1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
|
/* Conversion of SESE regions to Polyhedra.
Copyright (C) 2009 Free Software Foundation, Inc.
Contributed by Sebastian Pop <sebastian.pop@amd.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "rtl.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "toplev.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-pass.h"
#include "domwalk.h"
#include "value-prof.h"
#include "pointer-set.h"
#include "gimple.h"
#include "sese.h"
#ifdef HAVE_cloog
#include "cloog/cloog.h"
#include "ppl_c.h"
#include "graphite-ppl.h"
#include "graphite.h"
#include "graphite-poly.h"
#include "graphite-scop-detection.h"
#include "graphite-clast-to-gimple.h"
#include "graphite-sese-to-poly.h"
/* Check if VAR is used in a phi node, that is no loop header. */
static bool
var_used_in_not_loop_header_phi_node (tree var)
{
imm_use_iterator imm_iter;
gimple stmt;
bool result = false;
FOR_EACH_IMM_USE_STMT (stmt, imm_iter, var)
{
basic_block bb = gimple_bb (stmt);
if (gimple_code (stmt) == GIMPLE_PHI
&& bb->loop_father->header != bb)
result = true;
}
return result;
}
/* Returns the index of the phi argument corresponding to the initial
value in the loop. */
static size_t
loop_entry_phi_arg (gimple phi)
{
loop_p loop = gimple_bb (phi)->loop_father;
size_t i;
for (i = 0; i < gimple_phi_num_args (phi); i++)
if (!flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, i)->src))
return i;
gcc_unreachable ();
return 0;
}
/* Removes a simple copy phi node "RES = phi (INIT, RES)" at position
PSI by inserting on the loop ENTRY edge assignment "RES = INIT". */
static void
remove_simple_copy_phi (gimple_stmt_iterator *psi)
{
gimple phi = gsi_stmt (*psi);
tree res = gimple_phi_result (phi);
size_t entry = loop_entry_phi_arg (phi);
tree init = gimple_phi_arg_def (phi, entry);
gimple stmt = gimple_build_assign (res, init);
edge e = gimple_phi_arg_edge (phi, entry);
remove_phi_node (psi, false);
gsi_insert_on_edge_immediate (e, stmt);
SSA_NAME_DEF_STMT (res) = stmt;
}
/* Removes an invariant phi node at position PSI by inserting on the
loop ENTRY edge the assignment RES = INIT. */
static void
remove_invariant_phi (sese region, gimple_stmt_iterator *psi)
{
gimple phi = gsi_stmt (*psi);
loop_p loop = loop_containing_stmt (phi);
tree res = gimple_phi_result (phi);
tree scev = scalar_evolution_in_region (region, loop, res);
size_t entry = loop_entry_phi_arg (phi);
edge e = gimple_phi_arg_edge (phi, entry);
tree var;
gimple stmt;
gimple_seq stmts;
gimple_stmt_iterator gsi;
if (tree_contains_chrecs (scev, NULL))
scev = gimple_phi_arg_def (phi, entry);
var = force_gimple_operand (scev, &stmts, true, NULL_TREE);
stmt = gimple_build_assign (res, var);
remove_phi_node (psi, false);
if (!stmts)
stmts = gimple_seq_alloc ();
gsi = gsi_last (stmts);
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
gsi_insert_seq_on_edge (e, stmts);
gsi_commit_edge_inserts ();
SSA_NAME_DEF_STMT (res) = stmt;
}
/* Returns true when the phi node at PSI is of the form "a = phi (a, x)". */
static inline bool
simple_copy_phi_p (gimple phi)
{
tree res;
if (gimple_phi_num_args (phi) != 2)
return false;
res = gimple_phi_result (phi);
return (res == gimple_phi_arg_def (phi, 0)
|| res == gimple_phi_arg_def (phi, 1));
}
/* Returns true when the phi node at position PSI is a reduction phi
node in REGION. Otherwise moves the pointer PSI to the next phi to
be considered. */
static bool
reduction_phi_p (sese region, gimple_stmt_iterator *psi)
{
loop_p loop;
tree scev;
affine_iv iv;
gimple phi = gsi_stmt (*psi);
tree res = gimple_phi_result (phi);
if (!is_gimple_reg (res))
{
gsi_next (psi);
return false;
}
loop = loop_containing_stmt (phi);
if (simple_copy_phi_p (phi))
{
/* FIXME: PRE introduces phi nodes like these, for an example,
see id-5.f in the fortran graphite testsuite:
# prephitmp.85_265 = PHI <prephitmp.85_258(33), prephitmp.85_265(18)>
*/
remove_simple_copy_phi (psi);
return false;
}
/* Main induction variables with constant strides in LOOP are not
reductions. */
if (simple_iv (loop, loop, res, &iv, true))
{
if (integer_zerop (iv.step))
remove_invariant_phi (region, psi);
else
gsi_next (psi);
return false;
}
scev = scalar_evolution_in_region (region, loop, res);
if (chrec_contains_undetermined (scev))
return true;
if (evolution_function_is_invariant_p (scev, loop->num))
{
remove_invariant_phi (region, psi);
return false;
}
/* All the other cases are considered reductions. */
return true;
}
/* Returns true when BB will be represented in graphite. Return false
for the basic blocks that contain code eliminated in the code
generation pass: i.e. induction variables and exit conditions. */
static bool
graphite_stmt_p (sese region, basic_block bb,
VEC (data_reference_p, heap) *drs)
{
gimple_stmt_iterator gsi;
loop_p loop = bb->loop_father;
if (VEC_length (data_reference_p, drs) > 0)
return true;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
switch (gimple_code (stmt))
{
case GIMPLE_DEBUG:
/* Control flow expressions can be ignored, as they are
represented in the iteration domains and will be
regenerated by graphite. */
case GIMPLE_COND:
case GIMPLE_GOTO:
case GIMPLE_SWITCH:
break;
case GIMPLE_ASSIGN:
{
tree var = gimple_assign_lhs (stmt);
/* We need these bbs to be able to construct the phi nodes. */
if (var_used_in_not_loop_header_phi_node (var))
return true;
var = scalar_evolution_in_region (region, loop, var);
if (chrec_contains_undetermined (var))
return true;
break;
}
default:
return true;
}
}
return false;
}
/* Store the GRAPHITE representation of BB. */
static gimple_bb_p
new_gimple_bb (basic_block bb, VEC (data_reference_p, heap) *drs)
{
struct gimple_bb *gbb;
gbb = XNEW (struct gimple_bb);
bb->aux = gbb;
GBB_BB (gbb) = bb;
GBB_DATA_REFS (gbb) = drs;
GBB_CONDITIONS (gbb) = NULL;
GBB_CONDITION_CASES (gbb) = NULL;
GBB_CLOOG_IV_TYPES (gbb) = NULL;
return gbb;
}
static void
free_data_refs_aux (VEC (data_reference_p, heap) *datarefs)
{
unsigned int i;
struct data_reference *dr;
for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
if (dr->aux)
{
base_alias_pair *bap = (base_alias_pair *)(dr->aux);
if (bap->alias_set)
free (bap->alias_set);
free (bap);
dr->aux = NULL;
}
}
/* Frees GBB. */
static void
free_gimple_bb (struct gimple_bb *gbb)
{
if (GBB_CLOOG_IV_TYPES (gbb))
htab_delete (GBB_CLOOG_IV_TYPES (gbb));
free_data_refs_aux (GBB_DATA_REFS (gbb));
free_data_refs (GBB_DATA_REFS (gbb));
VEC_free (gimple, heap, GBB_CONDITIONS (gbb));
VEC_free (gimple, heap, GBB_CONDITION_CASES (gbb));
GBB_BB (gbb)->aux = 0;
XDELETE (gbb);
}
/* Deletes all gimple bbs in SCOP. */
static void
remove_gbbs_in_scop (scop_p scop)
{
int i;
poly_bb_p pbb;
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
free_gimple_bb (PBB_BLACK_BOX (pbb));
}
/* Deletes all scops in SCOPS. */
void
free_scops (VEC (scop_p, heap) *scops)
{
int i;
scop_p scop;
for (i = 0; VEC_iterate (scop_p, scops, i, scop); i++)
{
remove_gbbs_in_scop (scop);
free_sese (SCOP_REGION (scop));
free_scop (scop);
}
VEC_free (scop_p, heap, scops);
}
/* Generates a polyhedral black box only if the bb contains interesting
information. */
static void
try_generate_gimple_bb (scop_p scop, basic_block bb, sbitmap reductions)
{
VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 5);
loop_p nest = outermost_loop_in_sese (SCOP_REGION (scop), bb);
gimple_stmt_iterator gsi;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
if (!is_gimple_debug (stmt))
graphite_find_data_references_in_stmt (nest, stmt, &drs);
}
if (!graphite_stmt_p (SCOP_REGION (scop), bb, drs))
free_data_refs (drs);
else
new_poly_bb (scop, new_gimple_bb (bb, drs), TEST_BIT (reductions,
bb->index));
}
/* Returns true if all predecessors of BB, that are not dominated by BB, are
marked in MAP. The predecessors dominated by BB are loop latches and will
be handled after BB. */
static bool
all_non_dominated_preds_marked_p (basic_block bb, sbitmap map)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->preds)
if (!TEST_BIT (map, e->src->index)
&& !dominated_by_p (CDI_DOMINATORS, e->src, bb))
return false;
return true;
}
/* Compare the depth of two basic_block's P1 and P2. */
static int
compare_bb_depths (const void *p1, const void *p2)
{
const_basic_block const bb1 = *(const_basic_block const*)p1;
const_basic_block const bb2 = *(const_basic_block const*)p2;
int d1 = loop_depth (bb1->loop_father);
int d2 = loop_depth (bb2->loop_father);
if (d1 < d2)
return 1;
if (d1 > d2)
return -1;
return 0;
}
/* Sort the basic blocks from DOM such that the first are the ones at
a deepest loop level. */
static void
graphite_sort_dominated_info (VEC (basic_block, heap) *dom)
{
size_t len = VEC_length (basic_block, dom);
qsort (VEC_address (basic_block, dom), len, sizeof (basic_block),
compare_bb_depths);
}
/* Recursive helper function for build_scops_bbs. */
static void
build_scop_bbs_1 (scop_p scop, sbitmap visited, basic_block bb, sbitmap reductions)
{
sese region = SCOP_REGION (scop);
VEC (basic_block, heap) *dom;
if (TEST_BIT (visited, bb->index)
|| !bb_in_sese_p (bb, region))
return;
try_generate_gimple_bb (scop, bb, reductions);
SET_BIT (visited, bb->index);
dom = get_dominated_by (CDI_DOMINATORS, bb);
if (dom == NULL)
return;
graphite_sort_dominated_info (dom);
while (!VEC_empty (basic_block, dom))
{
int i;
basic_block dom_bb;
for (i = 0; VEC_iterate (basic_block, dom, i, dom_bb); i++)
if (all_non_dominated_preds_marked_p (dom_bb, visited))
{
build_scop_bbs_1 (scop, visited, dom_bb, reductions);
VEC_unordered_remove (basic_block, dom, i);
break;
}
}
VEC_free (basic_block, heap, dom);
}
/* Gather the basic blocks belonging to the SCOP. */
static void
build_scop_bbs (scop_p scop, sbitmap reductions)
{
sbitmap visited = sbitmap_alloc (last_basic_block);
sese region = SCOP_REGION (scop);
sbitmap_zero (visited);
build_scop_bbs_1 (scop, visited, SESE_ENTRY_BB (region), reductions);
sbitmap_free (visited);
}
/* Converts the STATIC_SCHEDULE of PBB into a scattering polyhedron.
We generate SCATTERING_DIMENSIONS scattering dimensions.
CLooG 0.15.0 and previous versions require, that all
scattering functions of one CloogProgram have the same number of
scattering dimensions, therefore we allow to specify it. This
should be removed in future versions of CLooG.
The scattering polyhedron consists of these dimensions: scattering,
loop_iterators, parameters.
Example:
| scattering_dimensions = 5
| used_scattering_dimensions = 3
| nb_iterators = 1
| scop_nb_params = 2
|
| Schedule:
| i
| 4 5
|
| Scattering polyhedron:
|
| scattering: {s1, s2, s3, s4, s5}
| loop_iterators: {i}
| parameters: {p1, p2}
|
| s1 s2 s3 s4 s5 i p1 p2 1
| 1 0 0 0 0 0 0 0 -4 = 0
| 0 1 0 0 0 -1 0 0 0 = 0
| 0 0 1 0 0 0 0 0 -5 = 0 */
static void
build_pbb_scattering_polyhedrons (ppl_Linear_Expression_t static_schedule,
poly_bb_p pbb, int scattering_dimensions)
{
int i;
scop_p scop = PBB_SCOP (pbb);
int nb_iterators = pbb_dim_iter_domain (pbb);
int used_scattering_dimensions = nb_iterators * 2 + 1;
int nb_params = scop_nb_params (scop);
ppl_Coefficient_t c;
ppl_dimension_type dim = scattering_dimensions + nb_iterators + nb_params;
Value v;
gcc_assert (scattering_dimensions >= used_scattering_dimensions);
value_init (v);
ppl_new_Coefficient (&c);
PBB_TRANSFORMED (pbb) = poly_scattering_new ();
ppl_new_C_Polyhedron_from_space_dimension
(&PBB_TRANSFORMED_SCATTERING (pbb), dim, 0);
PBB_NB_SCATTERING_TRANSFORM (pbb) = scattering_dimensions;
for (i = 0; i < scattering_dimensions; i++)
{
ppl_Constraint_t cstr;
ppl_Linear_Expression_t expr;
ppl_new_Linear_Expression_with_dimension (&expr, dim);
value_set_si (v, 1);
ppl_assign_Coefficient_from_mpz_t (c, v);
ppl_Linear_Expression_add_to_coefficient (expr, i, c);
/* Textual order inside this loop. */
if ((i % 2) == 0)
{
ppl_Linear_Expression_coefficient (static_schedule, i / 2, c);
ppl_Coefficient_to_mpz_t (c, v);
value_oppose (v, v);
ppl_assign_Coefficient_from_mpz_t (c, v);
ppl_Linear_Expression_add_to_inhomogeneous (expr, c);
}
/* Iterations of this loop. */
else /* if ((i % 2) == 1) */
{
int loop = (i - 1) / 2;
value_set_si (v, -1);
ppl_assign_Coefficient_from_mpz_t (c, v);
ppl_Linear_Expression_add_to_coefficient
(expr, scattering_dimensions + loop, c);
}
ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_EQUAL);
ppl_Polyhedron_add_constraint (PBB_TRANSFORMED_SCATTERING (pbb), cstr);
ppl_delete_Linear_Expression (expr);
ppl_delete_Constraint (cstr);
}
value_clear (v);
ppl_delete_Coefficient (c);
PBB_ORIGINAL (pbb) = poly_scattering_copy (PBB_TRANSFORMED (pbb));
}
/* Build for BB the static schedule.
The static schedule is a Dewey numbering of the abstract syntax
tree: http://en.wikipedia.org/wiki/Dewey_Decimal_Classification
The following example informally defines the static schedule:
A
for (i: ...)
{
for (j: ...)
{
B
C
}
for (k: ...)
{
D
E
}
}
F
Static schedules for A to F:
DEPTH
0 1 2
A 0
B 1 0 0
C 1 0 1
D 1 1 0
E 1 1 1
F 2
*/
static void
build_scop_scattering (scop_p scop)
{
int i;
poly_bb_p pbb;
gimple_bb_p previous_gbb = NULL;
ppl_Linear_Expression_t static_schedule;
ppl_Coefficient_t c;
Value v;
value_init (v);
ppl_new_Coefficient (&c);
ppl_new_Linear_Expression (&static_schedule);
/* We have to start schedules at 0 on the first component and
because we cannot compare_prefix_loops against a previous loop,
prefix will be equal to zero, and that index will be
incremented before copying. */
value_set_si (v, -1);
ppl_assign_Coefficient_from_mpz_t (c, v);
ppl_Linear_Expression_add_to_coefficient (static_schedule, 0, c);
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
{
gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
ppl_Linear_Expression_t common;
int prefix;
int nb_scat_dims = pbb_dim_iter_domain (pbb) * 2 + 1;
if (previous_gbb)
prefix = nb_common_loops (SCOP_REGION (scop), previous_gbb, gbb);
else
prefix = 0;
previous_gbb = gbb;
ppl_new_Linear_Expression_with_dimension (&common, prefix + 1);
ppl_assign_Linear_Expression_from_Linear_Expression (common,
static_schedule);
value_set_si (v, 1);
ppl_assign_Coefficient_from_mpz_t (c, v);
ppl_Linear_Expression_add_to_coefficient (common, prefix, c);
ppl_assign_Linear_Expression_from_Linear_Expression (static_schedule,
common);
build_pbb_scattering_polyhedrons (common, pbb, nb_scat_dims);
ppl_delete_Linear_Expression (common);
}
value_clear (v);
ppl_delete_Coefficient (c);
ppl_delete_Linear_Expression (static_schedule);
}
/* Add the value K to the dimension D of the linear expression EXPR. */
static void
add_value_to_dim (ppl_dimension_type d, ppl_Linear_Expression_t expr,
Value k)
{
Value val;
ppl_Coefficient_t coef;
ppl_new_Coefficient (&coef);
ppl_Linear_Expression_coefficient (expr, d, coef);
value_init (val);
ppl_Coefficient_to_mpz_t (coef, val);
value_addto (val, val, k);
ppl_assign_Coefficient_from_mpz_t (coef, val);
ppl_Linear_Expression_add_to_coefficient (expr, d, coef);
value_clear (val);
ppl_delete_Coefficient (coef);
}
/* In the context of scop S, scan E, the right hand side of a scalar
evolution function in loop VAR, and translate it to a linear
expression EXPR. */
static void
scan_tree_for_params_right_scev (sese s, tree e, int var,
ppl_Linear_Expression_t expr)
{
if (expr)
{
loop_p loop = get_loop (var);
ppl_dimension_type l = sese_loop_depth (s, loop) - 1;
Value val;
/* Scalar evolutions should happen in the sese region. */
gcc_assert (sese_loop_depth (s, loop) > 0);
/* We can not deal with parametric strides like:
| p = parameter;
|
| for i:
| a [i * p] = ... */
gcc_assert (TREE_CODE (e) == INTEGER_CST);
value_init (val);
value_set_si (val, int_cst_value (e));
add_value_to_dim (l, expr, val);
value_clear (val);
}
}
/* Scan the integer constant CST, and add it to the inhomogeneous part of the
linear expression EXPR. K is the multiplier of the constant. */
static void
scan_tree_for_params_int (tree cst, ppl_Linear_Expression_t expr, Value k)
{
Value val;
ppl_Coefficient_t coef;
int v = int_cst_value (cst);
value_init (val);
value_set_si (val, 0);
/* Necessary to not get "-1 = 2^n - 1". */
if (v < 0)
value_sub_int (val, val, -v);
else
value_add_int (val, val, v);
value_multiply (val, val, k);
ppl_new_Coefficient (&coef);
ppl_assign_Coefficient_from_mpz_t (coef, val);
ppl_Linear_Expression_add_to_inhomogeneous (expr, coef);
value_clear (val);
ppl_delete_Coefficient (coef);
}
/* When parameter NAME is in REGION, returns its index in SESE_PARAMS.
Otherwise returns -1. */
static inline int
parameter_index_in_region_1 (tree name, sese region)
{
int i;
tree p;
gcc_assert (TREE_CODE (name) == SSA_NAME);
for (i = 0; VEC_iterate (tree, SESE_PARAMS (region), i, p); i++)
if (p == name)
return i;
return -1;
}
/* When the parameter NAME is in REGION, returns its index in
SESE_PARAMS. Otherwise this function inserts NAME in SESE_PARAMS
and returns the index of NAME. */
static int
parameter_index_in_region (tree name, sese region)
{
int i;
gcc_assert (TREE_CODE (name) == SSA_NAME);
i = parameter_index_in_region_1 (name, region);
if (i != -1)
return i;
gcc_assert (SESE_ADD_PARAMS (region));
i = VEC_length (tree, SESE_PARAMS (region));
VEC_safe_push (tree, heap, SESE_PARAMS (region), name);
return i;
}
/* In the context of sese S, scan the expression E and translate it to
a linear expression C. When parsing a symbolic multiplication, K
represents the constant multiplier of an expression containing
parameters. */
static void
scan_tree_for_params (sese s, tree e, ppl_Linear_Expression_t c,
Value k)
{
if (e == chrec_dont_know)
return;
switch (TREE_CODE (e))
{
case POLYNOMIAL_CHREC:
scan_tree_for_params_right_scev (s, CHREC_RIGHT (e),
CHREC_VARIABLE (e), c);
scan_tree_for_params (s, CHREC_LEFT (e), c, k);
break;
case MULT_EXPR:
if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
{
if (c)
{
Value val;
gcc_assert (host_integerp (TREE_OPERAND (e, 1), 0));
value_init (val);
value_set_si (val, int_cst_value (TREE_OPERAND (e, 1)));
value_multiply (val, val, k);
scan_tree_for_params (s, TREE_OPERAND (e, 0), c, val);
value_clear (val);
}
else
scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
}
else
{
if (c)
{
Value val;
gcc_assert (host_integerp (TREE_OPERAND (e, 0), 0));
value_init (val);
value_set_si (val, int_cst_value (TREE_OPERAND (e, 0)));
value_multiply (val, val, k);
scan_tree_for_params (s, TREE_OPERAND (e, 1), c, val);
value_clear (val);
}
else
scan_tree_for_params (s, TREE_OPERAND (e, 1), c, k);
}
break;
case PLUS_EXPR:
case POINTER_PLUS_EXPR:
scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
scan_tree_for_params (s, TREE_OPERAND (e, 1), c, k);
break;
case MINUS_EXPR:
{
ppl_Linear_Expression_t tmp_expr = NULL;
if (c)
{
ppl_dimension_type dim;
ppl_Linear_Expression_space_dimension (c, &dim);
ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
}
scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
scan_tree_for_params (s, TREE_OPERAND (e, 1), tmp_expr, k);
if (c)
{
ppl_subtract_Linear_Expression_from_Linear_Expression (c,
tmp_expr);
ppl_delete_Linear_Expression (tmp_expr);
}
break;
}
case NEGATE_EXPR:
{
ppl_Linear_Expression_t tmp_expr = NULL;
if (c)
{
ppl_dimension_type dim;
ppl_Linear_Expression_space_dimension (c, &dim);
ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
}
scan_tree_for_params (s, TREE_OPERAND (e, 0), tmp_expr, k);
if (c)
{
ppl_subtract_Linear_Expression_from_Linear_Expression (c,
tmp_expr);
ppl_delete_Linear_Expression (tmp_expr);
}
break;
}
case BIT_NOT_EXPR:
{
ppl_Linear_Expression_t tmp_expr = NULL;
if (c)
{
ppl_dimension_type dim;
ppl_Linear_Expression_space_dimension (c, &dim);
ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
}
scan_tree_for_params (s, TREE_OPERAND (e, 0), tmp_expr, k);
if (c)
{
ppl_Coefficient_t coef;
Value minus_one;
ppl_subtract_Linear_Expression_from_Linear_Expression (c,
tmp_expr);
ppl_delete_Linear_Expression (tmp_expr);
value_init (minus_one);
value_set_si (minus_one, -1);
ppl_new_Coefficient_from_mpz_t (&coef, minus_one);
ppl_Linear_Expression_add_to_inhomogeneous (c, coef);
value_clear (minus_one);
ppl_delete_Coefficient (coef);
}
break;
}
case SSA_NAME:
{
ppl_dimension_type p = parameter_index_in_region (e, s);
if (c)
{
ppl_dimension_type dim;
ppl_Linear_Expression_space_dimension (c, &dim);
p += dim - sese_nb_params (s);
add_value_to_dim (p, c, k);
}
break;
}
case INTEGER_CST:
if (c)
scan_tree_for_params_int (e, c, k);
break;
CASE_CONVERT:
case NON_LVALUE_EXPR:
scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
break;
default:
gcc_unreachable ();
break;
}
}
/* Find parameters with respect to REGION in BB. We are looking in memory
access functions, conditions and loop bounds. */
static void
find_params_in_bb (sese region, gimple_bb_p gbb)
{
int i;
unsigned j;
data_reference_p dr;
gimple stmt;
loop_p loop = GBB_BB (gbb)->loop_father;
Value one;
value_init (one);
value_set_si (one, 1);
/* Find parameters in the access functions of data references. */
for (i = 0; VEC_iterate (data_reference_p, GBB_DATA_REFS (gbb), i, dr); i++)
for (j = 0; j < DR_NUM_DIMENSIONS (dr); j++)
scan_tree_for_params (region, DR_ACCESS_FN (dr, j), NULL, one);
/* Find parameters in conditional statements. */
for (i = 0; VEC_iterate (gimple, GBB_CONDITIONS (gbb), i, stmt); i++)
{
tree lhs = scalar_evolution_in_region (region, loop,
gimple_cond_lhs (stmt));
tree rhs = scalar_evolution_in_region (region, loop,
gimple_cond_rhs (stmt));
scan_tree_for_params (region, lhs, NULL, one);
scan_tree_for_params (region, rhs, NULL, one);
}
value_clear (one);
}
/* Record the parameters used in the SCOP. A variable is a parameter
in a scop if it does not vary during the execution of that scop. */
static void
find_scop_parameters (scop_p scop)
{
poly_bb_p pbb;
unsigned i;
sese region = SCOP_REGION (scop);
struct loop *loop;
Value one;
value_init (one);
value_set_si (one, 1);
/* Find the parameters used in the loop bounds. */
for (i = 0; VEC_iterate (loop_p, SESE_LOOP_NEST (region), i, loop); i++)
{
tree nb_iters = number_of_latch_executions (loop);
if (!chrec_contains_symbols (nb_iters))
continue;
nb_iters = scalar_evolution_in_region (region, loop, nb_iters);
scan_tree_for_params (region, nb_iters, NULL, one);
}
value_clear (one);
/* Find the parameters used in data accesses. */
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
find_params_in_bb (region, PBB_BLACK_BOX (pbb));
scop_set_nb_params (scop, sese_nb_params (region));
SESE_ADD_PARAMS (region) = false;
ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension
(&SCOP_CONTEXT (scop), scop_nb_params (scop), 0);
}
/* Returns a gimple_bb from BB. */
static inline gimple_bb_p
gbb_from_bb (basic_block bb)
{
return (gimple_bb_p) bb->aux;
}
/* Builds the constraint polyhedra for LOOP in SCOP. OUTER_PH gives
the constraints for the surrounding loops. */
static void
build_loop_iteration_domains (scop_p scop, struct loop *loop,
ppl_Polyhedron_t outer_ph, int nb,
ppl_Pointset_Powerset_C_Polyhedron_t *domains)
{
int i;
ppl_Polyhedron_t ph;
tree nb_iters = number_of_latch_executions (loop);
ppl_dimension_type dim = nb + 1 + scop_nb_params (scop);
sese region = SCOP_REGION (scop);
{
ppl_const_Constraint_System_t pcs;
ppl_dimension_type *map
= (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, dim);
ppl_new_C_Polyhedron_from_space_dimension (&ph, dim, 0);
ppl_Polyhedron_get_constraints (outer_ph, &pcs);
ppl_Polyhedron_add_constraints (ph, pcs);
for (i = 0; i < (int) nb; i++)
map[i] = i;
for (i = (int) nb; i < (int) dim - 1; i++)
map[i] = i + 1;
map[dim - 1] = nb;
ppl_Polyhedron_map_space_dimensions (ph, map, dim);
free (map);
}
/* 0 <= loop_i */
{
ppl_Constraint_t lb;
ppl_Linear_Expression_t lb_expr;
ppl_new_Linear_Expression_with_dimension (&lb_expr, dim);
ppl_set_coef (lb_expr, nb, 1);
ppl_new_Constraint (&lb, lb_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
ppl_delete_Linear_Expression (lb_expr);
ppl_Polyhedron_add_constraint (ph, lb);
ppl_delete_Constraint (lb);
}
if (TREE_CODE (nb_iters) == INTEGER_CST)
{
ppl_Constraint_t ub;
ppl_Linear_Expression_t ub_expr;
ppl_new_Linear_Expression_with_dimension (&ub_expr, dim);
/* loop_i <= cst_nb_iters */
ppl_set_coef (ub_expr, nb, -1);
ppl_set_inhomogeneous_tree (ub_expr, nb_iters);
ppl_new_Constraint (&ub, ub_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
ppl_Polyhedron_add_constraint (ph, ub);
ppl_delete_Linear_Expression (ub_expr);
ppl_delete_Constraint (ub);
}
else if (!chrec_contains_undetermined (nb_iters))
{
Value one;
ppl_Constraint_t ub;
ppl_Linear_Expression_t ub_expr;
double_int nit;
value_init (one);
value_set_si (one, 1);
ppl_new_Linear_Expression_with_dimension (&ub_expr, dim);
nb_iters = scalar_evolution_in_region (region, loop, nb_iters);
scan_tree_for_params (SCOP_REGION (scop), nb_iters, ub_expr, one);
value_clear (one);
/* N <= estimated_nb_iters
FIXME: This is a workaround that should go away once we will
have the PIP algorithm. */
if (estimated_loop_iterations (loop, true, &nit))
{
Value val;
ppl_Linear_Expression_t nb_iters_le;
ppl_Polyhedron_t pol;
graphite_dim_t n = scop_nb_params (scop);
ppl_Coefficient_t coef;
ppl_new_C_Polyhedron_from_space_dimension (&pol, dim, 0);
ppl_new_Linear_Expression_from_Linear_Expression (&nb_iters_le,
ub_expr);
/* Construct the negated number of last iteration in VAL. */
value_init (val);
mpz_set_double_int (val, nit, false);
value_sub_int (val, val, 1);
value_oppose (val, val);
/* NB_ITERS_LE holds number of last iteration in parametrical form.
Subtract estimated number of last iteration and assert that result
is not positive. */
ppl_new_Coefficient_from_mpz_t (&coef, val);
ppl_Linear_Expression_add_to_inhomogeneous (nb_iters_le, coef);
ppl_delete_Coefficient (coef);
ppl_new_Constraint (&ub, nb_iters_le,
PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL);
ppl_Polyhedron_add_constraint (pol, ub);
/* Remove all but last N dimensions from POL to obtain constraints
on parameters. */
{
ppl_dimension_type *dims = XNEWVEC (ppl_dimension_type, dim - n);
graphite_dim_t i;
for (i = 0; i < dim - n; i++)
dims[i] = i;
ppl_Polyhedron_remove_space_dimensions (pol, dims, dim - n);
XDELETEVEC (dims);
}
/* Add constraints on parameters to SCoP context. */
{
ppl_Pointset_Powerset_C_Polyhedron_t constraints_ps;
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
(&constraints_ps, pol);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign
(SCOP_CONTEXT (scop), constraints_ps);
ppl_delete_Pointset_Powerset_C_Polyhedron (constraints_ps);
}
ppl_delete_Polyhedron (pol);
ppl_delete_Linear_Expression (nb_iters_le);
ppl_delete_Constraint (ub);
value_clear (val);
}
/* loop_i <= expr_nb_iters */
ppl_set_coef (ub_expr, nb, -1);
ppl_new_Constraint (&ub, ub_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
ppl_Polyhedron_add_constraint (ph, ub);
ppl_delete_Linear_Expression (ub_expr);
ppl_delete_Constraint (ub);
}
else
gcc_unreachable ();
if (loop->inner && loop_in_sese_p (loop->inner, region))
build_loop_iteration_domains (scop, loop->inner, ph, nb + 1, domains);
if (nb != 0
&& loop->next
&& loop_in_sese_p (loop->next, region))
build_loop_iteration_domains (scop, loop->next, outer_ph, nb, domains);
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
(&domains[loop->num], ph);
ppl_delete_Polyhedron (ph);
}
/* Returns a linear expression for tree T evaluated in PBB. */
static ppl_Linear_Expression_t
create_linear_expr_from_tree (poly_bb_p pbb, tree t)
{
Value one;
ppl_Linear_Expression_t res;
ppl_dimension_type dim;
sese region = SCOP_REGION (PBB_SCOP (pbb));
loop_p loop = pbb_loop (pbb);
dim = pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
ppl_new_Linear_Expression_with_dimension (&res, dim);
t = scalar_evolution_in_region (region, loop, t);
gcc_assert (!automatically_generated_chrec_p (t));
value_init (one);
value_set_si (one, 1);
scan_tree_for_params (region, t, res, one);
value_clear (one);
return res;
}
/* Returns the ppl constraint type from the gimple tree code CODE. */
static enum ppl_enum_Constraint_Type
ppl_constraint_type_from_tree_code (enum tree_code code)
{
switch (code)
{
/* We do not support LT and GT to be able to work with C_Polyhedron.
As we work on integer polyhedron "a < b" can be expressed by
"a + 1 <= b". */
case LT_EXPR:
case GT_EXPR:
gcc_unreachable ();
case LE_EXPR:
return PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL;
case GE_EXPR:
return PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL;
case EQ_EXPR:
return PPL_CONSTRAINT_TYPE_EQUAL;
default:
gcc_unreachable ();
}
}
/* Add conditional statement STMT to PS. It is evaluated in PBB and
CODE is used as the comparison operator. This allows us to invert the
condition or to handle inequalities. */
static void
add_condition_to_domain (ppl_Pointset_Powerset_C_Polyhedron_t ps, gimple stmt,
poly_bb_p pbb, enum tree_code code)
{
Value v;
ppl_Coefficient_t c;
ppl_Linear_Expression_t left, right;
ppl_Constraint_t cstr;
enum ppl_enum_Constraint_Type type;
left = create_linear_expr_from_tree (pbb, gimple_cond_lhs (stmt));
right = create_linear_expr_from_tree (pbb, gimple_cond_rhs (stmt));
/* If we have < or > expressions convert them to <= or >= by adding 1 to
the left or the right side of the expression. */
if (code == LT_EXPR)
{
value_init (v);
value_set_si (v, 1);
ppl_new_Coefficient (&c);
ppl_assign_Coefficient_from_mpz_t (c, v);
ppl_Linear_Expression_add_to_inhomogeneous (left, c);
ppl_delete_Coefficient (c);
value_clear (v);
code = LE_EXPR;
}
else if (code == GT_EXPR)
{
value_init (v);
value_set_si (v, 1);
ppl_new_Coefficient (&c);
ppl_assign_Coefficient_from_mpz_t (c, v);
ppl_Linear_Expression_add_to_inhomogeneous (right, c);
ppl_delete_Coefficient (c);
value_clear (v);
code = GE_EXPR;
}
type = ppl_constraint_type_from_tree_code (code);
ppl_subtract_Linear_Expression_from_Linear_Expression (left, right);
ppl_new_Constraint (&cstr, left, type);
ppl_Pointset_Powerset_C_Polyhedron_add_constraint (ps, cstr);
ppl_delete_Constraint (cstr);
ppl_delete_Linear_Expression (left);
ppl_delete_Linear_Expression (right);
}
/* Add conditional statement STMT to pbb. CODE is used as the comparision
operator. This allows us to invert the condition or to handle
inequalities. */
static void
add_condition_to_pbb (poly_bb_p pbb, gimple stmt, enum tree_code code)
{
if (code == NE_EXPR)
{
ppl_Pointset_Powerset_C_Polyhedron_t left = PBB_DOMAIN (pbb);
ppl_Pointset_Powerset_C_Polyhedron_t right;
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
(&right, left);
add_condition_to_domain (left, stmt, pbb, LT_EXPR);
add_condition_to_domain (right, stmt, pbb, GT_EXPR);
ppl_Pointset_Powerset_C_Polyhedron_upper_bound_assign (left,
right);
ppl_delete_Pointset_Powerset_C_Polyhedron (right);
}
else
add_condition_to_domain (PBB_DOMAIN (pbb), stmt, pbb, code);
}
/* Add conditions to the domain of PBB. */
static void
add_conditions_to_domain (poly_bb_p pbb)
{
unsigned int i;
gimple stmt;
gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
VEC (gimple, heap) *conditions = GBB_CONDITIONS (gbb);
if (VEC_empty (gimple, conditions))
return;
for (i = 0; VEC_iterate (gimple, conditions, i, stmt); i++)
switch (gimple_code (stmt))
{
case GIMPLE_COND:
{
enum tree_code code = gimple_cond_code (stmt);
/* The conditions for ELSE-branches are inverted. */
if (VEC_index (gimple, gbb->condition_cases, i) == NULL)
code = invert_tree_comparison (code, false);
add_condition_to_pbb (pbb, stmt, code);
break;
}
case GIMPLE_SWITCH:
/* Switch statements are not supported right now - fall throught. */
default:
gcc_unreachable ();
break;
}
}
/* Structure used to pass data to dom_walk. */
struct bsc
{
VEC (gimple, heap) **conditions, **cases;
sese region;
};
/* Returns non NULL when BB has a single predecessor and the last
statement of that predecessor is a COND_EXPR. */
static gimple
single_pred_cond (basic_block bb)
{
if (single_pred_p (bb))
{
edge e = single_pred_edge (bb);
basic_block pred = e->src;
gimple stmt = last_stmt (pred);
if (stmt && gimple_code (stmt) == GIMPLE_COND)
return stmt;
}
return NULL;
}
/* Call-back for dom_walk executed before visiting the dominated
blocks. */
static void
build_sese_conditions_before (struct dom_walk_data *dw_data,
basic_block bb)
{
struct bsc *data = (struct bsc *) dw_data->global_data;
VEC (gimple, heap) **conditions = data->conditions;
VEC (gimple, heap) **cases = data->cases;
gimple_bb_p gbb = gbb_from_bb (bb);
gimple stmt = single_pred_cond (bb);
if (!bb_in_sese_p (bb, data->region))
return;
if (stmt)
{
edge e = single_pred_edge (bb);
VEC_safe_push (gimple, heap, *conditions, stmt);
if (e->flags & EDGE_TRUE_VALUE)
VEC_safe_push (gimple, heap, *cases, stmt);
else
VEC_safe_push (gimple, heap, *cases, NULL);
}
if (gbb)
{
GBB_CONDITIONS (gbb) = VEC_copy (gimple, heap, *conditions);
GBB_CONDITION_CASES (gbb) = VEC_copy (gimple, heap, *cases);
}
}
/* Call-back for dom_walk executed after visiting the dominated
blocks. */
static void
build_sese_conditions_after (struct dom_walk_data *dw_data,
basic_block bb)
{
struct bsc *data = (struct bsc *) dw_data->global_data;
VEC (gimple, heap) **conditions = data->conditions;
VEC (gimple, heap) **cases = data->cases;
if (!bb_in_sese_p (bb, data->region))
return;
if (single_pred_cond (bb))
{
VEC_pop (gimple, *conditions);
VEC_pop (gimple, *cases);
}
}
/* Record all conditions in REGION. */
static void
build_sese_conditions (sese region)
{
struct dom_walk_data walk_data;
VEC (gimple, heap) *conditions = VEC_alloc (gimple, heap, 3);
VEC (gimple, heap) *cases = VEC_alloc (gimple, heap, 3);
struct bsc data;
data.conditions = &conditions;
data.cases = &cases;
data.region = region;
walk_data.dom_direction = CDI_DOMINATORS;
walk_data.initialize_block_local_data = NULL;
walk_data.before_dom_children = build_sese_conditions_before;
walk_data.after_dom_children = build_sese_conditions_after;
walk_data.global_data = &data;
walk_data.block_local_data_size = 0;
init_walk_dominator_tree (&walk_data);
walk_dominator_tree (&walk_data, SESE_ENTRY_BB (region));
fini_walk_dominator_tree (&walk_data);
VEC_free (gimple, heap, conditions);
VEC_free (gimple, heap, cases);
}
/* Traverses all the GBBs of the SCOP and add their constraints to the
iteration domains. */
static void
add_conditions_to_constraints (scop_p scop)
{
int i;
poly_bb_p pbb;
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
add_conditions_to_domain (pbb);
}
/* Add constraints on the possible values of parameter P from the type
of P. */
static void
add_param_constraints (scop_p scop, ppl_Polyhedron_t context, graphite_dim_t p)
{
ppl_Constraint_t cstr;
ppl_Linear_Expression_t le;
tree parameter = VEC_index (tree, SESE_PARAMS (SCOP_REGION (scop)), p);
tree type = TREE_TYPE (parameter);
tree lb, ub;
/* Disabled until we fix CPU2006. */
return;
if (!INTEGRAL_TYPE_P (type))
return;
lb = TYPE_MIN_VALUE (type);
ub = TYPE_MAX_VALUE (type);
if (lb)
{
ppl_new_Linear_Expression_with_dimension (&le, scop_nb_params (scop));
ppl_set_coef (le, p, -1);
ppl_set_inhomogeneous_tree (le, lb);
ppl_new_Constraint (&cstr, le, PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL);
ppl_Polyhedron_add_constraint (context, cstr);
ppl_delete_Linear_Expression (le);
ppl_delete_Constraint (cstr);
}
if (ub)
{
ppl_new_Linear_Expression_with_dimension (&le, scop_nb_params (scop));
ppl_set_coef (le, p, -1);
ppl_set_inhomogeneous_tree (le, ub);
ppl_new_Constraint (&cstr, le, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
ppl_Polyhedron_add_constraint (context, cstr);
ppl_delete_Linear_Expression (le);
ppl_delete_Constraint (cstr);
}
}
/* Build the context of the SCOP. The context usually contains extra
constraints that are added to the iteration domains that constrain
some parameters. */
static void
build_scop_context (scop_p scop)
{
ppl_Polyhedron_t context;
ppl_Pointset_Powerset_C_Polyhedron_t ps;
graphite_dim_t p, n = scop_nb_params (scop);
ppl_new_C_Polyhedron_from_space_dimension (&context, n, 0);
for (p = 0; p < n; p++)
add_param_constraints (scop, context, p);
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
(&ps, context);
ppl_Pointset_Powerset_C_Polyhedron_intersection_assign
(SCOP_CONTEXT (scop), ps);
ppl_delete_Pointset_Powerset_C_Polyhedron (ps);
ppl_delete_Polyhedron (context);
}
/* Build the iteration domains: the loops belonging to the current
SCOP, and that vary for the execution of the current basic block.
Returns false if there is no loop in SCOP. */
static void
build_scop_iteration_domain (scop_p scop)
{
struct loop *loop;
sese region = SCOP_REGION (scop);
int i;
ppl_Polyhedron_t ph;
poly_bb_p pbb;
int nb_loops = number_of_loops ();
ppl_Pointset_Powerset_C_Polyhedron_t *domains
= XNEWVEC (ppl_Pointset_Powerset_C_Polyhedron_t, nb_loops);
for (i = 0; i < nb_loops; i++)
domains[i] = NULL;
ppl_new_C_Polyhedron_from_space_dimension (&ph, scop_nb_params (scop), 0);
for (i = 0; VEC_iterate (loop_p, SESE_LOOP_NEST (region), i, loop); i++)
if (!loop_in_sese_p (loop_outer (loop), region))
build_loop_iteration_domains (scop, loop, ph, 0, domains);
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
if (domains[gbb_loop (PBB_BLACK_BOX (pbb))->num])
ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
(&PBB_DOMAIN (pbb), (ppl_const_Pointset_Powerset_C_Polyhedron_t)
domains[gbb_loop (PBB_BLACK_BOX (pbb))->num]);
else
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
(&PBB_DOMAIN (pbb), ph);
for (i = 0; i < nb_loops; i++)
if (domains[i])
ppl_delete_Pointset_Powerset_C_Polyhedron (domains[i]);
ppl_delete_Polyhedron (ph);
free (domains);
}
/* Add a constrain to the ACCESSES polyhedron for the alias set of
data reference DR. ACCESSP_NB_DIMS is the dimension of the
ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
domain. */
static void
pdr_add_alias_set (ppl_Polyhedron_t accesses, data_reference_p dr,
ppl_dimension_type accessp_nb_dims,
ppl_dimension_type dom_nb_dims)
{
ppl_Linear_Expression_t alias;
ppl_Constraint_t cstr;
int alias_set_num = 0;
base_alias_pair *bap = (base_alias_pair *)(dr->aux);
if (bap && bap->alias_set)
alias_set_num = *(bap->alias_set);
ppl_new_Linear_Expression_with_dimension (&alias, accessp_nb_dims);
ppl_set_coef (alias, dom_nb_dims, 1);
ppl_set_inhomogeneous (alias, -alias_set_num);
ppl_new_Constraint (&cstr, alias, PPL_CONSTRAINT_TYPE_EQUAL);
ppl_Polyhedron_add_constraint (accesses, cstr);
ppl_delete_Linear_Expression (alias);
ppl_delete_Constraint (cstr);
}
/* Add to ACCESSES polyhedron equalities defining the access functions
to the memory. ACCESSP_NB_DIMS is the dimension of the ACCESSES
polyhedron, DOM_NB_DIMS is the dimension of the iteration domain.
PBB is the poly_bb_p that contains the data reference DR. */
static void
pdr_add_memory_accesses (ppl_Polyhedron_t accesses, data_reference_p dr,
ppl_dimension_type accessp_nb_dims,
ppl_dimension_type dom_nb_dims,
poly_bb_p pbb)
{
int i, nb_subscripts = DR_NUM_DIMENSIONS (dr);
Value v;
scop_p scop = PBB_SCOP (pbb);
sese region = SCOP_REGION (scop);
value_init (v);
for (i = 0; i < nb_subscripts; i++)
{
ppl_Linear_Expression_t fn, access;
ppl_Constraint_t cstr;
ppl_dimension_type subscript = dom_nb_dims + 1 + i;
tree afn = DR_ACCESS_FN (dr, nb_subscripts - 1 - i);
ppl_new_Linear_Expression_with_dimension (&fn, dom_nb_dims);
ppl_new_Linear_Expression_with_dimension (&access, accessp_nb_dims);
value_set_si (v, 1);
scan_tree_for_params (region, afn, fn, v);
ppl_assign_Linear_Expression_from_Linear_Expression (access, fn);
ppl_set_coef (access, subscript, -1);
ppl_new_Constraint (&cstr, access, PPL_CONSTRAINT_TYPE_EQUAL);
ppl_Polyhedron_add_constraint (accesses, cstr);
ppl_delete_Linear_Expression (fn);
ppl_delete_Linear_Expression (access);
ppl_delete_Constraint (cstr);
}
value_clear (v);
}
/* Add constrains representing the size of the accessed data to the
ACCESSES polyhedron. ACCESSP_NB_DIMS is the dimension of the
ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
domain. */
static void
pdr_add_data_dimensions (ppl_Polyhedron_t accesses, data_reference_p dr,
ppl_dimension_type accessp_nb_dims,
ppl_dimension_type dom_nb_dims)
{
tree ref = DR_REF (dr);
int i, nb_subscripts = DR_NUM_DIMENSIONS (dr);
for (i = nb_subscripts - 1; i >= 0; i--, ref = TREE_OPERAND (ref, 0))
{
ppl_Linear_Expression_t expr;
ppl_Constraint_t cstr;
ppl_dimension_type subscript = dom_nb_dims + 1 + i;
tree low, high;
if (TREE_CODE (ref) != ARRAY_REF)
break;
low = array_ref_low_bound (ref);
/* subscript - low >= 0 */
if (host_integerp (low, 0))
{
ppl_new_Linear_Expression_with_dimension (&expr, accessp_nb_dims);
ppl_set_coef (expr, subscript, 1);
ppl_set_inhomogeneous (expr, -int_cst_value (low));
ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
ppl_Polyhedron_add_constraint (accesses, cstr);
ppl_delete_Linear_Expression (expr);
ppl_delete_Constraint (cstr);
}
high = array_ref_up_bound (ref);
/* high - subscript >= 0 */
if (high && host_integerp (high, 0)
/* 1-element arrays at end of structures may extend over
their declared size. */
&& !(array_at_struct_end_p (ref)
&& operand_equal_p (low, high, 0)))
{
ppl_new_Linear_Expression_with_dimension (&expr, accessp_nb_dims);
ppl_set_coef (expr, subscript, -1);
ppl_set_inhomogeneous (expr, int_cst_value (high));
ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
ppl_Polyhedron_add_constraint (accesses, cstr);
ppl_delete_Linear_Expression (expr);
ppl_delete_Constraint (cstr);
}
}
}
/* Build data accesses for DR in PBB. */
static void
build_poly_dr (data_reference_p dr, poly_bb_p pbb)
{
ppl_Polyhedron_t accesses;
ppl_Pointset_Powerset_C_Polyhedron_t accesses_ps;
ppl_dimension_type dom_nb_dims;
ppl_dimension_type accessp_nb_dims;
int dr_base_object_set;
ppl_Pointset_Powerset_C_Polyhedron_space_dimension (PBB_DOMAIN (pbb),
&dom_nb_dims);
accessp_nb_dims = dom_nb_dims + 1 + DR_NUM_DIMENSIONS (dr);
ppl_new_C_Polyhedron_from_space_dimension (&accesses, accessp_nb_dims, 0);
pdr_add_alias_set (accesses, dr, accessp_nb_dims, dom_nb_dims);
pdr_add_memory_accesses (accesses, dr, accessp_nb_dims, dom_nb_dims, pbb);
pdr_add_data_dimensions (accesses, dr, accessp_nb_dims, dom_nb_dims);
ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&accesses_ps,
accesses);
ppl_delete_Polyhedron (accesses);
if (dr->aux)
dr_base_object_set = ((base_alias_pair *)(dr->aux))->base_obj_set;
new_poly_dr (pbb, dr_base_object_set, accesses_ps, DR_IS_READ (dr) ? PDR_READ : PDR_WRITE,
dr, DR_NUM_DIMENSIONS (dr));
}
/* Write to FILE the alias graph of data references in DIMACS format. */
static inline bool
write_alias_graph_to_ascii_dimacs (FILE *file, char *comment,
VEC (data_reference_p, heap) *drs)
{
int num_vertex = VEC_length (data_reference_p, drs);
int edge_num = 0;
data_reference_p dr1, dr2;
int i, j;
if (num_vertex == 0)
return true;
for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
if (dr_may_alias_p (dr1, dr2))
edge_num++;
fprintf (file, "$\n");
if (comment)
fprintf (file, "c %s\n", comment);
fprintf (file, "p edge %d %d\n", num_vertex, edge_num);
for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
if (dr_may_alias_p (dr1, dr2))
fprintf (file, "e %d %d\n", i + 1, j + 1);
return true;
}
/* Write to FILE the alias graph of data references in DOT format. */
static inline bool
write_alias_graph_to_ascii_dot (FILE *file, char *comment,
VEC (data_reference_p, heap) *drs)
{
int num_vertex = VEC_length (data_reference_p, drs);
data_reference_p dr1, dr2;
int i, j;
if (num_vertex == 0)
return true;
fprintf (file, "$\n");
if (comment)
fprintf (file, "c %s\n", comment);
/* First print all the vertices. */
for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
fprintf (file, "n%d;\n", i);
for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
if (dr_may_alias_p (dr1, dr2))
fprintf (file, "n%d n%d\n", i, j);
return true;
}
/* Write to FILE the alias graph of data references in ECC format. */
static inline bool
write_alias_graph_to_ascii_ecc (FILE *file, char *comment,
VEC (data_reference_p, heap) *drs)
{
int num_vertex = VEC_length (data_reference_p, drs);
data_reference_p dr1, dr2;
int i, j;
if (num_vertex == 0)
return true;
fprintf (file, "$\n");
if (comment)
fprintf (file, "c %s\n", comment);
for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
if (dr_may_alias_p (dr1, dr2))
fprintf (file, "%d %d\n", i, j);
return true;
}
/* Check if DR1 and DR2 are in the same object set. */
static bool
dr_same_base_object_p (const struct data_reference *dr1,
const struct data_reference *dr2)
{
return operand_equal_p (DR_BASE_OBJECT (dr1), DR_BASE_OBJECT (dr2), 0);
}
/* Uses DFS component number as representative of alias-sets. Also tests for
optimality by verifying if every connected component is a clique. Returns
true (1) if the above test is true, and false (0) otherwise. */
static int
build_alias_set_optimal_p (VEC (data_reference_p, heap) *drs)
{
int num_vertices = VEC_length (data_reference_p, drs);
struct graph *g = new_graph (num_vertices);
data_reference_p dr1, dr2;
int i, j;
int num_connected_components;
int v_indx1, v_indx2, num_vertices_in_component;
int *all_vertices;
int *vertices;
struct graph_edge *e;
int this_component_is_clique;
int all_components_are_cliques = 1;
for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
for (j = i+1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
if (dr_may_alias_p (dr1, dr2))
{
add_edge (g, i, j);
add_edge (g, j, i);
}
all_vertices = XNEWVEC (int, num_vertices);
vertices = XNEWVEC (int, num_vertices);
for (i = 0; i < num_vertices; i++)
all_vertices[i] = i;
num_connected_components = graphds_dfs (g, all_vertices, num_vertices,
NULL, true, NULL);
for (i = 0; i < g->n_vertices; i++)
{
data_reference_p dr = VEC_index (data_reference_p, drs, i);
base_alias_pair *bap;
if (dr->aux)
bap = (base_alias_pair *)(dr->aux);
bap->alias_set = XNEW (int);
*(bap->alias_set) = g->vertices[i].component + 1;
}
/* Verify if the DFS numbering results in optimal solution. */
for (i = 0; i < num_connected_components; i++)
{
num_vertices_in_component = 0;
/* Get all vertices whose DFS component number is the same as i. */
for (j = 0; j < num_vertices; j++)
if (g->vertices[j].component == i)
vertices[num_vertices_in_component++] = j;
/* Now test if the vertices in 'vertices' form a clique, by testing
for edges among each pair. */
this_component_is_clique = 1;
for (v_indx1 = 0; v_indx1 < num_vertices_in_component; v_indx1++)
{
for (v_indx2 = v_indx1+1; v_indx2 < num_vertices_in_component; v_indx2++)
{
/* Check if the two vertices are connected by iterating
through all the edges which have one of these are source. */
e = g->vertices[vertices[v_indx2]].pred;
while (e)
{
if (e->src == vertices[v_indx1])
break;
e = e->pred_next;
}
if (!e)
{
this_component_is_clique = 0;
break;
}
}
if (!this_component_is_clique)
all_components_are_cliques = 0;
}
}
free (all_vertices);
free (vertices);
free_graph (g);
return all_components_are_cliques;
}
/* Group each data reference in DRS with it's base object set num. */
static void
build_base_obj_set_for_drs (VEC (data_reference_p, heap) *drs)
{
int num_vertex = VEC_length (data_reference_p, drs);
struct graph *g = new_graph (num_vertex);
data_reference_p dr1, dr2;
int i, j;
int *queue;
for (i = 0; VEC_iterate (data_reference_p, drs, i, dr1); i++)
for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
if (dr_same_base_object_p (dr1, dr2))
{
add_edge (g, i, j);
add_edge (g, j, i);
}
queue = XNEWVEC (int, num_vertex);
for (i = 0; i < num_vertex; i++)
queue[i] = i;
graphds_dfs (g, queue, num_vertex, NULL, true, NULL);
for (i = 0; i < g->n_vertices; i++)
{
data_reference_p dr = VEC_index (data_reference_p, drs, i);
base_alias_pair *bap;
if (dr->aux)
bap = (base_alias_pair *)(dr->aux);
bap->base_obj_set = g->vertices[i].component + 1;
}
free (queue);
free_graph (g);
}
/* Build the data references for PBB. */
static void
build_pbb_drs (poly_bb_p pbb)
{
int j;
data_reference_p dr;
VEC (data_reference_p, heap) *gbb_drs = GBB_DATA_REFS (PBB_BLACK_BOX (pbb));
for (j = 0; VEC_iterate (data_reference_p, gbb_drs, j, dr); j++)
build_poly_dr (dr, pbb);
}
/* Dump to file the alias graphs for the data references in DRS. */
static void
dump_alias_graphs (VEC (data_reference_p, heap) *drs)
{
char comment[100];
FILE *file_dimacs, *file_ecc, *file_dot;
file_dimacs = fopen ("/tmp/dr_alias_graph_dimacs", "ab");
if (file_dimacs)
{
snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
current_function_name ());
write_alias_graph_to_ascii_dimacs (file_dimacs, comment, drs);
fclose (file_dimacs);
}
file_ecc = fopen ("/tmp/dr_alias_graph_ecc", "ab");
if (file_ecc)
{
snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
current_function_name ());
write_alias_graph_to_ascii_ecc (file_ecc, comment, drs);
fclose (file_ecc);
}
file_dot = fopen ("/tmp/dr_alias_graph_dot", "ab");
if (file_dot)
{
snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
current_function_name ());
write_alias_graph_to_ascii_dot (file_dot, comment, drs);
fclose (file_dot);
}
}
/* Build data references in SCOP. */
static void
build_scop_drs (scop_p scop)
{
int i, j;
poly_bb_p pbb;
data_reference_p dr;
VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 3);
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
for (j = 0; VEC_iterate (data_reference_p,
GBB_DATA_REFS (PBB_BLACK_BOX (pbb)), j, dr); j++)
VEC_safe_push (data_reference_p, heap, drs, dr);
for (i = 0; VEC_iterate (data_reference_p, drs, i, dr); i++)
dr->aux = XNEW (base_alias_pair);
if (!build_alias_set_optimal_p (drs))
{
/* TODO: Add support when building alias set is not optimal. */
;
}
build_base_obj_set_for_drs (drs);
/* When debugging, enable the following code. This cannot be used
in production compilers. */
if (0)
dump_alias_graphs (drs);
VEC_free (data_reference_p, heap, drs);
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
build_pbb_drs (pbb);
}
/* Return a gsi at the position of the phi node STMT. */
static gimple_stmt_iterator
gsi_for_phi_node (gimple stmt)
{
gimple_stmt_iterator psi;
basic_block bb = gimple_bb (stmt);
for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
if (stmt == gsi_stmt (psi))
return psi;
gcc_unreachable ();
return psi;
}
/* Insert the assignment "RES := VAR" just after the definition of VAR. */
static void
insert_out_of_ssa_copy (tree res, tree var)
{
gimple stmt;
gimple_seq stmts;
gimple_stmt_iterator si;
gimple_stmt_iterator gsi;
var = force_gimple_operand (var, &stmts, true, NULL_TREE);
stmt = gimple_build_assign (res, var);
if (!stmts)
stmts = gimple_seq_alloc ();
si = gsi_last (stmts);
gsi_insert_after (&si, stmt, GSI_NEW_STMT);
stmt = SSA_NAME_DEF_STMT (var);
if (gimple_code (stmt) == GIMPLE_PHI)
{
gsi = gsi_after_labels (gimple_bb (stmt));
gsi_insert_seq_before (&gsi, stmts, GSI_NEW_STMT);
}
else
{
gsi = gsi_for_stmt (stmt);
gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
}
}
/* Insert on edge E the assignment "RES := EXPR". */
static void
insert_out_of_ssa_copy_on_edge (edge e, tree res, tree expr)
{
gimple_stmt_iterator gsi;
gimple_seq stmts;
tree var = force_gimple_operand (expr, &stmts, true, NULL_TREE);
gimple stmt = gimple_build_assign (res, var);
if (!stmts)
stmts = gimple_seq_alloc ();
gsi = gsi_last (stmts);
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
gsi_insert_seq_on_edge (e, stmts);
gsi_commit_edge_inserts ();
}
/* Creates a zero dimension array of the same type as VAR. */
static tree
create_zero_dim_array (tree var, const char *base_name)
{
tree index_type = build_index_type (integer_zero_node);
tree elt_type = TREE_TYPE (var);
tree array_type = build_array_type (elt_type, index_type);
tree base = create_tmp_var (array_type, base_name);
add_referenced_var (base);
return build4 (ARRAY_REF, elt_type, base, integer_zero_node, NULL_TREE,
NULL_TREE);
}
/* Returns true when PHI is a loop close phi node. */
static bool
scalar_close_phi_node_p (gimple phi)
{
if (gimple_code (phi) != GIMPLE_PHI
|| !is_gimple_reg (gimple_phi_result (phi)))
return false;
return (gimple_phi_num_args (phi) == 1);
}
/* Rewrite out of SSA the reduction phi node at PSI by creating a zero
dimension array for it. */
static void
rewrite_close_phi_out_of_ssa (gimple_stmt_iterator *psi)
{
gimple phi = gsi_stmt (*psi);
tree res = gimple_phi_result (phi);
tree var = SSA_NAME_VAR (res);
tree zero_dim_array = create_zero_dim_array (var, "Close_Phi");
gimple_stmt_iterator gsi = gsi_after_labels (gimple_bb (phi));
gimple stmt = gimple_build_assign (res, zero_dim_array);
tree arg = gimple_phi_arg_def (phi, 0);
if (TREE_CODE (arg) == SSA_NAME)
insert_out_of_ssa_copy (zero_dim_array, arg);
else
insert_out_of_ssa_copy_on_edge (single_pred_edge (gimple_bb (phi)),
zero_dim_array, arg);
remove_phi_node (psi, false);
gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
SSA_NAME_DEF_STMT (res) = stmt;
}
/* Rewrite out of SSA the reduction phi node at PSI by creating a zero
dimension array for it. */
static void
rewrite_phi_out_of_ssa (gimple_stmt_iterator *psi)
{
size_t i;
gimple phi = gsi_stmt (*psi);
basic_block bb = gimple_bb (phi);
tree res = gimple_phi_result (phi);
tree var = SSA_NAME_VAR (res);
tree zero_dim_array = create_zero_dim_array (var, "General_Reduction");
gimple_stmt_iterator gsi;
gimple stmt;
gimple_seq stmts;
for (i = 0; i < gimple_phi_num_args (phi); i++)
{
tree arg = gimple_phi_arg_def (phi, i);
/* Try to avoid the insertion on edges as much as possible: this
would avoid the insertion of code on loop latch edges, making
the pattern matching of the vectorizer happy, or it would
avoid the insertion of useless basic blocks. Note that it is
incorrect to insert out of SSA copies close by their
definition when they are more than two loop levels apart:
for example, starting from a double nested loop
| a = ...
| loop_1
| loop_2
| b = phi (a, c)
| c = ...
| end_2
| end_1
the following transform is incorrect
| a = ...
| Red[0] = a
| loop_1
| loop_2
| b = Red[0]
| c = ...
| Red[0] = c
| end_2
| end_1
whereas inserting the copy on the incomming edge is correct
| a = ...
| loop_1
| Red[0] = a
| loop_2
| b = Red[0]
| c = ...
| Red[0] = c
| end_2
| end_1
*/
if (TREE_CODE (arg) == SSA_NAME
&& is_gimple_reg (arg)
&& gimple_bb (SSA_NAME_DEF_STMT (arg))
&& (flow_bb_inside_loop_p (bb->loop_father,
gimple_bb (SSA_NAME_DEF_STMT (arg)))
|| flow_bb_inside_loop_p (loop_outer (bb->loop_father),
gimple_bb (SSA_NAME_DEF_STMT (arg)))))
insert_out_of_ssa_copy (zero_dim_array, arg);
else
insert_out_of_ssa_copy_on_edge (gimple_phi_arg_edge (phi, i),
zero_dim_array, arg);
}
var = force_gimple_operand (zero_dim_array, &stmts, true, NULL_TREE);
if (!stmts)
stmts = gimple_seq_alloc ();
stmt = gimple_build_assign (res, var);
remove_phi_node (psi, false);
SSA_NAME_DEF_STMT (res) = stmt;
gsi = gsi_last (stmts);
gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
gsi = gsi_after_labels (bb);
gsi_insert_seq_before (&gsi, stmts, GSI_NEW_STMT);
}
/* Return true when DEF can be analyzed in REGION by the scalar
evolution analyzer. */
static bool
scev_analyzable_p (tree def, sese region)
{
gimple stmt = SSA_NAME_DEF_STMT (def);
loop_p loop = loop_containing_stmt (stmt);
tree scev = scalar_evolution_in_region (region, loop, def);
return !chrec_contains_undetermined (scev);
}
/* Rewrite the scalar dependence of DEF used in USE_STMT with a memory
read from ZERO_DIM_ARRAY. */
static void
rewrite_cross_bb_scalar_dependence (tree zero_dim_array, tree def, gimple use_stmt)
{
tree var = SSA_NAME_VAR (def);
gimple name_stmt = gimple_build_assign (var, zero_dim_array);
tree name = make_ssa_name (var, name_stmt);
ssa_op_iter iter;
use_operand_p use_p;
gimple_stmt_iterator gsi;
gcc_assert (gimple_code (use_stmt) != GIMPLE_PHI);
gimple_assign_set_lhs (name_stmt, name);
gsi = gsi_for_stmt (use_stmt);
gsi_insert_before (&gsi, name_stmt, GSI_NEW_STMT);
FOR_EACH_SSA_USE_OPERAND (use_p, use_stmt, iter, SSA_OP_ALL_USES)
if (operand_equal_p (def, USE_FROM_PTR (use_p), 0))
replace_exp (use_p, name);
update_stmt (use_stmt);
}
/* Rewrite the scalar dependences crossing the boundary of the BB
containing STMT with an array. */
static void
rewrite_cross_bb_scalar_deps (sese region, gimple_stmt_iterator *gsi)
{
gimple stmt = gsi_stmt (*gsi);
imm_use_iterator imm_iter;
tree def;
basic_block def_bb;
tree zero_dim_array = NULL_TREE;
gimple use_stmt;
if (gimple_code (stmt) != GIMPLE_ASSIGN)
return;
def = gimple_assign_lhs (stmt);
if (!is_gimple_reg (def)
|| scev_analyzable_p (def, region))
return;
def_bb = gimple_bb (stmt);
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
if (def_bb != gimple_bb (use_stmt)
&& gimple_code (use_stmt) != GIMPLE_PHI)
{
if (!zero_dim_array)
{
zero_dim_array = create_zero_dim_array
(SSA_NAME_VAR (def), "Cross_BB_scalar_dependence");
insert_out_of_ssa_copy (zero_dim_array, def);
gsi_next (gsi);
}
rewrite_cross_bb_scalar_dependence (zero_dim_array, def, use_stmt);
}
}
/* Rewrite out of SSA all the reduction phi nodes of SCOP. */
static void
rewrite_reductions_out_of_ssa (scop_p scop)
{
basic_block bb;
gimple_stmt_iterator psi;
sese region = SCOP_REGION (scop);
FOR_EACH_BB (bb)
if (bb_in_sese_p (bb, region))
for (psi = gsi_start_phis (bb); !gsi_end_p (psi);)
{
if (scalar_close_phi_node_p (gsi_stmt (psi)))
rewrite_close_phi_out_of_ssa (&psi);
else if (reduction_phi_p (region, &psi))
rewrite_phi_out_of_ssa (&psi);
}
update_ssa (TODO_update_ssa);
#ifdef ENABLE_CHECKING
verify_ssa (false);
verify_loop_closed_ssa ();
#endif
FOR_EACH_BB (bb)
if (bb_in_sese_p (bb, region))
for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
rewrite_cross_bb_scalar_deps (region, &psi);
update_ssa (TODO_update_ssa);
#ifdef ENABLE_CHECKING
verify_ssa (false);
verify_loop_closed_ssa ();
#endif
}
/* Returns the number of pbbs that are in loops contained in SCOP. */
static int
nb_pbbs_in_loops (scop_p scop)
{
int i;
poly_bb_p pbb;
int res = 0;
for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
if (loop_in_sese_p (gbb_loop (PBB_BLACK_BOX (pbb)), SCOP_REGION (scop)))
res++;
return res;
}
/* Return the number of data references in BB that write in
memory. */
static int
nb_data_writes_in_bb (basic_block bb)
{
int res = 0;
gimple_stmt_iterator gsi;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
if (gimple_vdef (gsi_stmt (gsi)))
res++;
return res;
}
/* Splits STMT out of its current BB. */
static basic_block
split_reduction_stmt (gimple stmt)
{
gimple_stmt_iterator gsi;
basic_block bb = gimple_bb (stmt);
edge e;
/* Do not split basic blocks with no writes to memory: the reduction
will be the only write to memory. */
if (nb_data_writes_in_bb (bb) == 0)
return bb;
split_block (bb, stmt);
gsi = gsi_last_bb (bb);
gsi_prev (&gsi);
e = split_block (bb, gsi_stmt (gsi));
return e->dest;
}
/* Return true when stmt is a reduction operation. */
static inline bool
is_reduction_operation_p (gimple stmt)
{
enum tree_code code;
gcc_assert (is_gimple_assign (stmt));
code = gimple_assign_rhs_code (stmt);
return flag_associative_math
&& commutative_tree_code (code)
&& associative_tree_code (code);
}
/* Returns true when PHI contains an argument ARG. */
static bool
phi_contains_arg (gimple phi, tree arg)
{
size_t i;
for (i = 0; i < gimple_phi_num_args (phi); i++)
if (operand_equal_p (arg, gimple_phi_arg_def (phi, i), 0))
return true;
return false;
}
/* Return a loop phi node that corresponds to a reduction containing LHS. */
static gimple
follow_ssa_with_commutative_ops (tree arg, tree lhs)
{
gimple stmt;
if (TREE_CODE (arg) != SSA_NAME)
return NULL;
stmt = SSA_NAME_DEF_STMT (arg);
if (gimple_code (stmt) == GIMPLE_NOP)
return NULL;
if (gimple_code (stmt) == GIMPLE_PHI)
{
if (phi_contains_arg (stmt, lhs))
return stmt;
return NULL;
}
if (!is_gimple_assign (stmt))
return NULL;
if (gimple_num_ops (stmt) == 2)
return follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt), lhs);
if (is_reduction_operation_p (stmt))
{
gimple res = follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt), lhs);
return res ? res :
follow_ssa_with_commutative_ops (gimple_assign_rhs2 (stmt), lhs);
}
return NULL;
}
/* Detect commutative and associative scalar reductions starting at
the STMT. Return the phi node of the reduction cycle, or NULL. */
static gimple
detect_commutative_reduction_arg (tree lhs, gimple stmt, tree arg,
VEC (gimple, heap) **in,
VEC (gimple, heap) **out)
{
gimple phi = follow_ssa_with_commutative_ops (arg, lhs);
if (!phi)
return NULL;
VEC_safe_push (gimple, heap, *in, stmt);
VEC_safe_push (gimple, heap, *out, stmt);
return phi;
}
/* Detect commutative and associative scalar reductions starting at
the STMT. Return the phi node of the reduction cycle, or NULL. */
static gimple
detect_commutative_reduction_assign (gimple stmt, VEC (gimple, heap) **in,
VEC (gimple, heap) **out)
{
tree lhs = gimple_assign_lhs (stmt);
if (gimple_num_ops (stmt) == 2)
return detect_commutative_reduction_arg (lhs, stmt,
gimple_assign_rhs1 (stmt),
in, out);
if (is_reduction_operation_p (stmt))
{
gimple res = detect_commutative_reduction_arg (lhs, stmt,
gimple_assign_rhs1 (stmt),
in, out);
return res ? res
: detect_commutative_reduction_arg (lhs, stmt,
gimple_assign_rhs2 (stmt),
in, out);
}
return NULL;
}
/* Return a loop phi node that corresponds to a reduction containing LHS. */
static gimple
follow_inital_value_to_phi (tree arg, tree lhs)
{
gimple stmt;
if (!arg || TREE_CODE (arg) != SSA_NAME)
return NULL;
stmt = SSA_NAME_DEF_STMT (arg);
if (gimple_code (stmt) == GIMPLE_PHI
&& phi_contains_arg (stmt, lhs))
return stmt;
return NULL;
}
/* Return the argument of the loop PHI that is the inital value coming
from outside the loop. */
static edge
edge_initial_value_for_loop_phi (gimple phi)
{
size_t i;
for (i = 0; i < gimple_phi_num_args (phi); i++)
{
edge e = gimple_phi_arg_edge (phi, i);
if (loop_depth (e->src->loop_father)
< loop_depth (e->dest->loop_father))
return e;
}
return NULL;
}
/* Return the argument of the loop PHI that is the inital value coming
from outside the loop. */
static tree
initial_value_for_loop_phi (gimple phi)
{
size_t i;
for (i = 0; i < gimple_phi_num_args (phi); i++)
{
edge e = gimple_phi_arg_edge (phi, i);
if (loop_depth (e->src->loop_father)
< loop_depth (e->dest->loop_father))
return gimple_phi_arg_def (phi, i);
}
return NULL_TREE;
}
/* Detect commutative and associative scalar reductions starting at
the loop closed phi node CLOSE_PHI. Return the phi node of the
reduction cycle, or NULL. */
static gimple
detect_commutative_reduction (gimple stmt, VEC (gimple, heap) **in,
VEC (gimple, heap) **out)
{
if (scalar_close_phi_node_p (stmt))
{
tree arg = gimple_phi_arg_def (stmt, 0);
gimple def, loop_phi;
if (TREE_CODE (arg) != SSA_NAME)
return NULL;
def = SSA_NAME_DEF_STMT (arg);
loop_phi = detect_commutative_reduction (def, in, out);
if (loop_phi)
{
tree lhs = gimple_phi_result (stmt);
tree init = initial_value_for_loop_phi (loop_phi);
gimple phi = follow_inital_value_to_phi (init, lhs);
VEC_safe_push (gimple, heap, *in, loop_phi);
VEC_safe_push (gimple, heap, *out, stmt);
return phi;
}
else
return NULL;
}
if (gimple_code (stmt) == GIMPLE_ASSIGN)
return detect_commutative_reduction_assign (stmt, in, out);
return NULL;
}
/* Translate the scalar reduction statement STMT to an array RED
knowing that its recursive phi node is LOOP_PHI. */
static void
translate_scalar_reduction_to_array_for_stmt (tree red, gimple stmt,
gimple loop_phi)
{
gimple_stmt_iterator insert_gsi = gsi_after_labels (gimple_bb (loop_phi));
tree res = gimple_phi_result (loop_phi);
gimple assign = gimple_build_assign (res, red);
gsi_insert_before (&insert_gsi, assign, GSI_SAME_STMT);
insert_gsi = gsi_after_labels (gimple_bb (stmt));
assign = gimple_build_assign (red, gimple_assign_lhs (stmt));
insert_gsi = gsi_for_stmt (stmt);
gsi_insert_after (&insert_gsi, assign, GSI_SAME_STMT);
}
/* Insert the assignment "result (CLOSE_PHI) = RED". */
static void
insert_copyout (tree red, gimple close_phi)
{
tree res = gimple_phi_result (close_phi);
basic_block bb = gimple_bb (close_phi);
gimple_stmt_iterator insert_gsi = gsi_after_labels (bb);
gimple assign = gimple_build_assign (res, red);
gsi_insert_before (&insert_gsi, assign, GSI_SAME_STMT);
}
/* Insert the assignment "RED = initial_value (LOOP_PHI)". */
static void
insert_copyin (tree red, gimple loop_phi)
{
gimple_seq stmts;
tree init = initial_value_for_loop_phi (loop_phi);
tree expr = build2 (MODIFY_EXPR, TREE_TYPE (init), red, init);
force_gimple_operand (expr, &stmts, true, NULL);
gsi_insert_seq_on_edge (edge_initial_value_for_loop_phi (loop_phi), stmts);
}
/* Rewrite out of SSA the reduction described by the loop phi nodes
IN, and the close phi nodes OUT. IN and OUT are structured by loop
levels like this:
IN: stmt, loop_n, ..., loop_0
OUT: stmt, close_n, ..., close_0
the first element is the reduction statement, and the next elements
are the loop and close phi nodes of each of the outer loops. */
static void
translate_scalar_reduction_to_array (VEC (gimple, heap) *in,
VEC (gimple, heap) *out,
sbitmap reductions)
{
unsigned int i;
gimple loop_phi;
tree red;
gimple_stmt_iterator gsi;
for (i = 0; VEC_iterate (gimple, in, i, loop_phi); i++)
{
gimple close_phi = VEC_index (gimple, out, i);
if (i == 0)
{
gimple stmt = loop_phi;
basic_block bb = split_reduction_stmt (stmt);
SET_BIT (reductions, bb->index);
gcc_assert (close_phi == loop_phi);
red = create_zero_dim_array
(gimple_assign_lhs (stmt), "Commutative_Associative_Reduction");
translate_scalar_reduction_to_array_for_stmt
(red, stmt, VEC_index (gimple, in, 1));
continue;
}
if (i == VEC_length (gimple, in) - 1)
{
insert_copyout (red, close_phi);
insert_copyin (red, loop_phi);
}
gsi = gsi_for_phi_node (loop_phi);
remove_phi_node (&gsi, false);
gsi = gsi_for_phi_node (close_phi);
remove_phi_node (&gsi, false);
}
}
/* Rewrites out of SSA a commutative reduction at CLOSE_PHI. */
static void
rewrite_commutative_reductions_out_of_ssa_close_phi (gimple close_phi,
sbitmap reductions)
{
VEC (gimple, heap) *in = VEC_alloc (gimple, heap, 10);
VEC (gimple, heap) *out = VEC_alloc (gimple, heap, 10);
detect_commutative_reduction (close_phi, &in, &out);
if (VEC_length (gimple, in) > 0)
translate_scalar_reduction_to_array (in, out, reductions);
VEC_free (gimple, heap, in);
VEC_free (gimple, heap, out);
}
/* Rewrites all the commutative reductions from LOOP out of SSA. */
static void
rewrite_commutative_reductions_out_of_ssa_loop (loop_p loop,
sbitmap reductions)
{
gimple_stmt_iterator gsi;
edge exit = single_exit (loop);
if (!exit)
return;
for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
rewrite_commutative_reductions_out_of_ssa_close_phi (gsi_stmt (gsi),
reductions);
}
/* Rewrites all the commutative reductions from SCOP out of SSA. */
static void
rewrite_commutative_reductions_out_of_ssa (sese region, sbitmap reductions)
{
loop_iterator li;
loop_p loop;
FOR_EACH_LOOP (li, loop, 0)
if (loop_in_sese_p (loop, region))
rewrite_commutative_reductions_out_of_ssa_loop (loop, reductions);
gsi_commit_edge_inserts ();
update_ssa (TODO_update_ssa);
#ifdef ENABLE_CHECKING
verify_ssa (false);
verify_loop_closed_ssa ();
#endif
}
/* A LOOP is in normal form for Graphite when it contains only one
scalar phi node that defines the main induction variable of the
loop, only one increment of the IV, and only one exit condition. */
static void
graphite_loop_normal_form (loop_p loop)
{
struct tree_niter_desc niter;
tree nit;
gimple_seq stmts;
edge exit = single_dom_exit (loop);
bool known_niter = number_of_iterations_exit (loop, exit, &niter, false);
/* At this point we should know the number of iterations, */
gcc_assert (known_niter);
nit = force_gimple_operand (unshare_expr (niter.niter), &stmts, true,
NULL_TREE);
if (stmts)
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
loop->single_iv = canonicalize_loop_ivs (loop, &nit);
}
/* Rewrite all the loops of SCOP in normal form: one induction
variable per loop. */
static void
scop_canonicalize_loops (scop_p scop)
{
loop_iterator li;
loop_p loop;
FOR_EACH_LOOP (li, loop, 0)
if (loop_in_sese_p (loop, SCOP_REGION (scop)))
graphite_loop_normal_form (loop);
}
/* Builds the polyhedral representation for a SESE region. */
bool
build_poly_scop (scop_p scop)
{
sese region = SCOP_REGION (scop);
sbitmap reductions = sbitmap_alloc (last_basic_block * 2);
sbitmap_zero (reductions);
rewrite_commutative_reductions_out_of_ssa (region, reductions);
rewrite_reductions_out_of_ssa (scop);
build_scop_bbs (scop, reductions);
sbitmap_free (reductions);
/* FIXME: This restriction is needed to avoid a problem in CLooG.
Once CLooG is fixed, remove this guard. Anyways, it makes no
sense to optimize a scop containing only PBBs that do not belong
to any loops. */
if (nb_pbbs_in_loops (scop) == 0)
return false;
scop_canonicalize_loops (scop);
build_sese_loop_nests (region);
build_sese_conditions (region);
find_scop_parameters (scop);
build_scop_iteration_domain (scop);
build_scop_context (scop);
add_conditions_to_constraints (scop);
scop_to_lst (scop);
build_scop_scattering (scop);
build_scop_drs (scop);
return true;
}
/* Always return false. Exercise the scop_to_clast function. */
void
check_poly_representation (scop_p scop ATTRIBUTE_UNUSED)
{
#ifdef ENABLE_CHECKING
cloog_prog_clast pc = scop_to_clast (scop);
cloog_clast_free (pc.stmt);
cloog_program_free (pc.prog);
#endif
}
#endif
|