aboutsummaryrefslogtreecommitdiff
path: root/gcc/hsa-regalloc.c
blob: 7fc3a8afa3d0b8b26449f10f36a599bde6020be0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
/* HSAIL IL Register allocation and out-of-SSA.
   Copyright (C) 2013-2017 Free Software Foundation, Inc.
   Contributed by Michael Matz <matz@suse.de>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "is-a.h"
#include "vec.h"
#include "tree.h"
#include "dominance.h"
#include "basic-block.h"
#include "cfg.h"
#include "cfganal.h"
#include "function.h"
#include "bitmap.h"
#include "dumpfile.h"
#include "cgraph.h"
#include "print-tree.h"
#include "cfghooks.h"
#include "symbol-summary.h"
#include "hsa-common.h"


/* Process a PHI node PHI of basic block BB as a part of naive out-f-ssa.  */

static void
naive_process_phi (hsa_insn_phi *phi, const vec<edge> &predecessors)
{
  unsigned count = phi->operand_count ();
  for (unsigned i = 0; i < count; i++)
    {
      gcc_checking_assert (phi->get_op (i));
      hsa_op_base *op = phi->get_op (i);
      hsa_bb *hbb;
      edge e;

      if (!op)
	break;

      e = predecessors[i];
      if (single_succ_p (e->src))
	hbb = hsa_bb_for_bb (e->src);
      else
	{
	  basic_block old_dest = e->dest;
	  hbb = hsa_init_new_bb (split_edge (e));

	  /* If switch insn used this edge, fix jump table.  */
	  hsa_bb *source = hsa_bb_for_bb (e->src);
	  hsa_insn_sbr *sbr;
	  if (source->m_last_insn
	      && (sbr = dyn_cast <hsa_insn_sbr *> (source->m_last_insn)))
	    sbr->replace_all_labels (old_dest, hbb->m_bb);
	}

      hsa_build_append_simple_mov (phi->m_dest, op, hbb);
    }
}

/* Naive out-of SSA.  */

static void
naive_outof_ssa (void)
{
  basic_block bb;

  hsa_cfun->m_in_ssa = false;

  FOR_ALL_BB_FN (bb, cfun)
  {
    hsa_bb *hbb = hsa_bb_for_bb (bb);
    hsa_insn_phi *phi;

    /* naive_process_phi can call split_edge on an incoming edge which order if
       the incoming edges to the basic block and thus make it inconsistent with
       the ordering of PHI arguments, so we collect them in advance.  */
    auto_vec<edge, 8> predecessors;
    unsigned pred_count = EDGE_COUNT (bb->preds);
    for (unsigned i = 0; i < pred_count; i++)
      predecessors.safe_push (EDGE_PRED (bb, i));

    for (phi = hbb->m_first_phi;
	 phi;
	 phi = phi->m_next ? as_a <hsa_insn_phi *> (phi->m_next) : NULL)
      naive_process_phi (phi, predecessors);

    /* Zap PHI nodes, they will be deallocated when everything else will.  */
    hbb->m_first_phi = NULL;
    hbb->m_last_phi = NULL;
  }
}

/* Return register class number for the given HSA TYPE.  0 means the 'c' one
   bit register class, 1 means 's' 32 bit class, 2 stands for 'd' 64 bit class
   and 3 for 'q' 128 bit class.  */

static int
m_reg_class_for_type (BrigType16_t type)
{
  switch (type)
    {
    case BRIG_TYPE_B1:
      return 0;

    case BRIG_TYPE_U8:
    case BRIG_TYPE_U16:
    case BRIG_TYPE_U32:
    case BRIG_TYPE_S8:
    case BRIG_TYPE_S16:
    case BRIG_TYPE_S32:
    case BRIG_TYPE_F16:
    case BRIG_TYPE_F32:
    case BRIG_TYPE_B8:
    case BRIG_TYPE_B16:
    case BRIG_TYPE_B32:
    case BRIG_TYPE_U8X4:
    case BRIG_TYPE_S8X4:
    case BRIG_TYPE_U16X2:
    case BRIG_TYPE_S16X2:
    case BRIG_TYPE_F16X2:
      return 1;

    case BRIG_TYPE_U64:
    case BRIG_TYPE_S64:
    case BRIG_TYPE_F64:
    case BRIG_TYPE_B64:
    case BRIG_TYPE_U8X8:
    case BRIG_TYPE_S8X8:
    case BRIG_TYPE_U16X4:
    case BRIG_TYPE_S16X4:
    case BRIG_TYPE_F16X4:
    case BRIG_TYPE_U32X2:
    case BRIG_TYPE_S32X2:
    case BRIG_TYPE_F32X2:
      return 2;

    case BRIG_TYPE_B128:
    case BRIG_TYPE_U8X16:
    case BRIG_TYPE_S8X16:
    case BRIG_TYPE_U16X8:
    case BRIG_TYPE_S16X8:
    case BRIG_TYPE_F16X8:
    case BRIG_TYPE_U32X4:
    case BRIG_TYPE_U64X2:
    case BRIG_TYPE_S32X4:
    case BRIG_TYPE_S64X2:
    case BRIG_TYPE_F32X4:
    case BRIG_TYPE_F64X2:
      return 3;

    default:
      gcc_unreachable ();
    }
}

/* If the Ith operands of INSN is or contains a register (in an address),
   return the address of that register operand.  If not return NULL.  */

static hsa_op_reg **
insn_reg_addr (hsa_insn_basic *insn, int i)
{
  hsa_op_base *op = insn->get_op (i);
  if (!op)
    return NULL;
  hsa_op_reg *reg = dyn_cast <hsa_op_reg *> (op);
  if (reg)
    return (hsa_op_reg **) insn->get_op_addr (i);
  hsa_op_address *addr = dyn_cast <hsa_op_address *> (op);
  if (addr && addr->m_reg)
    return &addr->m_reg;
  return NULL;
}

struct m_reg_class_desc
{
  unsigned next_avail, max_num;
  unsigned used_num, max_used;
  uint64_t used[2];
  char cl_char;
};

/* Rewrite the instructions in BB to observe spilled live ranges.
   CLASSES is the global register class state.  */

static void
rewrite_code_bb (basic_block bb, struct m_reg_class_desc *classes)
{
  hsa_bb *hbb = hsa_bb_for_bb (bb);
  hsa_insn_basic *insn, *next_insn;

  for (insn = hbb->m_first_insn; insn; insn = next_insn)
    {
      next_insn = insn->m_next;
      unsigned count = insn->operand_count ();
      for (unsigned i = 0; i < count; i++)
	{
	  gcc_checking_assert (insn->get_op (i));
	  hsa_op_reg **regaddr = insn_reg_addr (insn, i);

	  if (regaddr)
	    {
	      hsa_op_reg *reg = *regaddr;
	      if (reg->m_reg_class)
		continue;
	      gcc_assert (reg->m_spill_sym);

	      int cl = m_reg_class_for_type (reg->m_type);
	      hsa_op_reg *tmp, *tmp2;
	      if (insn->op_output_p (i))
		tmp = hsa_spill_out (insn, reg, &tmp2);
	      else
		tmp = hsa_spill_in (insn, reg, &tmp2);

	      *regaddr = tmp;

	      tmp->m_reg_class = classes[cl].cl_char;
	      tmp->m_hard_num = (char) (classes[cl].max_num + i);
	      if (tmp2)
		{
		  gcc_assert (cl == 0);
		  tmp2->m_reg_class = classes[1].cl_char;
		  tmp2->m_hard_num = (char) (classes[1].max_num + i);
		}
	    }
	}
    }
}

/* Dump current function to dump file F, with info specific
   to register allocation.  */

void
dump_hsa_cfun_regalloc (FILE *f)
{
  basic_block bb;

  fprintf (f, "\nHSAIL IL for %s\n", hsa_cfun->m_name);

  FOR_ALL_BB_FN (bb, cfun)
  {
    hsa_bb *hbb = (struct hsa_bb *) bb->aux;
    bitmap_print (dump_file, hbb->m_livein, "m_livein  ", "\n");
    dump_hsa_bb (f, hbb);
    bitmap_print (dump_file, hbb->m_liveout, "m_liveout ", "\n");
  }
}

/* Given the global register allocation state CLASSES and a
   register REG, try to give it a hardware register.  If successful,
   store that hardreg in REG and return it, otherwise return -1.
   Also changes CLASSES to accommodate for the allocated register.  */

static int
try_alloc_reg (struct m_reg_class_desc *classes, hsa_op_reg *reg)
{
  int cl = m_reg_class_for_type (reg->m_type);
  int ret = -1;
  if (classes[1].used_num + classes[2].used_num * 2 + classes[3].used_num * 4
      >= 128 - 5)
    return -1;
  if (classes[cl].used_num < classes[cl].max_num)
    {
      unsigned int i;
      classes[cl].used_num++;
      if (classes[cl].used_num > classes[cl].max_used)
	classes[cl].max_used = classes[cl].used_num;
      for (i = 0; i < classes[cl].used_num; i++)
	if (! (classes[cl].used[i / 64] & (((uint64_t)1) << (i & 63))))
	  break;
      ret = i;
      classes[cl].used[i / 64] |= (((uint64_t)1) << (i & 63));
      reg->m_reg_class = classes[cl].cl_char;
      reg->m_hard_num = i;
    }
  return ret;
}

/* Free up hardregs used by REG, into allocation state CLASSES.  */

static void
free_reg (struct m_reg_class_desc *classes, hsa_op_reg *reg)
{
  int cl = m_reg_class_for_type (reg->m_type);
  int ret = reg->m_hard_num;
  gcc_assert (reg->m_reg_class == classes[cl].cl_char);
  classes[cl].used_num--;
  classes[cl].used[ret / 64] &= ~(((uint64_t)1) << (ret & 63));
}

/* Note that the live range for REG ends at least at END.  */

static void
note_lr_end (hsa_op_reg *reg, int end)
{
  if (reg->m_lr_end < end)
    reg->m_lr_end = end;
}

/* Note that the live range for REG starts at least at BEGIN.  */

static void
note_lr_begin (hsa_op_reg *reg, int begin)
{
  if (reg->m_lr_begin > begin)
    reg->m_lr_begin = begin;
}

/* Given two registers A and B, return -1, 0 or 1 if A's live range
   starts before, at or after B's live range.  */

static int
cmp_begin (const void *a, const void *b)
{
  const hsa_op_reg * const *rega = (const hsa_op_reg * const *)a;
  const hsa_op_reg * const *regb = (const hsa_op_reg * const *)b;
  int ret;
  if (rega == regb)
    return 0;
  ret = (*rega)->m_lr_begin - (*regb)->m_lr_begin;
  if (ret)
    return ret;
  return ((*rega)->m_order - (*regb)->m_order);
}

/* Given two registers REGA and REGB, return true if REGA's
   live range ends after REGB's.  This results in a sorting order
   with earlier end points at the end.  */

static bool
cmp_end (hsa_op_reg * const &rega, hsa_op_reg * const &regb)
{
  int ret;
  if (rega == regb)
    return false;
  ret = (regb)->m_lr_end - (rega)->m_lr_end;
  if (ret)
    return ret < 0;
  return (((regb)->m_order - (rega)->m_order)) < 0;
}

/* Expire all old intervals in ACTIVE (a per-regclass vector),
   that is, those that end before the interval REG starts.  Give
   back resources freed so into the state CLASSES.  */

static void
expire_old_intervals (hsa_op_reg *reg, vec<hsa_op_reg*> *active,
		      struct m_reg_class_desc *classes)
{
  for (int i = 0; i < 4; i++)
    while (!active[i].is_empty ())
      {
	hsa_op_reg *a = active[i].pop ();
	if (a->m_lr_end > reg->m_lr_begin)
	  {
	    active[i].quick_push (a);
	    break;
	  }
	free_reg (classes, a);
      }
}

/* The interval REG didn't get a hardreg.  Spill it or one of those
   from ACTIVE (if the latter, then REG will become allocated to the
   hardreg that formerly was used by it).  */

static void
spill_at_interval (hsa_op_reg *reg, vec<hsa_op_reg*> *active)
{
  int cl = m_reg_class_for_type (reg->m_type);
  gcc_assert (!active[cl].is_empty ());
  hsa_op_reg *cand = active[cl][0];
  if (cand->m_lr_end > reg->m_lr_end)
    {
      reg->m_reg_class = cand->m_reg_class;
      reg->m_hard_num = cand->m_hard_num;
      active[cl].ordered_remove (0);
      unsigned place = active[cl].lower_bound (reg, cmp_end);
      active[cl].quick_insert (place, reg);
    }
  else
    cand = reg;

  gcc_assert (!cand->m_spill_sym);
  BrigType16_t type = cand->m_type;
  if (type == BRIG_TYPE_B1)
    type = BRIG_TYPE_U8;
  cand->m_reg_class = 0;
  cand->m_spill_sym = hsa_get_spill_symbol (type);
  cand->m_spill_sym->m_name_number = cand->m_order;
}

/* Given the global register state CLASSES allocate all HSA virtual
   registers either to hardregs or to a spill symbol.  */

static void
linear_scan_regalloc (struct m_reg_class_desc *classes)
{
  /* Compute liveness.  */
  bool changed;
  int i, n;
  int insn_order;
  int *bbs = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
  bitmap work = BITMAP_ALLOC (NULL);
  vec<hsa_op_reg*> ind2reg = vNULL;
  vec<hsa_op_reg*> active[4] = {vNULL, vNULL, vNULL, vNULL};
  hsa_insn_basic *m_last_insn;

  /* We will need the reverse post order for linearization,
     and the post order for liveness analysis, which is the same
     backward.  */
  n = pre_and_rev_post_order_compute (NULL, bbs, true);
  ind2reg.safe_grow_cleared (hsa_cfun->m_reg_count);

  /* Give all instructions a linearized number, at the same time
     build a mapping from register index to register.  */
  insn_order = 1;
  for (i = 0; i < n; i++)
    {
      basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bbs[i]);
      hsa_bb *hbb = hsa_bb_for_bb (bb);
      hsa_insn_basic *insn;
      for (insn = hbb->m_first_insn; insn; insn = insn->m_next)
	{
	  unsigned opi;
	  insn->m_number = insn_order++;
	  for (opi = 0; opi < insn->operand_count (); opi++)
	    {
	      gcc_checking_assert (insn->get_op (opi));
	      hsa_op_reg **regaddr = insn_reg_addr (insn, opi);
	      if (regaddr)
		ind2reg[(*regaddr)->m_order] = *regaddr;
	    }
	}
    }

  /* Initialize all live ranges to [after-end, 0).  */
  for (i = 0; i < hsa_cfun->m_reg_count; i++)
    if (ind2reg[i])
      ind2reg[i]->m_lr_begin = insn_order, ind2reg[i]->m_lr_end = 0;

  /* Classic liveness analysis, as long as something changes:
       m_liveout is union (m_livein of successors)
       m_livein is m_liveout minus defs plus uses.  */
  do
    {
      changed = false;
      for (i = n - 1; i >= 0; i--)
	{
	  edge e;
	  edge_iterator ei;
	  basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bbs[i]);
	  hsa_bb *hbb = hsa_bb_for_bb (bb);

	  /* Union of successors m_livein (or empty if none).  */
	  bool first = true;
	  FOR_EACH_EDGE (e, ei, bb->succs)
	    if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
	      {
		hsa_bb *succ = hsa_bb_for_bb (e->dest);
		if (first)
		  {
		    bitmap_copy (work, succ->m_livein);
		    first = false;
		  }
		else
		  bitmap_ior_into (work, succ->m_livein);
	      }
	  if (first)
	    bitmap_clear (work);

	  bitmap_copy (hbb->m_liveout, work);

	  /* Remove defs, include uses in a backward insn walk.  */
	  hsa_insn_basic *insn;
	  for (insn = hbb->m_last_insn; insn; insn = insn->m_prev)
	    {
	      unsigned opi;
	      unsigned ndefs = insn->input_count ();
	      for (opi = 0; opi < ndefs && insn->get_op (opi); opi++)
		{
		  gcc_checking_assert (insn->get_op (opi));
		  hsa_op_reg **regaddr = insn_reg_addr (insn, opi);
		  if (regaddr)
		    bitmap_clear_bit (work, (*regaddr)->m_order);
		}
	      for (; opi < insn->operand_count (); opi++)
		{
		  gcc_checking_assert (insn->get_op (opi));
		  hsa_op_reg **regaddr = insn_reg_addr (insn, opi);
		  if (regaddr)
		    bitmap_set_bit (work, (*regaddr)->m_order);
		}
	    }

	  /* Note if that changed something.  */
	  if (bitmap_ior_into (hbb->m_livein, work))
	    changed = true;
	}
    }
  while (changed);

  /* Make one pass through all instructions in linear order,
     noting and merging possible live range start and end points.  */
  m_last_insn = NULL;
  for (i = n - 1; i >= 0; i--)
    {
      basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bbs[i]);
      hsa_bb *hbb = hsa_bb_for_bb (bb);
      hsa_insn_basic *insn;
      int after_end_number;
      unsigned bit;
      bitmap_iterator bi;

      if (m_last_insn)
	after_end_number = m_last_insn->m_number;
      else
	after_end_number = insn_order;
      /* Everything live-out in this BB has at least an end point
	 after us.  */
      EXECUTE_IF_SET_IN_BITMAP (hbb->m_liveout, 0, bit, bi)
	note_lr_end (ind2reg[bit], after_end_number);

      for (insn = hbb->m_last_insn; insn; insn = insn->m_prev)
	{
	  unsigned opi;
	  unsigned ndefs = insn->input_count ();
	  for (opi = 0; opi < insn->operand_count (); opi++)
	    {
	      gcc_checking_assert (insn->get_op (opi));
	      hsa_op_reg **regaddr = insn_reg_addr (insn, opi);
	      if (regaddr)
		{
		  hsa_op_reg *reg = *regaddr;
		  if (opi < ndefs)
		    note_lr_begin (reg, insn->m_number);
		  else
		    note_lr_end (reg, insn->m_number);
		}
	    }
	}

      /* Everything live-in in this BB has a start point before
	 our first insn.  */
      int before_start_number;
      if (hbb->m_first_insn)
	before_start_number = hbb->m_first_insn->m_number;
      else
	before_start_number = after_end_number;
      before_start_number--;
      EXECUTE_IF_SET_IN_BITMAP (hbb->m_livein, 0, bit, bi)
	note_lr_begin (ind2reg[bit], before_start_number);

      if (hbb->m_first_insn)
	m_last_insn = hbb->m_first_insn;
    }

  for (i = 0; i < hsa_cfun->m_reg_count; i++)
    if (ind2reg[i])
      {
	/* All regs that have still their start at after all code actually
	   are defined at the start of the routine (prologue).  */
	if (ind2reg[i]->m_lr_begin == insn_order)
	  ind2reg[i]->m_lr_begin = 0;
	/* All regs that have no use but a def will have lr_end == 0,
	   they are actually live from def until after the insn they are
	   defined in.  */
	if (ind2reg[i]->m_lr_end == 0)
	  ind2reg[i]->m_lr_end = ind2reg[i]->m_lr_begin + 1;
      }

  /* Sort all intervals by increasing start point.  */
  gcc_assert (ind2reg.length () == (size_t) hsa_cfun->m_reg_count);

  if (flag_checking)
    for (unsigned i = 0; i < ind2reg.length (); i++)
      gcc_assert (ind2reg[i]);

  ind2reg.qsort (cmp_begin);
  for (i = 0; i < 4; i++)
    active[i].reserve_exact (hsa_cfun->m_reg_count);

  /* Now comes the linear scan allocation.  */
  for (i = 0; i < hsa_cfun->m_reg_count; i++)
    {
      hsa_op_reg *reg = ind2reg[i];
      if (!reg)
	continue;
      expire_old_intervals (reg, active, classes);
      int cl = m_reg_class_for_type (reg->m_type);
      if (try_alloc_reg (classes, reg) >= 0)
	{
	  unsigned place = active[cl].lower_bound (reg, cmp_end);
	  active[cl].quick_insert (place, reg);
	}
      else
	spill_at_interval (reg, active);

      /* Some interesting dumping as we go.  */
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "  reg%d: [%5d, %5d)->",
		   reg->m_order, reg->m_lr_begin, reg->m_lr_end);
	  if (reg->m_reg_class)
	    fprintf (dump_file, "$%c%i", reg->m_reg_class, reg->m_hard_num);
	  else
	    fprintf (dump_file, "[%%__%s_%i]",
		     hsa_seg_name (reg->m_spill_sym->m_segment),
		     reg->m_spill_sym->m_name_number);
	  for (int cl = 0; cl < 4; cl++)
	    {
	      bool first = true;
	      hsa_op_reg *r;
	      fprintf (dump_file, " {");
	      for (int j = 0; active[cl].iterate (j, &r); j++)
		if (first)
		  {
		    fprintf (dump_file, "%d", r->m_order);
		    first = false;
		  }
		else
		  fprintf (dump_file, ", %d", r->m_order);
	      fprintf (dump_file, "}");
	    }
	  fprintf (dump_file, "\n");
	}
    }

  BITMAP_FREE (work);
  free (bbs);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "------- After liveness: -------\n");
      dump_hsa_cfun_regalloc (dump_file);
      fprintf (dump_file, "  ----- Intervals:\n");
      for (i = 0; i < hsa_cfun->m_reg_count; i++)
	{
	  hsa_op_reg *reg = ind2reg[i];
	  if (!reg)
	    continue;
	  fprintf (dump_file, "  reg%d: [%5d, %5d)->", reg->m_order,
		   reg->m_lr_begin, reg->m_lr_end);
	  if (reg->m_reg_class)
	    fprintf (dump_file, "$%c%i\n", reg->m_reg_class, reg->m_hard_num);
	  else
	    fprintf (dump_file, "[%%__%s_%i]\n",
		     hsa_seg_name (reg->m_spill_sym->m_segment),
		     reg->m_spill_sym->m_name_number);
	}
    }

  for (i = 0; i < 4; i++)
    active[i].release ();
  ind2reg.release ();
}

/* Entry point for register allocation.  */

static void
regalloc (void)
{
  basic_block bb;
  m_reg_class_desc classes[4];

  /* If there are no registers used in the function, exit right away.  */
  if (hsa_cfun->m_reg_count == 0)
    return;

  memset (classes, 0, sizeof (classes));
  classes[0].next_avail = 0;
  classes[0].max_num = 7;
  classes[0].cl_char = 'c';
  classes[1].cl_char = 's';
  classes[2].cl_char = 'd';
  classes[3].cl_char = 'q';

  for (int i = 1; i < 4; i++)
    {
      classes[i].next_avail = 0;
      classes[i].max_num = 20;
    }

  linear_scan_regalloc (classes);

  FOR_ALL_BB_FN (bb, cfun)
    rewrite_code_bb (bb, classes);
}

/* Out of SSA and register allocation on HSAIL IL.  */

void
hsa_regalloc (void)
{
  hsa_cfun->update_dominance ();
  naive_outof_ssa ();

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "------- After out-of-SSA: -------\n");
      dump_hsa_cfun (dump_file);
    }

  regalloc ();

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "------- After register allocation: -------\n");
      dump_hsa_cfun (dump_file);
    }
}