aboutsummaryrefslogtreecommitdiff
path: root/gcc/haifa-sched.cc
blob: 4d3977576eed3f981d3cefaf6ce816f12825963b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
/* Instruction scheduling pass.
   Copyright (C) 1992-2024 Free Software Foundation, Inc.
   Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
   and currently maintained by, Jim Wilson (wilson@cygnus.com)

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* Instruction scheduling pass.  This file, along with sched-deps.cc,
   contains the generic parts.  The actual entry point for
   the normal instruction scheduling pass is found in sched-rgn.cc.

   We compute insn priorities based on data dependencies.  Flow
   analysis only creates a fraction of the data-dependencies we must
   observe: namely, only those dependencies which the combiner can be
   expected to use.  For this pass, we must therefore create the
   remaining dependencies we need to observe: register dependencies,
   memory dependencies, dependencies to keep function calls in order,
   and the dependence between a conditional branch and the setting of
   condition codes are all dealt with here.

   The scheduler first traverses the data flow graph, starting with
   the last instruction, and proceeding to the first, assigning values
   to insn_priority as it goes.  This sorts the instructions
   topologically by data dependence.

   Once priorities have been established, we order the insns using
   list scheduling.  This works as follows: starting with a list of
   all the ready insns, and sorted according to priority number, we
   schedule the insn from the end of the list by placing its
   predecessors in the list according to their priority order.  We
   consider this insn scheduled by setting the pointer to the "end" of
   the list to point to the previous insn.  When an insn has no
   predecessors, we either queue it until sufficient time has elapsed
   or add it to the ready list.  As the instructions are scheduled or
   when stalls are introduced, the queue advances and dumps insns into
   the ready list.  When all insns down to the lowest priority have
   been scheduled, the critical path of the basic block has been made
   as short as possible.  The remaining insns are then scheduled in
   remaining slots.

   The following list shows the order in which we want to break ties
   among insns in the ready list:

   1.  choose insn with the longest path to end of bb, ties
   broken by
   2.  choose insn with least contribution to register pressure,
   ties broken by
   3.  prefer in-block upon interblock motion, ties broken by
   4.  prefer useful upon speculative motion, ties broken by
   5.  choose insn with largest control flow probability, ties
   broken by
   6.  choose insn with the least dependences upon the previously
   scheduled insn, or finally
   7   choose the insn which has the most insns dependent on it.
   8.  choose insn with lowest UID.

   Memory references complicate matters.  Only if we can be certain
   that memory references are not part of the data dependency graph
   (via true, anti, or output dependence), can we move operations past
   memory references.  To first approximation, reads can be done
   independently, while writes introduce dependencies.  Better
   approximations will yield fewer dependencies.

   Before reload, an extended analysis of interblock data dependences
   is required for interblock scheduling.  This is performed in
   compute_block_dependences ().

   Dependencies set up by memory references are treated in exactly the
   same way as other dependencies, by using insn backward dependences
   INSN_BACK_DEPS.  INSN_BACK_DEPS are translated into forward dependences
   INSN_FORW_DEPS for the purpose of forward list scheduling.

   Having optimized the critical path, we may have also unduly
   extended the lifetimes of some registers.  If an operation requires
   that constants be loaded into registers, it is certainly desirable
   to load those constants as early as necessary, but no earlier.
   I.e., it will not do to load up a bunch of registers at the
   beginning of a basic block only to use them at the end, if they
   could be loaded later, since this may result in excessive register
   utilization.

   Note that since branches are never in basic blocks, but only end
   basic blocks, this pass will not move branches.  But that is ok,
   since we can use GNU's delayed branch scheduling pass to take care
   of this case.

   Also note that no further optimizations based on algebraic
   identities are performed, so this pass would be a good one to
   perform instruction splitting, such as breaking up a multiply
   instruction into shifts and adds where that is profitable.

   Given the memory aliasing analysis that this pass should perform,
   it should be possible to remove redundant stores to memory, and to
   load values from registers instead of hitting memory.

   Before reload, speculative insns are moved only if a 'proof' exists
   that no exception will be caused by this, and if no live registers
   exist that inhibit the motion (live registers constraints are not
   represented by data dependence edges).

   This pass must update information that subsequent passes expect to
   be correct.  Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
   reg_n_calls_crossed, and reg_live_length.  Also, BB_HEAD, BB_END.

   The information in the line number notes is carefully retained by
   this pass.  Notes that refer to the starting and ending of
   exception regions are also carefully retained by this pass.  All
   other NOTE insns are grouped in their same relative order at the
   beginning of basic blocks and regions that have been scheduled.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "cfghooks.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "insn-config.h"
#include "regs.h"
#include "ira.h"
#include "recog.h"
#include "insn-attr.h"
#include "cfgrtl.h"
#include "cfgbuild.h"
#include "sched-int.h"
#include "common/common-target.h"
#include "dbgcnt.h"
#include "cfgloop.h"
#include "dumpfile.h"
#include "print-rtl.h"
#include "function-abi.h"

#ifdef INSN_SCHEDULING

/* True if we do register pressure relief through live-range
   shrinkage.  */
static bool live_range_shrinkage_p;

/* Switch on live range shrinkage.  */
void
initialize_live_range_shrinkage (void)
{
  live_range_shrinkage_p = true;
}

/* Switch off live range shrinkage.  */
void
finish_live_range_shrinkage (void)
{
  live_range_shrinkage_p = false;
}

/* issue_rate is the number of insns that can be scheduled in the same
   machine cycle.  It can be defined in the config/mach/mach.h file,
   otherwise we set it to 1.  */

int issue_rate;

/* This can be set to true by a backend if the scheduler should not
   enable a DCE pass.  */
bool sched_no_dce;

/* The current initiation interval used when modulo scheduling.  */
static int modulo_ii;

/* The maximum number of stages we are prepared to handle.  */
static int modulo_max_stages;

/* The number of insns that exist in each iteration of the loop.  We use this
   to detect when we've scheduled all insns from the first iteration.  */
static int modulo_n_insns;

/* The current count of insns in the first iteration of the loop that have
   already been scheduled.  */
static int modulo_insns_scheduled;

/* The maximum uid of insns from the first iteration of the loop.  */
static int modulo_iter0_max_uid;

/* The number of times we should attempt to backtrack when modulo scheduling.
   Decreased each time we have to backtrack.  */
static int modulo_backtracks_left;

/* The stage in which the last insn from the original loop was
   scheduled.  */
static int modulo_last_stage;

/* sched-verbose controls the amount of debugging output the
   scheduler prints.  It is controlled by -fsched-verbose=N:
   N=0: no debugging output.
   N=1: default value.
   N=2: bb's probabilities, detailed ready list info, unit/insn info.
   N=3: rtl at abort point, control-flow, regions info.
   N=5: dependences info.  */
int sched_verbose = 0;

/* Debugging file.  All printouts are sent to dump. */
FILE *sched_dump = 0;

/* This is a placeholder for the scheduler parameters common
   to all schedulers.  */
struct common_sched_info_def *common_sched_info;

#define INSN_TICK(INSN)	(HID (INSN)->tick)
#define INSN_EXACT_TICK(INSN) (HID (INSN)->exact_tick)
#define INSN_TICK_ESTIMATE(INSN) (HID (INSN)->tick_estimate)
#define INTER_TICK(INSN) (HID (INSN)->inter_tick)
#define FEEDS_BACKTRACK_INSN(INSN) (HID (INSN)->feeds_backtrack_insn)
#define SHADOW_P(INSN) (HID (INSN)->shadow_p)
#define MUST_RECOMPUTE_SPEC_P(INSN) (HID (INSN)->must_recompute_spec)
/* Cached cost of the instruction.  Use insn_sched_cost to get cost of the
   insn.  -1 here means that the field is not initialized.  */
#define INSN_COST(INSN)	(HID (INSN)->cost)

/* If INSN_TICK of an instruction is equal to INVALID_TICK,
   then it should be recalculated from scratch.  */
#define INVALID_TICK (-(max_insn_queue_index + 1))
/* The minimal value of the INSN_TICK of an instruction.  */
#define MIN_TICK (-max_insn_queue_index)

/* Original order of insns in the ready list.
   Used to keep order of normal insns while separating DEBUG_INSNs.  */
#define INSN_RFS_DEBUG_ORIG_ORDER(INSN) (HID (INSN)->rfs_debug_orig_order)

/* The deciding reason for INSN's place in the ready list.  */
#define INSN_LAST_RFS_WIN(INSN) (HID (INSN)->last_rfs_win)

/* List of important notes we must keep around.  This is a pointer to the
   last element in the list.  */
rtx_insn *note_list;

static struct spec_info_def spec_info_var;
/* Description of the speculative part of the scheduling.
   If NULL - no speculation.  */
spec_info_t spec_info = NULL;

/* True, if recovery block was added during scheduling of current block.
   Used to determine, if we need to fix INSN_TICKs.  */
static bool haifa_recovery_bb_recently_added_p;

/* True, if recovery block was added during this scheduling pass.
   Used to determine if we should have empty memory pools of dependencies
   after finishing current region.  */
bool haifa_recovery_bb_ever_added_p;

/* Counters of different types of speculative instructions.  */
static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;

/* Array used in {unlink, restore}_bb_notes.  */
static rtx_insn **bb_header = 0;

/* Basic block after which recovery blocks will be created.  */
static basic_block before_recovery;

/* Basic block just before the EXIT_BLOCK and after recovery, if we have
   created it.  */
basic_block after_recovery;

/* FALSE if we add bb to another region, so we don't need to initialize it.  */
bool adding_bb_to_current_region_p = true;

/* Queues, etc.  */

/* An instruction is ready to be scheduled when all insns preceding it
   have already been scheduled.  It is important to ensure that all
   insns which use its result will not be executed until its result
   has been computed.  An insn is maintained in one of four structures:

   (P) the "Pending" set of insns which cannot be scheduled until
   their dependencies have been satisfied.
   (Q) the "Queued" set of insns that can be scheduled when sufficient
   time has passed.
   (R) the "Ready" list of unscheduled, uncommitted insns.
   (S) the "Scheduled" list of insns.

   Initially, all insns are either "Pending" or "Ready" depending on
   whether their dependencies are satisfied.

   Insns move from the "Ready" list to the "Scheduled" list as they
   are committed to the schedule.  As this occurs, the insns in the
   "Pending" list have their dependencies satisfied and move to either
   the "Ready" list or the "Queued" set depending on whether
   sufficient time has passed to make them ready.  As time passes,
   insns move from the "Queued" set to the "Ready" list.

   The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
   unscheduled insns, i.e., those that are ready, queued, and pending.
   The "Queued" set (Q) is implemented by the variable `insn_queue'.
   The "Ready" list (R) is implemented by the variables `ready' and
   `n_ready'.
   The "Scheduled" list (S) is the new insn chain built by this pass.

   The transition (R->S) is implemented in the scheduling loop in
   `schedule_block' when the best insn to schedule is chosen.
   The transitions (P->R and P->Q) are implemented in `schedule_insn' as
   insns move from the ready list to the scheduled list.
   The transition (Q->R) is implemented in 'queue_to_insn' as time
   passes or stalls are introduced.  */

/* Implement a circular buffer to delay instructions until sufficient
   time has passed.  For the new pipeline description interface,
   MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
   than maximal time of instruction execution computed by genattr.cc on
   the base maximal time of functional unit reservations and getting a
   result.  This is the longest time an insn may be queued.  */

static rtx_insn_list **insn_queue;
static int q_ptr = 0;
static int q_size = 0;
#define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
#define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)

#define QUEUE_SCHEDULED (-3)
#define QUEUE_NOWHERE   (-2)
#define QUEUE_READY     (-1)
/* QUEUE_SCHEDULED - INSN is scheduled.
   QUEUE_NOWHERE   - INSN isn't scheduled yet and is neither in
   queue or ready list.
   QUEUE_READY     - INSN is in ready list.
   N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles.  */

#define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)

/* The following variable value refers for all current and future
   reservations of the processor units.  */
state_t curr_state;

/* The following variable value is size of memory representing all
   current and future reservations of the processor units.  */
size_t dfa_state_size;

/* The following array is used to find the best insn from ready when
   the automaton pipeline interface is used.  */
signed char *ready_try = NULL;

/* The ready list.  */
struct ready_list ready = {NULL, 0, 0, 0, 0};

/* The pointer to the ready list (to be removed).  */
static struct ready_list *readyp = &ready;

/* Scheduling clock.  */
static int clock_var;

/* Clock at which the previous instruction was issued.  */
static int last_clock_var;

/* Set to true if, when queuing a shadow insn, we discover that it would be
   scheduled too late.  */
static bool must_backtrack;

/* The following variable value is number of essential insns issued on
   the current cycle.  An insn is essential one if it changes the
   processors state.  */
int cycle_issued_insns;

/* This records the actual schedule.  It is built up during the main phase
   of schedule_block, and afterwards used to reorder the insns in the RTL.  */
static vec<rtx_insn *> scheduled_insns;

static int may_trap_exp (const_rtx, int);

/* Nonzero iff the address is comprised from at most 1 register.  */
#define CONST_BASED_ADDRESS_P(x)			\
  (REG_P (x)					\
   || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS	\
	|| (GET_CODE (x) == LO_SUM))			\
       && (CONSTANT_P (XEXP (x, 0))			\
	   || CONSTANT_P (XEXP (x, 1)))))

/* Returns a class that insn with GET_DEST(insn)=x may belong to,
   as found by analyzing insn's expression.  */


static int haifa_luid_for_non_insn (rtx x);

/* Haifa version of sched_info hooks common to all headers.  */
const struct common_sched_info_def haifa_common_sched_info =
  {
    NULL, /* fix_recovery_cfg */
    NULL, /* add_block */
    NULL, /* estimate_number_of_insns */
    haifa_luid_for_non_insn, /* luid_for_non_insn */
    SCHED_PASS_UNKNOWN /* sched_pass_id */
  };

/* Mapping from instruction UID to its Logical UID.  */
vec<int> sched_luids;

/* Next LUID to assign to an instruction.  */
int sched_max_luid = 1;

/* Haifa Instruction Data.  */
vec<haifa_insn_data_def> h_i_d;

void (* sched_init_only_bb) (basic_block, basic_block);

/* Split block function.  Different schedulers might use different functions
   to handle their internal data consistent.  */
basic_block (* sched_split_block) (basic_block, rtx);

/* Create empty basic block after the specified block.  */
basic_block (* sched_create_empty_bb) (basic_block);

/* Return the number of cycles until INSN is expected to be ready.
   Return zero if it already is.  */
static int
insn_delay (rtx_insn *insn)
{
  return MAX (INSN_TICK (insn) - clock_var, 0);
}

static int
may_trap_exp (const_rtx x, int is_store)
{
  enum rtx_code code;

  if (x == 0)
    return TRAP_FREE;
  code = GET_CODE (x);
  if (is_store)
    {
      if (code == MEM && may_trap_p (x))
	return TRAP_RISKY;
      else
	return TRAP_FREE;
    }
  if (code == MEM)
    {
      /* The insn uses memory:  a volatile load.  */
      if (MEM_VOLATILE_P (x))
	return IRISKY;
      /* An exception-free load.  */
      if (!may_trap_p (x))
	return IFREE;
      /* A load with 1 base register, to be further checked.  */
      if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
	return PFREE_CANDIDATE;
      /* No info on the load, to be further checked.  */
      return PRISKY_CANDIDATE;
    }
  else
    {
      const char *fmt;
      int i, insn_class = TRAP_FREE;

      /* Neither store nor load, check if it may cause a trap.  */
      if (may_trap_p (x))
	return TRAP_RISKY;
      /* Recursive step: walk the insn...  */
      fmt = GET_RTX_FORMAT (code);
      for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
	{
	  if (fmt[i] == 'e')
	    {
	      int tmp_class = may_trap_exp (XEXP (x, i), is_store);
	      insn_class = WORST_CLASS (insn_class, tmp_class);
	    }
	  else if (fmt[i] == 'E')
	    {
	      int j;
	      for (j = 0; j < XVECLEN (x, i); j++)
		{
		  int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
		  insn_class = WORST_CLASS (insn_class, tmp_class);
		  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
		    break;
		}
	    }
	  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
	    break;
	}
      return insn_class;
    }
}

/* Classifies rtx X of an insn for the purpose of verifying that X can be
   executed speculatively (and consequently the insn can be moved
   speculatively), by examining X, returning:
   TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
   TRAP_FREE: non-load insn.
   IFREE: load from a globally safe location.
   IRISKY: volatile load.
   PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
   being either PFREE or PRISKY.  */

static int
haifa_classify_rtx (const_rtx x)
{
  int tmp_class = TRAP_FREE;
  int insn_class = TRAP_FREE;
  enum rtx_code code;

  if (GET_CODE (x) == PARALLEL)
    {
      int i, len = XVECLEN (x, 0);

      for (i = len - 1; i >= 0; i--)
	{
	  tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
	  insn_class = WORST_CLASS (insn_class, tmp_class);
	  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
	    break;
	}
    }
  else
    {
      code = GET_CODE (x);
      switch (code)
	{
	case CLOBBER:
	  /* Test if it is a 'store'.  */
	  tmp_class = may_trap_exp (XEXP (x, 0), 1);
	  break;
	case SET:
	  /* Test if it is a store.  */
	  tmp_class = may_trap_exp (SET_DEST (x), 1);
	  if (tmp_class == TRAP_RISKY)
	    break;
	  /* Test if it is a load.  */
	  tmp_class =
	    WORST_CLASS (tmp_class,
			 may_trap_exp (SET_SRC (x), 0));
	  break;
	case COND_EXEC:
	  tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
	  if (tmp_class == TRAP_RISKY)
	    break;
	  tmp_class = WORST_CLASS (tmp_class,
				   may_trap_exp (COND_EXEC_TEST (x), 0));
	  break;
	case TRAP_IF:
	  tmp_class = TRAP_RISKY;
	  break;
	default:;
	}
      insn_class = tmp_class;
    }

  return insn_class;
}

int
haifa_classify_insn (const_rtx insn)
{
  return haifa_classify_rtx (PATTERN (insn));
}

/* After the scheduler initialization function has been called, this function
   can be called to enable modulo scheduling.  II is the initiation interval
   we should use, it affects the delays for delay_pairs that were recorded as
   separated by a given number of stages.

   MAX_STAGES provides us with a limit
   after which we give up scheduling; the caller must have unrolled at least
   as many copies of the loop body and recorded delay_pairs for them.

   INSNS is the number of real (non-debug) insns in one iteration of
   the loop.  MAX_UID can be used to test whether an insn belongs to
   the first iteration of the loop; all of them have a uid lower than
   MAX_UID.  */
void
set_modulo_params (int ii, int max_stages, int insns, int max_uid)
{
  modulo_ii = ii;
  modulo_max_stages = max_stages;
  modulo_n_insns = insns;
  modulo_iter0_max_uid = max_uid;
  modulo_backtracks_left = param_max_modulo_backtrack_attempts;
}

/* A structure to record a pair of insns where the first one is a real
   insn that has delay slots, and the second is its delayed shadow.
   I1 is scheduled normally and will emit an assembly instruction,
   while I2 describes the side effect that takes place at the
   transition between cycles CYCLES and (CYCLES + 1) after I1.  */
struct delay_pair
{
  struct delay_pair *next_same_i1;
  rtx_insn *i1, *i2;
  int cycles;
  /* When doing modulo scheduling, we a delay_pair can also be used to
     show that I1 and I2 are the same insn in a different stage.  If that
     is the case, STAGES will be nonzero.  */
  int stages;
};

/* Helpers for delay hashing.  */

struct delay_i1_hasher : nofree_ptr_hash <delay_pair>
{
  typedef void *compare_type;
  static inline hashval_t hash (const delay_pair *);
  static inline bool equal (const delay_pair *, const void *);
};

/* Returns a hash value for X, based on hashing just I1.  */

inline hashval_t
delay_i1_hasher::hash (const delay_pair *x)
{
  return htab_hash_pointer (x->i1);
}

/* Return true if I1 of pair X is the same as that of pair Y.  */

inline bool
delay_i1_hasher::equal (const delay_pair *x, const void *y)
{
  return x->i1 == y;
}

struct delay_i2_hasher : free_ptr_hash <delay_pair>
{
  typedef void *compare_type;
  static inline hashval_t hash (const delay_pair *);
  static inline bool equal (const delay_pair *, const void *);
};

/* Returns a hash value for X, based on hashing just I2.  */

inline hashval_t
delay_i2_hasher::hash (const delay_pair *x)
{
  return htab_hash_pointer (x->i2);
}

/* Return true if I2 of pair X is the same as that of pair Y.  */

inline bool
delay_i2_hasher::equal (const delay_pair *x, const void *y)
{
  return x->i2 == y;
}

/* Two hash tables to record delay_pairs, one indexed by I1 and the other
   indexed by I2.  */
static hash_table<delay_i1_hasher> *delay_htab;
static hash_table<delay_i2_hasher> *delay_htab_i2;

/* Called through htab_traverse.  Walk the hashtable using I2 as
   index, and delete all elements involving an UID higher than
   that pointed to by *DATA.  */
int
haifa_htab_i2_traverse (delay_pair **slot, int *data)
{
  int maxuid = *data;
  struct delay_pair *p = *slot;
  if (INSN_UID (p->i2) >= maxuid || INSN_UID (p->i1) >= maxuid)
    {
      delay_htab_i2->clear_slot (slot);
    }
  return 1;
}

/* Called through htab_traverse.  Walk the hashtable using I2 as
   index, and delete all elements involving an UID higher than
   that pointed to by *DATA.  */
int
haifa_htab_i1_traverse (delay_pair **pslot, int *data)
{
  int maxuid = *data;
  struct delay_pair *p, *first, **pprev;

  if (INSN_UID ((*pslot)->i1) >= maxuid)
    {
      delay_htab->clear_slot (pslot);
      return 1;
    }
  pprev = &first;
  for (p = *pslot; p; p = p->next_same_i1)
    {
      if (INSN_UID (p->i2) < maxuid)
	{
	  *pprev = p;
	  pprev = &p->next_same_i1;
	}
    }
  *pprev = NULL;
  if (first == NULL)
    delay_htab->clear_slot (pslot);
  else
    *pslot = first;
  return 1;
}

/* Discard all delay pairs which involve an insn with an UID higher
   than MAX_UID.  */
void
discard_delay_pairs_above (int max_uid)
{
  delay_htab->traverse <int *, haifa_htab_i1_traverse> (&max_uid);
  delay_htab_i2->traverse <int *, haifa_htab_i2_traverse> (&max_uid);
}

/* This function can be called by a port just before it starts the final
   scheduling pass.  It records the fact that an instruction with delay
   slots has been split into two insns, I1 and I2.  The first one will be
   scheduled normally and initiates the operation.  The second one is a
   shadow which must follow a specific number of cycles after I1; its only
   purpose is to show the side effect that occurs at that cycle in the RTL.
   If a JUMP_INSN or a CALL_INSN has been split, I1 should be a normal INSN,
   while I2 retains the original insn type.

   There are two ways in which the number of cycles can be specified,
   involving the CYCLES and STAGES arguments to this function.  If STAGES
   is zero, we just use the value of CYCLES.  Otherwise, STAGES is a factor
   which is multiplied by MODULO_II to give the number of cycles.  This is
   only useful if the caller also calls set_modulo_params to enable modulo
   scheduling.  */

void
record_delay_slot_pair (rtx_insn *i1, rtx_insn *i2, int cycles, int stages)
{
  struct delay_pair *p = XNEW (struct delay_pair);
  struct delay_pair **slot;

  p->i1 = i1;
  p->i2 = i2;
  p->cycles = cycles;
  p->stages = stages;

  if (!delay_htab)
    {
      delay_htab = new hash_table<delay_i1_hasher> (10);
      delay_htab_i2 = new hash_table<delay_i2_hasher> (10);
    }
  slot = delay_htab->find_slot_with_hash (i1, htab_hash_pointer (i1), INSERT);
  p->next_same_i1 = *slot;
  *slot = p;
  slot = delay_htab_i2->find_slot (p, INSERT);
  *slot = p;
}

/* Examine the delay pair hashtable to see if INSN is a shadow for another,
   and return the other insn if so.  Return NULL otherwise.  */
rtx_insn *
real_insn_for_shadow (rtx_insn *insn)
{
  struct delay_pair *pair;

  if (!delay_htab)
    return NULL;

  pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
  if (!pair || pair->stages > 0)
    return NULL;
  return pair->i1;
}

/* For a pair P of insns, return the fixed distance in cycles from the first
   insn after which the second must be scheduled.  */
static int
pair_delay (struct delay_pair *p)
{
  if (p->stages == 0)
    return p->cycles;
  else
    return p->stages * modulo_ii;
}

/* Given an insn INSN, add a dependence on its delayed shadow if it
   has one.  Also try to find situations where shadows depend on each other
   and add dependencies to the real insns to limit the amount of backtracking
   needed.  */
void
add_delay_dependencies (rtx_insn *insn)
{
  struct delay_pair *pair;
  sd_iterator_def sd_it;
  dep_t dep;

  if (!delay_htab)
    return;

  pair = delay_htab_i2->find_with_hash (insn, htab_hash_pointer (insn));
  if (!pair)
    return;
  add_dependence (insn, pair->i1, REG_DEP_ANTI);
  if (pair->stages)
    return;

  FOR_EACH_DEP (pair->i2, SD_LIST_BACK, sd_it, dep)
    {
      rtx_insn *pro = DEP_PRO (dep);
      struct delay_pair *other_pair
	= delay_htab_i2->find_with_hash (pro, htab_hash_pointer (pro));
      if (!other_pair || other_pair->stages)
	continue;
      if (pair_delay (other_pair) >= pair_delay (pair))
	{
	  if (sched_verbose >= 4)
	    {
	      fprintf (sched_dump, ";;\tadding dependence %d <- %d\n",
		       INSN_UID (other_pair->i1),
		       INSN_UID (pair->i1));
	      fprintf (sched_dump, ";;\tpair1 %d <- %d, cost %d\n",
		       INSN_UID (pair->i1),
		       INSN_UID (pair->i2),
		       pair_delay (pair));
	      fprintf (sched_dump, ";;\tpair2 %d <- %d, cost %d\n",
		       INSN_UID (other_pair->i1),
		       INSN_UID (other_pair->i2),
		       pair_delay (other_pair));
	    }
	  add_dependence (pair->i1, other_pair->i1, REG_DEP_ANTI);
	}
    }
}

/* Forward declarations.  */

static int priority (rtx_insn *, bool force_recompute = false);
static int autopref_rank_for_schedule (const rtx_insn *, const rtx_insn *);
static int rank_for_schedule (const void *, const void *);
static void swap_sort (rtx_insn **, int);
static void queue_insn (rtx_insn *, int, const char *);
static int schedule_insn (rtx_insn *);
static void adjust_priority (rtx_insn *);
static void advance_one_cycle (void);
static void extend_h_i_d (void);


/* Notes handling mechanism:
   =========================
   Generally, NOTES are saved before scheduling and restored after scheduling.
   The scheduler distinguishes between two types of notes:

   (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
   Before scheduling a region, a pointer to the note is added to the insn
   that follows or precedes it.  (This happens as part of the data dependence
   computation).  After scheduling an insn, the pointer contained in it is
   used for regenerating the corresponding note (in reemit_notes).

   (2) All other notes (e.g. INSN_DELETED):  Before scheduling a block,
   these notes are put in a list (in rm_other_notes() and
   unlink_other_notes ()).  After scheduling the block, these notes are
   inserted at the beginning of the block (in schedule_block()).  */

static void ready_add (struct ready_list *, rtx_insn *, bool);
static rtx_insn *ready_remove_first (struct ready_list *);
static rtx_insn *ready_remove_first_dispatch (struct ready_list *ready);

static void queue_to_ready (struct ready_list *);
static int early_queue_to_ready (state_t, struct ready_list *);

/* The following functions are used to implement multi-pass scheduling
   on the first cycle.  */
static rtx_insn *ready_remove (struct ready_list *, int);
static void ready_remove_insn (rtx_insn *);

static void fix_inter_tick (rtx_insn *, rtx_insn *);
static int fix_tick_ready (rtx_insn *);
static void change_queue_index (rtx_insn *, int);

/* The following functions are used to implement scheduling of data/control
   speculative instructions.  */

static void extend_h_i_d (void);
static void init_h_i_d (rtx_insn *);
static int haifa_speculate_insn (rtx_insn *, ds_t, rtx *);
static void generate_recovery_code (rtx_insn *);
static void process_insn_forw_deps_be_in_spec (rtx_insn *, rtx_insn *, ds_t);
static void begin_speculative_block (rtx_insn *);
static void add_to_speculative_block (rtx_insn *);
static void init_before_recovery (basic_block *);
static void create_check_block_twin (rtx_insn *, bool);
static void fix_recovery_deps (basic_block);
static bool haifa_change_pattern (rtx_insn *, rtx);
static void dump_new_block_header (int, basic_block, rtx_insn *, rtx_insn *);
static void restore_bb_notes (basic_block);
static void fix_jump_move (rtx_insn *);
static void move_block_after_check (rtx_insn *);
static void move_succs (vec<edge, va_gc> **, basic_block);
static void sched_remove_insn (rtx_insn *);
static void clear_priorities (rtx_insn *, rtx_vec_t *);
static void calc_priorities (const rtx_vec_t &);
static void add_jump_dependencies (rtx_insn *, rtx_insn *);

#endif /* INSN_SCHEDULING */

/* Point to state used for the current scheduling pass.  */
struct haifa_sched_info *current_sched_info;

#ifndef INSN_SCHEDULING
void
schedule_insns (void)
{
}
#else

/* Do register pressure sensitive insn scheduling if the flag is set
   up.  */
enum sched_pressure_algorithm sched_pressure;

/* Map regno -> its pressure class.  The map defined only when
   SCHED_PRESSURE != SCHED_PRESSURE_NONE.  */
enum reg_class *sched_regno_pressure_class;

/* The current register pressure.  Only elements corresponding pressure
   classes are defined.  */
static int curr_reg_pressure[N_REG_CLASSES];

/* Saved value of the previous array.  */
static int saved_reg_pressure[N_REG_CLASSES];

/* Register living at given scheduling point.  */
static bitmap curr_reg_live;

/* Saved value of the previous array.  */
static bitmap saved_reg_live;

/* Registers mentioned in the current region.  */
static bitmap region_ref_regs;

/* Temporary bitmap used for SCHED_PRESSURE_MODEL.  */
static bitmap tmp_bitmap;

/* Effective number of available registers of a given class (see comment
   in sched_pressure_start_bb).  */
static int sched_class_regs_num[N_REG_CLASSES];
/* The number of registers that the function would need to save before it
   uses them, and the number of fixed_regs.  Helpers for calculating of
   sched_class_regs_num.  */
static int call_saved_regs_num[N_REG_CLASSES];
static int fixed_regs_num[N_REG_CLASSES];

/* Initiate register pressure relative info for scheduling the current
   region.  Currently it is only clearing register mentioned in the
   current region.  */
void
sched_init_region_reg_pressure_info (void)
{
  bitmap_clear (region_ref_regs);
}

/* PRESSURE[CL] describes the pressure on register class CL.  Update it
   for the birth (if BIRTH_P) or death (if !BIRTH_P) of register REGNO.
   LIVE tracks the set of live registers; if it is null, assume that
   every birth or death is genuine.  */
static inline void
mark_regno_birth_or_death (bitmap live, int *pressure, int regno, bool birth_p)
{
  enum reg_class pressure_class;

  pressure_class = sched_regno_pressure_class[regno];
  if (regno >= FIRST_PSEUDO_REGISTER)
    {
      if (pressure_class != NO_REGS)
	{
	  if (birth_p)
	    {
	      if (!live || bitmap_set_bit (live, regno))
		pressure[pressure_class]
		  += (ira_reg_class_max_nregs
		      [pressure_class][PSEUDO_REGNO_MODE (regno)]);
	    }
	  else
	    {
	      if (!live || bitmap_clear_bit (live, regno))
		pressure[pressure_class]
		  -= (ira_reg_class_max_nregs
		      [pressure_class][PSEUDO_REGNO_MODE (regno)]);
	    }
	}
    }
  else if (pressure_class != NO_REGS
	   && ! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
    {
      if (birth_p)
	{
	  if (!live || bitmap_set_bit (live, regno))
	    pressure[pressure_class]++;
	}
      else
	{
	  if (!live || bitmap_clear_bit (live, regno))
	    pressure[pressure_class]--;
	}
    }
}

/* Initiate current register pressure related info from living
   registers given by LIVE.  */
static void
initiate_reg_pressure_info (bitmap live)
{
  int i;
  unsigned int j;
  bitmap_iterator bi;

  for (i = 0; i < ira_pressure_classes_num; i++)
    curr_reg_pressure[ira_pressure_classes[i]] = 0;
  bitmap_clear (curr_reg_live);
  EXECUTE_IF_SET_IN_BITMAP (live, 0, j, bi)
    if (sched_pressure == SCHED_PRESSURE_MODEL
	|| current_nr_blocks == 1
	|| bitmap_bit_p (region_ref_regs, j))
      mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure, j, true);
}

/* Mark registers in X as mentioned in the current region.  */
static void
setup_ref_regs (rtx x)
{
  int i, j;
  const RTX_CODE code = GET_CODE (x);
  const char *fmt;

  if (REG_P (x))
    {
      bitmap_set_range (region_ref_regs, REGNO (x), REG_NREGS (x));
      return;
    }
  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
      setup_ref_regs (XEXP (x, i));
    else if (fmt[i] == 'E')
      {
	for (j = 0; j < XVECLEN (x, i); j++)
	  setup_ref_regs (XVECEXP (x, i, j));
      }
}

/* Initiate current register pressure related info at the start of
   basic block BB.  */
static void
initiate_bb_reg_pressure_info (basic_block bb)
{
  unsigned int i ATTRIBUTE_UNUSED;
  rtx_insn *insn;

  if (current_nr_blocks > 1)
    FOR_BB_INSNS (bb, insn)
      if (NONDEBUG_INSN_P (insn))
	setup_ref_regs (PATTERN (insn));
  initiate_reg_pressure_info (df_get_live_in (bb));
  if (bb_has_eh_pred (bb))
    for (i = 0; ; ++i)
      {
	unsigned int regno = EH_RETURN_DATA_REGNO (i);

	if (regno == INVALID_REGNUM)
	  break;
	if (! bitmap_bit_p (df_get_live_in (bb), regno))
	  mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
				     regno, true);
      }
}

/* Save current register pressure related info.  */
static void
save_reg_pressure (void)
{
  int i;

  for (i = 0; i < ira_pressure_classes_num; i++)
    saved_reg_pressure[ira_pressure_classes[i]]
      = curr_reg_pressure[ira_pressure_classes[i]];
  bitmap_copy (saved_reg_live, curr_reg_live);
}

/* Restore saved register pressure related info.  */
static void
restore_reg_pressure (void)
{
  int i;

  for (i = 0; i < ira_pressure_classes_num; i++)
    curr_reg_pressure[ira_pressure_classes[i]]
      = saved_reg_pressure[ira_pressure_classes[i]];
  bitmap_copy (curr_reg_live, saved_reg_live);
}

/* Return TRUE if the register is dying after its USE.  */
static bool
dying_use_p (struct reg_use_data *use)
{
  struct reg_use_data *next;

  for (next = use->next_regno_use; next != use; next = next->next_regno_use)
    if (NONDEBUG_INSN_P (next->insn)
	&& QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
      return false;
  return true;
}

/* Print info about the current register pressure and its excess for
   each pressure class.  */
static void
print_curr_reg_pressure (void)
{
  int i;
  enum reg_class cl;

  fprintf (sched_dump, ";;\t");
  for (i = 0; i < ira_pressure_classes_num; i++)
    {
      cl = ira_pressure_classes[i];
      gcc_assert (curr_reg_pressure[cl] >= 0);
      fprintf (sched_dump, "  %s:%d(%d)", reg_class_names[cl],
	       curr_reg_pressure[cl],
	       curr_reg_pressure[cl] - sched_class_regs_num[cl]);
    }
  fprintf (sched_dump, "\n");
}

/* Determine if INSN has a condition that is clobbered if a register
   in SET_REGS is modified.  */
static bool
cond_clobbered_p (rtx_insn *insn, HARD_REG_SET set_regs)
{
  rtx pat = PATTERN (insn);
  gcc_assert (GET_CODE (pat) == COND_EXEC);
  if (TEST_HARD_REG_BIT (set_regs, REGNO (XEXP (COND_EXEC_TEST (pat), 0))))
    {
      sd_iterator_def sd_it;
      dep_t dep;
      haifa_change_pattern (insn, ORIG_PAT (insn));
      FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
	DEP_STATUS (dep) &= ~DEP_CANCELLED;
      TODO_SPEC (insn) = HARD_DEP;
      if (sched_verbose >= 2)
	fprintf (sched_dump,
		 ";;\t\tdequeue insn %s because of clobbered condition\n",
		 (*current_sched_info->print_insn) (insn, 0));
      return true;
    }

  return false;
}

/* This function should be called after modifying the pattern of INSN,
   to update scheduler data structures as needed.  */
static void
update_insn_after_change (rtx_insn *insn)
{
  sd_iterator_def sd_it;
  dep_t dep;

  dfa_clear_single_insn_cache (insn);

  sd_it = sd_iterator_start (insn,
			     SD_LIST_FORW | SD_LIST_BACK | SD_LIST_RES_BACK);
  while (sd_iterator_cond (&sd_it, &dep))
    {
      DEP_COST (dep) = UNKNOWN_DEP_COST;
      sd_iterator_next (&sd_it);
    }

  /* Invalidate INSN_COST, so it'll be recalculated.  */
  INSN_COST (insn) = -1;
  /* Invalidate INSN_TICK, so it'll be recalculated.  */
  INSN_TICK (insn) = INVALID_TICK;

  /* Invalidate autoprefetch data entry.  */
  INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
    = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
  INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
    = AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
}


/* Two VECs, one to hold dependencies for which pattern replacements
   need to be applied or restored at the start of the next cycle, and
   another to hold an integer that is either one, to apply the
   corresponding replacement, or zero to restore it.  */
static vec<dep_t> next_cycle_replace_deps;
static vec<int> next_cycle_apply;

static void apply_replacement (dep_t, bool);
static void restore_pattern (dep_t, bool);

/* Look at the remaining dependencies for insn NEXT, and compute and return
   the TODO_SPEC value we should use for it.  This is called after one of
   NEXT's dependencies has been resolved.
   We also perform pattern replacements for predication, and for broken
   replacement dependencies.  The latter is only done if FOR_BACKTRACK is
   false.  */

static ds_t
recompute_todo_spec (rtx_insn *next, bool for_backtrack)
{
  ds_t new_ds;
  sd_iterator_def sd_it;
  dep_t dep, modify_dep = NULL;
  int n_spec = 0;
  int n_control = 0;
  int n_replace = 0;
  bool first_p = true;

  if (sd_lists_empty_p (next, SD_LIST_BACK))
    /* NEXT has all its dependencies resolved.  */
    return 0;

  if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
    return HARD_DEP;

  /* If NEXT is intended to sit adjacent to this instruction, we don't
     want to try to break any dependencies.  Treat it as a HARD_DEP.  */
  if (SCHED_GROUP_P (next))
    return HARD_DEP;

  /* Now we've got NEXT with speculative deps only.
     1. Look at the deps to see what we have to do.
     2. Check if we can do 'todo'.  */
  new_ds = 0;

  FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
    {
      rtx_insn *pro = DEP_PRO (dep);
      ds_t ds = DEP_STATUS (dep) & SPECULATIVE;

      if (DEBUG_INSN_P (pro) && !DEBUG_INSN_P (next))
	continue;

      if (ds)
	{
	  n_spec++;
	  if (first_p)
	    {
	      first_p = false;

	      new_ds = ds;
	    }
	  else
	    new_ds = ds_merge (new_ds, ds);
	}
      else if (DEP_TYPE (dep) == REG_DEP_CONTROL)
	{
	  if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
	    {
	      n_control++;
	      modify_dep = dep;
	    }
	  DEP_STATUS (dep) &= ~DEP_CANCELLED;
	}
      else if (DEP_REPLACE (dep) != NULL)
	{
	  if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED)
	    {
	      n_replace++;
	      modify_dep = dep;
	    }
	  DEP_STATUS (dep) &= ~DEP_CANCELLED;
	}
    }

  if (n_replace > 0 && n_control == 0 && n_spec == 0)
    {
      if (!dbg_cnt (sched_breakdep))
	return HARD_DEP;
      FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
	{
	  struct dep_replacement *desc = DEP_REPLACE (dep);
	  if (desc != NULL)
	    {
	      if (desc->insn == next && !for_backtrack)
		{
		  gcc_assert (n_replace == 1);
		  apply_replacement (dep, true);
		}
	      DEP_STATUS (dep) |= DEP_CANCELLED;
	    }
	}
      return 0;
    }

  else if (n_control == 1 && n_replace == 0 && n_spec == 0)
    {
      rtx_insn *pro, *other;
      rtx new_pat;
      rtx cond = NULL_RTX;
      bool success;
      rtx_insn *prev = NULL;
      int i;
      unsigned regno;

      if ((current_sched_info->flags & DO_PREDICATION) == 0
	  || (ORIG_PAT (next) != NULL_RTX
	      && PREDICATED_PAT (next) == NULL_RTX))
	return HARD_DEP;

      pro = DEP_PRO (modify_dep);
      other = real_insn_for_shadow (pro);
      if (other != NULL_RTX)
	pro = other;

      cond = sched_get_reverse_condition_uncached (pro);
      regno = REGNO (XEXP (cond, 0));

      /* Find the last scheduled insn that modifies the condition register.
	 We can stop looking once we find the insn we depend on through the
	 REG_DEP_CONTROL; if the condition register isn't modified after it,
	 we know that it still has the right value.  */
      if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
	FOR_EACH_VEC_ELT_REVERSE (scheduled_insns, i, prev)
	  {
	    HARD_REG_SET t;

	    find_all_hard_reg_sets (prev, &t, true);
	    if (TEST_HARD_REG_BIT (t, regno))
	      return HARD_DEP;
	    if (prev == pro)
	      break;
	  }
      if (ORIG_PAT (next) == NULL_RTX)
	{
	  ORIG_PAT (next) = PATTERN (next);

	  new_pat = gen_rtx_COND_EXEC (VOIDmode, cond, PATTERN (next));
	  success = haifa_change_pattern (next, new_pat);
	  if (!success)
	    return HARD_DEP;
	  PREDICATED_PAT (next) = new_pat;
	}
      else if (PATTERN (next) != PREDICATED_PAT (next))
	{
	  bool success = haifa_change_pattern (next,
					       PREDICATED_PAT (next));
	  gcc_assert (success);
	}
      DEP_STATUS (modify_dep) |= DEP_CANCELLED;
      return DEP_CONTROL;
    }

  if (PREDICATED_PAT (next) != NULL_RTX)
    {
      int tick = INSN_TICK (next);
      bool success = haifa_change_pattern (next,
					   ORIG_PAT (next));
      INSN_TICK (next) = tick;
      gcc_assert (success);
    }

  /* We can't handle the case where there are both speculative and control
     dependencies, so we return HARD_DEP in such a case.  Also fail if
     we have speculative dependencies with not enough points, or more than
     one control dependency.  */
  if ((n_spec > 0 && (n_control > 0 || n_replace > 0))
      || (n_spec > 0
	  /* Too few points?  */
	  && ds_weak (new_ds) < spec_info->data_weakness_cutoff)
      || n_control > 0
      || n_replace > 0)
    return HARD_DEP;

  return new_ds;
}

/* Pointer to the last instruction scheduled.  */
static rtx_insn *last_scheduled_insn;

/* Pointer to the last nondebug instruction scheduled within the
   block, or the prev_head of the scheduling block.  Used by
   rank_for_schedule, so that insns independent of the last scheduled
   insn will be preferred over dependent instructions.  */
static rtx_insn *last_nondebug_scheduled_insn;

/* Pointer that iterates through the list of unscheduled insns if we
   have a dbg_cnt enabled.  It always points at an insn prior to the
   first unscheduled one.  */
static rtx_insn *nonscheduled_insns_begin;

/* Compute cost of executing INSN.
   This is the number of cycles between instruction issue and
   instruction results.  */
int
insn_sched_cost (rtx_insn *insn)
{
  int cost;

  if (sched_fusion)
    return 0;

  if (sel_sched_p ())
    {
      if (recog_memoized (insn) < 0)
	return 0;

      cost = insn_default_latency (insn);
      if (cost < 0)
	cost = 0;

      return cost;
    }

  cost = INSN_COST (insn);

  if (cost < 0)
    {
      /* A USE insn, or something else we don't need to
	 understand.  We can't pass these directly to
	 result_ready_cost or insn_default_latency because it will
	 trigger a fatal error for unrecognizable insns.  */
      if (recog_memoized (insn) < 0)
	{
	  INSN_COST (insn) = 0;
	  return 0;
	}
      else
	{
	  cost = insn_default_latency (insn);
	  if (cost < 0)
	    cost = 0;

	  INSN_COST (insn) = cost;
	}
    }

  return cost;
}

/* Compute cost of dependence LINK.
   This is the number of cycles between instruction issue and
   instruction results.
   ??? We also use this function to call recog_memoized on all insns.  */
int
dep_cost_1 (dep_t link, dw_t dw)
{
  rtx_insn *insn = DEP_PRO (link);
  rtx_insn *used = DEP_CON (link);
  int cost;

  if (DEP_COST (link) != UNKNOWN_DEP_COST)
    return DEP_COST (link);

  if (delay_htab)
    {
      struct delay_pair *delay_entry;
      delay_entry
	= delay_htab_i2->find_with_hash (used, htab_hash_pointer (used));
      if (delay_entry)
	{
	  if (delay_entry->i1 == insn)
	    {
	      DEP_COST (link) = pair_delay (delay_entry);
	      return DEP_COST (link);
	    }
	}
    }

  /* A USE insn should never require the value used to be computed.
     This allows the computation of a function's result and parameter
     values to overlap the return and call.  We don't care about the
     dependence cost when only decreasing register pressure.  */
  if (recog_memoized (used) < 0)
    {
      cost = 0;
      recog_memoized (insn);
    }
  else
    {
      enum reg_note dep_type = DEP_TYPE (link);

      cost = insn_sched_cost (insn);

      if (INSN_CODE (insn) >= 0)
	{
	  if (dep_type == REG_DEP_ANTI)
	    cost = 0;
	  else if (dep_type == REG_DEP_OUTPUT)
	    {
	      cost = (insn_default_latency (insn)
		      - insn_default_latency (used));
	      if (cost <= 0)
		cost = 1;
	    }
	  else if (bypass_p (insn))
	    cost = insn_latency (insn, used);
	}


      if (targetm.sched.adjust_cost)
	cost = targetm.sched.adjust_cost (used, (int) dep_type, insn, cost,
					  dw);

      if (cost < 0)
	cost = 0;
    }

  DEP_COST (link) = cost;
  return cost;
}

/* Compute cost of dependence LINK.
   This is the number of cycles between instruction issue and
   instruction results.  */
int
dep_cost (dep_t link)
{
  return dep_cost_1 (link, 0);
}

/* Use this sel-sched.cc friendly function in reorder2 instead of increasing
   INSN_PRIORITY explicitly.  */
void
increase_insn_priority (rtx_insn *insn, int amount)
{
  if (!sel_sched_p ())
    {
      /* We're dealing with haifa-sched.cc INSN_PRIORITY.  */
      if (INSN_PRIORITY_KNOWN (insn))
	  INSN_PRIORITY (insn) += amount;
    }
  else
    {
      /* In sel-sched.cc INSN_PRIORITY is not kept up to date.
	 Use EXPR_PRIORITY instead. */
      sel_add_to_insn_priority (insn, amount);
    }
}

/* Return 'true' if DEP should be included in priority calculations.  */
static bool
contributes_to_priority_p (dep_t dep)
{
  if (DEBUG_INSN_P (DEP_CON (dep))
      || DEBUG_INSN_P (DEP_PRO (dep)))
    return false;

  /* Critical path is meaningful in block boundaries only.  */
  if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
						    DEP_PRO (dep)))
    return false;

  if (DEP_REPLACE (dep) != NULL)
    return false;

  /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
     then speculative instructions will less likely be
     scheduled.  That is because the priority of
     their producers will increase, and, thus, the
     producers will more likely be scheduled, thus,
     resolving the dependence.  */
  if (sched_deps_info->generate_spec_deps
      && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
      && (DEP_STATUS (dep) & SPECULATIVE))
    return false;

  return true;
}

/* Compute the number of nondebug deps in list LIST for INSN.  */
int
dep_list_size (rtx_insn *insn, sd_list_types_def list)
{
  sd_iterator_def sd_it;
  dep_t dep;
  int dbgcount = 0, nodbgcount = 0;

  if (!MAY_HAVE_DEBUG_INSNS)
    return sd_lists_size (insn, list);

  /* TODO: We should split normal and debug insns into separate SD_LIST_*
     sub-lists, and then we'll be able to use something like
     sd_lists_size(insn, list & SD_LIST_NON_DEBUG)
     instead of walking dependencies below.  */

  FOR_EACH_DEP (insn, list, sd_it, dep)
    {
      if (DEBUG_INSN_P (DEP_CON (dep)))
	dbgcount++;
      else if (!DEBUG_INSN_P (DEP_PRO (dep)))
	nodbgcount++;
    }

  gcc_assert (dbgcount + nodbgcount == sd_lists_size (insn, list));

  return nodbgcount;
}

bool sched_fusion;

/* Compute the priority number for INSN.  */
static int
priority (rtx_insn *insn, bool force_recompute)
{
  if (! INSN_P (insn))
    return 0;

  /* We should not be interested in priority of an already scheduled insn.  */
  gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);

  if (force_recompute || !INSN_PRIORITY_KNOWN (insn))
    {
      int this_priority = -1;

      if (sched_fusion)
	{
	  int this_fusion_priority;

	  targetm.sched.fusion_priority (insn, FUSION_MAX_PRIORITY,
					 &this_fusion_priority, &this_priority);
	  INSN_FUSION_PRIORITY (insn) = this_fusion_priority;
	}
      else if (dep_list_size (insn, SD_LIST_FORW) == 0)
	/* ??? We should set INSN_PRIORITY to insn_sched_cost when and insn
	   has some forward deps but all of them are ignored by
	   contributes_to_priority hook.  At the moment we set priority of
	   such insn to 0.  */
	this_priority = insn_sched_cost (insn);
      else
	{
	  rtx_insn *prev_first, *twin;
	  basic_block rec;

	  /* For recovery check instructions we calculate priority slightly
	     different than that of normal instructions.  Instead of walking
	     through INSN_FORW_DEPS (check) list, we walk through
	     INSN_FORW_DEPS list of each instruction in the corresponding
	     recovery block.  */

          /* Selective scheduling does not define RECOVERY_BLOCK macro.  */
	  rec = sel_sched_p () ? NULL : RECOVERY_BLOCK (insn);
	  if (!rec || rec == EXIT_BLOCK_PTR_FOR_FN (cfun))
	    {
	      prev_first = PREV_INSN (insn);
	      twin = insn;
	    }
	  else
	    {
	      prev_first = NEXT_INSN (BB_HEAD (rec));
	      twin = PREV_INSN (BB_END (rec));
	    }

	  do
	    {
	      sd_iterator_def sd_it;
	      dep_t dep;

	      FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
		{
		  rtx_insn *next;
		  int next_priority;

		  next = DEP_CON (dep);

		  if (BLOCK_FOR_INSN (next) != rec)
		    {
		      int cost;

		      if (!contributes_to_priority_p (dep))
			continue;

		      if (twin == insn)
			cost = dep_cost (dep);
		      else
			{
			  struct _dep _dep1, *dep1 = &_dep1;

			  init_dep (dep1, insn, next, REG_DEP_ANTI);

			  cost = dep_cost (dep1);
			}

		      next_priority = cost + priority (next);

		      if (next_priority > this_priority)
			this_priority = next_priority;
		    }
		}

	      twin = PREV_INSN (twin);
	    }
	  while (twin != prev_first);
	}

      if (this_priority < 0)
	{
	  gcc_assert (this_priority == -1);

	  this_priority = insn_sched_cost (insn);
	}

      INSN_PRIORITY (insn) = this_priority;
      INSN_PRIORITY_STATUS (insn) = 1;
    }

  return INSN_PRIORITY (insn);
}

/* Macros and functions for keeping the priority queue sorted, and
   dealing with queuing and dequeuing of instructions.  */

/* For each pressure class CL, set DEATH[CL] to the number of registers
   in that class that die in INSN.  */

static void
calculate_reg_deaths (rtx_insn *insn, int *death)
{
  int i;
  struct reg_use_data *use;

  for (i = 0; i < ira_pressure_classes_num; i++)
    death[ira_pressure_classes[i]] = 0;
  for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
    if (dying_use_p (use))
      mark_regno_birth_or_death (0, death, use->regno, true);
}

/* Setup info about the current register pressure impact of scheduling
   INSN at the current scheduling point.  */
static void
setup_insn_reg_pressure_info (rtx_insn *insn)
{
  int i, change, before, after, hard_regno;
  int excess_cost_change;
  machine_mode mode;
  enum reg_class cl;
  struct reg_pressure_data *pressure_info;
  int *max_reg_pressure;
  static int death[N_REG_CLASSES];

  gcc_checking_assert (!DEBUG_INSN_P (insn));

  excess_cost_change = 0;
  calculate_reg_deaths (insn, death);
  pressure_info = INSN_REG_PRESSURE (insn);
  max_reg_pressure = INSN_MAX_REG_PRESSURE (insn);
  gcc_assert (pressure_info != NULL && max_reg_pressure != NULL);
  for (i = 0; i < ira_pressure_classes_num; i++)
    {
      cl = ira_pressure_classes[i];
      gcc_assert (curr_reg_pressure[cl] >= 0);
      change = (int) pressure_info[i].set_increase - death[cl];
      before = MAX (0, max_reg_pressure[i] - sched_class_regs_num[cl]);
      after = MAX (0, max_reg_pressure[i] + change
		   - sched_class_regs_num[cl]);
      hard_regno = ira_class_hard_regs[cl][0];
      gcc_assert (hard_regno >= 0);
      mode = reg_raw_mode[hard_regno];
      excess_cost_change += ((after - before)
			     * (ira_memory_move_cost[mode][cl][0]
				+ ira_memory_move_cost[mode][cl][1]));
    }
  INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn) = excess_cost_change;
}

/* This is the first page of code related to SCHED_PRESSURE_MODEL.
   It tries to make the scheduler take register pressure into account
   without introducing too many unnecessary stalls.  It hooks into the
   main scheduling algorithm at several points:

    - Before scheduling starts, model_start_schedule constructs a
      "model schedule" for the current block.  This model schedule is
      chosen solely to keep register pressure down.  It does not take the
      target's pipeline or the original instruction order into account,
      except as a tie-breaker.  It also doesn't work to a particular
      pressure limit.

      This model schedule gives us an idea of what pressure can be
      achieved for the block and gives us an example of a schedule that
      keeps to that pressure.  It also makes the final schedule less
      dependent on the original instruction order.  This is important
      because the original order can either be "wide" (many values live
      at once, such as in user-scheduled code) or "narrow" (few values
      live at once, such as after loop unrolling, where several
      iterations are executed sequentially).

      We do not apply this model schedule to the rtx stream.  We simply
      record it in model_schedule.  We also compute the maximum pressure,
      MP, that was seen during this schedule.

    - Instructions are added to the ready queue even if they require
      a stall.  The length of the stall is instead computed as:

	 MAX (INSN_TICK (INSN) - clock_var, 0)

      (= insn_delay).  This allows rank_for_schedule to choose between
      introducing a deliberate stall or increasing pressure.

    - Before sorting the ready queue, model_set_excess_costs assigns
      a pressure-based cost to each ready instruction in the queue.
      This is the instruction's INSN_REG_PRESSURE_EXCESS_COST_CHANGE
      (ECC for short) and is effectively measured in cycles.

    - rank_for_schedule ranks instructions based on:

	ECC (insn) + insn_delay (insn)

      then as:

	insn_delay (insn)

      So, for example, an instruction X1 with an ECC of 1 that can issue
      now will win over an instruction X0 with an ECC of zero that would
      introduce a stall of one cycle.  However, an instruction X2 with an
      ECC of 2 that can issue now will lose to both X0 and X1.

    - When an instruction is scheduled, model_recompute updates the model
      schedule with the new pressures (some of which might now exceed the
      original maximum pressure MP).  model_update_limit_points then searches
      for the new point of maximum pressure, if not already known.  */

/* Used to separate high-verbosity debug information for SCHED_PRESSURE_MODEL
   from surrounding debug information.  */
#define MODEL_BAR \
  ";;\t\t+------------------------------------------------------\n"

/* Information about the pressure on a particular register class at a
   particular point of the model schedule.  */
struct model_pressure_data {
  /* The pressure at this point of the model schedule, or -1 if the
     point is associated with an instruction that has already been
     scheduled.  */
  int ref_pressure;

  /* The maximum pressure during or after this point of the model schedule.  */
  int max_pressure;
};

/* Per-instruction information that is used while building the model
   schedule.  Here, "schedule" refers to the model schedule rather
   than the main schedule.  */
struct model_insn_info {
  /* The instruction itself.  */
  rtx_insn *insn;

  /* If this instruction is in model_worklist, these fields link to the
     previous (higher-priority) and next (lower-priority) instructions
     in the list.  */
  struct model_insn_info *prev;
  struct model_insn_info *next;

  /* While constructing the schedule, QUEUE_INDEX describes whether an
     instruction has already been added to the schedule (QUEUE_SCHEDULED),
     is in model_worklist (QUEUE_READY), or neither (QUEUE_NOWHERE).
     old_queue records the value that QUEUE_INDEX had before scheduling
     started, so that we can restore it once the schedule is complete.  */
  int old_queue;

  /* The relative importance of an unscheduled instruction.  Higher
     values indicate greater importance.  */
  unsigned int model_priority;

  /* The length of the longest path of satisfied true dependencies
     that leads to this instruction.  */
  unsigned int depth;

  /* The length of the longest path of dependencies of any kind
     that leads from this instruction.  */
  unsigned int alap;

  /* The number of predecessor nodes that must still be scheduled.  */
  int unscheduled_preds;
};

/* Information about the pressure limit for a particular register class.
   This structure is used when applying a model schedule to the main
   schedule.  */
struct model_pressure_limit {
  /* The maximum register pressure seen in the original model schedule.  */
  int orig_pressure;

  /* The maximum register pressure seen in the current model schedule
     (which excludes instructions that have already been scheduled).  */
  int pressure;

  /* The point of the current model schedule at which PRESSURE is first
     reached.  It is set to -1 if the value needs to be recomputed.  */
  int point;
};

/* Describes a particular way of measuring register pressure.  */
struct model_pressure_group {
  /* Index PCI describes the maximum pressure on ira_pressure_classes[PCI].  */
  struct model_pressure_limit limits[N_REG_CLASSES];

  /* Index (POINT * ira_num_pressure_classes + PCI) describes the pressure
     on register class ira_pressure_classes[PCI] at point POINT of the
     current model schedule.  A POINT of model_num_insns describes the
     pressure at the end of the schedule.  */
  struct model_pressure_data *model;
};

/* Index POINT gives the instruction at point POINT of the model schedule.
   This array doesn't change during main scheduling.  */
static vec<rtx_insn *> model_schedule;

/* The list of instructions in the model worklist, sorted in order of
   decreasing priority.  */
static struct model_insn_info *model_worklist;

/* Index I describes the instruction with INSN_LUID I.  */
static struct model_insn_info *model_insns;

/* The number of instructions in the model schedule.  */
static int model_num_insns;

/* The index of the first instruction in model_schedule that hasn't yet been
   added to the main schedule, or model_num_insns if all of them have.  */
static int model_curr_point;

/* Describes the pressure before each instruction in the model schedule.  */
static struct model_pressure_group model_before_pressure;

/* The first unused model_priority value (as used in model_insn_info).  */
static unsigned int model_next_priority;


/* The model_pressure_data for ira_pressure_classes[PCI] in GROUP
   at point POINT of the model schedule.  */
#define MODEL_PRESSURE_DATA(GROUP, POINT, PCI) \
  (&(GROUP)->model[(POINT) * ira_pressure_classes_num + (PCI)])

/* The maximum pressure on ira_pressure_classes[PCI] in GROUP at or
   after point POINT of the model schedule.  */
#define MODEL_MAX_PRESSURE(GROUP, POINT, PCI) \
  (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->max_pressure)

/* The pressure on ira_pressure_classes[PCI] in GROUP at point POINT
   of the model schedule.  */
#define MODEL_REF_PRESSURE(GROUP, POINT, PCI) \
  (MODEL_PRESSURE_DATA (GROUP, POINT, PCI)->ref_pressure)

/* Information about INSN that is used when creating the model schedule.  */
#define MODEL_INSN_INFO(INSN) \
  (&model_insns[INSN_LUID (INSN)])

/* The instruction at point POINT of the model schedule.  */
#define MODEL_INSN(POINT) \
  (model_schedule[POINT])


/* Return INSN's index in the model schedule, or model_num_insns if it
   doesn't belong to that schedule.  */

static int
model_index (rtx_insn *insn)
{
  if (INSN_MODEL_INDEX (insn) == 0)
    return model_num_insns;
  return INSN_MODEL_INDEX (insn) - 1;
}

/* Make sure that GROUP->limits is up-to-date for the current point
   of the model schedule.  */

static void
model_update_limit_points_in_group (struct model_pressure_group *group)
{
  int pci, max_pressure, point;

  for (pci = 0; pci < ira_pressure_classes_num; pci++)
    {
      /* We may have passed the final point at which the pressure in
	 group->limits[pci].pressure was reached.  Update the limit if so.  */
      max_pressure = MODEL_MAX_PRESSURE (group, model_curr_point, pci);
      group->limits[pci].pressure = max_pressure;

      /* Find the point at which MAX_PRESSURE is first reached.  We need
	 to search in three cases:

	 - We've already moved past the previous pressure point.
	   In this case we search forward from model_curr_point.

	 - We scheduled the previous point of maximum pressure ahead of
	   its position in the model schedule, but doing so didn't bring
	   the pressure point earlier.  In this case we search forward
	   from that previous pressure point.

	 - Scheduling an instruction early caused the maximum pressure
	   to decrease.  In this case we will have set the pressure
	   point to -1, and we search forward from model_curr_point.  */
      point = MAX (group->limits[pci].point, model_curr_point);
      while (point < model_num_insns
	     && MODEL_REF_PRESSURE (group, point, pci) < max_pressure)
	point++;
      group->limits[pci].point = point;

      gcc_assert (MODEL_REF_PRESSURE (group, point, pci) == max_pressure);
      gcc_assert (MODEL_MAX_PRESSURE (group, point, pci) == max_pressure);
    }
}

/* Make sure that all register-pressure limits are up-to-date for the
   current position in the model schedule.  */

static void
model_update_limit_points (void)
{
  model_update_limit_points_in_group (&model_before_pressure);
}

/* Return the model_index of the last unscheduled use in chain USE
   outside of USE's instruction.  Return -1 if there are no other uses,
   or model_num_insns if the register is live at the end of the block.  */

static int
model_last_use_except (struct reg_use_data *use)
{
  struct reg_use_data *next;
  int last, index;

  last = -1;
  for (next = use->next_regno_use; next != use; next = next->next_regno_use)
    if (NONDEBUG_INSN_P (next->insn)
	&& QUEUE_INDEX (next->insn) != QUEUE_SCHEDULED)
      {
	index = model_index (next->insn);
	if (index == model_num_insns)
	  return model_num_insns;
	if (last < index)
	  last = index;
      }
  return last;
}

/* An instruction with model_index POINT has just been scheduled, and it
   adds DELTA to the pressure on ira_pressure_classes[PCI] after POINT - 1.
   Update MODEL_REF_PRESSURE (GROUP, POINT, PCI) and
   MODEL_MAX_PRESSURE (GROUP, POINT, PCI) accordingly.  */

static void
model_start_update_pressure (struct model_pressure_group *group,
			     int point, int pci, int delta)
{
  int next_max_pressure;

  if (point == model_num_insns)
    {
      /* The instruction wasn't part of the model schedule; it was moved
	 from a different block.  Update the pressure for the end of
	 the model schedule.  */
      MODEL_REF_PRESSURE (group, point, pci) += delta;
      MODEL_MAX_PRESSURE (group, point, pci) += delta;
    }
  else
    {
      /* Record that this instruction has been scheduled.  Nothing now
	 changes between POINT and POINT + 1, so get the maximum pressure
	 from the latter.  If the maximum pressure decreases, the new
	 pressure point may be before POINT.  */
      MODEL_REF_PRESSURE (group, point, pci) = -1;
      next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
      if (MODEL_MAX_PRESSURE (group, point, pci) > next_max_pressure)
	{
	  MODEL_MAX_PRESSURE (group, point, pci) = next_max_pressure;
	  if (group->limits[pci].point == point)
	    group->limits[pci].point = -1;
	}
    }
}

/* Record that scheduling a later instruction has changed the pressure
   at point POINT of the model schedule by DELTA (which might be 0).
   Update GROUP accordingly.  Return nonzero if these changes might
   trigger changes to previous points as well.  */

static int
model_update_pressure (struct model_pressure_group *group,
		       int point, int pci, int delta)
{
  int ref_pressure, max_pressure, next_max_pressure;

  /* If POINT hasn't yet been scheduled, update its pressure.  */
  ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
  if (ref_pressure >= 0 && delta != 0)
    {
      ref_pressure += delta;
      MODEL_REF_PRESSURE (group, point, pci) = ref_pressure;

      /* Check whether the maximum pressure in the overall schedule
	 has increased.  (This means that the MODEL_MAX_PRESSURE of
	 every point <= POINT will need to increase too; see below.)  */
      if (group->limits[pci].pressure < ref_pressure)
	group->limits[pci].pressure = ref_pressure;

      /* If we are at maximum pressure, and the maximum pressure
	 point was previously unknown or later than POINT,
	 bring it forward.  */
      if (group->limits[pci].pressure == ref_pressure
	  && !IN_RANGE (group->limits[pci].point, 0, point))
	group->limits[pci].point = point;

      /* If POINT used to be the point of maximum pressure, but isn't
	 any longer, we need to recalculate it using a forward walk.  */
      if (group->limits[pci].pressure > ref_pressure
	  && group->limits[pci].point == point)
	group->limits[pci].point = -1;
    }

  /* Update the maximum pressure at POINT.  Changes here might also
     affect the maximum pressure at POINT - 1.  */
  next_max_pressure = MODEL_MAX_PRESSURE (group, point + 1, pci);
  max_pressure = MAX (ref_pressure, next_max_pressure);
  if (MODEL_MAX_PRESSURE (group, point, pci) != max_pressure)
    {
      MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
      return 1;
    }
  return 0;
}

/* INSN has just been scheduled.  Update the model schedule accordingly.  */

static void
model_recompute (rtx_insn *insn)
{
  struct {
    int last_use;
    int regno;
  } uses[FIRST_PSEUDO_REGISTER + MAX_RECOG_OPERANDS];
  struct reg_use_data *use;
  struct reg_pressure_data *reg_pressure;
  int delta[N_REG_CLASSES];
  int pci, point, mix, new_last, cl, ref_pressure, queue;
  unsigned int i, num_uses, num_pending_births;
  bool print_p;

  /* The destinations of INSN were previously live from POINT onwards, but are
     now live from model_curr_point onwards.  Set up DELTA accordingly.  */
  point = model_index (insn);
  reg_pressure = INSN_REG_PRESSURE (insn);
  for (pci = 0; pci < ira_pressure_classes_num; pci++)
    {
      cl = ira_pressure_classes[pci];
      delta[cl] = reg_pressure[pci].set_increase;
    }

  /* Record which registers previously died at POINT, but which now die
     before POINT.  Adjust DELTA so that it represents the effect of
     this change after POINT - 1.  Set NUM_PENDING_BIRTHS to the number of
     registers that will be born in the range [model_curr_point, POINT).  */
  num_uses = 0;
  num_pending_births = 0;
  bitmap_clear (tmp_bitmap);
  for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
    {
      new_last = model_last_use_except (use);
      if (new_last < point && bitmap_set_bit (tmp_bitmap, use->regno))
	{
	  gcc_assert (num_uses < ARRAY_SIZE (uses));
	  uses[num_uses].last_use = new_last;
	  uses[num_uses].regno = use->regno;
	  /* This register is no longer live after POINT - 1.  */
	  mark_regno_birth_or_death (NULL, delta, use->regno, false);
	  num_uses++;
	  if (new_last >= 0)
	    num_pending_births++;
	}
    }

  /* Update the MODEL_REF_PRESSURE and MODEL_MAX_PRESSURE for POINT.
     Also set each group pressure limit for POINT.  */
  for (pci = 0; pci < ira_pressure_classes_num; pci++)
    {
      cl = ira_pressure_classes[pci];
      model_start_update_pressure (&model_before_pressure,
				   point, pci, delta[cl]);
    }

  /* Walk the model schedule backwards, starting immediately before POINT.  */
  print_p = false;
  if (point != model_curr_point)
    do
      {
	point--;
	insn = MODEL_INSN (point);
	queue = QUEUE_INDEX (insn);

	if (queue != QUEUE_SCHEDULED)
	  {
	    /* DELTA describes the effect of the move on the register pressure
	       after POINT.  Make it describe the effect on the pressure
	       before POINT.  */
	    i = 0;
	    while (i < num_uses)
	      {
		if (uses[i].last_use == point)
		  {
		    /* This register is now live again.  */
		    mark_regno_birth_or_death (NULL, delta,
					       uses[i].regno, true);

		    /* Remove this use from the array.  */
		    uses[i] = uses[num_uses - 1];
		    num_uses--;
		    num_pending_births--;
		  }
		else
		  i++;
	      }

	    if (sched_verbose >= 5)
	      {
		if (!print_p)
		  {
		    fprintf (sched_dump, MODEL_BAR);
		    fprintf (sched_dump, ";;\t\t| New pressure for model"
			     " schedule\n");
		    fprintf (sched_dump, MODEL_BAR);
		    print_p = true;
		  }

		fprintf (sched_dump, ";;\t\t| %3d %4d %-30s ",
			 point, INSN_UID (insn),
			 str_pattern_slim (PATTERN (insn)));
		for (pci = 0; pci < ira_pressure_classes_num; pci++)
		  {
		    cl = ira_pressure_classes[pci];
		    ref_pressure = MODEL_REF_PRESSURE (&model_before_pressure,
						       point, pci);
		    fprintf (sched_dump, " %s:[%d->%d]",
			     reg_class_names[ira_pressure_classes[pci]],
			     ref_pressure, ref_pressure + delta[cl]);
		  }
		fprintf (sched_dump, "\n");
	      }
	  }

	/* Adjust the pressure at POINT.  Set MIX to nonzero if POINT - 1
	   might have changed as well.  */
	mix = num_pending_births;
	for (pci = 0; pci < ira_pressure_classes_num; pci++)
	  {
	    cl = ira_pressure_classes[pci];
	    mix |= delta[cl];
	    mix |= model_update_pressure (&model_before_pressure,
					  point, pci, delta[cl]);
	  }
      }
    while (mix && point > model_curr_point);

  if (print_p)
    fprintf (sched_dump, MODEL_BAR);
}

/* After DEP, which was cancelled, has been resolved for insn NEXT,
   check whether the insn's pattern needs restoring.  */
static bool
must_restore_pattern_p (rtx_insn *next, dep_t dep)
{
  if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
    return false;

  if (DEP_TYPE (dep) == REG_DEP_CONTROL)
    {
      gcc_assert (ORIG_PAT (next) != NULL_RTX);
      gcc_assert (next == DEP_CON (dep));
    }
  else
    {
      struct dep_replacement *desc = DEP_REPLACE (dep);
      if (desc->insn != next)
	{
	  gcc_assert (*desc->loc == desc->orig);
	  return false;
	}
    }
  return true;
}

/* model_spill_cost (CL, P, P') returns the cost of increasing the
   pressure on CL from P to P'.  We use this to calculate a "base ECC",
   baseECC (CL, X), for each pressure class CL and each instruction X.
   Supposing X changes the pressure on CL from P to P', and that the
   maximum pressure on CL in the current model schedule is MP', then:

   * if X occurs before or at the next point of maximum pressure in
     the model schedule and P' > MP', then:

       baseECC (CL, X) = model_spill_cost (CL, MP, P')

     The idea is that the pressure after scheduling a fixed set of
     instructions -- in this case, the set up to and including the
     next maximum pressure point -- is going to be the same regardless
     of the order; we simply want to keep the intermediate pressure
     under control.  Thus X has a cost of zero unless scheduling it
     now would exceed MP'.

     If all increases in the set are by the same amount, no zero-cost
     instruction will ever cause the pressure to exceed MP'.  However,
     if X is instead moved past an instruction X' with pressure in the
     range (MP' - (P' - P), MP'), the pressure at X' will increase
     beyond MP'.  Since baseECC is very much a heuristic anyway,
     it doesn't seem worth the overhead of tracking cases like these.

     The cost of exceeding MP' is always based on the original maximum
     pressure MP.  This is so that going 2 registers over the original
     limit has the same cost regardless of whether it comes from two
     separate +1 deltas or from a single +2 delta.

   * if X occurs after the next point of maximum pressure in the model
     schedule and P' > P, then:

       baseECC (CL, X) = model_spill_cost (CL, MP, MP' + (P' - P))

     That is, if we move X forward across a point of maximum pressure,
     and if X increases the pressure by P' - P, then we conservatively
     assume that scheduling X next would increase the maximum pressure
     by P' - P.  Again, the cost of doing this is based on the original
     maximum pressure MP, for the same reason as above.

   * if P' < P, P > MP, and X occurs at or after the next point of
     maximum pressure, then:

       baseECC (CL, X) = -model_spill_cost (CL, MAX (MP, P'), P)

     That is, if we have already exceeded the original maximum pressure MP,
     and if X might reduce the maximum pressure again -- or at least push
     it further back, and thus allow more scheduling freedom -- it is given
     a negative cost to reflect the improvement.

   * otherwise,

       baseECC (CL, X) = 0

     In this case, X is not expected to affect the maximum pressure MP',
     so it has zero cost.

   We then create a combined value baseECC (X) that is the sum of
   baseECC (CL, X) for each pressure class CL.

   baseECC (X) could itself be used as the ECC value described above.
   However, this is often too conservative, in the sense that it
   tends to make high-priority instructions that increase pressure
   wait too long in cases where introducing a spill would be better.
   For this reason the final ECC is a priority-adjusted form of
   baseECC (X).  Specifically, we calculate:

     P (X) = INSN_PRIORITY (X) - insn_delay (X) - baseECC (X)
     baseP = MAX { P (X) | baseECC (X) <= 0 }

   Then:

     ECC (X) = MAX (MIN (baseP - P (X), baseECC (X)), 0)

   Thus an instruction's effect on pressure is ignored if it has a high
   enough priority relative to the ones that don't increase pressure.
   Negative values of baseECC (X) do not increase the priority of X
   itself, but they do make it harder for other instructions to
   increase the pressure further.

   This pressure cost is deliberately timid.  The intention has been
   to choose a heuristic that rarely interferes with the normal list
   scheduler in cases where that scheduler would produce good code.
   We simply want to curb some of its worst excesses.  */

/* Return the cost of increasing the pressure in class CL from FROM to TO.

   Here we use the very simplistic cost model that every register above
   sched_class_regs_num[CL] has a spill cost of 1.  We could use other
   measures instead, such as one based on MEMORY_MOVE_COST.  However:

      (1) In order for an instruction to be scheduled, the higher cost
	  would need to be justified in a single saving of that many stalls.
	  This is overly pessimistic, because the benefit of spilling is
	  often to avoid a sequence of several short stalls rather than
	  a single long one.

      (2) The cost is still arbitrary.  Because we are not allocating
	  registers during scheduling, we have no way of knowing for
	  sure how many memory accesses will be required by each spill,
	  where the spills will be placed within the block, or even
	  which block(s) will contain the spills.

   So a higher cost than 1 is often too conservative in practice,
   forcing blocks to contain unnecessary stalls instead of spill code.
   The simple cost below seems to be the best compromise.  It reduces
   the interference with the normal list scheduler, which helps make
   it more suitable for a default-on option.  */

static int
model_spill_cost (int cl, int from, int to)
{
  from = MAX (from, sched_class_regs_num[cl]);
  return MAX (to, from) - from;
}

/* Return baseECC (ira_pressure_classes[PCI], POINT), given that
   P = curr_reg_pressure[ira_pressure_classes[PCI]] and that
   P' = P + DELTA.  */

static int
model_excess_group_cost (struct model_pressure_group *group,
			 int point, int pci, int delta)
{
  int pressure, cl;

  cl = ira_pressure_classes[pci];
  if (delta < 0)
    {
      if (point >= group->limits[pci].point)
	{
	  pressure = MAX (group->limits[pci].orig_pressure,
			  curr_reg_pressure[cl] + delta);
	  return -model_spill_cost (cl, pressure, curr_reg_pressure[cl]);
	}
      /* if target prefers fewer spills, return the -ve delta indicating
	 pressure reduction.  */
      else if (!param_cycle_accurate_model)
	  return delta;
    }

  if (delta > 0)
    {
      if (point > group->limits[pci].point)
	pressure = group->limits[pci].pressure + delta;
      else
	pressure = curr_reg_pressure[cl] + delta;

      if (pressure > group->limits[pci].pressure)
	return model_spill_cost (cl, group->limits[pci].orig_pressure,
				 pressure);
    }

  return 0;
}

/* Return baseECC (MODEL_INSN (INSN)).  Dump the costs to sched_dump
   if PRINT_P.  */

static int
model_excess_cost (rtx_insn *insn, bool print_p)
{
  int point, pci, cl, cost, this_cost, delta;
  struct reg_pressure_data *insn_reg_pressure;
  int insn_death[N_REG_CLASSES];

  calculate_reg_deaths (insn, insn_death);
  point = model_index (insn);
  insn_reg_pressure = INSN_REG_PRESSURE (insn);
  cost = 0;

  if (print_p)
    fprintf (sched_dump, ";;\t\t| %3d %4d | %4d %+3d |", point,
	     INSN_UID (insn), INSN_PRIORITY (insn), insn_delay (insn));

  /* Sum up the individual costs for each register class.  */
  for (pci = 0; pci < ira_pressure_classes_num; pci++)
    {
      cl = ira_pressure_classes[pci];
      delta = insn_reg_pressure[pci].set_increase - insn_death[cl];
      this_cost = model_excess_group_cost (&model_before_pressure,
					   point, pci, delta);
      cost += this_cost;
      if (print_p)
	fprintf (sched_dump, " %s:[%d base cost %d]",
		 reg_class_names[cl], delta, this_cost);
    }

  if (print_p)
    fprintf (sched_dump, " ECC %d\n", cost);

  return cost;
}

/* Dump the next points of maximum pressure for GROUP.  */

static void
model_dump_pressure_points (struct model_pressure_group *group)
{
  int pci, cl;

  fprintf (sched_dump, ";;\t\t|  pressure points");
  for (pci = 0; pci < ira_pressure_classes_num; pci++)
    {
      cl = ira_pressure_classes[pci];
      fprintf (sched_dump, " %s:[%d->%d at ", reg_class_names[cl],
	       curr_reg_pressure[cl], group->limits[pci].pressure);
      if (group->limits[pci].point < model_num_insns)
	fprintf (sched_dump, "%d:%d]", group->limits[pci].point,
		 INSN_UID (MODEL_INSN (group->limits[pci].point)));
      else
	fprintf (sched_dump, "end]");
    }
  fprintf (sched_dump, "\n");
}

/* Set INSN_REG_PRESSURE_EXCESS_COST_CHANGE for INSNS[0...COUNT-1].  */

static void
model_set_excess_costs (rtx_insn **insns, int count)
{
  int i, cost, priority_base, priority;
  bool print_p;

  /* Record the baseECC value for each instruction in the model schedule,
     except that for targets which prefer wider schedules (more spills)
     negative costs are converted to zero ones now rather than later.
     Do not assign a cost to debug instructions, since they must
     not change code-generation decisions.  Experiments suggest we also
     get better results by not assigning a cost to instructions from
     a different block.

     Set PRIORITY_BASE to baseP in the block comment above.  This is the
     maximum priority of the "cheap" instructions, which should always
     include the next model instruction.  */
  priority_base = 0;
  print_p = false;
  for (i = 0; i < count; i++)
    if (INSN_MODEL_INDEX (insns[i]))
      {
	if (sched_verbose >= 6 && !print_p)
	  {
	    fprintf (sched_dump, MODEL_BAR);
	    fprintf (sched_dump, ";;\t\t| Pressure costs for ready queue\n");
	    model_dump_pressure_points (&model_before_pressure);
	    fprintf (sched_dump, MODEL_BAR);
	    print_p = true;
	  }
	cost = model_excess_cost (insns[i], print_p);
	if (param_cycle_accurate_model && cost <= 0)
	  {
	    priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]) - cost;
	    priority_base = MAX (priority_base, priority);
	    cost = 0;
	  }
	INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = cost;
      }
  if (print_p)
    fprintf (sched_dump, MODEL_BAR);

  /* Typically in-order cores have a good pipeline scheduling model and the
     algorithm would try to use that to minimize bubbles, favoring spills.
     MAX (baseECC, 0) below changes negative baseECC (pressure reduction)
     to 0 (pressure neutral) thus tending to more spills.
     Otherwise return.  */
  if (!param_cycle_accurate_model)
    return;

  /* Use MAX (baseECC, 0) and baseP to calculcate ECC for each
     instruction.  */
  for (i = 0; i < count; i++)
    {
      cost = INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]);
      priority = INSN_PRIORITY (insns[i]) - insn_delay (insns[i]);
      if (cost > 0 && priority > priority_base)
	{
	  cost += priority_base - priority;
	  INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insns[i]) = MAX (cost, 0);
	}
    }
}


/* Enum of rank_for_schedule heuristic decisions.  */
enum rfs_decision {
  RFS_LIVE_RANGE_SHRINK1, RFS_LIVE_RANGE_SHRINK2,
  RFS_SCHED_GROUP, RFS_PRESSURE_DELAY, RFS_PRESSURE_TICK,
  RFS_FEEDS_BACKTRACK_INSN, RFS_PRIORITY, RFS_AUTOPREF, RFS_SPECULATION,
  RFS_SCHED_RANK, RFS_LAST_INSN, RFS_PRESSURE_INDEX,
  RFS_DEP_COUNT, RFS_TIE, RFS_FUSION, RFS_COST, RFS_N };

/* Corresponding strings for print outs.  */
static const char *rfs_str[RFS_N] = {
  "RFS_LIVE_RANGE_SHRINK1", "RFS_LIVE_RANGE_SHRINK2",
  "RFS_SCHED_GROUP", "RFS_PRESSURE_DELAY", "RFS_PRESSURE_TICK",
  "RFS_FEEDS_BACKTRACK_INSN", "RFS_PRIORITY", "RFS_AUTOPREF", "RFS_SPECULATION",
  "RFS_SCHED_RANK", "RFS_LAST_INSN", "RFS_PRESSURE_INDEX",
  "RFS_DEP_COUNT", "RFS_TIE", "RFS_FUSION", "RFS_COST" };

/* Statistical breakdown of rank_for_schedule decisions.  */
struct rank_for_schedule_stats_t { unsigned stats[RFS_N]; };
static rank_for_schedule_stats_t rank_for_schedule_stats;

/* Return the result of comparing insns TMP and TMP2 and update
   Rank_For_Schedule statistics.  */
static int
rfs_result (enum rfs_decision decision, int result, rtx tmp, rtx tmp2)
{
  ++rank_for_schedule_stats.stats[decision];
  if (result < 0)
    INSN_LAST_RFS_WIN (tmp) = decision;
  else if (result > 0)
    INSN_LAST_RFS_WIN (tmp2) = decision;
  else
    gcc_unreachable ();
  return result;
}

/* Sorting predicate to move DEBUG_INSNs to the top of ready list, while
   keeping normal insns in original order.  */

static int
rank_for_schedule_debug (const void *x, const void *y)
{
  rtx_insn *tmp = *(rtx_insn * const *) y;
  rtx_insn *tmp2 = *(rtx_insn * const *) x;

  /* Schedule debug insns as early as possible.  */
  if (DEBUG_INSN_P (tmp) && !DEBUG_INSN_P (tmp2))
    return -1;
  else if (!DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
    return 1;
  else if (DEBUG_INSN_P (tmp) && DEBUG_INSN_P (tmp2))
    return INSN_LUID (tmp) - INSN_LUID (tmp2);
  else
    return INSN_RFS_DEBUG_ORIG_ORDER (tmp2) - INSN_RFS_DEBUG_ORIG_ORDER (tmp);
}

/* Returns a positive value if x is preferred; returns a negative value if
   y is preferred.  Should never return 0, since that will make the sort
   unstable.  */

static int
rank_for_schedule (const void *x, const void *y)
{
  rtx_insn *tmp = *(rtx_insn * const *) y;
  rtx_insn *tmp2 = *(rtx_insn * const *) x;
  int tmp_class, tmp2_class;
  int val, priority_val, info_val, diff;

  if (live_range_shrinkage_p)
    {
      /* Don't use SCHED_PRESSURE_MODEL -- it results in much worse
	 code.  */
      gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
      if ((INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp) < 0
	   || INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2) < 0)
	  && (diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
		      - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2))) != 0)
	return rfs_result (RFS_LIVE_RANGE_SHRINK1, diff, tmp, tmp2);
      /* Sort by INSN_LUID (original insn order), so that we make the
	 sort stable.  This minimizes instruction movement, thus
	 minimizing sched's effect on debugging and cross-jumping.  */
      return rfs_result (RFS_LIVE_RANGE_SHRINK2,
			 INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
    }

  /* The insn in a schedule group should be issued the first.  */
  if (flag_sched_group_heuristic &&
      SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
    return rfs_result (RFS_SCHED_GROUP, SCHED_GROUP_P (tmp2) ? 1 : -1,
		       tmp, tmp2);

  /* Make sure that priority of TMP and TMP2 are initialized.  */
  gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));

  if (sched_fusion)
    {
      /* The instruction that has the same fusion priority as the last
	 instruction is the instruction we picked next.  If that is not
	 the case, we sort ready list firstly by fusion priority, then
	 by priority, and at last by INSN_LUID.  */
      int a = INSN_FUSION_PRIORITY (tmp);
      int b = INSN_FUSION_PRIORITY (tmp2);
      int last = -1;

      if (last_nondebug_scheduled_insn
	  && !NOTE_P (last_nondebug_scheduled_insn)
	  && BLOCK_FOR_INSN (tmp)
	       == BLOCK_FOR_INSN (last_nondebug_scheduled_insn))
	last = INSN_FUSION_PRIORITY (last_nondebug_scheduled_insn);

      if (a != last && b != last)
	{
	  if (a == b)
	    {
	      a = INSN_PRIORITY (tmp);
	      b = INSN_PRIORITY (tmp2);
	    }
	  if (a != b)
	    return rfs_result (RFS_FUSION, b - a, tmp, tmp2);
	  else
	    return rfs_result (RFS_FUSION,
			       INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
	}
      else if (a == b)
	{
	  gcc_assert (last_nondebug_scheduled_insn
		      && !NOTE_P (last_nondebug_scheduled_insn));
	  last = INSN_PRIORITY (last_nondebug_scheduled_insn);

	  a = abs (INSN_PRIORITY (tmp) - last);
	  b = abs (INSN_PRIORITY (tmp2) - last);
	  if (a != b)
	    return rfs_result (RFS_FUSION, a - b, tmp, tmp2);
	  else
	    return rfs_result (RFS_FUSION,
			       INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
	}
      else if (a == last)
	return rfs_result (RFS_FUSION, -1, tmp, tmp2);
      else
	return rfs_result (RFS_FUSION, 1, tmp, tmp2);
    }

  if (sched_pressure != SCHED_PRESSURE_NONE)
    {
      /* Prefer insn whose scheduling results in the smallest register
	 pressure excess.  */
      if ((diff = (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp)
		   + insn_delay (tmp)
		   - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2)
		   - insn_delay (tmp2))))
	return rfs_result (RFS_PRESSURE_DELAY, diff, tmp, tmp2);
    }

  if (sched_pressure != SCHED_PRESSURE_NONE
      && (INSN_TICK (tmp2) > clock_var || INSN_TICK (tmp) > clock_var)
      && INSN_TICK (tmp2) != INSN_TICK (tmp))
    {
      diff = INSN_TICK (tmp) - INSN_TICK (tmp2);
      return rfs_result (RFS_PRESSURE_TICK, diff, tmp, tmp2);
    }

  /* If we are doing backtracking in this schedule, prefer insns that
     have forward dependencies with negative cost against an insn that
     was already scheduled.  */
  if (current_sched_info->flags & DO_BACKTRACKING)
    {
      priority_val = FEEDS_BACKTRACK_INSN (tmp2) - FEEDS_BACKTRACK_INSN (tmp);
      if (priority_val)
	return rfs_result (RFS_FEEDS_BACKTRACK_INSN, priority_val, tmp, tmp2);
    }

  /* Prefer insn with higher priority.  */
  priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);

  if (flag_sched_critical_path_heuristic && priority_val)
    return rfs_result (RFS_PRIORITY, priority_val, tmp, tmp2);

  if (param_sched_autopref_queue_depth >= 0)
    {
      int autopref = autopref_rank_for_schedule (tmp, tmp2);
      if (autopref != 0)
	return rfs_result (RFS_AUTOPREF, autopref, tmp, tmp2);
    }

  /* Prefer speculative insn with greater dependencies weakness.  */
  if (flag_sched_spec_insn_heuristic && spec_info)
    {
      ds_t ds1, ds2;
      dw_t dw1, dw2;
      int dw;

      ds1 = TODO_SPEC (tmp) & SPECULATIVE;
      if (ds1)
	dw1 = ds_weak (ds1);
      else
	dw1 = NO_DEP_WEAK;

      ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
      if (ds2)
	dw2 = ds_weak (ds2);
      else
	dw2 = NO_DEP_WEAK;

      dw = dw2 - dw1;
      if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
	return rfs_result (RFS_SPECULATION, dw, tmp, tmp2);
    }

  info_val = (*current_sched_info->rank) (tmp, tmp2);
  if (flag_sched_rank_heuristic && info_val)
    return rfs_result (RFS_SCHED_RANK, info_val, tmp, tmp2);

  /* Compare insns based on their relation to the last scheduled
     non-debug insn.  */
  if (flag_sched_last_insn_heuristic && last_nondebug_scheduled_insn)
    {
      dep_t dep1;
      dep_t dep2;
      rtx_insn *last = last_nondebug_scheduled_insn;

      /* Classify the instructions into three classes:
         1) Data dependent on last schedule insn.
         2) Anti/Output dependent on last scheduled insn.
         3) Independent of last scheduled insn, or has latency of one.
         Choose the insn from the highest numbered class if different.  */
      dep1 = sd_find_dep_between (last, tmp, true);

      if (dep1 == NULL || dep_cost (dep1) == 1)
	tmp_class = 3;
      else if (/* Data dependence.  */
	       DEP_TYPE (dep1) == REG_DEP_TRUE)
	tmp_class = 1;
      else
	tmp_class = 2;

      dep2 = sd_find_dep_between (last, tmp2, true);

      if (dep2 == NULL || dep_cost (dep2)  == 1)
	tmp2_class = 3;
      else if (/* Data dependence.  */
	       DEP_TYPE (dep2) == REG_DEP_TRUE)
	tmp2_class = 1;
      else
	tmp2_class = 2;

      if ((val = tmp2_class - tmp_class))
	return rfs_result (RFS_LAST_INSN, val, tmp, tmp2);
    }

  /* Prefer instructions that occur earlier in the model schedule.  */
  if (sched_pressure == SCHED_PRESSURE_MODEL)
    {
      diff = model_index (tmp) - model_index (tmp2);
      if (diff != 0)
	return rfs_result (RFS_PRESSURE_INDEX, diff, tmp, tmp2);
    }

  /* Prefer the insn which has more later insns that depend on it.
     This gives the scheduler more freedom when scheduling later
     instructions at the expense of added register pressure.  */

  val = (dep_list_size (tmp2, SD_LIST_FORW)
	 - dep_list_size (tmp, SD_LIST_FORW));

  if (flag_sched_dep_count_heuristic && val != 0)
    return rfs_result (RFS_DEP_COUNT, val, tmp, tmp2);

  /* Sort by INSN_COST rather than INSN_LUID.  This means that instructions
     which take longer to execute are prioritised and it leads to more
     dual-issue opportunities on in-order cores which have this feature.  */

  if (INSN_COST (tmp) != INSN_COST (tmp2))
    return rfs_result (RFS_COST, INSN_COST (tmp2) - INSN_COST (tmp),
		       tmp, tmp2);

  /* If insns are equally good, sort by INSN_LUID (original insn order),
     so that we make the sort stable.  This minimizes instruction movement,
     thus minimizing sched's effect on debugging and cross-jumping.  */
  return rfs_result (RFS_TIE, INSN_LUID (tmp) - INSN_LUID (tmp2), tmp, tmp2);
}

/* Resort the array A in which only element at index N may be out of order.  */

HAIFA_INLINE static void
swap_sort (rtx_insn **a, int n)
{
  rtx_insn *insn = a[n - 1];
  int i = n - 2;

  while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
    {
      a[i + 1] = a[i];
      i -= 1;
    }
  a[i + 1] = insn;
}

/* Add INSN to the insn queue so that it can be executed at least
   N_CYCLES after the currently executing insn.  Preserve insns
   chain for debugging purposes.  REASON will be printed in debugging
   output.  */

HAIFA_INLINE static void
queue_insn (rtx_insn *insn, int n_cycles, const char *reason)
{
  int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
  rtx_insn_list *link = alloc_INSN_LIST (insn, insn_queue[next_q]);
  int new_tick;

  gcc_assert (n_cycles <= max_insn_queue_index);
  gcc_assert (!DEBUG_INSN_P (insn));

  insn_queue[next_q] = link;
  q_size += 1;

  if (sched_verbose >= 2)
    {
      fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
	       (*current_sched_info->print_insn) (insn, 0));

      fprintf (sched_dump, "queued for %d cycles (%s).\n", n_cycles, reason);
    }

  QUEUE_INDEX (insn) = next_q;

  if (current_sched_info->flags & DO_BACKTRACKING)
    {
      new_tick = clock_var + n_cycles;
      if (INSN_TICK (insn) == INVALID_TICK || INSN_TICK (insn) < new_tick)
	INSN_TICK (insn) = new_tick;

      if (INSN_EXACT_TICK (insn) != INVALID_TICK
	  && INSN_EXACT_TICK (insn) < clock_var + n_cycles)
	{
	  must_backtrack = true;
	  if (sched_verbose >= 2)
	    fprintf (sched_dump, ";;\t\tcausing a backtrack.\n");
	}
    }
}

/* Remove INSN from queue.  */
static void
queue_remove (rtx_insn *insn)
{
  gcc_assert (QUEUE_INDEX (insn) >= 0);
  remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
  q_size--;
  QUEUE_INDEX (insn) = QUEUE_NOWHERE;
}

/* Return a pointer to the bottom of the ready list, i.e. the insn
   with the lowest priority.  */

rtx_insn **
ready_lastpos (struct ready_list *ready)
{
  gcc_assert (ready->n_ready >= 1);
  return ready->vec + ready->first - ready->n_ready + 1;
}

/* Add an element INSN to the ready list so that it ends up with the
   lowest/highest priority depending on FIRST_P.  */

HAIFA_INLINE static void
ready_add (struct ready_list *ready, rtx_insn *insn, bool first_p)
{
  if (!first_p)
    {
      if (ready->first == ready->n_ready)
	{
	  memmove (ready->vec + ready->veclen - ready->n_ready,
		   ready_lastpos (ready),
		   ready->n_ready * sizeof (rtx));
	  ready->first = ready->veclen - 1;
	}
      ready->vec[ready->first - ready->n_ready] = insn;
    }
  else
    {
      if (ready->first == ready->veclen - 1)
	{
	  if (ready->n_ready)
	    /* ready_lastpos() fails when called with (ready->n_ready == 0).  */
	    memmove (ready->vec + ready->veclen - ready->n_ready - 1,
		     ready_lastpos (ready),
		     ready->n_ready * sizeof (rtx));
	  ready->first = ready->veclen - 2;
	}
      ready->vec[++(ready->first)] = insn;
    }

  ready->n_ready++;
  if (DEBUG_INSN_P (insn))
    ready->n_debug++;

  gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
  QUEUE_INDEX (insn) = QUEUE_READY;

  if (INSN_EXACT_TICK (insn) != INVALID_TICK
      && INSN_EXACT_TICK (insn) < clock_var)
    {
      must_backtrack = true;
    }
}

/* Remove the element with the highest priority from the ready list and
   return it.  */

HAIFA_INLINE static rtx_insn *
ready_remove_first (struct ready_list *ready)
{
  rtx_insn *t;

  gcc_assert (ready->n_ready);
  t = ready->vec[ready->first--];
  ready->n_ready--;
  if (DEBUG_INSN_P (t))
    ready->n_debug--;
  /* If the queue becomes empty, reset it.  */
  if (ready->n_ready == 0)
    ready->first = ready->veclen - 1;

  gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
  QUEUE_INDEX (t) = QUEUE_NOWHERE;

  return t;
}

/* The following code implements multi-pass scheduling for the first
   cycle.  In other words, we will try to choose ready insn which
   permits to start maximum number of insns on the same cycle.  */

/* Return a pointer to the element INDEX from the ready.  INDEX for
   insn with the highest priority is 0, and the lowest priority has
   N_READY - 1.  */

rtx_insn *
ready_element (struct ready_list *ready, int index)
{
  gcc_assert (ready->n_ready && index < ready->n_ready);

  return ready->vec[ready->first - index];
}

/* Remove the element INDEX from the ready list and return it.  INDEX
   for insn with the highest priority is 0, and the lowest priority
   has N_READY - 1.  */

HAIFA_INLINE static rtx_insn *
ready_remove (struct ready_list *ready, int index)
{
  rtx_insn *t;
  int i;

  if (index == 0)
    return ready_remove_first (ready);
  gcc_assert (ready->n_ready && index < ready->n_ready);
  t = ready->vec[ready->first - index];
  ready->n_ready--;
  if (DEBUG_INSN_P (t))
    ready->n_debug--;
  for (i = index; i < ready->n_ready; i++)
    ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
  QUEUE_INDEX (t) = QUEUE_NOWHERE;
  return t;
}

/* Remove INSN from the ready list.  */
static void
ready_remove_insn (rtx_insn *insn)
{
  int i;

  for (i = 0; i < readyp->n_ready; i++)
    if (ready_element (readyp, i) == insn)
      {
        ready_remove (readyp, i);
        return;
      }
  gcc_unreachable ();
}

/* Calculate difference of two statistics set WAS and NOW.
   Result returned in WAS.  */
static void
rank_for_schedule_stats_diff (rank_for_schedule_stats_t *was,
			      const rank_for_schedule_stats_t *now)
{
  for (int i = 0; i < RFS_N; ++i)
    was->stats[i] = now->stats[i] - was->stats[i];
}

/* Print rank_for_schedule statistics.  */
static void
print_rank_for_schedule_stats (const char *prefix,
			       const rank_for_schedule_stats_t *stats,
			       struct ready_list *ready)
{
  for (int i = 0; i < RFS_N; ++i)
    if (stats->stats[i])
      {
	fprintf (sched_dump, "%s%20s: %u", prefix, rfs_str[i], stats->stats[i]);

	if (ready != NULL)
	  /* Print out insns that won due to RFS_<I>.  */
	  {
	    rtx_insn **p = ready_lastpos (ready);

	    fprintf (sched_dump, ":");
	    /* Start with 1 since least-priority insn didn't have any wins.  */
	    for (int j = 1; j < ready->n_ready; ++j)
	      if (INSN_LAST_RFS_WIN (p[j]) == i)
		fprintf (sched_dump, " %s",
			 (*current_sched_info->print_insn) (p[j], 0));
	  }
	fprintf (sched_dump, "\n");
      }
}

/* Separate DEBUG_INSNS from normal insns.  DEBUG_INSNs go to the end
   of array.  */
static void
ready_sort_debug (struct ready_list *ready)
{
  int i;
  rtx_insn **first = ready_lastpos (ready);

  for (i = 0; i < ready->n_ready; ++i)
    if (!DEBUG_INSN_P (first[i]))
      INSN_RFS_DEBUG_ORIG_ORDER (first[i]) = i;

  qsort (first, ready->n_ready, sizeof (rtx), rank_for_schedule_debug);
}

/* Sort non-debug insns in the ready list READY by ascending priority.
   Assumes that all debug insns are separated from the real insns.  */
static void
ready_sort_real (struct ready_list *ready)
{
  int i;
  rtx_insn **first = ready_lastpos (ready);
  int n_ready_real = ready->n_ready - ready->n_debug;

  if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
    for (i = 0; i < n_ready_real; ++i)
      setup_insn_reg_pressure_info (first[i]);
  else if (sched_pressure == SCHED_PRESSURE_MODEL
	   && model_curr_point < model_num_insns)
    model_set_excess_costs (first, n_ready_real);

  rank_for_schedule_stats_t stats1;
  if (sched_verbose >= 4)
    stats1 = rank_for_schedule_stats;

  if (n_ready_real == 2)
    swap_sort (first, n_ready_real);
  else if (n_ready_real > 2)
    qsort (first, n_ready_real, sizeof (rtx), rank_for_schedule);

  if (sched_verbose >= 4)
    {
      rank_for_schedule_stats_diff (&stats1, &rank_for_schedule_stats);
      print_rank_for_schedule_stats (";;\t\t", &stats1, ready);
    }
}

/* Sort the ready list READY by ascending priority.  */
static void
ready_sort (struct ready_list *ready)
{
  if (ready->n_debug > 0)
    ready_sort_debug (ready);
  else
    ready_sort_real (ready);
}

/* PREV is an insn that is ready to execute.  Adjust its priority if that
   will help shorten or lengthen register lifetimes as appropriate.  Also
   provide a hook for the target to tweak itself.  */

HAIFA_INLINE static void
adjust_priority (rtx_insn *prev)
{
  /* ??? There used to be code here to try and estimate how an insn
     affected register lifetimes, but it did it by looking at REG_DEAD
     notes, which we removed in schedule_region.  Nor did it try to
     take into account register pressure or anything useful like that.

     Revisit when we have a machine model to work with and not before.  */

  if (targetm.sched.adjust_priority)
    INSN_PRIORITY (prev) =
      targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
}

/* Advance DFA state STATE on one cycle.  */
void
advance_state (state_t state)
{
  if (targetm.sched.dfa_pre_advance_cycle)
    targetm.sched.dfa_pre_advance_cycle ();

  if (targetm.sched.dfa_pre_cycle_insn)
    state_transition (state,
		      targetm.sched.dfa_pre_cycle_insn ());

  state_transition (state, NULL);

  if (targetm.sched.dfa_post_cycle_insn)
    state_transition (state,
		      targetm.sched.dfa_post_cycle_insn ());

  if (targetm.sched.dfa_post_advance_cycle)
    targetm.sched.dfa_post_advance_cycle ();
}

/* Advance time on one cycle.  */
HAIFA_INLINE static void
advance_one_cycle (void)
{
  int i;

  advance_state (curr_state);
  for (i = 4; i <= sched_verbose; ++i)
    fprintf (sched_dump, ";;\tAdvance the current state: %d.\n", clock_var);
}

/* Update register pressure after scheduling INSN.  */
static void
update_register_pressure (rtx_insn *insn)
{
  struct reg_use_data *use;
  struct reg_set_data *set;

  gcc_checking_assert (!DEBUG_INSN_P (insn));

  for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
    if (dying_use_p (use))
      mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
				 use->regno, false);
  for (set = INSN_REG_SET_LIST (insn); set != NULL; set = set->next_insn_set)
    mark_regno_birth_or_death (curr_reg_live, curr_reg_pressure,
			       set->regno, true);
}

/* Set up or update (if UPDATE_P) max register pressure (see its
   meaning in sched-int.h::_haifa_insn_data) for all current BB insns
   after insn AFTER.  */
static void
setup_insn_max_reg_pressure (rtx_insn *after, bool update_p)
{
  int i, p;
  bool eq_p;
  rtx_insn *insn;
  static int max_reg_pressure[N_REG_CLASSES];

  save_reg_pressure ();
  for (i = 0; i < ira_pressure_classes_num; i++)
    max_reg_pressure[ira_pressure_classes[i]]
      = curr_reg_pressure[ira_pressure_classes[i]];
  for (insn = NEXT_INSN (after);
       insn != NULL_RTX && ! BARRIER_P (insn)
	 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (after);
       insn = NEXT_INSN (insn))
    if (NONDEBUG_INSN_P (insn))
      {
	eq_p = true;
	for (i = 0; i < ira_pressure_classes_num; i++)
	  {
	    p = max_reg_pressure[ira_pressure_classes[i]];
	    if (INSN_MAX_REG_PRESSURE (insn)[i] != p)
	      {
		eq_p = false;
		INSN_MAX_REG_PRESSURE (insn)[i]
		  = max_reg_pressure[ira_pressure_classes[i]];
	      }
	  }
	if (update_p && eq_p)
	  break;
	update_register_pressure (insn);
	for (i = 0; i < ira_pressure_classes_num; i++)
	  if (max_reg_pressure[ira_pressure_classes[i]]
	      < curr_reg_pressure[ira_pressure_classes[i]])
	    max_reg_pressure[ira_pressure_classes[i]]
	      = curr_reg_pressure[ira_pressure_classes[i]];
      }
  restore_reg_pressure ();
}

/* Update the current register pressure after scheduling INSN.  Update
   also max register pressure for unscheduled insns of the current
   BB.  */
static void
update_reg_and_insn_max_reg_pressure (rtx_insn *insn)
{
  int i;
  int before[N_REG_CLASSES];

  for (i = 0; i < ira_pressure_classes_num; i++)
    before[i] = curr_reg_pressure[ira_pressure_classes[i]];
  update_register_pressure (insn);
  for (i = 0; i < ira_pressure_classes_num; i++)
    if (curr_reg_pressure[ira_pressure_classes[i]] != before[i])
      break;
  if (i < ira_pressure_classes_num)
    setup_insn_max_reg_pressure (insn, true);
}

/* Set up register pressure at the beginning of basic block BB whose
   insns starting after insn AFTER.  Set up also max register pressure
   for all insns of the basic block.  */
void
sched_setup_bb_reg_pressure_info (basic_block bb, rtx_insn *after)
{
  gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
  initiate_bb_reg_pressure_info (bb);
  setup_insn_max_reg_pressure (after, false);
}

/* If doing predication while scheduling, verify whether INSN, which
   has just been scheduled, clobbers the conditions of any
   instructions that must be predicated in order to break their
   dependencies.  If so, remove them from the queues so that they will
   only be scheduled once their control dependency is resolved.  */

static void
check_clobbered_conditions (rtx_insn *insn)
{
  HARD_REG_SET t;
  int i;

  if ((current_sched_info->flags & DO_PREDICATION) == 0)
    return;

  find_all_hard_reg_sets (insn, &t, true);

 restart:
  for (i = 0; i < ready.n_ready; i++)
    {
      rtx_insn *x = ready_element (&ready, i);
      if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
	{
	  ready_remove_insn (x);
	  goto restart;
	}
    }
  for (i = 0; i <= max_insn_queue_index; i++)
    {
      rtx_insn_list *link;
      int q = NEXT_Q_AFTER (q_ptr, i);

    restart_queue:
      for (link = insn_queue[q]; link; link = link->next ())
	{
	  rtx_insn *x = link->insn ();
	  if (TODO_SPEC (x) == DEP_CONTROL && cond_clobbered_p (x, t))
	    {
	      queue_remove (x);
	      goto restart_queue;
	    }
	}
    }
}

/* Return (in order):

   - positive if INSN adversely affects the pressure on one
     register class

   - negative if INSN reduces the pressure on one register class

   - 0 if INSN doesn't affect the pressure on any register class.  */

static int
model_classify_pressure (struct model_insn_info *insn)
{
  struct reg_pressure_data *reg_pressure;
  int death[N_REG_CLASSES];
  int pci, cl, sum;

  calculate_reg_deaths (insn->insn, death);
  reg_pressure = INSN_REG_PRESSURE (insn->insn);
  sum = 0;
  for (pci = 0; pci < ira_pressure_classes_num; pci++)
    {
      cl = ira_pressure_classes[pci];
      if (death[cl] < reg_pressure[pci].set_increase)
	return 1;
      sum += reg_pressure[pci].set_increase - death[cl];
    }
  return sum;
}

/* Return true if INSN1 should come before INSN2 in the model schedule.  */

static int
model_order_p (struct model_insn_info *insn1, struct model_insn_info *insn2)
{
  unsigned int height1, height2;
  unsigned int priority1, priority2;

  /* Prefer instructions with a higher model priority.  */
  if (insn1->model_priority != insn2->model_priority)
    return insn1->model_priority > insn2->model_priority;

  /* Combine the length of the longest path of satisfied true dependencies
     that leads to each instruction (depth) with the length of the longest
     path of any dependencies that leads from the instruction (alap).
     Prefer instructions with the greatest combined length.  If the combined
     lengths are equal, prefer instructions with the greatest depth.

     The idea is that, if we have a set S of "equal" instructions that each
     have ALAP value X, and we pick one such instruction I, any true-dependent
     successors of I that have ALAP value X - 1 should be preferred over S.
     This encourages the schedule to be "narrow" rather than "wide".
     However, if I is a low-priority instruction that we decided to
     schedule because of its model_classify_pressure, and if there
     is a set of higher-priority instructions T, the aforementioned
     successors of I should not have the edge over T.  */
  height1 = insn1->depth + insn1->alap;
  height2 = insn2->depth + insn2->alap;
  if (height1 != height2)
    return height1 > height2;
  if (insn1->depth != insn2->depth)
    return insn1->depth > insn2->depth;

  /* We have no real preference between INSN1 an INSN2 as far as attempts
     to reduce pressure go.  Prefer instructions with higher priorities.  */
  priority1 = INSN_PRIORITY (insn1->insn);
  priority2 = INSN_PRIORITY (insn2->insn);
  if (priority1 != priority2)
    return priority1 > priority2;

  /* Use the original rtl sequence as a tie-breaker.  */
  return insn1 < insn2;
}

/* Add INSN to the model worklist immediately after PREV.  Add it to the
   beginning of the list if PREV is null.  */

static void
model_add_to_worklist_at (struct model_insn_info *insn,
			  struct model_insn_info *prev)
{
  gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_NOWHERE);
  QUEUE_INDEX (insn->insn) = QUEUE_READY;

  insn->prev = prev;
  if (prev)
    {
      insn->next = prev->next;
      prev->next = insn;
    }
  else
    {
      insn->next = model_worklist;
      model_worklist = insn;
    }
  if (insn->next)
    insn->next->prev = insn;
}

/* Remove INSN from the model worklist.  */

static void
model_remove_from_worklist (struct model_insn_info *insn)
{
  gcc_assert (QUEUE_INDEX (insn->insn) == QUEUE_READY);
  QUEUE_INDEX (insn->insn) = QUEUE_NOWHERE;

  if (insn->prev)
    insn->prev->next = insn->next;
  else
    model_worklist = insn->next;
  if (insn->next)
    insn->next->prev = insn->prev;
}

/* Add INSN to the model worklist.  Start looking for a suitable position
   between neighbors PREV and NEXT, testing at most param_max_sched_ready_insns
   insns either side.  A null PREV indicates the beginning of the list and
   a null NEXT indicates the end.  */

static void
model_add_to_worklist (struct model_insn_info *insn,
		       struct model_insn_info *prev,
		       struct model_insn_info *next)
{
  int count;

  count = param_max_sched_ready_insns;
  if (count > 0 && prev && model_order_p (insn, prev))
    do
      {
	count--;
	prev = prev->prev;
      }
    while (count > 0 && prev && model_order_p (insn, prev));
  else
    while (count > 0 && next && model_order_p (next, insn))
      {
	count--;
	prev = next;
	next = next->next;
      }
  model_add_to_worklist_at (insn, prev);
}

/* INSN may now have a higher priority (in the model_order_p sense)
   than before.  Move it up the worklist if necessary.  */

static void
model_promote_insn (struct model_insn_info *insn)
{
  struct model_insn_info *prev;
  int count;

  prev = insn->prev;
  count = param_max_sched_ready_insns;
  while (count > 0 && prev && model_order_p (insn, prev))
    {
      count--;
      prev = prev->prev;
    }
  if (prev != insn->prev)
    {
      model_remove_from_worklist (insn);
      model_add_to_worklist_at (insn, prev);
    }
}

/* Add INSN to the end of the model schedule.  */

static void
model_add_to_schedule (rtx_insn *insn)
{
  unsigned int point;

  gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
  QUEUE_INDEX (insn) = QUEUE_SCHEDULED;

  point = model_schedule.length ();
  model_schedule.quick_push (insn);
  INSN_MODEL_INDEX (insn) = point + 1;
}

/* Analyze the instructions that are to be scheduled, setting up
   MODEL_INSN_INFO (...) and model_num_insns accordingly.  Add ready
   instructions to model_worklist.  */

static void
model_analyze_insns (void)
{
  rtx_insn *start, *end, *iter;
  sd_iterator_def sd_it;
  dep_t dep;
  struct model_insn_info *insn, *con;

  model_num_insns = 0;
  start = PREV_INSN (current_sched_info->next_tail);
  end = current_sched_info->prev_head;
  for (iter = start; iter != end; iter = PREV_INSN (iter))
    if (NONDEBUG_INSN_P (iter))
      {
	insn = MODEL_INSN_INFO (iter);
	insn->insn = iter;
	FOR_EACH_DEP (iter, SD_LIST_FORW, sd_it, dep)
	  {
	    con = MODEL_INSN_INFO (DEP_CON (dep));
	    if (con->insn && insn->alap < con->alap + 1)
	      insn->alap = con->alap + 1;
	  }

	insn->old_queue = QUEUE_INDEX (iter);
	QUEUE_INDEX (iter) = QUEUE_NOWHERE;

	insn->unscheduled_preds = dep_list_size (iter, SD_LIST_HARD_BACK);
	if (insn->unscheduled_preds == 0)
	  model_add_to_worklist (insn, NULL, model_worklist);

	model_num_insns++;
      }
}

/* The global state describes the register pressure at the start of the
   model schedule.  Initialize GROUP accordingly.  */

static void
model_init_pressure_group (struct model_pressure_group *group)
{
  int pci, cl;

  for (pci = 0; pci < ira_pressure_classes_num; pci++)
    {
      cl = ira_pressure_classes[pci];
      group->limits[pci].pressure = curr_reg_pressure[cl];
      group->limits[pci].point = 0;
    }
  /* Use index model_num_insns to record the state after the last
     instruction in the model schedule.  */
  group->model = XNEWVEC (struct model_pressure_data,
			  (model_num_insns + 1) * ira_pressure_classes_num);
}

/* Record that MODEL_REF_PRESSURE (GROUP, POINT, PCI) is PRESSURE.
   Update the maximum pressure for the whole schedule.  */

static void
model_record_pressure (struct model_pressure_group *group,
		       int point, int pci, int pressure)
{
  MODEL_REF_PRESSURE (group, point, pci) = pressure;
  if (group->limits[pci].pressure < pressure)
    {
      group->limits[pci].pressure = pressure;
      group->limits[pci].point = point;
    }
}

/* INSN has just been added to the end of the model schedule.  Record its
   register-pressure information.  */

static void
model_record_pressures (struct model_insn_info *insn)
{
  struct reg_pressure_data *reg_pressure;
  int point, pci, cl, delta;
  int death[N_REG_CLASSES];

  point = model_index (insn->insn);
  if (sched_verbose >= 2)
    {
      if (point == 0)
	{
	  fprintf (sched_dump, "\n;;\tModel schedule:\n;;\n");
	  fprintf (sched_dump, ";;\t| idx insn | mpri hght dpth prio |\n");
	}
      fprintf (sched_dump, ";;\t| %3d %4d | %4d %4d %4d %4d | %-30s ",
	       point, INSN_UID (insn->insn), insn->model_priority,
	       insn->depth + insn->alap, insn->depth,
	       INSN_PRIORITY (insn->insn),
	       str_pattern_slim (PATTERN (insn->insn)));
    }
  calculate_reg_deaths (insn->insn, death);
  reg_pressure = INSN_REG_PRESSURE (insn->insn);
  for (pci = 0; pci < ira_pressure_classes_num; pci++)
    {
      cl = ira_pressure_classes[pci];
      delta = reg_pressure[pci].set_increase - death[cl];
      if (sched_verbose >= 2)
	fprintf (sched_dump, " %s:[%d,%+d]", reg_class_names[cl],
		 curr_reg_pressure[cl], delta);
      model_record_pressure (&model_before_pressure, point, pci,
			     curr_reg_pressure[cl]);
    }
  if (sched_verbose >= 2)
    fprintf (sched_dump, "\n");
}

/* All instructions have been added to the model schedule.  Record the
   final register pressure in GROUP and set up all MODEL_MAX_PRESSUREs.  */

static void
model_record_final_pressures (struct model_pressure_group *group)
{
  int point, pci, max_pressure, ref_pressure, cl;

  for (pci = 0; pci < ira_pressure_classes_num; pci++)
    {
      /* Record the final pressure for this class.  */
      cl = ira_pressure_classes[pci];
      point = model_num_insns;
      ref_pressure = curr_reg_pressure[cl];
      model_record_pressure (group, point, pci, ref_pressure);

      /* Record the original maximum pressure.  */
      group->limits[pci].orig_pressure = group->limits[pci].pressure;

      /* Update the MODEL_MAX_PRESSURE for every point of the schedule.  */
      max_pressure = ref_pressure;
      MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
      while (point > 0)
	{
	  point--;
	  ref_pressure = MODEL_REF_PRESSURE (group, point, pci);
	  max_pressure = MAX (max_pressure, ref_pressure);
	  MODEL_MAX_PRESSURE (group, point, pci) = max_pressure;
	}
    }
}

/* Update all successors of INSN, given that INSN has just been scheduled.  */

static void
model_add_successors_to_worklist (struct model_insn_info *insn)
{
  sd_iterator_def sd_it;
  struct model_insn_info *con;
  dep_t dep;

  FOR_EACH_DEP (insn->insn, SD_LIST_FORW, sd_it, dep)
    {
      con = MODEL_INSN_INFO (DEP_CON (dep));
      /* Ignore debug instructions, and instructions from other blocks.  */
      if (con->insn)
	{
	  con->unscheduled_preds--;

	  /* Update the depth field of each true-dependent successor.
	     Increasing the depth gives them a higher priority than
	     before.  */
	  if (DEP_TYPE (dep) == REG_DEP_TRUE && con->depth < insn->depth + 1)
	    {
	      con->depth = insn->depth + 1;
	      if (QUEUE_INDEX (con->insn) == QUEUE_READY)
		model_promote_insn (con);
	    }

	  /* If this is a true dependency, or if there are no remaining
	     dependencies for CON (meaning that CON only had non-true
	     dependencies), make sure that CON is on the worklist.
	     We don't bother otherwise because it would tend to fill the
	     worklist with a lot of low-priority instructions that are not
	     yet ready to issue.  */
	  if ((con->depth > 0 || con->unscheduled_preds == 0)
	      && QUEUE_INDEX (con->insn) == QUEUE_NOWHERE)
	    model_add_to_worklist (con, insn, insn->next);
	}
    }
}

/* Give INSN a higher priority than any current instruction, then give
   unscheduled predecessors of INSN a higher priority still.  If any of
   those predecessors are not on the model worklist, do the same for its
   predecessors, and so on.  */

static void
model_promote_predecessors (struct model_insn_info *insn)
{
  struct model_insn_info *pro, *first;
  sd_iterator_def sd_it;
  dep_t dep;

  if (sched_verbose >= 7)
    fprintf (sched_dump, ";;\t+--- priority of %d = %d, priority of",
	     INSN_UID (insn->insn), model_next_priority);
  insn->model_priority = model_next_priority++;
  model_remove_from_worklist (insn);
  model_add_to_worklist_at (insn, NULL);

  first = NULL;
  for (;;)
    {
      FOR_EACH_DEP (insn->insn, SD_LIST_HARD_BACK, sd_it, dep)
	{
	  pro = MODEL_INSN_INFO (DEP_PRO (dep));
	  /* The first test is to ignore debug instructions, and instructions
	     from other blocks.  */
	  if (pro->insn
	      && pro->model_priority != model_next_priority
	      && QUEUE_INDEX (pro->insn) != QUEUE_SCHEDULED)
	    {
	      pro->model_priority = model_next_priority;
	      if (sched_verbose >= 7)
		fprintf (sched_dump, " %d", INSN_UID (pro->insn));
	      if (QUEUE_INDEX (pro->insn) == QUEUE_READY)
		{
		  /* PRO is already in the worklist, but it now has
		     a higher priority than before.  Move it at the
		     appropriate place.  */
		  model_remove_from_worklist (pro);
		  model_add_to_worklist (pro, NULL, model_worklist);
		}
	      else
		{
		  /* PRO isn't in the worklist.  Recursively process
		     its predecessors until we find one that is.  */
		  pro->next = first;
		  first = pro;
		}
	    }
	}
      if (!first)
	break;
      insn = first;
      first = insn->next;
    }
  if (sched_verbose >= 7)
    fprintf (sched_dump, " = %d\n", model_next_priority);
  model_next_priority++;
}

/* Pick one instruction from model_worklist and process it.  */

static void
model_choose_insn (void)
{
  struct model_insn_info *insn, *fallback;
  int count;

  if (sched_verbose >= 7)
    {
      fprintf (sched_dump, ";;\t+--- worklist:\n");
      insn = model_worklist;
      count = param_max_sched_ready_insns;
      while (count > 0 && insn)
	{
	  fprintf (sched_dump, ";;\t+---   %d [%d, %d, %d, %d][%d]\n",
		   INSN_UID (insn->insn), insn->model_priority,
		   insn->depth + insn->alap, insn->depth,
		   INSN_PRIORITY (insn->insn), insn->unscheduled_preds);
	  count--;
	  insn = insn->next;
	}
    }

  /* Look for a ready instruction whose model_classify_priority is zero
     or negative, picking the highest-priority one.  Adding such an
     instruction to the schedule now should do no harm, and may actually
     do some good.

     Failing that, see whether there is an instruction with the highest
     extant model_priority that is not yet ready, but which would reduce
     pressure if it became ready.  This is designed to catch cases like:

       (set (mem (reg R1)) (reg R2))

     where the instruction is the last remaining use of R1 and where the
     value of R2 is not yet available (or vice versa).  The death of R1
     means that this instruction already reduces pressure.  It is of
     course possible that the computation of R2 involves other registers
     that are hard to kill, but such cases are rare enough for this
     heuristic to be a win in general.

     Failing that, just pick the highest-priority instruction in the
     worklist.  */
  count = param_max_sched_ready_insns;
  insn = model_worklist;
  fallback = 0;
  for (;;)
    {
      if (count == 0 || !insn)
	{
	  insn = fallback ? fallback : model_worklist;
	  break;
	}
      if (insn->unscheduled_preds)
	{
	  if (model_worklist->model_priority == insn->model_priority
	      && !fallback
	      && model_classify_pressure (insn) < 0)
	    fallback = insn;
	}
      else
	{
	  if (model_classify_pressure (insn) <= 0)
	    break;
	}
      count--;
      insn = insn->next;
    }

  if (sched_verbose >= 7 && insn != model_worklist)
    {
      if (insn->unscheduled_preds)
	fprintf (sched_dump, ";;\t+--- promoting insn %d, with dependencies\n",
		 INSN_UID (insn->insn));
      else
	fprintf (sched_dump, ";;\t+--- promoting insn %d, which is ready\n",
		 INSN_UID (insn->insn));
    }
  if (insn->unscheduled_preds)
    /* INSN isn't yet ready to issue.  Give all its predecessors the
       highest priority.  */
    model_promote_predecessors (insn);
  else
    {
      /* INSN is ready.  Add it to the end of model_schedule and
	 process its successors.  */
      model_add_successors_to_worklist (insn);
      model_remove_from_worklist (insn);
      model_add_to_schedule (insn->insn);
      model_record_pressures (insn);
      update_register_pressure (insn->insn);
    }
}

/* Restore all QUEUE_INDEXs to the values that they had before
   model_start_schedule was called.  */

static void
model_reset_queue_indices (void)
{
  unsigned int i;
  rtx_insn *insn;

  FOR_EACH_VEC_ELT (model_schedule, i, insn)
    QUEUE_INDEX (insn) = MODEL_INSN_INFO (insn)->old_queue;
}

/* We have calculated the model schedule and spill costs.  Print a summary
   to sched_dump.  */

static void
model_dump_pressure_summary (basic_block bb)
{
  int pci, cl;

  fprintf (sched_dump, ";; Pressure summary (bb %d):", bb->index);
  for (pci = 0; pci < ira_pressure_classes_num; pci++)
    {
      cl = ira_pressure_classes[pci];
      fprintf (sched_dump, " %s:%d", reg_class_names[cl],
	       model_before_pressure.limits[pci].pressure);
    }
  fprintf (sched_dump, "\n\n");
}

/* Initialize the SCHED_PRESSURE_MODEL information for the current
   scheduling region.  */

static void
model_start_schedule (basic_block bb)
{
  model_next_priority = 1;
  model_schedule.create (sched_max_luid);
  model_insns = XCNEWVEC (struct model_insn_info, sched_max_luid);

  gcc_assert (bb == BLOCK_FOR_INSN (NEXT_INSN (current_sched_info->prev_head)));
  initiate_reg_pressure_info (df_get_live_in (bb));

  model_analyze_insns ();
  model_init_pressure_group (&model_before_pressure);
  while (model_worklist)
    model_choose_insn ();
  gcc_assert (model_num_insns == (int) model_schedule.length ());
  if (sched_verbose >= 2)
    fprintf (sched_dump, "\n");

  model_record_final_pressures (&model_before_pressure);
  model_reset_queue_indices ();

  XDELETEVEC (model_insns);

  model_curr_point = 0;
  initiate_reg_pressure_info (df_get_live_in (bb));
  if (sched_verbose >= 1)
    model_dump_pressure_summary (bb);
}

/* Free the information associated with GROUP.  */

static void
model_finalize_pressure_group (struct model_pressure_group *group)
{
  XDELETEVEC (group->model);
}

/* Free the information created by model_start_schedule.  */

static void
model_end_schedule (void)
{
  model_finalize_pressure_group (&model_before_pressure);
  model_schedule.release ();
}

/* Prepare reg pressure scheduling for basic block BB.  */
static void
sched_pressure_start_bb (basic_block bb)
{
  /* Set the number of available registers for each class taking into account
     relative probability of current basic block versus function prologue and
     epilogue.
     * If the basic block executes much more often than the prologue/epilogue
     (e.g., inside a hot loop), then cost of spill in the prologue is close to
     nil, so the effective number of available registers is
     (ira_class_hard_regs_num[cl] - fixed_regs_num[cl] - 0).
     * If the basic block executes as often as the prologue/epilogue,
     then spill in the block is as costly as in the prologue, so the effective
     number of available registers is
     (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
      - call_saved_regs_num[cl]).
     Note that all-else-equal, we prefer to spill in the prologue, since that
     allows "extra" registers for other basic blocks of the function.
     * If the basic block is on the cold path of the function and executes
     rarely, then we should always prefer to spill in the block, rather than
     in the prologue/epilogue.  The effective number of available register is
     (ira_class_hard_regs_num[cl] - fixed_regs_num[cl]
      - call_saved_regs_num[cl]).  */
  {
    int i;
    int entry_freq = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.to_frequency (cfun);
    int bb_freq = bb->count.to_frequency (cfun);

    if (bb_freq == 0)
      {
	if (entry_freq == 0)
	  entry_freq = bb_freq = 1;
      }
    if (bb_freq < entry_freq)
      bb_freq = entry_freq;

    for (i = 0; i < ira_pressure_classes_num; ++i)
      {
	enum reg_class cl = ira_pressure_classes[i];
	sched_class_regs_num[cl] = ira_class_hard_regs_num[cl]
				   - fixed_regs_num[cl];
	sched_class_regs_num[cl]
	  -= (call_saved_regs_num[cl] * entry_freq) / bb_freq;
      }
  }

  if (sched_pressure == SCHED_PRESSURE_MODEL)
    model_start_schedule (bb);
}

/* A structure that holds local state for the loop in schedule_block.  */
struct sched_block_state
{
  /* True if no real insns have been scheduled in the current cycle.  */
  bool first_cycle_insn_p;
  /* True if a shadow insn has been scheduled in the current cycle, which
     means that no more normal insns can be issued.  */
  bool shadows_only_p;
  /* True if we're winding down a modulo schedule, which means that we only
     issue insns with INSN_EXACT_TICK set.  */
  bool modulo_epilogue;
  /* Initialized with the machine's issue rate every cycle, and updated
     by calls to the variable_issue hook.  */
  int can_issue_more;
};

/* INSN is the "currently executing insn".  Launch each insn which was
   waiting on INSN.  READY is the ready list which contains the insns
   that are ready to fire.  CLOCK is the current cycle.  The function
   returns necessary cycle advance after issuing the insn (it is not
   zero for insns in a schedule group).  */

static int
schedule_insn (rtx_insn *insn)
{
  sd_iterator_def sd_it;
  dep_t dep;
  int i;
  int advance = 0;

  if (sched_verbose >= 1)
    {
      struct reg_pressure_data *pressure_info;
      fprintf (sched_dump, ";;\t%3i--> %s %-40s:",
	       clock_var, (*current_sched_info->print_insn) (insn, 1),
	       str_pattern_slim (PATTERN (insn)));

      if (recog_memoized (insn) < 0)
	fprintf (sched_dump, "nothing");
      else
	print_reservation (sched_dump, insn);
      pressure_info = INSN_REG_PRESSURE (insn);
      if (pressure_info != NULL)
	{
	  fputc (':', sched_dump);
	  for (i = 0; i < ira_pressure_classes_num; i++)
	    fprintf (sched_dump, "%s%s%+d(%d)",
		     scheduled_insns.length () > 1
		     && INSN_LUID (insn)
		     < INSN_LUID (scheduled_insns[scheduled_insns.length () - 2]) ? "@" : "",
		     reg_class_names[ira_pressure_classes[i]],
		     pressure_info[i].set_increase, pressure_info[i].change);
	}
      if (sched_pressure == SCHED_PRESSURE_MODEL
	  && model_curr_point < model_num_insns
	  && model_index (insn) == model_curr_point)
	fprintf (sched_dump, ":model %d", model_curr_point);
      fputc ('\n', sched_dump);
    }

  if (sched_pressure == SCHED_PRESSURE_WEIGHTED && !DEBUG_INSN_P (insn))
    update_reg_and_insn_max_reg_pressure (insn);

  /* Scheduling instruction should have all its dependencies resolved and
     should have been removed from the ready list.  */
  gcc_assert (sd_lists_empty_p (insn, SD_LIST_HARD_BACK));

  /* Reset debug insns invalidated by moving this insn.  */
  if (MAY_HAVE_DEBUG_BIND_INSNS && !DEBUG_INSN_P (insn))
    for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
	 sd_iterator_cond (&sd_it, &dep);)
      {
	rtx_insn *dbg = DEP_PRO (dep);
	struct reg_use_data *use, *next;

	if (DEP_STATUS (dep) & DEP_CANCELLED)
	  {
	    sd_iterator_next (&sd_it);
	    continue;
	  }

	gcc_assert (DEBUG_BIND_INSN_P (dbg));

	if (sched_verbose >= 6)
	  fprintf (sched_dump, ";;\t\tresetting: debug insn %d\n",
		   INSN_UID (dbg));

	/* ??? Rather than resetting the debug insn, we might be able
	   to emit a debug temp before the just-scheduled insn, but
	   this would involve checking that the expression at the
	   point of the debug insn is equivalent to the expression
	   before the just-scheduled insn.  They might not be: the
	   expression in the debug insn may depend on other insns not
	   yet scheduled that set MEMs, REGs or even other debug
	   insns.  It's not clear that attempting to preserve debug
	   information in these cases is worth the effort, given how
	   uncommon these resets are and the likelihood that the debug
	   temps introduced won't survive the schedule change.  */
	INSN_VAR_LOCATION_LOC (dbg) = gen_rtx_UNKNOWN_VAR_LOC ();
	df_insn_rescan (dbg);

	/* Unknown location doesn't use any registers.  */
	for (use = INSN_REG_USE_LIST (dbg); use != NULL; use = next)
	  {
	    struct reg_use_data *prev = use;

	    /* Remove use from the cyclic next_regno_use chain first.  */
	    while (prev->next_regno_use != use)
	      prev = prev->next_regno_use;
	    prev->next_regno_use = use->next_regno_use;
	    next = use->next_insn_use;
	    free (use);
	  }
	INSN_REG_USE_LIST (dbg) = NULL;

	/* We delete rather than resolve these deps, otherwise we
	   crash in sched_free_deps(), because forward deps are
	   expected to be released before backward deps.  */
	sd_delete_dep (sd_it);
      }

  gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
  QUEUE_INDEX (insn) = QUEUE_SCHEDULED;

  if (sched_pressure == SCHED_PRESSURE_MODEL
      && model_curr_point < model_num_insns
      && NONDEBUG_INSN_P (insn))
    {
      if (model_index (insn) == model_curr_point)
	do
	  model_curr_point++;
	while (model_curr_point < model_num_insns
	       && (QUEUE_INDEX (MODEL_INSN (model_curr_point))
		   == QUEUE_SCHEDULED));
      else
	model_recompute (insn);
      model_update_limit_points ();
      update_register_pressure (insn);
      if (sched_verbose >= 2)
	print_curr_reg_pressure ();
    }

  gcc_assert (INSN_TICK (insn) >= MIN_TICK);
  if (INSN_TICK (insn) > clock_var)
    /* INSN has been prematurely moved from the queue to the ready list.
       This is possible only if following flags are set.  */
    gcc_assert (flag_sched_stalled_insns || sched_fusion);

  /* ??? Probably, if INSN is scheduled prematurely, we should leave
     INSN_TICK untouched.  This is a machine-dependent issue, actually.  */
  INSN_TICK (insn) = clock_var;

  check_clobbered_conditions (insn);

  /* Update dependent instructions.  First, see if by scheduling this insn
     now we broke a dependence in a way that requires us to change another
     insn.  */
  for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
       sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
    {
      struct dep_replacement *desc = DEP_REPLACE (dep);
      rtx_insn *pro = DEP_PRO (dep);
      if (QUEUE_INDEX (pro) != QUEUE_SCHEDULED
	  && desc != NULL && desc->insn == pro)
	apply_replacement (dep, false);
    }

  /* Go through and resolve forward dependencies.  */
  for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
       sd_iterator_cond (&sd_it, &dep);)
    {
      rtx_insn *next = DEP_CON (dep);
      bool cancelled = (DEP_STATUS (dep) & DEP_CANCELLED) != 0;

      /* Resolve the dependence between INSN and NEXT.
	 sd_resolve_dep () moves current dep to another list thus
	 advancing the iterator.  */
      sd_resolve_dep (sd_it);

      if (cancelled)
	{
	  if (must_restore_pattern_p (next, dep))
	    restore_pattern (dep, false);
	  continue;
	}

      /* Don't bother trying to mark next as ready if insn is a debug
	 insn.  If insn is the last hard dependency, it will have
	 already been discounted.  */
      if (DEBUG_INSN_P (insn) && !DEBUG_INSN_P (next))
	continue;

      if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
	{
	  int effective_cost;

	  effective_cost = try_ready (next);

	  if (effective_cost >= 0
	      && SCHED_GROUP_P (next)
	      && advance < effective_cost)
	    advance = effective_cost;
	}
      else
	/* Check always has only one forward dependence (to the first insn in
	   the recovery block), therefore, this will be executed only once.  */
	{
	  gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
	  fix_recovery_deps (RECOVERY_BLOCK (insn));
	}
    }

  /* Annotate the instruction with issue information -- TImode
     indicates that the instruction is expected not to be able
     to issue on the same cycle as the previous insn.  A machine
     may use this information to decide how the instruction should
     be aligned.  */
  if (issue_rate > 1
      && GET_CODE (PATTERN (insn)) != USE
      && GET_CODE (PATTERN (insn)) != CLOBBER
      && !DEBUG_INSN_P (insn))
    {
      if (reload_completed)
	PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
      last_clock_var = clock_var;
    }

  if (nonscheduled_insns_begin != NULL_RTX)
    /* Indicate to debug counters that INSN is scheduled.  */
    nonscheduled_insns_begin = insn;

  return advance;
}

/* Functions for handling of notes.  */

/* Add note list that ends on FROM_END to the end of TO_ENDP.  */
void
concat_note_lists (rtx_insn *from_end, rtx_insn **to_endp)
{
  rtx_insn *from_start;

  /* It's easy when have nothing to concat.  */
  if (from_end == NULL)
    return;

  /* It's also easy when destination is empty.  */
  if (*to_endp == NULL)
    {
      *to_endp = from_end;
      return;
    }

  from_start = from_end;
  while (PREV_INSN (from_start) != NULL)
    from_start = PREV_INSN (from_start);

  SET_PREV_INSN (from_start) = *to_endp;
  SET_NEXT_INSN (*to_endp) = from_start;
  *to_endp = from_end;
}

/* Delete notes between HEAD and TAIL and put them in the chain
   of notes ended by NOTE_LIST.  */
void
remove_notes (rtx_insn *head, rtx_insn *tail)
{
  rtx_insn *next_tail, *insn, *next;

  note_list = 0;
  if (head == tail && !INSN_P (head))
    return;

  next_tail = NEXT_INSN (tail);
  for (insn = head; insn != next_tail; insn = next)
    {
      next = NEXT_INSN (insn);
      if (!NOTE_P (insn))
	continue;

      switch (NOTE_KIND (insn))
	{
	case NOTE_INSN_BASIC_BLOCK:
	  continue;

	case NOTE_INSN_EPILOGUE_BEG:
	  if (insn != tail)
	    {
	      remove_insn (insn);
	      /* If an insn was split just before the EPILOGUE_BEG note and
		 that split created new basic blocks, we could have a
		 BASIC_BLOCK note here.  Safely advance over it in that case
		 and assert that we land on a real insn.  */
	      if (NOTE_P (next)
		  && NOTE_KIND (next) == NOTE_INSN_BASIC_BLOCK
		  && next != next_tail)
		next = NEXT_INSN (next);
	      gcc_assert (INSN_P (next));
	      add_reg_note (next, REG_SAVE_NOTE,
			    GEN_INT (NOTE_INSN_EPILOGUE_BEG));
	      break;
	    }
	  /* FALLTHRU */

	default:
	  remove_insn (insn);

	  /* Add the note to list that ends at NOTE_LIST.  */
	  SET_PREV_INSN (insn) = note_list;
	  SET_NEXT_INSN (insn) = NULL_RTX;
	  if (note_list)
	    SET_NEXT_INSN (note_list) = insn;
	  note_list = insn;
	  break;
	}

      gcc_assert ((sel_sched_p () || insn != tail) && insn != head);
    }
}

/* A structure to record enough data to allow us to backtrack the scheduler to
   a previous state.  */
struct haifa_saved_data
{
  /* Next entry on the list.  */
  struct haifa_saved_data *next;

  /* Backtracking is associated with scheduling insns that have delay slots.
     DELAY_PAIR points to the structure that contains the insns involved, and
     the number of cycles between them.  */
  struct delay_pair *delay_pair;

  /* Data used by the frontend (e.g. sched-ebb or sched-rgn).  */
  void *fe_saved_data;
  /* Data used by the backend.  */
  void *be_saved_data;

  /* Copies of global state.  */
  int clock_var, last_clock_var;
  struct ready_list ready;
  state_t curr_state;

  rtx_insn *last_scheduled_insn;
  rtx_insn *last_nondebug_scheduled_insn;
  rtx_insn *nonscheduled_insns_begin;
  int cycle_issued_insns;

  /* Copies of state used in the inner loop of schedule_block.  */
  struct sched_block_state sched_block;

  /* We don't need to save q_ptr, as its value is arbitrary and we can set it
     to 0 when restoring.  */
  int q_size;
  rtx_insn_list **insn_queue;

  /* Describe pattern replacements that occurred since this backtrack point
     was queued.  */
  vec<dep_t> replacement_deps;
  vec<int> replace_apply;

  /* A copy of the next-cycle replacement vectors at the time of the backtrack
     point.  */
  vec<dep_t> next_cycle_deps;
  vec<int> next_cycle_apply;
};

/* A record, in reverse order, of all scheduled insns which have delay slots
   and may require backtracking.  */
static struct haifa_saved_data *backtrack_queue;

/* For every dependency of INSN, set the FEEDS_BACKTRACK_INSN bit according
   to SET_P.  */
static void
mark_backtrack_feeds (rtx_insn *insn, int set_p)
{
  sd_iterator_def sd_it;
  dep_t dep;
  FOR_EACH_DEP (insn, SD_LIST_HARD_BACK, sd_it, dep)
    {
      FEEDS_BACKTRACK_INSN (DEP_PRO (dep)) = set_p;
    }
}

/* Save the current scheduler state so that we can backtrack to it
   later if necessary.  PAIR gives the insns that make it necessary to
   save this point.  SCHED_BLOCK is the local state of schedule_block
   that need to be saved.  */
static void
save_backtrack_point (struct delay_pair *pair,
		      struct sched_block_state sched_block)
{
  int i;
  struct haifa_saved_data *save = XNEW (struct haifa_saved_data);

  save->curr_state = xmalloc (dfa_state_size);
  memcpy (save->curr_state, curr_state, dfa_state_size);

  save->ready.first = ready.first;
  save->ready.n_ready = ready.n_ready;
  save->ready.n_debug = ready.n_debug;
  save->ready.veclen = ready.veclen;
  save->ready.vec = XNEWVEC (rtx_insn *, ready.veclen);
  memcpy (save->ready.vec, ready.vec, ready.veclen * sizeof (rtx));

  save->insn_queue = XNEWVEC (rtx_insn_list *, max_insn_queue_index + 1);
  save->q_size = q_size;
  for (i = 0; i <= max_insn_queue_index; i++)
    {
      int q = NEXT_Q_AFTER (q_ptr, i);
      save->insn_queue[i] = copy_INSN_LIST (insn_queue[q]);
    }

  save->clock_var = clock_var;
  save->last_clock_var = last_clock_var;
  save->cycle_issued_insns = cycle_issued_insns;
  save->last_scheduled_insn = last_scheduled_insn;
  save->last_nondebug_scheduled_insn = last_nondebug_scheduled_insn;
  save->nonscheduled_insns_begin = nonscheduled_insns_begin;

  save->sched_block = sched_block;

  save->replacement_deps.create (0);
  save->replace_apply.create (0);
  save->next_cycle_deps = next_cycle_replace_deps.copy ();
  save->next_cycle_apply = next_cycle_apply.copy ();

  if (current_sched_info->save_state)
    save->fe_saved_data = (*current_sched_info->save_state) ();

  if (targetm.sched.alloc_sched_context)
    {
      save->be_saved_data = targetm.sched.alloc_sched_context ();
      targetm.sched.init_sched_context (save->be_saved_data, false);
    }
  else
    save->be_saved_data = NULL;

  save->delay_pair = pair;

  save->next = backtrack_queue;
  backtrack_queue = save;

  while (pair)
    {
      mark_backtrack_feeds (pair->i2, 1);
      INSN_TICK (pair->i2) = INVALID_TICK;
      INSN_EXACT_TICK (pair->i2) = clock_var + pair_delay (pair);
      SHADOW_P (pair->i2) = pair->stages == 0;
      pair = pair->next_same_i1;
    }
}

/* Walk the ready list and all queues. If any insns have unresolved backwards
   dependencies, these must be cancelled deps, broken by predication.  Set or
   clear (depending on SET) the DEP_CANCELLED bit in DEP_STATUS.  */

static void
toggle_cancelled_flags (bool set)
{
  int i;
  sd_iterator_def sd_it;
  dep_t dep;

  if (ready.n_ready > 0)
    {
      rtx_insn **first = ready_lastpos (&ready);
      for (i = 0; i < ready.n_ready; i++)
	FOR_EACH_DEP (first[i], SD_LIST_BACK, sd_it, dep)
	  if (!DEBUG_INSN_P (DEP_PRO (dep)))
	    {
	      if (set)
		DEP_STATUS (dep) |= DEP_CANCELLED;
	      else
		DEP_STATUS (dep) &= ~DEP_CANCELLED;
	    }
    }
  for (i = 0; i <= max_insn_queue_index; i++)
    {
      int q = NEXT_Q_AFTER (q_ptr, i);
      rtx_insn_list *link;
      for (link = insn_queue[q]; link; link = link->next ())
	{
	  rtx_insn *insn = link->insn ();
	  FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
	    if (!DEBUG_INSN_P (DEP_PRO (dep)))
	      {
		if (set)
		  DEP_STATUS (dep) |= DEP_CANCELLED;
		else
		  DEP_STATUS (dep) &= ~DEP_CANCELLED;
	      }
	}
    }
}

/* Undo the replacements that have occurred after backtrack point SAVE
   was placed.  */
static void
undo_replacements_for_backtrack (struct haifa_saved_data *save)
{
  while (!save->replacement_deps.is_empty ())
    {
      dep_t dep = save->replacement_deps.pop ();
      int apply_p = save->replace_apply.pop ();

      if (apply_p)
	restore_pattern (dep, true);
      else
	apply_replacement (dep, true);
    }
  save->replacement_deps.release ();
  save->replace_apply.release ();
}

/* Pop entries from the SCHEDULED_INSNS vector up to and including INSN.
   Restore their dependencies to an unresolved state, and mark them as
   queued nowhere.  */

static void
unschedule_insns_until (rtx_insn *insn)
{
  auto_vec<rtx_insn *> recompute_vec;

  /* Make two passes over the insns to be unscheduled.  First, we clear out
     dependencies and other trivial bookkeeping.  */
  for (;;)
    {
      rtx_insn *last;
      sd_iterator_def sd_it;
      dep_t dep;

      last = scheduled_insns.pop ();

      /* This will be changed by restore_backtrack_point if the insn is in
	 any queue.  */
      QUEUE_INDEX (last) = QUEUE_NOWHERE;
      if (last != insn)
	INSN_TICK (last) = INVALID_TICK;

      if (modulo_ii > 0 && INSN_UID (last) < modulo_iter0_max_uid)
	modulo_insns_scheduled--;

      for (sd_it = sd_iterator_start (last, SD_LIST_RES_FORW);
	   sd_iterator_cond (&sd_it, &dep);)
	{
	  rtx_insn *con = DEP_CON (dep);
	  sd_unresolve_dep (sd_it);
	  if (!MUST_RECOMPUTE_SPEC_P (con))
	    {
	      MUST_RECOMPUTE_SPEC_P (con) = 1;
	      recompute_vec.safe_push (con);
	    }
	}

      if (last == insn)
	break;
    }

  /* A second pass, to update ready and speculation status for insns
     depending on the unscheduled ones.  The first pass must have
     popped the scheduled_insns vector up to the point where we
     restart scheduling, as recompute_todo_spec requires it to be
     up-to-date.  */
  while (!recompute_vec.is_empty ())
    {
      rtx_insn *con;

      con = recompute_vec.pop ();
      MUST_RECOMPUTE_SPEC_P (con) = 0;
      if (!sd_lists_empty_p (con, SD_LIST_HARD_BACK))
	{
	  TODO_SPEC (con) = HARD_DEP;
	  INSN_TICK (con) = INVALID_TICK;
	  if (PREDICATED_PAT (con) != NULL_RTX)
	    haifa_change_pattern (con, ORIG_PAT (con));
	}
      else if (QUEUE_INDEX (con) != QUEUE_SCHEDULED)
	TODO_SPEC (con) = recompute_todo_spec (con, true);
    }
}

/* Restore scheduler state from the topmost entry on the backtracking queue.
   PSCHED_BLOCK_P points to the local data of schedule_block that we must
   overwrite with the saved data.
   The caller must already have called unschedule_insns_until.  */

static void
restore_last_backtrack_point (struct sched_block_state *psched_block)
{
  int i;
  struct haifa_saved_data *save = backtrack_queue;

  backtrack_queue = save->next;

  if (current_sched_info->restore_state)
    (*current_sched_info->restore_state) (save->fe_saved_data);

  if (targetm.sched.alloc_sched_context)
    {
      targetm.sched.set_sched_context (save->be_saved_data);
      targetm.sched.free_sched_context (save->be_saved_data);
    }

  /* Do this first since it clobbers INSN_TICK of the involved
     instructions.  */
  undo_replacements_for_backtrack (save);

  /* Clear the QUEUE_INDEX of everything in the ready list or one
     of the queues.  */
  if (ready.n_ready > 0)
    {
      rtx_insn **first = ready_lastpos (&ready);
      for (i = 0; i < ready.n_ready; i++)
	{
	  rtx_insn *insn = first[i];
	  QUEUE_INDEX (insn) = QUEUE_NOWHERE;
	  INSN_TICK (insn) = INVALID_TICK;
	}
    }
  for (i = 0; i <= max_insn_queue_index; i++)
    {
      int q = NEXT_Q_AFTER (q_ptr, i);

      for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
	{
	  rtx_insn *x = link->insn ();
	  QUEUE_INDEX (x) = QUEUE_NOWHERE;
	  INSN_TICK (x) = INVALID_TICK;
	}
      free_INSN_LIST_list (&insn_queue[q]);
    }

  free (ready.vec);
  ready = save->ready;

  if (ready.n_ready > 0)
    {
      rtx_insn **first = ready_lastpos (&ready);
      for (i = 0; i < ready.n_ready; i++)
	{
	  rtx_insn *insn = first[i];
	  QUEUE_INDEX (insn) = QUEUE_READY;
	  TODO_SPEC (insn) = recompute_todo_spec (insn, true);
	  INSN_TICK (insn) = save->clock_var;
	}
    }

  q_ptr = 0;
  q_size = save->q_size;
  for (i = 0; i <= max_insn_queue_index; i++)
    {
      int q = NEXT_Q_AFTER (q_ptr, i);

      insn_queue[q] = save->insn_queue[q];

      for (rtx_insn_list *link = insn_queue[q]; link; link = link->next ())
	{
	  rtx_insn *x = link->insn ();
	  QUEUE_INDEX (x) = i;
	  TODO_SPEC (x) = recompute_todo_spec (x, true);
	  INSN_TICK (x) = save->clock_var + i;
	}
    }
  free (save->insn_queue);

  toggle_cancelled_flags (true);

  clock_var = save->clock_var;
  last_clock_var = save->last_clock_var;
  cycle_issued_insns = save->cycle_issued_insns;
  last_scheduled_insn = save->last_scheduled_insn;
  last_nondebug_scheduled_insn = save->last_nondebug_scheduled_insn;
  nonscheduled_insns_begin = save->nonscheduled_insns_begin;

  *psched_block = save->sched_block;

  memcpy (curr_state, save->curr_state, dfa_state_size);
  free (save->curr_state);

  mark_backtrack_feeds (save->delay_pair->i2, 0);

  gcc_assert (next_cycle_replace_deps.is_empty ());
  next_cycle_replace_deps = save->next_cycle_deps.copy ();
  next_cycle_apply = save->next_cycle_apply.copy ();

  free (save);

  for (save = backtrack_queue; save; save = save->next)
    {
      mark_backtrack_feeds (save->delay_pair->i2, 1);
    }
}

/* Discard all data associated with the topmost entry in the backtrack
   queue.  If RESET_TICK is false, we just want to free the data.  If true,
   we are doing this because we discovered a reason to backtrack.  In the
   latter case, also reset the INSN_TICK for the shadow insn.  */
static void
free_topmost_backtrack_point (bool reset_tick)
{
  struct haifa_saved_data *save = backtrack_queue;
  int i;

  backtrack_queue = save->next;

  if (reset_tick)
    {
      struct delay_pair *pair = save->delay_pair;
      while (pair)
	{
	  INSN_TICK (pair->i2) = INVALID_TICK;
	  INSN_EXACT_TICK (pair->i2) = INVALID_TICK;
	  pair = pair->next_same_i1;
	}
      undo_replacements_for_backtrack (save);
    }
  else
    {
      save->replacement_deps.release ();
      save->replace_apply.release ();
    }

  if (targetm.sched.free_sched_context)
    targetm.sched.free_sched_context (save->be_saved_data);
  if (current_sched_info->restore_state)
    free (save->fe_saved_data);
  for (i = 0; i <= max_insn_queue_index; i++)
    free_INSN_LIST_list (&save->insn_queue[i]);
  free (save->insn_queue);
  free (save->curr_state);
  free (save->ready.vec);
  free (save);
}

/* Free the entire backtrack queue.  */
static void
free_backtrack_queue (void)
{
  while (backtrack_queue)
    free_topmost_backtrack_point (false);
}

/* Apply a replacement described by DESC.  If IMMEDIATELY is false, we
   may have to postpone the replacement until the start of the next cycle,
   at which point we will be called again with IMMEDIATELY true.  This is
   only done for machines which have instruction packets with explicit
   parallelism however.  */
static void
apply_replacement (dep_t dep, bool immediately)
{
  struct dep_replacement *desc = DEP_REPLACE (dep);
  if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
    {
      next_cycle_replace_deps.safe_push (dep);
      next_cycle_apply.safe_push (1);
    }
  else
    {
      bool success;

      if (QUEUE_INDEX (desc->insn) == QUEUE_SCHEDULED)
	return;

      if (sched_verbose >= 5)
	fprintf (sched_dump, "applying replacement for insn %d\n",
		 INSN_UID (desc->insn));

      success = validate_change (desc->insn, desc->loc, desc->newval, 0);
      gcc_assert (success);

      rtx_insn *insn = DEP_PRO (dep);

      /* Recompute priority since dependent priorities may have changed.  */
      priority (insn, true);
      update_insn_after_change (desc->insn);

      if ((TODO_SPEC (desc->insn) & (HARD_DEP | DEP_POSTPONED)) == 0)
	fix_tick_ready (desc->insn);

      if (backtrack_queue != NULL)
	{
	  backtrack_queue->replacement_deps.safe_push (dep);
	  backtrack_queue->replace_apply.safe_push (1);
	}
    }
}

/* We have determined that a pattern involved in DEP must be restored.
   If IMMEDIATELY is false, we may have to postpone the replacement
   until the start of the next cycle, at which point we will be called
   again with IMMEDIATELY true.  */
static void
restore_pattern (dep_t dep, bool immediately)
{
  rtx_insn *next = DEP_CON (dep);
  int tick = INSN_TICK (next);

  /* If we already scheduled the insn, the modified version is
     correct.  */
  if (QUEUE_INDEX (next) == QUEUE_SCHEDULED)
    return;

  if (!immediately && targetm.sched.exposed_pipeline && reload_completed)
    {
      next_cycle_replace_deps.safe_push (dep);
      next_cycle_apply.safe_push (0);
      return;
    }


  if (DEP_TYPE (dep) == REG_DEP_CONTROL)
    {
      if (sched_verbose >= 5)
	fprintf (sched_dump, "restoring pattern for insn %d\n",
		 INSN_UID (next));
      haifa_change_pattern (next, ORIG_PAT (next));
    }
  else
    {
      struct dep_replacement *desc = DEP_REPLACE (dep);
      bool success;

      if (sched_verbose >= 5)
	fprintf (sched_dump, "restoring pattern for insn %d\n",
		 INSN_UID (desc->insn));
      tick = INSN_TICK (desc->insn);

      success = validate_change (desc->insn, desc->loc, desc->orig, 0);
      gcc_assert (success);

      rtx_insn *insn = DEP_PRO (dep);

      if (QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
	{
	  /* Recompute priority since dependent priorities may have changed.  */
	  priority (insn, true);
	}

      update_insn_after_change (desc->insn);

      if (backtrack_queue != NULL)
	{
	  backtrack_queue->replacement_deps.safe_push (dep);
	  backtrack_queue->replace_apply.safe_push (0);
	}
    }
  INSN_TICK (next) = tick;
  if (TODO_SPEC (next) == DEP_POSTPONED)
    return;

  if (sd_lists_empty_p (next, SD_LIST_BACK))
    TODO_SPEC (next) = 0;
  else if (!sd_lists_empty_p (next, SD_LIST_HARD_BACK))
    TODO_SPEC (next) = HARD_DEP;
}

/* Perform pattern replacements that were queued up until the next
   cycle.  */
static void
perform_replacements_new_cycle (void)
{
  int i;
  dep_t dep;
  FOR_EACH_VEC_ELT (next_cycle_replace_deps, i, dep)
    {
      int apply_p = next_cycle_apply[i];
      if (apply_p)
	apply_replacement (dep, true);
      else
	restore_pattern (dep, true);
    }
  next_cycle_replace_deps.truncate (0);
  next_cycle_apply.truncate (0);
}

/* Compute INSN_TICK_ESTIMATE for INSN.  PROCESSED is a bitmap of
   instructions we've previously encountered, a set bit prevents
   recursion.  BUDGET is a limit on how far ahead we look, it is
   reduced on recursive calls.  Return true if we produced a good
   estimate, or false if we exceeded the budget.  */
static bool
estimate_insn_tick (bitmap processed, rtx_insn *insn, int budget)
{
  sd_iterator_def sd_it;
  dep_t dep;
  int earliest = INSN_TICK (insn);

  FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
    {
      rtx_insn *pro = DEP_PRO (dep);
      int t;

      if (DEP_STATUS (dep) & DEP_CANCELLED)
	continue;

      if (QUEUE_INDEX (pro) == QUEUE_SCHEDULED)
	gcc_assert (INSN_TICK (pro) + dep_cost (dep) <= INSN_TICK (insn));
      else
	{
	  int cost = dep_cost (dep);
	  if (cost >= budget)
	    return false;
	  if (!bitmap_bit_p (processed, INSN_LUID (pro)))
	    {
	      if (!estimate_insn_tick (processed, pro, budget - cost))
		return false;
	    }
	  gcc_assert (INSN_TICK_ESTIMATE (pro) != INVALID_TICK);
	  t = INSN_TICK_ESTIMATE (pro) + cost;
	  if (earliest == INVALID_TICK || t > earliest)
	    earliest = t;
	}
    }
  bitmap_set_bit (processed, INSN_LUID (insn));
  INSN_TICK_ESTIMATE (insn) = earliest;
  return true;
}

/* Examine the pair of insns in P, and estimate (optimistically, assuming
   infinite resources) the cycle in which the delayed shadow can be issued.
   Return the number of cycles that must pass before the real insn can be
   issued in order to meet this constraint.  */
static int
estimate_shadow_tick (struct delay_pair *p)
{
  auto_bitmap processed;
  int t;
  bool cutoff;

  cutoff = !estimate_insn_tick (processed, p->i2,
				max_insn_queue_index + pair_delay (p));
  if (cutoff)
    return max_insn_queue_index;
  t = INSN_TICK_ESTIMATE (p->i2) - (clock_var + pair_delay (p) + 1);
  if (t > 0)
    return t;
  return 0;
}

/* If INSN has no unresolved backwards dependencies, add it to the schedule and
   recursively resolve all its forward dependencies.  */
static void
resolve_dependencies (rtx_insn *insn)
{
  sd_iterator_def sd_it;
  dep_t dep;

  /* Don't use sd_lists_empty_p; it ignores debug insns.  */
  if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (insn)) != NULL
      || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (insn)) != NULL)
    return;

  if (sched_verbose >= 4)
    fprintf (sched_dump, ";;\tquickly resolving %d\n", INSN_UID (insn));

  if (QUEUE_INDEX (insn) >= 0)
    queue_remove (insn);

  scheduled_insns.safe_push (insn);

  /* Update dependent instructions.  */
  for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
       sd_iterator_cond (&sd_it, &dep);)
    {
      rtx_insn *next = DEP_CON (dep);

      if (sched_verbose >= 4)
	fprintf (sched_dump, ";;\t\tdep %d against %d\n", INSN_UID (insn),
		 INSN_UID (next));

      /* Resolve the dependence between INSN and NEXT.
	 sd_resolve_dep () moves current dep to another list thus
	 advancing the iterator.  */
      sd_resolve_dep (sd_it);

      if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
	{
	  resolve_dependencies (next);
	}
      else
	/* Check always has only one forward dependence (to the first insn in
	   the recovery block), therefore, this will be executed only once.  */
	{
	  gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
	}
    }
}


/* Return the head and tail pointers of ebb starting at BEG and ending
   at END.  */
void
get_ebb_head_tail (basic_block beg, basic_block end,
		   rtx_insn **headp, rtx_insn **tailp)
{
  rtx_insn *beg_head = BB_HEAD (beg);
  rtx_insn * beg_tail = BB_END (beg);
  rtx_insn * end_head = BB_HEAD (end);
  rtx_insn * end_tail = BB_END (end);

  /* Don't include any notes or labels at the beginning of the BEG
     basic block, or notes at the end of the END basic blocks.  */

  if (LABEL_P (beg_head))
    beg_head = NEXT_INSN (beg_head);

  while (beg_head != beg_tail)
    if (NOTE_P (beg_head))
      beg_head = NEXT_INSN (beg_head);
    else if (DEBUG_INSN_P (beg_head))
      {
	rtx_insn * note, *next;

	for (note = NEXT_INSN (beg_head);
	     note != beg_tail;
	     note = next)
	  {
	    next = NEXT_INSN (note);
	    if (NOTE_P (note))
	      {
		if (sched_verbose >= 9)
		  fprintf (sched_dump, "reorder %i\n", INSN_UID (note));

		reorder_insns_nobb (note, note, PREV_INSN (beg_head));

		if (BLOCK_FOR_INSN (note) != beg)
		  df_insn_change_bb (note, beg);
	      }
	    else if (!DEBUG_INSN_P (note))
	      break;
	  }

	break;
      }
    else
      break;

  *headp = beg_head;

  if (beg == end)
    end_head = beg_head;
  else if (LABEL_P (end_head))
    end_head = NEXT_INSN (end_head);

  while (end_head != end_tail)
    if (NOTE_P (end_tail))
      end_tail = PREV_INSN (end_tail);
    else if (DEBUG_INSN_P (end_tail))
      {
	rtx_insn * note, *prev;

	for (note = PREV_INSN (end_tail);
	     note != end_head;
	     note = prev)
	  {
	    prev = PREV_INSN (note);
	    if (NOTE_P (note))
	      {
		if (sched_verbose >= 9)
		  fprintf (sched_dump, "reorder %i\n", INSN_UID (note));

		reorder_insns_nobb (note, note, end_tail);

		if (end_tail == BB_END (end))
		  BB_END (end) = note;

		if (BLOCK_FOR_INSN (note) != end)
		  df_insn_change_bb (note, end);
	      }
	    else if (!DEBUG_INSN_P (note))
	      break;
	  }

	break;
      }
    else
      break;

  *tailp = end_tail;
}

/* Return true if there are no real insns in the range [ HEAD, TAIL ].  */

bool
no_real_insns_p (const rtx_insn *head, const rtx_insn *tail)
{
  while (head != NEXT_INSN (tail))
    {
      if (!NOTE_P (head) && !LABEL_P (head))
	return false;
      head = NEXT_INSN (head);
    }
  return true;
}

/* Restore-other-notes: NOTE_LIST is the end of a chain of notes
   previously found among the insns.  Insert them just before HEAD.  */
rtx_insn *
restore_other_notes (rtx_insn *head, basic_block head_bb)
{
  if (note_list != 0)
    {
      rtx_insn *note_head = note_list;

      if (head)
	head_bb = BLOCK_FOR_INSN (head);
      else
	head = NEXT_INSN (bb_note (head_bb));

      while (PREV_INSN (note_head))
	{
	  set_block_for_insn (note_head, head_bb);
	  note_head = PREV_INSN (note_head);
	}
      /* In the above cycle we've missed this note.  */
      set_block_for_insn (note_head, head_bb);

      SET_PREV_INSN (note_head) = PREV_INSN (head);
      SET_NEXT_INSN (PREV_INSN (head)) = note_head;
      SET_PREV_INSN (head) = note_list;
      SET_NEXT_INSN (note_list) = head;

      if (BLOCK_FOR_INSN (head) != head_bb)
	BB_END (head_bb) = note_list;

      head = note_head;
    }

  return head;
}

/* When we know we are going to discard the schedule due to a failed attempt
   at modulo scheduling, undo all replacements.  */
static void
undo_all_replacements (void)
{
  rtx_insn *insn;
  int i;

  FOR_EACH_VEC_ELT (scheduled_insns, i, insn)
    {
      sd_iterator_def sd_it;
      dep_t dep;

      /* See if we must undo a replacement.  */
      for (sd_it = sd_iterator_start (insn, SD_LIST_RES_FORW);
	   sd_iterator_cond (&sd_it, &dep); sd_iterator_next (&sd_it))
	{
	  struct dep_replacement *desc = DEP_REPLACE (dep);
	  if (desc != NULL)
	    validate_change (desc->insn, desc->loc, desc->orig, 0);
	}
    }
}

/* Return first non-scheduled insn in the current scheduling block.
   This is mostly used for debug-counter purposes.  */
static rtx_insn *
first_nonscheduled_insn (void)
{
  rtx_insn *insn = (nonscheduled_insns_begin != NULL_RTX
		    ? nonscheduled_insns_begin
		    : current_sched_info->prev_head);

  do
    {
      insn = next_nonnote_nondebug_insn (insn);
    }
  while (QUEUE_INDEX (insn) == QUEUE_SCHEDULED);

  return insn;
}

/* Move insns that became ready to fire from queue to ready list.  */

static void
queue_to_ready (struct ready_list *ready)
{
  rtx_insn *insn;
  rtx_insn_list *link;
  rtx_insn *skip_insn;

  q_ptr = NEXT_Q (q_ptr);

  if (dbg_cnt (sched_insn) == false)
    /* If debug counter is activated do not requeue the first
       nonscheduled insn.  */
    skip_insn = first_nonscheduled_insn ();
  else
    skip_insn = NULL;

  /* Add all pending insns that can be scheduled without stalls to the
     ready list.  */
  for (link = insn_queue[q_ptr]; link; link = link->next ())
    {
      insn = link->insn ();
      q_size -= 1;

      if (sched_verbose >= 2)
	fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
		 (*current_sched_info->print_insn) (insn, 0));

      /* If the ready list is full, delay the insn for 1 cycle.
	 See the comment in schedule_block for the rationale.  */
      if (!reload_completed
	  && (ready->n_ready - ready->n_debug > param_max_sched_ready_insns
	      || (sched_pressure == SCHED_PRESSURE_MODEL
		  /* Limit pressure recalculations to
		     param_max_sched_ready_insns instructions too.  */
		  && model_index (insn) > (model_curr_point
					   + param_max_sched_ready_insns)))
	  && !(sched_pressure == SCHED_PRESSURE_MODEL
	       && model_curr_point < model_num_insns
	       /* Always allow the next model instruction to issue.  */
	       && model_index (insn) == model_curr_point)
	  && !SCHED_GROUP_P (insn)
	  && insn != skip_insn)
	{
	  if (sched_verbose >= 2)
	    fprintf (sched_dump, "keeping in queue, ready full\n");
	  queue_insn (insn, 1, "ready full");
	}
      else
	{
	  ready_add (ready, insn, false);
	  if (sched_verbose >= 2)
	    fprintf (sched_dump, "moving to ready without stalls\n");
        }
    }
  free_INSN_LIST_list (&insn_queue[q_ptr]);

  /* If there are no ready insns, stall until one is ready and add all
     of the pending insns at that point to the ready list.  */
  if (ready->n_ready == 0)
    {
      int stalls;

      for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
	{
	  if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
	    {
	      for (; link; link = link->next ())
		{
		  insn = link->insn ();
		  q_size -= 1;

		  if (sched_verbose >= 2)
		    fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
			     (*current_sched_info->print_insn) (insn, 0));

		  ready_add (ready, insn, false);
		  if (sched_verbose >= 2)
		    fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
		}
	      free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);

	      advance_one_cycle ();

	      break;
	    }

	  advance_one_cycle ();
	}

      q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
      clock_var += stalls;
      if (sched_verbose >= 2)
	fprintf (sched_dump, ";;\tAdvancing clock by %d cycle[s] to %d\n",
		 stalls, clock_var);
    }
}

/* Used by early_queue_to_ready.  Determines whether it is "ok" to
   prematurely move INSN from the queue to the ready list.  Currently,
   if a target defines the hook 'is_costly_dependence', this function
   uses the hook to check whether there exist any dependences which are
   considered costly by the target, between INSN and other insns that
   have already been scheduled.  Dependences are checked up to Y cycles
   back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
   controlling this value.
   (Other considerations could be taken into account instead (or in
   addition) depending on user flags and target hooks.  */

static bool
ok_for_early_queue_removal (rtx_insn *insn)
{
  if (targetm.sched.is_costly_dependence)
    {
      int n_cycles;
      int i = scheduled_insns.length ();
      for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
	{
	  while (i-- > 0)
	    {
	      int cost;

	      rtx_insn *prev_insn = scheduled_insns[i];

	      if (!NOTE_P (prev_insn))
		{
		  dep_t dep;

		  dep = sd_find_dep_between (prev_insn, insn, true);

		  if (dep != NULL)
		    {
		      cost = dep_cost (dep);

		      if (targetm.sched.is_costly_dependence (dep, cost,
				flag_sched_stalled_insns_dep - n_cycles))
			return false;
		    }
		}

	      if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
		break;
	    }

	  if (i == 0)
	    break;
	}
    }

  return true;
}


/* Remove insns from the queue, before they become "ready" with respect
   to FU latency considerations.  */

static int
early_queue_to_ready (state_t state, struct ready_list *ready)
{
  rtx_insn *insn;
  rtx_insn_list *link;
  rtx_insn_list *next_link;
  rtx_insn_list *prev_link;
  bool move_to_ready;
  int cost;
  state_t temp_state = alloca (dfa_state_size);
  int stalls;
  int insns_removed = 0;

  /*
     Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
     function:

     X == 0: There is no limit on how many queued insns can be removed
             prematurely.  (flag_sched_stalled_insns = -1).

     X >= 1: Only X queued insns can be removed prematurely in each
	     invocation.  (flag_sched_stalled_insns = X).

     Otherwise: Early queue removal is disabled.
         (flag_sched_stalled_insns = 0)
  */

  if (! flag_sched_stalled_insns)
    return 0;

  for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
    {
      if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
	{
	  if (sched_verbose > 6)
	    fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);

	  prev_link = 0;
	  while (link)
	    {
	      next_link = link->next ();
	      insn = link->insn ();
	      if (insn && sched_verbose > 6)
		print_rtl_single (sched_dump, insn);

	      memcpy (temp_state, state, dfa_state_size);
	      if (recog_memoized (insn) < 0)
		/* non-negative to indicate that it's not ready
		   to avoid infinite Q->R->Q->R... */
		cost = 0;
	      else
		cost = state_transition (temp_state, insn);

	      if (sched_verbose >= 6)
		fprintf (sched_dump, "transition cost = %d\n", cost);

	      move_to_ready = false;
	      if (cost < 0)
		{
		  move_to_ready = ok_for_early_queue_removal (insn);
		  if (move_to_ready == true)
		    {
		      /* move from Q to R */
		      q_size -= 1;
		      ready_add (ready, insn, false);

		      if (prev_link)
			XEXP (prev_link, 1) = next_link;
		      else
			insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;

		      free_INSN_LIST_node (link);

		      if (sched_verbose >= 2)
			fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
				 (*current_sched_info->print_insn) (insn, 0));

		      insns_removed++;
		      if (insns_removed == flag_sched_stalled_insns)
			/* Remove no more than flag_sched_stalled_insns insns
			   from Q at a time.  */
			return insns_removed;
		    }
		}

	      if (move_to_ready == false)
		prev_link = link;

	      link = next_link;
	    } /* while link */
	} /* if link */

    } /* for stalls.. */

  return insns_removed;
}


/* Print the ready list for debugging purposes.
   If READY_TRY is non-zero then only print insns that max_issue
   will consider.  */
static void
debug_ready_list_1 (struct ready_list *ready, signed char *ready_try)
{
  rtx_insn **p;
  int i;

  if (ready->n_ready == 0)
    {
      fprintf (sched_dump, "\n");
      return;
    }

  p = ready_lastpos (ready);
  for (i = 0; i < ready->n_ready; i++)
    {
      if (ready_try != NULL && ready_try[ready->n_ready - i - 1])
	continue;

      fprintf (sched_dump, "  %s:%d",
	       (*current_sched_info->print_insn) (p[i], 0),
	       INSN_LUID (p[i]));
      if (sched_pressure != SCHED_PRESSURE_NONE)
	fprintf (sched_dump, "(cost=%d",
		 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p[i]));
      fprintf (sched_dump, ":prio=%d", INSN_PRIORITY (p[i]));
      if (INSN_TICK (p[i]) > clock_var)
	fprintf (sched_dump, ":delay=%d", INSN_TICK (p[i]) - clock_var);
      if (sched_pressure == SCHED_PRESSURE_MODEL)
	fprintf (sched_dump, ":idx=%d",
		 model_index (p[i]));
      if (sched_pressure != SCHED_PRESSURE_NONE)
	fprintf (sched_dump, ")");
    }
  fprintf (sched_dump, "\n");
}

/* Print the ready list.  Callable from debugger.  */
static void
debug_ready_list (struct ready_list *ready)
{
  debug_ready_list_1 (ready, NULL);
}

/* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
   NOTEs.  This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
   replaces the epilogue note in the correct basic block.  */
void
reemit_notes (rtx_insn *insn)
{
  rtx note;
  rtx_insn *last = insn;

  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
    {
      if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
	{
	  enum insn_note note_type = (enum insn_note) INTVAL (XEXP (note, 0));

	  last = emit_note_before (note_type, last);
	  remove_note (insn, note);
	  df_insn_create_insn_record (last);
	}
    }
}

/* Move INSN.  Reemit notes if needed.  Update CFG, if needed.  */
static void
move_insn (rtx_insn *insn, rtx_insn *last, rtx nt)
{
  if (PREV_INSN (insn) != last)
    {
      basic_block bb;
      rtx_insn *note;
      int jump_p = 0;

      bb = BLOCK_FOR_INSN (insn);

      /* BB_HEAD is either LABEL or NOTE.  */
      gcc_assert (BB_HEAD (bb) != insn);

      if (BB_END (bb) == insn)
	/* If this is last instruction in BB, move end marker one
	   instruction up.  */
	{
	  /* Jumps are always placed at the end of basic block.  */
	  jump_p = control_flow_insn_p (insn);

	  gcc_assert (!jump_p
		      || ((common_sched_info->sched_pass_id == SCHED_RGN_PASS)
			  && IS_SPECULATION_BRANCHY_CHECK_P (insn))
		      || (common_sched_info->sched_pass_id
			  == SCHED_EBB_PASS));

	  gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);

	  BB_END (bb) = PREV_INSN (insn);
	}

      gcc_assert (BB_END (bb) != last);

      if (jump_p)
	/* We move the block note along with jump.  */
	{
	  gcc_assert (nt);

	  note = NEXT_INSN (insn);
	  while (NOTE_NOT_BB_P (note) && note != nt)
	    note = NEXT_INSN (note);

	  if (note != nt
	      && (LABEL_P (note)
		  || BARRIER_P (note)))
	    note = NEXT_INSN (note);

	  gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
	}
      else
	note = insn;

      SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
      SET_PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);

      SET_NEXT_INSN (note) = NEXT_INSN (last);
      SET_PREV_INSN (NEXT_INSN (last)) = note;

      SET_NEXT_INSN (last) = insn;
      SET_PREV_INSN (insn) = last;

      bb = BLOCK_FOR_INSN (last);

      if (jump_p)
	{
	  fix_jump_move (insn);

	  if (BLOCK_FOR_INSN (insn) != bb)
	    move_block_after_check (insn);

	  gcc_assert (BB_END (bb) == last);
	}

      df_insn_change_bb (insn, bb);

      /* Update BB_END, if needed.  */
      if (BB_END (bb) == last)
	BB_END (bb) = insn;
    }

  SCHED_GROUP_P (insn) = 0;
}

/* Return true if scheduling INSN will finish current clock cycle.  */
static bool
insn_finishes_cycle_p (rtx_insn *insn)
{
  if (SCHED_GROUP_P (insn))
    /* After issuing INSN, rest of the sched_group will be forced to issue
       in order.  Don't make any plans for the rest of cycle.  */
    return true;

  /* Finishing the block will, apparently, finish the cycle.  */
  if (current_sched_info->insn_finishes_block_p
      && current_sched_info->insn_finishes_block_p (insn))
    return true;

  return false;
}

/* Helper for autopref_multipass_init.  Given a SET in PAT and whether
   we're expecting a memory WRITE or not, check that the insn is relevant to
   the autoprefetcher modelling code.  Return true iff that is the case.
   If it is relevant, record the base register of the memory op in BASE and
   the offset in OFFSET.  */

static bool
analyze_set_insn_for_autopref (rtx pat, bool write, rtx *base, int *offset)
{
  if (GET_CODE (pat) != SET)
    return false;

  rtx mem = write ? SET_DEST (pat) : SET_SRC (pat);
  if (!MEM_P (mem))
    return false;

  struct address_info info;
  decompose_mem_address (&info, mem);

  /* TODO: Currently only (base+const) addressing is supported.  */
  if (info.base == NULL || !REG_P (*info.base)
      || (info.disp != NULL && !CONST_INT_P (*info.disp)))
    return false;

  *base = *info.base;
  *offset = info.disp ? INTVAL (*info.disp) : 0;
  return true;
}

/* Functions to model cache auto-prefetcher.

   Some of the CPUs have cache auto-prefetcher, which /seems/ to initiate
   memory prefetches if it sees instructions with consequitive memory accesses
   in the instruction stream.  Details of such hardware units are not published,
   so we can only guess what exactly is going on there.
   In the scheduler, we model abstract auto-prefetcher.  If there are memory
   insns in the ready list (or the queue) that have same memory base, but
   different offsets, then we delay the insns with larger offsets until insns
   with smaller offsets get scheduled.  If PARAM_SCHED_AUTOPREF_QUEUE_DEPTH
   is "1", then we look at the ready list; if it is N>1, then we also look
   through N-1 queue entries.
   If the param is N>=0, then rank_for_schedule will consider auto-prefetching
   among its heuristics.
   Param value of "-1" disables modelling of the auto-prefetcher.  */

/* Initialize autoprefetcher model data for INSN.  */
static void
autopref_multipass_init (const rtx_insn *insn, int write)
{
  autopref_multipass_data_t data = &INSN_AUTOPREF_MULTIPASS_DATA (insn)[write];

  gcc_assert (data->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED);
  data->base = NULL_RTX;
  data->offset = 0;
  /* Set insn entry initialized, but not relevant for auto-prefetcher.  */
  data->status = AUTOPREF_MULTIPASS_DATA_IRRELEVANT;

  rtx pat = PATTERN (insn);

  /* We have a multi-set insn like a load-multiple or store-multiple.
     We care about these as long as all the memory ops inside the PARALLEL
     have the same base register.  We care about the minimum and maximum
     offsets from that base but don't check for the order of those offsets
     within the PARALLEL insn itself.  */
  if (GET_CODE (pat) == PARALLEL)
    {
      int n_elems = XVECLEN (pat, 0);

      int i, offset;
      rtx base, prev_base = NULL_RTX;
      int min_offset = INT_MAX;

      for (i = 0; i < n_elems; i++)
	{
	  rtx set = XVECEXP (pat, 0, i);
	  if (GET_CODE (set) != SET)
	    return;

	  if (!analyze_set_insn_for_autopref (set, write, &base, &offset))
	    return;

	  /* Ensure that all memory operations in the PARALLEL use the same
	     base register.  */
	  if (i > 0 && REGNO (base) != REGNO (prev_base))
	    return;
	  prev_base = base;
	  min_offset = MIN (min_offset, offset);
	}

      /* If we reached here then we have a valid PARALLEL of multiple memory ops
	 with prev_base as the base and min_offset containing the offset.  */
      gcc_assert (prev_base);
      data->base = prev_base;
      data->offset = min_offset;
      data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
      return;
    }

  /* Otherwise this is a single set memory operation.  */
  rtx set = single_set (insn);
  if (set == NULL_RTX)
    return;

  if (!analyze_set_insn_for_autopref (set, write, &data->base,
				       &data->offset))
    return;

  /* This insn is relevant for the auto-prefetcher.
     The base and offset fields will have been filled in the
     analyze_set_insn_for_autopref call above.  */
  data->status = AUTOPREF_MULTIPASS_DATA_NORMAL;
}

/* Helper function for rank_for_schedule sorting.  */
static int
autopref_rank_for_schedule (const rtx_insn *insn1, const rtx_insn *insn2)
{
  int r = 0;
  for (int write = 0; write < 2 && !r; ++write)
    {
      autopref_multipass_data_t data1
	= &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
      autopref_multipass_data_t data2
	= &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];

      if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
	autopref_multipass_init (insn1, write);

      if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
	autopref_multipass_init (insn2, write);

      int irrel1 = data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT;
      int irrel2 = data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT;

      if (!irrel1 && !irrel2)
	/* Sort memory references from lowest offset to the largest.  */
	r = (data1->offset > data2->offset) - (data1->offset < data2->offset);
      else if (write)
	/* Schedule "irrelevant" insns before memory stores to resolve
	   as many producer dependencies of stores as possible.  */
	r = irrel2 - irrel1;
      else
	/* Schedule "irrelevant" insns after memory reads to avoid breaking
	   memory read sequences.  */
	r = irrel1 - irrel2;
    }

  return r;
}

/* True if header of debug dump was printed.  */
static bool autopref_multipass_dfa_lookahead_guard_started_dump_p;

/* Helper for autopref_multipass_dfa_lookahead_guard.
   Return "1" if INSN1 should be delayed in favor of INSN2.  */
static int
autopref_multipass_dfa_lookahead_guard_1 (const rtx_insn *insn1,
					  const rtx_insn *insn2, int write)
{
  autopref_multipass_data_t data1
    = &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];
  autopref_multipass_data_t data2
    = &INSN_AUTOPREF_MULTIPASS_DATA (insn2)[write];

  if (data2->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
    autopref_multipass_init (insn2, write);
  if (data2->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
    return 0;

  if (rtx_equal_p (data1->base, data2->base)
      && data1->offset > data2->offset)
    {
      if (sched_verbose >= 2)
	{
          if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
	    {
	      fprintf (sched_dump,
		       ";;\t\tnot trying in max_issue due to autoprefetch "
		       "model: ");
	      autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
	    }

	  fprintf (sched_dump, " %d(%d)", INSN_UID (insn1), INSN_UID (insn2));
	}

      return 1;
    }

  return 0;
}

/* General note:

   We could have also hooked autoprefetcher model into
   first_cycle_multipass_backtrack / first_cycle_multipass_issue hooks
   to enable intelligent selection of "[r1+0]=r2; [r1+4]=r3" on the same cycle
   (e.g., once "[r1+0]=r2" is issued in max_issue(), "[r1+4]=r3" gets
   unblocked).  We don't bother about this yet because target of interest
   (ARM Cortex-A15) can issue only 1 memory operation per cycle.  */

/* Implementation of first_cycle_multipass_dfa_lookahead_guard hook.
   Return "1" if INSN1 should not be considered in max_issue due to
   auto-prefetcher considerations.  */
int
autopref_multipass_dfa_lookahead_guard (rtx_insn *insn1, int ready_index)
{
  int r = 0;

  /* Exit early if the param forbids this or if we're not entering here through
     normal haifa scheduling.  This can happen if selective scheduling is
     explicitly enabled.  */
  if (!insn_queue || param_sched_autopref_queue_depth <= 0)
    return 0;

  if (sched_verbose >= 2 && ready_index == 0)
    autopref_multipass_dfa_lookahead_guard_started_dump_p = false;

  for (int write = 0; write < 2; ++write)
    {
      autopref_multipass_data_t data1
	= &INSN_AUTOPREF_MULTIPASS_DATA (insn1)[write];

      if (data1->status == AUTOPREF_MULTIPASS_DATA_UNINITIALIZED)
	autopref_multipass_init (insn1, write);
      if (data1->status == AUTOPREF_MULTIPASS_DATA_IRRELEVANT)
	continue;

      if (ready_index == 0
	  && data1->status == AUTOPREF_MULTIPASS_DATA_DONT_DELAY)
	/* We allow only a single delay on priviledged instructions.
	   Doing otherwise would cause infinite loop.  */
	{
	  if (sched_verbose >= 2)
	    {
	      if (!autopref_multipass_dfa_lookahead_guard_started_dump_p)
		{
		  fprintf (sched_dump,
			   ";;\t\tnot trying in max_issue due to autoprefetch "
			   "model: ");
		  autopref_multipass_dfa_lookahead_guard_started_dump_p = true;
		}

	      fprintf (sched_dump, " *%d*", INSN_UID (insn1));
	    }
	  continue;
	}

      for (int i2 = 0; i2 < ready.n_ready; ++i2)
	{
	  rtx_insn *insn2 = get_ready_element (i2);
	  if (insn1 == insn2)
	    continue;
	  r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2, write);
	  if (r)
	    {
	      if (ready_index == 0)
		{
		  r = -1;
		  data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
		}
	      goto finish;
	    }
	}

      if (param_sched_autopref_queue_depth == 1)
	continue;

      /* Everything from the current queue slot should have been moved to
	 the ready list.  */
      gcc_assert (insn_queue[NEXT_Q_AFTER (q_ptr, 0)] == NULL_RTX);

      int n_stalls = param_sched_autopref_queue_depth - 1;
      if (n_stalls > max_insn_queue_index)
	n_stalls = max_insn_queue_index;

      for (int stalls = 1; stalls <= n_stalls; ++stalls)
	{
	  for (rtx_insn_list *link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)];
	       link != NULL_RTX;
	       link = link->next ())
	    {
	      rtx_insn *insn2 = link->insn ();
	      r = autopref_multipass_dfa_lookahead_guard_1 (insn1, insn2,
							    write);
	      if (r)
		{
		  /* Queue INSN1 until INSN2 can issue.  */
		  r = -stalls;
		  if (ready_index == 0)
		    data1->status = AUTOPREF_MULTIPASS_DATA_DONT_DELAY;
		  goto finish;
		}
	    }
	}
    }

    finish:
  if (sched_verbose >= 2
      && autopref_multipass_dfa_lookahead_guard_started_dump_p
      && (ready_index == ready.n_ready - 1 || r < 0))
    /* This does not /always/ trigger.  We don't output EOL if the last
       insn is not recognized (INSN_CODE < 0) and lookahead_guard is not
       called.  We can live with this.  */
    fprintf (sched_dump, "\n");

  return r;
}

/* Define type for target data used in multipass scheduling.  */
#ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
# define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
#endif
typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t;

/* The following structure describe an entry of the stack of choices.  */
struct choice_entry
{
  /* Ordinal number of the issued insn in the ready queue.  */
  int index;
  /* The number of the rest insns whose issues we should try.  */
  int rest;
  /* The number of issued essential insns.  */
  int n;
  /* State after issuing the insn.  */
  state_t state;
  /* Target-specific data.  */
  first_cycle_multipass_data_t target_data;
};

/* The following array is used to implement a stack of choices used in
   function max_issue.  */
static struct choice_entry *choice_stack;

/* This holds the value of the target dfa_lookahead hook.  */
int dfa_lookahead;

/* The following variable value is maximal number of tries of issuing
   insns for the first cycle multipass insn scheduling.  We define
   this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE).  We would not
   need this constraint if all real insns (with non-negative codes)
   had reservations because in this case the algorithm complexity is
   O(DFA_LOOKAHEAD**ISSUE_RATE).  Unfortunately, the dfa descriptions
   might be incomplete and such insn might occur.  For such
   descriptions, the complexity of algorithm (without the constraint)
   could achieve DFA_LOOKAHEAD ** N , where N is the queue length.  */
static int max_lookahead_tries;

/* The following function returns maximal (or close to maximal) number
   of insns which can be issued on the same cycle and one of which
   insns is insns with the best rank (the first insn in READY).  To
   make this function tries different samples of ready insns.  READY
   is current queue `ready'.  Global array READY_TRY reflects what
   insns are already issued in this try.  The function stops immediately,
   if it reached the such a solution, that all instruction can be issued.
   INDEX will contain index of the best insn in READY.  The following
   function is used only for first cycle multipass scheduling.

   PRIVILEGED_N >= 0

   This function expects recognized insns only.  All USEs,
   CLOBBERs, etc must be filtered elsewhere.  */
int
max_issue (struct ready_list *ready, int privileged_n, state_t state,
	   bool first_cycle_insn_p, int *index)
{
  int n, i, all, n_ready, best, delay, tries_num;
  int more_issue;
  struct choice_entry *top;
  rtx_insn *insn;

  if (sched_fusion)
    return 0;

  n_ready = ready->n_ready;
  gcc_assert (dfa_lookahead >= 1 && privileged_n >= 0
	      && privileged_n <= n_ready);

  /* Init MAX_LOOKAHEAD_TRIES.  */
  if (max_lookahead_tries == 0)
    {
      max_lookahead_tries = 100;
      for (i = 0; i < issue_rate; i++)
	max_lookahead_tries *= dfa_lookahead;
    }

  /* Init max_points.  */
  more_issue = issue_rate - cycle_issued_insns;
  gcc_assert (more_issue >= 0);

  /* The number of the issued insns in the best solution.  */
  best = 0;

  top = choice_stack;

  /* Set initial state of the search.  */
  memcpy (top->state, state, dfa_state_size);
  top->rest = dfa_lookahead;
  top->n = 0;
  if (targetm.sched.first_cycle_multipass_begin)
    targetm.sched.first_cycle_multipass_begin (&top->target_data,
					       ready_try, n_ready,
					       first_cycle_insn_p);

  /* Count the number of the insns to search among.  */
  for (all = i = 0; i < n_ready; i++)
    if (!ready_try [i])
      all++;

  if (sched_verbose >= 2)
    {
      fprintf (sched_dump, ";;\t\tmax_issue among %d insns:", all);
      debug_ready_list_1 (ready, ready_try);
    }

  /* I is the index of the insn to try next.  */
  i = 0;
  tries_num = 0;
  for (;;)
    {
      if (/* If we've reached a dead end or searched enough of what we have
	     been asked...  */
	  top->rest == 0
	  /* or have nothing else to try...  */
	  || i >= n_ready
	  /* or should not issue more.  */
	  || top->n >= more_issue)
	{
	  /* ??? (... || i == n_ready).  */
	  gcc_assert (i <= n_ready);

	  /* We should not issue more than issue_rate instructions.  */
	  gcc_assert (top->n <= more_issue);

	  if (top == choice_stack)
	    break;

	  if (best < top - choice_stack)
	    {
	      if (privileged_n)
		{
		  n = privileged_n;
		  /* Try to find issued privileged insn.  */
		  while (n && !ready_try[--n])
		    ;
		}

	      if (/* If all insns are equally good...  */
		  privileged_n == 0
		  /* Or a privileged insn will be issued.  */
		  || ready_try[n])
		/* Then we have a solution.  */
		{
		  best = top - choice_stack;
		  /* This is the index of the insn issued first in this
		     solution.  */
		  *index = choice_stack [1].index;
		  if (top->n == more_issue || best == all)
		    break;
		}
	    }

	  /* Set ready-list index to point to the last insn
	     ('i++' below will advance it to the next insn).  */
	  i = top->index;

	  /* Backtrack.  */
	  ready_try [i] = 0;

	  if (targetm.sched.first_cycle_multipass_backtrack)
	    targetm.sched.first_cycle_multipass_backtrack (&top->target_data,
							   ready_try, n_ready);

	  top--;
	  memcpy (state, top->state, dfa_state_size);
	}
      else if (!ready_try [i])
	{
	  tries_num++;
	  if (tries_num > max_lookahead_tries)
	    break;
	  insn = ready_element (ready, i);
	  delay = state_transition (state, insn);
	  if (delay < 0)
	    {
	      if (state_dead_lock_p (state)
		  || insn_finishes_cycle_p (insn))
		/* We won't issue any more instructions in the next
		   choice_state.  */
		top->rest = 0;
	      else
		top->rest--;

	      n = top->n;
	      if (memcmp (top->state, state, dfa_state_size) != 0)
		n++;

	      /* Advance to the next choice_entry.  */
	      top++;
	      /* Initialize it.  */
	      top->rest = dfa_lookahead;
	      top->index = i;
	      top->n = n;
	      memcpy (top->state, state, dfa_state_size);
	      ready_try [i] = 1;

	      if (targetm.sched.first_cycle_multipass_issue)
		targetm.sched.first_cycle_multipass_issue (&top->target_data,
							   ready_try, n_ready,
							   insn,
							   &((top - 1)
							     ->target_data));

	      i = -1;
	    }
	}

      /* Increase ready-list index.  */
      i++;
    }

  if (targetm.sched.first_cycle_multipass_end)
    targetm.sched.first_cycle_multipass_end (best != 0
					     ? &choice_stack[1].target_data
					     : NULL);

  /* Restore the original state of the DFA.  */
  memcpy (state, choice_stack->state, dfa_state_size);

  return best;
}

/* The following function chooses insn from READY and modifies
   READY.  The following function is used only for first
   cycle multipass scheduling.
   Return:
   -1 if cycle should be advanced,
   0 if INSN_PTR is set to point to the desirable insn,
   1 if choose_ready () should be restarted without advancing the cycle.  */
static int
choose_ready (struct ready_list *ready, bool first_cycle_insn_p,
	      rtx_insn **insn_ptr)
{
  if (dbg_cnt (sched_insn) == false)
    {
      if (nonscheduled_insns_begin == NULL_RTX)
	nonscheduled_insns_begin = current_sched_info->prev_head;

      rtx_insn *insn = first_nonscheduled_insn ();

      if (QUEUE_INDEX (insn) == QUEUE_READY)
	/* INSN is in the ready_list.  */
	{
	  ready_remove_insn (insn);
	  *insn_ptr = insn;
	  return 0;
	}

      /* INSN is in the queue.  Advance cycle to move it to the ready list.  */
      gcc_assert (QUEUE_INDEX (insn) >= 0);
      return -1;
    }

  if (dfa_lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0))
      || DEBUG_INSN_P (ready_element (ready, 0)))
    {
      if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
	*insn_ptr = ready_remove_first_dispatch (ready);
      else
	*insn_ptr = ready_remove_first (ready);

      return 0;
    }
  else
    {
      /* Try to choose the best insn.  */
      int index = 0, i;
      rtx_insn *insn;

      insn = ready_element (ready, 0);
      if (INSN_CODE (insn) < 0)
	{
	  *insn_ptr = ready_remove_first (ready);
	  return 0;
	}

      /* Filter the search space.  */
      for (i = 0; i < ready->n_ready; i++)
	{
	  ready_try[i] = 0;

	  insn = ready_element (ready, i);

	  /* If this insn is recognizable we should have already
	     recognized it earlier.
	     ??? Not very clear where this is supposed to be done.
	     See dep_cost_1.  */
	  gcc_checking_assert (INSN_CODE (insn) >= 0
			       || recog_memoized (insn) < 0);
	  if (INSN_CODE (insn) < 0)
	    {
	      /* Non-recognized insns at position 0 are handled above.  */
	      gcc_assert (i > 0);
	      ready_try[i] = 1;
	      continue;
	    }

	  if (targetm.sched.first_cycle_multipass_dfa_lookahead_guard)
	    {
	      ready_try[i]
		= (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
		    (insn, i));

	      if (ready_try[i] < 0)
		/* Queue instruction for several cycles.
		   We need to restart choose_ready as we have changed
		   the ready list.  */
		{
		  change_queue_index (insn, -ready_try[i]);
		  return 1;
		}

	      /* Make sure that we didn't end up with 0'th insn filtered out.
		 Don't be tempted to make life easier for backends and just
		 requeue 0'th insn if (ready_try[0] == 0) and restart
		 choose_ready.  Backends should be very considerate about
		 requeueing instructions -- especially the highest priority
		 one at position 0.  */
	      gcc_assert (ready_try[i] == 0 || i > 0);
	      if (ready_try[i])
		continue;
	    }

	  gcc_assert (ready_try[i] == 0);
	  /* INSN made it through the scrutiny of filters!  */
	}

      if (max_issue (ready, 1, curr_state, first_cycle_insn_p, &index) == 0)
	{
	  *insn_ptr = ready_remove_first (ready);
	  if (sched_verbose >= 4)
	    fprintf (sched_dump, ";;\t\tChosen insn (but can't issue) : %s \n",
                     (*current_sched_info->print_insn) (*insn_ptr, 0));
	  return 0;
	}
      else
	{
	  if (sched_verbose >= 4)
	    fprintf (sched_dump, ";;\t\tChosen insn : %s\n",
		     (*current_sched_info->print_insn)
		     (ready_element (ready, index), 0));

	  *insn_ptr = ready_remove (ready, index);
	  return 0;
	}
    }
}

/* This function is called when we have successfully scheduled a
   block.  It uses the schedule stored in the scheduled_insns vector
   to rearrange the RTL.  PREV_HEAD is used as the anchor to which we
   append the scheduled insns; TAIL is the insn after the scheduled
   block.  TARGET_BB is the argument passed to schedule_block.  */

static void
commit_schedule (rtx_insn *prev_head, rtx_insn *tail, basic_block *target_bb)
{
  unsigned int i;
  rtx_insn *insn;

  last_scheduled_insn = prev_head;
  for (i = 0;
       scheduled_insns.iterate (i, &insn);
       i++)
    {
      if (control_flow_insn_p (last_scheduled_insn)
	  || current_sched_info->advance_target_bb (*target_bb, insn))
	{
	  *target_bb = current_sched_info->advance_target_bb (*target_bb, 0);

	  if (sched_verbose)
	    {
	      rtx_insn *x;

	      x = next_real_insn (last_scheduled_insn);
	      gcc_assert (x);
	      dump_new_block_header (1, *target_bb, x, tail);
	    }

	  last_scheduled_insn = bb_note (*target_bb);
	}

      if (current_sched_info->begin_move_insn)
	(*current_sched_info->begin_move_insn) (insn, last_scheduled_insn);
      move_insn (insn, last_scheduled_insn,
		 current_sched_info->next_tail);
      if (!DEBUG_INSN_P (insn))
	reemit_notes (insn);
      last_scheduled_insn = insn;
    }

  scheduled_insns.truncate (0);
}

/* Examine all insns on the ready list and queue those which can't be
   issued in this cycle.  TEMP_STATE is temporary scheduler state we
   can use as scratch space.  If FIRST_CYCLE_INSN_P is true, no insns
   have been issued for the current cycle, which means it is valid to
   issue an asm statement.

   If SHADOWS_ONLY_P is true, we eliminate all real insns and only
   leave those for which SHADOW_P is true.  If MODULO_EPILOGUE is true,
   we only leave insns which have an INSN_EXACT_TICK.  */

static void
prune_ready_list (state_t temp_state, bool first_cycle_insn_p,
		  bool shadows_only_p, bool modulo_epilogue_p)
{
  int i, pass;
  bool sched_group_found = false;
  int min_cost_group = 0;

  if (sched_fusion)
    return;

  for (i = 0; i < ready.n_ready; i++)
    {
      rtx_insn *insn = ready_element (&ready, i);
      if (SCHED_GROUP_P (insn))
	{
	  sched_group_found = true;
	  break;
	}
    }

  /* Make two passes if there's a SCHED_GROUP_P insn; make sure to handle
     such an insn first and note its cost.  If at least one SCHED_GROUP_P insn
     gets queued, then all other insns get queued for one cycle later.  */
  for (pass = sched_group_found ? 0 : 1; pass < 2; )
    {
      int n = ready.n_ready;
      for (i = 0; i < n; i++)
	{
	  rtx_insn *insn = ready_element (&ready, i);
	  int cost = 0;
	  const char *reason = "resource conflict";

	  if (DEBUG_INSN_P (insn))
	    continue;

	  if (sched_group_found && !SCHED_GROUP_P (insn)
	      && ((pass == 0) || (min_cost_group >= 1)))
	    {
	      if (pass == 0)
		continue;
	      cost = min_cost_group;
	      reason = "not in sched group";
	    }
	  else if (modulo_epilogue_p
		   && INSN_EXACT_TICK (insn) == INVALID_TICK)
	    {
	      cost = max_insn_queue_index;
	      reason = "not an epilogue insn";
	    }
	  else if (shadows_only_p && !SHADOW_P (insn))
	    {
	      cost = 1;
	      reason = "not a shadow";
	    }
	  else if (recog_memoized (insn) < 0)
	    {
	      if (!first_cycle_insn_p
		  && (GET_CODE (PATTERN (insn)) == ASM_INPUT
		      || asm_noperands (PATTERN (insn)) >= 0))
		cost = 1;
	      reason = "asm";
	    }
	  else if (sched_pressure != SCHED_PRESSURE_NONE)
	    {
	      if (sched_pressure == SCHED_PRESSURE_MODEL
		  && INSN_TICK (insn) <= clock_var)
		{
		  memcpy (temp_state, curr_state, dfa_state_size);
		  if (state_transition (temp_state, insn) >= 0)
		    INSN_TICK (insn) = clock_var + 1;
		}
	      cost = 0;
	    }
	  else
	    {
	      int delay_cost = 0;

	      if (delay_htab)
		{
		  struct delay_pair *delay_entry;
		  delay_entry
		    = delay_htab->find_with_hash (insn,
						  htab_hash_pointer (insn));
		  while (delay_entry && delay_cost == 0)
		    {
		      delay_cost = estimate_shadow_tick (delay_entry);
		      if (delay_cost > max_insn_queue_index)
			delay_cost = max_insn_queue_index;
		      delay_entry = delay_entry->next_same_i1;
		    }
		}

	      memcpy (temp_state, curr_state, dfa_state_size);
	      cost = state_transition (temp_state, insn);
	      if (cost < 0)
		cost = 0;
	      else if (cost == 0)
		cost = 1;
	      if (cost < delay_cost)
		{
		  cost = delay_cost;
		  reason = "shadow tick";
		}
	    }
	  if (cost >= 1)
	    {
	      if (SCHED_GROUP_P (insn) && cost > min_cost_group)
		min_cost_group = cost;
	      ready_remove (&ready, i);
	      /* Normally we'd want to queue INSN for COST cycles.  However,
		 if SCHED_GROUP_P is set, then we must ensure that nothing
		 else comes between INSN and its predecessor.  If there is
		 some other insn ready to fire on the next cycle, then that
		 invariant would be broken.

		 So when SCHED_GROUP_P is set, just queue this insn for a
		 single cycle.  */
	      queue_insn (insn, SCHED_GROUP_P (insn) ? 1 : cost, reason);
	      if (i + 1 < n)
		break;
	    }
	}
      if (i == n)
	pass++;
    }
}

/* Called when we detect that the schedule is impossible.  We examine the
   backtrack queue to find the earliest insn that caused this condition.  */

static struct haifa_saved_data *
verify_shadows (void)
{
  struct haifa_saved_data *save, *earliest_fail = NULL;
  for (save = backtrack_queue; save; save = save->next)
    {
      int t;
      struct delay_pair *pair = save->delay_pair;
      rtx_insn *i1 = pair->i1;

      for (; pair; pair = pair->next_same_i1)
	{
	  rtx_insn *i2 = pair->i2;

	  if (QUEUE_INDEX (i2) == QUEUE_SCHEDULED)
	    continue;

	  t = INSN_TICK (i1) + pair_delay (pair);
	  if (t < clock_var)
	    {
	      if (sched_verbose >= 2)
		fprintf (sched_dump,
			 ";;\t\tfailed delay requirements for %d/%d (%d->%d)"
			 ", not ready\n",
			 INSN_UID (pair->i1), INSN_UID (pair->i2),
			 INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
	      earliest_fail = save;
	      break;
	    }
	  if (QUEUE_INDEX (i2) >= 0)
	    {
	      int queued_for = INSN_TICK (i2);

	      if (t < queued_for)
		{
		  if (sched_verbose >= 2)
		    fprintf (sched_dump,
			     ";;\t\tfailed delay requirements for %d/%d"
			     " (%d->%d), queued too late\n",
			     INSN_UID (pair->i1), INSN_UID (pair->i2),
			     INSN_TICK (pair->i1), INSN_EXACT_TICK (pair->i2));
		  earliest_fail = save;
		  break;
		}
	    }
	}
    }

  return earliest_fail;
}

/* Print instructions together with useful scheduling information between
   HEAD and TAIL (inclusive).  */
static void
dump_insn_stream (rtx_insn *head, rtx_insn *tail)
{
  fprintf (sched_dump, ";;\t| insn | prio |\n");

  rtx_insn *next_tail = NEXT_INSN (tail);
  for (rtx_insn *insn = head; insn != next_tail; insn = NEXT_INSN (insn))
    {
      int priority = NOTE_P (insn) ? 0 : INSN_PRIORITY (insn);
      const char *pattern = (NOTE_P (insn)
			     ? "note"
			     : str_pattern_slim (PATTERN (insn)));

      fprintf (sched_dump, ";;\t| %4d | %4d | %-30s ",
	       INSN_UID (insn), priority, pattern);

      if (sched_verbose >= 4)
	{
	  if (NOTE_P (insn) || LABEL_P (insn) || recog_memoized (insn) < 0)
	    fprintf (sched_dump, "nothing");
	  else
	    print_reservation (sched_dump, insn);
	}
      fprintf (sched_dump, "\n");
    }
}

/* Use forward list scheduling to rearrange insns of block pointed to by
   TARGET_BB, possibly bringing insns from subsequent blocks in the same
   region.  */

bool
schedule_block (basic_block *target_bb, state_t init_state)
{
  int i;
  bool success = modulo_ii == 0;
  struct sched_block_state ls;
  state_t temp_state = NULL;  /* It is used for multipass scheduling.  */
  int sort_p, advance, start_clock_var;

  /* Head/tail info for this block.  */
  rtx_insn *prev_head = current_sched_info->prev_head;
  rtx_insn *next_tail = current_sched_info->next_tail;
  rtx_insn *head = NEXT_INSN (prev_head);
  rtx_insn *tail = PREV_INSN (next_tail);

  if ((current_sched_info->flags & DONT_BREAK_DEPENDENCIES) == 0
      && sched_pressure != SCHED_PRESSURE_MODEL && !sched_fusion)
    find_modifiable_mems (head, tail);

  /* We used to have code to avoid getting parameters moved from hard
     argument registers into pseudos.

     However, it was removed when it proved to be of marginal benefit
     and caused problems because schedule_block and compute_forward_dependences
     had different notions of what the "head" insn was.  */

  gcc_assert (head != tail || INSN_P (head));

  haifa_recovery_bb_recently_added_p = false;

  backtrack_queue = NULL;

  /* Debug info.  */
  if (sched_verbose)
    {
      dump_new_block_header (0, *target_bb, head, tail);

      if (sched_verbose >= 2)
	{
	  dump_insn_stream (head, tail);
	  memset (&rank_for_schedule_stats, 0,
		  sizeof (rank_for_schedule_stats));
	}
    }

  if (init_state == NULL)
    state_reset (curr_state);
  else
    memcpy (curr_state, init_state, dfa_state_size);

  /* Clear the ready list.  */
  ready.first = ready.veclen - 1;
  ready.n_ready = 0;
  ready.n_debug = 0;

  /* It is used for first cycle multipass scheduling.  */
  temp_state = alloca (dfa_state_size);

  if (targetm.sched.init)
    targetm.sched.init (sched_dump, sched_verbose, ready.veclen);

  /* We start inserting insns after PREV_HEAD.  */
  last_scheduled_insn = prev_head;
  last_nondebug_scheduled_insn = NULL;
  nonscheduled_insns_begin = NULL;

  gcc_assert ((NOTE_P (last_scheduled_insn)
	       || DEBUG_INSN_P (last_scheduled_insn))
	      && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);

  /* Initialize INSN_QUEUE.  Q_SIZE is the total number of insns in the
     queue.  */
  q_ptr = 0;
  q_size = 0;

  insn_queue = XALLOCAVEC (rtx_insn_list *, max_insn_queue_index + 1);
  memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));

  /* Start just before the beginning of time.  */
  clock_var = -1;

  /* We need queue and ready lists and clock_var be initialized
     in try_ready () (which is called through init_ready_list ()).  */
  (*current_sched_info->init_ready_list) ();

  if (sched_pressure)
    sched_pressure_start_bb (*target_bb);

  /* The algorithm is O(n^2) in the number of ready insns at any given
     time in the worst case.  Before reload we are more likely to have
     big lists so truncate them to a reasonable size.  */
  if (!reload_completed
      && ready.n_ready - ready.n_debug > param_max_sched_ready_insns)
    {
      ready_sort_debug (&ready);
      ready_sort_real (&ready);

      /* Find first free-standing insn past param_max_sched_ready_insns.
         If there are debug insns, we know they're first.  */
      for (i = param_max_sched_ready_insns + ready.n_debug; i < ready.n_ready;
	   i++)
	if (!SCHED_GROUP_P (ready_element (&ready, i)))
	  break;

      if (sched_verbose >= 2)
	{
	  fprintf (sched_dump,
		   ";;\t\tReady list on entry: %d insns:  ", ready.n_ready);
	  debug_ready_list (&ready);
	  fprintf (sched_dump,
		   ";;\t\t before reload => truncated to %d insns\n", i);
	}

      /* Delay all insns past it for 1 cycle.  If debug counter is
	 activated make an exception for the insn right after
	 nonscheduled_insns_begin.  */
      {
	rtx_insn *skip_insn;

	if (dbg_cnt (sched_insn) == false)
	  skip_insn = first_nonscheduled_insn ();
	else
	  skip_insn = NULL;

	while (i < ready.n_ready)
	  {
	    rtx_insn *insn;

	    insn = ready_remove (&ready, i);

	    if (insn != skip_insn)
	      queue_insn (insn, 1, "list truncated");
	  }
	if (skip_insn)
	  ready_add (&ready, skip_insn, true);
      }
    }

  /* Now we can restore basic block notes and maintain precise cfg.  */
  restore_bb_notes (*target_bb);

  last_clock_var = -1;

  advance = 0;

  gcc_assert (scheduled_insns.length () == 0);
  sort_p = true;
  must_backtrack = false;
  modulo_insns_scheduled = 0;

  ls.modulo_epilogue = false;
  ls.first_cycle_insn_p = true;

  /* Loop until all the insns in BB are scheduled.  */
  while ((*current_sched_info->schedule_more_p) ())
    {
      perform_replacements_new_cycle ();
      do
	{
	  start_clock_var = clock_var;

	  clock_var++;

	  advance_one_cycle ();

	  /* Add to the ready list all pending insns that can be issued now.
	     If there are no ready insns, increment clock until one
	     is ready and add all pending insns at that point to the ready
	     list.  */
	  queue_to_ready (&ready);

	  gcc_assert (ready.n_ready);

	  if (sched_verbose >= 2)
	    {
	      fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:");
	      debug_ready_list (&ready);
	    }
	  advance -= clock_var - start_clock_var;
	}
      while (advance > 0);

      if (ls.modulo_epilogue)
	{
	  int stage = clock_var / modulo_ii;
	  if (stage > modulo_last_stage * 2 + 2)
	    {
	      if (sched_verbose >= 2)
		fprintf (sched_dump,
			 ";;\t\tmodulo scheduled succeeded at II %d\n",
			 modulo_ii);
	      success = true;
	      goto end_schedule;
	    }
	}
      else if (modulo_ii > 0)
	{
	  int stage = clock_var / modulo_ii;
	  if (stage > modulo_max_stages)
	    {
	      if (sched_verbose >= 2)
		fprintf (sched_dump,
			 ";;\t\tfailing schedule due to excessive stages\n");
	      goto end_schedule;
	    }
	  if (modulo_n_insns == modulo_insns_scheduled
	      && stage > modulo_last_stage)
	    {
	      if (sched_verbose >= 2)
		fprintf (sched_dump,
			 ";;\t\tfound kernel after %d stages, II %d\n",
			 stage, modulo_ii);
	      ls.modulo_epilogue = true;
	    }
	}

      prune_ready_list (temp_state, true, false, ls.modulo_epilogue);
      if (ready.n_ready == 0)
	continue;
      if (must_backtrack)
	goto do_backtrack;

      ls.shadows_only_p = false;
      cycle_issued_insns = 0;
      ls.can_issue_more = issue_rate;
      for (;;)
	{
	  rtx_insn *insn;
	  int cost;
	  bool asm_p;

	  if (sort_p && ready.n_ready > 0)
	    {
	      /* Sort the ready list based on priority.  This must be
		 done every iteration through the loop, as schedule_insn
		 may have readied additional insns that will not be
		 sorted correctly.  */
	      ready_sort (&ready);

	      if (sched_verbose >= 2)
		{
		  fprintf (sched_dump,
			   ";;\t\tReady list after ready_sort:    ");
		  debug_ready_list (&ready);
		}
	    }

	  /* We don't want md sched reorder to even see debug isns, so put
	     them out right away.  */
	  if (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0))
	      && (*current_sched_info->schedule_more_p) ())
	    {
	      while (ready.n_ready && DEBUG_INSN_P (ready_element (&ready, 0)))
		{
		  rtx_insn *insn = ready_remove_first (&ready);
		  gcc_assert (DEBUG_INSN_P (insn));
		  (*current_sched_info->begin_schedule_ready) (insn);
		  scheduled_insns.safe_push (insn);
		  last_scheduled_insn = insn;
		  advance = schedule_insn (insn);
		  gcc_assert (advance == 0);
		  if (ready.n_ready > 0)
		    ready_sort (&ready);
		}
	    }

	  if (ls.first_cycle_insn_p && !ready.n_ready)
	    break;

	resume_after_backtrack:
	  /* Allow the target to reorder the list, typically for
	     better instruction bundling.  */
	  if (sort_p
	      && (ready.n_ready == 0
		  || !SCHED_GROUP_P (ready_element (&ready, 0))))
	    {
	      if (ls.first_cycle_insn_p && targetm.sched.reorder)
		ls.can_issue_more
		  = targetm.sched.reorder (sched_dump, sched_verbose,
					   ready_lastpos (&ready),
					   &ready.n_ready, clock_var);
	      else if (!ls.first_cycle_insn_p && targetm.sched.reorder2)
		ls.can_issue_more
		  = targetm.sched.reorder2 (sched_dump, sched_verbose,
					    ready.n_ready
					    ? ready_lastpos (&ready) : NULL,
					    &ready.n_ready, clock_var);
	    }

	restart_choose_ready:
	  if (sched_verbose >= 2)
	    {
	      fprintf (sched_dump, ";;\tReady list (t = %3d):  ",
		       clock_var);
	      debug_ready_list (&ready);
	      if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
		print_curr_reg_pressure ();
	    }

	  if (ready.n_ready == 0
	      && ls.can_issue_more
	      && reload_completed)
	    {
	      /* Allow scheduling insns directly from the queue in case
		 there's nothing better to do (ready list is empty) but
		 there are still vacant dispatch slots in the current cycle.  */
	      if (sched_verbose >= 6)
		fprintf (sched_dump,";;\t\tSecond chance\n");
	      memcpy (temp_state, curr_state, dfa_state_size);
	      if (early_queue_to_ready (temp_state, &ready))
		ready_sort (&ready);
	    }

	  if (ready.n_ready == 0
	      || !ls.can_issue_more
	      || state_dead_lock_p (curr_state)
	      || !(*current_sched_info->schedule_more_p) ())
	    break;

	  /* Select and remove the insn from the ready list.  */
	  if (sort_p)
	    {
	      int res;

	      insn = NULL;
	      res = choose_ready (&ready, ls.first_cycle_insn_p, &insn);

	      if (res < 0)
		/* Finish cycle.  */
		break;
	      if (res > 0)
		goto restart_choose_ready;

	      gcc_assert (insn != NULL_RTX);
	    }
	  else
	    insn = ready_remove_first (&ready);

	  if (sched_pressure != SCHED_PRESSURE_NONE
	      && INSN_TICK (insn) > clock_var)
	    {
	      ready_add (&ready, insn, true);
	      advance = 1;
	      break;
	    }

	  if (targetm.sched.dfa_new_cycle
	      && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
					      insn, last_clock_var,
					      clock_var, &sort_p))
	    /* SORT_P is used by the target to override sorting
	       of the ready list.  This is needed when the target
	       has modified its internal structures expecting that
	       the insn will be issued next.  As we need the insn
	       to have the highest priority (so it will be returned by
	       the ready_remove_first call above), we invoke
	       ready_add (&ready, insn, true).
	       But, still, there is one issue: INSN can be later
	       discarded by scheduler's front end through
	       current_sched_info->can_schedule_ready_p, hence, won't
	       be issued next.  */
	    {
	      ready_add (&ready, insn, true);
              break;
	    }

	  sort_p = true;

	  if (current_sched_info->can_schedule_ready_p
	      && ! (*current_sched_info->can_schedule_ready_p) (insn))
	    /* We normally get here only if we don't want to move
	       insn from the split block.  */
	    {
	      TODO_SPEC (insn) = DEP_POSTPONED;
	      goto restart_choose_ready;
	    }

	  if (delay_htab)
	    {
	      /* If this insn is the first part of a delay-slot pair, record a
		 backtrack point.  */
	      struct delay_pair *delay_entry;
	      delay_entry
		= delay_htab->find_with_hash (insn, htab_hash_pointer (insn));
	      if (delay_entry)
		{
		  save_backtrack_point (delay_entry, ls);
		  if (sched_verbose >= 2)
		    fprintf (sched_dump, ";;\t\tsaving backtrack point\n");
		}
	    }

	  /* DECISION is made.  */

	  if (modulo_ii > 0 && INSN_UID (insn) < modulo_iter0_max_uid)
	    {
	      modulo_insns_scheduled++;
	      modulo_last_stage = clock_var / modulo_ii;
	    }
          if (TODO_SPEC (insn) & SPECULATIVE)
            generate_recovery_code (insn);

	  if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
	    targetm.sched.dispatch_do (insn, ADD_TO_DISPATCH_WINDOW);

	  /* Update counters, etc in the scheduler's front end.  */
	  (*current_sched_info->begin_schedule_ready) (insn);
	  scheduled_insns.safe_push (insn);
	  gcc_assert (NONDEBUG_INSN_P (insn));
	  last_nondebug_scheduled_insn = last_scheduled_insn = insn;

	  if (recog_memoized (insn) >= 0)
	    {
	      memcpy (temp_state, curr_state, dfa_state_size);
	      cost = state_transition (curr_state, insn);
	      if (sched_pressure != SCHED_PRESSURE_WEIGHTED && !sched_fusion)
		gcc_assert (cost < 0);
	      if (memcmp (temp_state, curr_state, dfa_state_size) != 0)
		cycle_issued_insns++;
	      asm_p = false;
	    }
	  else
	    asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
		     || asm_noperands (PATTERN (insn)) >= 0);

	  if (targetm.sched.variable_issue)
	    ls.can_issue_more =
	      targetm.sched.variable_issue (sched_dump, sched_verbose,
					    insn, ls.can_issue_more);
	  /* A naked CLOBBER or USE generates no instruction, so do
	     not count them against the issue rate.  */
	  else if (GET_CODE (PATTERN (insn)) != USE
		   && GET_CODE (PATTERN (insn)) != CLOBBER)
	    ls.can_issue_more--;
	  advance = schedule_insn (insn);

	  if (SHADOW_P (insn))
	    ls.shadows_only_p = true;

	  /* After issuing an asm insn we should start a new cycle.  */
	  if (advance == 0 && asm_p)
	    advance = 1;

	  if (must_backtrack)
	    break;

	  if (advance != 0)
	    break;

	  ls.first_cycle_insn_p = false;
	  if (ready.n_ready > 0)
	    prune_ready_list (temp_state, false, ls.shadows_only_p,
			      ls.modulo_epilogue);
	}

    do_backtrack:
      if (!must_backtrack)
	for (i = 0; i < ready.n_ready; i++)
	  {
	    rtx_insn *insn = ready_element (&ready, i);
	    if (INSN_EXACT_TICK (insn) == clock_var)
	      {
		must_backtrack = true;
		clock_var++;
		break;
	      }
	  }
      if (must_backtrack && modulo_ii > 0)
	{
	  if (modulo_backtracks_left == 0)
	    goto end_schedule;
	  modulo_backtracks_left--;
	}
      while (must_backtrack)
	{
	  struct haifa_saved_data *failed;
	  rtx_insn *failed_insn;

	  must_backtrack = false;
	  failed = verify_shadows ();
	  gcc_assert (failed);

	  failed_insn = failed->delay_pair->i1;
	  /* Clear these queues.  */
	  perform_replacements_new_cycle ();
	  toggle_cancelled_flags (false);
	  unschedule_insns_until (failed_insn);
	  while (failed != backtrack_queue)
	    free_topmost_backtrack_point (true);
	  restore_last_backtrack_point (&ls);
	  if (sched_verbose >= 2)
	    fprintf (sched_dump, ";;\t\trewind to cycle %d\n", clock_var);
	  /* Delay by at least a cycle.  This could cause additional
	     backtracking.  */
	  queue_insn (failed_insn, 1, "backtracked");
	  advance = 0;
	  if (must_backtrack)
	    continue;
	  if (ready.n_ready > 0)
	    goto resume_after_backtrack;
	  else
	    {
	      if (clock_var == 0 && ls.first_cycle_insn_p)
		goto end_schedule;
	      advance = 1;
	      break;
	    }
	}
      ls.first_cycle_insn_p = true;
    }
  if (ls.modulo_epilogue)
    success = true;
 end_schedule:
  if (!ls.first_cycle_insn_p || advance)
    advance_one_cycle ();
  perform_replacements_new_cycle ();
  if (modulo_ii > 0)
    {
      /* Once again, debug insn suckiness: they can be on the ready list
	 even if they have unresolved dependencies.  To make our view
	 of the world consistent, remove such "ready" insns.  */
    restart_debug_insn_loop:
      for (i = ready.n_ready - 1; i >= 0; i--)
	{
	  rtx_insn *x;

	  x = ready_element (&ready, i);
	  if (DEPS_LIST_FIRST (INSN_HARD_BACK_DEPS (x)) != NULL
	      || DEPS_LIST_FIRST (INSN_SPEC_BACK_DEPS (x)) != NULL)
	    {
	      ready_remove (&ready, i);
	      goto restart_debug_insn_loop;
	    }
	}
      for (i = ready.n_ready - 1; i >= 0; i--)
	{
	  rtx_insn *x;

	  x = ready_element (&ready, i);
	  resolve_dependencies (x);
	}
      for (i = 0; i <= max_insn_queue_index; i++)
	{
	  rtx_insn_list *link;
	  while ((link = insn_queue[i]) != NULL)
	    {
	      rtx_insn *x = link->insn ();
	      insn_queue[i] = link->next ();
	      QUEUE_INDEX (x) = QUEUE_NOWHERE;
	      free_INSN_LIST_node (link);
	      resolve_dependencies (x);
	    }
	}
    }

  if (!success)
    undo_all_replacements ();

  /* Debug info.  */
  if (sched_verbose)
    {
      fprintf (sched_dump, ";;\tReady list (final):  ");
      debug_ready_list (&ready);
    }

  if (modulo_ii == 0 && current_sched_info->queue_must_finish_empty)
    /* Sanity check -- queue must be empty now.  Meaningless if region has
       multiple bbs.  */
    gcc_assert (!q_size && !ready.n_ready && !ready.n_debug);
  else if (modulo_ii == 0)
    {
      /* We must maintain QUEUE_INDEX between blocks in region.  */
      for (i = ready.n_ready - 1; i >= 0; i--)
	{
	  rtx_insn *x;

	  x = ready_element (&ready, i);
	  QUEUE_INDEX (x) = QUEUE_NOWHERE;
	  TODO_SPEC (x) = HARD_DEP;
	}

      if (q_size)
	for (i = 0; i <= max_insn_queue_index; i++)
	  {
	    rtx_insn_list *link;
	    for (link = insn_queue[i]; link; link = link->next ())
	      {
		rtx_insn *x;

		x = link->insn ();
		QUEUE_INDEX (x) = QUEUE_NOWHERE;
		TODO_SPEC (x) = HARD_DEP;
	      }
	    free_INSN_LIST_list (&insn_queue[i]);
	  }
    }

  if (sched_pressure == SCHED_PRESSURE_MODEL)
    model_end_schedule ();

  if (success)
    {
      commit_schedule (prev_head, tail, target_bb);
      if (sched_verbose)
	fprintf (sched_dump, ";;   total time = %d\n", clock_var);
    }
  else
    last_scheduled_insn = tail;

  scheduled_insns.truncate (0);

  if (!current_sched_info->queue_must_finish_empty
      || haifa_recovery_bb_recently_added_p)
    {
      /* INSN_TICK (minimum clock tick at which the insn becomes
         ready) may be not correct for the insn in the subsequent
         blocks of the region.  We should use a correct value of
         `clock_var' or modify INSN_TICK.  It is better to keep
         clock_var value equal to 0 at the start of a basic block.
         Therefore we modify INSN_TICK here.  */
      fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
    }

  if (targetm.sched.finish)
    {
      targetm.sched.finish (sched_dump, sched_verbose);
      /* Target might have added some instructions to the scheduled block
	 in its md_finish () hook.  These new insns don't have any data
	 initialized and to identify them we extend h_i_d so that they'll
	 get zero luids.  */
      sched_extend_luids ();
    }

  /* Update head/tail boundaries.  */
  head = NEXT_INSN (prev_head);
  tail = last_scheduled_insn;

  if (sched_verbose)
    {
      fprintf (sched_dump, ";;   new head = %d\n;;   new tail = %d\n",
	       INSN_UID (head), INSN_UID (tail));

      if (sched_verbose >= 2)
	{
	  dump_insn_stream (head, tail);
	  print_rank_for_schedule_stats (";; TOTAL ", &rank_for_schedule_stats,
					 NULL);
	}

      fprintf (sched_dump, "\n");
    }

  head = restore_other_notes (head, NULL);

  current_sched_info->head = head;
  current_sched_info->tail = tail;

  free_backtrack_queue ();

  return success;
}

/* Set_priorities: compute priority of each insn in the block.  */

int
set_priorities (rtx_insn *head, rtx_insn *tail)
{
  rtx_insn *insn;
  int n_insn;
  int sched_max_insns_priority =
	current_sched_info->sched_max_insns_priority;
  rtx_insn *prev_head;

  if (head == tail && ! INSN_P (head))
    gcc_unreachable ();

  n_insn = 0;

  prev_head = PREV_INSN (head);
  for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
    {
      if (!INSN_P (insn))
	continue;

      n_insn++;
      (void) priority (insn);

      gcc_assert (INSN_PRIORITY_KNOWN (insn));

      sched_max_insns_priority = MAX (sched_max_insns_priority,
				      INSN_PRIORITY (insn));
    }

  current_sched_info->sched_max_insns_priority = sched_max_insns_priority;

  return n_insn;
}

/* Set sched_dump and sched_verbose for the desired debugging output. */
void
setup_sched_dump (void)
{
  sched_verbose = sched_verbose_param;
  sched_dump = dump_file;
  if (!dump_file)
    sched_verbose = 0;
}

/* Allocate data for register pressure sensitive scheduling.  */
static void
alloc_global_sched_pressure_data (void)
{
  if (sched_pressure != SCHED_PRESSURE_NONE)
    {
      int i, max_regno = max_reg_num ();

      if (sched_dump != NULL)
	/* We need info about pseudos for rtl dumps about pseudo
	   classes and costs.  */
	regstat_init_n_sets_and_refs ();
      ira_set_pseudo_classes (true, sched_verbose ? sched_dump : NULL);
      sched_regno_pressure_class
	= (enum reg_class *) xmalloc (max_regno * sizeof (enum reg_class));
      for (i = 0; i < max_regno; i++)
	sched_regno_pressure_class[i]
	  = (i < FIRST_PSEUDO_REGISTER
	     ? ira_pressure_class_translate[REGNO_REG_CLASS (i)]
	     : ira_pressure_class_translate[reg_allocno_class (i)]);
      curr_reg_live = BITMAP_ALLOC (NULL);
      if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
	{
	  saved_reg_live = BITMAP_ALLOC (NULL);
	  region_ref_regs = BITMAP_ALLOC (NULL);
	}
      if (sched_pressure == SCHED_PRESSURE_MODEL)
	tmp_bitmap = BITMAP_ALLOC (NULL);

      /* Calculate number of CALL_SAVED_REGS and FIXED_REGS in register classes
	 that we calculate register pressure for.  */
      for (int c = 0; c < ira_pressure_classes_num; ++c)
	{
	  enum reg_class cl = ira_pressure_classes[c];

	  call_saved_regs_num[cl] = 0;
	  fixed_regs_num[cl] = 0;

	  for (int i = 0; i < ira_class_hard_regs_num[cl]; ++i)
	    {
	      unsigned int regno = ira_class_hard_regs[cl][i];
	      if (fixed_regs[regno])
		++fixed_regs_num[cl];
	      else if (!crtl->abi->clobbers_full_reg_p (regno))
		++call_saved_regs_num[cl];
	    }
	}
    }
}

/*  Free data for register pressure sensitive scheduling.  Also called
    from schedule_region when stopping sched-pressure early.  */
void
free_global_sched_pressure_data (void)
{
  if (sched_pressure != SCHED_PRESSURE_NONE)
    {
      if (regstat_n_sets_and_refs != NULL)
	regstat_free_n_sets_and_refs ();
      if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
	{
	  BITMAP_FREE (region_ref_regs);
	  BITMAP_FREE (saved_reg_live);
	}
      if (sched_pressure == SCHED_PRESSURE_MODEL)
	BITMAP_FREE (tmp_bitmap);
      BITMAP_FREE (curr_reg_live);
      free (sched_regno_pressure_class);
    }
}

/* Initialize some global state for the scheduler.  This function works
   with the common data shared between all the schedulers.  It is called
   from the scheduler specific initialization routine.  */

void
sched_init (void)
{
  if (targetm.sched.dispatch (NULL, IS_DISPATCH_ON))
    targetm.sched.dispatch_do (NULL, DISPATCH_INIT);

  if (live_range_shrinkage_p)
    sched_pressure = SCHED_PRESSURE_WEIGHTED;
  else if (flag_sched_pressure
	   && !reload_completed
	   && common_sched_info->sched_pass_id == SCHED_RGN_PASS)
    sched_pressure = ((enum sched_pressure_algorithm)
		      param_sched_pressure_algorithm);
  else
    sched_pressure = SCHED_PRESSURE_NONE;

  if (sched_pressure != SCHED_PRESSURE_NONE)
    ira_setup_eliminable_regset ();

  /* Initialize SPEC_INFO.  */
  if (targetm.sched.set_sched_flags)
    {
      spec_info = &spec_info_var;
      targetm.sched.set_sched_flags (spec_info);

      if (spec_info->mask != 0)
        {
	  spec_info->data_weakness_cutoff
	    = (param_sched_spec_prob_cutoff * MAX_DEP_WEAK) / 100;
	  spec_info->control_weakness_cutoff
	    = (param_sched_spec_prob_cutoff * REG_BR_PROB_BASE) / 100;
        }
      else
	/* So we won't read anything accidentally.  */
	spec_info = NULL;

    }
  else
    /* So we won't read anything accidentally.  */
    spec_info = 0;

  /* Initialize issue_rate.  */
  if (targetm.sched.issue_rate)
    issue_rate = targetm.sched.issue_rate ();
  else
    issue_rate = 1;

  if (targetm.sched.first_cycle_multipass_dfa_lookahead
      /* Don't use max_issue with reg_pressure scheduling.  Multipass
	 scheduling and reg_pressure scheduling undo each other's decisions.  */
      && sched_pressure == SCHED_PRESSURE_NONE)
    dfa_lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
  else
    dfa_lookahead = 0;

  /* Set to "0" so that we recalculate.  */
  max_lookahead_tries = 0;

  if (targetm.sched.init_dfa_pre_cycle_insn)
    targetm.sched.init_dfa_pre_cycle_insn ();

  if (targetm.sched.init_dfa_post_cycle_insn)
    targetm.sched.init_dfa_post_cycle_insn ();

  dfa_start ();
  dfa_state_size = state_size ();

  init_alias_analysis ();

  if (!sched_no_dce)
    df_set_flags (DF_LR_RUN_DCE);
  df_note_add_problem ();

  /* More problems needed for interloop dep calculation in SMS.  */
  if (common_sched_info->sched_pass_id == SCHED_SMS_PASS)
    {
      df_rd_add_problem ();
      df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
    }

  df_analyze ();

  /* Do not run DCE after reload, as this can kill nops inserted
     by bundling.  */
  if (reload_completed)
    df_clear_flags (DF_LR_RUN_DCE);

  regstat_compute_calls_crossed ();

  if (targetm.sched.init_global)
    targetm.sched.init_global (sched_dump, sched_verbose, get_max_uid () + 1);

  alloc_global_sched_pressure_data ();

  curr_state = xmalloc (dfa_state_size);
}

static void haifa_init_only_bb (basic_block, basic_block);

/* Initialize data structures specific to the Haifa scheduler.  */
void
haifa_sched_init (void)
{
  setup_sched_dump ();
  sched_init ();

  scheduled_insns.create (0);

  if (spec_info != NULL)
    {
      sched_deps_info->use_deps_list = 1;
      sched_deps_info->generate_spec_deps = 1;
    }

  /* Initialize luids, dependency caches, target and h_i_d for the
     whole function.  */
  {
    sched_init_bbs ();

    auto_vec<basic_block> bbs (n_basic_blocks_for_fn (cfun));
    basic_block bb;
    FOR_EACH_BB_FN (bb, cfun)
      bbs.quick_push (bb);
    sched_init_luids (bbs);
    sched_deps_init (true);
    sched_extend_target ();
    haifa_init_h_i_d (bbs);
  }

  sched_init_only_bb = haifa_init_only_bb;
  sched_split_block = sched_split_block_1;
  sched_create_empty_bb = sched_create_empty_bb_1;
  haifa_recovery_bb_ever_added_p = false;

  nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
  before_recovery = 0;
  after_recovery = 0;

  modulo_ii = 0;
}

/* Finish work with the data specific to the Haifa scheduler.  */
void
haifa_sched_finish (void)
{
  sched_create_empty_bb = NULL;
  sched_split_block = NULL;
  sched_init_only_bb = NULL;

  if (spec_info && spec_info->dump)
    {
      char c = reload_completed ? 'a' : 'b';

      fprintf (spec_info->dump,
	       ";; %s:\n", current_function_name ());

      fprintf (spec_info->dump,
               ";; Procedure %cr-begin-data-spec motions == %d\n",
               c, nr_begin_data);
      fprintf (spec_info->dump,
               ";; Procedure %cr-be-in-data-spec motions == %d\n",
               c, nr_be_in_data);
      fprintf (spec_info->dump,
               ";; Procedure %cr-begin-control-spec motions == %d\n",
               c, nr_begin_control);
      fprintf (spec_info->dump,
               ";; Procedure %cr-be-in-control-spec motions == %d\n",
               c, nr_be_in_control);
    }

  scheduled_insns.release ();

  /* Finalize h_i_d, dependency caches, and luids for the whole
     function.  Target will be finalized in md_global_finish ().  */
  sched_deps_finish ();
  sched_finish_luids ();
  current_sched_info = NULL;
  insn_queue = NULL;
  sched_finish ();
}

/* Free global data used during insn scheduling.  This function works with
   the common data shared between the schedulers.  */

void
sched_finish (void)
{
  haifa_finish_h_i_d ();
  free_global_sched_pressure_data ();
  free (curr_state);

  if (targetm.sched.finish_global)
    targetm.sched.finish_global (sched_dump, sched_verbose);

  end_alias_analysis ();

  regstat_free_calls_crossed ();

  dfa_finish ();
}

/* Free all delay_pair structures that were recorded.  */
void
free_delay_pairs (void)
{
  if (delay_htab)
    {
      delay_htab->empty ();
      delay_htab_i2->empty ();
    }
}

/* Fix INSN_TICKs of the instructions in the current block as well as
   INSN_TICKs of their dependents.
   HEAD and TAIL are the begin and the end of the current scheduled block.  */
static void
fix_inter_tick (rtx_insn *head, rtx_insn *tail)
{
  /* Set of instructions with corrected INSN_TICK.  */
  auto_bitmap processed;
  /* ??? It is doubtful if we should assume that cycle advance happens on
     basic block boundaries.  Basically insns that are unconditionally ready
     on the start of the block are more preferable then those which have
     a one cycle dependency over insn from the previous block.  */
  int next_clock = clock_var + 1;

  /* Iterates over scheduled instructions and fix their INSN_TICKs and
     INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
     across different blocks.  */
  for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
    {
      if (INSN_P (head))
	{
	  int tick;
	  sd_iterator_def sd_it;
	  dep_t dep;

	  tick = INSN_TICK (head);
	  gcc_assert (tick >= MIN_TICK);

	  /* Fix INSN_TICK of instruction from just scheduled block.  */
	  if (bitmap_set_bit (processed, INSN_LUID (head)))
	    {
	      tick -= next_clock;

	      if (tick < MIN_TICK)
		tick = MIN_TICK;

	      INSN_TICK (head) = tick;
	    }

	  if (DEBUG_INSN_P (head))
	    continue;

	  FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
	    {
	      rtx_insn *next;

	      next = DEP_CON (dep);
	      tick = INSN_TICK (next);

	      if (tick != INVALID_TICK
		  /* If NEXT has its INSN_TICK calculated, fix it.
		     If not - it will be properly calculated from
		     scratch later in fix_tick_ready.  */
		  && bitmap_set_bit (processed, INSN_LUID (next)))
		{
		  tick -= next_clock;

		  if (tick < MIN_TICK)
		    tick = MIN_TICK;

		  if (tick > INTER_TICK (next))
		    INTER_TICK (next) = tick;
		  else
		    tick = INTER_TICK (next);

		  INSN_TICK (next) = tick;
		}
	    }
	}
    }
}

/* Check if NEXT is ready to be added to the ready or queue list.
   If "yes", add it to the proper list.
   Returns:
      -1 - is not ready yet,
       0 - added to the ready list,
   0 < N - queued for N cycles.  */
int
try_ready (rtx_insn *next)
{
  ds_t old_ts, new_ts;

  old_ts = TODO_SPEC (next);

  gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP | DEP_CONTROL | DEP_POSTPONED))
	      && (old_ts == HARD_DEP
		  || old_ts == DEP_POSTPONED
		  || (old_ts & SPECULATIVE)
		  || old_ts == DEP_CONTROL));

  new_ts = recompute_todo_spec (next, false);

  if (new_ts & (HARD_DEP | DEP_POSTPONED))
    gcc_assert (new_ts == old_ts
		&& QUEUE_INDEX (next) == QUEUE_NOWHERE);
  else if (current_sched_info->new_ready)
    new_ts = current_sched_info->new_ready (next, new_ts);

  /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
     have its original pattern or changed (speculative) one.  This is due
     to changing ebb in region scheduling.
     * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
     has speculative pattern.

     We can't assert (!(new_ts & HARD_DEP) || new_ts == old_ts) here because
     control-speculative NEXT could have been discarded by sched-rgn.cc
     (the same case as when discarded by can_schedule_ready_p ()).  */

  if ((new_ts & SPECULATIVE)
      /* If (old_ts == new_ts), then (old_ts & SPECULATIVE) and we don't
	 need to change anything.  */
      && new_ts != old_ts)
    {
      int res;
      rtx new_pat;

      gcc_assert ((new_ts & SPECULATIVE) && !(new_ts & ~SPECULATIVE));

      res = haifa_speculate_insn (next, new_ts, &new_pat);

      switch (res)
	{
	case -1:
	  /* It would be nice to change DEP_STATUS of all dependences,
	     which have ((DEP_STATUS & SPECULATIVE) == new_ts) to HARD_DEP,
	     so we won't reanalyze anything.  */
	  new_ts = HARD_DEP;
	  break;

	case 0:
	  /* We follow the rule, that every speculative insn
	     has non-null ORIG_PAT.  */
	  if (!ORIG_PAT (next))
	    ORIG_PAT (next) = PATTERN (next);
	  break;

	case 1:
	  if (!ORIG_PAT (next))
	    /* If we gonna to overwrite the original pattern of insn,
	       save it.  */
	    ORIG_PAT (next) = PATTERN (next);

	  res = haifa_change_pattern (next, new_pat);
	  gcc_assert (res);
	  break;

	default:
	  gcc_unreachable ();
	}
    }

  /* We need to restore pattern only if (new_ts == 0), because otherwise it is
     either correct (new_ts & SPECULATIVE),
     or we simply don't care (new_ts & HARD_DEP).  */

  gcc_assert (!ORIG_PAT (next)
	      || !IS_SPECULATION_BRANCHY_CHECK_P (next));

  TODO_SPEC (next) = new_ts;

  if (new_ts & (HARD_DEP | DEP_POSTPONED))
    {
      /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
	 control-speculative NEXT could have been discarded by sched-rgn.cc
	 (the same case as when discarded by can_schedule_ready_p ()).  */
      /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/

      change_queue_index (next, QUEUE_NOWHERE);

      return -1;
    }
  else if (!(new_ts & BEGIN_SPEC)
	   && ORIG_PAT (next) && PREDICATED_PAT (next) == NULL_RTX
	   && !IS_SPECULATION_CHECK_P (next))
    /* We should change pattern of every previously speculative
       instruction - and we determine if NEXT was speculative by using
       ORIG_PAT field.  Except one case - speculation checks have ORIG_PAT
       pat too, so skip them.  */
    {
      bool success = haifa_change_pattern (next, ORIG_PAT (next));
      gcc_assert (success);
      ORIG_PAT (next) = 0;
    }

  if (sched_verbose >= 2)
    {
      fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
               (*current_sched_info->print_insn) (next, 0));

      if (spec_info && spec_info->dump)
        {
          if (new_ts & BEGIN_DATA)
            fprintf (spec_info->dump, "; data-spec;");
          if (new_ts & BEGIN_CONTROL)
            fprintf (spec_info->dump, "; control-spec;");
          if (new_ts & BE_IN_CONTROL)
            fprintf (spec_info->dump, "; in-control-spec;");
        }
      if (TODO_SPEC (next) & DEP_CONTROL)
	fprintf (sched_dump, " predicated");
      fprintf (sched_dump, "\n");
    }

  adjust_priority (next);

  return fix_tick_ready (next);
}

/* Calculate INSN_TICK of NEXT and add it to either ready or queue list.  */
static int
fix_tick_ready (rtx_insn *next)
{
  int tick, delay;

  if (!DEBUG_INSN_P (next) && !sd_lists_empty_p (next, SD_LIST_RES_BACK))
    {
      int full_p;
      sd_iterator_def sd_it;
      dep_t dep;

      tick = INSN_TICK (next);
      /* if tick is not equal to INVALID_TICK, then update
	 INSN_TICK of NEXT with the most recent resolved dependence
	 cost.  Otherwise, recalculate from scratch.  */
      full_p = (tick == INVALID_TICK);

      FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
        {
          rtx_insn *pro = DEP_PRO (dep);
          int tick1;

	  gcc_assert (INSN_TICK (pro) >= MIN_TICK);

          tick1 = INSN_TICK (pro) + dep_cost (dep);
          if (tick1 > tick)
            tick = tick1;

	  if (!full_p)
	    break;
        }
    }
  else
    tick = -1;

  INSN_TICK (next) = tick;

  delay = tick - clock_var;
  if (delay <= 0 || sched_pressure != SCHED_PRESSURE_NONE || sched_fusion)
    delay = QUEUE_READY;

  change_queue_index (next, delay);

  return delay;
}

/* Move NEXT to the proper queue list with (DELAY >= 1),
   or add it to the ready list (DELAY == QUEUE_READY),
   or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE).  */
static void
change_queue_index (rtx_insn *next, int delay)
{
  int i = QUEUE_INDEX (next);

  gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index
	      && delay != 0);
  gcc_assert (i != QUEUE_SCHEDULED);

  if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
      || (delay < 0 && delay == i))
    /* We have nothing to do.  */
    return;

  /* Remove NEXT from wherever it is now.  */
  if (i == QUEUE_READY)
    ready_remove_insn (next);
  else if (i >= 0)
    queue_remove (next);

  /* Add it to the proper place.  */
  if (delay == QUEUE_READY)
    ready_add (readyp, next, false);
  else if (delay >= 1)
    queue_insn (next, delay, "change queue index");

  if (sched_verbose >= 2)
    {
      fprintf (sched_dump, ";;\t\ttick updated: insn %s",
	       (*current_sched_info->print_insn) (next, 0));

      if (delay == QUEUE_READY)
	fprintf (sched_dump, " into ready\n");
      else if (delay >= 1)
	fprintf (sched_dump, " into queue with cost=%d\n", delay);
      else
	fprintf (sched_dump, " removed from ready or queue lists\n");
    }
}

static int sched_ready_n_insns = -1;

/* Initialize per region data structures.  */
void
sched_extend_ready_list (int new_sched_ready_n_insns)
{
  int i;

  if (sched_ready_n_insns == -1)
    /* At the first call we need to initialize one more choice_stack
       entry.  */
    {
      i = 0;
      sched_ready_n_insns = 0;
      scheduled_insns.reserve (new_sched_ready_n_insns);
    }
  else
    i = sched_ready_n_insns + 1;

  ready.veclen = new_sched_ready_n_insns + issue_rate;
  ready.vec = XRESIZEVEC (rtx_insn *, ready.vec, ready.veclen);

  gcc_assert (new_sched_ready_n_insns >= sched_ready_n_insns);

  ready_try = (signed char *) xrecalloc (ready_try, new_sched_ready_n_insns,
					 sched_ready_n_insns,
					 sizeof (*ready_try));

  /* We allocate +1 element to save initial state in the choice_stack[0]
     entry.  */
  choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
			     new_sched_ready_n_insns + 1);

  for (; i <= new_sched_ready_n_insns; i++)
    {
      choice_stack[i].state = xmalloc (dfa_state_size);

      if (targetm.sched.first_cycle_multipass_init)
	targetm.sched.first_cycle_multipass_init (&(choice_stack[i]
						    .target_data));
    }

  sched_ready_n_insns = new_sched_ready_n_insns;
}

/* Free per region data structures.  */
void
sched_finish_ready_list (void)
{
  int i;

  free (ready.vec);
  ready.vec = NULL;
  ready.veclen = 0;

  free (ready_try);
  ready_try = NULL;

  for (i = 0; i <= sched_ready_n_insns; i++)
    {
      if (targetm.sched.first_cycle_multipass_fini)
	targetm.sched.first_cycle_multipass_fini (&(choice_stack[i]
						    .target_data));

      free (choice_stack [i].state);
    }
  free (choice_stack);
  choice_stack = NULL;

  sched_ready_n_insns = -1;
}

static int
haifa_luid_for_non_insn (rtx x)
{
  gcc_assert (NOTE_P (x) || LABEL_P (x));

  return 0;
}

/* Generates recovery code for INSN.  */
static void
generate_recovery_code (rtx_insn *insn)
{
  if (TODO_SPEC (insn) & BEGIN_SPEC)
    begin_speculative_block (insn);

  /* Here we have insn with no dependencies to
     instructions other then CHECK_SPEC ones.  */

  if (TODO_SPEC (insn) & BE_IN_SPEC)
    add_to_speculative_block (insn);
}

/* Helper function.
   Tries to add speculative dependencies of type FS between instructions
   in deps_list L and TWIN.  */
static void
process_insn_forw_deps_be_in_spec (rtx_insn *insn, rtx_insn *twin, ds_t fs)
{
  sd_iterator_def sd_it;
  dep_t dep;

  FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
    {
      ds_t ds;
      rtx_insn *consumer;

      consumer = DEP_CON (dep);

      ds = DEP_STATUS (dep);

      if (/* If we want to create speculative dep.  */
	  fs
	  /* And we can do that because this is a true dep.  */
	  && (ds & DEP_TYPES) == DEP_TRUE)
	{
	  gcc_assert (!(ds & BE_IN_SPEC));

	  if (/* If this dep can be overcome with 'begin speculation'.  */
	      ds & BEGIN_SPEC)
	    /* Then we have a choice: keep the dep 'begin speculative'
	       or transform it into 'be in speculative'.  */
	    {
	      if (/* In try_ready we assert that if insn once became ready
		     it can be removed from the ready (or queue) list only
		     due to backend decision.  Hence we can't let the
		     probability of the speculative dep to decrease.  */
		  ds_weak (ds) <= ds_weak (fs))
		{
		  ds_t new_ds;

		  new_ds = (ds & ~BEGIN_SPEC) | fs;

		  if (/* consumer can 'be in speculative'.  */
		      sched_insn_is_legitimate_for_speculation_p (consumer,
								  new_ds))
		    /* Transform it to be in speculative.  */
		    ds = new_ds;
		}
	    }
	  else
	    /* Mark the dep as 'be in speculative'.  */
	    ds |= fs;
	}

      {
	dep_def _new_dep, *new_dep = &_new_dep;

	init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
	sd_add_dep (new_dep, false);
      }
    }
}

/* Generates recovery code for BEGIN speculative INSN.  */
static void
begin_speculative_block (rtx_insn *insn)
{
  if (TODO_SPEC (insn) & BEGIN_DATA)
    nr_begin_data++;
  if (TODO_SPEC (insn) & BEGIN_CONTROL)
    nr_begin_control++;

  create_check_block_twin (insn, false);

  TODO_SPEC (insn) &= ~BEGIN_SPEC;
}

static void haifa_init_insn (rtx_insn *);

/* Generates recovery code for BE_IN speculative INSN.  */
static void
add_to_speculative_block (rtx_insn *insn)
{
  ds_t ts;
  sd_iterator_def sd_it;
  dep_t dep;
  auto_vec<rtx_insn *, 10> twins;

  ts = TODO_SPEC (insn);
  gcc_assert (!(ts & ~BE_IN_SPEC));

  if (ts & BE_IN_DATA)
    nr_be_in_data++;
  if (ts & BE_IN_CONTROL)
    nr_be_in_control++;

  TODO_SPEC (insn) &= ~BE_IN_SPEC;
  gcc_assert (!TODO_SPEC (insn));

  DONE_SPEC (insn) |= ts;

  /* First we convert all simple checks to branchy.  */
  for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
       sd_iterator_cond (&sd_it, &dep);)
    {
      rtx_insn *check = DEP_PRO (dep);

      if (IS_SPECULATION_SIMPLE_CHECK_P (check))
	{
	  create_check_block_twin (check, true);

	  /* Restart search.  */
	  sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
	}
      else
	/* Continue search.  */
	sd_iterator_next (&sd_it);
    }

  auto_vec<rtx_insn *> priorities_roots;
  clear_priorities (insn, &priorities_roots);

  while (1)
    {
      rtx_insn *check, *twin;
      basic_block rec;

      /* Get the first backward dependency of INSN.  */
      sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
      if (!sd_iterator_cond (&sd_it, &dep))
	/* INSN has no backward dependencies left.  */
	break;

      gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
		  && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
		  && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);

      check = DEP_PRO (dep);

      gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
		  && QUEUE_INDEX (check) == QUEUE_NOWHERE);

      rec = BLOCK_FOR_INSN (check);

      twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
      haifa_init_insn (twin);

      sd_copy_back_deps (twin, insn, true);

      if (sched_verbose && spec_info->dump)
        /* INSN_BB (insn) isn't determined for twin insns yet.
           So we can't use current_sched_info->print_insn.  */
        fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
                 INSN_UID (twin), rec->index);

      twins.safe_push (twin);

      /* Add dependences between TWIN and all appropriate
	 instructions from REC.  */
      FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
	{
	  rtx_insn *pro = DEP_PRO (dep);

	  gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);

	  /* INSN might have dependencies from the instructions from
	     several recovery blocks.  At this iteration we process those
	     producers that reside in REC.  */
	  if (BLOCK_FOR_INSN (pro) == rec)
	    {
	      dep_def _new_dep, *new_dep = &_new_dep;

	      init_dep (new_dep, pro, twin, REG_DEP_TRUE);
	      sd_add_dep (new_dep, false);
	    }
	}

      process_insn_forw_deps_be_in_spec (insn, twin, ts);

      /* Remove all dependencies between INSN and insns in REC.  */
      for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
	   sd_iterator_cond (&sd_it, &dep);)
	{
	  rtx_insn *pro = DEP_PRO (dep);

	  if (BLOCK_FOR_INSN (pro) == rec)
	    sd_delete_dep (sd_it);
	  else
	    sd_iterator_next (&sd_it);
	}
    }

  /* We couldn't have added the dependencies between INSN and TWINS earlier
     because that would make TWINS appear in the INSN_BACK_DEPS (INSN).  */
  unsigned int i;
  rtx_insn *twin;
  FOR_EACH_VEC_ELT_REVERSE (twins, i, twin)
    {
      dep_def _new_dep, *new_dep = &_new_dep;

      init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
      sd_add_dep (new_dep, false);
    }

  calc_priorities (priorities_roots);
}

/* Extends and fills with zeros (only the new part) array pointed to by P.  */
void *
xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
{
  gcc_assert (new_nmemb >= old_nmemb);
  p = XRESIZEVAR (void, p, new_nmemb * size);
  memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
  return p;
}

/* Helper function.
   Find fallthru edge from PRED.  */
edge
find_fallthru_edge_from (basic_block pred)
{
  edge e;
  basic_block succ;

  succ = pred->next_bb;
  gcc_assert (succ->prev_bb == pred);

  if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
    {
      e = find_fallthru_edge (pred->succs);

      if (e)
	{
	  gcc_assert (e->dest == succ || e->dest->index == EXIT_BLOCK);
	  return e;
	}
    }
  else
    {
      e = find_fallthru_edge (succ->preds);

      if (e)
	{
	  gcc_assert (e->src == pred);
	  return e;
	}
    }

  return NULL;
}

/* Extend per basic block data structures.  */
static void
sched_extend_bb (void)
{
  /* The following is done to keep current_sched_info->next_tail non null.  */
  rtx_insn *end = BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
  rtx_insn *insn = DEBUG_INSN_P (end) ? prev_nondebug_insn (end) : end;
  if (NEXT_INSN (end) == 0
      || (!NOTE_P (insn)
	  && !LABEL_P (insn)
	  /* Don't emit a NOTE if it would end up before a BARRIER.  */
	  && !BARRIER_P (next_nondebug_insn (end))))
    {
      rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
      /* Make note appear outside BB.  */
      set_block_for_insn (note, NULL);
      BB_END (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb) = end;
    }
}

/* Init per basic block data structures.  */
void
sched_init_bbs (void)
{
  sched_extend_bb ();
}

/* Initialize BEFORE_RECOVERY variable.  */
static void
init_before_recovery (basic_block *before_recovery_ptr)
{
  basic_block last;
  edge e;

  last = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
  e = find_fallthru_edge_from (last);

  if (e)
    {
      /* We create two basic blocks:
         1. Single instruction block is inserted right after E->SRC
         and has jump to
         2. Empty block right before EXIT_BLOCK.
         Between these two blocks recovery blocks will be emitted.  */

      basic_block single, empty;

      /* If the fallthrough edge to exit we've found is from the block we've
	 created before, don't do anything more.  */
      if (last == after_recovery)
	return;

      adding_bb_to_current_region_p = false;

      single = sched_create_empty_bb (last);
      empty = sched_create_empty_bb (single);

      /* Add new blocks to the root loop.  */
      if (current_loops != NULL)
	{
	  add_bb_to_loop (single, (*current_loops->larray)[0]);
	  add_bb_to_loop (empty, (*current_loops->larray)[0]);
	}

      single->count = last->count;
      empty->count = last->count;
      BB_COPY_PARTITION (single, last);
      BB_COPY_PARTITION (empty, last);

      redirect_edge_succ (e, single);
      make_single_succ_edge (single, empty, 0);
      make_single_succ_edge (empty, EXIT_BLOCK_PTR_FOR_FN (cfun),
			     EDGE_FALLTHRU);

      rtx_code_label *label = block_label (empty);
      rtx_jump_insn *x = emit_jump_insn_after (targetm.gen_jump (label),
					       BB_END (single));
      JUMP_LABEL (x) = label;
      LABEL_NUSES (label)++;
      haifa_init_insn (x);

      emit_barrier_after (x);

      sched_init_only_bb (empty, NULL);
      sched_init_only_bb (single, NULL);
      sched_extend_bb ();

      adding_bb_to_current_region_p = true;
      before_recovery = single;
      after_recovery = empty;

      if (before_recovery_ptr)
        *before_recovery_ptr = before_recovery;

      if (sched_verbose >= 2 && spec_info->dump)
        fprintf (spec_info->dump,
		 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
                 last->index, single->index, empty->index);
    }
  else
    before_recovery = last;
}

/* Returns new recovery block.  */
basic_block
sched_create_recovery_block (basic_block *before_recovery_ptr)
{
  rtx_insn *barrier;
  basic_block rec;

  haifa_recovery_bb_recently_added_p = true;
  haifa_recovery_bb_ever_added_p = true;

  init_before_recovery (before_recovery_ptr);

  barrier = get_last_bb_insn (before_recovery);
  gcc_assert (BARRIER_P (barrier));

  rtx_insn *label = emit_label_after (gen_label_rtx (), barrier);

  rec = create_basic_block (label, label, before_recovery);

  /* A recovery block always ends with an unconditional jump.  */
  emit_barrier_after (BB_END (rec));

  if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
    BB_SET_PARTITION (rec, BB_COLD_PARTITION);

  if (sched_verbose && spec_info->dump)
    fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
             rec->index);

  return rec;
}

/* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
   and emit necessary jumps.  */
void
sched_create_recovery_edges (basic_block first_bb, basic_block rec,
			     basic_block second_bb)
{
  int edge_flags;

  /* This is fixing of incoming edge.  */
  /* ??? Which other flags should be specified?  */
  if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
    /* Partition type is the same, if it is "unpartitioned".  */
    edge_flags = EDGE_CROSSING;
  else
    edge_flags = 0;

  edge e2 = single_succ_edge (first_bb);
  edge e = make_edge (first_bb, rec, edge_flags);

  /* TODO: The actual probability can be determined and is computed as
     'todo_spec' variable in create_check_block_twin and
     in sel-sched.cc `check_ds' in create_speculation_check.  */
  e->probability = profile_probability::very_unlikely ();
  rec->count = e->count ();
  e2->probability = e->probability.invert ();

  rtx_code_label *label = block_label (second_bb);
  rtx_jump_insn *jump = emit_jump_insn_after (targetm.gen_jump (label),
					      BB_END (rec));
  JUMP_LABEL (jump) = label;
  LABEL_NUSES (label)++;

  if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
    /* Partition type is the same, if it is "unpartitioned".  */
    {
      /* Rewritten from cfgrtl.cc.  */
      if (crtl->has_bb_partition && targetm_common.have_named_sections)
	{
	  /* We don't need the same note for the check because
	     any_condjump_p (check) == true.  */
	  CROSSING_JUMP_P (jump) = 1;
	}
      edge_flags = EDGE_CROSSING;
    }
  else
    edge_flags = 0;

  make_single_succ_edge (rec, second_bb, edge_flags);
  if (dom_info_available_p (CDI_DOMINATORS))
    set_immediate_dominator (CDI_DOMINATORS, rec, first_bb);
}

/* This function creates recovery code for INSN.  If MUTATE_P is nonzero,
   INSN is a simple check, that should be converted to branchy one.  */
static void
create_check_block_twin (rtx_insn *insn, bool mutate_p)
{
  basic_block rec;
  rtx_insn *label, *check, *twin;
  rtx check_pat;
  ds_t fs;
  sd_iterator_def sd_it;
  dep_t dep;
  dep_def _new_dep, *new_dep = &_new_dep;
  ds_t todo_spec;

  gcc_assert (ORIG_PAT (insn) != NULL_RTX);

  if (!mutate_p)
    todo_spec = TODO_SPEC (insn);
  else
    {
      gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn)
		  && (TODO_SPEC (insn) & SPECULATIVE) == 0);

      todo_spec = CHECK_SPEC (insn);
    }

  todo_spec &= SPECULATIVE;

  /* Create recovery block.  */
  if (mutate_p || targetm.sched.needs_block_p (todo_spec))
    {
      rec = sched_create_recovery_block (NULL);
      label = BB_HEAD (rec);
    }
  else
    {
      rec = EXIT_BLOCK_PTR_FOR_FN (cfun);
      label = NULL;
    }

  /* Emit CHECK.  */
  check_pat = targetm.sched.gen_spec_check (insn, label, todo_spec);

  if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
    {
      /* To have mem_reg alive at the beginning of second_bb,
	 we emit check BEFORE insn, so insn after splitting
	 insn will be at the beginning of second_bb, which will
	 provide us with the correct life information.  */
      check = emit_jump_insn_before (check_pat, insn);
      JUMP_LABEL (check) = label;
      LABEL_NUSES (label)++;
    }
  else
    check = emit_insn_before (check_pat, insn);

  /* Extend data structures.  */
  haifa_init_insn (check);

  /* CHECK is being added to current region.  Extend ready list.  */
  gcc_assert (sched_ready_n_insns != -1);
  sched_extend_ready_list (sched_ready_n_insns + 1);

  if (current_sched_info->add_remove_insn)
    current_sched_info->add_remove_insn (insn, 0);

  RECOVERY_BLOCK (check) = rec;

  if (sched_verbose && spec_info->dump)
    fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
             (*current_sched_info->print_insn) (check, 0));

  gcc_assert (ORIG_PAT (insn));

  /* Initialize TWIN (twin is a duplicate of original instruction
     in the recovery block).  */
  if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
    {
      sd_iterator_def sd_it;
      dep_t dep;

      FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
	if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
	  {
	    struct _dep _dep2, *dep2 = &_dep2;

	    init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);

	    sd_add_dep (dep2, true);
	  }

      twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
      haifa_init_insn (twin);

      if (sched_verbose && spec_info->dump)
	/* INSN_BB (insn) isn't determined for twin insns yet.
	   So we can't use current_sched_info->print_insn.  */
	fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
		 INSN_UID (twin), rec->index);
    }
  else
    {
      ORIG_PAT (check) = ORIG_PAT (insn);
      HAS_INTERNAL_DEP (check) = 1;
      twin = check;
      /* ??? We probably should change all OUTPUT dependencies to
	 (TRUE | OUTPUT).  */
    }

  /* Copy all resolved back dependencies of INSN to TWIN.  This will
     provide correct value for INSN_TICK (TWIN).  */
  sd_copy_back_deps (twin, insn, true);

  if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
    /* In case of branchy check, fix CFG.  */
    {
      basic_block first_bb, second_bb;
      rtx_insn *jump;

      first_bb = BLOCK_FOR_INSN (check);
      second_bb = sched_split_block (first_bb, check);

      sched_create_recovery_edges (first_bb, rec, second_bb);

      sched_init_only_bb (second_bb, first_bb);
      sched_init_only_bb (rec, EXIT_BLOCK_PTR_FOR_FN (cfun));

      jump = BB_END (rec);
      haifa_init_insn (jump);
    }

  /* Move backward dependences from INSN to CHECK and
     move forward dependences from INSN to TWIN.  */

  /* First, create dependencies between INSN's producers and CHECK & TWIN.  */
  FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
    {
      rtx_insn *pro = DEP_PRO (dep);
      ds_t ds;

      /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
	 check --TRUE--> producer  ??? or ANTI ???
	 twin  --TRUE--> producer
	 twin  --ANTI--> check

	 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
	 check --ANTI--> producer
	 twin  --ANTI--> producer
	 twin  --ANTI--> check

	 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
	 check ~~TRUE~~> producer
	 twin  ~~TRUE~~> producer
	 twin  --ANTI--> check  */

      ds = DEP_STATUS (dep);

      if (ds & BEGIN_SPEC)
	{
	  gcc_assert (!mutate_p);
	  ds &= ~BEGIN_SPEC;
	}

      init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
      sd_add_dep (new_dep, false);

      if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
	{
	  DEP_CON (new_dep) = twin;
	  sd_add_dep (new_dep, false);
	}
    }

  /* Second, remove backward dependencies of INSN.  */
  for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
       sd_iterator_cond (&sd_it, &dep);)
    {
      if ((DEP_STATUS (dep) & BEGIN_SPEC)
	  || mutate_p)
	/* We can delete this dep because we overcome it with
	   BEGIN_SPECULATION.  */
	sd_delete_dep (sd_it);
      else
	sd_iterator_next (&sd_it);
    }

  /* Future Speculations.  Determine what BE_IN speculations will be like.  */
  fs = 0;

  /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
     here.  */

  gcc_assert (!DONE_SPEC (insn));

  if (!mutate_p)
    {
      ds_t ts = TODO_SPEC (insn);

      DONE_SPEC (insn) = ts & BEGIN_SPEC;
      CHECK_SPEC (check) = ts & BEGIN_SPEC;

      /* Luckiness of future speculations solely depends upon initial
	 BEGIN speculation.  */
      if (ts & BEGIN_DATA)
	fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
      if (ts & BEGIN_CONTROL)
	fs = set_dep_weak (fs, BE_IN_CONTROL,
			   get_dep_weak (ts, BEGIN_CONTROL));
    }
  else
    CHECK_SPEC (check) = CHECK_SPEC (insn);

  /* Future speculations: call the helper.  */
  process_insn_forw_deps_be_in_spec (insn, twin, fs);

  if (rec != EXIT_BLOCK_PTR_FOR_FN (cfun))
    {
      /* Which types of dependencies should we use here is,
	 generally, machine-dependent question...  But, for now,
	 it is not.  */

      if (!mutate_p)
	{
	  init_dep (new_dep, insn, check, REG_DEP_TRUE);
	  sd_add_dep (new_dep, false);

	  init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
	  sd_add_dep (new_dep, false);
	}
      else
	{
	  if (spec_info->dump)
	    fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
		     (*current_sched_info->print_insn) (insn, 0));

	  /* Remove all dependencies of the INSN.  */
	  {
	    sd_it = sd_iterator_start (insn, (SD_LIST_FORW
					      | SD_LIST_BACK
					      | SD_LIST_RES_BACK));
	    while (sd_iterator_cond (&sd_it, &dep))
	      sd_delete_dep (sd_it);
	  }

	  /* If former check (INSN) already was moved to the ready (or queue)
	     list, add new check (CHECK) there too.  */
	  if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
	    try_ready (check);

	  /* Remove old check from instruction stream and free its
	     data.  */
	  sched_remove_insn (insn);
	}

      init_dep (new_dep, check, twin, REG_DEP_ANTI);
      sd_add_dep (new_dep, false);
    }
  else
    {
      init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
      sd_add_dep (new_dep, false);
    }

  if (!mutate_p)
    /* Fix priorities.  If MUTATE_P is nonzero, this is not necessary,
       because it'll be done later in add_to_speculative_block.  */
    {
      auto_vec<rtx_insn *> priorities_roots;

      clear_priorities (twin, &priorities_roots);
      calc_priorities (priorities_roots);
    }
}

/* Removes dependency between instructions in the recovery block REC
   and usual region instructions.  It keeps inner dependences so it
   won't be necessary to recompute them.  */
static void
fix_recovery_deps (basic_block rec)
{
  rtx_insn *note, *insn, *jump;
  auto_vec<rtx_insn *, 10> ready_list;
  auto_bitmap in_ready;

  /* NOTE - a basic block note.  */
  note = NEXT_INSN (BB_HEAD (rec));
  gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
  insn = BB_END (rec);
  gcc_assert (JUMP_P (insn));
  insn = PREV_INSN (insn);

  do
    {
      sd_iterator_def sd_it;
      dep_t dep;

      for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
	   sd_iterator_cond (&sd_it, &dep);)
	{
	  rtx_insn *consumer = DEP_CON (dep);

	  if (BLOCK_FOR_INSN (consumer) != rec)
	    {
	      sd_delete_dep (sd_it);

	      if (bitmap_set_bit (in_ready, INSN_LUID (consumer)))
		ready_list.safe_push (consumer);
	    }
	  else
	    {
	      gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);

	      sd_iterator_next (&sd_it);
	    }
	}

      insn = PREV_INSN (insn);
    }
  while (insn != note);

  /* Try to add instructions to the ready or queue list.  */
  unsigned int i;
  rtx_insn *temp;
  FOR_EACH_VEC_ELT_REVERSE (ready_list, i, temp)
    try_ready (temp);

  /* Fixing jump's dependences.  */
  insn = BB_HEAD (rec);
  jump = BB_END (rec);

  gcc_assert (LABEL_P (insn));
  insn = NEXT_INSN (insn);

  gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
  add_jump_dependencies (insn, jump);
}

/* Change pattern of INSN to NEW_PAT.  Invalidate cached haifa
   instruction data.  */
static bool
haifa_change_pattern (rtx_insn *insn, rtx new_pat)
{
  int t;

  t = validate_change (insn, &PATTERN (insn), new_pat, 0);
  if (!t)
    return false;

  update_insn_after_change (insn);
  return true;
}

/* -1 - can't speculate,
   0 - for speculation with REQUEST mode it is OK to use
   current instruction pattern,
   1 - need to change pattern for *NEW_PAT to be speculative.  */
int
sched_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
{
  gcc_assert (current_sched_info->flags & DO_SPECULATION
              && (request & SPECULATIVE)
	      && sched_insn_is_legitimate_for_speculation_p (insn, request));

  if ((request & spec_info->mask) != request)
    return -1;

  if (request & BE_IN_SPEC
      && !(request & BEGIN_SPEC))
    return 0;

  return targetm.sched.speculate_insn (insn, request, new_pat);
}

static int
haifa_speculate_insn (rtx_insn *insn, ds_t request, rtx *new_pat)
{
  gcc_assert (sched_deps_info->generate_spec_deps
	      && !IS_SPECULATION_CHECK_P (insn));

  if (HAS_INTERNAL_DEP (insn)
      || SCHED_GROUP_P (insn))
    return -1;

  return sched_speculate_insn (insn, request, new_pat);
}

/* Print some information about block BB, which starts with HEAD and
   ends with TAIL, before scheduling it.
   I is zero, if scheduler is about to start with the fresh ebb.  */
static void
dump_new_block_header (int i, basic_block bb, rtx_insn *head, rtx_insn *tail)
{
  if (!i)
    fprintf (sched_dump,
	     ";;   ======================================================\n");
  else
    fprintf (sched_dump,
	     ";;   =====================ADVANCING TO=====================\n");
  fprintf (sched_dump,
	   ";;   -- basic block %d from %d to %d -- %s reload\n",
	   bb->index, INSN_UID (head), INSN_UID (tail),
	   (reload_completed ? "after" : "before"));
  fprintf (sched_dump,
	   ";;   ======================================================\n");
  fprintf (sched_dump, "\n");
}

/* Unlink basic block notes and labels and saves them, so they
   can be easily restored.  We unlink basic block notes in EBB to
   provide back-compatibility with the previous code, as target backends
   assume, that there'll be only instructions between
   current_sched_info->{head and tail}.  We restore these notes as soon
   as we can.
   FIRST (LAST) is the first (last) basic block in the ebb.
   NB: In usual case (FIRST == LAST) nothing is really done.  */
void
unlink_bb_notes (basic_block first, basic_block last)
{
  /* We DON'T unlink basic block notes of the first block in the ebb.  */
  if (first == last)
    return;

  bb_header = XNEWVEC (rtx_insn *, last_basic_block_for_fn (cfun));

  /* Make a sentinel.  */
  if (last->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
    bb_header[last->next_bb->index] = 0;

  first = first->next_bb;
  do
    {
      rtx_insn *prev, *label, *note, *next;

      label = BB_HEAD (last);
      if (LABEL_P (label))
	note = NEXT_INSN (label);
      else
	note = label;
      gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));

      prev = PREV_INSN (label);
      next = NEXT_INSN (note);
      gcc_assert (prev && next);

      SET_NEXT_INSN (prev) = next;
      SET_PREV_INSN (next) = prev;

      bb_header[last->index] = label;

      if (last == first)
	break;

      last = last->prev_bb;
    }
  while (1);
}

/* Restore basic block notes.
   FIRST is the first basic block in the ebb.  */
static void
restore_bb_notes (basic_block first)
{
  if (!bb_header)
    return;

  /* We DON'T unlink basic block notes of the first block in the ebb.  */
  first = first->next_bb;
  /* Remember: FIRST is actually a second basic block in the ebb.  */

  while (first != EXIT_BLOCK_PTR_FOR_FN (cfun)
	 && bb_header[first->index])
    {
      rtx_insn *prev, *label, *note, *next;

      label = bb_header[first->index];
      prev = PREV_INSN (label);
      next = NEXT_INSN (prev);

      if (LABEL_P (label))
	note = NEXT_INSN (label);
      else
	note = label;
      gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));

      bb_header[first->index] = 0;

      SET_NEXT_INSN (prev) = label;
      SET_NEXT_INSN (note) = next;
      SET_PREV_INSN (next) = note;

      first = first->next_bb;
    }

  free (bb_header);
  bb_header = 0;
}

/* Helper function.
   Fix CFG after both in- and inter-block movement of
   control_flow_insn_p JUMP.  */
static void
fix_jump_move (rtx_insn *jump)
{
  basic_block bb, jump_bb, jump_bb_next;

  bb = BLOCK_FOR_INSN (PREV_INSN (jump));
  jump_bb = BLOCK_FOR_INSN (jump);
  jump_bb_next = jump_bb->next_bb;

  gcc_assert (common_sched_info->sched_pass_id == SCHED_EBB_PASS
	      || IS_SPECULATION_BRANCHY_CHECK_P (jump));

  if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
    /* if jump_bb_next is not empty.  */
    BB_END (jump_bb) = BB_END (jump_bb_next);

  if (BB_END (bb) != PREV_INSN (jump))
    /* Then there are instruction after jump that should be placed
       to jump_bb_next.  */
    BB_END (jump_bb_next) = BB_END (bb);
  else
    /* Otherwise jump_bb_next is empty.  */
    BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));

  /* To make assertion in move_insn happy.  */
  BB_END (bb) = PREV_INSN (jump);

  update_bb_for_insn (jump_bb_next);
}

/* Fix CFG after interblock movement of control_flow_insn_p JUMP.  */
static void
move_block_after_check (rtx_insn *jump)
{
  basic_block bb, jump_bb, jump_bb_next;
  vec<edge, va_gc> *t;

  bb = BLOCK_FOR_INSN (PREV_INSN (jump));
  jump_bb = BLOCK_FOR_INSN (jump);
  jump_bb_next = jump_bb->next_bb;

  update_bb_for_insn (jump_bb);

  gcc_assert (IS_SPECULATION_CHECK_P (jump)
	      || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));

  unlink_block (jump_bb_next);
  link_block (jump_bb_next, bb);

  t = bb->succs;
  bb->succs = 0;
  move_succs (&(jump_bb->succs), bb);
  move_succs (&(jump_bb_next->succs), jump_bb);
  move_succs (&t, jump_bb_next);

  df_mark_solutions_dirty ();

  common_sched_info->fix_recovery_cfg
    (bb->index, jump_bb->index, jump_bb_next->index);
}

/* Helper function for move_block_after_check.
   This functions attaches edge vector pointed to by SUCCSP to
   block TO.  */
static void
move_succs (vec<edge, va_gc> **succsp, basic_block to)
{
  edge e;
  edge_iterator ei;

  gcc_assert (to->succs == 0);

  to->succs = *succsp;

  FOR_EACH_EDGE (e, ei, to->succs)
    e->src = to;

  *succsp = 0;
}

/* Remove INSN from the instruction stream.
   INSN should have any dependencies.  */
static void
sched_remove_insn (rtx_insn *insn)
{
  sd_finish_insn (insn);

  change_queue_index (insn, QUEUE_NOWHERE);
  current_sched_info->add_remove_insn (insn, 1);
  delete_insn (insn);
}

/* Clear priorities of all instructions, that are forward dependent on INSN.
   Store in vector pointed to by ROOTS_PTR insns on which priority () should
   be invoked to initialize all cleared priorities.  */
static void
clear_priorities (rtx_insn *insn, rtx_vec_t *roots_ptr)
{
  sd_iterator_def sd_it;
  dep_t dep;
  bool insn_is_root_p = true;

  gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);

  FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
    {
      rtx_insn *pro = DEP_PRO (dep);

      if (INSN_PRIORITY_STATUS (pro) >= 0
	  && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
	{
	  /* If DEP doesn't contribute to priority then INSN itself should
	     be added to priority roots.  */
	  if (contributes_to_priority_p (dep))
	    insn_is_root_p = false;

	  INSN_PRIORITY_STATUS (pro) = -1;
	  clear_priorities (pro, roots_ptr);
	}
    }

  if (insn_is_root_p)
    roots_ptr->safe_push (insn);
}

/* Recompute priorities of instructions, whose priorities might have been
   changed.  ROOTS is a vector of instructions whose priority computation will
   trigger initialization of all cleared priorities.  */
static void
calc_priorities (const rtx_vec_t &roots)
{
  int i;
  rtx_insn *insn;

  FOR_EACH_VEC_ELT (roots, i, insn)
    priority (insn);
}


/* Add dependences between JUMP and other instructions in the recovery
   block.  INSN is the first insn the recovery block.  */
static void
add_jump_dependencies (rtx_insn *insn, rtx_insn *jump)
{
  do
    {
      insn = NEXT_INSN (insn);
      if (insn == jump)
	break;

      if (dep_list_size (insn, SD_LIST_FORW) == 0)
	{
	  dep_def _new_dep, *new_dep = &_new_dep;

	  init_dep (new_dep, insn, jump, REG_DEP_ANTI);
	  sd_add_dep (new_dep, false);
	}
    }
  while (1);

  gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
}

/* Extend data structures for logical insn UID.  */
void
sched_extend_luids (void)
{
  int new_luids_max_uid = get_max_uid () + 1;

  sched_luids.safe_grow_cleared (new_luids_max_uid, true);
}

/* Initialize LUID for INSN.  */
void
sched_init_insn_luid (rtx_insn *insn)
{
  int i = INSN_P (insn) ? 1 : common_sched_info->luid_for_non_insn (insn);
  int luid;

  if (i >= 0)
    {
      luid = sched_max_luid;
      sched_max_luid += i;
    }
  else
    luid = -1;

  SET_INSN_LUID (insn, luid);
}

/* Initialize luids for BBS.
   The hook common_sched_info->luid_for_non_insn () is used to determine
   if notes, labels, etc. need luids.  */
void
sched_init_luids (const bb_vec_t &bbs)
{
  int i;
  basic_block bb;

  sched_extend_luids ();
  FOR_EACH_VEC_ELT (bbs, i, bb)
    {
      rtx_insn *insn;

      FOR_BB_INSNS (bb, insn)
	sched_init_insn_luid (insn);
    }
}

/* Free LUIDs.  */
void
sched_finish_luids (void)
{
  sched_luids.release ();
  sched_max_luid = 1;
}

/* Return logical uid of INSN.  Helpful while debugging.  */
int
insn_luid (rtx_insn *insn)
{
  return INSN_LUID (insn);
}

/* Extend per insn data in the target.  */
void
sched_extend_target (void)
{
  if (targetm.sched.h_i_d_extended)
    targetm.sched.h_i_d_extended ();
}

/* Extend global scheduler structures (those, that live across calls to
   schedule_block) to include information about just emitted INSN.  */
static void
extend_h_i_d (void)
{
  int reserve = (get_max_uid () + 1 - h_i_d.length ());
  if (reserve > 0
      && ! h_i_d.space (reserve))
    {
      h_i_d.safe_grow_cleared (3U * get_max_uid () / 2, true);
      sched_extend_target ();
    }
}

/* Initialize h_i_d entry of the INSN with default values.
   Values, that are not explicitly initialized here, hold zero.  */
static void
init_h_i_d (rtx_insn *insn)
{
  if (INSN_LUID (insn) > 0)
    {
      INSN_COST (insn) = -1;
      QUEUE_INDEX (insn) = QUEUE_NOWHERE;
      INSN_TICK (insn) = INVALID_TICK;
      INSN_EXACT_TICK (insn) = INVALID_TICK;
      INTER_TICK (insn) = INVALID_TICK;
      TODO_SPEC (insn) = HARD_DEP;
      INSN_AUTOPREF_MULTIPASS_DATA (insn)[0].status
	= AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
      INSN_AUTOPREF_MULTIPASS_DATA (insn)[1].status
	= AUTOPREF_MULTIPASS_DATA_UNINITIALIZED;
    }
}

/* Initialize haifa_insn_data for BBS.  */
void
haifa_init_h_i_d (const bb_vec_t &bbs)
{
  int i;
  basic_block bb;

  extend_h_i_d ();
  FOR_EACH_VEC_ELT (bbs, i, bb)
    {
      rtx_insn *insn;

      FOR_BB_INSNS (bb, insn)
	init_h_i_d (insn);
    }
}

/* Finalize haifa_insn_data.  */
void
haifa_finish_h_i_d (void)
{
  int i;
  haifa_insn_data_t data;
  reg_use_data *use, *next_use;
  reg_set_data *set, *next_set;

  FOR_EACH_VEC_ELT (h_i_d, i, data)
    {
      free (data->max_reg_pressure);
      free (data->reg_pressure);
      for (use = data->reg_use_list; use != NULL; use = next_use)
	{
	  next_use = use->next_insn_use;
	  free (use);
	}
      for (set = data->reg_set_list; set != NULL; set = next_set)
	{
	  next_set = set->next_insn_set;
	  free (set);
	}

    }
  h_i_d.release ();
}

/* Init data for the new insn INSN.  */
static void
haifa_init_insn (rtx_insn *insn)
{
  gcc_assert (insn != NULL);

  sched_extend_luids ();
  sched_init_insn_luid (insn);
  sched_extend_target ();
  sched_deps_init (false);
  extend_h_i_d ();
  init_h_i_d (insn);

  if (adding_bb_to_current_region_p)
    {
      sd_init_insn (insn);

      /* Extend dependency caches by one element.  */
      extend_dependency_caches (1, false);
    }
  if (sched_pressure != SCHED_PRESSURE_NONE)
    init_insn_reg_pressure_info (insn);
}

/* Init data for the new basic block BB which comes after AFTER.  */
static void
haifa_init_only_bb (basic_block bb, basic_block after)
{
  gcc_assert (bb != NULL);

  sched_init_bbs ();

  if (common_sched_info->add_block)
    /* This changes only data structures of the front-end.  */
    common_sched_info->add_block (bb, after);
}

/* A generic version of sched_split_block ().  */
basic_block
sched_split_block_1 (basic_block first_bb, rtx after)
{
  edge e;

  e = split_block (first_bb, after);
  gcc_assert (e->src == first_bb);

  /* sched_split_block emits note if *check == BB_END.  Probably it
     is better to rip that note off.  */

  return e->dest;
}

/* A generic version of sched_create_empty_bb ().  */
basic_block
sched_create_empty_bb_1 (basic_block after)
{
  return create_empty_bb (after);
}

/* Insert PAT as an INSN into the schedule and update the necessary data
   structures to account for it. */
rtx_insn *
sched_emit_insn (rtx pat)
{
  rtx_insn *insn = emit_insn_before (pat, first_nonscheduled_insn ());
  haifa_init_insn (insn);

  if (current_sched_info->add_remove_insn)
    current_sched_info->add_remove_insn (insn, 0);

  (*current_sched_info->begin_schedule_ready) (insn);
  scheduled_insns.safe_push (insn);

  last_scheduled_insn = insn;
  return insn;
}

/* This function returns a candidate satisfying dispatch constraints from
   the ready list.  */

static rtx_insn *
ready_remove_first_dispatch (struct ready_list *ready)
{
  int i;
  rtx_insn *insn = ready_element (ready, 0);

  if (ready->n_ready == 1
      || !INSN_P (insn)
      || INSN_CODE (insn) < 0
      || !active_insn_p (insn)
      || targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
    return ready_remove_first (ready);

  for (i = 1; i < ready->n_ready; i++)
    {
      insn = ready_element (ready, i);

      if (!INSN_P (insn)
	  || INSN_CODE (insn) < 0
	  || !active_insn_p (insn))
	continue;

      if (targetm.sched.dispatch (insn, FITS_DISPATCH_WINDOW))
	{
	  /* Return ith element of ready.  */
	  insn = ready_remove (ready, i);
	  return insn;
	}
    }

  if (targetm.sched.dispatch (NULL, DISPATCH_VIOLATION))
    return ready_remove_first (ready);

  for (i = 1; i < ready->n_ready; i++)
    {
      insn = ready_element (ready, i);

      if (!INSN_P (insn)
	  || INSN_CODE (insn) < 0
	  || !active_insn_p (insn))
	continue;

      /* Return i-th element of ready.  */
      if (targetm.sched.dispatch (insn, IS_CMP))
	return ready_remove (ready, i);
    }

  return ready_remove_first (ready);
}

/* Get number of ready insn in the ready list.  */

int
number_in_ready (void)
{
  return ready.n_ready;
}

/* Get number of ready's in the ready list.  */

rtx_insn *
get_ready_element (int i)
{
  return ready_element (&ready, i);
}

#endif /* INSN_SCHEDULING */