aboutsummaryrefslogtreecommitdiff
path: root/gcc/hw-doloop.cc
blob: 29ead1cc00c7df8bc89f1ac26cc2f0f8dbc43871 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
/* Code to analyze doloop loops in order for targets to perform late
   optimizations converting doloops to other forms of hardware loops.
   Copyright (C) 2011-2023 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "df.h"
#include "insn-config.h"
#include "regs.h"
#include "memmodel.h"
#include "emit-rtl.h"
#include "recog.h"
#include "cfgrtl.h"
#include "hw-doloop.h"
#include "dumpfile.h"

/* Dump information collected in LOOPS.  */
static void
dump_hwloops (hwloop_info loops)
{
  hwloop_info loop;

  for (loop = loops; loop; loop = loop->next)
    {
      hwloop_info i;
      basic_block b;
      unsigned ix;

      fprintf (dump_file, ";; loop %d: ", loop->loop_no);
      if (loop->bad)
	fprintf (dump_file, "(bad) ");
      fprintf (dump_file, "{head:%d, depth:%d, reg:%u}",
	       loop->head == NULL ? -1 : loop->head->index,
	       loop->depth, REGNO (loop->iter_reg));

      fprintf (dump_file, " blocks: [ ");
      for (ix = 0; loop->blocks.iterate (ix, &b); ix++)
	fprintf (dump_file, "%d ", b->index);
      fprintf (dump_file, "] ");

      fprintf (dump_file, " inner loops: [ ");
      for (ix = 0; loop->loops.iterate (ix, &i); ix++)
	fprintf (dump_file, "%d ", i->loop_no);
      fprintf (dump_file, "]\n");
    }
  fprintf (dump_file, "\n");
}

/* Return true if BB is part of LOOP.  */
static bool
bb_in_loop_p (hwloop_info loop, basic_block bb)
{
  return bitmap_bit_p (loop->block_bitmap, bb->index);
}

/* Scan the blocks of LOOP (and its inferiors), and record things such as
   hard registers set, jumps out of and within the loop.  */
static void
scan_loop (hwloop_info loop)
{
  unsigned ix;
  basic_block bb;

  if (loop->bad)
    return;

  if (REGNO_REG_SET_P (df_get_live_in (loop->successor),
		       REGNO (loop->iter_reg)))
    loop->iter_reg_used_outside = true;

  for (ix = 0; loop->blocks.iterate (ix, &bb); ix++)
    {
      rtx_insn *insn;
      edge e;
      edge_iterator ei;

      if (bb != loop->tail)
	FOR_EACH_EDGE (e, ei, bb->succs)
	  {
	    if (bb_in_loop_p (loop, e->dest))
	      {
		if (!(e->flags & EDGE_FALLTHRU))
		  loop->jumps_within = true;
	      }
	    else
	      {
		loop->jumps_outof = true;
		if (!loop->bad)
		  gcc_assert (!REGNO_REG_SET_P (df_get_live_in (e->dest),
						REGNO (loop->iter_reg)));
	      }
	  }

      for (insn = BB_HEAD (bb);
	   insn != NEXT_INSN (BB_END (bb));
	   insn = NEXT_INSN (insn))
	{
	  df_ref def;
	  HARD_REG_SET set_this_insn;

	  if (!NONDEBUG_INSN_P (insn))
	    continue;

	  if (recog_memoized (insn) < 0
	      && (GET_CODE (PATTERN (insn)) == ASM_INPUT
		  || asm_noperands (PATTERN (insn)) >= 0))
	    loop->has_asm = true;

	  CLEAR_HARD_REG_SET (set_this_insn);
	  FOR_EACH_INSN_DEF (def, insn)
	    {
	      rtx dreg = DF_REF_REG (def);

	      if (!REG_P (dreg))
		continue;

	      add_to_hard_reg_set (&set_this_insn, GET_MODE (dreg),
				   REGNO (dreg));
	    }

	  if (insn == loop->loop_end)
	    CLEAR_HARD_REG_BIT (set_this_insn, REGNO (loop->iter_reg));
	  else if (reg_mentioned_p (loop->iter_reg, PATTERN (insn)))
	    loop->iter_reg_used = true;
	  loop->regs_set_in_loop |= set_this_insn;
	}
    }
}

/* Compute the incoming_dest and incoming_src members of LOOP by
   identifying the edges that jump into the loop.  If there is more
   than one block that jumps into the loop, incoming_src will be set
   to NULL; likewise, if there is more than one block in the loop that
   is the destination of an incoming edge, incoming_dest will be NULL.

   Return true if either of these two fields is nonnull, false
   otherwise.  */
static bool
process_incoming_edges (hwloop_info loop)
{
  edge e;
  edge_iterator ei;
  bool first = true;

  FOR_EACH_EDGE (e, ei, loop->incoming)
    {
      if (first)
	{
	  loop->incoming_src = e->src;
	  loop->incoming_dest = e->dest;
	  first = false;
	}
      else
	{
	  if (e->dest != loop->incoming_dest)
	    loop->incoming_dest = NULL;
	  if (e->src != loop->incoming_src)
	    loop->incoming_src = NULL;
	}
    }
  if (loop->incoming_src == NULL && loop->incoming_dest == NULL)
    return false;

  return true;
}

/* Try to identify a forwarder block that jump into LOOP, and add it to
   the set of blocks in the loop, updating the vector of incoming blocks as
   well.  This transformation gives a second chance to loops we couldn't
   otherwise handle by increasing the chance that we'll end up with one
   incoming_src block.
   Return true if we made a change, false otherwise.  */
static bool
add_forwarder_blocks (hwloop_info loop)
{
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, loop->incoming)
    {
      if (forwarder_block_p (e->src))
	{
	  edge e2;
	  edge_iterator ei2;

	  if (dump_file)
	    fprintf (dump_file,
		     ";; Adding forwarder block %d to loop %d and retrying\n",
		     e->src->index, loop->loop_no);
	  loop->blocks.safe_push (e->src);
	  bitmap_set_bit (loop->block_bitmap, e->src->index);
	  FOR_EACH_EDGE (e2, ei2, e->src->preds)
	    vec_safe_push (loop->incoming, e2);
	  loop->incoming->unordered_remove (ei.index);
	  return true;
	}
    }
  return false;
}

/* Called from reorg_loops when a potential loop end is found.  LOOP is
   a newly set up structure describing the loop, it is this function's
   responsibility to fill most of it.  TAIL_BB and TAIL_INSN point to the
   loop_end insn and its enclosing basic block.  REG is the loop counter
   register.
   For our purposes, a loop is defined by the set of blocks reachable from
   the loop head in which the loop counter register is live.  This matches
   the expected use; targets that call into this code usually replace the
   loop counter with a different special register.  */
static void
discover_loop (hwloop_info loop, basic_block tail_bb, rtx_insn *tail_insn, rtx reg)
{
  bool found_tail;
  unsigned dwork = 0;
  basic_block bb;

  loop->tail = tail_bb;
  loop->loop_end = tail_insn;
  loop->iter_reg = reg;
  vec_alloc (loop->incoming, 2);
  loop->start_label = as_a <rtx_insn *> (JUMP_LABEL (tail_insn));

  if (EDGE_COUNT (tail_bb->succs) != 2)
    {
      loop->bad = true;
      return;
    }
  loop->head = BRANCH_EDGE (tail_bb)->dest;
  loop->successor = FALLTHRU_EDGE (tail_bb)->dest;

  auto_vec<basic_block, 20> works;
  works.safe_push (loop->head);

  found_tail = false;
  for (dwork = 0; works.iterate (dwork, &bb); dwork++)
    {
      edge e;
      edge_iterator ei;
      if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
	{
	  /* We've reached the exit block.  The loop must be bad. */
	  if (dump_file)
	    fprintf (dump_file,
		     ";; Loop is bad - reached exit block while scanning\n");
	  loop->bad = true;
	  break;
	}

      if (bitmap_bit_p (loop->block_bitmap, bb->index))
	continue;

      /* We've not seen this block before.  Add it to the loop's
	 list and then add each successor to the work list.  */

      loop->blocks.safe_push (bb);
      bitmap_set_bit (loop->block_bitmap, bb->index);

      if (bb == tail_bb)
	found_tail = true;
      else
	{
	  FOR_EACH_EDGE (e, ei, bb->succs)
	    {
	      basic_block succ = EDGE_SUCC (bb, ei.index)->dest;
	      if (REGNO_REG_SET_P (df_get_live_in (succ),
				   REGNO (loop->iter_reg)))
		works.safe_push (succ);
	    }
	}
    }

  if (!found_tail)
    loop->bad = true;
  
  /* Find the predecessor, and make sure nothing else jumps into this loop.  */
  if (!loop->bad)
    {
      FOR_EACH_VEC_ELT (loop->blocks, dwork, bb)
	{
	  edge e;
	  edge_iterator ei;
	  FOR_EACH_EDGE (e, ei, bb->preds)
	    {
	      basic_block pred = e->src;

	      if (!bb_in_loop_p (loop, pred))
		{
		  if (dump_file)
		    fprintf (dump_file, ";; Loop %d: incoming edge %d -> %d\n",
			     loop->loop_no, pred->index,
			     e->dest->index);
		  vec_safe_push (loop->incoming, e);
		}
	    }
	}

      if (!process_incoming_edges (loop))
	{
	  if (dump_file)
	    fprintf (dump_file,
		     ";; retrying loop %d with forwarder blocks\n",
		     loop->loop_no);
	  if (!add_forwarder_blocks (loop))
	    {
	      if (dump_file)
		fprintf (dump_file, ";; No forwarder blocks found\n");
	      loop->bad = true;
	    }
	  else if (!process_incoming_edges (loop))
	    {
	      if (dump_file)
		fprintf (dump_file,
			 ";; can't find suitable entry for loop %d\n",
			 loop->loop_no);
	    }
	}
    }
}

/* Analyze the structure of the loops in the current function.  Use
   LOOP_STACK for bitmap allocations.  Returns all the valid candidates for
   hardware loops found in this function.  HOOKS is the argument
   passed to reorg_loops, used here to find the iteration registers
   from a loop_end pattern.  */
static hwloop_info
discover_loops (bitmap_obstack *loop_stack, struct hw_doloop_hooks *hooks)
{
  hwloop_info loops = NULL;
  hwloop_info loop;
  basic_block bb;
  int nloops = 0;

  /* Find all the possible loop tails.  This means searching for every
     loop_end instruction.  For each one found, create a hwloop_info
     structure and add the head block to the work list. */
  FOR_EACH_BB_FN (bb, cfun)
    {
      rtx_insn *tail = BB_END (bb);
      rtx_insn *insn;
      rtx reg;

      while (tail && NOTE_P (tail) && tail != BB_HEAD (bb))
	tail = PREV_INSN (tail);

      if (tail == NULL_RTX)
	continue;

      if (!JUMP_P (tail))
	continue;
      reg = hooks->end_pattern_reg (tail);
      if (reg == NULL_RTX)
	continue;

      /* A possible loop end */

      /* There's a degenerate case we can handle - an empty loop consisting
	 of only a back branch.  Handle that by deleting the branch.  */
      insn = JUMP_LABEL_AS_INSN (tail);
      while (insn && !NONDEBUG_INSN_P (insn))
	insn = NEXT_INSN (insn);
      if (insn == tail)
	{
	  basic_block succ = FALLTHRU_EDGE (bb)->dest;
	  if (dump_file)
	    {
	      fprintf (dump_file, ";; degenerate loop ending at\n");
	      print_rtl_single (dump_file, tail);
	    }
	  if (!REGNO_REG_SET_P (df_get_live_in (succ), REGNO (reg)))
	    {
	      if (dump_file)
		fprintf (dump_file, ";; deleting it\n");
	      delete_insn_and_edges (tail);
	      continue;
	    }
	}

      loop = XCNEW (struct hwloop_info_d);
      loop->next = loops;
      loops = loop;
      loop->loop_no = nloops++;
      loop->blocks.create (20);
      loop->block_bitmap = BITMAP_ALLOC (loop_stack);

      if (dump_file)
	{
	  fprintf (dump_file, ";; potential loop %d ending at\n",
		   loop->loop_no);
	  print_rtl_single (dump_file, tail);
	}

      discover_loop (loop, bb, tail, reg);
    }

  /* Compute loop nestings.  Given two loops A and B, either the sets
     of their blocks don't intersect at all, or one is the subset of
     the other, or the blocks don't form a good nesting structure.  */
  for (loop = loops; loop; loop = loop->next)
    {
      hwloop_info other;

      if (loop->bad)
	continue;

      for (other = loops; other; other = other->next)
	{
	  if (other->bad)
	    continue;

	  if (!bitmap_intersect_p (other->block_bitmap, loop->block_bitmap))
	    continue;
	  if (!bitmap_intersect_compl_p (other->block_bitmap,
					 loop->block_bitmap))
	    loop->loops.safe_push (other);
	  else if (!bitmap_intersect_compl_p (loop->block_bitmap,
					      other->block_bitmap))
	    other->loops.safe_push (loop);
	  else
	    {
	      if (dump_file)
		fprintf (dump_file,
			 ";; can't find suitable nesting for loops %d and %d\n",
			 loop->loop_no, other->loop_no);
	      loop->bad = other->bad = true;
	    }
	}
    }

  if (dump_file)
    dump_hwloops (loops);

  return loops;
}

/* Free up the loop structures in LOOPS.  */
static void
free_loops (hwloop_info loops)
{
  while (loops)
    {
      hwloop_info loop = loops;
      loops = loop->next;
      loop->loops.release ();
      loop->blocks.release ();
      BITMAP_FREE (loop->block_bitmap);
      XDELETE (loop);
    }
}

#define BB_AUX_INDEX(BB) ((intptr_t) (BB)->aux)

/* Initialize the aux fields to give ascending indices to basic blocks.  */
static void
set_bb_indices (void)
{
  basic_block bb;
  intptr_t index;

  index = 0;
  FOR_EACH_BB_FN (bb, cfun)
    bb->aux = (void *) index++;
}

/* The taken-branch edge from the loop end can actually go forward.
   If the target's hardware loop support requires that the loop end be
   after the loop start, try to reorder a loop's basic blocks when we
   find such a case.
   This is not very aggressive; it only moves at most one block.  It
   does not introduce new branches into loops; it may remove them, or
   it may switch fallthru/jump edges.  */
static void
reorder_loops (hwloop_info loops)
{
  basic_block bb;
  hwloop_info loop;

  cfg_layout_initialize (0);

  set_bb_indices ();

  for (loop = loops; loop; loop = loop->next)
    {
      edge e;
      edge_iterator ei;

      if (loop->bad)
	continue;

      if (BB_AUX_INDEX (loop->head) <= BB_AUX_INDEX (loop->tail))
	continue;

      FOR_EACH_EDGE (e, ei, loop->head->succs)
	{
	  if (bitmap_bit_p (loop->block_bitmap, e->dest->index)
	      && BB_AUX_INDEX (e->dest) < BB_AUX_INDEX (loop->tail))
	    {
	      basic_block start_bb = e->dest;
	      basic_block start_prev_bb = start_bb->prev_bb;

	      if (dump_file)
		fprintf (dump_file, ";; Moving block %d before block %d\n",
			 loop->head->index, start_bb->index);
	      loop->head->prev_bb->next_bb = loop->head->next_bb;
	      loop->head->next_bb->prev_bb = loop->head->prev_bb;

	      loop->head->prev_bb = start_prev_bb;
	      loop->head->next_bb = start_bb;
	      start_prev_bb->next_bb = start_bb->prev_bb = loop->head;

	      set_bb_indices ();
	      break;
	    }
	}
      loops = loops->next;
    }
  
  FOR_EACH_BB_FN (bb, cfun)
    {
      if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
	bb->aux = bb->next_bb;
      else
	bb->aux = NULL;
    }
  cfg_layout_finalize ();
  clear_aux_for_blocks ();
  df_analyze ();
}

/* Call the OPT function for LOOP and all of its sub-loops.  This is
   done in a depth-first search; innermost loops are visited first.
   OPTIMIZE and FAIL are the functions passed to reorg_loops by the
   target's reorg pass.  */
static void
optimize_loop (hwloop_info loop, struct hw_doloop_hooks *hooks)
{
  int ix;
  hwloop_info inner;
  int inner_depth = 0;

  if (loop->visited)
    return;

  loop->visited = 1;

  if (loop->bad)
    {
      if (dump_file)
	fprintf (dump_file, ";; loop %d bad when found\n", loop->loop_no);
      goto bad_loop;
    }

  /* Every loop contains in its list of inner loops every loop nested inside
     it, even if there are intermediate loops.  This works because we're doing
     a depth-first search here and never visit a loop more than once.
     Recursion depth is effectively limited by the number of available
     hardware registers.  */
  for (ix = 0; loop->loops.iterate (ix, &inner); ix++)
    {
      optimize_loop (inner, hooks);

      if (!inner->bad && inner_depth < inner->depth)
	inner_depth = inner->depth;
      /* The set of registers may be changed while optimizing the inner
	 loop.  */
      loop->regs_set_in_loop |= inner->regs_set_in_loop;
    }

  loop->depth = inner_depth + 1;

  if (hooks->opt (loop))
    return;

 bad_loop:
  if (dump_file)
    fprintf (dump_file, ";; loop %d is bad\n", loop->loop_no);

  loop->bad = true;
  hooks->fail (loop);
}

/* This function can be used from a port's machine_dependent_reorg to
   find and analyze loops that end in loop_end instructions.  It uses
   a set of function pointers in HOOKS to call back into the
   target-specific functions to perform the actual machine-specific
   transformations.

   Such transformations typically involve additional set-up
   instructions before the loop, to define loop bounds or set up a
   special loop counter register.

   DO_REORDER should be set to true if we should try to use the
   reorder_loops function to ensure the loop end occurs after the loop
   start.  This is for use by targets where the loop hardware requires
   this condition.

   HOOKS is used to pass in target specific hooks; see
   hw-doloop.h.  */
void
reorg_loops (bool do_reorder, struct hw_doloop_hooks *hooks)
{
  hwloop_info loops = NULL;
  hwloop_info loop;
  bitmap_obstack loop_stack;

  df_live_add_problem ();
  df_live_set_all_dirty ();
  df_analyze ();

  bitmap_obstack_initialize (&loop_stack);

  if (dump_file)
    fprintf (dump_file, ";; Find loops, first pass\n\n");

  loops = discover_loops (&loop_stack, hooks);

  /* We can't enter cfglayout mode anymore if basic block partitioning
     already happened.  */
  if (do_reorder && !crtl->has_bb_partition)
    {
      reorder_loops (loops);
      free_loops (loops);

      if (dump_file)
	fprintf (dump_file, ";; Find loops, second pass\n\n");

      loops = discover_loops (&loop_stack, hooks);
    }

  for (loop = loops; loop; loop = loop->next)
    scan_loop (loop);

  /* Now apply the optimizations.  */
  for (loop = loops; loop; loop = loop->next)
    optimize_loop (loop, hooks);

  if (dump_file)
    {
      fprintf (dump_file, ";; After hardware loops optimization:\n\n");
      dump_hwloops (loops);
    }

  free_loops (loops);
  bitmap_obstack_release (&loop_stack);

  if (dump_file)
    print_rtl (dump_file, get_insns ());
}