aboutsummaryrefslogtreecommitdiff
path: root/gcc/haifa-sched.c
blob: 6a53543f5e301e2f2158835ea33c40dc237a91d4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
/* Instruction scheduling pass.
   Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
   2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
   Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
   and currently maintained by, Jim Wilson (wilson@cygnus.com)

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* Instruction scheduling pass.  This file, along with sched-deps.c,
   contains the generic parts.  The actual entry point is found for
   the normal instruction scheduling pass is found in sched-rgn.c.

   We compute insn priorities based on data dependencies.  Flow
   analysis only creates a fraction of the data-dependencies we must
   observe: namely, only those dependencies which the combiner can be
   expected to use.  For this pass, we must therefore create the
   remaining dependencies we need to observe: register dependencies,
   memory dependencies, dependencies to keep function calls in order,
   and the dependence between a conditional branch and the setting of
   condition codes are all dealt with here.

   The scheduler first traverses the data flow graph, starting with
   the last instruction, and proceeding to the first, assigning values
   to insn_priority as it goes.  This sorts the instructions
   topologically by data dependence.

   Once priorities have been established, we order the insns using
   list scheduling.  This works as follows: starting with a list of
   all the ready insns, and sorted according to priority number, we
   schedule the insn from the end of the list by placing its
   predecessors in the list according to their priority order.  We
   consider this insn scheduled by setting the pointer to the "end" of
   the list to point to the previous insn.  When an insn has no
   predecessors, we either queue it until sufficient time has elapsed
   or add it to the ready list.  As the instructions are scheduled or
   when stalls are introduced, the queue advances and dumps insns into
   the ready list.  When all insns down to the lowest priority have
   been scheduled, the critical path of the basic block has been made
   as short as possible.  The remaining insns are then scheduled in
   remaining slots.

   The following list shows the order in which we want to break ties
   among insns in the ready list:

   1.  choose insn with the longest path to end of bb, ties
   broken by
   2.  choose insn with least contribution to register pressure,
   ties broken by
   3.  prefer in-block upon interblock motion, ties broken by
   4.  prefer useful upon speculative motion, ties broken by
   5.  choose insn with largest control flow probability, ties
   broken by
   6.  choose insn with the least dependences upon the previously
   scheduled insn, or finally
   7   choose the insn which has the most insns dependent on it.
   8.  choose insn with lowest UID.

   Memory references complicate matters.  Only if we can be certain
   that memory references are not part of the data dependency graph
   (via true, anti, or output dependence), can we move operations past
   memory references.  To first approximation, reads can be done
   independently, while writes introduce dependencies.  Better
   approximations will yield fewer dependencies.

   Before reload, an extended analysis of interblock data dependences
   is required for interblock scheduling.  This is performed in
   compute_block_backward_dependences ().

   Dependencies set up by memory references are treated in exactly the
   same way as other dependencies, by using insn backward dependences
   INSN_BACK_DEPS.  INSN_BACK_DEPS are translated into forward dependences
   INSN_FORW_DEPS the purpose of forward list scheduling.

   Having optimized the critical path, we may have also unduly
   extended the lifetimes of some registers.  If an operation requires
   that constants be loaded into registers, it is certainly desirable
   to load those constants as early as necessary, but no earlier.
   I.e., it will not do to load up a bunch of registers at the
   beginning of a basic block only to use them at the end, if they
   could be loaded later, since this may result in excessive register
   utilization.

   Note that since branches are never in basic blocks, but only end
   basic blocks, this pass will not move branches.  But that is ok,
   since we can use GNU's delayed branch scheduling pass to take care
   of this case.

   Also note that no further optimizations based on algebraic
   identities are performed, so this pass would be a good one to
   perform instruction splitting, such as breaking up a multiply
   instruction into shifts and adds where that is profitable.

   Given the memory aliasing analysis that this pass should perform,
   it should be possible to remove redundant stores to memory, and to
   load values from registers instead of hitting memory.

   Before reload, speculative insns are moved only if a 'proof' exists
   that no exception will be caused by this, and if no live registers
   exist that inhibit the motion (live registers constraints are not
   represented by data dependence edges).

   This pass must update information that subsequent passes expect to
   be correct.  Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
   reg_n_calls_crossed, and reg_live_length.  Also, BB_HEAD, BB_END.

   The information in the line number notes is carefully retained by
   this pass.  Notes that refer to the starting and ending of
   exception regions are also carefully retained by this pass.  All
   other NOTE insns are grouped in their same relative order at the
   beginning of basic blocks and regions that have been scheduled.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "toplev.h"
#include "rtl.h"
#include "tm_p.h"
#include "hard-reg-set.h"
#include "regs.h"
#include "function.h"
#include "flags.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "except.h"
#include "toplev.h"
#include "recog.h"
#include "sched-int.h"
#include "target.h"
#include "output.h"
#include "params.h"
#include "dbgcnt.h"

#ifdef INSN_SCHEDULING

/* issue_rate is the number of insns that can be scheduled in the same
   machine cycle.  It can be defined in the config/mach/mach.h file,
   otherwise we set it to 1.  */

static int issue_rate;

/* sched-verbose controls the amount of debugging output the
   scheduler prints.  It is controlled by -fsched-verbose=N:
   N>0 and no -DSR : the output is directed to stderr.
   N>=10 will direct the printouts to stderr (regardless of -dSR).
   N=1: same as -dSR.
   N=2: bb's probabilities, detailed ready list info, unit/insn info.
   N=3: rtl at abort point, control-flow, regions info.
   N=5: dependences info.  */

static int sched_verbose_param = 0;
int sched_verbose = 0;

/* Debugging file.  All printouts are sent to dump, which is always set,
   either to stderr, or to the dump listing file (-dRS).  */
FILE *sched_dump = 0;

/* Highest uid before scheduling.  */
static int old_max_uid;

/* fix_sched_param() is called from toplev.c upon detection
   of the -fsched-verbose=N option.  */

void
fix_sched_param (const char *param, const char *val)
{
  if (!strcmp (param, "verbose"))
    sched_verbose_param = atoi (val);
  else
    warning (0, "fix_sched_param: unknown param: %s", param);
}

struct haifa_insn_data *h_i_d;

#define INSN_TICK(INSN)		(h_i_d[INSN_UID (INSN)].tick)
#define INTER_TICK(INSN)        (h_i_d[INSN_UID (INSN)].inter_tick)

/* If INSN_TICK of an instruction is equal to INVALID_TICK,
   then it should be recalculated from scratch.  */
#define INVALID_TICK (-(max_insn_queue_index + 1))
/* The minimal value of the INSN_TICK of an instruction.  */
#define MIN_TICK (-max_insn_queue_index)

/* Issue points are used to distinguish between instructions in max_issue ().
   For now, all instructions are equally good.  */
#define ISSUE_POINTS(INSN) 1

/* List of important notes we must keep around.  This is a pointer to the
   last element in the list.  */
static rtx note_list;

static struct spec_info_def spec_info_var;
/* Description of the speculative part of the scheduling.
   If NULL - no speculation.  */
spec_info_t spec_info;

/* True, if recovery block was added during scheduling of current block.
   Used to determine, if we need to fix INSN_TICKs.  */
static bool haifa_recovery_bb_recently_added_p;

/* True, if recovery block was added during this scheduling pass.
   Used to determine if we should have empty memory pools of dependencies
   after finishing current region.  */
bool haifa_recovery_bb_ever_added_p;

/* Counters of different types of speculative instructions.  */
static int nr_begin_data, nr_be_in_data, nr_begin_control, nr_be_in_control;

/* Array used in {unlink, restore}_bb_notes.  */
static rtx *bb_header = 0;

/* Number of basic_blocks.  */
static int old_last_basic_block;

/* Basic block after which recovery blocks will be created.  */
static basic_block before_recovery;

/* Queues, etc.  */

/* An instruction is ready to be scheduled when all insns preceding it
   have already been scheduled.  It is important to ensure that all
   insns which use its result will not be executed until its result
   has been computed.  An insn is maintained in one of four structures:

   (P) the "Pending" set of insns which cannot be scheduled until
   their dependencies have been satisfied.
   (Q) the "Queued" set of insns that can be scheduled when sufficient
   time has passed.
   (R) the "Ready" list of unscheduled, uncommitted insns.
   (S) the "Scheduled" list of insns.

   Initially, all insns are either "Pending" or "Ready" depending on
   whether their dependencies are satisfied.

   Insns move from the "Ready" list to the "Scheduled" list as they
   are committed to the schedule.  As this occurs, the insns in the
   "Pending" list have their dependencies satisfied and move to either
   the "Ready" list or the "Queued" set depending on whether
   sufficient time has passed to make them ready.  As time passes,
   insns move from the "Queued" set to the "Ready" list.

   The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
   unscheduled insns, i.e., those that are ready, queued, and pending.
   The "Queued" set (Q) is implemented by the variable `insn_queue'.
   The "Ready" list (R) is implemented by the variables `ready' and
   `n_ready'.
   The "Scheduled" list (S) is the new insn chain built by this pass.

   The transition (R->S) is implemented in the scheduling loop in
   `schedule_block' when the best insn to schedule is chosen.
   The transitions (P->R and P->Q) are implemented in `schedule_insn' as
   insns move from the ready list to the scheduled list.
   The transition (Q->R) is implemented in 'queue_to_insn' as time
   passes or stalls are introduced.  */

/* Implement a circular buffer to delay instructions until sufficient
   time has passed.  For the new pipeline description interface,
   MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
   than maximal time of instruction execution computed by genattr.c on
   the base maximal time of functional unit reservations and getting a
   result.  This is the longest time an insn may be queued.  */

static rtx *insn_queue;
static int q_ptr = 0;
static int q_size = 0;
#define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
#define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)

#define QUEUE_SCHEDULED (-3)
#define QUEUE_NOWHERE   (-2)
#define QUEUE_READY     (-1)
/* QUEUE_SCHEDULED - INSN is scheduled.
   QUEUE_NOWHERE   - INSN isn't scheduled yet and is neither in
   queue or ready list.
   QUEUE_READY     - INSN is in ready list.
   N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles.  */
   
#define QUEUE_INDEX(INSN) (h_i_d[INSN_UID (INSN)].queue_index)

/* The following variable value refers for all current and future
   reservations of the processor units.  */
state_t curr_state;

/* The following variable value is size of memory representing all
   current and future reservations of the processor units.  */
static size_t dfa_state_size;

/* The following array is used to find the best insn from ready when
   the automaton pipeline interface is used.  */
static char *ready_try;

/* Describe the ready list of the scheduler.
   VEC holds space enough for all insns in the current region.  VECLEN
   says how many exactly.
   FIRST is the index of the element with the highest priority; i.e. the
   last one in the ready list, since elements are ordered by ascending
   priority.
   N_READY determines how many insns are on the ready list.  */

struct ready_list
{
  rtx *vec;
  int veclen;
  int first;
  int n_ready;
};

/* The pointer to the ready list.  */
static struct ready_list *readyp;

/* Scheduling clock.  */
static int clock_var;

/* Number of instructions in current scheduling region.  */
static int rgn_n_insns;

static int may_trap_exp (const_rtx, int);

/* Nonzero iff the address is comprised from at most 1 register.  */
#define CONST_BASED_ADDRESS_P(x)			\
  (REG_P (x)					\
   || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS	\
	|| (GET_CODE (x) == LO_SUM))			\
       && (CONSTANT_P (XEXP (x, 0))			\
	   || CONSTANT_P (XEXP (x, 1)))))

/* Returns a class that insn with GET_DEST(insn)=x may belong to,
   as found by analyzing insn's expression.  */

static int
may_trap_exp (const_rtx x, int is_store)
{
  enum rtx_code code;

  if (x == 0)
    return TRAP_FREE;
  code = GET_CODE (x);
  if (is_store)
    {
      if (code == MEM && may_trap_p (x))
	return TRAP_RISKY;
      else
	return TRAP_FREE;
    }
  if (code == MEM)
    {
      /* The insn uses memory:  a volatile load.  */
      if (MEM_VOLATILE_P (x))
	return IRISKY;
      /* An exception-free load.  */
      if (!may_trap_p (x))
	return IFREE;
      /* A load with 1 base register, to be further checked.  */
      if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
	return PFREE_CANDIDATE;
      /* No info on the load, to be further checked.  */
      return PRISKY_CANDIDATE;
    }
  else
    {
      const char *fmt;
      int i, insn_class = TRAP_FREE;

      /* Neither store nor load, check if it may cause a trap.  */
      if (may_trap_p (x))
	return TRAP_RISKY;
      /* Recursive step: walk the insn...  */
      fmt = GET_RTX_FORMAT (code);
      for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
	{
	  if (fmt[i] == 'e')
	    {
	      int tmp_class = may_trap_exp (XEXP (x, i), is_store);
	      insn_class = WORST_CLASS (insn_class, tmp_class);
	    }
	  else if (fmt[i] == 'E')
	    {
	      int j;
	      for (j = 0; j < XVECLEN (x, i); j++)
		{
		  int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
		  insn_class = WORST_CLASS (insn_class, tmp_class);
		  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
		    break;
		}
	    }
	  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
	    break;
	}
      return insn_class;
    }
}

/* Classifies rtx X of an insn for the purpose of verifying that X can be
   executed speculatively (and consequently the insn can be moved
   speculatively), by examining X, returning:
   TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
   TRAP_FREE: non-load insn.
   IFREE: load from a globally safe location.
   IRISKY: volatile load.
   PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
   being either PFREE or PRISKY.  */

static int
haifa_classify_rtx (const_rtx x)
{
  int tmp_class = TRAP_FREE;
  int insn_class = TRAP_FREE;
  enum rtx_code code;

  if (GET_CODE (x) == PARALLEL)
    {
      int i, len = XVECLEN (x, 0);

      for (i = len - 1; i >= 0; i--)
	{
	  tmp_class = haifa_classify_rtx (XVECEXP (x, 0, i));
	  insn_class = WORST_CLASS (insn_class, tmp_class);
	  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
	    break;
	}
    }
  else
    {
      code = GET_CODE (x);
      switch (code)
	{
	case CLOBBER:
	  /* Test if it is a 'store'.  */
	  tmp_class = may_trap_exp (XEXP (x, 0), 1);
	  break;
	case SET:
	  /* Test if it is a store.  */
	  tmp_class = may_trap_exp (SET_DEST (x), 1);
	  if (tmp_class == TRAP_RISKY)
	    break;
	  /* Test if it is a load.  */
	  tmp_class =
	    WORST_CLASS (tmp_class,
			 may_trap_exp (SET_SRC (x), 0));
	  break;
	case COND_EXEC:
	  tmp_class = haifa_classify_rtx (COND_EXEC_CODE (x));
	  if (tmp_class == TRAP_RISKY)
	    break;
	  tmp_class = WORST_CLASS (tmp_class,
				   may_trap_exp (COND_EXEC_TEST (x), 0));
	  break;
	case TRAP_IF:
	  tmp_class = TRAP_RISKY;
	  break;
	default:;
	}
      insn_class = tmp_class;
    }

  return insn_class;
}

int
haifa_classify_insn (const_rtx insn)
{
  return haifa_classify_rtx (PATTERN (insn));
}


/* A typedef for rtx vector.  */
typedef VEC(rtx, heap) *rtx_vec_t;

/* Forward declarations.  */

static int priority (rtx);
static int rank_for_schedule (const void *, const void *);
static void swap_sort (rtx *, int);
static void queue_insn (rtx, int);
static int schedule_insn (rtx);
static int find_set_reg_weight (const_rtx);
static void find_insn_reg_weight (basic_block);
static void find_insn_reg_weight1 (rtx);
static void adjust_priority (rtx);
static void advance_one_cycle (void);

/* Notes handling mechanism:
   =========================
   Generally, NOTES are saved before scheduling and restored after scheduling.
   The scheduler distinguishes between two types of notes:

   (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
   Before scheduling a region, a pointer to the note is added to the insn
   that follows or precedes it.  (This happens as part of the data dependence
   computation).  After scheduling an insn, the pointer contained in it is
   used for regenerating the corresponding note (in reemit_notes).

   (2) All other notes (e.g. INSN_DELETED):  Before scheduling a block,
   these notes are put in a list (in rm_other_notes() and
   unlink_other_notes ()).  After scheduling the block, these notes are
   inserted at the beginning of the block (in schedule_block()).  */

static rtx unlink_other_notes (rtx, rtx);
static void reemit_notes (rtx);

static rtx *ready_lastpos (struct ready_list *);
static void ready_add (struct ready_list *, rtx, bool);
static void ready_sort (struct ready_list *);
static rtx ready_remove_first (struct ready_list *);

static void queue_to_ready (struct ready_list *);
static int early_queue_to_ready (state_t, struct ready_list *);

static void debug_ready_list (struct ready_list *);

static void move_insn (rtx);

/* The following functions are used to implement multi-pass scheduling
   on the first cycle.  */
static rtx ready_element (struct ready_list *, int);
static rtx ready_remove (struct ready_list *, int);
static void ready_remove_insn (rtx);
static int max_issue (struct ready_list *, int *, int);

static int choose_ready (struct ready_list *, rtx *);

static void fix_inter_tick (rtx, rtx);
static int fix_tick_ready (rtx);
static void change_queue_index (rtx, int);

/* The following functions are used to implement scheduling of data/control
   speculative instructions.  */

static void extend_h_i_d (void);
static void extend_ready (int);
static void extend_global (rtx);
static void extend_all (rtx);
static void init_h_i_d (rtx);
static void generate_recovery_code (rtx);
static void process_insn_forw_deps_be_in_spec (rtx, rtx, ds_t);
static void begin_speculative_block (rtx);
static void add_to_speculative_block (rtx);
static dw_t dep_weak (ds_t);
static edge find_fallthru_edge (basic_block);
static void init_before_recovery (void);
static basic_block create_recovery_block (void);
static void create_check_block_twin (rtx, bool);
static void fix_recovery_deps (basic_block);
static void change_pattern (rtx, rtx);
static int speculate_insn (rtx, ds_t, rtx *);
static void dump_new_block_header (int, basic_block, rtx, rtx);
static void restore_bb_notes (basic_block);
static void extend_bb (void);
static void fix_jump_move (rtx);
static void move_block_after_check (rtx);
static void move_succs (VEC(edge,gc) **, basic_block);
static void sched_remove_insn (rtx);
static void clear_priorities (rtx, rtx_vec_t *);
static void calc_priorities (rtx_vec_t);
static void add_jump_dependencies (rtx, rtx);
#ifdef ENABLE_CHECKING
static int has_edge_p (VEC(edge,gc) *, int);
static void check_cfg (rtx, rtx);
#endif

#endif /* INSN_SCHEDULING */

/* Point to state used for the current scheduling pass.  */
struct sched_info *current_sched_info;

#ifndef INSN_SCHEDULING
void
schedule_insns (void)
{
}
#else

/* Working copy of frontend's sched_info variable.  */
static struct sched_info current_sched_info_var;

/* Pointer to the last instruction scheduled.  Used by rank_for_schedule,
   so that insns independent of the last scheduled insn will be preferred
   over dependent instructions.  */

static rtx last_scheduled_insn;

/* Cached cost of the instruction.  Use below function to get cost of the
   insn.  -1 here means that the field is not initialized.  */
#define INSN_COST(INSN)		(h_i_d[INSN_UID (INSN)].cost)

/* Compute cost of executing INSN.
   This is the number of cycles between instruction issue and
   instruction results.  */
HAIFA_INLINE int
insn_cost (rtx insn)
{
  int cost = INSN_COST (insn);

  if (cost < 0)
    {
      /* A USE insn, or something else we don't need to
	 understand.  We can't pass these directly to
	 result_ready_cost or insn_default_latency because it will
	 trigger a fatal error for unrecognizable insns.  */
      if (recog_memoized (insn) < 0)
	{
	  INSN_COST (insn) = 0;
	  return 0;
	}
      else
	{
	  cost = insn_default_latency (insn);
	  if (cost < 0)
	    cost = 0;

	  INSN_COST (insn) = cost;
	}
    }

  return cost;
}

/* Compute cost of dependence LINK.
   This is the number of cycles between instruction issue and
   instruction results.  */
int
dep_cost (dep_t link)
{
  rtx used = DEP_CON (link);
  int cost;

  /* A USE insn should never require the value used to be computed.
     This allows the computation of a function's result and parameter
     values to overlap the return and call.  */
  if (recog_memoized (used) < 0)
    cost = 0;
  else
    {
      rtx insn = DEP_PRO (link);
      enum reg_note dep_type = DEP_TYPE (link);

      cost = insn_cost (insn);

      if (INSN_CODE (insn) >= 0)
	{
	  if (dep_type == REG_DEP_ANTI)
	    cost = 0;
	  else if (dep_type == REG_DEP_OUTPUT)
	    {
	      cost = (insn_default_latency (insn)
		      - insn_default_latency (used));
	      if (cost <= 0)
		cost = 1;
	    }
	  else if (bypass_p (insn))
	    cost = insn_latency (insn, used);
	}

      if (targetm.sched.adjust_cost != NULL)
	{
	  /* This variable is used for backward compatibility with the
	     targets.  */
	  rtx dep_cost_rtx_link = alloc_INSN_LIST (NULL_RTX, NULL_RTX);

	  /* Make it self-cycled, so that if some tries to walk over this
	     incomplete list he/she will be caught in an endless loop.  */
	  XEXP (dep_cost_rtx_link, 1) = dep_cost_rtx_link;

	  /* Targets use only REG_NOTE_KIND of the link.  */
	  PUT_REG_NOTE_KIND (dep_cost_rtx_link, DEP_TYPE (link));

	  cost = targetm.sched.adjust_cost (used, dep_cost_rtx_link,
					    insn, cost);

	  free_INSN_LIST_node (dep_cost_rtx_link);
	}

      if (cost < 0)
	cost = 0;
    }

  return cost;
}

/* Return 'true' if DEP should be included in priority calculations.  */
static bool
contributes_to_priority_p (dep_t dep)
{
  /* Critical path is meaningful in block boundaries only.  */
  if (!current_sched_info->contributes_to_priority (DEP_CON (dep),
						    DEP_PRO (dep)))
    return false;

  /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
     then speculative instructions will less likely be
     scheduled.  That is because the priority of
     their producers will increase, and, thus, the
     producers will more likely be scheduled, thus,
     resolving the dependence.  */
  if ((current_sched_info->flags & DO_SPECULATION)
      && !(spec_info->flags & COUNT_SPEC_IN_CRITICAL_PATH)
      && (DEP_STATUS (dep) & SPECULATIVE))
    return false;

  return true;
}

/* Compute the priority number for INSN.  */
static int
priority (rtx insn)
{
  if (! INSN_P (insn))
    return 0;

  /* We should not be interested in priority of an already scheduled insn.  */
  gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);

  if (!INSN_PRIORITY_KNOWN (insn))
    {
      int this_priority = 0;

      if (sd_lists_empty_p (insn, SD_LIST_FORW))
	/* ??? We should set INSN_PRIORITY to insn_cost when and insn has
	   some forward deps but all of them are ignored by
	   contributes_to_priority hook.  At the moment we set priority of
	   such insn to 0.  */
	this_priority = insn_cost (insn);
      else
	{
	  rtx prev_first, twin;
	  basic_block rec;

	  /* For recovery check instructions we calculate priority slightly
	     different than that of normal instructions.  Instead of walking
	     through INSN_FORW_DEPS (check) list, we walk through
	     INSN_FORW_DEPS list of each instruction in the corresponding
	     recovery block.  */ 

	  rec = RECOVERY_BLOCK (insn);
	  if (!rec || rec == EXIT_BLOCK_PTR)
	    {
	      prev_first = PREV_INSN (insn);
	      twin = insn;
	    }
	  else
	    {
	      prev_first = NEXT_INSN (BB_HEAD (rec));
	      twin = PREV_INSN (BB_END (rec));
	    }

	  do
	    {
	      sd_iterator_def sd_it;
	      dep_t dep;

	      FOR_EACH_DEP (twin, SD_LIST_FORW, sd_it, dep)
		{
		  rtx next;
		  int next_priority;

		  next = DEP_CON (dep);

		  if (BLOCK_FOR_INSN (next) != rec)
		    {
		      int cost;

		      if (!contributes_to_priority_p (dep))
			continue;

		      if (twin == insn)
			cost = dep_cost (dep);
		      else
			{
			  struct _dep _dep1, *dep1 = &_dep1;

			  init_dep (dep1, insn, next, REG_DEP_ANTI);

			  cost = dep_cost (dep1);
			}

		      next_priority = cost + priority (next);

		      if (next_priority > this_priority)
			this_priority = next_priority;
		    }
		}
	      
	      twin = PREV_INSN (twin);
	    }
	  while (twin != prev_first);
	}
      INSN_PRIORITY (insn) = this_priority;
      INSN_PRIORITY_STATUS (insn) = 1;
    }

  return INSN_PRIORITY (insn);
}

/* Macros and functions for keeping the priority queue sorted, and
   dealing with queuing and dequeuing of instructions.  */

#define SCHED_SORT(READY, N_READY)                                   \
do { if ((N_READY) == 2)				             \
       swap_sort (READY, N_READY);			             \
     else if ((N_READY) > 2)                                         \
         qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); }  \
while (0)

/* Returns a positive value if x is preferred; returns a negative value if
   y is preferred.  Should never return 0, since that will make the sort
   unstable.  */

static int
rank_for_schedule (const void *x, const void *y)
{
  rtx tmp = *(const rtx *) y;
  rtx tmp2 = *(const rtx *) x;
  int tmp_class, tmp2_class;
  int val, priority_val, weight_val, info_val;

  /* The insn in a schedule group should be issued the first.  */
  if (SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
    return SCHED_GROUP_P (tmp2) ? 1 : -1;

  /* Make sure that priority of TMP and TMP2 are initialized.  */
  gcc_assert (INSN_PRIORITY_KNOWN (tmp) && INSN_PRIORITY_KNOWN (tmp2));

  /* Prefer insn with higher priority.  */
  priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);

  if (priority_val)
    return priority_val;

  /* Prefer speculative insn with greater dependencies weakness.  */
  if (spec_info)
    {
      ds_t ds1, ds2;
      dw_t dw1, dw2;
      int dw;

      ds1 = TODO_SPEC (tmp) & SPECULATIVE;
      if (ds1)
	dw1 = dep_weak (ds1);
      else
	dw1 = NO_DEP_WEAK;
      
      ds2 = TODO_SPEC (tmp2) & SPECULATIVE;
      if (ds2)
	dw2 = dep_weak (ds2);
      else
	dw2 = NO_DEP_WEAK;

      dw = dw2 - dw1;
      if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
	return dw;
    }

  /* Prefer an insn with smaller contribution to registers-pressure.  */
  if (!reload_completed &&
      (weight_val = INSN_REG_WEIGHT (tmp) - INSN_REG_WEIGHT (tmp2)))
    return weight_val;

  info_val = (*current_sched_info->rank) (tmp, tmp2);
  if (info_val)
    return info_val;

  /* Compare insns based on their relation to the last-scheduled-insn.  */
  if (INSN_P (last_scheduled_insn))
    {
      dep_t dep1;
      dep_t dep2;

      /* Classify the instructions into three classes:
         1) Data dependent on last schedule insn.
         2) Anti/Output dependent on last scheduled insn.
         3) Independent of last scheduled insn, or has latency of one.
         Choose the insn from the highest numbered class if different.  */
      dep1 = sd_find_dep_between (last_scheduled_insn, tmp, true);

      if (dep1 == NULL || dep_cost (dep1) == 1)
	tmp_class = 3;
      else if (/* Data dependence.  */
	       DEP_TYPE (dep1) == REG_DEP_TRUE)
	tmp_class = 1;
      else
	tmp_class = 2;

      dep2 = sd_find_dep_between (last_scheduled_insn, tmp2, true);

      if (dep2 == NULL || dep_cost (dep2)  == 1)
	tmp2_class = 3;
      else if (/* Data dependence.  */
	       DEP_TYPE (dep2) == REG_DEP_TRUE)
	tmp2_class = 1;
      else
	tmp2_class = 2;

      if ((val = tmp2_class - tmp_class))
	return val;
    }

  /* Prefer the insn which has more later insns that depend on it.
     This gives the scheduler more freedom when scheduling later
     instructions at the expense of added register pressure.  */

  val = (sd_lists_size (tmp2, SD_LIST_FORW)
	 - sd_lists_size (tmp, SD_LIST_FORW));

  if (val != 0)
    return val;

  /* If insns are equally good, sort by INSN_LUID (original insn order),
     so that we make the sort stable.  This minimizes instruction movement,
     thus minimizing sched's effect on debugging and cross-jumping.  */
  return INSN_LUID (tmp) - INSN_LUID (tmp2);
}

/* Resort the array A in which only element at index N may be out of order.  */

HAIFA_INLINE static void
swap_sort (rtx *a, int n)
{
  rtx insn = a[n - 1];
  int i = n - 2;

  while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
    {
      a[i + 1] = a[i];
      i -= 1;
    }
  a[i + 1] = insn;
}

/* Add INSN to the insn queue so that it can be executed at least
   N_CYCLES after the currently executing insn.  Preserve insns
   chain for debugging purposes.  */

HAIFA_INLINE static void
queue_insn (rtx insn, int n_cycles)
{
  int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
  rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);

  gcc_assert (n_cycles <= max_insn_queue_index);

  insn_queue[next_q] = link;
  q_size += 1;

  if (sched_verbose >= 2)
    {
      fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
	       (*current_sched_info->print_insn) (insn, 0));

      fprintf (sched_dump, "queued for %d cycles.\n", n_cycles);
    }
  
  QUEUE_INDEX (insn) = next_q;
}

/* Remove INSN from queue.  */
static void
queue_remove (rtx insn)
{
  gcc_assert (QUEUE_INDEX (insn) >= 0);
  remove_free_INSN_LIST_elem (insn, &insn_queue[QUEUE_INDEX (insn)]);
  q_size--;
  QUEUE_INDEX (insn) = QUEUE_NOWHERE;
}

/* Return a pointer to the bottom of the ready list, i.e. the insn
   with the lowest priority.  */

HAIFA_INLINE static rtx *
ready_lastpos (struct ready_list *ready)
{
  gcc_assert (ready->n_ready >= 1);
  return ready->vec + ready->first - ready->n_ready + 1;
}

/* Add an element INSN to the ready list so that it ends up with the
   lowest/highest priority depending on FIRST_P.  */

HAIFA_INLINE static void
ready_add (struct ready_list *ready, rtx insn, bool first_p)
{
  if (!first_p)
    {
      if (ready->first == ready->n_ready)
	{
	  memmove (ready->vec + ready->veclen - ready->n_ready,
		   ready_lastpos (ready),
		   ready->n_ready * sizeof (rtx));
	  ready->first = ready->veclen - 1;
	}
      ready->vec[ready->first - ready->n_ready] = insn;
    }
  else
    {
      if (ready->first == ready->veclen - 1)
	{
	  if (ready->n_ready)
	    /* ready_lastpos() fails when called with (ready->n_ready == 0).  */
	    memmove (ready->vec + ready->veclen - ready->n_ready - 1,
		     ready_lastpos (ready),
		     ready->n_ready * sizeof (rtx));
	  ready->first = ready->veclen - 2;
	}
      ready->vec[++(ready->first)] = insn;
    }

  ready->n_ready++;

  gcc_assert (QUEUE_INDEX (insn) != QUEUE_READY);
  QUEUE_INDEX (insn) = QUEUE_READY;
}

/* Remove the element with the highest priority from the ready list and
   return it.  */

HAIFA_INLINE static rtx
ready_remove_first (struct ready_list *ready)
{
  rtx t;
  
  gcc_assert (ready->n_ready);
  t = ready->vec[ready->first--];
  ready->n_ready--;
  /* If the queue becomes empty, reset it.  */
  if (ready->n_ready == 0)
    ready->first = ready->veclen - 1;

  gcc_assert (QUEUE_INDEX (t) == QUEUE_READY);
  QUEUE_INDEX (t) = QUEUE_NOWHERE;

  return t;
}

/* The following code implements multi-pass scheduling for the first
   cycle.  In other words, we will try to choose ready insn which
   permits to start maximum number of insns on the same cycle.  */

/* Return a pointer to the element INDEX from the ready.  INDEX for
   insn with the highest priority is 0, and the lowest priority has
   N_READY - 1.  */

HAIFA_INLINE static rtx
ready_element (struct ready_list *ready, int index)
{
  gcc_assert (ready->n_ready && index < ready->n_ready);
  
  return ready->vec[ready->first - index];
}

/* Remove the element INDEX from the ready list and return it.  INDEX
   for insn with the highest priority is 0, and the lowest priority
   has N_READY - 1.  */

HAIFA_INLINE static rtx
ready_remove (struct ready_list *ready, int index)
{
  rtx t;
  int i;

  if (index == 0)
    return ready_remove_first (ready);
  gcc_assert (ready->n_ready && index < ready->n_ready);
  t = ready->vec[ready->first - index];
  ready->n_ready--;
  for (i = index; i < ready->n_ready; i++)
    ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
  QUEUE_INDEX (t) = QUEUE_NOWHERE;
  return t;
}

/* Remove INSN from the ready list.  */
static void
ready_remove_insn (rtx insn)
{
  int i;

  for (i = 0; i < readyp->n_ready; i++)
    if (ready_element (readyp, i) == insn)
      {
        ready_remove (readyp, i);
        return;
      }
  gcc_unreachable ();
}

/* Sort the ready list READY by ascending priority, using the SCHED_SORT
   macro.  */

HAIFA_INLINE static void
ready_sort (struct ready_list *ready)
{
  rtx *first = ready_lastpos (ready);
  SCHED_SORT (first, ready->n_ready);
}

/* PREV is an insn that is ready to execute.  Adjust its priority if that
   will help shorten or lengthen register lifetimes as appropriate.  Also
   provide a hook for the target to tweek itself.  */

HAIFA_INLINE static void
adjust_priority (rtx prev)
{
  /* ??? There used to be code here to try and estimate how an insn
     affected register lifetimes, but it did it by looking at REG_DEAD
     notes, which we removed in schedule_region.  Nor did it try to
     take into account register pressure or anything useful like that.

     Revisit when we have a machine model to work with and not before.  */

  if (targetm.sched.adjust_priority)
    INSN_PRIORITY (prev) =
      targetm.sched.adjust_priority (prev, INSN_PRIORITY (prev));
}

/* Advance time on one cycle.  */
HAIFA_INLINE static void
advance_one_cycle (void)
{
  if (targetm.sched.dfa_pre_advance_cycle)
    targetm.sched.dfa_pre_advance_cycle ();

  if (targetm.sched.dfa_pre_cycle_insn)
    state_transition (curr_state,
		      targetm.sched.dfa_pre_cycle_insn ());

  state_transition (curr_state, NULL);
  
  if (targetm.sched.dfa_post_cycle_insn)
    state_transition (curr_state,
		      targetm.sched.dfa_post_cycle_insn ());

  if (targetm.sched.dfa_post_advance_cycle)
    targetm.sched.dfa_post_advance_cycle ();
}

/* Clock at which the previous instruction was issued.  */
static int last_clock_var;

/* INSN is the "currently executing insn".  Launch each insn which was
   waiting on INSN.  READY is the ready list which contains the insns
   that are ready to fire.  CLOCK is the current cycle.  The function
   returns necessary cycle advance after issuing the insn (it is not
   zero for insns in a schedule group).  */

static int
schedule_insn (rtx insn)
{
  sd_iterator_def sd_it;
  dep_t dep;
  int advance = 0;

  if (sched_verbose >= 1)
    {
      char buf[2048];

      print_insn (buf, insn, 0);
      buf[40] = 0;
      fprintf (sched_dump, ";;\t%3i--> %-40s:", clock_var, buf);

      if (recog_memoized (insn) < 0)
	fprintf (sched_dump, "nothing");
      else
	print_reservation (sched_dump, insn);
      fputc ('\n', sched_dump);
    }

  /* Scheduling instruction should have all its dependencies resolved and
     should have been removed from the ready list.  */
  gcc_assert (sd_lists_empty_p (insn, SD_LIST_BACK));

  gcc_assert (QUEUE_INDEX (insn) == QUEUE_NOWHERE);
  QUEUE_INDEX (insn) = QUEUE_SCHEDULED;

  gcc_assert (INSN_TICK (insn) >= MIN_TICK);
  if (INSN_TICK (insn) > clock_var)
    /* INSN has been prematurely moved from the queue to the ready list.
       This is possible only if following flag is set.  */
    gcc_assert (flag_sched_stalled_insns);    

  /* ??? Probably, if INSN is scheduled prematurely, we should leave
     INSN_TICK untouched.  This is a machine-dependent issue, actually.  */
  INSN_TICK (insn) = clock_var;

  /* Update dependent instructions.  */
  for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
       sd_iterator_cond (&sd_it, &dep);)
    {
      rtx next = DEP_CON (dep);

      /* Resolve the dependence between INSN and NEXT.
	 sd_resolve_dep () moves current dep to another list thus
	 advancing the iterator.  */
      sd_resolve_dep (sd_it);

      if (!IS_SPECULATION_BRANCHY_CHECK_P (insn))
	{
	  int effective_cost;      
	  
	  effective_cost = try_ready (next);
	  
	  if (effective_cost >= 0
	      && SCHED_GROUP_P (next)
	      && advance < effective_cost)
	    advance = effective_cost;
	}
      else
	/* Check always has only one forward dependence (to the first insn in
	   the recovery block), therefore, this will be executed only once.  */
	{
	  gcc_assert (sd_lists_empty_p (insn, SD_LIST_FORW));
	  fix_recovery_deps (RECOVERY_BLOCK (insn));
	}
    }

  /* This is the place where scheduler doesn't *basically* need backward and
     forward dependencies for INSN anymore.  Nevertheless they are used in
     heuristics in rank_for_schedule (), early_queue_to_ready () and in
     some targets (e.g. rs6000).  Thus the earliest place where we *can*
     remove dependencies is after targetm.sched.md_finish () call in
     schedule_block ().  But, on the other side, the safest place to remove
     dependencies is when we are finishing scheduling entire region.  As we
     don't generate [many] dependencies during scheduling itself, we won't
     need memory until beginning of next region.
     Bottom line: Dependencies are removed for all insns in the end of
     scheduling the region.  */

  /* Annotate the instruction with issue information -- TImode
     indicates that the instruction is expected not to be able
     to issue on the same cycle as the previous insn.  A machine
     may use this information to decide how the instruction should
     be aligned.  */
  if (issue_rate > 1
      && GET_CODE (PATTERN (insn)) != USE
      && GET_CODE (PATTERN (insn)) != CLOBBER)
    {
      if (reload_completed)
	PUT_MODE (insn, clock_var > last_clock_var ? TImode : VOIDmode);
      last_clock_var = clock_var;
    }

  return advance;
}

/* Functions for handling of notes.  */

/* Delete notes beginning with INSN and put them in the chain
   of notes ended by NOTE_LIST.
   Returns the insn following the notes.  */

static rtx
unlink_other_notes (rtx insn, rtx tail)
{
  rtx prev = PREV_INSN (insn);

  while (insn != tail && NOTE_NOT_BB_P (insn))
    {
      rtx next = NEXT_INSN (insn);
      basic_block bb = BLOCK_FOR_INSN (insn);

      /* Delete the note from its current position.  */
      if (prev)
	NEXT_INSN (prev) = next;
      if (next)
	PREV_INSN (next) = prev;

      if (bb)
        {
          /* Basic block can begin with either LABEL or
             NOTE_INSN_BASIC_BLOCK.  */
          gcc_assert (BB_HEAD (bb) != insn);

          /* Check if we are removing last insn in the BB.  */
          if (BB_END (bb) == insn)
            BB_END (bb) = prev;
        }

      /* See sched_analyze to see how these are handled.  */
      if (NOTE_KIND (insn) != NOTE_INSN_EH_REGION_BEG
	  && NOTE_KIND (insn) != NOTE_INSN_EH_REGION_END)
	{
	  /* Insert the note at the end of the notes list.  */
	  PREV_INSN (insn) = note_list;
	  if (note_list)
	    NEXT_INSN (note_list) = insn;
	  note_list = insn;
	}

      insn = next;
    }
  return insn;
}

/* Return the head and tail pointers of ebb starting at BEG and ending
   at END.  */

void
get_ebb_head_tail (basic_block beg, basic_block end, rtx *headp, rtx *tailp)
{
  rtx beg_head = BB_HEAD (beg);
  rtx beg_tail = BB_END (beg);
  rtx end_head = BB_HEAD (end);
  rtx end_tail = BB_END (end);

  /* Don't include any notes or labels at the beginning of the BEG
     basic block, or notes at the end of the END basic blocks.  */

  if (LABEL_P (beg_head))
    beg_head = NEXT_INSN (beg_head);

  while (beg_head != beg_tail)
    if (NOTE_P (beg_head))
      beg_head = NEXT_INSN (beg_head);
    else
      break;

  *headp = beg_head;

  if (beg == end)
    end_head = beg_head;
  else if (LABEL_P (end_head))
    end_head = NEXT_INSN (end_head);

  while (end_head != end_tail)
    if (NOTE_P (end_tail))
      end_tail = PREV_INSN (end_tail);
    else
      break;

  *tailp = end_tail;
}

/* Return nonzero if there are no real insns in the range [ HEAD, TAIL ].  */

int
no_real_insns_p (const_rtx head, const_rtx tail)
{
  while (head != NEXT_INSN (tail))
    {
      if (!NOTE_P (head) && !LABEL_P (head))
	return 0;
      head = NEXT_INSN (head);
    }
  return 1;
}

/* Delete notes between HEAD and TAIL and put them in the chain
   of notes ended by NOTE_LIST.  */

void
rm_other_notes (rtx head, rtx tail)
{
  rtx next_tail;
  rtx insn;

  note_list = 0;
  if (head == tail && (! INSN_P (head)))
    return;

  next_tail = NEXT_INSN (tail);
  for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
    {
      rtx prev;

      /* Farm out notes, and maybe save them in NOTE_LIST.
         This is needed to keep the debugger from
         getting completely deranged.  */
      if (NOTE_NOT_BB_P (insn))
	{
	  prev = insn;

	  insn = unlink_other_notes (insn, next_tail);

	  gcc_assert (prev != tail && prev != head && insn != next_tail);
	}
    }
}

/* Functions for computation of registers live/usage info.  */

/* This function looks for a new register being defined.
   If the destination register is already used by the source,
   a new register is not needed.  */

static int
find_set_reg_weight (const_rtx x)
{
  if (GET_CODE (x) == CLOBBER
      && register_operand (SET_DEST (x), VOIDmode))
    return 1;
  if (GET_CODE (x) == SET
      && register_operand (SET_DEST (x), VOIDmode))
    {
      if (REG_P (SET_DEST (x)))
	{
	  if (!reg_mentioned_p (SET_DEST (x), SET_SRC (x)))
	    return 1;
	  else
	    return 0;
	}
      return 1;
    }
  return 0;
}

/* Calculate INSN_REG_WEIGHT for all insns of a block.  */

static void
find_insn_reg_weight (basic_block bb)
{
  rtx insn, next_tail, head, tail;

  get_ebb_head_tail (bb, bb, &head, &tail);
  next_tail = NEXT_INSN (tail);

  for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
    find_insn_reg_weight1 (insn);    
}

/* Calculate INSN_REG_WEIGHT for single instruction.
   Separated from find_insn_reg_weight because of need
   to initialize new instruction in generate_recovery_code.  */
static void
find_insn_reg_weight1 (rtx insn)
{
  int reg_weight = 0;
  rtx x;
  
  /* Handle register life information.  */
  if (! INSN_P (insn))
    return;
  
  /* Increment weight for each register born here.  */
  x = PATTERN (insn);
  reg_weight += find_set_reg_weight (x);
  if (GET_CODE (x) == PARALLEL)
    {
      int j;
      for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
	{
	  x = XVECEXP (PATTERN (insn), 0, j);
	  reg_weight += find_set_reg_weight (x);
	}
    }
  /* Decrement weight for each register that dies here.  */
  for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
    {
      if (REG_NOTE_KIND (x) == REG_DEAD
	  || REG_NOTE_KIND (x) == REG_UNUSED)
	reg_weight--;
    }
  
  INSN_REG_WEIGHT (insn) = reg_weight;
}

/* Move insns that became ready to fire from queue to ready list.  */

static void
queue_to_ready (struct ready_list *ready)
{
  rtx insn;
  rtx link;
  rtx skip_insn;

  q_ptr = NEXT_Q (q_ptr);

  if (dbg_cnt (sched_insn) == false)
    /* If debug counter is activated do not requeue insn next after
       last_scheduled_insn.  */
    skip_insn = next_nonnote_insn (last_scheduled_insn);
  else
    skip_insn = NULL_RTX;

  /* Add all pending insns that can be scheduled without stalls to the
     ready list.  */
  for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
    {
      insn = XEXP (link, 0);
      q_size -= 1;

      if (sched_verbose >= 2)
	fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
		 (*current_sched_info->print_insn) (insn, 0));

      /* If the ready list is full, delay the insn for 1 cycle.
	 See the comment in schedule_block for the rationale.  */
      if (!reload_completed
	  && ready->n_ready > MAX_SCHED_READY_INSNS
	  && !SCHED_GROUP_P (insn)
	  && insn != skip_insn)
	{
	  if (sched_verbose >= 2)
	    fprintf (sched_dump, "requeued because ready full\n");
	  queue_insn (insn, 1);
	}
      else
	{
	  ready_add (ready, insn, false);
	  if (sched_verbose >= 2)
	    fprintf (sched_dump, "moving to ready without stalls\n");
        }
    }
  free_INSN_LIST_list (&insn_queue[q_ptr]);

  /* If there are no ready insns, stall until one is ready and add all
     of the pending insns at that point to the ready list.  */
  if (ready->n_ready == 0)
    {
      int stalls;

      for (stalls = 1; stalls <= max_insn_queue_index; stalls++)
	{
	  if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
	    {
	      for (; link; link = XEXP (link, 1))
		{
		  insn = XEXP (link, 0);
		  q_size -= 1;

		  if (sched_verbose >= 2)
		    fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
			     (*current_sched_info->print_insn) (insn, 0));

		  ready_add (ready, insn, false);
		  if (sched_verbose >= 2)
		    fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
		}
	      free_INSN_LIST_list (&insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]);

	      advance_one_cycle ();

	      break;
	    }

	  advance_one_cycle ();
	}

      q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
      clock_var += stalls;
    }
}

/* Used by early_queue_to_ready.  Determines whether it is "ok" to
   prematurely move INSN from the queue to the ready list.  Currently, 
   if a target defines the hook 'is_costly_dependence', this function 
   uses the hook to check whether there exist any dependences which are
   considered costly by the target, between INSN and other insns that 
   have already been scheduled.  Dependences are checked up to Y cycles
   back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
   controlling this value. 
   (Other considerations could be taken into account instead (or in 
   addition) depending on user flags and target hooks.  */

static bool 
ok_for_early_queue_removal (rtx insn)
{
  int n_cycles;
  rtx prev_insn = last_scheduled_insn;

  if (targetm.sched.is_costly_dependence)
    {
      for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
	{
	  for ( ; prev_insn; prev_insn = PREV_INSN (prev_insn))
	    {
	      int cost;

	      if (prev_insn == current_sched_info->prev_head)
		{
		  prev_insn = NULL;
		  break;
		}

	      if (!NOTE_P (prev_insn))
		{
		  dep_t dep;

		  dep = sd_find_dep_between (prev_insn, insn, true);

		  if (dep != NULL)
		    {
		      cost = dep_cost (dep);

		      if (targetm.sched.is_costly_dependence (dep, cost,
				flag_sched_stalled_insns_dep - n_cycles))
			return false;
		    }
		}

	      if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
		break;
	    }

	  if (!prev_insn) 
	    break;
	  prev_insn = PREV_INSN (prev_insn);     
	}
    }

  return true;
}


/* Remove insns from the queue, before they become "ready" with respect
   to FU latency considerations.  */

static int 
early_queue_to_ready (state_t state, struct ready_list *ready)
{
  rtx insn;
  rtx link;
  rtx next_link;
  rtx prev_link;
  bool move_to_ready;
  int cost;
  state_t temp_state = alloca (dfa_state_size);
  int stalls;
  int insns_removed = 0;

  /*
     Flag '-fsched-stalled-insns=X' determines the aggressiveness of this 
     function: 

     X == 0: There is no limit on how many queued insns can be removed          
             prematurely.  (flag_sched_stalled_insns = -1).

     X >= 1: Only X queued insns can be removed prematurely in each 
	     invocation.  (flag_sched_stalled_insns = X).

     Otherwise: Early queue removal is disabled.
         (flag_sched_stalled_insns = 0)
  */

  if (! flag_sched_stalled_insns)   
    return 0;

  for (stalls = 0; stalls <= max_insn_queue_index; stalls++)
    {
      if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
	{
	  if (sched_verbose > 6)
	    fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);

	  prev_link = 0;
	  while (link)
	    {
	      next_link = XEXP (link, 1);
	      insn = XEXP (link, 0);
	      if (insn && sched_verbose > 6)
		print_rtl_single (sched_dump, insn);

	      memcpy (temp_state, state, dfa_state_size);
	      if (recog_memoized (insn) < 0) 
		/* non-negative to indicate that it's not ready
		   to avoid infinite Q->R->Q->R... */
		cost = 0;
	      else
		cost = state_transition (temp_state, insn);

	      if (sched_verbose >= 6)
		fprintf (sched_dump, "transition cost = %d\n", cost);

	      move_to_ready = false;
	      if (cost < 0) 
		{
		  move_to_ready = ok_for_early_queue_removal (insn);
		  if (move_to_ready == true)
		    {
		      /* move from Q to R */
		      q_size -= 1;
		      ready_add (ready, insn, false);

		      if (prev_link)   
			XEXP (prev_link, 1) = next_link;
		      else
			insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;

		      free_INSN_LIST_node (link);

		      if (sched_verbose >= 2)
			fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
				 (*current_sched_info->print_insn) (insn, 0));

		      insns_removed++;
		      if (insns_removed == flag_sched_stalled_insns)
			/* Remove no more than flag_sched_stalled_insns insns
			   from Q at a time.  */
			return insns_removed;
		    }
		}

	      if (move_to_ready == false)
		prev_link = link;

	      link = next_link;
	    } /* while link */
	} /* if link */    

    } /* for stalls.. */

  return insns_removed; 
}


/* Print the ready list for debugging purposes.  Callable from debugger.  */

static void
debug_ready_list (struct ready_list *ready)
{
  rtx *p;
  int i;

  if (ready->n_ready == 0)
    {
      fprintf (sched_dump, "\n");
      return;
    }

  p = ready_lastpos (ready);
  for (i = 0; i < ready->n_ready; i++)
    fprintf (sched_dump, "  %s", (*current_sched_info->print_insn) (p[i], 0));
  fprintf (sched_dump, "\n");
}

/* Search INSN for REG_SAVE_NOTE note pairs for
   NOTE_INSN_EHREGION_{BEG,END}; and convert them back into
   NOTEs.  The REG_SAVE_NOTE note following first one is contains the
   saved value for NOTE_BLOCK_NUMBER which is useful for
   NOTE_INSN_EH_REGION_{BEG,END} NOTEs.  */

static void
reemit_notes (rtx insn)
{
  rtx note, last = insn;

  for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
    {
      if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
	{
	  enum insn_note note_type = INTVAL (XEXP (note, 0));

	  last = emit_note_before (note_type, last);
	  remove_note (insn, note);
	}
    }
}

/* Move INSN.  Reemit notes if needed.  Update CFG, if needed.  */
static void
move_insn (rtx insn)
{
  rtx last = last_scheduled_insn;

  if (PREV_INSN (insn) != last)
    {
      basic_block bb;
      rtx note;
      int jump_p = 0;

      bb = BLOCK_FOR_INSN (insn);
 
      /* BB_HEAD is either LABEL or NOTE.  */
      gcc_assert (BB_HEAD (bb) != insn);      

      if (BB_END (bb) == insn)
	/* If this is last instruction in BB, move end marker one
	   instruction up.  */
	{
	  /* Jumps are always placed at the end of basic block.  */
	  jump_p = control_flow_insn_p (insn);

	  gcc_assert (!jump_p
		      || ((current_sched_info->flags & SCHED_RGN)
			  && IS_SPECULATION_BRANCHY_CHECK_P (insn))
		      || (current_sched_info->flags & SCHED_EBB));
	  
	  gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn)) == bb);

	  BB_END (bb) = PREV_INSN (insn);
	}

      gcc_assert (BB_END (bb) != last);

      if (jump_p)
	/* We move the block note along with jump.  */
	{
	  /* NT is needed for assertion below.  */
	  rtx nt = current_sched_info->next_tail;

	  note = NEXT_INSN (insn);
	  while (NOTE_NOT_BB_P (note) && note != nt)
	    note = NEXT_INSN (note);

	  if (note != nt
	      && (LABEL_P (note)
		  || BARRIER_P (note)))
	    note = NEXT_INSN (note);
      
	  gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
	}
      else
	note = insn;

      NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (note);
      PREV_INSN (NEXT_INSN (note)) = PREV_INSN (insn);

      NEXT_INSN (note) = NEXT_INSN (last);
      PREV_INSN (NEXT_INSN (last)) = note;

      NEXT_INSN (last) = insn;
      PREV_INSN (insn) = last;

      bb = BLOCK_FOR_INSN (last);

      if (jump_p)
	{
	  fix_jump_move (insn);

	  if (BLOCK_FOR_INSN (insn) != bb)
	    move_block_after_check (insn);

	  gcc_assert (BB_END (bb) == last);
	}

      set_block_for_insn (insn, bb);    
      df_insn_change_bb (insn);
  
      /* Update BB_END, if needed.  */
      if (BB_END (bb) == last)
	BB_END (bb) = insn;  
    }
  
  reemit_notes (insn);

  SCHED_GROUP_P (insn) = 0;  
}

/* The following structure describe an entry of the stack of choices.  */
struct choice_entry
{
  /* Ordinal number of the issued insn in the ready queue.  */
  int index;
  /* The number of the rest insns whose issues we should try.  */
  int rest;
  /* The number of issued essential insns.  */
  int n;
  /* State after issuing the insn.  */
  state_t state;
};

/* The following array is used to implement a stack of choices used in
   function max_issue.  */
static struct choice_entry *choice_stack;

/* The following variable value is number of essential insns issued on
   the current cycle.  An insn is essential one if it changes the
   processors state.  */
static int cycle_issued_insns;

/* The following variable value is maximal number of tries of issuing
   insns for the first cycle multipass insn scheduling.  We define
   this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE).  We would not
   need this constraint if all real insns (with non-negative codes)
   had reservations because in this case the algorithm complexity is
   O(DFA_LOOKAHEAD**ISSUE_RATE).  Unfortunately, the dfa descriptions
   might be incomplete and such insn might occur.  For such
   descriptions, the complexity of algorithm (without the constraint)
   could achieve DFA_LOOKAHEAD ** N , where N is the queue length.  */
static int max_lookahead_tries;

/* The following value is value of hook
   `first_cycle_multipass_dfa_lookahead' at the last call of
   `max_issue'.  */
static int cached_first_cycle_multipass_dfa_lookahead = 0;

/* The following value is value of `issue_rate' at the last call of
   `sched_init'.  */
static int cached_issue_rate = 0;

/* The following function returns maximal (or close to maximal) number
   of insns which can be issued on the same cycle and one of which
   insns is insns with the best rank (the first insn in READY).  To
   make this function tries different samples of ready insns.  READY
   is current queue `ready'.  Global array READY_TRY reflects what
   insns are already issued in this try.  MAX_POINTS is the sum of points
   of all instructions in READY.  The function stops immediately,
   if it reached the such a solution, that all instruction can be issued.
   INDEX will contain index of the best insn in READY.  The following
   function is used only for first cycle multipass scheduling.  */
static int
max_issue (struct ready_list *ready, int *index, int max_points)
{
  int n, i, all, n_ready, best, delay, tries_num, points = -1;
  struct choice_entry *top;
  rtx insn;

  best = 0;
  memcpy (choice_stack->state, curr_state, dfa_state_size);
  top = choice_stack;
  top->rest = cached_first_cycle_multipass_dfa_lookahead;
  top->n = 0;
  n_ready = ready->n_ready;
  for (all = i = 0; i < n_ready; i++)
    if (!ready_try [i])
      all++;
  i = 0;
  tries_num = 0;
  for (;;)
    {
      if (top->rest == 0 || i >= n_ready)
	{
	  if (top == choice_stack)
	    break;
	  if (best < top - choice_stack && ready_try [0])
	    {
	      best = top - choice_stack;
	      *index = choice_stack [1].index;
	      points = top->n;
	      if (top->n == max_points || best == all)
		break;
	    }
	  i = top->index;
	  ready_try [i] = 0;
	  top--;
	  memcpy (curr_state, top->state, dfa_state_size);
	}
      else if (!ready_try [i])
	{
	  tries_num++;
	  if (tries_num > max_lookahead_tries)
	    break;
	  insn = ready_element (ready, i);
	  delay = state_transition (curr_state, insn);
	  if (delay < 0)
	    {
	      if (state_dead_lock_p (curr_state))
		top->rest = 0;
	      else
		top->rest--;
	      n = top->n;
	      if (memcmp (top->state, curr_state, dfa_state_size) != 0)
		n += ISSUE_POINTS (insn);
	      top++;
	      top->rest = cached_first_cycle_multipass_dfa_lookahead;
	      top->index = i;
	      top->n = n;
	      memcpy (top->state, curr_state, dfa_state_size);
	      ready_try [i] = 1;
	      i = -1;
	    }
	}
      i++;
    }
  while (top != choice_stack)
    {
      ready_try [top->index] = 0;
      top--;
    }
  memcpy (curr_state, choice_stack->state, dfa_state_size);  

  if (sched_verbose >= 4)    
    fprintf (sched_dump, ";;\t\tChoosed insn : %s; points: %d/%d\n",
	     (*current_sched_info->print_insn) (ready_element (ready, *index),
						0), 
	     points, max_points);
  
  return best;
}

/* The following function chooses insn from READY and modifies
   *N_READY and READY.  The following function is used only for first
   cycle multipass scheduling.
   Return:
   -1 if cycle should be advanced,
   0 if INSN_PTR is set to point to the desirable insn,
   1 if choose_ready () should be restarted without advancing the cycle.  */
static int
choose_ready (struct ready_list *ready, rtx *insn_ptr)
{
  int lookahead;

  if (dbg_cnt (sched_insn) == false)
    {
      rtx insn;

      insn = next_nonnote_insn (last_scheduled_insn);

      if (QUEUE_INDEX (insn) == QUEUE_READY)
	/* INSN is in the ready_list.  */
	{
	  ready_remove_insn (insn);
	  *insn_ptr = insn;
	  return 0;
	}

      /* INSN is in the queue.  Advance cycle to move it to the ready list.  */
      return -1;
    }

  lookahead = 0;

  if (targetm.sched.first_cycle_multipass_dfa_lookahead)
    lookahead = targetm.sched.first_cycle_multipass_dfa_lookahead ();
  if (lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0)))
    {
      *insn_ptr = ready_remove_first (ready);
      return 0;
    }
  else
    {
      /* Try to choose the better insn.  */
      int index = 0, i, n;
      rtx insn;
      int more_issue, max_points, try_data = 1, try_control = 1;
      
      if (cached_first_cycle_multipass_dfa_lookahead != lookahead)
	{
	  cached_first_cycle_multipass_dfa_lookahead = lookahead;
	  max_lookahead_tries = 100;
	  for (i = 0; i < issue_rate; i++)
	    max_lookahead_tries *= lookahead;
	}
      insn = ready_element (ready, 0);
      if (INSN_CODE (insn) < 0)
	{
	  *insn_ptr = ready_remove_first (ready);
	  return 0;
	}

      if (spec_info
	  && spec_info->flags & (PREFER_NON_DATA_SPEC
				 | PREFER_NON_CONTROL_SPEC))
	{
	  for (i = 0, n = ready->n_ready; i < n; i++)
	    {
	      rtx x;
	      ds_t s;

	      x = ready_element (ready, i);
	      s = TODO_SPEC (x);
	      
	      if (spec_info->flags & PREFER_NON_DATA_SPEC
		  && !(s & DATA_SPEC))
		{		  
		  try_data = 0;
		  if (!(spec_info->flags & PREFER_NON_CONTROL_SPEC)
		      || !try_control)
		    break;
		}
	      
	      if (spec_info->flags & PREFER_NON_CONTROL_SPEC
		  && !(s & CONTROL_SPEC))
		{
		  try_control = 0;
		  if (!(spec_info->flags & PREFER_NON_DATA_SPEC) || !try_data)
		    break;
		}
	    }
	}

      if ((!try_data && (TODO_SPEC (insn) & DATA_SPEC))
	  || (!try_control && (TODO_SPEC (insn) & CONTROL_SPEC))
	  || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard_spec
	      && !targetm.sched.first_cycle_multipass_dfa_lookahead_guard_spec
	      (insn)))
	/* Discard speculative instruction that stands first in the ready
	   list.  */
	{
	  change_queue_index (insn, 1);
	  return 1;
	}

      max_points = ISSUE_POINTS (insn);
      more_issue = issue_rate - cycle_issued_insns - 1;

      for (i = 1; i < ready->n_ready; i++)
	{
	  insn = ready_element (ready, i);
	  ready_try [i]
	    = (INSN_CODE (insn) < 0
               || (!try_data && (TODO_SPEC (insn) & DATA_SPEC))
               || (!try_control && (TODO_SPEC (insn) & CONTROL_SPEC))
	       || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
		   && !targetm.sched.first_cycle_multipass_dfa_lookahead_guard
		   (insn)));

	  if (!ready_try [i] && more_issue-- > 0)
	    max_points += ISSUE_POINTS (insn);
	}

      if (max_issue (ready, &index, max_points) == 0)
	{
	  *insn_ptr = ready_remove_first (ready);
	  return 0;
	}
      else
	{
	  *insn_ptr = ready_remove (ready, index);
	  return 0;
	}
    }
}

/* Use forward list scheduling to rearrange insns of block pointed to by
   TARGET_BB, possibly bringing insns from subsequent blocks in the same
   region.  */

void
schedule_block (basic_block *target_bb, int rgn_n_insns1)
{
  struct ready_list ready;
  int i, first_cycle_insn_p;
  int can_issue_more;
  state_t temp_state = NULL;  /* It is used for multipass scheduling.  */
  int sort_p, advance, start_clock_var;

  /* Head/tail info for this block.  */
  rtx prev_head = current_sched_info->prev_head;
  rtx next_tail = current_sched_info->next_tail;
  rtx head = NEXT_INSN (prev_head);
  rtx tail = PREV_INSN (next_tail);

  /* We used to have code to avoid getting parameters moved from hard
     argument registers into pseudos.

     However, it was removed when it proved to be of marginal benefit
     and caused problems because schedule_block and compute_forward_dependences
     had different notions of what the "head" insn was.  */

  gcc_assert (head != tail || INSN_P (head));

  haifa_recovery_bb_recently_added_p = false;

  /* Debug info.  */
  if (sched_verbose)
    dump_new_block_header (0, *target_bb, head, tail);

  state_reset (curr_state);

  /* Allocate the ready list.  */
  readyp = &ready;
  ready.vec = NULL;
  ready_try = NULL;
  choice_stack = NULL;

  rgn_n_insns = -1;
  extend_ready (rgn_n_insns1 + 1);

  ready.first = ready.veclen - 1;
  ready.n_ready = 0;

  /* It is used for first cycle multipass scheduling.  */
  temp_state = alloca (dfa_state_size);

  if (targetm.sched.md_init)
    targetm.sched.md_init (sched_dump, sched_verbose, ready.veclen);

  /* We start inserting insns after PREV_HEAD.  */
  last_scheduled_insn = prev_head;

  gcc_assert (NOTE_P (last_scheduled_insn)
	      && BLOCK_FOR_INSN (last_scheduled_insn) == *target_bb);

  /* Initialize INSN_QUEUE.  Q_SIZE is the total number of insns in the
     queue.  */
  q_ptr = 0;
  q_size = 0;

  insn_queue = alloca ((max_insn_queue_index + 1) * sizeof (rtx));
  memset (insn_queue, 0, (max_insn_queue_index + 1) * sizeof (rtx));

  /* Start just before the beginning of time.  */
  clock_var = -1;

  /* We need queue and ready lists and clock_var be initialized 
     in try_ready () (which is called through init_ready_list ()).  */
  (*current_sched_info->init_ready_list) ();

  /* The algorithm is O(n^2) in the number of ready insns at any given
     time in the worst case.  Before reload we are more likely to have
     big lists so truncate them to a reasonable size.  */
  if (!reload_completed && ready.n_ready > MAX_SCHED_READY_INSNS)
    {
      ready_sort (&ready);

      /* Find first free-standing insn past MAX_SCHED_READY_INSNS.  */
      for (i = MAX_SCHED_READY_INSNS; i < ready.n_ready; i++)
	if (!SCHED_GROUP_P (ready_element (&ready, i)))
	  break;

      if (sched_verbose >= 2)
	{
	  fprintf (sched_dump,
		   ";;\t\tReady list on entry: %d insns\n", ready.n_ready);
	  fprintf (sched_dump,
		   ";;\t\t before reload => truncated to %d insns\n", i);
	}

      /* Delay all insns past it for 1 cycle.  If debug counter is
	 activated make an exception for the insn right after
	 last_scheduled_insn.  */
      {
	rtx skip_insn;

	if (dbg_cnt (sched_insn) == false)
	  skip_insn = next_nonnote_insn (last_scheduled_insn);
	else
	  skip_insn = NULL_RTX;

	while (i < ready.n_ready)
	  {
	    rtx insn;

	    insn = ready_remove (&ready, i);

	    if (insn != skip_insn)
	      queue_insn (insn, 1);
	  }
      }
    }

  /* Now we can restore basic block notes and maintain precise cfg.  */
  restore_bb_notes (*target_bb);

  last_clock_var = -1;

  advance = 0;

  sort_p = TRUE;
  /* Loop until all the insns in BB are scheduled.  */
  while ((*current_sched_info->schedule_more_p) ())
    {
      do
	{
	  start_clock_var = clock_var;

	  clock_var++;

	  advance_one_cycle ();

	  /* Add to the ready list all pending insns that can be issued now.
	     If there are no ready insns, increment clock until one
	     is ready and add all pending insns at that point to the ready
	     list.  */
	  queue_to_ready (&ready);

	  gcc_assert (ready.n_ready);

	  if (sched_verbose >= 2)
	    {
	      fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:  ");
	      debug_ready_list (&ready);
	    }
	  advance -= clock_var - start_clock_var;
	}
      while (advance > 0);

      if (sort_p)
	{
	  /* Sort the ready list based on priority.  */
	  ready_sort (&ready);

	  if (sched_verbose >= 2)
	    {
	      fprintf (sched_dump, ";;\t\tReady list after ready_sort:  ");
	      debug_ready_list (&ready);
	    }
	}

      /* Allow the target to reorder the list, typically for
	 better instruction bundling.  */
      if (sort_p && targetm.sched.reorder
	  && (ready.n_ready == 0
	      || !SCHED_GROUP_P (ready_element (&ready, 0))))
	can_issue_more =
	  targetm.sched.reorder (sched_dump, sched_verbose,
				 ready_lastpos (&ready),
				 &ready.n_ready, clock_var);
      else
	can_issue_more = issue_rate;

      first_cycle_insn_p = 1;
      cycle_issued_insns = 0;
      for (;;)
	{
	  rtx insn;
	  int cost;
	  bool asm_p = false;

	  if (sched_verbose >= 2)
	    {
	      fprintf (sched_dump, ";;\tReady list (t = %3d):  ",
		       clock_var);
	      debug_ready_list (&ready);
	    }

	  if (ready.n_ready == 0 
	      && can_issue_more 
	      && reload_completed) 
	    {
	      /* Allow scheduling insns directly from the queue in case
		 there's nothing better to do (ready list is empty) but
		 there are still vacant dispatch slots in the current cycle.  */
	      if (sched_verbose >= 6)
		fprintf (sched_dump,";;\t\tSecond chance\n");
	      memcpy (temp_state, curr_state, dfa_state_size);
	      if (early_queue_to_ready (temp_state, &ready))
		ready_sort (&ready);
	    }

	  if (ready.n_ready == 0 || !can_issue_more
	      || state_dead_lock_p (curr_state)
	      || !(*current_sched_info->schedule_more_p) ())
	    break;

	  /* Select and remove the insn from the ready list.  */
	  if (sort_p)
	    {
	      int res;

	      insn = NULL_RTX;
	      res = choose_ready (&ready, &insn);

	      if (res < 0)
		/* Finish cycle.  */
		break;
	      if (res > 0)
		/* Restart choose_ready ().  */
		continue;

	      gcc_assert (insn != NULL_RTX);
	    }
	  else
	    insn = ready_remove_first (&ready);

	  if (targetm.sched.dfa_new_cycle
	      && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
					      insn, last_clock_var,
					      clock_var, &sort_p))
	    /* SORT_P is used by the target to override sorting
	       of the ready list.  This is needed when the target
	       has modified its internal structures expecting that
	       the insn will be issued next.  As we need the insn
	       to have the highest priority (so it will be returned by
	       the ready_remove_first call above), we invoke
	       ready_add (&ready, insn, true).
	       But, still, there is one issue: INSN can be later 
	       discarded by scheduler's front end through 
	       current_sched_info->can_schedule_ready_p, hence, won't
	       be issued next.  */ 
	    {
	      ready_add (&ready, insn, true);
              break;
	    }

	  sort_p = TRUE;
	  memcpy (temp_state, curr_state, dfa_state_size);
	  if (recog_memoized (insn) < 0)
	    {
	      asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
		       || asm_noperands (PATTERN (insn)) >= 0);
	      if (!first_cycle_insn_p && asm_p)
		/* This is asm insn which is tryed to be issued on the
		   cycle not first.  Issue it on the next cycle.  */
		cost = 1;
	      else
		/* A USE insn, or something else we don't need to
		   understand.  We can't pass these directly to
		   state_transition because it will trigger a
		   fatal error for unrecognizable insns.  */
		cost = 0;
	    }
	  else
	    {
	      cost = state_transition (temp_state, insn);
	      if (cost < 0)
		cost = 0;
	      else if (cost == 0)
		cost = 1;
	    }

	  if (cost >= 1)
	    {
	      queue_insn (insn, cost);
 	      if (SCHED_GROUP_P (insn))
 		{
 		  advance = cost;
 		  break;
 		}
 
	      continue;
	    }

	  if (current_sched_info->can_schedule_ready_p
	      && ! (*current_sched_info->can_schedule_ready_p) (insn))
	    /* We normally get here only if we don't want to move
	       insn from the split block.  */
	    {
	      TODO_SPEC (insn) = (TODO_SPEC (insn) & ~SPECULATIVE) | HARD_DEP;
	      continue;
	    }

	  /* DECISION is made.  */	
  
          if (TODO_SPEC (insn) & SPECULATIVE)
            generate_recovery_code (insn);

	  if (control_flow_insn_p (last_scheduled_insn)	     
	      /* This is used to switch basic blocks by request
		 from scheduler front-end (actually, sched-ebb.c only).
		 This is used to process blocks with single fallthru
		 edge.  If succeeding block has jump, it [jump] will try
		 move at the end of current bb, thus corrupting CFG.  */
	      || current_sched_info->advance_target_bb (*target_bb, insn))
	    {
	      *target_bb = current_sched_info->advance_target_bb
		(*target_bb, 0);
	      
	      if (sched_verbose)
		{
		  rtx x;

		  x = next_real_insn (last_scheduled_insn);
		  gcc_assert (x);
		  dump_new_block_header (1, *target_bb, x, tail);
		}

	      last_scheduled_insn = bb_note (*target_bb);
	    }
 
	  /* Update counters, etc in the scheduler's front end.  */
	  (*current_sched_info->begin_schedule_ready) (insn,
						       last_scheduled_insn);
 
	  move_insn (insn);
	  last_scheduled_insn = insn;
	  
	  if (memcmp (curr_state, temp_state, dfa_state_size) != 0)
            {
              cycle_issued_insns++;
              memcpy (curr_state, temp_state, dfa_state_size);
            }

	  if (targetm.sched.variable_issue)
	    can_issue_more =
	      targetm.sched.variable_issue (sched_dump, sched_verbose,
					       insn, can_issue_more);
	  /* A naked CLOBBER or USE generates no instruction, so do
	     not count them against the issue rate.  */
	  else if (GET_CODE (PATTERN (insn)) != USE
		   && GET_CODE (PATTERN (insn)) != CLOBBER)
	    can_issue_more--;

	  advance = schedule_insn (insn);

	  /* After issuing an asm insn we should start a new cycle.  */
	  if (advance == 0 && asm_p)
	    advance = 1;
	  if (advance != 0)
	    break;

	  first_cycle_insn_p = 0;

	  /* Sort the ready list based on priority.  This must be
	     redone here, as schedule_insn may have readied additional
	     insns that will not be sorted correctly.  */
	  if (ready.n_ready > 0)
	    ready_sort (&ready);

	  if (targetm.sched.reorder2
	      && (ready.n_ready == 0
		  || !SCHED_GROUP_P (ready_element (&ready, 0))))
	    {
	      can_issue_more =
		targetm.sched.reorder2 (sched_dump, sched_verbose,
					ready.n_ready
					? ready_lastpos (&ready) : NULL,
					&ready.n_ready, clock_var);
	    }
	}
    }

  /* Debug info.  */
  if (sched_verbose)
    {
      fprintf (sched_dump, ";;\tReady list (final):  ");
      debug_ready_list (&ready);
    }

  if (current_sched_info->queue_must_finish_empty)
    /* Sanity check -- queue must be empty now.  Meaningless if region has
       multiple bbs.  */
    gcc_assert (!q_size && !ready.n_ready);
  else 
    {
      /* We must maintain QUEUE_INDEX between blocks in region.  */
      for (i = ready.n_ready - 1; i >= 0; i--)
	{
	  rtx x;
	  
	  x = ready_element (&ready, i);
	  QUEUE_INDEX (x) = QUEUE_NOWHERE;
	  TODO_SPEC (x) = (TODO_SPEC (x) & ~SPECULATIVE) | HARD_DEP;
	}

      if (q_size)   
	for (i = 0; i <= max_insn_queue_index; i++)
	  {
	    rtx link;
	    for (link = insn_queue[i]; link; link = XEXP (link, 1))
	      {
		rtx x;

		x = XEXP (link, 0);
		QUEUE_INDEX (x) = QUEUE_NOWHERE;
		TODO_SPEC (x) = (TODO_SPEC (x) & ~SPECULATIVE) | HARD_DEP;
	      }
	    free_INSN_LIST_list (&insn_queue[i]);
	  }
    }

  if (!current_sched_info->queue_must_finish_empty
      || haifa_recovery_bb_recently_added_p)
    {
      /* INSN_TICK (minimum clock tick at which the insn becomes
         ready) may be not correct for the insn in the subsequent
         blocks of the region.  We should use a correct value of
         `clock_var' or modify INSN_TICK.  It is better to keep
         clock_var value equal to 0 at the start of a basic block.
         Therefore we modify INSN_TICK here.  */
      fix_inter_tick (NEXT_INSN (prev_head), last_scheduled_insn);
    }

  if (targetm.sched.md_finish)
    {
      targetm.sched.md_finish (sched_dump, sched_verbose);

      /* Target might have added some instructions to the scheduled block.
	 in its md_finish () hook.  These new insns don't have any data
	 initialized and to identify them we extend h_i_d so that they'll
	 get zero luids.*/
      extend_h_i_d ();
    }

  /* Update head/tail boundaries.  */
  head = NEXT_INSN (prev_head);
  tail = last_scheduled_insn;

  /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
     previously found among the insns.  Insert them at the beginning
     of the insns.  */
  if (note_list != 0)
    {
      basic_block head_bb = BLOCK_FOR_INSN (head);
      rtx note_head = note_list;

      while (PREV_INSN (note_head))
	{
	  set_block_for_insn (note_head, head_bb);
	  note_head = PREV_INSN (note_head);
	}
      /* In the above cycle we've missed this note:  */
      set_block_for_insn (note_head, head_bb);

      PREV_INSN (note_head) = PREV_INSN (head);
      NEXT_INSN (PREV_INSN (head)) = note_head;
      PREV_INSN (head) = note_list;
      NEXT_INSN (note_list) = head;
      head = note_head;
    }

  /* Debugging.  */
  if (sched_verbose)
    {
      fprintf (sched_dump, ";;   total time = %d\n;;   new head = %d\n",
	       clock_var, INSN_UID (head));
      fprintf (sched_dump, ";;   new tail = %d\n\n",
	       INSN_UID (tail));
    }

  current_sched_info->head = head;
  current_sched_info->tail = tail;

  free (ready.vec);

  free (ready_try);
  for (i = 0; i <= rgn_n_insns; i++)
    free (choice_stack [i].state);
  free (choice_stack);
}

/* Set_priorities: compute priority of each insn in the block.  */

int
set_priorities (rtx head, rtx tail)
{
  rtx insn;
  int n_insn;
  int sched_max_insns_priority = 
	current_sched_info->sched_max_insns_priority;
  rtx prev_head;

  if (head == tail && (! INSN_P (head)))
    return 0;

  n_insn = 0;

  prev_head = PREV_INSN (head);
  for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
    {
      if (!INSN_P (insn))
	continue;

      n_insn++;
      (void) priority (insn);

      gcc_assert (INSN_PRIORITY_KNOWN (insn));

      sched_max_insns_priority = MAX (sched_max_insns_priority,
				      INSN_PRIORITY (insn));
    }

  current_sched_info->sched_max_insns_priority = sched_max_insns_priority;

  return n_insn;
}

/* Next LUID to assign to an instruction.  */
static int luid;

/* Initialize some global state for the scheduler.  */

void
sched_init (void)
{
  basic_block b;
  rtx insn;
  int i;

  /* Switch to working copy of sched_info.  */
  memcpy (&current_sched_info_var, current_sched_info,
	  sizeof (current_sched_info_var));
  current_sched_info = &current_sched_info_var;
      
  /* Disable speculative loads in their presence if cc0 defined.  */
#ifdef HAVE_cc0
  flag_schedule_speculative_load = 0;
#endif

  /* Set dump and sched_verbose for the desired debugging output.  If no
     dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
     For -fsched-verbose=N, N>=10, print everything to stderr.  */
  sched_verbose = sched_verbose_param;
  if (sched_verbose_param == 0 && dump_file)
    sched_verbose = 1;
  sched_dump = ((sched_verbose_param >= 10 || !dump_file)
		? stderr : dump_file);

  /* Initialize SPEC_INFO.  */
  if (targetm.sched.set_sched_flags)
    {
      spec_info = &spec_info_var;
      targetm.sched.set_sched_flags (spec_info);
      if (current_sched_info->flags & DO_SPECULATION)
	spec_info->weakness_cutoff =
	  (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF) * MAX_DEP_WEAK) / 100;
      else
	/* So we won't read anything accidentally.  */
	spec_info = 0;
    }
  else
    /* So we won't read anything accidentally.  */
    spec_info = 0;

  /* Initialize issue_rate.  */
  if (targetm.sched.issue_rate)
    issue_rate = targetm.sched.issue_rate ();
  else
    issue_rate = 1;

  if (cached_issue_rate != issue_rate)
    {
      cached_issue_rate = issue_rate;
      /* To invalidate max_lookahead_tries:  */
      cached_first_cycle_multipass_dfa_lookahead = 0;
    }

  old_max_uid = 0;
  h_i_d = 0;
  extend_h_i_d ();

  for (i = 0; i < old_max_uid; i++)
    {
      h_i_d[i].cost = -1;
      h_i_d[i].todo_spec = HARD_DEP;
      h_i_d[i].queue_index = QUEUE_NOWHERE;
      h_i_d[i].tick = INVALID_TICK;
      h_i_d[i].inter_tick = INVALID_TICK;
    }

  if (targetm.sched.init_dfa_pre_cycle_insn)
    targetm.sched.init_dfa_pre_cycle_insn ();

  if (targetm.sched.init_dfa_post_cycle_insn)
    targetm.sched.init_dfa_post_cycle_insn ();

  dfa_start ();
  dfa_state_size = state_size ();
  curr_state = xmalloc (dfa_state_size);

  h_i_d[0].luid = 0;
  luid = 1;
  FOR_EACH_BB (b)
    for (insn = BB_HEAD (b); ; insn = NEXT_INSN (insn))
      {
	INSN_LUID (insn) = luid;

	/* Increment the next luid, unless this is a note.  We don't
	   really need separate IDs for notes and we don't want to
	   schedule differently depending on whether or not there are
	   line-number notes, i.e., depending on whether or not we're
	   generating debugging information.  */
	if (!NOTE_P (insn))
	  ++luid;

	if (insn == BB_END (b))
	  break;
      }

  init_dependency_caches (luid);

  init_alias_analysis ();

  old_last_basic_block = 0;
  extend_bb ();

  /* Compute INSN_REG_WEIGHT for all blocks.  We must do this before
     removing death notes.  */
  FOR_EACH_BB_REVERSE (b)
    find_insn_reg_weight (b);

  if (targetm.sched.md_init_global)
      targetm.sched.md_init_global (sched_dump, sched_verbose, old_max_uid);

  nr_begin_data = nr_begin_control = nr_be_in_data = nr_be_in_control = 0;
  before_recovery = 0;

  haifa_recovery_bb_ever_added_p = false;

#ifdef ENABLE_CHECKING
  /* This is used preferably for finding bugs in check_cfg () itself.  */
  check_cfg (0, 0);
#endif
}

/* Free global data used during insn scheduling.  */

void
sched_finish (void)
{
  free (h_i_d);
  free (curr_state);
  dfa_finish ();
  free_dependency_caches ();
  end_alias_analysis ();

  if (targetm.sched.md_finish_global)
    targetm.sched.md_finish_global (sched_dump, sched_verbose);
  
  if (spec_info && spec_info->dump)
    {
      char c = reload_completed ? 'a' : 'b';

      fprintf (spec_info->dump,
	       ";; %s:\n", current_function_name ());

      fprintf (spec_info->dump,
               ";; Procedure %cr-begin-data-spec motions == %d\n",
               c, nr_begin_data);
      fprintf (spec_info->dump,
               ";; Procedure %cr-be-in-data-spec motions == %d\n",
               c, nr_be_in_data);
      fprintf (spec_info->dump,
               ";; Procedure %cr-begin-control-spec motions == %d\n",
               c, nr_begin_control);
      fprintf (spec_info->dump,
               ";; Procedure %cr-be-in-control-spec motions == %d\n",
               c, nr_be_in_control);
    }

#ifdef ENABLE_CHECKING
  /* After reload ia64 backend clobbers CFG, so can't check anything.  */
  if (!reload_completed)
    check_cfg (0, 0);
#endif

  current_sched_info = NULL;
}

/* Fix INSN_TICKs of the instructions in the current block as well as
   INSN_TICKs of their dependents.
   HEAD and TAIL are the begin and the end of the current scheduled block.  */
static void
fix_inter_tick (rtx head, rtx tail)
{
  /* Set of instructions with corrected INSN_TICK.  */
  bitmap_head processed;
  /* ??? It is doubtful if we should assume that cycle advance happens on
     basic block boundaries.  Basically insns that are unconditionally ready
     on the start of the block are more preferable then those which have
     a one cycle dependency over insn from the previous block.  */
  int next_clock = clock_var + 1;

  bitmap_initialize (&processed, 0);
  
  /* Iterates over scheduled instructions and fix their INSN_TICKs and
     INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
     across different blocks.  */
  for (tail = NEXT_INSN (tail); head != tail; head = NEXT_INSN (head))
    {
      if (INSN_P (head))
	{
	  int tick;
	  sd_iterator_def sd_it;
	  dep_t dep;
                  
	  tick = INSN_TICK (head);
	  gcc_assert (tick >= MIN_TICK);
	  
	  /* Fix INSN_TICK of instruction from just scheduled block.  */
	  if (!bitmap_bit_p (&processed, INSN_LUID (head)))
	    {
	      bitmap_set_bit (&processed, INSN_LUID (head));
	      tick -= next_clock;
	      
	      if (tick < MIN_TICK)
		tick = MIN_TICK;
	      
	      INSN_TICK (head) = tick;		 
	    }
	  
	  FOR_EACH_DEP (head, SD_LIST_RES_FORW, sd_it, dep)
	    {
	      rtx next;
	      
	      next = DEP_CON (dep);
	      tick = INSN_TICK (next);

	      if (tick != INVALID_TICK
		  /* If NEXT has its INSN_TICK calculated, fix it.
		     If not - it will be properly calculated from
		     scratch later in fix_tick_ready.  */
		  && !bitmap_bit_p (&processed, INSN_LUID (next)))
		{
		  bitmap_set_bit (&processed, INSN_LUID (next));
		  tick -= next_clock;
		  
		  if (tick < MIN_TICK)
		    tick = MIN_TICK;
		  
		  if (tick > INTER_TICK (next))
		    INTER_TICK (next) = tick;
		  else
		    tick = INTER_TICK (next);

		  INSN_TICK (next) = tick;
		}
	    }
	}
    }
  bitmap_clear (&processed);
}
  
/* Check if NEXT is ready to be added to the ready or queue list.
   If "yes", add it to the proper list.
   Returns:
      -1 - is not ready yet,
       0 - added to the ready list,
   0 < N - queued for N cycles.  */
int
try_ready (rtx next)
{  
  ds_t old_ts, *ts;

  ts = &TODO_SPEC (next);
  old_ts = *ts;

  gcc_assert (!(old_ts & ~(SPECULATIVE | HARD_DEP))
	      && ((old_ts & HARD_DEP)
		  || (old_ts & SPECULATIVE)));
  
  if (sd_lists_empty_p (next, SD_LIST_BACK))
    /* NEXT has all its dependencies resolved.  */
    {
      /* Remove HARD_DEP bit from NEXT's status.  */
      *ts &= ~HARD_DEP;

      if (current_sched_info->flags & DO_SPECULATION)
	/* Remove all speculative bits from NEXT's status.  */
	*ts &= ~SPECULATIVE;
    }
  else
    {
      /* One of the NEXT's dependencies has been resolved.
	 Recalculate NEXT's status.  */

      *ts &= ~SPECULATIVE & ~HARD_DEP;

      if (sd_lists_empty_p (next, SD_LIST_HARD_BACK))
	/* Now we've got NEXT with speculative deps only.
	   1. Look at the deps to see what we have to do.
	   2. Check if we can do 'todo'.  */
	{
	  sd_iterator_def sd_it;
	  dep_t dep;
	  bool first_p = true;

	  FOR_EACH_DEP (next, SD_LIST_BACK, sd_it, dep)
	    {
	      ds_t ds = DEP_STATUS (dep) & SPECULATIVE;

	      if (first_p)
		{
		  first_p = false;

		  *ts = ds;
		}
	      else
		*ts = ds_merge (*ts, ds);
	    }

	  if (dep_weak (*ts) < spec_info->weakness_cutoff)
	    /* Too few points.  */
	    *ts = (*ts & ~SPECULATIVE) | HARD_DEP;
	}
      else
	*ts |= HARD_DEP;
    }

  if (*ts & HARD_DEP)
    gcc_assert (*ts == old_ts
		&& QUEUE_INDEX (next) == QUEUE_NOWHERE);
  else if (current_sched_info->new_ready)
    *ts = current_sched_info->new_ready (next, *ts);

  /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
     have its original pattern or changed (speculative) one.  This is due
     to changing ebb in region scheduling.
     * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
     has speculative pattern.

     We can't assert (!(*ts & HARD_DEP) || *ts == old_ts) here because
     control-speculative NEXT could have been discarded by sched-rgn.c
     (the same case as when discarded by can_schedule_ready_p ()).  */

  if ((*ts & SPECULATIVE)
      /* If (old_ts == *ts), then (old_ts & SPECULATIVE) and we don't
	 need to change anything.  */
      && *ts != old_ts)
    {
      int res;
      rtx new_pat;
      
      gcc_assert ((*ts & SPECULATIVE) && !(*ts & ~SPECULATIVE));
      
      res = speculate_insn (next, *ts, &new_pat);
	
      switch (res)
	{
	case -1:
	  /* It would be nice to change DEP_STATUS of all dependences,
	     which have ((DEP_STATUS & SPECULATIVE) == *ts) to HARD_DEP,
	     so we won't reanalyze anything.  */
	  *ts = (*ts & ~SPECULATIVE) | HARD_DEP;
	  break;
	  
	case 0:
	  /* We follow the rule, that every speculative insn
	     has non-null ORIG_PAT.  */
	  if (!ORIG_PAT (next))
	    ORIG_PAT (next) = PATTERN (next);
	  break;
	  
	case 1:                  
	  if (!ORIG_PAT (next))
	    /* If we gonna to overwrite the original pattern of insn,
	       save it.  */
	    ORIG_PAT (next) = PATTERN (next);
	  
	  change_pattern (next, new_pat);
	  break;
	  
	default:
	  gcc_unreachable ();
	}
    }
  
  /* We need to restore pattern only if (*ts == 0), because otherwise it is
     either correct (*ts & SPECULATIVE),
     or we simply don't care (*ts & HARD_DEP).  */
  
  gcc_assert (!ORIG_PAT (next)
	      || !IS_SPECULATION_BRANCHY_CHECK_P (next));
  
  if (*ts & HARD_DEP)
    {
      /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
	 control-speculative NEXT could have been discarded by sched-rgn.c
	 (the same case as when discarded by can_schedule_ready_p ()).  */
      /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
      
      change_queue_index (next, QUEUE_NOWHERE);
      return -1;
    }
  else if (!(*ts & BEGIN_SPEC) && ORIG_PAT (next) && !IS_SPECULATION_CHECK_P (next))
    /* We should change pattern of every previously speculative 
       instruction - and we determine if NEXT was speculative by using
       ORIG_PAT field.  Except one case - speculation checks have ORIG_PAT
       pat too, so skip them.  */
    {
      change_pattern (next, ORIG_PAT (next));
      ORIG_PAT (next) = 0;
    }

  if (sched_verbose >= 2)
    {	      
      int s = TODO_SPEC (next);
          
      fprintf (sched_dump, ";;\t\tdependencies resolved: insn %s",
               (*current_sched_info->print_insn) (next, 0));
          
      if (spec_info && spec_info->dump)
        {
          if (s & BEGIN_DATA)
            fprintf (spec_info->dump, "; data-spec;");
          if (s & BEGIN_CONTROL)
            fprintf (spec_info->dump, "; control-spec;");
          if (s & BE_IN_CONTROL)
            fprintf (spec_info->dump, "; in-control-spec;");
        }

      fprintf (sched_dump, "\n");
    }          
  
  adjust_priority (next);
        
  return fix_tick_ready (next);
}

/* Calculate INSN_TICK of NEXT and add it to either ready or queue list.  */
static int
fix_tick_ready (rtx next)
{
  int tick, delay;

  if (!sd_lists_empty_p (next, SD_LIST_RES_BACK))
    {
      int full_p;
      sd_iterator_def sd_it;
      dep_t dep;

      tick = INSN_TICK (next);
      /* if tick is not equal to INVALID_TICK, then update
	 INSN_TICK of NEXT with the most recent resolved dependence
	 cost.  Otherwise, recalculate from scratch.  */
      full_p = (tick == INVALID_TICK);

      FOR_EACH_DEP (next, SD_LIST_RES_BACK, sd_it, dep)
        {       
          rtx pro = DEP_PRO (dep);
          int tick1;
              
	  gcc_assert (INSN_TICK (pro) >= MIN_TICK);

          tick1 = INSN_TICK (pro) + dep_cost (dep);
          if (tick1 > tick)
            tick = tick1;

	  if (!full_p)
	    break;
        }
    }
  else
    tick = -1;

  INSN_TICK (next) = tick;

  delay = tick - clock_var;
  if (delay <= 0)
    delay = QUEUE_READY;

  change_queue_index (next, delay);

  return delay;
}

/* Move NEXT to the proper queue list with (DELAY >= 1),
   or add it to the ready list (DELAY == QUEUE_READY),
   or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE).  */
static void
change_queue_index (rtx next, int delay)
{
  int i = QUEUE_INDEX (next);

  gcc_assert (QUEUE_NOWHERE <= delay && delay <= max_insn_queue_index 
	      && delay != 0);
  gcc_assert (i != QUEUE_SCHEDULED);
  
  if ((delay > 0 && NEXT_Q_AFTER (q_ptr, delay) == i)
      || (delay < 0 && delay == i))
    /* We have nothing to do.  */
    return;

  /* Remove NEXT from wherever it is now.  */
  if (i == QUEUE_READY)
    ready_remove_insn (next);
  else if (i >= 0)
    queue_remove (next);
    
  /* Add it to the proper place.  */
  if (delay == QUEUE_READY)
    ready_add (readyp, next, false);
  else if (delay >= 1)
    queue_insn (next, delay);
    
  if (sched_verbose >= 2)
    {	      
      fprintf (sched_dump, ";;\t\ttick updated: insn %s",
	       (*current_sched_info->print_insn) (next, 0));
      
      if (delay == QUEUE_READY)
	fprintf (sched_dump, " into ready\n");
      else if (delay >= 1)
	fprintf (sched_dump, " into queue with cost=%d\n", delay);
      else
	fprintf (sched_dump, " removed from ready or queue lists\n");
    }
}

/* Extend H_I_D data.  */
static void
extend_h_i_d (void)
{
  /* We use LUID 0 for the fake insn (UID 0) which holds dependencies for
     pseudos which do not cross calls.  */
  int new_max_uid = get_max_uid () + 1;  

  h_i_d = xrecalloc (h_i_d, new_max_uid, old_max_uid, sizeof (*h_i_d));
  old_max_uid = new_max_uid;

  if (targetm.sched.h_i_d_extended)
    targetm.sched.h_i_d_extended ();
}

/* Extend READY, READY_TRY and CHOICE_STACK arrays.
   N_NEW_INSNS is the number of additional elements to allocate.  */
static void
extend_ready (int n_new_insns)
{
  int i;

  readyp->veclen = rgn_n_insns + n_new_insns + 1 + issue_rate;
  readyp->vec = XRESIZEVEC (rtx, readyp->vec, readyp->veclen);
 
  ready_try = xrecalloc (ready_try, rgn_n_insns + n_new_insns + 1,
			 rgn_n_insns + 1, sizeof (char));

  rgn_n_insns += n_new_insns;

  choice_stack = XRESIZEVEC (struct choice_entry, choice_stack,
			     rgn_n_insns + 1);

  for (i = rgn_n_insns; n_new_insns--; i--)
    choice_stack[i].state = xmalloc (dfa_state_size);
}

/* Extend global scheduler structures (those, that live across calls to
   schedule_block) to include information about just emitted INSN.  */
static void
extend_global (rtx insn)
{
  gcc_assert (INSN_P (insn));

  /* These structures have scheduler scope.  */

  /* Init h_i_d.  */
  extend_h_i_d ();
  init_h_i_d (insn);

  /* Init data handled in sched-deps.c.  */
  sd_init_insn (insn);

  /* Extend dependency caches by one element.  */
  extend_dependency_caches (1, false);
}

/* Extends global and local scheduler structures to include information
   about just emitted INSN.  */
static void
extend_all (rtx insn)
{ 
  extend_global (insn);

  /* These structures have block scope.  */
  extend_ready (1);
  
  (*current_sched_info->add_remove_insn) (insn, 0);
}

/* Initialize h_i_d entry of the new INSN with default values.
   Values, that are not explicitly initialized here, hold zero.  */
static void
init_h_i_d (rtx insn)
{
  INSN_LUID (insn) = luid++;
  INSN_COST (insn) = -1;
  TODO_SPEC (insn) = HARD_DEP;
  QUEUE_INDEX (insn) = QUEUE_NOWHERE;
  INSN_TICK (insn) = INVALID_TICK;
  INTER_TICK (insn) = INVALID_TICK;
  find_insn_reg_weight1 (insn);
}

/* Generates recovery code for INSN.  */
static void
generate_recovery_code (rtx insn)
{
  if (TODO_SPEC (insn) & BEGIN_SPEC)
    begin_speculative_block (insn);
  
  /* Here we have insn with no dependencies to
     instructions other then CHECK_SPEC ones.  */
  
  if (TODO_SPEC (insn) & BE_IN_SPEC)
    add_to_speculative_block (insn);
}

/* Helper function.
   Tries to add speculative dependencies of type FS between instructions
   in deps_list L and TWIN.  */
static void
process_insn_forw_deps_be_in_spec (rtx insn, rtx twin, ds_t fs)
{
  sd_iterator_def sd_it;
  dep_t dep;

  FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
    {
      ds_t ds;
      rtx consumer;

      consumer = DEP_CON (dep);

      ds = DEP_STATUS (dep);

      if (/* If we want to create speculative dep.  */
	  fs
	  /* And we can do that because this is a true dep.  */
	  && (ds & DEP_TYPES) == DEP_TRUE)
	{
	  gcc_assert (!(ds & BE_IN_SPEC));

	  if (/* If this dep can be overcome with 'begin speculation'.  */
	      ds & BEGIN_SPEC)
	    /* Then we have a choice: keep the dep 'begin speculative'
	       or transform it into 'be in speculative'.  */
	    {
	      if (/* In try_ready we assert that if insn once became ready
		     it can be removed from the ready (or queue) list only
		     due to backend decision.  Hence we can't let the
		     probability of the speculative dep to decrease.  */
		  dep_weak (ds) <= dep_weak (fs))
		{
		  ds_t new_ds;

		  new_ds = (ds & ~BEGIN_SPEC) | fs;
		  
		  if (/* consumer can 'be in speculative'.  */
		      sched_insn_is_legitimate_for_speculation_p (consumer,
								  new_ds))
		    /* Transform it to be in speculative.  */
		    ds = new_ds;
		}
	    }
	  else
	    /* Mark the dep as 'be in speculative'.  */
	    ds |= fs;
	}

      {
	dep_def _new_dep, *new_dep = &_new_dep;

	init_dep_1 (new_dep, twin, consumer, DEP_TYPE (dep), ds);
	sd_add_dep (new_dep, false);
      }
    }
}

/* Generates recovery code for BEGIN speculative INSN.  */
static void
begin_speculative_block (rtx insn)
{
  if (TODO_SPEC (insn) & BEGIN_DATA)
    nr_begin_data++;      
  if (TODO_SPEC (insn) & BEGIN_CONTROL)
    nr_begin_control++;

  create_check_block_twin (insn, false);

  TODO_SPEC (insn) &= ~BEGIN_SPEC;
}

/* Generates recovery code for BE_IN speculative INSN.  */
static void
add_to_speculative_block (rtx insn)
{
  ds_t ts;
  sd_iterator_def sd_it;
  dep_t dep;
  rtx twins = NULL;
  rtx_vec_t priorities_roots;

  ts = TODO_SPEC (insn);
  gcc_assert (!(ts & ~BE_IN_SPEC));

  if (ts & BE_IN_DATA)
    nr_be_in_data++;
  if (ts & BE_IN_CONTROL)
    nr_be_in_control++;

  TODO_SPEC (insn) &= ~BE_IN_SPEC;
  gcc_assert (!TODO_SPEC (insn));
  
  DONE_SPEC (insn) |= ts;

  /* First we convert all simple checks to branchy.  */
  for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
       sd_iterator_cond (&sd_it, &dep);)
    {
      rtx check = DEP_PRO (dep);

      if (IS_SPECULATION_SIMPLE_CHECK_P (check))
	{
	  create_check_block_twin (check, true);

	  /* Restart search.  */
	  sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
	}
      else
	/* Continue search.  */
	sd_iterator_next (&sd_it);
    }

  priorities_roots = NULL;
  clear_priorities (insn, &priorities_roots);

  while (1)
    {
      rtx check, twin;
      basic_block rec;

      /* Get the first backward dependency of INSN.  */
      sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
      if (!sd_iterator_cond (&sd_it, &dep))
	/* INSN has no backward dependencies left.  */
	break;

      gcc_assert ((DEP_STATUS (dep) & BEGIN_SPEC) == 0
		  && (DEP_STATUS (dep) & BE_IN_SPEC) != 0
		  && (DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);

      check = DEP_PRO (dep);

      gcc_assert (!IS_SPECULATION_CHECK_P (check) && !ORIG_PAT (check)
		  && QUEUE_INDEX (check) == QUEUE_NOWHERE);

      rec = BLOCK_FOR_INSN (check);

      twin = emit_insn_before (copy_insn (PATTERN (insn)), BB_END (rec));
      extend_global (twin);

      sd_copy_back_deps (twin, insn, true);

      if (sched_verbose && spec_info->dump)
        /* INSN_BB (insn) isn't determined for twin insns yet.
           So we can't use current_sched_info->print_insn.  */
        fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
                 INSN_UID (twin), rec->index);

      twins = alloc_INSN_LIST (twin, twins);

      /* Add dependences between TWIN and all appropriate
	 instructions from REC.  */
      FOR_EACH_DEP (insn, SD_LIST_SPEC_BACK, sd_it, dep)
	{
	  rtx pro = DEP_PRO (dep);

	  gcc_assert (DEP_TYPE (dep) == REG_DEP_TRUE);

	  /* INSN might have dependencies from the instructions from
	     several recovery blocks.  At this iteration we process those
	     producers that reside in REC.  */
	  if (BLOCK_FOR_INSN (pro) == rec)
	    {
	      dep_def _new_dep, *new_dep = &_new_dep;

	      init_dep (new_dep, pro, twin, REG_DEP_TRUE);
	      sd_add_dep (new_dep, false);
	    }
	}

      process_insn_forw_deps_be_in_spec (insn, twin, ts);

      /* Remove all dependencies between INSN and insns in REC.  */
      for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
	   sd_iterator_cond (&sd_it, &dep);)
	{
	  rtx pro = DEP_PRO (dep);

	  if (BLOCK_FOR_INSN (pro) == rec)
	    sd_delete_dep (sd_it);
	  else
	    sd_iterator_next (&sd_it);
	}
    }

  /* We couldn't have added the dependencies between INSN and TWINS earlier
     because that would make TWINS appear in the INSN_BACK_DEPS (INSN).  */
  while (twins)
    {
      rtx twin;

      twin = XEXP (twins, 0);

      {
	dep_def _new_dep, *new_dep = &_new_dep;

	init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
	sd_add_dep (new_dep, false);
      }

      twin = XEXP (twins, 1);
      free_INSN_LIST_node (twins);
      twins = twin;      
    }

  calc_priorities (priorities_roots);
  VEC_free (rtx, heap, priorities_roots);
}

/* Extends and fills with zeros (only the new part) array pointed to by P.  */
void *
xrecalloc (void *p, size_t new_nmemb, size_t old_nmemb, size_t size)
{
  gcc_assert (new_nmemb >= old_nmemb);
  p = XRESIZEVAR (void, p, new_nmemb * size);
  memset (((char *) p) + old_nmemb * size, 0, (new_nmemb - old_nmemb) * size);
  return p;
}

/* Return the probability of speculation success for the speculation
   status DS.  */
static dw_t
dep_weak (ds_t ds)
{
  ds_t res = 1, dt;
  int n = 0;

  dt = FIRST_SPEC_TYPE;
  do
    {
      if (ds & dt)
	{
	  res *= (ds_t) get_dep_weak (ds, dt);
	  n++;
	}

      if (dt == LAST_SPEC_TYPE)
	break;
      dt <<= SPEC_TYPE_SHIFT;
    }
  while (1);

  gcc_assert (n);
  while (--n)
    res /= MAX_DEP_WEAK;

  if (res < MIN_DEP_WEAK)
    res = MIN_DEP_WEAK;

  gcc_assert (res <= MAX_DEP_WEAK);

  return (dw_t) res;
}

/* Helper function.
   Find fallthru edge from PRED.  */
static edge
find_fallthru_edge (basic_block pred)
{
  edge e;
  edge_iterator ei;
  basic_block succ;

  succ = pred->next_bb;
  gcc_assert (succ->prev_bb == pred);

  if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
    {
      FOR_EACH_EDGE (e, ei, pred->succs)
	if (e->flags & EDGE_FALLTHRU)
	  {
	    gcc_assert (e->dest == succ);
	    return e;
	  }
    }
  else
    {
      FOR_EACH_EDGE (e, ei, succ->preds)
	if (e->flags & EDGE_FALLTHRU)
	  {
	    gcc_assert (e->src == pred);
	    return e;
	  }
    }

  return NULL;
}

/* Initialize BEFORE_RECOVERY variable.  */
static void
init_before_recovery (void)
{
  basic_block last;
  edge e;

  last = EXIT_BLOCK_PTR->prev_bb;
  e = find_fallthru_edge (last);

  if (e)
    {
      /* We create two basic blocks: 
         1. Single instruction block is inserted right after E->SRC
         and has jump to 
         2. Empty block right before EXIT_BLOCK.
         Between these two blocks recovery blocks will be emitted.  */

      basic_block single, empty;
      rtx x, label;

      single = create_empty_bb (last);
      empty = create_empty_bb (single);            

      single->count = last->count;     
      empty->count = last->count;
      single->frequency = last->frequency;
      empty->frequency = last->frequency;
      BB_COPY_PARTITION (single, last);
      BB_COPY_PARTITION (empty, last);

      redirect_edge_succ (e, single);
      make_single_succ_edge (single, empty, 0);
      make_single_succ_edge (empty, EXIT_BLOCK_PTR,
			     EDGE_FALLTHRU | EDGE_CAN_FALLTHRU);

      label = block_label (empty);
      x = emit_jump_insn_after (gen_jump (label), BB_END (single));
      JUMP_LABEL (x) = label;
      LABEL_NUSES (label)++;
      extend_global (x);
          
      emit_barrier_after (x);

      add_block (empty, 0);
      add_block (single, 0);

      before_recovery = single;

      if (sched_verbose >= 2 && spec_info->dump)
        fprintf (spec_info->dump,
		 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n", 
                 last->index, single->index, empty->index);      
    }
  else
    before_recovery = last;
}

/* Returns new recovery block.  */
static basic_block
create_recovery_block (void)
{
  rtx label;
  rtx barrier;
  basic_block rec;
  
  haifa_recovery_bb_recently_added_p = true;
  haifa_recovery_bb_ever_added_p = true;

  if (!before_recovery)
    init_before_recovery ();

  barrier = get_last_bb_insn (before_recovery);
  gcc_assert (BARRIER_P (barrier));

  label = emit_label_after (gen_label_rtx (), barrier);

  rec = create_basic_block (label, label, before_recovery);

  /* Recovery block always end with an unconditional jump.  */
  emit_barrier_after (BB_END (rec));

  if (BB_PARTITION (before_recovery) != BB_UNPARTITIONED)
    BB_SET_PARTITION (rec, BB_COLD_PARTITION);
  
  if (sched_verbose && spec_info->dump)    
    fprintf (spec_info->dump, ";;\t\tGenerated recovery block rec%d\n",
             rec->index);

  before_recovery = rec;

  return rec;
}

/* This function creates recovery code for INSN.  If MUTATE_P is nonzero,
   INSN is a simple check, that should be converted to branchy one.  */
static void
create_check_block_twin (rtx insn, bool mutate_p)
{
  basic_block rec;
  rtx label, check, twin;
  ds_t fs;
  sd_iterator_def sd_it;
  dep_t dep;
  dep_def _new_dep, *new_dep = &_new_dep;

  gcc_assert (ORIG_PAT (insn)
	      && (!mutate_p 
		  || (IS_SPECULATION_SIMPLE_CHECK_P (insn)
		      && !(TODO_SPEC (insn) & SPECULATIVE))));

  /* Create recovery block.  */
  if (mutate_p || targetm.sched.needs_block_p (insn))
    {
      rec = create_recovery_block ();
      label = BB_HEAD (rec);
    }
  else
    {
      rec = EXIT_BLOCK_PTR;
      label = 0;
    }

  /* Emit CHECK.  */
  check = targetm.sched.gen_check (insn, label, mutate_p);

  if (rec != EXIT_BLOCK_PTR)
    {
      /* To have mem_reg alive at the beginning of second_bb,
	 we emit check BEFORE insn, so insn after splitting 
	 insn will be at the beginning of second_bb, which will
	 provide us with the correct life information.  */
      check = emit_jump_insn_before (check, insn);
      JUMP_LABEL (check) = label;
      LABEL_NUSES (label)++;
    }
  else
    check = emit_insn_before (check, insn);

  /* Extend data structures.  */
  extend_all (check);
  RECOVERY_BLOCK (check) = rec;

  if (sched_verbose && spec_info->dump)
    fprintf (spec_info->dump, ";;\t\tGenerated check insn : %s\n",
             (*current_sched_info->print_insn) (check, 0));

  gcc_assert (ORIG_PAT (insn));

  /* Initialize TWIN (twin is a duplicate of original instruction
     in the recovery block).  */
  if (rec != EXIT_BLOCK_PTR)
    {
      sd_iterator_def sd_it;
      dep_t dep;

      FOR_EACH_DEP (insn, SD_LIST_RES_BACK, sd_it, dep)
	if ((DEP_STATUS (dep) & DEP_OUTPUT) != 0)
	  {
	    struct _dep _dep2, *dep2 = &_dep2;

	    init_dep (dep2, DEP_PRO (dep), check, REG_DEP_TRUE);

	    sd_add_dep (dep2, true);
	  }

      twin = emit_insn_after (ORIG_PAT (insn), BB_END (rec));
      extend_global (twin);

      if (sched_verbose && spec_info->dump)
	/* INSN_BB (insn) isn't determined for twin insns yet.
	   So we can't use current_sched_info->print_insn.  */
	fprintf (spec_info->dump, ";;\t\tGenerated twin insn : %d/rec%d\n",
		 INSN_UID (twin), rec->index);
    }
  else
    {
      ORIG_PAT (check) = ORIG_PAT (insn);
      HAS_INTERNAL_DEP (check) = 1;
      twin = check;
      /* ??? We probably should change all OUTPUT dependencies to
	 (TRUE | OUTPUT).  */
    }

  /* Copy all resolved back dependencies of INSN to TWIN.  This will
     provide correct value for INSN_TICK (TWIN).  */
  sd_copy_back_deps (twin, insn, true);

  if (rec != EXIT_BLOCK_PTR)
    /* In case of branchy check, fix CFG.  */
    {
      basic_block first_bb, second_bb;
      rtx jump;
      edge e;
      int edge_flags;

      first_bb = BLOCK_FOR_INSN (check);
      e = split_block (first_bb, check);
      /* split_block emits note if *check == BB_END.  Probably it 
	 is better to rip that note off.  */
      gcc_assert (e->src == first_bb);
      second_bb = e->dest;

      /* This is fixing of incoming edge.  */
      /* ??? Which other flags should be specified?  */      
      if (BB_PARTITION (first_bb) != BB_PARTITION (rec))
	/* Partition type is the same, if it is "unpartitioned".  */
	edge_flags = EDGE_CROSSING;
      else
	edge_flags = 0;
      
      e = make_edge (first_bb, rec, edge_flags);

      add_block (second_bb, first_bb);
      
      gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (second_bb)));
      label = block_label (second_bb);
      jump = emit_jump_insn_after (gen_jump (label), BB_END (rec));
      JUMP_LABEL (jump) = label;
      LABEL_NUSES (label)++;
      extend_global (jump);

      if (BB_PARTITION (second_bb) != BB_PARTITION (rec))
	/* Partition type is the same, if it is "unpartitioned".  */
	{
	  /* Rewritten from cfgrtl.c.  */
	  if (flag_reorder_blocks_and_partition
	      && targetm.have_named_sections
	      /*&& !any_condjump_p (jump)*/)
	    /* any_condjump_p (jump) == false.
	       We don't need the same note for the check because
	       any_condjump_p (check) == true.  */
	    {
	      REG_NOTES (jump) = gen_rtx_EXPR_LIST (REG_CROSSING_JUMP,
						    NULL_RTX,
						    REG_NOTES (jump));
	    }
	  edge_flags = EDGE_CROSSING;
	}
      else
	edge_flags = 0;  
      
      make_single_succ_edge (rec, second_bb, edge_flags);  
      
      add_block (rec, EXIT_BLOCK_PTR);
    }

  /* Move backward dependences from INSN to CHECK and 
     move forward dependences from INSN to TWIN.  */

  /* First, create dependencies between INSN's producers and CHECK & TWIN.  */
  FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
    {
      rtx pro = DEP_PRO (dep);
      ds_t ds;

      /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
	 check --TRUE--> producer  ??? or ANTI ???
	 twin  --TRUE--> producer
	 twin  --ANTI--> check
	 
	 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
	 check --ANTI--> producer
	 twin  --ANTI--> producer
	 twin  --ANTI--> check

	 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
	 check ~~TRUE~~> producer
	 twin  ~~TRUE~~> producer
	 twin  --ANTI--> check  */	      	  

      ds = DEP_STATUS (dep);

      if (ds & BEGIN_SPEC)
	{
	  gcc_assert (!mutate_p);
	  ds &= ~BEGIN_SPEC;
	}

      init_dep_1 (new_dep, pro, check, DEP_TYPE (dep), ds);
      sd_add_dep (new_dep, false);

      if (rec != EXIT_BLOCK_PTR)
	{
	  DEP_CON (new_dep) = twin;
	  sd_add_dep (new_dep, false);
	}    
    }

  /* Second, remove backward dependencies of INSN.  */
  for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
       sd_iterator_cond (&sd_it, &dep);)
    {
      if ((DEP_STATUS (dep) & BEGIN_SPEC)
	  || mutate_p)
	/* We can delete this dep because we overcome it with
	   BEGIN_SPECULATION.  */
	sd_delete_dep (sd_it);
      else
	sd_iterator_next (&sd_it);
    }

  /* Future Speculations.  Determine what BE_IN speculations will be like.  */
  fs = 0;

  /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
     here.  */
  
  gcc_assert (!DONE_SPEC (insn));
  
  if (!mutate_p)
    { 
      ds_t ts = TODO_SPEC (insn);

      DONE_SPEC (insn) = ts & BEGIN_SPEC;
      CHECK_SPEC (check) = ts & BEGIN_SPEC;

      /* Luckiness of future speculations solely depends upon initial
	 BEGIN speculation.  */
      if (ts & BEGIN_DATA)
	fs = set_dep_weak (fs, BE_IN_DATA, get_dep_weak (ts, BEGIN_DATA));
      if (ts & BEGIN_CONTROL)
	fs = set_dep_weak (fs, BE_IN_CONTROL,
			   get_dep_weak (ts, BEGIN_CONTROL));
    }
  else
    CHECK_SPEC (check) = CHECK_SPEC (insn);

  /* Future speculations: call the helper.  */
  process_insn_forw_deps_be_in_spec (insn, twin, fs);

  if (rec != EXIT_BLOCK_PTR)
    {
      /* Which types of dependencies should we use here is,
	 generally, machine-dependent question...  But, for now,
	 it is not.  */

      if (!mutate_p)
	{
	  init_dep (new_dep, insn, check, REG_DEP_TRUE);
	  sd_add_dep (new_dep, false);

	  init_dep (new_dep, insn, twin, REG_DEP_OUTPUT);
	  sd_add_dep (new_dep, false);
	}
      else
	{
	  if (spec_info->dump)    
	    fprintf (spec_info->dump, ";;\t\tRemoved simple check : %s\n",
		     (*current_sched_info->print_insn) (insn, 0));

	  /* Remove all dependencies of the INSN.  */
	  {
	    sd_it = sd_iterator_start (insn, (SD_LIST_FORW
					      | SD_LIST_BACK
					      | SD_LIST_RES_BACK));
	    while (sd_iterator_cond (&sd_it, &dep))
	      sd_delete_dep (sd_it);
	  }

	  /* If former check (INSN) already was moved to the ready (or queue)
	     list, add new check (CHECK) there too.  */
	  if (QUEUE_INDEX (insn) != QUEUE_NOWHERE)
	    try_ready (check);

	  /* Remove old check from instruction stream and free its
	     data.  */
	  sched_remove_insn (insn);
	}

      init_dep (new_dep, check, twin, REG_DEP_ANTI);
      sd_add_dep (new_dep, false);
    }
  else
    {
      init_dep_1 (new_dep, insn, check, REG_DEP_TRUE, DEP_TRUE | DEP_OUTPUT);
      sd_add_dep (new_dep, false);
    }

  if (!mutate_p)
    /* Fix priorities.  If MUTATE_P is nonzero, this is not necessary,
       because it'll be done later in add_to_speculative_block.  */
    {
      rtx_vec_t priorities_roots = NULL;

      clear_priorities (twin, &priorities_roots);
      calc_priorities (priorities_roots);
      VEC_free (rtx, heap, priorities_roots);
    }
}

/* Removes dependency between instructions in the recovery block REC
   and usual region instructions.  It keeps inner dependences so it
   won't be necessary to recompute them.  */
static void
fix_recovery_deps (basic_block rec)
{
  rtx note, insn, jump, ready_list = 0;
  bitmap_head in_ready;
  rtx link;

  bitmap_initialize (&in_ready, 0);
  
  /* NOTE - a basic block note.  */
  note = NEXT_INSN (BB_HEAD (rec));
  gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
  insn = BB_END (rec);
  gcc_assert (JUMP_P (insn));
  insn = PREV_INSN (insn);

  do
    {
      sd_iterator_def sd_it;
      dep_t dep;

      for (sd_it = sd_iterator_start (insn, SD_LIST_FORW);
	   sd_iterator_cond (&sd_it, &dep);)
	{
	  rtx consumer = DEP_CON (dep);

	  if (BLOCK_FOR_INSN (consumer) != rec)
	    {
	      sd_delete_dep (sd_it);

	      if (!bitmap_bit_p (&in_ready, INSN_LUID (consumer)))
		{
		  ready_list = alloc_INSN_LIST (consumer, ready_list);
		  bitmap_set_bit (&in_ready, INSN_LUID (consumer));
		}
	    }
	  else
	    {
	      gcc_assert ((DEP_STATUS (dep) & DEP_TYPES) == DEP_TRUE);

	      sd_iterator_next (&sd_it);
	    }
	}
      
      insn = PREV_INSN (insn);
    }
  while (insn != note);

  bitmap_clear (&in_ready);

  /* Try to add instructions to the ready or queue list.  */
  for (link = ready_list; link; link = XEXP (link, 1))
    try_ready (XEXP (link, 0));
  free_INSN_LIST_list (&ready_list);

  /* Fixing jump's dependences.  */
  insn = BB_HEAD (rec);
  jump = BB_END (rec);
      
  gcc_assert (LABEL_P (insn));
  insn = NEXT_INSN (insn);
  
  gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
  add_jump_dependencies (insn, jump);
}

/* Changes pattern of the INSN to NEW_PAT.  */
static void
change_pattern (rtx insn, rtx new_pat)
{
  int t;

  t = validate_change (insn, &PATTERN (insn), new_pat, 0);
  gcc_assert (t);
  /* Invalidate INSN_COST, so it'll be recalculated.  */
  INSN_COST (insn) = -1;
  /* Invalidate INSN_TICK, so it'll be recalculated.  */
  INSN_TICK (insn) = INVALID_TICK;
  dfa_clear_single_insn_cache (insn);
}

/* Return true if INSN can potentially be speculated with type DS.  */
bool
sched_insn_is_legitimate_for_speculation_p (const_rtx insn, ds_t ds)
{
  if (HAS_INTERNAL_DEP (insn))
    return false;

  if (!NONJUMP_INSN_P (insn))
    return false;

  if (SCHED_GROUP_P (insn))
    return false;

  if (IS_SPECULATION_CHECK_P (insn))
    return false;

  if (side_effects_p (PATTERN (insn)))
    return false;

  if ((ds & BE_IN_SPEC)
      && may_trap_p (PATTERN (insn)))
    return false;

  return true;
}

/* -1 - can't speculate,
   0 - for speculation with REQUEST mode it is OK to use
   current instruction pattern,
   1 - need to change pattern for *NEW_PAT to be speculative.  */
static int
speculate_insn (rtx insn, ds_t request, rtx *new_pat)
{
  gcc_assert (current_sched_info->flags & DO_SPECULATION
              && (request & SPECULATIVE)
	      && sched_insn_is_legitimate_for_speculation_p (insn, request));

  if ((request & spec_info->mask) != request)
    return -1;

  if (request & BE_IN_SPEC
      && !(request & BEGIN_SPEC))
    return 0;

  return targetm.sched.speculate_insn (insn, request & BEGIN_SPEC, new_pat);
}

/* Print some information about block BB, which starts with HEAD and
   ends with TAIL, before scheduling it.
   I is zero, if scheduler is about to start with the fresh ebb.  */
static void
dump_new_block_header (int i, basic_block bb, rtx head, rtx tail)
{
  if (!i)
    fprintf (sched_dump,
	     ";;   ======================================================\n");
  else
    fprintf (sched_dump,
	     ";;   =====================ADVANCING TO=====================\n");
  fprintf (sched_dump,
	   ";;   -- basic block %d from %d to %d -- %s reload\n",
	   bb->index, INSN_UID (head), INSN_UID (tail),
	   (reload_completed ? "after" : "before"));
  fprintf (sched_dump,
	   ";;   ======================================================\n");
  fprintf (sched_dump, "\n");
}

/* Unlink basic block notes and labels and saves them, so they
   can be easily restored.  We unlink basic block notes in EBB to
   provide back-compatibility with the previous code, as target backends
   assume, that there'll be only instructions between
   current_sched_info->{head and tail}.  We restore these notes as soon
   as we can.
   FIRST (LAST) is the first (last) basic block in the ebb.
   NB: In usual case (FIRST == LAST) nothing is really done.  */
void
unlink_bb_notes (basic_block first, basic_block last)
{
  /* We DON'T unlink basic block notes of the first block in the ebb.  */
  if (first == last)
    return;

  bb_header = xmalloc (last_basic_block * sizeof (*bb_header));

  /* Make a sentinel.  */
  if (last->next_bb != EXIT_BLOCK_PTR)
    bb_header[last->next_bb->index] = 0;

  first = first->next_bb;
  do
    {
      rtx prev, label, note, next;

      label = BB_HEAD (last);
      if (LABEL_P (label))
	note = NEXT_INSN (label);
      else
	note = label;      
      gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));

      prev = PREV_INSN (label);
      next = NEXT_INSN (note);
      gcc_assert (prev && next);

      NEXT_INSN (prev) = next;
      PREV_INSN (next) = prev;

      bb_header[last->index] = label;

      if (last == first)
	break;
      
      last = last->prev_bb;
    }
  while (1);
}

/* Restore basic block notes.
   FIRST is the first basic block in the ebb.  */
static void
restore_bb_notes (basic_block first)
{
  if (!bb_header)
    return;

  /* We DON'T unlink basic block notes of the first block in the ebb.  */
  first = first->next_bb;  
  /* Remember: FIRST is actually a second basic block in the ebb.  */

  while (first != EXIT_BLOCK_PTR
	 && bb_header[first->index])
    {
      rtx prev, label, note, next;
      
      label = bb_header[first->index];
      prev = PREV_INSN (label);
      next = NEXT_INSN (prev);

      if (LABEL_P (label))
	note = NEXT_INSN (label);
      else
	note = label;      
      gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));

      bb_header[first->index] = 0;

      NEXT_INSN (prev) = label;
      NEXT_INSN (note) = next;
      PREV_INSN (next) = note;
      
      first = first->next_bb;
    }

  free (bb_header);
  bb_header = 0;
}

/* Extend per basic block data structures of the scheduler.
   If BB is NULL, initialize structures for the whole CFG.
   Otherwise, initialize them for the just created BB.  */
static void
extend_bb (void)
{
  rtx insn;

  old_last_basic_block = last_basic_block;

  /* The following is done to keep current_sched_info->next_tail non null.  */

  insn = BB_END (EXIT_BLOCK_PTR->prev_bb);
  if (NEXT_INSN (insn) == 0
      || (!NOTE_P (insn)
	  && !LABEL_P (insn)
	  /* Don't emit a NOTE if it would end up before a BARRIER.  */
	  && !BARRIER_P (NEXT_INSN (insn))))
    {
      rtx note = emit_note_after (NOTE_INSN_DELETED, insn);
      /* Make insn appear outside BB.  */
      set_block_for_insn (note, NULL);
      BB_END (EXIT_BLOCK_PTR->prev_bb) = insn;
    }
}

/* Add a basic block BB to extended basic block EBB.
   If EBB is EXIT_BLOCK_PTR, then BB is recovery block.
   If EBB is NULL, then BB should be a new region.  */
void
add_block (basic_block bb, basic_block ebb)
{
  gcc_assert (current_sched_info->flags & NEW_BBS);

  extend_bb ();

  if (current_sched_info->add_block)
    /* This changes only data structures of the front-end.  */
    current_sched_info->add_block (bb, ebb);
}

/* Helper function.
   Fix CFG after both in- and inter-block movement of
   control_flow_insn_p JUMP.  */
static void
fix_jump_move (rtx jump)
{
  basic_block bb, jump_bb, jump_bb_next;

  bb = BLOCK_FOR_INSN (PREV_INSN (jump));
  jump_bb = BLOCK_FOR_INSN (jump);
  jump_bb_next = jump_bb->next_bb;

  gcc_assert (current_sched_info->flags & SCHED_EBB
	      || IS_SPECULATION_BRANCHY_CHECK_P (jump));
  
  if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next)))
    /* if jump_bb_next is not empty.  */
    BB_END (jump_bb) = BB_END (jump_bb_next);

  if (BB_END (bb) != PREV_INSN (jump))
    /* Then there are instruction after jump that should be placed
       to jump_bb_next.  */
    BB_END (jump_bb_next) = BB_END (bb);
  else
    /* Otherwise jump_bb_next is empty.  */
    BB_END (jump_bb_next) = NEXT_INSN (BB_HEAD (jump_bb_next));

  /* To make assertion in move_insn happy.  */
  BB_END (bb) = PREV_INSN (jump);

  update_bb_for_insn (jump_bb_next);
}

/* Fix CFG after interblock movement of control_flow_insn_p JUMP.  */
static void
move_block_after_check (rtx jump)
{
  basic_block bb, jump_bb, jump_bb_next;
  VEC(edge,gc) *t;

  bb = BLOCK_FOR_INSN (PREV_INSN (jump));
  jump_bb = BLOCK_FOR_INSN (jump);
  jump_bb_next = jump_bb->next_bb;
  
  update_bb_for_insn (jump_bb);
  
  gcc_assert (IS_SPECULATION_CHECK_P (jump)
	      || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next)));

  unlink_block (jump_bb_next);
  link_block (jump_bb_next, bb);

  t = bb->succs;
  bb->succs = 0;
  move_succs (&(jump_bb->succs), bb);
  move_succs (&(jump_bb_next->succs), jump_bb);
  move_succs (&t, jump_bb_next);

  df_mark_solutions_dirty ();
  
  if (current_sched_info->fix_recovery_cfg)
    current_sched_info->fix_recovery_cfg 
      (bb->index, jump_bb->index, jump_bb_next->index);
}

/* Helper function for move_block_after_check.
   This functions attaches edge vector pointed to by SUCCSP to
   block TO.  */
static void
move_succs (VEC(edge,gc) **succsp, basic_block to)
{
  edge e;
  edge_iterator ei;

  gcc_assert (to->succs == 0);

  to->succs = *succsp;

  FOR_EACH_EDGE (e, ei, to->succs)
    e->src = to;

  *succsp = 0;
}

/* Remove INSN from the instruction stream.
   INSN should have any dependencies.  */
static void
sched_remove_insn (rtx insn)
{
  sd_finish_insn (insn);

  change_queue_index (insn, QUEUE_NOWHERE);
  current_sched_info->add_remove_insn (insn, 1);
  remove_insn (insn);
}

/* Clear priorities of all instructions, that are forward dependent on INSN.
   Store in vector pointed to by ROOTS_PTR insns on which priority () should
   be invoked to initialize all cleared priorities.  */
static void
clear_priorities (rtx insn, rtx_vec_t *roots_ptr)
{
  sd_iterator_def sd_it;
  dep_t dep;
  bool insn_is_root_p = true;

  gcc_assert (QUEUE_INDEX (insn) != QUEUE_SCHEDULED);

  FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
    {
      rtx pro = DEP_PRO (dep);

      if (INSN_PRIORITY_STATUS (pro) >= 0
	  && QUEUE_INDEX (insn) != QUEUE_SCHEDULED)
	{
	  /* If DEP doesn't contribute to priority then INSN itself should
	     be added to priority roots.  */
	  if (contributes_to_priority_p (dep))
	    insn_is_root_p = false;

	  INSN_PRIORITY_STATUS (pro) = -1;
	  clear_priorities (pro, roots_ptr);
	}
    }

  if (insn_is_root_p)
    VEC_safe_push (rtx, heap, *roots_ptr, insn);
}

/* Recompute priorities of instructions, whose priorities might have been
   changed.  ROOTS is a vector of instructions whose priority computation will
   trigger initialization of all cleared priorities.  */
static void
calc_priorities (rtx_vec_t roots)
{
  int i;
  rtx insn;

  for (i = 0; VEC_iterate (rtx, roots, i, insn); i++)
    priority (insn);
}


/* Add dependences between JUMP and other instructions in the recovery
   block.  INSN is the first insn the recovery block.  */
static void
add_jump_dependencies (rtx insn, rtx jump)
{
  do
    {
      insn = NEXT_INSN (insn);
      if (insn == jump)
	break;
      
      if (sd_lists_empty_p (insn, SD_LIST_FORW))
	{
	  dep_def _new_dep, *new_dep = &_new_dep;

	  init_dep (new_dep, insn, jump, REG_DEP_ANTI);
	  sd_add_dep (new_dep, false);
	}
    }
  while (1);

  gcc_assert (!sd_lists_empty_p (jump, SD_LIST_BACK));
}

/* Return the NOTE_INSN_BASIC_BLOCK of BB.  */
rtx
bb_note (basic_block bb)
{
  rtx note;

  note = BB_HEAD (bb);
  if (LABEL_P (note))
    note = NEXT_INSN (note);

  gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note));
  return note;
}

#ifdef ENABLE_CHECKING
/* Helper function for check_cfg.
   Return nonzero, if edge vector pointed to by EL has edge with TYPE in
   its flags.  */
static int
has_edge_p (VEC(edge,gc) *el, int type)
{
  edge e;
  edge_iterator ei;

  FOR_EACH_EDGE (e, ei, el)
    if (e->flags & type)
      return 1;
  return 0;
}

/* Check few properties of CFG between HEAD and TAIL.
   If HEAD (TAIL) is NULL check from the beginning (till the end) of the
   instruction stream.  */
static void
check_cfg (rtx head, rtx tail)
{
  rtx next_tail;
  basic_block bb = 0;
  int not_first = 0, not_last;

  if (head == NULL)
    head = get_insns ();
  if (tail == NULL)
    tail = get_last_insn ();
  next_tail = NEXT_INSN (tail);

  do
    {      
      not_last = head != tail;        

      if (not_first)
	gcc_assert (NEXT_INSN (PREV_INSN (head)) == head);
      if (not_last)
	gcc_assert (PREV_INSN (NEXT_INSN (head)) == head);

      if (LABEL_P (head) 
	  || (NOTE_INSN_BASIC_BLOCK_P (head)
	      && (!not_first
		  || (not_first && !LABEL_P (PREV_INSN (head))))))
	{
	  gcc_assert (bb == 0);	  
	  bb = BLOCK_FOR_INSN (head);
	  if (bb != 0)
	    gcc_assert (BB_HEAD (bb) == head);      
	  else
	    /* This is the case of jump table.  See inside_basic_block_p ().  */
	    gcc_assert (LABEL_P (head) && !inside_basic_block_p (head));
	}

      if (bb == 0)
	{
	  gcc_assert (!inside_basic_block_p (head));
	  head = NEXT_INSN (head);
	}
      else
	{
	  gcc_assert (inside_basic_block_p (head)
		      || NOTE_P (head));
	  gcc_assert (BLOCK_FOR_INSN (head) == bb);
	
	  if (LABEL_P (head))
	    {
	      head = NEXT_INSN (head);
	      gcc_assert (NOTE_INSN_BASIC_BLOCK_P (head));
	    }
	  else
	    {
	      if (control_flow_insn_p (head))
		{
		  gcc_assert (BB_END (bb) == head);
		  
		  if (any_uncondjump_p (head))
		    gcc_assert (EDGE_COUNT (bb->succs) == 1
				&& BARRIER_P (NEXT_INSN (head)));
		  else if (any_condjump_p (head))
		    gcc_assert (/* Usual case.  */
                                (EDGE_COUNT (bb->succs) > 1
                                 && !BARRIER_P (NEXT_INSN (head)))
                                /* Or jump to the next instruction.  */
                                || (EDGE_COUNT (bb->succs) == 1
                                    && (BB_HEAD (EDGE_I (bb->succs, 0)->dest)
                                        == JUMP_LABEL (head))));
		}
	      if (BB_END (bb) == head)
		{
		  if (EDGE_COUNT (bb->succs) > 1)
		    gcc_assert (control_flow_insn_p (head)
				|| has_edge_p (bb->succs, EDGE_COMPLEX));
		  bb = 0;
		}
			      
	      head = NEXT_INSN (head);
	    }
	}

      not_first = 1;
    }
  while (head != next_tail);

  gcc_assert (bb == 0);
}
#endif /* ENABLE_CHECKING */

#endif /* INSN_SCHEDULING */