, int index)
{
  tree addr = gimple_call_arg (stmt, index);
  tree alias_ptr_type = TREE_TYPE (gimple_call_arg (stmt, index + 1));
  unsigned int align = tree_to_shwi (gimple_call_arg (stmt, index + 1));
  if (TYPE_ALIGN (type) != align)
    type = build_aligned_type (type, align);

  tree tmp = addr;
  if (TREE_CODE (tmp) == SSA_NAME)
    {
      gimple *def = SSA_NAME_DEF_STMT (tmp);
      if (gimple_assign_single_p (def))
	tmp = gimple_assign_rhs1 (def);
    }

  if (TREE_CODE (tmp) == ADDR_EXPR)
    {
      tree mem = TREE_OPERAND (tmp, 0);
      if (TREE_CODE (mem) == TARGET_MEM_REF
	  && types_compatible_p (TREE_TYPE (mem), type))
	{
	  tree offset = TMR_OFFSET (mem);
	  if (type != TREE_TYPE (mem)
	      || alias_ptr_type != TREE_TYPE (offset)
	      || !integer_zerop (offset))
	    {
	      mem = copy_node (mem);
	      TMR_OFFSET (mem) = wide_int_to_tree (alias_ptr_type,
						   wi::to_poly_wide (offset));
	      TREE_TYPE (mem) = type;
	    }
	  return mem;
	}
    }

  return fold_build2 (MEM_REF, type, addr, build_int_cst (alias_ptr_type, 0));
}

/* Expand MASK_LOAD{,_LANES}, MASK_LEN_LOAD or LEN_LOAD call STMT using optab
 * OPTAB.  */

static void
expand_partial_load_optab_fn (internal_fn ifn, gcall *stmt, convert_optab optab)
{
  int i = 0;
  class expand_operand ops[5];
  tree type, lhs, rhs, maskt;
  rtx mem, target;
  insn_code icode;

  maskt = gimple_call_arg (stmt, internal_fn_mask_index (ifn));
  lhs = gimple_call_lhs (stmt);
  if (lhs == NULL_TREE)
    return;
  type = TREE_TYPE (lhs);
  rhs = expand_call_mem_ref (type, stmt, 0);

  if (optab == vec_mask_load_lanes_optab
      || optab == vec_mask_len_load_lanes_optab)
    icode = get_multi_vector_move (type, optab);
  else if (optab == len_load_optab)
    icode = direct_optab_handler (optab, TYPE_MODE (type));
  else
    icode = convert_optab_handler (optab, TYPE_MODE (type),
				   TYPE_MODE (TREE_TYPE (maskt)));

  mem = expand_expr (rhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  gcc_assert (MEM_P (mem));
  target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  create_output_operand (&ops[i++], target, TYPE_MODE (type));
  create_fixed_operand (&ops[i++], mem);
  i = add_mask_and_len_args (ops, i, stmt);
  expand_insn (icode, i, ops);

  if (!rtx_equal_p (target, ops[0].value))
    emit_move_insn (target, ops[0].value);
}

#define expand_mask_load_optab_fn expand_partial_load_optab_fn
#define expand_mask_load_lanes_optab_fn expand_mask_load_optab_fn
#define expand_len_load_optab_fn expand_partial_load_optab_fn
#define expand_mask_len_load_optab_fn expand_partial_load_optab_fn

/* Expand MASK_STORE{,_LANES}, MASK_LEN_STORE or LEN_STORE call STMT using optab
 * OPTAB.  */

static void
expand_partial_store_optab_fn (internal_fn ifn, gcall *stmt, convert_optab optab)
{
  int i = 0;
  class expand_operand ops[5];
  tree type, lhs, rhs, maskt;
  rtx mem, reg;
  insn_code icode;

  maskt = gimple_call_arg (stmt, internal_fn_mask_index (ifn));
  rhs = gimple_call_arg (stmt, internal_fn_stored_value_index (ifn));
  type = TREE_TYPE (rhs);
  lhs = expand_call_mem_ref (type, stmt, 0);

  if (optab == vec_mask_store_lanes_optab
      || optab == vec_mask_len_store_lanes_optab)
    icode = get_multi_vector_move (type, optab);
  else if (optab == len_store_optab)
    icode = direct_optab_handler (optab, TYPE_MODE (type));
  else
    icode = convert_optab_handler (optab, TYPE_MODE (type),
				   TYPE_MODE (TREE_TYPE (maskt)));

  mem = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  gcc_assert (MEM_P (mem));
  reg = expand_normal (rhs);
  create_fixed_operand (&ops[i++], mem);
  create_input_operand (&ops[i++], reg, TYPE_MODE (type));
  i = add_mask_and_len_args (ops, i, stmt);
  expand_insn (icode, i, ops);
}

#define expand_mask_store_optab_fn expand_partial_store_optab_fn
#define expand_mask_store_lanes_optab_fn expand_mask_store_optab_fn
#define expand_len_store_optab_fn expand_partial_store_optab_fn
#define expand_mask_len_store_optab_fn expand_partial_store_optab_fn

/* Expand VCOND, VCONDU and VCONDEQ optab internal functions.
   The expansion of STMT happens based on OPTAB table associated.  */

static void
expand_vec_cond_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
{
  class expand_operand ops[6];
  insn_code icode;
  tree lhs = gimple_call_lhs (stmt);
  tree op0a = gimple_call_arg (stmt, 0);
  tree op0b = gimple_call_arg (stmt, 1);
  tree op1 = gimple_call_arg (stmt, 2);
  tree op2 = gimple_call_arg (stmt, 3);
  enum tree_code tcode = (tree_code) int_cst_value (gimple_call_arg (stmt, 4));

  tree vec_cond_type = TREE_TYPE (lhs);
  tree op_mode = TREE_TYPE (op0a);
  bool unsignedp = TYPE_UNSIGNED (op_mode);

  machine_mode mode = TYPE_MODE (vec_cond_type);
  machine_mode cmp_op_mode = TYPE_MODE (op_mode);

  icode = convert_optab_handler (optab, mode, cmp_op_mode);
  rtx comparison
    = vector_compare_rtx (VOIDmode, tcode, op0a, op0b, unsignedp, icode, 4);
  /* vector_compare_rtx legitimizes operands, preserve equality when
     expanding op1/op2.  */
  rtx rtx_op1, rtx_op2;
  if (operand_equal_p (op1, op0a))
    rtx_op1 = XEXP (comparison, 0);
  else if (operand_equal_p (op1, op0b))
    rtx_op1 = XEXP (comparison, 1);
  else
    rtx_op1 = expand_normal (op1);
  if (operand_equal_p (op2, op0a))
    rtx_op2 = XEXP (comparison, 0);
  else if (operand_equal_p (op2, op0b))
    rtx_op2 = XEXP (comparison, 1);
  else
    rtx_op2 = expand_normal (op2);

  rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  create_output_operand (&ops[0], target, mode);
  create_input_operand (&ops[1], rtx_op1, mode);
  create_input_operand (&ops[2], rtx_op2, mode);
  create_fixed_operand (&ops[3], comparison);
  create_fixed_operand (&ops[4], XEXP (comparison, 0));
  create_fixed_operand (&ops[5], XEXP (comparison, 1));
  expand_insn (icode, 6, ops);
  if (!rtx_equal_p (ops[0].value, target))
    emit_move_insn (target, ops[0].value);
}

/* Expand VCOND_MASK optab internal function.
   The expansion of STMT happens based on OPTAB table associated.  */

static void
expand_vec_cond_mask_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
{
  class expand_operand ops[4];

  tree lhs = gimple_call_lhs (stmt);
  tree op0 = gimple_call_arg (stmt, 0);
  tree op1 = gimple_call_arg (stmt, 1);
  tree op2 = gimple_call_arg (stmt, 2);
  tree vec_cond_type = TREE_TYPE (lhs);

  machine_mode mode = TYPE_MODE (vec_cond_type);
  machine_mode mask_mode = TYPE_MODE (TREE_TYPE (op0));
  enum insn_code icode = convert_optab_handler (optab, mode, mask_mode);
  rtx mask, rtx_op1, rtx_op2;

  gcc_assert (icode != CODE_FOR_nothing);

  mask = expand_normal (op0);
  rtx_op1 = expand_normal (op1);
  rtx_op2 = expand_normal (op2);

  mask = force_reg (mask_mode, mask);
  rtx_op1 = force_reg (mode, rtx_op1);

  rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  create_output_operand (&ops[0], target, mode);
  create_input_operand (&ops[1], rtx_op1, mode);
  create_input_operand (&ops[2], rtx_op2, mode);
  create_input_operand (&ops[3], mask, mask_mode);
  expand_insn (icode, 4, ops);
  if (!rtx_equal_p (ops[0].value, target))
    emit_move_insn (target, ops[0].value);
}

/* Expand VEC_SET internal functions.  */

static void
expand_vec_set_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
{
  tree lhs = gimple_call_lhs (stmt);
  tree op0 = gimple_call_arg (stmt, 0);
  tree op1 = gimple_call_arg (stmt, 1);
  tree op2 = gimple_call_arg (stmt, 2);
  rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  rtx src = expand_normal (op0);

  machine_mode outermode = TYPE_MODE (TREE_TYPE (op0));
  scalar_mode innermode = GET_MODE_INNER (outermode);

  rtx value = expand_normal (op1);
  rtx pos = expand_normal (op2);

  class expand_operand ops[3];
  enum insn_code icode = optab_handler (optab, outermode);

  if (icode != CODE_FOR_nothing)
    {
      rtx temp = gen_reg_rtx (outermode);
      emit_move_insn (temp, src);

      create_fixed_operand (&ops[0], temp);
      create_input_operand (&ops[1], value, innermode);
      create_convert_operand_from (&ops[2], pos, TYPE_MODE (TREE_TYPE (op2)),
				   true);
      if (maybe_expand_insn (icode, 3, ops))
	{
	  emit_move_insn (target, temp);
	  return;
	}
    }
  gcc_unreachable ();
}

static void
expand_ABNORMAL_DISPATCHER (internal_fn, gcall *)
{
}

static void
expand_BUILTIN_EXPECT (internal_fn, gcall *stmt)
{
  /* When guessing was done, the hints should be already stripped away.  */
  gcc_assert (!flag_guess_branch_prob || optimize == 0 || seen_error ());

  rtx target;
  tree lhs = gimple_call_lhs (stmt);
  if (lhs)
    target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  else
    target = const0_rtx;
  rtx val = expand_expr (gimple_call_arg (stmt, 0), target, VOIDmode, EXPAND_NORMAL);
  if (lhs && val != target)
    emit_move_insn (target, val);
}

/* IFN_VA_ARG is supposed to be expanded at pass_stdarg.  So this dummy function
   should never be called.  */

static void
expand_VA_ARG (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* IFN_VEC_CONVERT is supposed to be expanded at pass_lower_vector.  So this
   dummy function should never be called.  */

static void
expand_VEC_CONVERT (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* Expand IFN_RAWMEMCHAR internal function.  */

void
expand_RAWMEMCHR (internal_fn, gcall *stmt)
{
  expand_operand ops[3];

  tree lhs = gimple_call_lhs (stmt);
  if (!lhs)
    return;
  machine_mode lhs_mode = TYPE_MODE (TREE_TYPE (lhs));
  rtx lhs_rtx = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  create_output_operand (&ops[0], lhs_rtx, lhs_mode);

  tree mem = gimple_call_arg (stmt, 0);
  rtx mem_rtx = get_memory_rtx (mem, NULL);
  create_fixed_operand (&ops[1], mem_rtx);

  tree pattern = gimple_call_arg (stmt, 1);
  machine_mode mode = TYPE_MODE (TREE_TYPE (pattern));
  rtx pattern_rtx = expand_normal (pattern);
  create_input_operand (&ops[2], pattern_rtx, mode);

  insn_code icode = direct_optab_handler (rawmemchr_optab, mode);

  expand_insn (icode, 3, ops);
  if (!rtx_equal_p (lhs_rtx, ops[0].value))
    emit_move_insn (lhs_rtx, ops[0].value);
}

/* Expand the IFN_UNIQUE function according to its first argument.  */

static void
expand_UNIQUE (internal_fn, gcall *stmt)
{
  rtx pattern = NULL_RTX;
  enum ifn_unique_kind kind
    = (enum ifn_unique_kind) TREE_INT_CST_LOW (gimple_call_arg (stmt, 0));

  switch (kind)
    {
    default:
      gcc_unreachable ();

    case IFN_UNIQUE_UNSPEC:
      if (targetm.have_unique ())
	pattern = targetm.gen_unique ();
      break;

    case IFN_UNIQUE_OACC_FORK:
    case IFN_UNIQUE_OACC_JOIN:
      if (targetm.have_oacc_fork () && targetm.have_oacc_join ())
	{
	  tree lhs = gimple_call_lhs (stmt);
	  rtx target = const0_rtx;

	  if (lhs)
	    target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);

	  rtx data_dep = expand_normal (gimple_call_arg (stmt, 1));
	  rtx axis = expand_normal (gimple_call_arg (stmt, 2));

	  if (kind == IFN_UNIQUE_OACC_FORK)
	    pattern = targetm.gen_oacc_fork (target, data_dep, axis);
	  else
	    pattern = targetm.gen_oacc_join (target, data_dep, axis);
	}
      else
	gcc_unreachable ();
      break;
    }

  if (pattern)
    emit_insn (pattern);
}

/* Expand the IFN_DEFERRED_INIT function:
   LHS = DEFERRED_INIT (SIZE of the DECL, INIT_TYPE, NAME of the DECL);

   Initialize the LHS with zero/pattern according to its second argument
   INIT_TYPE:
   if INIT_TYPE is AUTO_INIT_ZERO, use zeroes to initialize;
   if INIT_TYPE is AUTO_INIT_PATTERN, use 0xFE byte-repeatable pattern
     to initialize;
   The LHS variable is initialized including paddings.
   The reasons to choose 0xFE for pattern initialization are:
     1. It is a non-canonical virtual address on x86_64, and at the
	high end of the i386 kernel address space.
     2. It is a very large float value (-1.694739530317379e+38).
     3. It is also an unusual number for integers.  */
#define INIT_PATTERN_VALUE  0xFE
static void
expand_DEFERRED_INIT (internal_fn, gcall *stmt)
{
  tree lhs = gimple_call_lhs (stmt);
  tree var_size = gimple_call_arg (stmt, 0);
  enum auto_init_type init_type
    = (enum auto_init_type) TREE_INT_CST_LOW (gimple_call_arg (stmt, 1));
  bool reg_lhs = true;

  tree var_type = TREE_TYPE (lhs);
  gcc_assert (init_type > AUTO_INIT_UNINITIALIZED);

  if (TREE_CODE (lhs) == SSA_NAME)
    reg_lhs = true;
  else
    {
      tree lhs_base = lhs;
      while (handled_component_p (lhs_base))
	lhs_base = TREE_OPERAND (lhs_base, 0);
      reg_lhs = (mem_ref_refers_to_non_mem_p (lhs_base)
		 || non_mem_decl_p (lhs_base));
      /* If this expands to a register and the underlying decl is wrapped in
	 a MEM_REF that just serves as an access type change expose the decl
	 if it is of correct size.  This avoids a situation as in PR103271
	 if the target does not support a direct move to the registers mode.  */
      if (reg_lhs
	  && TREE_CODE (lhs_base) == MEM_REF
	  && TREE_CODE (TREE_OPERAND (lhs_base, 0)) == ADDR_EXPR
	  && DECL_P (TREE_OPERAND (TREE_OPERAND (lhs_base, 0), 0))
	  && integer_zerop (TREE_OPERAND (lhs_base, 1))
	  && tree_fits_uhwi_p (var_size)
	  && tree_int_cst_equal
	       (var_size,
		DECL_SIZE_UNIT (TREE_OPERAND (TREE_OPERAND (lhs_base, 0), 0))))
	{
	  lhs = TREE_OPERAND (TREE_OPERAND (lhs_base, 0), 0);
	  var_type = TREE_TYPE (lhs);
	}
    }

  if (!reg_lhs)
    {
      /* If the variable is not in register, expand to a memset
	 to initialize it.  */
      mark_addressable (lhs);
      tree var_addr = build_fold_addr_expr (lhs);

      tree value = (init_type == AUTO_INIT_PATTERN)
		    ? build_int_cst (integer_type_node,
				     INIT_PATTERN_VALUE)
		    : integer_zero_node;
      tree m_call = build_call_expr (builtin_decl_implicit (BUILT_IN_MEMSET),
				     3, var_addr, value, var_size);
      /* Expand this memset call.  */
      expand_builtin_memset (m_call, NULL_RTX, TYPE_MODE (var_type));
    }
  else
    {
      /* If this variable is in a register use expand_assignment.
	 For boolean scalars force zero-init.  */
      tree init;
      scalar_int_mode var_mode;
      if (TREE_CODE (TREE_TYPE (lhs)) != BOOLEAN_TYPE
	  && tree_fits_uhwi_p (var_size)
	  && (init_type == AUTO_INIT_PATTERN
	      || !is_gimple_reg_type (var_type))
	  && int_mode_for_size (tree_to_uhwi (var_size) * BITS_PER_UNIT,
				0).exists (&var_mode)
	  && have_insn_for (SET, var_mode))
	{
	  unsigned HOST_WIDE_INT total_bytes = tree_to_uhwi (var_size);
	  unsigned char *buf = XALLOCAVEC (unsigned char, total_bytes);
	  memset (buf, (init_type == AUTO_INIT_PATTERN
			? INIT_PATTERN_VALUE : 0), total_bytes);
	  tree itype = build_nonstandard_integer_type
			 (total_bytes * BITS_PER_UNIT, 1);
	  wide_int w = wi::from_buffer (buf, total_bytes);
	  init = wide_int_to_tree (itype, w);
	  /* Pun the LHS to make sure its type has constant size
	     unless it is an SSA name where that's already known.  */
	  if (TREE_CODE (lhs) != SSA_NAME)
	    lhs = build1 (VIEW_CONVERT_EXPR, itype, lhs);
	  else
	    init = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), init);
	}
      else
	/* Use zero-init also for variable-length sizes.  */
	init = build_zero_cst (var_type);

      expand_assignment (lhs, init, false);
    }
}

/* The size of an OpenACC compute dimension.  */

static void
expand_GOACC_DIM_SIZE (internal_fn, gcall *stmt)
{
  tree lhs = gimple_call_lhs (stmt);

  if (!lhs)
    return;

  rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  if (targetm.have_oacc_dim_size ())
    {
      rtx dim = expand_expr (gimple_call_arg (stmt, 0), NULL_RTX,
			     VOIDmode, EXPAND_NORMAL);
      emit_insn (targetm.gen_oacc_dim_size (target, dim));
    }
  else
    emit_move_insn (target, GEN_INT (1));
}

/* The position of an OpenACC execution engine along one compute axis.  */

static void
expand_GOACC_DIM_POS (internal_fn, gcall *stmt)
{
  tree lhs = gimple_call_lhs (stmt);

  if (!lhs)
    return;

  rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  if (targetm.have_oacc_dim_pos ())
    {
      rtx dim = expand_expr (gimple_call_arg (stmt, 0), NULL_RTX,
			     VOIDmode, EXPAND_NORMAL);
      emit_insn (targetm.gen_oacc_dim_pos (target, dim));
    }
  else
    emit_move_insn (target, const0_rtx);
}

/* This is expanded by oacc_device_lower pass.  */

static void
expand_GOACC_LOOP (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* This is expanded by oacc_device_lower pass.  */

static void
expand_GOACC_REDUCTION (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* This is expanded by oacc_device_lower pass.  */

static void
expand_GOACC_TILE (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* Set errno to EDOM.  */

static void
expand_SET_EDOM (internal_fn, gcall *)
{
#ifdef TARGET_EDOM
#ifdef GEN_ERRNO_RTX
  rtx errno_rtx = GEN_ERRNO_RTX;
#else
  rtx errno_rtx = gen_rtx_MEM (word_mode, gen_rtx_SYMBOL_REF (Pmode, "errno"));
#endif
  emit_move_insn (errno_rtx,
		  gen_int_mode (TARGET_EDOM, GET_MODE (errno_rtx)));
#else
  gcc_unreachable ();
#endif
}

/* Expand atomic bit test and set.  */

static void
expand_ATOMIC_BIT_TEST_AND_SET (internal_fn, gcall *call)
{
  expand_ifn_atomic_bit_test_and (call);
}

/* Expand atomic bit test and complement.  */

static void
expand_ATOMIC_BIT_TEST_AND_COMPLEMENT (internal_fn, gcall *call)
{
  expand_ifn_atomic_bit_test_and (call);
}

/* Expand atomic bit test and reset.  */

static void
expand_ATOMIC_BIT_TEST_AND_RESET (internal_fn, gcall *call)
{
  expand_ifn_atomic_bit_test_and (call);
}

/* Expand atomic bit test and set.  */

static void
expand_ATOMIC_COMPARE_EXCHANGE (internal_fn, gcall *call)
{
  expand_ifn_atomic_compare_exchange (call);
}

/* Expand atomic add fetch and cmp with 0.  */

static void
expand_ATOMIC_ADD_FETCH_CMP_0 (internal_fn, gcall *call)
{
  expand_ifn_atomic_op_fetch_cmp_0 (call);
}

/* Expand atomic sub fetch and cmp with 0.  */

static void
expand_ATOMIC_SUB_FETCH_CMP_0 (internal_fn, gcall *call)
{
  expand_ifn_atomic_op_fetch_cmp_0 (call);
}

/* Expand atomic and fetch and cmp with 0.  */

static void
expand_ATOMIC_AND_FETCH_CMP_0 (internal_fn, gcall *call)
{
  expand_ifn_atomic_op_fetch_cmp_0 (call);
}

/* Expand atomic or fetch and cmp with 0.  */

static void
expand_ATOMIC_OR_FETCH_CMP_0 (internal_fn, gcall *call)
{
  expand_ifn_atomic_op_fetch_cmp_0 (call);
}

/* Expand atomic xor fetch and cmp with 0.  */

static void
expand_ATOMIC_XOR_FETCH_CMP_0 (internal_fn, gcall *call)
{
  expand_ifn_atomic_op_fetch_cmp_0 (call);
}

/* Expand LAUNDER to assignment, lhs = arg0.  */

static void
expand_LAUNDER (internal_fn, gcall *call)
{
  tree lhs = gimple_call_lhs (call);

  if (!lhs)
    return;

  expand_assignment (lhs, gimple_call_arg (call, 0), false);
}

/* Expand {MASK_,}SCATTER_STORE{S,U} call CALL using optab OPTAB.  */

static void
expand_scatter_store_optab_fn (internal_fn, gcall *stmt, direct_optab optab)
{
  internal_fn ifn = gimple_call_internal_fn (stmt);
  int rhs_index = internal_fn_stored_value_index (ifn);
  tree base = gimple_call_arg (stmt, 0);
  tree offset = gimple_call_arg (stmt, 1);
  tree scale = gimple_call_arg (stmt, 2);
  tree rhs = gimple_call_arg (stmt, rhs_index);

  rtx base_rtx = expand_normal (base);
  rtx offset_rtx = expand_normal (offset);
  HOST_WIDE_INT scale_int = tree_to_shwi (scale);
  rtx rhs_rtx = expand_normal (rhs);

  class expand_operand ops[8];
  int i = 0;
  create_address_operand (&ops[i++], base_rtx);
  create_input_operand (&ops[i++], offset_rtx, TYPE_MODE (TREE_TYPE (offset)));
  create_integer_operand (&ops[i++], TYPE_UNSIGNED (TREE_TYPE (offset)));
  create_integer_operand (&ops[i++], scale_int);
  create_input_operand (&ops[i++], rhs_rtx, TYPE_MODE (TREE_TYPE (rhs)));
  i = add_mask_and_len_args (ops, i, stmt);

  insn_code icode = convert_optab_handler (optab, TYPE_MODE (TREE_TYPE (rhs)),
					   TYPE_MODE (TREE_TYPE (offset)));
  expand_insn (icode, i, ops);
}

/* Expand {MASK_,}GATHER_LOAD call CALL using optab OPTAB.  */

static void
expand_gather_load_optab_fn (internal_fn, gcall *stmt, direct_optab optab)
{
  tree lhs = gimple_call_lhs (stmt);
  tree base = gimple_call_arg (stmt, 0);
  tree offset = gimple_call_arg (stmt, 1);
  tree scale = gimple_call_arg (stmt, 2);

  rtx lhs_rtx = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  rtx base_rtx = expand_normal (base);
  rtx offset_rtx = expand_normal (offset);
  HOST_WIDE_INT scale_int = tree_to_shwi (scale);

  int i = 0;
  class expand_operand ops[8];
  create_output_operand (&ops[i++], lhs_rtx, TYPE_MODE (TREE_TYPE (lhs)));
  create_address_operand (&ops[i++], base_rtx);
  create_input_operand (&ops[i++], offset_rtx, TYPE_MODE (TREE_TYPE (offset)));
  create_integer_operand (&ops[i++], TYPE_UNSIGNED (TREE_TYPE (offset)));
  create_integer_operand (&ops[i++], scale_int);
  i = add_mask_and_len_args (ops, i, stmt);
  insn_code icode = convert_optab_handler (optab, TYPE_MODE (TREE_TYPE (lhs)),
					   TYPE_MODE (TREE_TYPE (offset)));
  expand_insn (icode, i, ops);
  if (!rtx_equal_p (lhs_rtx, ops[0].value))
    emit_move_insn (lhs_rtx, ops[0].value);
}

/* Helper for expand_DIVMOD.  Return true if the sequence starting with
   INSN contains any call insns or insns with {,U}{DIV,MOD} rtxes.  */

static bool
contains_call_div_mod (rtx_insn *insn)
{
  subrtx_iterator::array_type array;
  for (; insn; insn = NEXT_INSN (insn))
    if (CALL_P (insn))
      return true;
    else if (INSN_P (insn))
      FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
	switch (GET_CODE (*iter))
	  {
	  case CALL:
	  case DIV:
	  case UDIV:
	  case MOD:
	  case UMOD:
	    return true;
	  default:
	    break;
	  }
  return false;
 }

/* Expand DIVMOD() using:
 a) optab handler for udivmod/sdivmod if it is available.
 b) If optab_handler doesn't exist, generate call to
    target-specific divmod libfunc.  */

static void
expand_DIVMOD (internal_fn, gcall *call_stmt)
{
  tree lhs = gimple_call_lhs (call_stmt);
  tree arg0 = gimple_call_arg (call_stmt, 0);
  tree arg1 = gimple_call_arg (call_stmt, 1);

  gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
  tree type = TREE_TYPE (TREE_TYPE (lhs));
  machine_mode mode = TYPE_MODE (type);
  bool unsignedp = TYPE_UNSIGNED (type);
  optab tab = (unsignedp) ? udivmod_optab : sdivmod_optab;

  rtx op0 = expand_normal (arg0);
  rtx op1 = expand_normal (arg1);
  rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);

  rtx quotient = NULL_RTX, remainder = NULL_RTX;
  rtx_insn *insns = NULL;

  if (TREE_CODE (arg1) == INTEGER_CST)
    {
      /* For DIVMOD by integral constants, there could be efficient code
	 expanded inline e.g. using shifts and plus/minus.  Try to expand
	 the division and modulo and if it emits any library calls or any
	 {,U}{DIV,MOD} rtxes throw it away and use a divmod optab or
	 divmod libcall.  */
      scalar_int_mode int_mode;
      if (remainder == NULL_RTX
	  && optimize
	  && CONST_INT_P (op1)
	  && !pow2p_hwi (INTVAL (op1))
	  && is_int_mode (TYPE_MODE (type), &int_mode)
	  && GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
	  && optab_handler (and_optab, word_mode) != CODE_FOR_nothing
	  && optab_handler (add_optab, word_mode) != CODE_FOR_nothing
	  && optimize_insn_for_speed_p ())
	{
	  rtx_insn *last = get_last_insn ();
	  remainder = NULL_RTX;
	  quotient = expand_doubleword_divmod (int_mode, op0, op1, &remainder,
					       TYPE_UNSIGNED (type));
	  if (quotient != NULL_RTX)
	    {
	      if (optab_handler (mov_optab, int_mode) != CODE_FOR_nothing)
		{
		  rtx_insn *move = emit_move_insn (quotient, quotient);
		  set_dst_reg_note (move, REG_EQUAL,
				    gen_rtx_fmt_ee (TYPE_UNSIGNED (type)
						    ? UDIV : DIV, int_mode,
						    copy_rtx (op0), op1),
				    quotient);
		  move = emit_move_insn (remainder, remainder);
		  set_dst_reg_note (move, REG_EQUAL,
				    gen_rtx_fmt_ee (TYPE_UNSIGNED (type)
						    ? UMOD : MOD, int_mode,
						    copy_rtx (op0), op1),
				    quotient);
		}
	    }
	  else
	    delete_insns_since (last);
	}

      if (remainder == NULL_RTX)
	{
	  struct separate_ops ops;
	  ops.code = TRUNC_DIV_EXPR;
	  ops.type = type;
	  ops.op0 = make_tree (ops.type, op0);
	  ops.op1 = arg1;
	  ops.op2 = NULL_TREE;
	  ops.location = gimple_location (call_stmt);
	  start_sequence ();
	  quotient = expand_expr_real_2 (&ops, NULL_RTX, mode, EXPAND_NORMAL);
	  if (contains_call_div_mod (get_insns ()))
	    quotient = NULL_RTX;
	  else
	    {
	      ops.code = TRUNC_MOD_EXPR;
	      remainder = expand_expr_real_2 (&ops, NULL_RTX, mode,
					      EXPAND_NORMAL);
	      if (contains_call_div_mod (get_insns ()))
		remainder = NULL_RTX;
	    }
	  if (remainder)
	    insns = get_insns ();
	  end_sequence ();
	}
    }

  if (remainder)
    emit_insn (insns);

  /* Check if optab_handler exists for divmod_optab for given mode.  */
  else if (optab_handler (tab, mode) != CODE_FOR_nothing)
    {
      quotient = gen_reg_rtx (mode);
      remainder = gen_reg_rtx (mode);
      expand_twoval_binop (tab, op0, op1, quotient, remainder, unsignedp);
    }

  /* Generate call to divmod libfunc if it exists.  */
  else if (rtx libfunc = optab_libfunc (tab, mode))
    targetm.expand_divmod_libfunc (libfunc, mode, op0, op1,
				   &quotient, &remainder);

  else
    gcc_unreachable ();

  /* Wrap the return value (quotient, remainder) within COMPLEX_EXPR.  */
  expand_expr (build2 (COMPLEX_EXPR, TREE_TYPE (lhs),
		       make_tree (TREE_TYPE (arg0), quotient),
		       make_tree (TREE_TYPE (arg1), remainder)),
	       target, VOIDmode, EXPAND_NORMAL);
}

/* Expand a NOP.  */

static void
expand_NOP (internal_fn, gcall *)
{
  /* Nothing.  But it shouldn't really prevail.  */
}

/* Coroutines, all should have been processed at this stage.  */

static void
expand_CO_FRAME (internal_fn, gcall *)
{
  gcc_unreachable ();
}

static void
expand_CO_YIELD (internal_fn, gcall *)
{
  gcc_unreachable ();
}

static void
expand_CO_SUSPN (internal_fn, gcall *)
{
  gcc_unreachable ();
}

static void
expand_CO_ACTOR (internal_fn, gcall *)
{
  gcc_unreachable ();
}

/* Expand a call to FN using the operands in STMT.  FN has a single
   output operand and NARGS input operands.  */

static void
expand_direct_optab_fn (internal_fn fn, gcall *stmt, direct_optab optab,
			unsigned int nargs)
{
  tree_pair types = direct_internal_fn_types (fn, stmt);
  insn_code icode = direct_optab_handler (optab, TYPE_MODE (types.first));
  expand_fn_using_insn (stmt, icode, 1, nargs);
}

/* Expand WHILE_ULT call STMT using optab OPTAB.  */

static void
expand_while_optab_fn (internal_fn, gcall *stmt, convert_optab optab)
{
  expand_operand ops[4];
  tree rhs_type[2];

  tree lhs = gimple_call_lhs (stmt);
  tree lhs_type = TREE_TYPE (lhs);
  rtx lhs_rtx = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  create_output_operand (&ops[0], lhs_rtx, TYPE_MODE (lhs_type));

  for (unsigned int i = 0; i < 2; ++i)
    {
      tree rhs = gimple_call_arg (stmt, i);
      rhs_type[i] = TREE_TYPE (rhs);
      rtx rhs_rtx = expand_normal (rhs);
      create_input_operand (&ops[i + 1], rhs_rtx, TYPE_MODE (rhs_type[i]));
    }

  int opcnt;
  if (!VECTOR_MODE_P (TYPE_MODE (lhs_type)))
    {
      /* When the mask is an integer mode the exact vector length may not
	 be clear to the backend, so we pass it in operand[3].
         Use the vector in arg2 for the most reliable intended size.  */
      tree type = TREE_TYPE (gimple_call_arg (stmt, 2));
      create_integer_operand (&ops[3], TYPE_VECTOR_SUBPARTS (type));
      opcnt = 4;
    }
  else
    /* The mask has a vector type so the length operand is unnecessary.  */
    opcnt = 3;

  insn_code icode = convert_optab_handler (optab, TYPE_MODE (rhs_type[0]),
					   TYPE_MODE (lhs_type));

  expand_insn (icode, opcnt, ops);
  if (!rtx_equal_p (lhs_rtx, ops[0].value))
    emit_move_insn (lhs_rtx, ops[0].value);
}

/* Expand a call to a convert-like optab using the operands in STMT.
   FN has a single output operand and NARGS input operands.  */

static void
expand_convert_optab_fn (internal_fn fn, gcall *stmt, convert_optab optab,
			 unsigned int nargs)
{
  tree_pair types = direct_internal_fn_types (fn, stmt);
  insn_code icode = convert_optab_handler (optab, TYPE_MODE (types.first),
					  TYPE_MODE (types.second));
  expand_fn_using_insn (stmt, icode, 1, nargs);
}

/* Expanders for optabs that can use expand_direct_optab_fn.  */

#define expand_unary_optab_fn(FN, STMT, OPTAB) \
  expand_direct_optab_fn (FN, STMT, OPTAB, 1)

#define expand_binary_optab_fn(FN, STMT, OPTAB) \
  expand_direct_optab_fn (FN, STMT, OPTAB, 2)

#define expand_ternary_optab_fn(FN, STMT, OPTAB) \
  expand_direct_optab_fn (FN, STMT, OPTAB, 3)

#define expand_cond_unary_optab_fn(FN, STMT, OPTAB) \
  expand_direct_optab_fn (FN, STMT, OPTAB, 3)

#define expand_cond_binary_optab_fn(FN, STMT, OPTAB) \
  expand_direct_optab_fn (FN, STMT, OPTAB, 4)

#define expand_cond_ternary_optab_fn(FN, STMT, OPTAB) \
  expand_direct_optab_fn (FN, STMT, OPTAB, 5)

#define expand_cond_len_unary_optab_fn(FN, STMT, OPTAB) \
  expand_direct_optab_fn (FN, STMT, OPTAB, 5)

#define expand_cond_len_binary_optab_fn(FN, STMT, OPTAB) \
  expand_direct_optab_fn (FN, STMT, OPTAB, 6)

#define expand_cond_len_ternary_optab_fn(FN, STMT, OPTAB) \
  expand_direct_optab_fn (FN, STMT, OPTAB, 7)

#define expand_fold_extract_optab_fn(FN, STMT, OPTAB) \
  expand_direct_optab_fn (FN, STMT, OPTAB, 3)

#define expand_fold_len_extract_optab_fn(FN, STMT, OPTAB) \
  expand_direct_optab_fn (FN, STMT, OPTAB, 5)

#define expand_fold_left_optab_fn(FN, STMT, OPTAB) \
  expand_direct_optab_fn (FN, STMT, OPTAB, 2)

#define expand_mask_fold_left_optab_fn(FN, STMT, OPTAB) \
  expand_direct_optab_fn (FN, STMT, OPTAB, 3)

#define expand_mask_len_fold_left_optab_fn(FN, STMT, OPTAB) \
  expand_direct_optab_fn (FN, STMT, OPTAB, 5)

#define expand_check_ptrs_optab_fn(FN, STMT, OPTAB) \
  expand_direct_optab_fn (FN, STMT, OPTAB, 4)

/* Expanders for optabs that can use expand_convert_optab_fn.  */

#define expand_unary_convert_optab_fn(FN, STMT, OPTAB) \
  expand_convert_optab_fn (FN, STMT, OPTAB, 1)

#define expand_vec_extract_optab_fn(FN, STMT, OPTAB) \
  expand_convert_optab_fn (FN, STMT, OPTAB, 2)

/* RETURN_TYPE and ARGS are a return type and argument list that are
   in principle compatible with FN (which satisfies direct_internal_fn_p).
   Return the types that should be used to determine whether the
   target supports FN.  */

tree_pair
direct_internal_fn_types (internal_fn fn, tree return_type, tree *args)
{
  const direct_internal_fn_info &info = direct_internal_fn (fn);
  tree type0 = (info.type0 < 0 ? return_type : TREE_TYPE (args[info.type0]));
  tree type1 = (info.type1 < 0 ? return_type : TREE_TYPE (args[info.type1]));
  return tree_pair (type0, type1);
}

/* CALL is a call whose return type and arguments are in principle
   compatible with FN (which satisfies direct_internal_fn_p).  Return the
   types that should be used to determine whether the target supports FN.  */

tree_pair
direct_internal_fn_types (internal_fn fn, gcall *call)
{
  const direct_internal_fn_info &info = direct_internal_fn (fn);
  tree op0 = (info.type0 < 0
	      ? gimple_call_lhs (call)
	      : gimple_call_arg (call, info.type0));
  tree op1 = (info.type1 < 0
	      ? gimple_call_lhs (call)
	      : gimple_call_arg (call, info.type1));
  return tree_pair (TREE_TYPE (op0), TREE_TYPE (op1));
}

/* Return true if OPTAB is supported for TYPES (whose modes should be
   the same) when the optimization type is OPT_TYPE.  Used for simple
   direct optabs.  */

static bool
direct_optab_supported_p (direct_optab optab, tree_pair types,
			  optimization_type opt_type)
{
  machine_mode mode = TYPE_MODE (types.first);
  gcc_checking_assert (mode == TYPE_MODE (types.second));
  return direct_optab_handler (optab, mode, opt_type) != CODE_FOR_nothing;
}

/* Return true if OPTAB is supported for TYPES, where the first type
   is the destination and the second type is the source.  Used for
   convert optabs.  */

static bool
convert_optab_supported_p (convert_optab optab, tree_pair types,
			   optimization_type opt_type)
{
  return (convert_optab_handler (optab, TYPE_MODE (types.first),
				 TYPE_MODE (types.second), opt_type)
	  != CODE_FOR_nothing);
}

/* Return true if load/store lanes optab OPTAB is supported for
   array type TYPES.first when the optimization type is OPT_TYPE.  */

static bool
multi_vector_optab_supported_p (convert_optab optab, tree_pair types,
				optimization_type opt_type)
{
  gcc_assert (TREE_CODE (types.first) == ARRAY_TYPE);
  machine_mode imode = TYPE_MODE (types.first);
  machine_mode vmode = TYPE_MODE (TREE_TYPE (types.first));
  return (convert_optab_handler (optab, imode, vmode, opt_type)
	  != CODE_FOR_nothing);
}

#define direct_unary_optab_supported_p direct_optab_supported_p
#define direct_unary_convert_optab_supported_p convert_optab_supported_p
#define direct_binary_optab_supported_p direct_optab_supported_p
#define direct_ternary_optab_supported_p direct_optab_supported_p
#define direct_cond_unary_optab_supported_p direct_optab_supported_p
#define direct_cond_binary_optab_supported_p direct_optab_supported_p
#define direct_cond_ternary_optab_supported_p direct_optab_supported_p
#define direct_cond_len_unary_optab_supported_p direct_optab_supported_p
#define direct_cond_len_binary_optab_supported_p direct_optab_supported_p
#define direct_cond_len_ternary_optab_supported_p direct_optab_supported_p
#define direct_mask_load_optab_supported_p convert_optab_supported_p
#define direct_load_lanes_optab_supported_p multi_vector_optab_supported_p
#define direct_mask_load_lanes_optab_supported_p multi_vector_optab_supported_p
#define direct_gather_load_optab_supported_p convert_optab_supported_p
#define direct_len_load_optab_supported_p direct_optab_supported_p
#define direct_mask_len_load_optab_supported_p convert_optab_supported_p
#define direct_mask_store_optab_supported_p convert_optab_supported_p
#define direct_store_lanes_optab_supported_p multi_vector_optab_supported_p
#define direct_mask_store_lanes_optab_supported_p multi_vector_optab_supported_p
#define direct_vec_cond_mask_optab_supported_p convert_optab_supported_p
#define direct_vec_cond_optab_supported_p convert_optab_supported_p
#define direct_scatter_store_optab_supported_p convert_optab_supported_p
#define direct_len_store_optab_supported_p direct_optab_supported_p
#define direct_mask_len_store_optab_supported_p convert_optab_supported_p
#define direct_while_optab_supported_p convert_optab_supported_p
#define direct_fold_extract_optab_supported_p direct_optab_supported_p
#define direct_fold_len_extract_optab_supported_p direct_optab_supported_p
#define direct_fold_left_optab_supported_p direct_optab_supported_p
#define direct_mask_fold_left_optab_supported_p direct_optab_supported_p
#define direct_mask_len_fold_left_optab_supported_p direct_optab_supported_p
#define direct_check_ptrs_optab_supported_p direct_optab_supported_p
#define direct_vec_set_optab_supported_p direct_optab_supported_p
#define direct_vec_extract_optab_supported_p convert_optab_supported_p

/* Return the optab used by internal function FN.  */

optab
direct_internal_fn_optab (internal_fn fn, tree_pair types)
{
  switch (fn)
    {
#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) \
    case IFN_##CODE: break;
#define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) \
    case IFN_##CODE: return OPTAB##_optab;
#define DEF_INTERNAL_SIGNED_OPTAB_FN(CODE, FLAGS, SELECTOR, SIGNED_OPTAB, \
				     UNSIGNED_OPTAB, TYPE)		\
    case IFN_##CODE: return (TYPE_UNSIGNED (types.SELECTOR)		\
			     ? UNSIGNED_OPTAB ## _optab			\
			     : SIGNED_OPTAB ## _optab);
#include "internal-fn.def"

    case IFN_LAST:
      break;
    }
  gcc_unreachable ();
}

/* Return the optab used by internal function FN.  */

static optab
direct_internal_fn_optab (internal_fn fn)
{
  switch (fn)
    {
#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) \
    case IFN_##CODE: break;
#define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) \
    case IFN_##CODE: return OPTAB##_optab;
#include "internal-fn.def"

    case IFN_LAST:
      break;
    }
  gcc_unreachable ();
}

/* Return true if FN is supported for the types in TYPES when the
   optimization type is OPT_TYPE.  The types are those associated with
   the "type0" and "type1" fields of FN's direct_internal_fn_info
   structure.  */

bool
direct_internal_fn_supported_p (internal_fn fn, tree_pair types,
				optimization_type opt_type)
{
  switch (fn)
    {
#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) \
    case IFN_##CODE: break;
#define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) \
    case IFN_##CODE: \
      return direct_##TYPE##_optab_supported_p (OPTAB##_optab, types, \
						opt_type);
#define DEF_INTERNAL_SIGNED_OPTAB_FN(CODE, FLAGS, SELECTOR, SIGNED_OPTAB, \
				     UNSIGNED_OPTAB, TYPE)		\
    case IFN_##CODE:							\
      {									\
	optab which_optab = (TYPE_UNSIGNED (types.SELECTOR)		\
			     ? UNSIGNED_OPTAB ## _optab			\
			     : SIGNED_OPTAB ## _optab);			\
	return direct_##TYPE##_optab_supported_p (which_optab, types,	\
						  opt_type);		\
      }
#include "internal-fn.def"

    case IFN_LAST:
      break;
    }
  gcc_unreachable ();
}

/* Return true if FN is supported for type TYPE when the optimization
   type is OPT_TYPE.  The caller knows that the "type0" and "type1"
   fields of FN's direct_internal_fn_info structure are the same.  */

bool
direct_internal_fn_supported_p (internal_fn fn, tree type,
				optimization_type opt_type)
{
  const direct_internal_fn_info &info = direct_internal_fn (fn);
  gcc_checking_assert (info.type0 == info.type1);
  return direct_internal_fn_supported_p (fn, tree_pair (type, type), opt_type);
}

/* Return true if the STMT is supported when the optimization type is OPT_TYPE,
   given that STMT is a call to a direct internal function.  */

bool
direct_internal_fn_supported_p (gcall *stmt, optimization_type opt_type)
{
  internal_fn fn = gimple_call_internal_fn (stmt);
  tree_pair types = direct_internal_fn_types (fn, stmt);
  return direct_internal_fn_supported_p (fn, types, opt_type);
}

/* Return true if FN is a binary operation and if FN is commutative.  */

bool
commutative_binary_fn_p (internal_fn fn)
{
  switch (fn)
    {
    case IFN_AVG_FLOOR:
    case IFN_AVG_CEIL:
    case IFN_MULH:
    case IFN_MULHS:
    case IFN_MULHRS:
    case IFN_FMIN:
    case IFN_FMAX:
    case IFN_COMPLEX_MUL:
    case IFN_UBSAN_CHECK_ADD:
    case IFN_UBSAN_CHECK_MUL:
    case IFN_ADD_OVERFLOW:
    case IFN_MUL_OVERFLOW:
    case IFN_VEC_WIDEN_PLUS:
    case IFN_VEC_WIDEN_PLUS_LO:
    case IFN_VEC_WIDEN_PLUS_HI:
    case IFN_VEC_WIDEN_PLUS_EVEN:
    case IFN_VEC_WIDEN_PLUS_ODD:
      return true;

    default:
      return false;
    }
}

/* Return true if FN is a ternary operation and if its first two arguments
   are commutative.  */

bool
commutative_ternary_fn_p (internal_fn fn)
{
  switch (fn)
    {
    case IFN_FMA:
    case IFN_FMS:
    case IFN_FNMA:
    case IFN_FNMS:
    case IFN_UADDC:
      return true;

    default:
      return false;
    }
}

/* Return true if FN is an associative binary operation.  */

bool
associative_binary_fn_p (internal_fn fn)
{
  switch (fn)
    {
    case IFN_FMIN:
    case IFN_FMAX:
      return true;

    default:
      return false;
    }
}

/* If FN is commutative in two consecutive arguments, return the
   index of the first, otherwise return -1.  */

int
first_commutative_argument (internal_fn fn)
{
  switch (fn)
    {
    case IFN_COND_ADD:
    case IFN_COND_MUL:
    case IFN_COND_MIN:
    case IFN_COND_MAX:
    case IFN_COND_FMIN:
    case IFN_COND_FMAX:
    case IFN_COND_AND:
    case IFN_COND_IOR:
    case IFN_COND_XOR:
    case IFN_COND_FMA:
    case IFN_COND_FMS:
    case IFN_COND_FNMA:
    case IFN_COND_FNMS:
    case IFN_COND_LEN_ADD:
    case IFN_COND_LEN_MUL:
    case IFN_COND_LEN_MIN:
    case IFN_COND_LEN_MAX:
    case IFN_COND_LEN_FMIN:
    case IFN_COND_LEN_FMAX:
    case IFN_COND_LEN_AND:
    case IFN_COND_LEN_IOR:
    case IFN_COND_LEN_XOR:
    case IFN_COND_LEN_FMA:
    case IFN_COND_LEN_FMS:
    case IFN_COND_LEN_FNMA:
    case IFN_COND_LEN_FNMS:
      return 1;

    default:
      if (commutative_binary_fn_p (fn)
	  || commutative_ternary_fn_p (fn))
	return 0;
      return -1;
    }
}

/* Return true if this CODE describes an internal_fn that returns a vector with
   elements twice as wide as the element size of the input vectors.  */

bool
widening_fn_p (code_helper code)
{
  if (!code.is_fn_code ())
    return false;

  if (!internal_fn_p ((combined_fn) code))
    return false;

  internal_fn fn = as_internal_fn ((combined_fn) code);
  switch (fn)
    {
    #undef DEF_INTERNAL_WIDENING_OPTAB_FN
    #define DEF_INTERNAL_WIDENING_OPTAB_FN(NAME, F, S, SO, UO, T) \
    case IFN_##NAME:						  \
    case IFN_##NAME##_HI:					  \
    case IFN_##NAME##_LO:					  \
    case IFN_##NAME##_EVEN:					  \
    case IFN_##NAME##_ODD:					  \
      return true;
    #include "internal-fn.def"
    #undef DEF_INTERNAL_WIDENING_OPTAB_FN

    default:
      return false;
    }
}

/* Return true if IFN_SET_EDOM is supported.  */

bool
set_edom_supported_p (void)
{
#ifdef TARGET_EDOM
  return true;
#else
  return false;
#endif
}

#define DEF_INTERNAL_OPTAB_FN(CODE, FLAGS, OPTAB, TYPE) \
  static void						\
  expand_##CODE (internal_fn fn, gcall *stmt)		\
  {							\
    expand_##TYPE##_optab_fn (fn, stmt, OPTAB##_optab);	\
  }
#define DEF_INTERNAL_SIGNED_OPTAB_FN(CODE, FLAGS, SELECTOR, SIGNED_OPTAB, \
				     UNSIGNED_OPTAB, TYPE)		\
  static void								\
  expand_##CODE (internal_fn fn, gcall *stmt)				\
  {									\
    tree_pair types = direct_internal_fn_types (fn, stmt);		\
    optab which_optab = direct_internal_fn_optab (fn, types);		\
    expand_##TYPE##_optab_fn (fn, stmt, which_optab);			\
  }
#include "internal-fn.def"
#undef DEF_INTERNAL_OPTAB_FN
#undef DEF_INTERNAL_SIGNED_OPTAB_FN

/* Routines to expand each internal function, indexed by function number.
   Each routine has the prototype:

       expand_<NAME> (gcall *stmt)

   where STMT is the statement that performs the call. */
static void (*const internal_fn_expanders[]) (internal_fn, gcall *) = {

#define DEF_INTERNAL_FN(CODE, FLAGS, FNSPEC) expand_##CODE,
#include "internal-fn.def"
  0
};

/* Invoke T(CODE, SUFFIX) for each conditional function IFN_COND_##SUFFIX
   that maps to a tree code CODE.  There is also an IFN_COND_LEN_##SUFFIX
   for each such IFN_COND_##SUFFIX.  */
#define FOR_EACH_CODE_MAPPING(T) \
  T (PLUS_EXPR, ADD) \
  T (MINUS_EXPR, SUB) \
  T (MULT_EXPR, MUL) \
  T (TRUNC_DIV_EXPR, DIV) \
  T (TRUNC_MOD_EXPR, MOD) \
  T (RDIV_EXPR, RDIV) \
  T (MIN_EXPR, MIN) \
  T (MAX_EXPR, MAX) \
  T (BIT_AND_EXPR, AND) \
  T (BIT_IOR_EXPR, IOR) \
  T (BIT_XOR_EXPR, XOR) \
  T (LSHIFT_EXPR, SHL) \
  T (RSHIFT_EXPR, SHR) \
  T (NEGATE_EXPR, NEG)

/* Return a function that only performs CODE when a certain condition is met
   and that uses a given fallback value otherwise.  For example, if CODE is
   a binary operation associated with conditional function FN:

     LHS = FN (COND, A, B, ELSE)

   is equivalent to the C expression:

     LHS = COND ? A CODE B : ELSE;

   operating elementwise if the operands are vectors.

   Return IFN_LAST if no such function exists.  */

internal_fn
get_conditional_internal_fn (tree_code code)
{
  switch (code)
    {
#define CASE(CODE, IFN) case CODE: return IFN_COND_##IFN;
      FOR_EACH_CODE_MAPPING(CASE)
#undef CASE
    default:
      return IFN_LAST;
    }
}

/* If IFN implements the conditional form of a tree code, return that
   tree code, otherwise return ERROR_MARK.  */

tree_code
conditional_internal_fn_code (internal_fn ifn)
{
  switch (ifn)
    {
#define CASE(CODE, IFN)                                                        \
  case IFN_COND_##IFN:                                                         \
  case IFN_COND_LEN_##IFN:                                                     \
    return CODE;
      FOR_EACH_CODE_MAPPING (CASE)
#undef CASE
      default:
	return ERROR_MARK;
    }
}

/* Like get_conditional_internal_fn, but return a function that
   additionally restricts the operation to the leading elements
   of a vector.  The number of elements to process is given by a length
   and bias pair, as for IFN_LOAD_LEN.  The values of the remaining
   elements are taken from the fallback ("else") argument.

   For example, if CODE is a binary operation associated with FN:

     LHS = FN (COND, A, B, ELSE, LEN, BIAS)

   is equivalent to the C code:

     for (int i = 0; i < NUNITS; i++)
      {
	if (i < LEN + BIAS && COND[i])
	  LHS[i] = A[i] CODE B[i];
	else
	  LHS[i] = ELSE[i];
      }
*/

internal_fn
get_conditional_len_internal_fn (tree_code code)
{
  switch (code)
    {
#define CASE(CODE, IFN) case CODE: return IFN_COND_LEN_##IFN;
      FOR_EACH_CODE_MAPPING(CASE)
#undef CASE
    default:
      return IFN_LAST;
    }
}

/* Invoke T(IFN) for each internal function IFN that also has an
   IFN_COND_* form.  */
#define FOR_EACH_COND_FN_PAIR(T) \
  T (FMAX) \
  T (FMIN) \
  T (FMA) \
  T (FMS) \
  T (FNMA) \
  T (FNMS)

/* Return a function that only performs internal function FN when a
   certain condition is met and that uses a given fallback value otherwise.
   In other words, the returned function FN' is such that:

     LHS = FN' (COND, A1, ... An, ELSE)

   is equivalent to the C expression:

     LHS = COND ? FN (A1, ..., An) : ELSE;

   operating elementwise if the operands are vectors.

   Return IFN_LAST if no such function exists.  */

internal_fn
get_conditional_internal_fn (internal_fn fn)
{
  switch (fn)
    {
#define CASE(NAME) case IFN_##NAME: return IFN_COND_##NAME;
      FOR_EACH_COND_FN_PAIR(CASE)
#undef CASE
    default:
      return IFN_LAST;
    }
}

/* If there exists an internal function like IFN that operates on vectors,
   but with additional length and bias parameters, return the internal_fn
   for that function, otherwise return IFN_LAST.  */
internal_fn
get_len_internal_fn (internal_fn fn)
{
  switch (fn)
    {
#undef DEF_INTERNAL_COND_FN
#undef DEF_INTERNAL_SIGNED_COND_FN
#define DEF_INTERNAL_COND_FN(NAME, ...)                                        \
  case IFN_COND_##NAME:                                                        \
    return IFN_COND_LEN_##NAME;
#define DEF_INTERNAL_SIGNED_COND_FN(NAME, ...)                                 \
  case IFN_COND_##NAME:                                                        \
    return IFN_COND_LEN_##NAME;
#include "internal-fn.def"
#undef DEF_INTERNAL_COND_FN
#undef DEF_INTERNAL_SIGNED_COND_FN
    default:
      return IFN_LAST;
    }
}

/* If IFN implements the conditional form of an unconditional internal
   function, return that unconditional function, otherwise return IFN_LAST.  */

internal_fn
get_unconditional_internal_fn (internal_fn ifn)
{
  switch (ifn)
    {
#define CASE(NAME)                                                             \
    case IFN_COND_##NAME:                                                      \
    case IFN_COND_LEN_##NAME:                                                  \
      return IFN_##NAME;
FOR_EACH_COND_FN_PAIR (CASE)
#undef CASE
    default:
      return IFN_LAST;
    }
}

/* Return true if STMT can be interpreted as a conditional tree code
   operation of the form:

     LHS = COND ? OP (RHS1, ...) : ELSE;

   operating elementwise if the operands are vectors.  This includes
   the case of an all-true COND, so that the operation always happens.

   There is an alternative approach to interpret the STMT when the operands
   are vectors which is the operation predicated by both conditional mask
   and loop control length, the equivalent C code:

     for (int i = 0; i < NUNTIS; i++)
      {
	if (i < LEN + BIAS && COND[i])
	  LHS[i] = A[i] CODE B[i];
	else
	  LHS[i] = ELSE[i];
      }

   When returning true, set:

   - *COND_OUT to the condition COND, or to NULL_TREE if the condition
     is known to be all-true
   - *CODE_OUT to the tree code
   - OPS[I] to operand I of *CODE_OUT
   - *ELSE_OUT to the fallback value ELSE, or to NULL_TREE if the
     condition is known to be all true.
   - *LEN to the len argument if it COND_LEN_* operations or to NULL_TREE.
   - *BIAS to the bias argument if it COND_LEN_* operations or to NULL_TREE.  */

bool
can_interpret_as_conditional_op_p (gimple *stmt, tree *cond_out,
				   tree_code *code_out,
				   tree (&ops)[3], tree *else_out,
				   tree *len, tree *bias)
{
  *len = NULL_TREE;
  *bias = NULL_TREE;
  if (gassign *assign = dyn_cast <gassign *> (stmt))
    {
      *cond_out = NULL_TREE;
      *code_out = gimple_assign_rhs_code (assign);
      ops[0] = gimple_assign_rhs1 (assign);
      ops[1] = gimple_assign_rhs2 (assign);
      ops[2] = gimple_assign_rhs3 (assign);
      *else_out = NULL_TREE;
      return true;
    }
  if (gcall *call = dyn_cast <gcall *> (stmt))
    if (gimple_call_internal_p (call))
      {
	internal_fn ifn = gimple_call_internal_fn (call);
	tree_code code = conditional_internal_fn_code (ifn);
	int len_index = internal_fn_len_index (ifn);
	int cond_nargs = len_index >= 0 ? 4 : 2;
	if (code != ERROR_MARK)
	  {
	    *cond_out = gimple_call_arg (call, 0);
	    *code_out = code;
	    unsigned int nops = gimple_call_num_args (call) - cond_nargs;
	    for (unsigned int i = 0; i < 3; ++i)
	      ops[i] = i < nops ? gimple_call_arg (call, i + 1) : NULL_TREE;
	    *else_out = gimple_call_arg (call, nops + 1);
	    if (len_index < 0)
	      {
		if (integer_truep (*cond_out))
		  {
		    *cond_out = NULL_TREE;
		    *else_out = NULL_TREE;
		  }
	      }
	    else
	      {
		*len = gimple_call_arg (call, len_index);
		*bias = gimple_call_arg (call, len_index + 1);
	      }
	    return true;
	  }
      }
  return false;
}

/* Return true if IFN is some form of load from memory.  */

bool
internal_load_fn_p (internal_fn fn)
{
  switch (fn)
    {
    case IFN_MASK_LOAD:
    case IFN_LOAD_LANES:
    case IFN_MASK_LOAD_LANES:
    case IFN_MASK_LEN_LOAD_LANES:
    case IFN_GATHER_LOAD:
    case IFN_MASK_GATHER_LOAD:
    case IFN_MASK_LEN_GATHER_LOAD:
    case IFN_LEN_LOAD:
    case IFN_MASK_LEN_LOAD:
      return true;

    default:
      return false;
    }
}

/* Return true if IFN is some form of store to memory.  */

bool
internal_store_fn_p (internal_fn fn)
{
  switch (fn)
    {
    case IFN_MASK_STORE:
    case IFN_STORE_LANES:
    case IFN_MASK_STORE_LANES:
    case IFN_MASK_LEN_STORE_LANES:
    case IFN_SCATTER_STORE:
    case IFN_MASK_SCATTER_STORE:
    case IFN_MASK_LEN_SCATTER_STORE:
    case IFN_LEN_STORE:
    case IFN_MASK_LEN_STORE:
      return true;

    default:
      return false;
    }
}

/* Return true if IFN is some form of gather load or scatter store.  */

bool
internal_gather_scatter_fn_p (internal_fn fn)
{
  switch (fn)
    {
    case IFN_GATHER_LOAD:
    case IFN_MASK_GATHER_LOAD:
    case IFN_MASK_LEN_GATHER_LOAD:
    case IFN_SCATTER_STORE:
    case IFN_MASK_SCATTER_STORE:
    case IFN_MASK_LEN_SCATTER_STORE:
      return true;

    default:
      return false;
    }
}

/* If FN takes a vector len argument, return the index of that argument,
   otherwise return -1.  */

int
internal_fn_len_index (internal_fn fn)
{
  switch (fn)
    {
    case IFN_LEN_LOAD:
    case IFN_LEN_STORE:
      return 2;

    case IFN_MASK_LEN_GATHER_LOAD:
    case IFN_MASK_LEN_SCATTER_STORE:
    case IFN_COND_LEN_FMA:
    case IFN_COND_LEN_FMS:
    case IFN_COND_LEN_FNMA:
    case IFN_COND_LEN_FNMS:
      return 5;

    case IFN_COND_LEN_ADD:
    case IFN_COND_LEN_SUB:
    case IFN_COND_LEN_MUL:
    case IFN_COND_LEN_DIV:
    case IFN_COND_LEN_MOD:
    case IFN_COND_LEN_RDIV:
    case IFN_COND_LEN_MIN:
    case IFN_COND_LEN_MAX:
    case IFN_COND_LEN_FMIN:
    case IFN_COND_LEN_FMAX:
    case IFN_COND_LEN_AND:
    case IFN_COND_LEN_IOR:
    case IFN_COND_LEN_XOR:
    case IFN_COND_LEN_SHL:
    case IFN_COND_LEN_SHR:
      return 4;

    case IFN_COND_LEN_NEG:
    case IFN_MASK_LEN_LOAD:
    case IFN_MASK_LEN_STORE:
    case IFN_MASK_LEN_LOAD_LANES:
    case IFN_MASK_LEN_STORE_LANES:
      return 3;

    default:
      return -1;
    }
}

/* If FN takes a vector mask argument, return the index of that argument,
   otherwise return -1.  */

int
internal_fn_mask_index (internal_fn fn)
{
  switch (fn)
    {
    case IFN_MASK_LOAD:
    case IFN_MASK_LOAD_LANES:
    case IFN_MASK_LEN_LOAD_LANES:
    case IFN_MASK_STORE:
    case IFN_MASK_STORE_LANES:
    case IFN_MASK_LEN_STORE_LANES:
    case IFN_MASK_LEN_LOAD:
    case IFN_MASK_LEN_STORE:
      return 2;

    case IFN_MASK_GATHER_LOAD:
    case IFN_MASK_SCATTER_STORE:
    case IFN_MASK_LEN_GATHER_LOAD:
    case IFN_MASK_LEN_SCATTER_STORE:
      return 4;

    default:
      return (conditional_internal_fn_code (fn) != ERROR_MARK
	      || get_unconditional_internal_fn (fn) != IFN_LAST ? 0 : -1);
    }
}

/* If FN takes a value that should be stored to memory, return the index
   of that argument, otherwise return -1.  */

int
internal_fn_stored_value_index (internal_fn fn)
{
  switch (fn)
    {
    case IFN_MASK_STORE:
    case IFN_MASK_STORE_LANES:
    case IFN_SCATTER_STORE:
    case IFN_MASK_SCATTER_STORE:
    case IFN_MASK_LEN_SCATTER_STORE:
      return 3;

    case IFN_LEN_STORE:
      return 4;

    case IFN_MASK_LEN_STORE:
    case IFN_MASK_LEN_STORE_LANES:
      return 5;

    default:
      return -1;
    }
}

/* Return true if the target supports gather load or scatter store function
   IFN.  For loads, VECTOR_TYPE is the vector type of the load result,
   while for stores it is the vector type of the stored data argument.
   MEMORY_ELEMENT_TYPE is the type of the memory elements being loaded
   or stored.  OFFSET_VECTOR_TYPE is the vector type that holds the
   offset from the shared base address of each loaded or stored element.
   SCALE is the amount by which these offsets should be multiplied
   *after* they have been extended to address width.  */

bool
internal_gather_scatter_fn_supported_p (internal_fn ifn, tree vector_type,
					tree memory_element_type,
					tree offset_vector_type, int scale)
{
  if (!tree_int_cst_equal (TYPE_SIZE (TREE_TYPE (vector_type)),
			   TYPE_SIZE (memory_element_type)))
    return false;
  if (maybe_ne (TYPE_VECTOR_SUBPARTS (vector_type),
		TYPE_VECTOR_SUBPARTS (offset_vector_type)))
    return false;
  optab optab = direct_internal_fn_optab (ifn);
  insn_code icode = convert_optab_handler (optab, TYPE_MODE (vector_type),
					   TYPE_MODE (offset_vector_type));
  int output_ops = internal_load_fn_p (ifn) ? 1 : 0;
  bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (offset_vector_type));
  return (icode != CODE_FOR_nothing
	  && insn_operand_matches (icode, 2 + output_ops, GEN_INT (unsigned_p))
	  && insn_operand_matches (icode, 3 + output_ops, GEN_INT (scale)));
}

/* Return true if the target supports IFN_CHECK_{RAW,WAR}_PTRS function IFN
   for pointers of type TYPE when the accesses have LENGTH bytes and their
   common byte alignment is ALIGN.  */

bool
internal_check_ptrs_fn_supported_p (internal_fn ifn, tree type,
				    poly_uint64 length, unsigned int align)
{
  machine_mode mode = TYPE_MODE (type);
  optab optab = direct_internal_fn_optab (ifn);
  insn_code icode = direct_optab_handler (optab, mode);
  if (icode == CODE_FOR_nothing)
    return false;
  rtx length_rtx = immed_wide_int_const (length, mode);
  return (insn_operand_matches (icode, 3, length_rtx)
	  && insn_operand_matches (icode, 4, GEN_INT (align)));
}

/* Return the supported bias for IFN which is either IFN_{LEN_,MASK_LEN_,}LOAD
   or IFN_{LEN_,MASK_LEN_,}STORE.  For now we only support the biases of 0 and
   -1 (in case 0 is not an allowable length for {len_,mask_len_}load or
   {len_,mask_len_}store). If none of the biases match what the backend
   provides, return VECT_PARTIAL_BIAS_UNSUPPORTED.  */

signed char
internal_len_load_store_bias (internal_fn ifn, machine_mode mode)
{
  optab optab = direct_internal_fn_optab (ifn);
  insn_code icode = direct_optab_handler (optab, mode);
  int bias_no = 3;

  if (icode == CODE_FOR_nothing)
    {
      machine_mode mask_mode;
      if (!targetm.vectorize.get_mask_mode (mode).exists (&mask_mode))
	return VECT_PARTIAL_BIAS_UNSUPPORTED;
      if (ifn == IFN_LEN_LOAD)
	{
	  /* Try MASK_LEN_LOAD.  */
	  optab = direct_internal_fn_optab (IFN_MASK_LEN_LOAD);
	}
      else
	{
	  /* Try MASK_LEN_STORE.  */
	  optab = direct_internal_fn_optab (IFN_MASK_LEN_STORE);
	}
      icode = convert_optab_handler (optab, mode, mask_mode);
      bias_no = 4;
    }

  if (icode != CODE_FOR_nothing)
    {
      /* For now we only support biases of 0 or -1.  Try both of them.  */
      if (insn_operand_matches (icode, bias_no, GEN_INT (0)))
	return 0;
      if (insn_operand_matches (icode, bias_no, GEN_INT (-1)))
	return -1;
    }

  return VECT_PARTIAL_BIAS_UNSUPPORTED;
}

/* Expand STMT as though it were a call to internal function FN.  */

void
expand_internal_call (internal_fn fn, gcall *stmt)
{
  internal_fn_expanders[fn] (fn, stmt);
}

/* Expand STMT, which is a call to internal function FN.  */

void
expand_internal_call (gcall *stmt)
{
  expand_internal_call (gimple_call_internal_fn (stmt), stmt);
}

/* If TYPE is a vector type, return true if IFN is a direct internal
   function that is supported for that type.  If TYPE is a scalar type,
   return true if IFN is a direct internal function that is supported for
   the target's preferred vector version of TYPE.  */

bool
vectorized_internal_fn_supported_p (internal_fn ifn, tree type)
{
  if (VECTOR_MODE_P (TYPE_MODE (type)))
    return direct_internal_fn_supported_p (ifn, type, OPTIMIZE_FOR_SPEED);

  scalar_mode smode;
  if (VECTOR_TYPE_P (type)
      || !is_a <scalar_mode> (TYPE_MODE (type), &smode))
    return false;

  machine_mode vmode = targetm.vectorize.preferred_simd_mode (smode);
  if (VECTOR_MODE_P (vmode))
    {
      tree vectype = build_vector_type_for_mode (type, vmode);
      if (direct_internal_fn_supported_p (ifn, vectype, OPTIMIZE_FOR_SPEED))
	return true;
    }

  auto_vector_modes vector_modes;
  targetm.vectorize.autovectorize_vector_modes (&vector_modes, true);
  for (machine_mode base_mode : vector_modes)
    if (related_vector_mode (base_mode, smode).exists (&vmode))
      {
	tree vectype = build_vector_type_for_mode (type, vmode);
	if (direct_internal_fn_supported_p (ifn, vectype, OPTIMIZE_FOR_SPEED))
	  return true;
      }

  return false;
}

void
expand_SHUFFLEVECTOR (internal_fn, gcall *)
{
  gcc_unreachable ();
}

void
expand_PHI (internal_fn, gcall *)
{
  gcc_unreachable ();
}

void
expand_SPACESHIP (internal_fn, gcall *stmt)
{
  tree lhs = gimple_call_lhs (stmt);
  tree rhs1 = gimple_call_arg (stmt, 0);
  tree rhs2 = gimple_call_arg (stmt, 1);
  tree type = TREE_TYPE (rhs1);

  do_pending_stack_adjust ();

  rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  rtx op1 = expand_normal (rhs1);
  rtx op2 = expand_normal (rhs2);

  class expand_operand ops[3];
  create_output_operand (&ops[0], target, TYPE_MODE (TREE_TYPE (lhs)));
  create_input_operand (&ops[1], op1, TYPE_MODE (type));
  create_input_operand (&ops[2], op2, TYPE_MODE (type));
  insn_code icode = optab_handler (spaceship_optab, TYPE_MODE (type));
  expand_insn (icode, 3, ops);
  if (!rtx_equal_p (target, ops[0].value))
    emit_move_insn (target, ops[0].value);
}

void
expand_ASSUME (internal_fn, gcall *)
{
}

void
expand_MASK_CALL (internal_fn, gcall *)
{
  /* This IFN should only exist between ifcvt and vect passes.  */
  gcc_unreachable ();
}

void
expand_MULBITINT (internal_fn, gcall *stmt)
{
  rtx_mode_t args[6];
  for (int i = 0; i < 6; i++)
    args[i] = rtx_mode_t (expand_normal (gimple_call_arg (stmt, i)),
			  (i & 1) ? SImode : ptr_mode);
  rtx fun = init_one_libfunc ("__mulbitint3");
  emit_library_call_value_1 (0, fun, NULL_RTX, LCT_NORMAL, VOIDmode, 6, args);
}

void
expand_DIVMODBITINT (internal_fn, gcall *stmt)
{
  rtx_mode_t args[8];
  for (int i = 0; i < 8; i++)
    args[i] = rtx_mode_t (expand_normal (gimple_call_arg (stmt, i)),
			  (i & 1) ? SImode : ptr_mode);
  rtx fun = init_one_libfunc ("__divmodbitint4");
  emit_library_call_value_1 (0, fun, NULL_RTX, LCT_NORMAL, VOIDmode, 8, args);
}

void
expand_FLOATTOBITINT (internal_fn, gcall *stmt)
{
  machine_mode mode = TYPE_MODE (TREE_TYPE (gimple_call_arg (stmt, 2)));
  rtx arg0 = expand_normal (gimple_call_arg (stmt, 0));
  rtx arg1 = expand_normal (gimple_call_arg (stmt, 1));
  rtx arg2 = expand_normal (gimple_call_arg (stmt, 2));
  const char *mname = GET_MODE_NAME (mode);
  unsigned mname_len = strlen (mname);
  int len = 12 + mname_len;
  if (DECIMAL_FLOAT_MODE_P (mode))
    len += 4;
  char *libfunc_name = XALLOCAVEC (char, len);
  char *p = libfunc_name;
  const char *q;
  if (DECIMAL_FLOAT_MODE_P (mode))
    {
#if ENABLE_DECIMAL_BID_FORMAT
      memcpy (p, "__bid_fix", 9);
#else
      memcpy (p, "__dpd_fix", 9);
#endif
      p += 9;
    }
  else
    {
      memcpy (p, "__fix", 5);
      p += 5;
    }
  for (q = mname; *q; q++)
    *p++ = TOLOWER (*q);
  memcpy (p, "bitint", 7);
  rtx fun = init_one_libfunc (libfunc_name);
  emit_library_call (fun, LCT_NORMAL, VOIDmode, arg0, ptr_mode, arg1,
		     SImode, arg2, mode);
}

void
expand_BITINTTOFLOAT (internal_fn, gcall *stmt)
{
  tree lhs = gimple_call_lhs (stmt);
  if (!lhs)
    return;
  machine_mode mode = TYPE_MODE (TREE_TYPE (lhs));
  rtx arg0 = expand_normal (gimple_call_arg (stmt, 0));
  rtx arg1 = expand_normal (gimple_call_arg (stmt, 1));
  const char *mname = GET_MODE_NAME (mode);
  unsigned mname_len = strlen (mname);
  int len = 14 + mname_len;
  if (DECIMAL_FLOAT_MODE_P (mode))
    len += 4;
  char *libfunc_name = XALLOCAVEC (char, len);
  char *p = libfunc_name;
  const char *q;
  if (DECIMAL_FLOAT_MODE_P (mode))
    {
#if ENABLE_DECIMAL_BID_FORMAT
      memcpy (p, "__bid_floatbitint", 17);
#else
      memcpy (p, "__dpd_floatbitint", 17);
#endif
      p += 17;
    }
  else
    {
      memcpy (p, "__floatbitint", 13);
      p += 13;
    }
  for (q = mname; *q; q++)
    *p++ = TOLOWER (*q);
  *p = '\0';
  rtx fun = init_one_libfunc (libfunc_name);
  rtx target = expand_expr (lhs, NULL_RTX, VOIDmode, EXPAND_WRITE);
  rtx val = emit_library_call_value (fun, target, LCT_PURE, mode,
				     arg0, ptr_mode, arg1, SImode);
  if (val != target)
    emit_move_insn (target, val);
}