aboutsummaryrefslogtreecommitdiff
path: root/gcc/graphite-isl-ast-to-gimple.c
blob: 5b2bc1c399f7836edf9377c3a5a28d357724206a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
/* Translation of isl AST to Gimple.
   Copyright (C) 2014-2017 Free Software Foundation, Inc.
   Contributed by Roman Gareev <gareevroman@gmail.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#define USES_ISL

#include "config.h"

#ifdef HAVE_isl

#define INCLUDE_MAP
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "cfghooks.h"
#include "tree.h"
#include "gimple.h"
#include "params.h"
#include "fold-const.h"
#include "gimple-fold.h"
#include "gimple-iterator.h"
#include "gimplify.h"
#include "gimplify-me.h"
#include "tree-eh.h"
#include "tree-ssa-loop.h"
#include "tree-ssa-operands.h"
#include "tree-ssa-propagate.h"
#include "tree-pass.h"
#include "cfgloop.h"
#include "tree-data-ref.h"
#include "tree-ssa-loop-manip.h"
#include "tree-scalar-evolution.h"
#include "gimple-ssa.h"
#include "tree-phinodes.h"
#include "tree-into-ssa.h"
#include "ssa-iterators.h"
#include "tree-cfg.h"
#include "gimple-pretty-print.h"
#include "cfganal.h"
#include "value-prof.h"
#include "graphite.h"

/* We always try to use signed 128 bit types, but fall back to smaller types
   in case a platform does not provide types of these sizes. In the future we
   should use isl to derive the optimal type for each subexpression.  */

static int max_mode_int_precision =
  GET_MODE_PRECISION (mode_for_size (MAX_FIXED_MODE_SIZE, MODE_INT, 0));
static int graphite_expression_type_precision = 128 <= max_mode_int_precision ?
						128 : max_mode_int_precision;

struct ast_build_info
{
  ast_build_info()
    : is_parallelizable(false)
  { }
  bool is_parallelizable;
};

/* Verifies properties that GRAPHITE should maintain during translation.  */

static inline void
graphite_verify (void)
{
  checking_verify_loop_structure ();
  checking_verify_loop_closed_ssa (true);
}

/* IVS_PARAMS maps isl's scattering and parameter identifiers
   to corresponding trees.  */

typedef std::map<isl_id *, tree> ivs_params;

/* Free all memory allocated for isl's identifiers.  */

static void ivs_params_clear (ivs_params &ip)
{
  std::map<isl_id *, tree>::iterator it;
  for (it = ip.begin ();
       it != ip.end (); it++)
    {
      isl_id_free (it->first);
    }
}

/* Set the "separate" option for the schedule node.  */

static isl_schedule_node *
set_separate_option (__isl_take isl_schedule_node *node, void *user)
{
  if (user)
    return node;

  if (isl_schedule_node_get_type (node) != isl_schedule_node_band)
    return node;

  /* Set the "separate" option unless it is set earlier to another option.  */
  if (isl_schedule_node_band_member_get_ast_loop_type (node, 0)
      == isl_ast_loop_default)
    return isl_schedule_node_band_member_set_ast_loop_type
      (node, 0, isl_ast_loop_separate);

  return node;
}

/* Print SCHEDULE under an AST form on file F.  */

void
print_schedule_ast (FILE *f, __isl_keep isl_schedule *schedule, scop_p scop)
{
  isl_set *set = isl_set_params (isl_set_copy (scop->param_context));
  isl_ast_build *context = isl_ast_build_from_context (set);
  isl_ast_node *ast
    = isl_ast_build_node_from_schedule (context, isl_schedule_copy (schedule));
  isl_ast_build_free (context);
  print_isl_ast (f, ast);
  isl_ast_node_free (ast);
}

DEBUG_FUNCTION void
debug_schedule_ast (__isl_keep isl_schedule *s, scop_p scop)
{
  print_schedule_ast (stderr, s, scop);
}

enum phi_node_kind
{
  unknown_phi,
  loop_phi,
  close_phi,
  cond_phi
};

class translate_isl_ast_to_gimple
{
 public:
  translate_isl_ast_to_gimple (sese_info_p r)
    : region (r), codegen_error (false) { }
  edge translate_isl_ast (loop_p context_loop, __isl_keep isl_ast_node *node,
			  edge next_e, ivs_params &ip);
  edge translate_isl_ast_node_for (loop_p context_loop,
				   __isl_keep isl_ast_node *node,
				   edge next_e, ivs_params &ip);
  edge translate_isl_ast_for_loop (loop_p context_loop,
				   __isl_keep isl_ast_node *node_for,
				   edge next_e,
				   tree type, tree lb, tree ub,
				   ivs_params &ip);
  edge translate_isl_ast_node_if (loop_p context_loop,
				  __isl_keep isl_ast_node *node,
				  edge next_e, ivs_params &ip);
  edge translate_isl_ast_node_user (__isl_keep isl_ast_node *node,
				    edge next_e, ivs_params &ip);
  edge translate_isl_ast_node_block (loop_p context_loop,
				     __isl_keep isl_ast_node *node,
				     edge next_e, ivs_params &ip);
  tree unary_op_to_tree (tree type, __isl_take isl_ast_expr *expr,
			 ivs_params &ip);
  tree binary_op_to_tree (tree type, __isl_take isl_ast_expr *expr,
			  ivs_params &ip);
  tree ternary_op_to_tree (tree type, __isl_take isl_ast_expr *expr,
			   ivs_params &ip);
  tree nary_op_to_tree (tree type, __isl_take isl_ast_expr *expr,
			ivs_params &ip);
  tree gcc_expression_from_isl_expression (tree type,
					   __isl_take isl_ast_expr *,
					   ivs_params &ip);
  tree gcc_expression_from_isl_ast_expr_id (tree type,
					    __isl_keep isl_ast_expr *expr_id,
					    ivs_params &ip);
  tree gcc_expression_from_isl_expr_int (tree type,
					 __isl_take isl_ast_expr *expr);
  tree gcc_expression_from_isl_expr_op (tree type,
					__isl_take isl_ast_expr *expr,
					ivs_params &ip);
  struct loop *graphite_create_new_loop (edge entry_edge,
					 __isl_keep isl_ast_node *node_for,
					 loop_p outer, tree type,
					 tree lb, tree ub, ivs_params &ip);
  edge graphite_create_new_loop_guard (edge entry_edge,
				       __isl_keep isl_ast_node *node_for,
				       tree *type,
				       tree *lb, tree *ub, ivs_params &ip);
  edge graphite_create_new_guard (edge entry_edge,
				  __isl_take isl_ast_expr *if_cond,
				  ivs_params &ip);
  void build_iv_mapping (vec<tree> iv_map, gimple_poly_bb_p gbb,
			 __isl_keep isl_ast_expr *user_expr, ivs_params &ip,
			 sese_l &region);
  void translate_pending_phi_nodes (void);
  void add_parameters_to_ivs_params (scop_p scop, ivs_params &ip);
  __isl_give isl_ast_build *generate_isl_context (scop_p scop);

  __isl_give isl_ast_node * scop_to_isl_ast (scop_p scop);

  bool is_valid_rename (tree rename, basic_block def_bb, basic_block use_bb,
			phi_node_kind, tree old_name, basic_block old_bb) const;
  tree get_rename (basic_block new_bb, tree old_name,
		   basic_block old_bb, phi_node_kind) const;
  tree get_rename_from_scev (tree old_name, gimple_seq *stmts, loop_p loop,
			     basic_block new_bb, basic_block old_bb,
			     vec<tree> iv_map);
  basic_block get_def_bb_for_const (basic_block bb, basic_block old_bb) const;
  tree get_new_name (basic_block new_bb, tree op,
		     basic_block old_bb, phi_node_kind) const;
  void collect_all_ssa_names (tree new_expr, vec<tree> *vec_ssa);
  bool copy_loop_phi_args (gphi *old_phi, init_back_edge_pair_t &ibp_old_bb,
			   gphi *new_phi, init_back_edge_pair_t &ibp_new_bb,
			   bool postpone);
  bool copy_loop_phi_nodes (basic_block bb, basic_block new_bb);
  bool add_close_phis_to_merge_points (gphi *old_phi, gphi *new_phi,
				       tree default_value);
  tree add_close_phis_to_outer_loops (tree last_merge_name, edge merge_e,
				      gimple *old_close_phi);
  bool copy_loop_close_phi_args (basic_block old_bb, basic_block new_bb,
				 vec<tree> iv_map, bool postpone);
  bool copy_loop_close_phi_nodes (basic_block old_bb, basic_block new_bb,
				  vec<tree> iv_map);
  bool copy_cond_phi_args (gphi *phi, gphi *new_phi, vec<tree> iv_map,
			   bool postpone);
  bool copy_cond_phi_nodes (basic_block bb, basic_block new_bb,
			    vec<tree> iv_map);
  bool graphite_copy_stmts_from_block (basic_block bb, basic_block new_bb,
				       vec<tree> iv_map);
  edge copy_bb_and_scalar_dependences (basic_block bb, edge next_e,
				       vec<tree> iv_map);
  edge edge_for_new_close_phis (basic_block bb);
  bool add_phi_arg_for_new_expr (tree old_phi_args[2], tree new_phi_args[2],
				 edge old_bb_dominating_edge,
				 edge old_bb_non_dominating_edge,
				 gphi *phi, gphi *new_phi,
				 basic_block new_bb);
  bool rename_uses (gimple *copy, gimple_stmt_iterator *gsi_tgt,
		    basic_block old_bb, loop_p loop, vec<tree> iv_map);
  void set_rename (tree old_name, tree expr);
  void set_rename_for_each_def (gimple *stmt);
  void gsi_insert_earliest (gimple_seq seq);
  tree rename_all_uses (tree new_expr, basic_block new_bb, basic_block old_bb);
  bool codegen_error_p () const { return codegen_error; }
  bool is_constant (tree op) const
  {
    return TREE_CODE (op) == INTEGER_CST
      || TREE_CODE (op) == REAL_CST
      || TREE_CODE (op) == COMPLEX_CST
      || TREE_CODE (op) == VECTOR_CST;
  }

private:
  /* The region to be translated.  */
  sese_info_p region;

  /* This flag is set when an error occurred during the translation of isl AST
     to Gimple.  */
  bool codegen_error;

  /* A vector of all the edges at if_condition merge points.  */
  auto_vec<edge, 2> merge_points;
};

/* Return the tree variable that corresponds to the given isl ast identifier
   expression (an isl_ast_expr of type isl_ast_expr_id).

   FIXME: We should replace blind conversion of id's type with derivation
   of the optimal type when we get the corresponding isl support.  Blindly
   converting type sizes may be problematic when we switch to smaller
   types.  */

tree translate_isl_ast_to_gimple::
gcc_expression_from_isl_ast_expr_id (tree type,
				     __isl_take isl_ast_expr *expr_id,
				     ivs_params &ip)
{
  gcc_assert (isl_ast_expr_get_type (expr_id) == isl_ast_expr_id);
  isl_id *tmp_isl_id = isl_ast_expr_get_id (expr_id);
  std::map<isl_id *, tree>::iterator res;
  res = ip.find (tmp_isl_id);
  isl_id_free (tmp_isl_id);
  gcc_assert (res != ip.end () &&
	      "Could not map isl_id to tree expression");
  isl_ast_expr_free (expr_id);
  tree t = res->second;
  tree *val = region->parameter_rename_map->get(t);

  if (!val)
   val = &t;
  return fold_convert (type, *val);
}

/* Converts an isl_ast_expr_int expression E to a GCC expression tree of
   type TYPE.  */

tree translate_isl_ast_to_gimple::
gcc_expression_from_isl_expr_int (tree type, __isl_take isl_ast_expr *expr)
{
  gcc_assert (isl_ast_expr_get_type (expr) == isl_ast_expr_int);
  isl_val *val = isl_ast_expr_get_val (expr);
  size_t n = isl_val_n_abs_num_chunks (val, sizeof (HOST_WIDE_INT));
  HOST_WIDE_INT *chunks = XALLOCAVEC (HOST_WIDE_INT, n);
  tree res;
  if (isl_val_get_abs_num_chunks (val, sizeof (HOST_WIDE_INT), chunks) == -1)
    res = NULL_TREE;
  else
    {
      widest_int wi = widest_int::from_array (chunks, n, true);
      if (isl_val_is_neg (val))
	wi = -wi;
      res = wide_int_to_tree (type, wi);
    }
  isl_val_free (val);
  isl_ast_expr_free (expr);
  return res;
}

/* Converts a binary isl_ast_expr_op expression E to a GCC expression tree of
   type TYPE.  */

tree translate_isl_ast_to_gimple::
binary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, ivs_params &ip)
{
  isl_ast_expr *arg_expr = isl_ast_expr_get_op_arg (expr, 0);
  tree tree_lhs_expr = gcc_expression_from_isl_expression (type, arg_expr, ip);
  arg_expr = isl_ast_expr_get_op_arg (expr, 1);
  tree tree_rhs_expr = gcc_expression_from_isl_expression (type, arg_expr, ip);

  enum isl_ast_op_type expr_type = isl_ast_expr_get_op_type (expr);
  isl_ast_expr_free (expr);

  if (codegen_error_p ())
    return NULL_TREE;

  switch (expr_type)
    {
    case isl_ast_op_add:
      return fold_build2 (PLUS_EXPR, type, tree_lhs_expr, tree_rhs_expr);

    case isl_ast_op_sub:
      return fold_build2 (MINUS_EXPR, type, tree_lhs_expr, tree_rhs_expr);

    case isl_ast_op_mul:
      return fold_build2 (MULT_EXPR, type, tree_lhs_expr, tree_rhs_expr);

    case isl_ast_op_div:
      /* As isl operates on arbitrary precision numbers, we may end up with
	 division by 2^64 that is folded to 0.  */
      if (integer_zerop (tree_rhs_expr))
	{
	  codegen_error = true;
	  return NULL_TREE;
	}
      return fold_build2 (EXACT_DIV_EXPR, type, tree_lhs_expr, tree_rhs_expr);

    case isl_ast_op_pdiv_q:
      /* As isl operates on arbitrary precision numbers, we may end up with
	 division by 2^64 that is folded to 0.  */
      if (integer_zerop (tree_rhs_expr))
	{
	  codegen_error = true;
	  return NULL_TREE;
	}
      return fold_build2 (TRUNC_DIV_EXPR, type, tree_lhs_expr, tree_rhs_expr);

    case isl_ast_op_zdiv_r:
    case isl_ast_op_pdiv_r:
      /* As isl operates on arbitrary precision numbers, we may end up with
	 division by 2^64 that is folded to 0.  */
      if (integer_zerop (tree_rhs_expr))
	{
	  codegen_error = true;
	  return NULL_TREE;
	}
      return fold_build2 (TRUNC_MOD_EXPR, type, tree_lhs_expr, tree_rhs_expr);

    case isl_ast_op_fdiv_q:
      /* As isl operates on arbitrary precision numbers, we may end up with
	 division by 2^64 that is folded to 0.  */
      if (integer_zerop (tree_rhs_expr))
	{
	  codegen_error = true;
	  return NULL_TREE;
	}
      return fold_build2 (FLOOR_DIV_EXPR, type, tree_lhs_expr, tree_rhs_expr);

    case isl_ast_op_and:
      return fold_build2 (TRUTH_ANDIF_EXPR, type,
			  tree_lhs_expr, tree_rhs_expr);

    case isl_ast_op_or:
      return fold_build2 (TRUTH_ORIF_EXPR, type, tree_lhs_expr, tree_rhs_expr);

    case isl_ast_op_eq:
      return fold_build2 (EQ_EXPR, type, tree_lhs_expr, tree_rhs_expr);

    case isl_ast_op_le:
      return fold_build2 (LE_EXPR, type, tree_lhs_expr, tree_rhs_expr);

    case isl_ast_op_lt:
      return fold_build2 (LT_EXPR, type, tree_lhs_expr, tree_rhs_expr);

    case isl_ast_op_ge:
      return fold_build2 (GE_EXPR, type, tree_lhs_expr, tree_rhs_expr);

    case isl_ast_op_gt:
      return fold_build2 (GT_EXPR, type, tree_lhs_expr, tree_rhs_expr);

    default:
      gcc_unreachable ();
    }
}

/* Converts a ternary isl_ast_expr_op expression E to a GCC expression tree of
   type TYPE.  */

tree translate_isl_ast_to_gimple::
ternary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, ivs_params &ip)
{
  enum isl_ast_op_type t = isl_ast_expr_get_op_type (expr);
  gcc_assert (t == isl_ast_op_cond || t == isl_ast_op_select);
  isl_ast_expr *arg_expr = isl_ast_expr_get_op_arg (expr, 0);
  tree a = gcc_expression_from_isl_expression (type, arg_expr, ip);
  arg_expr = isl_ast_expr_get_op_arg (expr, 1);
  tree b = gcc_expression_from_isl_expression (type, arg_expr, ip);
  arg_expr = isl_ast_expr_get_op_arg (expr, 2);
  tree c = gcc_expression_from_isl_expression (type, arg_expr, ip);
  isl_ast_expr_free (expr);

  if (codegen_error_p ())
    return NULL_TREE;

  return fold_build3 (COND_EXPR, type, a, b, c);
}

/* Converts a unary isl_ast_expr_op expression E to a GCC expression tree of
   type TYPE.  */

tree translate_isl_ast_to_gimple::
unary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, ivs_params &ip)
{
  gcc_assert (isl_ast_expr_get_op_type (expr) == isl_ast_op_minus);
  isl_ast_expr *arg_expr = isl_ast_expr_get_op_arg (expr, 0);
  tree tree_expr = gcc_expression_from_isl_expression (type, arg_expr, ip);
  isl_ast_expr_free (expr);
  return codegen_error_p () ? NULL_TREE
    : fold_build1 (NEGATE_EXPR, type, tree_expr);
}

/* Converts an isl_ast_expr_op expression E with unknown number of arguments
   to a GCC expression tree of type TYPE.  */

tree translate_isl_ast_to_gimple::
nary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, ivs_params &ip)
{
  enum tree_code op_code;
  switch (isl_ast_expr_get_op_type (expr))
    {
    case isl_ast_op_max:
      op_code = MAX_EXPR;
      break;

    case isl_ast_op_min:
      op_code = MIN_EXPR;
      break;

    default:
      gcc_unreachable ();    
    }
  isl_ast_expr *arg_expr = isl_ast_expr_get_op_arg (expr, 0);
  tree res = gcc_expression_from_isl_expression (type, arg_expr, ip);

  if (codegen_error_p ())
    {
      isl_ast_expr_free (expr);
      return NULL_TREE;
    }

  int i;
  for (i = 1; i < isl_ast_expr_get_op_n_arg (expr); i++)
    {
      arg_expr = isl_ast_expr_get_op_arg (expr, i);
      tree t = gcc_expression_from_isl_expression (type, arg_expr, ip);

      if (codegen_error_p ())
	{
	  isl_ast_expr_free (expr);
	  return NULL_TREE;
	}

      res = fold_build2 (op_code, type, res, t);
    }
  isl_ast_expr_free (expr);
  return res;
}

/* Converts an isl_ast_expr_op expression E to a GCC expression tree of
   type TYPE.  */

tree translate_isl_ast_to_gimple::
gcc_expression_from_isl_expr_op (tree type, __isl_take isl_ast_expr *expr,
				 ivs_params &ip)
{
  if (codegen_error_p ())
    {
      isl_ast_expr_free (expr);
      return NULL_TREE;
    }

  gcc_assert (isl_ast_expr_get_type (expr) == isl_ast_expr_op);
  switch (isl_ast_expr_get_op_type (expr))
    {
    /* These isl ast expressions are not supported yet.  */
    case isl_ast_op_error:
    case isl_ast_op_call:
    case isl_ast_op_and_then:
    case isl_ast_op_or_else:
      gcc_unreachable ();

    case isl_ast_op_max:
    case isl_ast_op_min:
      return nary_op_to_tree (type, expr, ip);

    case isl_ast_op_add:
    case isl_ast_op_sub:
    case isl_ast_op_mul:
    case isl_ast_op_div:
    case isl_ast_op_pdiv_q:
    case isl_ast_op_pdiv_r:
    case isl_ast_op_fdiv_q:
    case isl_ast_op_zdiv_r:
    case isl_ast_op_and:
    case isl_ast_op_or:
    case isl_ast_op_eq:
    case isl_ast_op_le:
    case isl_ast_op_lt:
    case isl_ast_op_ge:
    case isl_ast_op_gt:
      return binary_op_to_tree (type, expr, ip);

    case isl_ast_op_minus:
      return unary_op_to_tree (type, expr, ip);

    case isl_ast_op_cond:
    case isl_ast_op_select:
      return ternary_op_to_tree (type, expr, ip);

    default:
      gcc_unreachable ();
    }

  return NULL_TREE;
}

/* Converts an isl AST expression E back to a GCC expression tree of
   type TYPE.  */

tree translate_isl_ast_to_gimple::
gcc_expression_from_isl_expression (tree type, __isl_take isl_ast_expr *expr,
				    ivs_params &ip)
{
  if (codegen_error_p ())
    {
      isl_ast_expr_free (expr);
      return NULL_TREE;
    }

  switch (isl_ast_expr_get_type (expr))
    {
    case isl_ast_expr_id:
      return gcc_expression_from_isl_ast_expr_id (type, expr, ip);

    case isl_ast_expr_int:
      return gcc_expression_from_isl_expr_int (type, expr);

    case isl_ast_expr_op:
      return gcc_expression_from_isl_expr_op (type, expr, ip);

    default:
      gcc_unreachable ();
    }

  return NULL_TREE;
}

/* Creates a new LOOP corresponding to isl_ast_node_for.  Inserts an
   induction variable for the new LOOP.  New LOOP is attached to CFG
   starting at ENTRY_EDGE.  LOOP is inserted into the loop tree and
   becomes the child loop of the OUTER_LOOP.  NEWIVS_INDEX binds
   isl's scattering name to the induction variable created for the
   loop of STMT.  The new induction variable is inserted in the NEWIVS
   vector and is of type TYPE.  */

struct loop *translate_isl_ast_to_gimple::
graphite_create_new_loop (edge entry_edge, __isl_keep isl_ast_node *node_for,
			  loop_p outer, tree type, tree lb, tree ub,
			  ivs_params &ip)
{
  isl_ast_expr *for_inc = isl_ast_node_for_get_inc (node_for);
  tree stride = gcc_expression_from_isl_expression (type, for_inc, ip);

  /* To fail code generation, we generate wrong code until we discard it.  */
  if (codegen_error_p ())
    stride = integer_zero_node;

  tree ivvar = create_tmp_var (type, "graphite_IV");
  tree iv, iv_after_increment;
  loop_p loop = create_empty_loop_on_edge
    (entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment,
     outer ? outer : entry_edge->src->loop_father);

  isl_ast_expr *for_iterator = isl_ast_node_for_get_iterator (node_for);
  isl_id *id = isl_ast_expr_get_id (for_iterator);
  std::map<isl_id *, tree>::iterator res;
  res = ip.find (id);
  if (ip.count (id))
    isl_id_free (res->first);
  ip[id] = iv;
  isl_ast_expr_free (for_iterator);
  return loop;
}

/* Create the loop for a isl_ast_node_for.

   - NEXT_E is the edge where new generated code should be attached.  */

edge translate_isl_ast_to_gimple::
translate_isl_ast_for_loop (loop_p context_loop,
			    __isl_keep isl_ast_node *node_for, edge next_e,
			    tree type, tree lb, tree ub,
			    ivs_params &ip)
{
  gcc_assert (isl_ast_node_get_type (node_for) == isl_ast_node_for);
  struct loop *loop = graphite_create_new_loop (next_e, node_for, context_loop,
						type, lb, ub, ip);
  edge last_e = single_exit (loop);
  edge to_body = single_succ_edge (loop->header);
  basic_block after = to_body->dest;

  /* Translate the body of the loop.  */
  isl_ast_node *for_body = isl_ast_node_for_get_body (node_for);
  next_e = translate_isl_ast (loop, for_body, to_body, ip);
  isl_ast_node_free (for_body);

  /* Early return if we failed to translate loop body.  */
  if (!next_e || codegen_error_p ())
    return NULL;

  if (next_e->dest != after)
    redirect_edge_succ_nodup (next_e, after);
  set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src);

  if (flag_loop_parallelize_all)
    {
      isl_id *id = isl_ast_node_get_annotation (node_for);
      gcc_assert (id);
      ast_build_info *for_info = (ast_build_info *) isl_id_get_user (id);
      loop->can_be_parallel = for_info->is_parallelizable;
      free (for_info);
      isl_id_free (id);
    }

  return last_e;
}

/* We use this function to get the upper bound because of the form,
   which is used by isl to represent loops:

   for (iterator = init; cond; iterator += inc)

   {

   ...

   }

   The loop condition is an arbitrary expression, which contains the
   current loop iterator.

   (e.g. iterator + 3 < B && C > iterator + A)

   We have to know the upper bound of the iterator to generate a loop
   in Gimple form. It can be obtained from the special representation
   of the loop condition, which is generated by isl,
   if the ast_build_atomic_upper_bound option is set. In this case,
   isl generates a loop condition that consists of the current loop
   iterator, + an operator (< or <=) and an expression not involving
   the iterator, which is processed and returned by this function.

   (e.g iterator <= upper-bound-expression-without-iterator)  */

static __isl_give isl_ast_expr *
get_upper_bound (__isl_keep isl_ast_node *node_for)
{
  gcc_assert (isl_ast_node_get_type (node_for) == isl_ast_node_for);
  isl_ast_expr *for_cond = isl_ast_node_for_get_cond (node_for);
  gcc_assert (isl_ast_expr_get_type (for_cond) == isl_ast_expr_op);
  isl_ast_expr *res;
  switch (isl_ast_expr_get_op_type (for_cond))
    {
    case isl_ast_op_le:
      res = isl_ast_expr_get_op_arg (for_cond, 1);
      break;

    case isl_ast_op_lt:
      {
	/* (iterator < ub) => (iterator <= ub - 1).  */
        isl_val *one =
          isl_val_int_from_si (isl_ast_expr_get_ctx (for_cond), 1);
        isl_ast_expr *ub = isl_ast_expr_get_op_arg (for_cond, 1);
        res = isl_ast_expr_sub (ub, isl_ast_expr_from_val (one));
        break;
      }

    default:
      gcc_unreachable ();
    }
  isl_ast_expr_free (for_cond);
  return res;
}

/* All loops generated by create_empty_loop_on_edge have the form of
   a post-test loop:

   do

   {
     body of the loop;
   } while (lower bound < upper bound);

   We create a new if region protecting the loop to be executed, if
   the execution count is zero (lower bound > upper bound).  */

edge translate_isl_ast_to_gimple::
graphite_create_new_loop_guard (edge entry_edge,
				__isl_keep isl_ast_node *node_for, tree *type,
				tree *lb, tree *ub, ivs_params &ip)
{
  gcc_assert (isl_ast_node_get_type (node_for) == isl_ast_node_for);
  tree cond_expr;
  edge exit_edge;

  *type =
    build_nonstandard_integer_type (graphite_expression_type_precision, 0);
  isl_ast_expr *for_init = isl_ast_node_for_get_init (node_for);
  *lb = gcc_expression_from_isl_expression (*type, for_init, ip);

  /* To fail code generation, we generate wrong code until we discard it.  */
  if (codegen_error_p ())
    *lb = integer_zero_node;

  isl_ast_expr *upper_bound = get_upper_bound (node_for);
  *ub = gcc_expression_from_isl_expression (*type, upper_bound, ip);

  /* To fail code generation, we generate wrong code until we discard it.  */
  if (codegen_error_p ())
    *ub = integer_zero_node;
  
  /* When ub is simply a constant or a parameter, use lb <= ub.  */
  if (TREE_CODE (*ub) == INTEGER_CST || TREE_CODE (*ub) == SSA_NAME)
    cond_expr = fold_build2 (LE_EXPR, boolean_type_node, *lb, *ub);
  else
    {
      tree one = (POINTER_TYPE_P (*type)
		  ? convert_to_ptrofftype (integer_one_node)
		  : fold_convert (*type, integer_one_node));
      /* Adding +1 and using LT_EXPR helps with loop latches that have a
	 loop iteration count of "PARAMETER - 1".  For PARAMETER == 0 this
	 becomes 2^k-1 due to integer overflow, and the condition lb <= ub
	 is true, even if we do not want this.  However lb < ub + 1 is false,
	 as expected.  */
      tree ub_one = fold_build2 (POINTER_TYPE_P (*type) ? POINTER_PLUS_EXPR
				 : PLUS_EXPR, *type, *ub, one);

      cond_expr = fold_build2 (LT_EXPR, boolean_type_node, *lb, ub_one);
    }

  if (integer_onep (cond_expr))
    exit_edge = entry_edge;
  else
    exit_edge = create_empty_if_region_on_edge (entry_edge,
						unshare_expr (cond_expr));

  return exit_edge;
}

/* Translates an isl_ast_node_for to Gimple. */

edge translate_isl_ast_to_gimple::
translate_isl_ast_node_for (loop_p context_loop, __isl_keep isl_ast_node *node,
			    edge next_e, ivs_params &ip)
{
  gcc_assert (isl_ast_node_get_type (node) == isl_ast_node_for);
  tree type, lb, ub;
  edge last_e = graphite_create_new_loop_guard (next_e, node, &type,
						&lb, &ub, ip);

  if (last_e == next_e)
    {
      /* There was no guard generated.  */
      last_e = single_succ_edge (split_edge (last_e));

      translate_isl_ast_for_loop (context_loop, node, next_e,
				  type, lb, ub, ip);
      return last_e;
    }

  edge true_e = get_true_edge_from_guard_bb (next_e->dest);
  merge_points.safe_push (last_e);

  last_e = single_succ_edge (split_edge (last_e));
  translate_isl_ast_for_loop (context_loop, node, true_e, type, lb, ub, ip);

  return last_e;
}

/* Inserts in iv_map a tuple (OLD_LOOP->num, NEW_NAME) for the induction
   variables of the loops around GBB in SESE.
 
   FIXME: Instead of using a vec<tree> that maps each loop id to a possible
   chrec, we could consider using a map<int, tree> that maps loop ids to the
   corresponding tree expressions.  */

void translate_isl_ast_to_gimple::
build_iv_mapping (vec<tree> iv_map, gimple_poly_bb_p gbb,
		  __isl_keep isl_ast_expr *user_expr, ivs_params &ip,
		  sese_l &region)
{
  gcc_assert (isl_ast_expr_get_type (user_expr) == isl_ast_expr_op &&
	      isl_ast_expr_get_op_type (user_expr) == isl_ast_op_call);
  int i;
  isl_ast_expr *arg_expr;
  for (i = 1; i < isl_ast_expr_get_op_n_arg (user_expr); i++)
    {
      arg_expr = isl_ast_expr_get_op_arg (user_expr, i);
      tree type =
	build_nonstandard_integer_type (graphite_expression_type_precision, 0);
      tree t = gcc_expression_from_isl_expression (type, arg_expr, ip);

      /* To fail code generation, we generate wrong code until we discard it.  */
      if (codegen_error_p ())
	t = integer_zero_node;

      loop_p old_loop = gbb_loop_at_index (gbb, region, i - 1);
      iv_map[old_loop->num] = t;
    }
}

/* Translates an isl_ast_node_user to Gimple.

   FIXME: We should remove iv_map.create (loop->num + 1), if it is possible.  */

edge translate_isl_ast_to_gimple::
translate_isl_ast_node_user (__isl_keep isl_ast_node *node,
			     edge next_e, ivs_params &ip)
{
  gcc_assert (isl_ast_node_get_type (node) == isl_ast_node_user);

  isl_ast_expr *user_expr = isl_ast_node_user_get_expr (node);
  isl_ast_expr *name_expr = isl_ast_expr_get_op_arg (user_expr, 0);
  gcc_assert (isl_ast_expr_get_type (name_expr) == isl_ast_expr_id);

  isl_id *name_id = isl_ast_expr_get_id (name_expr);
  poly_bb_p pbb = (poly_bb_p) isl_id_get_user (name_id);
  gcc_assert (pbb);

  gimple_poly_bb_p gbb = PBB_BLACK_BOX (pbb);

  isl_ast_expr_free (name_expr);
  isl_id_free (name_id);

  gcc_assert (GBB_BB (gbb) != ENTRY_BLOCK_PTR_FOR_FN (cfun) &&
	      "The entry block should not even appear within a scop");

  const int nb_loops = number_of_loops (cfun);
  vec<tree> iv_map;
  iv_map.create (nb_loops);
  iv_map.safe_grow_cleared (nb_loops);

  build_iv_mapping (iv_map, gbb, user_expr, ip, pbb->scop->scop_info->region);
  isl_ast_expr_free (user_expr);

  basic_block old_bb = GBB_BB (gbb);
  if (dump_file)
    {
      fprintf (dump_file,
	       "[codegen] copying from bb_%d on edge (bb_%d, bb_%d)\n",
	       old_bb->index, next_e->src->index, next_e->dest->index);
      print_loops_bb (dump_file, GBB_BB (gbb), 0, 3);

    }

  next_e = copy_bb_and_scalar_dependences (old_bb, next_e, iv_map);

  iv_map.release ();

  if (codegen_error_p ())
    return NULL;

  if (dump_file)
    {
      fprintf (dump_file, "[codegen] (after copy) new basic block\n");
      print_loops_bb (dump_file, next_e->src, 0, 3);
    }

  return next_e;
}

/* Translates an isl_ast_node_block to Gimple. */

edge translate_isl_ast_to_gimple::
translate_isl_ast_node_block (loop_p context_loop,
			      __isl_keep isl_ast_node *node,
			      edge next_e, ivs_params &ip)
{
  gcc_assert (isl_ast_node_get_type (node) == isl_ast_node_block);
  isl_ast_node_list *node_list = isl_ast_node_block_get_children (node);
  int i;
  for (i = 0; i < isl_ast_node_list_n_ast_node (node_list); i++)
    {
      isl_ast_node *tmp_node = isl_ast_node_list_get_ast_node (node_list, i);
      next_e = translate_isl_ast (context_loop, tmp_node, next_e, ip);
      isl_ast_node_free (tmp_node);
    }
  isl_ast_node_list_free (node_list);
  return next_e;
}
 
/* Creates a new if region corresponding to isl's cond.  */

edge translate_isl_ast_to_gimple::
graphite_create_new_guard (edge entry_edge, __isl_take isl_ast_expr *if_cond,
			   ivs_params &ip)
{
  tree type =
    build_nonstandard_integer_type (graphite_expression_type_precision, 0);
  tree cond_expr = gcc_expression_from_isl_expression (type, if_cond, ip);

  /* To fail code generation, we generate wrong code until we discard it.  */
  if (codegen_error_p ())
    cond_expr = integer_zero_node;

  edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
  return exit_edge;
}

/* Translates an isl_ast_node_if to Gimple.  */

edge translate_isl_ast_to_gimple::
translate_isl_ast_node_if (loop_p context_loop,
			   __isl_keep isl_ast_node *node,
			   edge next_e, ivs_params &ip)
{
  gcc_assert (isl_ast_node_get_type (node) == isl_ast_node_if);
  isl_ast_expr *if_cond = isl_ast_node_if_get_cond (node);
  edge last_e = graphite_create_new_guard (next_e, if_cond, ip);
  edge true_e = get_true_edge_from_guard_bb (next_e->dest);
  merge_points.safe_push (last_e);

  isl_ast_node *then_node = isl_ast_node_if_get_then (node);
  translate_isl_ast (context_loop, then_node, true_e, ip);
  isl_ast_node_free (then_node);

  edge false_e = get_false_edge_from_guard_bb (next_e->dest);
  isl_ast_node *else_node = isl_ast_node_if_get_else (node);
  if (isl_ast_node_get_type (else_node) != isl_ast_node_error)
    translate_isl_ast (context_loop, else_node, false_e, ip);

  isl_ast_node_free (else_node);
  return last_e;
}

/* Translates an isl AST node NODE to GCC representation in the
   context of a SESE.  */

edge translate_isl_ast_to_gimple::
translate_isl_ast (loop_p context_loop, __isl_keep isl_ast_node *node,
		   edge next_e, ivs_params &ip)
{
  if (codegen_error_p ())
    return NULL;

  switch (isl_ast_node_get_type (node))
    {
    case isl_ast_node_error:
      gcc_unreachable ();

    case isl_ast_node_for:
      return translate_isl_ast_node_for (context_loop, node,
					 next_e, ip);

    case isl_ast_node_if:
      return translate_isl_ast_node_if (context_loop, node,
					next_e, ip);

    case isl_ast_node_user:
      return translate_isl_ast_node_user (node, next_e, ip);

    case isl_ast_node_block:
      return translate_isl_ast_node_block (context_loop, node,
					   next_e, ip);

    case isl_ast_node_mark:
      {
	isl_ast_node *n = isl_ast_node_mark_get_node (node);
	edge e = translate_isl_ast (context_loop, n, next_e, ip);
	isl_ast_node_free (n);
	return e;
      }

    default:
      gcc_unreachable ();
    }
}

/* Return true when BB contains loop close phi nodes.  A loop close phi node is
   at the exit of loop which takes one argument that is the last value of the
   variable being used out of the loop.  */

static bool
bb_contains_loop_close_phi_nodes (basic_block bb)
{
  return single_pred_p (bb)
    && bb->loop_father != single_pred_edge (bb)->src->loop_father;
}

/* Return true when BB contains loop phi nodes.  A loop phi node is the loop
   header containing phi nodes which has one init-edge and one back-edge.  */

static bool
bb_contains_loop_phi_nodes (basic_block bb)
{
  if (EDGE_COUNT (bb->preds) != 2)
    return false;

  unsigned depth = loop_depth (bb->loop_father);

  edge preds[2] = { (*bb->preds)[0], (*bb->preds)[1] };

  if (depth > loop_depth (preds[0]->src->loop_father)
      || depth > loop_depth (preds[1]->src->loop_father))
    return true;

  /* When one of the edges correspond to the same loop father and other
     doesn't.  */
  if (bb->loop_father != preds[0]->src->loop_father
      && bb->loop_father == preds[1]->src->loop_father)
    return true;

  if (bb->loop_father != preds[1]->src->loop_father
      && bb->loop_father == preds[0]->src->loop_father)
    return true;

  return false;
}

/* Check if USE is defined in a basic block from where the definition of USE can
   propagate from all the paths.  FIXME: Verify checks for virtual operands.  */

static bool
is_loop_closed_ssa_use (basic_block bb, tree use)
{
  if (TREE_CODE (use) != SSA_NAME || virtual_operand_p (use))
    return true;

  /* For close-phi nodes def always comes from a loop which has a back-edge.  */
  if (bb_contains_loop_close_phi_nodes (bb))
    return true;

  gimple *def = SSA_NAME_DEF_STMT (use);
  basic_block def_bb = gimple_bb (def);
  return (!def_bb
	  || flow_bb_inside_loop_p (def_bb->loop_father, bb));
}

/* Return the number of phi nodes in BB.  */

static int
number_of_phi_nodes (basic_block bb)
{
  int num_phis = 0;
  for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi);
       gsi_next (&psi))
    num_phis++;
  return num_phis;
}

/* Returns true if BB uses name in one of its PHIs.  */

static bool
phi_uses_name (basic_block bb, tree name)
{
  for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi);
       gsi_next (&psi))
    {
      gphi *phi = psi.phi ();
      for (unsigned i = 0; i < gimple_phi_num_args (phi); i++)
	{
	  tree use_arg = gimple_phi_arg_def (phi, i);
	  if (use_arg == name)
	    return true;
	}
    }
  return false;
}

/* Return true if RENAME (defined in BB) is a valid use in NEW_BB.  The
   definition should flow into use, and the use should respect the loop-closed
   SSA form.  */

bool translate_isl_ast_to_gimple::
is_valid_rename (tree rename, basic_block def_bb, basic_block use_bb,
		 phi_node_kind phi_kind, tree old_name, basic_block old_bb) const
{
  if (SSA_NAME_IS_DEFAULT_DEF (rename))
    return true;

  /* The def of the rename must either dominate the uses or come from a
     back-edge.  Also the def must respect the loop closed ssa form.  */
  if (!is_loop_closed_ssa_use (use_bb, rename))
    {
      if (dump_file)
	{
	  fprintf (dump_file, "[codegen] rename not in loop closed ssa: ");
	  print_generic_expr (dump_file, rename);
	  fprintf (dump_file, "\n");
	}
      return false;
    }

  if (dominated_by_p (CDI_DOMINATORS, use_bb, def_bb))
    return true;

  if (bb_contains_loop_phi_nodes (use_bb) && phi_kind == loop_phi)
    {
      /* The loop-header dominates the loop-body.  */
      if (!dominated_by_p (CDI_DOMINATORS, def_bb, use_bb))
	return false;

      /* RENAME would be used in loop-phi.  */
      gcc_assert (number_of_phi_nodes (use_bb));

      /* For definitions coming from back edges, we should check that
	 old_name is used in a loop PHI node.
	 FIXME: Verify if this is true.  */
      if (phi_uses_name (old_bb, old_name))
	return true;
    }
  return false;
}

/* Returns the expression associated to OLD_NAME (which is used in OLD_BB), in
   NEW_BB from RENAME_MAP.  PHI_KIND determines the kind of phi node.  */

tree translate_isl_ast_to_gimple::
get_rename (basic_block new_bb, tree old_name, basic_block old_bb,
	    phi_node_kind phi_kind) const
{
  gcc_assert (TREE_CODE (old_name) == SSA_NAME);
  vec <tree> *renames = region->rename_map->get (old_name);

  if (!renames || renames->is_empty ())
    return NULL_TREE;

  if (1 == renames->length ())
    {
      tree rename = (*renames)[0];
      if (TREE_CODE (rename) == SSA_NAME)
	{
	  basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (rename));
	  if (is_valid_rename (rename, bb, new_bb, phi_kind, old_name, old_bb)
	      && (phi_kind == close_phi
		  || ! bb
		  || flow_bb_inside_loop_p (bb->loop_father, new_bb)))
	    return rename;
	  return NULL_TREE;
	}

      if (is_constant (rename))
	return rename;

      return NULL_TREE;
    }

  /* More than one renames corresponding to the old_name.  Find the rename for
     which the definition flows into usage at new_bb.  */
  int i;
  tree t1 = NULL_TREE, t2;
  basic_block t1_bb = NULL;
  FOR_EACH_VEC_ELT (*renames, i, t2)
    {
      basic_block t2_bb = gimple_bb (SSA_NAME_DEF_STMT (t2));

      /* Defined in the same basic block as used.  */
      if (t2_bb == new_bb)
	return t2;

      /* NEW_BB and T2_BB are in two unrelated if-clauses.  */
      if (!dominated_by_p (CDI_DOMINATORS, new_bb, t2_bb))
	continue;

      if (!flow_bb_inside_loop_p (t2_bb->loop_father, new_bb))
	continue;

      /* Compute the nearest dominator.  */
      if (!t1 || dominated_by_p (CDI_DOMINATORS, t2_bb, t1_bb))
	{
	  t1_bb = t2_bb;
	  t1 = t2;
	}
    }

  return t1;
}

/* Register in RENAME_MAP the rename tuple (OLD_NAME, EXPR).
   When OLD_NAME and EXPR are the same we assert.  */

void translate_isl_ast_to_gimple::
set_rename (tree old_name, tree expr)
{
  if (dump_file)
    {
      fprintf (dump_file, "[codegen] setting rename: old_name = ");
      print_generic_expr (dump_file, old_name);
      fprintf (dump_file, ", new_name = ");
      print_generic_expr (dump_file, expr);
      fprintf (dump_file, "\n");
    }

  if (old_name == expr)
    return;

  vec <tree> *renames = region->rename_map->get (old_name);

  if (renames)
    renames->safe_push (expr);
  else
    {
      vec<tree> r;
      r.create (2);
      r.safe_push (expr);
      region->rename_map->put (old_name, r);
    }

  tree t;
  int i;
  /* For a parameter of a scop we don't want to rename it.  */
  FOR_EACH_VEC_ELT (region->params, i, t)
    if (old_name == t)
      region->parameter_rename_map->put(old_name, expr);
}

/* Return an iterator to the instructions comes last in the execution order.
   Either GSI1 and GSI2 should belong to the same basic block or one of their
   respective basic blocks should dominate the other.  */

gimple_stmt_iterator
later_of_the_two (gimple_stmt_iterator gsi1, gimple_stmt_iterator gsi2)
{
  basic_block bb1 = gsi_bb (gsi1);
  basic_block bb2 = gsi_bb (gsi2);

  /* Find the iterator which is the latest.  */
  if (bb1 == bb2)
    {
      gimple *stmt1 = gsi_stmt (gsi1);
      gimple *stmt2 = gsi_stmt (gsi2);

      if (stmt1 != NULL && stmt2 != NULL)
	{
	  bool is_phi1 = gimple_code (stmt1) == GIMPLE_PHI;
	  bool is_phi2 = gimple_code (stmt2) == GIMPLE_PHI;

	  if (is_phi1 != is_phi2)
	    return is_phi1 ? gsi2 : gsi1;
	}

      /* For empty basic blocks gsis point to the end of the sequence.  Since
	 there is no operator== defined for gimple_stmt_iterator and for gsis
	 not pointing to a valid statement gsi_next would assert.  */
      gimple_stmt_iterator gsi = gsi1;
      do {
	if (gsi_stmt (gsi) == gsi_stmt (gsi2))
	  return gsi2;
	gsi_next (&gsi);
      } while (!gsi_end_p (gsi));

      return gsi1;
    }

  /* Find the basic block closest to the basic block which defines stmt.  */
  if (dominated_by_p (CDI_DOMINATORS, bb1, bb2))
    return gsi1;

  gcc_assert (dominated_by_p (CDI_DOMINATORS, bb2, bb1));
  return gsi2;
}

/* Insert each statement from SEQ at its earliest insertion p.  */

void translate_isl_ast_to_gimple::
gsi_insert_earliest (gimple_seq seq)
{
  update_modified_stmts (seq);
  sese_l &codegen_region = region->if_region->true_region->region;
  basic_block begin_bb = get_entry_bb (codegen_region);

  /* Inserting the gimple statements in a vector because gimple_seq behave
     in strage ways when inserting the stmts from it into different basic
     blocks one at a time.  */
  auto_vec<gimple *, 3> stmts;
  for (gimple_stmt_iterator gsi = gsi_start (seq); !gsi_end_p (gsi);
       gsi_next (&gsi))
    stmts.safe_push (gsi_stmt (gsi));

  int i;
  gimple *use_stmt;
  FOR_EACH_VEC_ELT (stmts, i, use_stmt)
    {
      gcc_assert (gimple_code (use_stmt) != GIMPLE_PHI);
      gimple_stmt_iterator gsi_def_stmt = gsi_start_bb_nondebug (begin_bb);

      use_operand_p use_p;
      ssa_op_iter op_iter;
      FOR_EACH_SSA_USE_OPERAND (use_p, use_stmt, op_iter, SSA_OP_USE)
	{
	  /* Iterator to the current def of use_p.  For function parameters or
	     anything where def is not found, insert at the beginning of the
	     generated region.  */
	  gimple_stmt_iterator gsi_stmt = gsi_def_stmt;

	  tree op = USE_FROM_PTR (use_p);
	  gimple *stmt = SSA_NAME_DEF_STMT (op);
	  if (stmt && (gimple_code (stmt) != GIMPLE_NOP))
	    gsi_stmt = gsi_for_stmt (stmt);

	  /* For region parameters, insert at the beginning of the generated
	     region.  */
	  if (!bb_in_sese_p (gsi_bb (gsi_stmt), codegen_region))
	    gsi_stmt = gsi_def_stmt;

	  gsi_def_stmt = later_of_the_two (gsi_stmt, gsi_def_stmt);
	}

      if (!gsi_stmt (gsi_def_stmt))
	{
	  gimple_stmt_iterator gsi = gsi_after_labels (gsi_bb (gsi_def_stmt));
	  gsi_insert_before (&gsi, use_stmt, GSI_NEW_STMT);
	}
      else if (gimple_code (gsi_stmt (gsi_def_stmt)) == GIMPLE_PHI)
	{
	  gimple_stmt_iterator bsi
	    = gsi_start_bb_nondebug (gsi_bb (gsi_def_stmt));
	  /* Insert right after the PHI statements.  */
	  gsi_insert_before (&bsi, use_stmt, GSI_NEW_STMT);
	}
      else
	gsi_insert_after (&gsi_def_stmt, use_stmt, GSI_NEW_STMT);

      if (dump_file)
	{
	  fprintf (dump_file, "[codegen] inserting statement: ");
	  print_gimple_stmt (dump_file, use_stmt, 0, TDF_VOPS | TDF_MEMSYMS);
	  print_loops_bb (dump_file, gimple_bb (use_stmt), 0, 3);
	}
    }
}

/* Collect all the operands of NEW_EXPR by recursively visiting each
   operand.  */

void translate_isl_ast_to_gimple::
collect_all_ssa_names (tree new_expr, vec<tree> *vec_ssa)
{
  if (new_expr == NULL_TREE)
    return;

  /* Rename all uses in new_expr.  */
  if (TREE_CODE (new_expr) == SSA_NAME)
    {
      vec_ssa->safe_push (new_expr);
      return;
    }

  /* Iterate over SSA_NAMES in NEW_EXPR.  */
  for (int i = 0; i < (TREE_CODE_LENGTH (TREE_CODE (new_expr))); i++)
    {
      tree op = TREE_OPERAND (new_expr, i);
      collect_all_ssa_names (op, vec_ssa);
    }
}

/* This is abridged version of the function copied from:
   tree.c:substitute_in_expr (tree exp, tree f, tree r).  */

static tree
substitute_ssa_name (tree exp, tree f, tree r)
{
  enum tree_code code = TREE_CODE (exp);
  tree op0, op1, op2, op3;
  tree new_tree;

  /* We handle TREE_LIST and COMPONENT_REF separately.  */
  if (code == TREE_LIST)
    {
      op0 = substitute_ssa_name (TREE_CHAIN (exp), f, r);
      op1 = substitute_ssa_name (TREE_VALUE (exp), f, r);
      if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
	return exp;

      return tree_cons (TREE_PURPOSE (exp), op1, op0);
    }
  else if (code == COMPONENT_REF)
    {
      tree inner;

      /* If this expression is getting a value from a PLACEHOLDER_EXPR
	 and it is the right field, replace it with R.  */
      for (inner = TREE_OPERAND (exp, 0);
	   REFERENCE_CLASS_P (inner);
	   inner = TREE_OPERAND (inner, 0))
	;

      /* The field.  */
      op1 = TREE_OPERAND (exp, 1);

      if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
	return r;

      /* If this expression hasn't been completed let, leave it alone.  */
      if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
	return exp;

      op0 = substitute_ssa_name (TREE_OPERAND (exp, 0), f, r);
      if (op0 == TREE_OPERAND (exp, 0))
	return exp;

      new_tree
	= fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
    }
  else
    switch (TREE_CODE_CLASS (code))
      {
      case tcc_constant:
	return exp;

      case tcc_declaration:
	if (exp == f)
	  return r;
	else
	  return exp;

      case tcc_expression:
	if (exp == f)
	  return r;

	/* Fall through.  */

      case tcc_exceptional:
      case tcc_unary:
      case tcc_binary:
      case tcc_comparison:
      case tcc_reference:
	switch (TREE_CODE_LENGTH (code))
	  {
	  case 0:
	    if (exp == f)
	      return r;
	    return exp;

	  case 1:
	    op0 = substitute_ssa_name (TREE_OPERAND (exp, 0), f, r);
	    if (op0 == TREE_OPERAND (exp, 0))
	      return exp;

	    new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
	    break;

	  case 2:
	    op0 = substitute_ssa_name (TREE_OPERAND (exp, 0), f, r);
	    op1 = substitute_ssa_name (TREE_OPERAND (exp, 1), f, r);

	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
	      return exp;

	    new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
	    break;

	  case 3:
	    op0 = substitute_ssa_name (TREE_OPERAND (exp, 0), f, r);
	    op1 = substitute_ssa_name (TREE_OPERAND (exp, 1), f, r);
	    op2 = substitute_ssa_name (TREE_OPERAND (exp, 2), f, r);

	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
		&& op2 == TREE_OPERAND (exp, 2))
	      return exp;

	    new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
	    break;

	  case 4:
	    op0 = substitute_ssa_name (TREE_OPERAND (exp, 0), f, r);
	    op1 = substitute_ssa_name (TREE_OPERAND (exp, 1), f, r);
	    op2 = substitute_ssa_name (TREE_OPERAND (exp, 2), f, r);
	    op3 = substitute_ssa_name (TREE_OPERAND (exp, 3), f, r);

	    if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
		&& op2 == TREE_OPERAND (exp, 2)
		&& op3 == TREE_OPERAND (exp, 3))
	      return exp;

	    new_tree
	      = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
	    break;

	  default:
	    gcc_unreachable ();
	  }
	break;

      case tcc_vl_exp:
      default:
	gcc_unreachable ();
      }

  TREE_READONLY (new_tree) |= TREE_READONLY (exp);

  if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
    TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);

  return new_tree;
}

/* Rename all the operands of NEW_EXPR by recursively visiting each operand.  */

tree translate_isl_ast_to_gimple::
rename_all_uses (tree new_expr, basic_block new_bb, basic_block old_bb)
{
  auto_vec<tree, 2> ssa_names;
  collect_all_ssa_names (new_expr, &ssa_names);
  tree t;
  int i;
  FOR_EACH_VEC_ELT (ssa_names, i, t)
    if (tree r = get_rename (new_bb, t, old_bb, unknown_phi))
      new_expr = substitute_ssa_name (new_expr, t, r);

  return new_expr;
}

/* For ops which are scev_analyzeable, we can regenerate a new name from its
   scalar evolution around LOOP.  */

tree translate_isl_ast_to_gimple::
get_rename_from_scev (tree old_name, gimple_seq *stmts, loop_p loop,
		      basic_block new_bb, basic_block old_bb,
		      vec<tree> iv_map)
{
  tree scev = scalar_evolution_in_region (region->region, loop, old_name);

  /* At this point we should know the exact scev for each
     scalar SSA_NAME used in the scop: all the other scalar
     SSA_NAMEs should have been translated out of SSA using
     arrays with one element.  */
  tree new_expr;
  if (chrec_contains_undetermined (scev))
    {
      codegen_error = true;
      return build_zero_cst (TREE_TYPE (old_name));
    }

  new_expr = chrec_apply_map (scev, iv_map);

  /* The apply should produce an expression tree containing
     the uses of the new induction variables.  We should be
     able to use new_expr instead of the old_name in the newly
     generated loop nest.  */
  if (chrec_contains_undetermined (new_expr)
      || tree_contains_chrecs (new_expr, NULL))
    {
      codegen_error = true;
      return build_zero_cst (TREE_TYPE (old_name));
    }

  if (TREE_CODE (new_expr) == SSA_NAME)
    {
      basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (new_expr));
      if (bb && !dominated_by_p (CDI_DOMINATORS, new_bb, bb))
	{
	  codegen_error = true;
	  return build_zero_cst (TREE_TYPE (old_name));
	}
    }

  new_expr = rename_all_uses (new_expr, new_bb, old_bb);

  /* We check all the operands and all of them should dominate the use at
     new_expr.  */
  auto_vec <tree, 2> new_ssa_names;
  collect_all_ssa_names (new_expr, &new_ssa_names);
  int i;
  tree new_ssa_name;
  FOR_EACH_VEC_ELT (new_ssa_names, i, new_ssa_name)
    {
      if (TREE_CODE (new_ssa_name) == SSA_NAME)
	{
	  basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (new_ssa_name));
	  if (bb && !dominated_by_p (CDI_DOMINATORS, new_bb, bb))
	    {
	      codegen_error = true;
	      return build_zero_cst (TREE_TYPE (old_name));
	    }
	}
    }

  /* Replace the old_name with the new_expr.  */
  return force_gimple_operand (unshare_expr (new_expr), stmts,
			       true, NULL_TREE);
}

/* Renames the scalar uses of the statement COPY, using the
   substitution map RENAME_MAP, inserting the gimplification code at
   GSI_TGT, for the translation REGION, with the original copied
   statement in LOOP, and using the induction variable renaming map
   IV_MAP.  Returns true when something has been renamed.  */

bool translate_isl_ast_to_gimple::
rename_uses (gimple *copy, gimple_stmt_iterator *gsi_tgt, basic_block old_bb,
	     loop_p loop, vec<tree> iv_map)
{
  bool changed = false;

  if (is_gimple_debug (copy))
    {
      if (gimple_debug_bind_p (copy))
	gimple_debug_bind_reset_value (copy);
      else if (gimple_debug_source_bind_p (copy))
	return false;
      else
	gcc_unreachable ();

      return false;
    }

  if (dump_file)
    {
      fprintf (dump_file, "[codegen] renaming uses of stmt: ");
      print_gimple_stmt (dump_file, copy, 0);
    }

  use_operand_p use_p;
  ssa_op_iter op_iter;
  FOR_EACH_SSA_USE_OPERAND (use_p, copy, op_iter, SSA_OP_USE)
    {
      tree old_name = USE_FROM_PTR (use_p);

      if (dump_file)
	{
	  fprintf (dump_file, "[codegen] renaming old_name = ");
	  print_generic_expr (dump_file, old_name);
	  fprintf (dump_file, "\n");
	}

      if (TREE_CODE (old_name) != SSA_NAME
	  || SSA_NAME_IS_DEFAULT_DEF (old_name))
	continue;

      changed = true;
      tree new_expr = get_rename (gsi_tgt->bb, old_name,
				  old_bb, unknown_phi);

      if (new_expr)
	{
	  tree type_old_name = TREE_TYPE (old_name);
	  tree type_new_expr = TREE_TYPE (new_expr);

	  if (dump_file)
	    {
	      fprintf (dump_file, "[codegen] from rename_map: new_name = ");
	      print_generic_expr (dump_file, new_expr);
	      fprintf (dump_file, "\n");
	    }

	  if (type_old_name != type_new_expr
	      || TREE_CODE (new_expr) != SSA_NAME)
	    {
	      tree var = create_tmp_var (type_old_name, "var");

	      if (!useless_type_conversion_p (type_old_name, type_new_expr))
		new_expr = fold_convert (type_old_name, new_expr);

	      gimple_seq stmts;
	      new_expr = force_gimple_operand (new_expr, &stmts, true, var);
	      gsi_insert_earliest (stmts);
	    }

	  replace_exp (use_p, new_expr);
	  continue;
	}

      gimple_seq stmts;
      new_expr = get_rename_from_scev (old_name, &stmts, loop, gimple_bb (copy),
				       old_bb, iv_map);
      if (!new_expr || codegen_error_p ())
	return false;

      if (dump_file)
	{
	  fprintf (dump_file, "[codegen] not in rename map, scev: ");
	  print_generic_expr (dump_file, new_expr);
	  fprintf (dump_file, "\n");
	}

      gsi_insert_earliest (stmts);
      replace_exp (use_p, new_expr);

      if (TREE_CODE (new_expr) == INTEGER_CST
	  && is_gimple_assign (copy))
	{
	  tree rhs = gimple_assign_rhs1 (copy);

	  if (TREE_CODE (rhs) == ADDR_EXPR)
	    recompute_tree_invariant_for_addr_expr (rhs);
	}

      set_rename (old_name, new_expr);
    }

  return changed;
}

/* Returns a basic block that could correspond to where a constant was defined
   in the original code.  In the original code OLD_BB had the definition, we
   need to find which basic block out of the copies of old_bb, in the new
   region, should a definition correspond to if it has to reach BB.  */

basic_block translate_isl_ast_to_gimple::
get_def_bb_for_const (basic_block bb, basic_block old_bb) const
{
  vec <basic_block> *bbs = region->copied_bb_map->get (old_bb);

  if (!bbs || bbs->is_empty ())
    return NULL;

  if (1 == bbs->length ())
    return (*bbs)[0];

  int i;
  basic_block b1 = NULL, b2;
  FOR_EACH_VEC_ELT (*bbs, i, b2)
    {
      if (b2 == bb)
	return bb;

      /* BB and B2 are in two unrelated if-clauses.  */
      if (!dominated_by_p (CDI_DOMINATORS, bb, b2))
	continue;

      /* Compute the nearest dominator.  */
      if (!b1 || dominated_by_p (CDI_DOMINATORS, b2, b1))
	b1 = b2;
    }

  return b1;
}

/* Get the new name of OP (from OLD_BB) to be used in NEW_BB.  PHI_KIND
   determines the kind of phi node.  */

tree translate_isl_ast_to_gimple::
get_new_name (basic_block new_bb, tree op,
	      basic_block old_bb, phi_node_kind phi_kind) const
{
  /* For constants the names are the same.  */
  if (TREE_CODE (op) != SSA_NAME)
    return op;

  return get_rename (new_bb, op, old_bb, phi_kind);
}

/* Return a debug location for OP.  */

static location_t
get_loc (tree op)
{
  location_t loc = UNKNOWN_LOCATION;

  if (TREE_CODE (op) == SSA_NAME)
    loc = gimple_location (SSA_NAME_DEF_STMT (op));
  return loc;
}

/* Returns the incoming edges of basic_block BB in the pair.  The first edge is
   the init edge (from outside the loop) and the second one is the back edge
   from the same loop.  */

std::pair<edge, edge>
get_edges (basic_block bb)
{
  std::pair<edge, edge> edges;
  edge e;
  edge_iterator ei;
  FOR_EACH_EDGE (e, ei, bb->preds)
    if (bb->loop_father != e->src->loop_father)
      edges.first = e;
    else
      edges.second = e;
  return edges;
}

/* Copy the PHI arguments from OLD_PHI to the NEW_PHI.  The arguments to NEW_PHI
   must be found unless they can be POSTPONEd for later.  */

bool translate_isl_ast_to_gimple::
copy_loop_phi_args (gphi *old_phi, init_back_edge_pair_t &ibp_old_bb,
		    gphi *new_phi, init_back_edge_pair_t &ibp_new_bb,
		    bool postpone)
{
  gcc_assert (gimple_phi_num_args (old_phi) == gimple_phi_num_args (new_phi));

  basic_block new_bb = gimple_bb (new_phi);
  for (unsigned i = 0; i < gimple_phi_num_args (old_phi); i++)
    {
      edge e;
      if (gimple_phi_arg_edge (old_phi, i) == ibp_old_bb.first)
	e = ibp_new_bb.first;
      else
	e = ibp_new_bb.second;

      tree old_name = gimple_phi_arg_def (old_phi, i);
      tree new_name = get_new_name (new_bb, old_name,
				    gimple_bb (old_phi), loop_phi);
      if (new_name)
	{
	  add_phi_arg (new_phi, new_name, e, get_loc (old_name));
	  continue;
	}

      gimple *old_def_stmt = SSA_NAME_DEF_STMT (old_name);
      if (!old_def_stmt || gimple_code (old_def_stmt) == GIMPLE_NOP)
	/* If the phi arg was a function arg, or wasn't defined, just use the
	   old name.  */
	add_phi_arg (new_phi, old_name, e, get_loc (old_name));
      else if (postpone)
	{
	  /* Postpone code gen for later for those back-edges we don't have the
	     names yet.  */
	  region->incomplete_phis.safe_push (std::make_pair (old_phi, new_phi));
	  if (dump_file)
	    fprintf (dump_file, "[codegen] postpone loop phi nodes.\n");
	}
      else
	/* Either we should add the arg to phi or, we should postpone.  */
	return false;
    }
  return true;
}

/* Copy loop phi nodes from BB to NEW_BB.  */

bool translate_isl_ast_to_gimple::
copy_loop_phi_nodes (basic_block bb, basic_block new_bb)
{
  if (dump_file)
    fprintf (dump_file, "[codegen] copying loop phi nodes in bb_%d.\n",
	     new_bb->index);

  /* Loop phi nodes should have only two arguments.  */
  gcc_assert (2 == EDGE_COUNT (bb->preds));

  /* First edge is the init edge and second is the back edge.  */
  init_back_edge_pair_t ibp_old_bb = get_edges (bb);

  /* First edge is the init edge and second is the back edge.  */
  init_back_edge_pair_t ibp_new_bb = get_edges (new_bb);

  for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi);
       gsi_next (&psi))
    {
      gphi *phi = psi.phi ();
      tree res = gimple_phi_result (phi);
      if (virtual_operand_p (res))
	continue;
      if (is_gimple_reg (res) && scev_analyzable_p (res, region->region))
	continue;

      gphi *new_phi = create_phi_node (NULL_TREE, new_bb);
      tree new_res = create_new_def_for (res, new_phi,
					 gimple_phi_result_ptr (new_phi));
      set_rename (res, new_res);
      codegen_error = !copy_loop_phi_args (phi, ibp_old_bb, new_phi,
					   ibp_new_bb, true);
      update_stmt (new_phi);

      if (dump_file)
	{
	  fprintf (dump_file, "[codegen] creating loop-phi node: ");
	  print_gimple_stmt (dump_file, new_phi, 0);
	}
    }

  return true;
}

/* Return the init value of PHI, the value coming from outside the loop.  */

static tree
get_loop_init_value (gphi *phi)
{

  loop_p loop = gimple_bb (phi)->loop_father;

  edge e;
  edge_iterator ei;
  FOR_EACH_EDGE (e, ei, gimple_bb (phi)->preds)
    if (e->src->loop_father != loop)
      return gimple_phi_arg_def (phi, e->dest_idx);

  return NULL_TREE;
}

/* Find the init value (the value which comes from outside the loop), of one of
   the operands of DEF which is defined by a loop phi.  */

static tree
find_init_value (gimple *def)
{
  if (gimple_code (def) == GIMPLE_PHI)
    return get_loop_init_value (as_a <gphi*> (def));

  if (gimple_vuse (def))
    return NULL_TREE;

  ssa_op_iter iter;
  use_operand_p use_p;
  FOR_EACH_SSA_USE_OPERAND (use_p, def, iter, SSA_OP_USE)
    {
      tree use = USE_FROM_PTR (use_p);
      if (TREE_CODE (use) == SSA_NAME)
	{
	  if (tree res = find_init_value (SSA_NAME_DEF_STMT (use)))
	    return res;
	}
    }

  return NULL_TREE;
}

/* Return the init value, the value coming from outside the loop.  */

static tree
find_init_value_close_phi (gphi *phi)
{
  gcc_assert (gimple_phi_num_args (phi) == 1);
  tree use_arg = gimple_phi_arg_def (phi, 0);
  gimple *def = SSA_NAME_DEF_STMT (use_arg);
  return find_init_value (def);
}


tree translate_isl_ast_to_gimple::
add_close_phis_to_outer_loops (tree last_merge_name, edge last_e,
			       gimple *old_close_phi)
{
  sese_l &codegen_region = region->if_region->true_region->region;
  gimple *stmt = SSA_NAME_DEF_STMT (last_merge_name);
  basic_block bb = gimple_bb (stmt);
  if (!bb_in_sese_p (bb, codegen_region))
    return last_merge_name;

  loop_p loop = bb->loop_father;
  if (!loop_in_sese_p (loop, codegen_region))
    return last_merge_name;

  edge e = single_exit (loop);

  if (dominated_by_p (CDI_DOMINATORS, e->dest, last_e->src))
    return last_merge_name;

  tree old_name = gimple_phi_arg_def (old_close_phi, 0);
  tree old_close_phi_name = gimple_phi_result (old_close_phi);

  bb = e->dest;
  if (!bb_contains_loop_close_phi_nodes (bb) || !single_succ_p (bb))
    bb = split_edge (e);

  gphi *close_phi = create_phi_node (NULL_TREE, bb);
  tree res = create_new_def_for (last_merge_name, close_phi,
				 gimple_phi_result_ptr (close_phi));
  set_rename (old_close_phi_name, res);
  add_phi_arg (close_phi, last_merge_name, e, get_loc (old_name));
  last_merge_name = res;

  return add_close_phis_to_outer_loops (last_merge_name, last_e, old_close_phi);
}

/* Add phi nodes to all merge points of all the diamonds enclosing the loop of
   the close phi node PHI.  */

bool translate_isl_ast_to_gimple::
add_close_phis_to_merge_points (gphi *old_close_phi, gphi *new_close_phi,
				tree default_value)
{
  sese_l &codegen_region = region->if_region->true_region->region;
  basic_block default_value_bb = get_entry_bb (codegen_region);
  if (SSA_NAME == TREE_CODE (default_value))
    {
      gimple *stmt = SSA_NAME_DEF_STMT (default_value);
      if (!stmt || gimple_code (stmt) == GIMPLE_NOP)
	return false;
      default_value_bb = gimple_bb (stmt);
    }

  basic_block new_close_phi_bb = gimple_bb (new_close_phi);

  tree old_close_phi_name = gimple_phi_result (old_close_phi);
  tree new_close_phi_name = gimple_phi_result (new_close_phi);
  tree last_merge_name = new_close_phi_name;
  tree old_name = gimple_phi_arg_def (old_close_phi, 0);

  int i;
  edge merge_e;
  FOR_EACH_VEC_ELT_REVERSE (merge_points, i, merge_e)
    {
      basic_block new_merge_bb = merge_e->src;
      if (!dominated_by_p (CDI_DOMINATORS, new_merge_bb, default_value_bb))
	continue;

      last_merge_name = add_close_phis_to_outer_loops (last_merge_name, merge_e,
						       old_close_phi);

      gphi *merge_phi = create_phi_node (NULL_TREE, new_merge_bb);
      tree merge_res = create_new_def_for (old_close_phi_name, merge_phi,
					   gimple_phi_result_ptr (merge_phi));
      set_rename (old_close_phi_name, merge_res);

      edge from_loop = NULL, from_default_value = NULL;
      edge e;
      edge_iterator ei;
      FOR_EACH_EDGE (e, ei, new_merge_bb->preds)
	if (dominated_by_p (CDI_DOMINATORS, e->src, new_close_phi_bb))
	  from_loop = e;
	else
	  from_default_value = e;

      /* Because CDI_POST_DOMINATORS are not updated, we only rely on
	 CDI_DOMINATORS, which may not handle all cases where new_close_phi_bb
	 is contained in another condition.  */
      if (!from_default_value || !from_loop)
	return false;

      add_phi_arg (merge_phi, last_merge_name, from_loop, get_loc (old_name));
      add_phi_arg (merge_phi, default_value, from_default_value, get_loc (old_name));

      if (dump_file)
	{
	  fprintf (dump_file, "[codegen] Adding guard-phi: ");
	  print_gimple_stmt (dump_file, merge_phi, 0);
	}

      update_stmt (merge_phi);
      last_merge_name = merge_res;
    }

  return true;
}

/* Copy all the loop-close phi args from BB to NEW_BB.  */

bool translate_isl_ast_to_gimple::
copy_loop_close_phi_args (basic_block old_bb, basic_block new_bb,
			  vec<tree> iv_map, bool postpone)
{
  for (gphi_iterator psi = gsi_start_phis (old_bb); !gsi_end_p (psi);
       gsi_next (&psi))
    {
      gphi *old_close_phi = psi.phi ();
      tree res = gimple_phi_result (old_close_phi);
      if (virtual_operand_p (res))
	continue;

      gphi *new_close_phi = create_phi_node (NULL_TREE, new_bb);
      tree new_res = create_new_def_for (res, new_close_phi,
					 gimple_phi_result_ptr (new_close_phi));
      set_rename (res, new_res);

      tree old_name = gimple_phi_arg_def (old_close_phi, 0);
      tree new_name;
      if (is_gimple_reg (res) && scev_analyzable_p (res, region->region))
	{
	  gimple_seq stmts;
	  new_name = get_rename_from_scev (old_name, &stmts,
					   old_bb->loop_father,
					   new_bb, old_bb, iv_map);
	  if (! codegen_error_p ())
	    gsi_insert_earliest (stmts);
	}
      else
	new_name = get_new_name (new_bb, old_name, old_bb, close_phi);

      /* Predecessor basic blocks of a loop close phi should have been code
	 generated before.  FIXME: This is fixable by merging PHIs from inner
	 loops as well.  See: gfortran.dg/graphite/interchange-3.f90.  */
      if (!new_name || codegen_error_p ())
	return false;

      add_phi_arg (new_close_phi, new_name, single_pred_edge (new_bb),
		   get_loc (old_name));
      if (dump_file)
	{
	  fprintf (dump_file, "[codegen] Adding loop close phi: ");
	  print_gimple_stmt (dump_file, new_close_phi, 0);
	}

      update_stmt (new_close_phi);

      /* When there is no loop guard around this codegenerated loop, there is no
	 need to collect the close-phi arg.  */
      if (merge_points.is_empty ())
	continue;

      /* Add a PHI in the succ_new_bb for each close phi of the loop.  */
      tree default_value = find_init_value_close_phi (new_close_phi);

      /* A close phi must come from a loop-phi having a default value.  */
      if (!default_value)
	{
	  if (!postpone)
	    return false;

	  region->incomplete_phis.safe_push (std::make_pair (old_close_phi,
							     new_close_phi));
	  if (dump_file)
	    {
	      fprintf (dump_file, "[codegen] postpone close phi nodes: ");
	      print_gimple_stmt (dump_file, new_close_phi, 0);
	    }
	  continue;
	}

      if (!add_close_phis_to_merge_points (old_close_phi, new_close_phi,
					   default_value))
	return false;
    }

  return true;
}

/* Copy loop close phi nodes from BB to NEW_BB.  */

bool translate_isl_ast_to_gimple::
copy_loop_close_phi_nodes (basic_block old_bb, basic_block new_bb,
			   vec<tree> iv_map)
{
  if (dump_file)
    fprintf (dump_file, "[codegen] copying loop close phi nodes in bb_%d.\n",
	     new_bb->index);
  /* Loop close phi nodes should have only one argument.  */
  gcc_assert (1 == EDGE_COUNT (old_bb->preds));

  return copy_loop_close_phi_args (old_bb, new_bb, iv_map, true);
}


/* Add NEW_NAME as the ARGNUM-th arg of NEW_PHI which is in NEW_BB.
   DOMINATING_PRED is the predecessor basic block of OLD_BB which dominates the
   other pred of OLD_BB as well.  If no such basic block exists then it is NULL.
   NON_DOMINATING_PRED is a pred which does not dominate OLD_BB, it cannot be
   NULL.

   Case1: OLD_BB->preds {BB1, BB2} and BB1 does not dominate BB2 and vice versa.
   In this case DOMINATING_PRED = NULL.

   Case2: OLD_BB->preds {BB1, BB2} and BB1 dominates BB2.

   Returns true on successful copy of the args, false otherwise.  */

bool translate_isl_ast_to_gimple::
add_phi_arg_for_new_expr (tree old_phi_args[2], tree new_phi_args[2],
			  edge old_bb_dominating_edge,
			  edge old_bb_non_dominating_edge,
			  gphi *phi, gphi *new_phi,
			  basic_block new_bb)
{
  basic_block def_pred[2] = { NULL, NULL };
  int not_found_bb_index = -1;
  for (int i = 0; i < 2; i++)
    {
      /* If the corresponding def_bb could not be found the entry will be
	 NULL.  */
      if (TREE_CODE (old_phi_args[i]) == INTEGER_CST)
	def_pred[i] = get_def_bb_for_const (new_bb,
					    gimple_phi_arg_edge (phi, i)->src);
      else if (new_phi_args[i] && (TREE_CODE (new_phi_args[i]) == SSA_NAME))
	def_pred[i] = gimple_bb (SSA_NAME_DEF_STMT (new_phi_args[i]));

      if (!def_pred[i])
	{
	  /* When non are available bail out.  */
	  if (not_found_bb_index != -1)
	    return false;
	  not_found_bb_index = i;
	}
    }

  /* Here we are pattern matching on the structure of CFG w.r.t. old one.  */
  if (old_bb_dominating_edge)
    {
      if (not_found_bb_index != -1)
	return false;

      basic_block new_pred1 = (*new_bb->preds)[0]->src;
      basic_block new_pred2 = (*new_bb->preds)[1]->src;
      vec <basic_block> *bbs
	= region->copied_bb_map->get (old_bb_non_dominating_edge->src);

      /* Could not find a mapping.  */
      if (!bbs)
	return false;

      basic_block new_pred = NULL;
      basic_block b;
      int i;
      FOR_EACH_VEC_ELT (*bbs, i, b)
	{
	  if (dominated_by_p (CDI_DOMINATORS, new_pred1, b))
	    {
	      /* FIXME: If we have already found new_pred then we have to
		 disambiguate, bail out for now.  */
	      if (new_pred)
		return false;
	      new_pred = new_pred1;
	    }
	  if (dominated_by_p (CDI_DOMINATORS, new_pred2, b))
	    {
	      /* FIXME: If we have already found new_pred then we have to either
		 it dominates both or we have to disambiguate, bail out.  */
	      if (new_pred)
		return false;
	      new_pred = new_pred2;
	    }
	}

      if (!new_pred)
	return false;

      edge new_non_dominating_edge = find_edge (new_pred, new_bb);
      gcc_assert (new_non_dominating_edge);
      /* FIXME: Validate each args just like in loop-phis.  */
      /* By the process of elimination we first insert insert phi-edge for
	 non-dominating pred which is computed above and then we insert the
	 remaining one.  */
      int inserted_edge = 0;
      for (; inserted_edge < 2; inserted_edge++)
	{
	  edge new_bb_pred_edge = gimple_phi_arg_edge (new_phi, inserted_edge);
	  if (new_non_dominating_edge == new_bb_pred_edge)
	    {
	      add_phi_arg (new_phi, new_phi_args[inserted_edge],
			   new_non_dominating_edge,
			   get_loc (old_phi_args[inserted_edge]));
	      break;
	    }
	}
      if (inserted_edge == 2)
	return false;

      int edge_dominating = inserted_edge == 0 ? 1 : 0;

      edge new_dominating_edge = NULL;
      for (inserted_edge = 0; inserted_edge < 2; inserted_edge++)
	{
	  edge e = gimple_phi_arg_edge (new_phi, inserted_edge);
	  if (e != new_non_dominating_edge)
	    {
	      new_dominating_edge = e;
	      add_phi_arg (new_phi, new_phi_args[edge_dominating],
			   new_dominating_edge,
			   get_loc (old_phi_args[inserted_edge]));
	      break;
	    }
	}
      gcc_assert (new_dominating_edge);
    }
  else
    {
      /* Classic diamond structure: both edges are non-dominating.  We need to
	 find one unique edge then the other can be found be elimination.  If
	 any definition (def_pred) dominates both the preds of new_bb then we
	 bail out.  Entries of def_pred maybe NULL, in that case we must
	 uniquely find pred with help of only one entry.  */
      edge new_e[2] = { NULL, NULL };
      for (int i = 0; i < 2; i++)
	{
	  edge e;
	  edge_iterator ei;
	  FOR_EACH_EDGE (e, ei, new_bb->preds)
	    if (def_pred[i]
		&& dominated_by_p (CDI_DOMINATORS, e->src, def_pred[i]))
	      {
		if (new_e[i])
		  /* We do not know how to handle the case when def_pred
		     dominates more than a predecessor.  */
		  return false;
		new_e[i] = e;
	      }
	}

      gcc_assert (new_e[0] || new_e[1]);

      /* Find the other edge by process of elimination.  */
      if (not_found_bb_index != -1)
	{
	  gcc_assert (!new_e[not_found_bb_index]);
	  int found_bb_index = not_found_bb_index == 1 ? 0 : 1;
	  edge e;
	  edge_iterator ei;
	  FOR_EACH_EDGE (e, ei, new_bb->preds)
	    {
	      if (new_e[found_bb_index] == e)
		continue;
	      new_e[not_found_bb_index] = e;
	    }
	}

      /* Add edges to phi args.  */
      for (int i = 0; i < 2; i++)
	add_phi_arg (new_phi, new_phi_args[i], new_e[i],
		     get_loc (old_phi_args[i]));
    }

  return true;
}

/* Copy the arguments of cond-phi node PHI, to NEW_PHI in the codegenerated
   region.  If postpone is true and it isn't possible to copy any arg of PHI,
   the PHI is added to the REGION->INCOMPLETE_PHIS to be codegenerated later.
   Returns false if the copying was unsuccessful.  */

bool translate_isl_ast_to_gimple::
copy_cond_phi_args (gphi *phi, gphi *new_phi, vec<tree> iv_map, bool postpone)
{
  if (dump_file)
    fprintf (dump_file, "[codegen] copying cond phi args.\n");
  gcc_assert (2 == gimple_phi_num_args (phi));

  basic_block new_bb = gimple_bb (new_phi);
  loop_p loop = gimple_bb (phi)->loop_father;

  basic_block old_bb = gimple_bb (phi);
  edge old_bb_non_dominating_edge = NULL, old_bb_dominating_edge = NULL;

  edge e;
  edge_iterator ei;
  FOR_EACH_EDGE (e, ei, old_bb->preds)
    if (!dominated_by_p (CDI_DOMINATORS, old_bb, e->src))
      old_bb_non_dominating_edge = e;
    else
      old_bb_dominating_edge = e;

  gcc_assert (!dominated_by_p (CDI_DOMINATORS, old_bb,
			       old_bb_non_dominating_edge->src));

  tree new_phi_args[2];
  tree old_phi_args[2];

  for (unsigned i = 0; i < gimple_phi_num_args (phi); i++)
    {
      tree old_name = gimple_phi_arg_def (phi, i);
      tree new_name = get_new_name (new_bb, old_name, old_bb, cond_phi);
      old_phi_args[i] = old_name;
      if (new_name)
	{
	  new_phi_args [i] = new_name;
	  continue;
	}

      /* If the phi-arg was a parameter.  */
      if (vec_find (region->params, old_name) != -1)
	{
	  new_phi_args [i] = old_name;
	  if (dump_file)
	    {
	      fprintf (dump_file,
		       "[codegen] parameter argument to phi, new_expr: ");
	      print_generic_expr (dump_file, new_phi_args[i]);
	      fprintf (dump_file, "\n");
	    }
	  continue;
	}

      gimple *old_def_stmt = SSA_NAME_DEF_STMT (old_name);
      if (!old_def_stmt || gimple_code (old_def_stmt) == GIMPLE_NOP)
	/* FIXME: If the phi arg was a function arg, or wasn't defined, just use
	   the old name.  */
	return false;

      if (postpone)
	{
	  /* If the phi-arg is scev-analyzeable but only in the first stage.  */
	  if (is_gimple_reg (old_name)
	      && scev_analyzable_p (old_name, region->region))
	    {
	      gimple_seq stmts;
	      tree new_expr = get_rename_from_scev (old_name, &stmts, loop,
						    new_bb, old_bb, iv_map);
	      if (codegen_error_p ())
		return false;

	      gcc_assert (new_expr);
	      if (dump_file)
		{
		  fprintf (dump_file,
			   "[codegen] scev analyzeable, new_expr: ");
		  print_generic_expr (dump_file, new_expr);
		  fprintf (dump_file, "\n");
		}
	      gsi_insert_earliest (stmts);
	      new_phi_args[i] = new_expr;
	      continue;
	    }

	  /* Postpone code gen for later for back-edges.  */
	  region->incomplete_phis.safe_push (std::make_pair (phi, new_phi));

	  if (dump_file)
	    {
	      fprintf (dump_file, "[codegen] postpone cond phi nodes: ");
	      print_gimple_stmt (dump_file, new_phi, 0);
	    }

	  new_phi_args [i] = NULL_TREE;
	  continue;
	}
      else
	/* Either we should add the arg to phi or, we should postpone.  */
	return false;
    }

  /* If none of the args have been determined in the first stage then wait until
     later.  */
  if (postpone && !new_phi_args[0] && !new_phi_args[1])
    return true;

  return add_phi_arg_for_new_expr (old_phi_args, new_phi_args,
				   old_bb_dominating_edge,
				   old_bb_non_dominating_edge,
				   phi, new_phi, new_bb);
}

/* Copy cond phi nodes from BB to NEW_BB.  A cond-phi node is a basic block
   containing phi nodes coming from two predecessors, and none of them are back
   edges.  */

bool translate_isl_ast_to_gimple::
copy_cond_phi_nodes (basic_block bb, basic_block new_bb, vec<tree> iv_map)
{

  gcc_assert (!bb_contains_loop_close_phi_nodes (bb));

  /* TODO: Handle cond phi nodes with more than 2 predecessors.  */
  if (EDGE_COUNT (bb->preds) != 2)
    return false;

  if (dump_file)
    fprintf (dump_file, "[codegen] copying cond phi nodes in bb_%d.\n",
	     new_bb->index);

  for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi);
       gsi_next (&psi))
    {
      gphi *phi = psi.phi ();
      tree res = gimple_phi_result (phi);
      if (virtual_operand_p (res))
	continue;

      gphi *new_phi = create_phi_node (NULL_TREE, new_bb);
      tree new_res = create_new_def_for (res, new_phi,
					 gimple_phi_result_ptr (new_phi));
      set_rename (res, new_res);

      if (!copy_cond_phi_args (phi, new_phi, iv_map, true))
	return false;

      update_stmt (new_phi);
    }

  return true;
}

/* Return true if STMT should be copied from region to the new code-generated
   region.  LABELs, CONDITIONS, induction-variables and region parameters need
   not be copied.  */

static bool
should_copy_to_new_region (gimple *stmt, sese_info_p region)
{
  /* Do not copy labels or conditions.  */
  if (gimple_code (stmt) == GIMPLE_LABEL
      || gimple_code (stmt) == GIMPLE_COND)
    return false;

  tree lhs;
  /* Do not copy induction variables.  */
  if (is_gimple_assign (stmt)
      && (lhs = gimple_assign_lhs (stmt))
      && TREE_CODE (lhs) == SSA_NAME
      && is_gimple_reg (lhs)
      && scev_analyzable_p (lhs, region->region))
    return false;

  /* Do not copy parameters that have been generated in the header of the
     scop.  */
  if (is_gimple_assign (stmt)
      && (lhs = gimple_assign_lhs (stmt))
      && TREE_CODE (lhs) == SSA_NAME
      && region->parameter_rename_map->get(lhs))
    return false;

  return true;
}

/* Create new names for all the definitions created by COPY and add replacement
   mappings for each new name.  */

void translate_isl_ast_to_gimple::
set_rename_for_each_def (gimple *stmt)
{
  def_operand_p def_p;
  ssa_op_iter op_iter;
  FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, op_iter, SSA_OP_ALL_DEFS)
    {
      tree old_name = DEF_FROM_PTR (def_p);
      tree new_name = create_new_def_for (old_name, stmt, def_p);
      set_rename (old_name, new_name);
    }
}

/* Duplicates the statements of basic block BB into basic block NEW_BB
   and compute the new induction variables according to the IV_MAP.  */

bool translate_isl_ast_to_gimple::
graphite_copy_stmts_from_block (basic_block bb, basic_block new_bb,
				vec<tree> iv_map)
{
  /* Iterator poining to the place where new statement (s) will be inserted.  */
  gimple_stmt_iterator gsi_tgt = gsi_last_bb (new_bb);

  for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
       gsi_next (&gsi))
    {
      gimple *stmt = gsi_stmt (gsi);
      if (!should_copy_to_new_region (stmt, region))
	continue;

      /* Create a new copy of STMT and duplicate STMT's virtual
	 operands.  */
      gimple *copy = gimple_copy (stmt);
      gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);

      if (dump_file)
	{
	  fprintf (dump_file, "[codegen] inserting statement: ");
	  print_gimple_stmt (dump_file, copy, 0);
	}

      maybe_duplicate_eh_stmt (copy, stmt);
      gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);

      /* Crete new names for each def in the copied stmt.  */
      set_rename_for_each_def (copy);

      loop_p loop = bb->loop_father;
      if (rename_uses (copy, &gsi_tgt, bb, loop, iv_map))
	{
	  fold_stmt_inplace (&gsi_tgt);
	  gcc_assert (gsi_stmt (gsi_tgt) == copy);
	}

      if (codegen_error_p ())
	return false;

      /* For each SSA_NAME in the parameter_rename_map rename their usage.  */
      ssa_op_iter iter;
      use_operand_p use_p;
      if (!is_gimple_debug (copy))
	FOR_EACH_SSA_USE_OPERAND (use_p, copy, iter, SSA_OP_USE)
	  {
	    tree old_name = USE_FROM_PTR (use_p);

	    if (TREE_CODE (old_name) != SSA_NAME
		|| SSA_NAME_IS_DEFAULT_DEF (old_name))
	      continue;

	    tree *new_expr = region->parameter_rename_map->get (old_name);
	    if (!new_expr)
	      continue;

	    replace_exp (use_p, *new_expr);
	  }

      update_stmt (copy);
    }

  return true;
}


/* Given a basic block containing close-phi it returns the new basic block where
   to insert a copy of the close-phi nodes.  All the uses in close phis should
   come from a single loop otherwise it returns NULL.  */

edge translate_isl_ast_to_gimple::
edge_for_new_close_phis (basic_block bb)
{
  /* Make sure that NEW_BB is the new_loop->exit->dest.  We find the definition
     of close phi in the original code and then find the mapping of basic block
     defining that variable.  If there are multiple close-phis and they are
     defined in different loops (in the original or in the new code) because of
     loop splitting, then we bail out.  */
  loop_p new_loop = NULL;
  for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi);
       gsi_next (&psi))
    {
      gphi *phi = psi.phi ();
      tree name = gimple_phi_arg_def (phi, 0);
      basic_block old_loop_bb = gimple_bb (SSA_NAME_DEF_STMT (name));

      vec <basic_block> *bbs = region->copied_bb_map->get (old_loop_bb);
      if (!bbs || bbs->length () != 1)
	/* This is one of the places which shows preserving original structure
	   is not always possible, as we may need to insert close PHI for a loop
	   where the latch does not have any mapping, or the mapping is
	   ambiguous.  */
	return NULL;

      if (!new_loop)
	new_loop = (*bbs)[0]->loop_father;
      else if (new_loop != (*bbs)[0]->loop_father)
	return NULL;
    }

  if (!new_loop)
    return NULL;

  return single_exit (new_loop);
}

/* Copies BB and includes in the copied BB all the statements that can
   be reached following the use-def chains from the memory accesses,
   and returns the next edge following this new block.  */

edge translate_isl_ast_to_gimple::
copy_bb_and_scalar_dependences (basic_block bb, edge next_e, vec<tree> iv_map)
{
  int num_phis = number_of_phi_nodes (bb);

  if (region->copied_bb_map->get (bb))
    {
      /* FIXME: we should be able to handle phi nodes with args coming from
	 outside the region.  */
      if (num_phis)
	{
	  codegen_error = true;
	  return NULL;
	}
    }

  basic_block new_bb = NULL;
  if (bb_contains_loop_close_phi_nodes (bb))
    {
      if (dump_file)
	fprintf (dump_file, "[codegen] bb_%d contains close phi nodes.\n",
		 bb->index);

      edge e = edge_for_new_close_phis (bb);
      if (!e)
	{
	  codegen_error = true;
	  return NULL;
	}

      basic_block phi_bb = e->dest;

      if (!bb_contains_loop_close_phi_nodes (phi_bb) || !single_succ_p (phi_bb))
	phi_bb = split_edge (e);

      gcc_assert (single_pred_edge (phi_bb)->src->loop_father
		  != single_pred_edge (phi_bb)->dest->loop_father);

      if (!copy_loop_close_phi_nodes (bb, phi_bb, iv_map))
	{
	  codegen_error = true;
	  return NULL;
	}

      if (e == next_e)
	new_bb = phi_bb;
      else
	new_bb = split_edge (next_e);
    }
  else
    {
      new_bb = split_edge (next_e);
      if (num_phis > 0 && bb_contains_loop_phi_nodes (bb))
	{
	  basic_block phi_bb = next_e->dest->loop_father->header;

	  /* At this point we are unable to codegenerate by still preserving the SSA
	     structure because maybe the loop is completely unrolled and the PHIs
	     and cross-bb scalar dependencies are untrackable w.r.t. the original
	     code.  See gfortran.dg/graphite/pr29832.f90.  */
	  if (EDGE_COUNT (bb->preds) != EDGE_COUNT (phi_bb->preds))
	    {
	      codegen_error = true;
	      return NULL;
	    }

	  /* In case isl did some loop peeling, like this:

	       S_8(0);
	       for (int c1 = 1; c1 <= 5; c1 += 1) {
	         S_8(c1);
	       }
	       S_8(6);

	     there should be no loop-phi nodes in S_8(0).

	     FIXME: We need to reason about dynamic instances of S_8, i.e., the
	     values of all scalar variables: for the moment we instantiate only
	     SCEV analyzable expressions on the iteration domain, and we need to
	     extend that to reductions that cannot be analyzed by SCEV.  */
	  if (!bb_in_sese_p (phi_bb, region->if_region->true_region->region))
	    {
	      codegen_error = true;
	      return NULL;
	    }

	  if (dump_file)
	    fprintf (dump_file, "[codegen] bb_%d contains loop phi nodes.\n",
		     bb->index);
	  if (!copy_loop_phi_nodes (bb, phi_bb))
	    {
	      codegen_error = true;
	      return NULL;
	    }
	}
      else if (num_phis > 0)
	{
	  if (dump_file)
	    fprintf (dump_file, "[codegen] bb_%d contains cond phi nodes.\n",
		     bb->index);

	  basic_block phi_bb = single_pred (new_bb);
	  loop_p loop_father = new_bb->loop_father;

	  /* Move back until we find the block with two predecessors.  */
	  while (single_pred_p (phi_bb))
	    phi_bb = single_pred_edge (phi_bb)->src;

	  /* If a corresponding merge-point was not found, then abort codegen.  */
	  if (phi_bb->loop_father != loop_father
	      || !bb_in_sese_p (phi_bb, region->if_region->true_region->region)
	      || !copy_cond_phi_nodes (bb, phi_bb, iv_map))
	    {
	      codegen_error = true;
	      return NULL;
	    }
	}
    }

  if (dump_file)
    fprintf (dump_file, "[codegen] copying from bb_%d to bb_%d.\n",
	     bb->index, new_bb->index);

  vec <basic_block> *copied_bbs = region->copied_bb_map->get (bb);
  if (copied_bbs)
    copied_bbs->safe_push (new_bb);
  else
    {
      vec<basic_block> bbs;
      bbs.create (2);
      bbs.safe_push (new_bb);
      region->copied_bb_map->put (bb, bbs);
    }

  if (!graphite_copy_stmts_from_block (bb, new_bb, iv_map))
    {
      codegen_error = true;
      return NULL;
    }

  return single_succ_edge (new_bb);
}

/* Patch the missing arguments of the phi nodes.  */

void translate_isl_ast_to_gimple::
translate_pending_phi_nodes ()
{
  int i;
  phi_rename *rename;
  FOR_EACH_VEC_ELT (region->incomplete_phis, i, rename)
    {
      gphi *old_phi = rename->first;
      gphi *new_phi = rename->second;
      basic_block old_bb = gimple_bb (old_phi);
      basic_block new_bb = gimple_bb (new_phi);

      /* First edge is the init edge and second is the back edge.  */
      init_back_edge_pair_t ibp_old_bb = get_edges (old_bb);
      init_back_edge_pair_t ibp_new_bb = get_edges (new_bb);

      if (dump_file)
	{
	  fprintf (dump_file, "[codegen] translating pending old-phi: ");
	  print_gimple_stmt (dump_file, old_phi, 0);
	}

      auto_vec <tree, 1> iv_map;
      if (bb_contains_loop_phi_nodes (new_bb))
	codegen_error = !copy_loop_phi_args (old_phi, ibp_old_bb, new_phi,
					    ibp_new_bb, false);
      else if (bb_contains_loop_close_phi_nodes (new_bb))
	codegen_error = !copy_loop_close_phi_args (old_bb, new_bb, iv_map, false);
      else
	codegen_error = !copy_cond_phi_args (old_phi, new_phi, iv_map, false);

      if (dump_file)
	{
	  fprintf (dump_file, "[codegen] to new-phi: ");
	  print_gimple_stmt (dump_file, new_phi, 0);
	}
      if (codegen_error_p ())
	return;
    }
}

/* Add isl's parameter identifiers and corresponding trees to ivs_params.  */

void translate_isl_ast_to_gimple::
add_parameters_to_ivs_params (scop_p scop, ivs_params &ip)
{
  sese_info_p region = scop->scop_info;
  unsigned nb_parameters = isl_set_dim (scop->param_context, isl_dim_param);
  gcc_assert (nb_parameters == region->params.length ());
  unsigned i;
  for (i = 0; i < nb_parameters; i++)
    {
      isl_id *tmp_id = isl_set_get_dim_id (scop->param_context,
					   isl_dim_param, i);
      ip[tmp_id] = region->params[i];
    }
}


/* Generates a build, which specifies the constraints on the parameters.  */

__isl_give isl_ast_build *translate_isl_ast_to_gimple::
generate_isl_context (scop_p scop)
{
  isl_set *context_isl = isl_set_params (isl_set_copy (scop->param_context));
  return isl_ast_build_from_context (context_isl);
}

/* This method is executed before the construction of a for node.  */
__isl_give isl_id *
ast_build_before_for (__isl_keep isl_ast_build *build, void *user)
{
  isl_union_map *dependences = (isl_union_map *) user;
  ast_build_info *for_info = XNEW (struct ast_build_info);
  isl_union_map *schedule = isl_ast_build_get_schedule (build);
  isl_space *schedule_space = isl_ast_build_get_schedule_space (build);
  int dimension = isl_space_dim (schedule_space, isl_dim_out);
  for_info->is_parallelizable =
    !carries_deps (schedule, dependences, dimension);
  isl_union_map_free (schedule);
  isl_space_free (schedule_space);
  isl_id *id = isl_id_alloc (isl_ast_build_get_ctx (build), "", for_info);
  return id;
}

/* Generate isl AST from schedule of SCOP.  */

__isl_give isl_ast_node *translate_isl_ast_to_gimple::
scop_to_isl_ast (scop_p scop)
{
  gcc_assert (scop->transformed_schedule);

  /* Set the separate option to reduce control flow overhead.  */
  isl_schedule *schedule = isl_schedule_map_schedule_node_bottom_up
    (isl_schedule_copy (scop->transformed_schedule), set_separate_option, NULL);
  isl_ast_build *context_isl = generate_isl_context (scop);

  if (flag_loop_parallelize_all)
    {
      scop_get_dependences (scop);
      context_isl =
	isl_ast_build_set_before_each_for (context_isl, ast_build_before_for,
					   scop->dependence);
    }

  isl_ast_node *ast_isl = isl_ast_build_node_from_schedule
    (context_isl, schedule);
  isl_ast_build_free (context_isl);
  return ast_isl;
}

/* Copy def from sese REGION to the newly created TO_REGION. TR is defined by
   DEF_STMT. GSI points to entry basic block of the TO_REGION.  */

static void
copy_def (tree tr, gimple *def_stmt, sese_info_p region, sese_info_p to_region,
	  gimple_stmt_iterator *gsi)
{
  if (!defined_in_sese_p (tr, region->region))
    return;

  ssa_op_iter iter;
  use_operand_p use_p;
  FOR_EACH_SSA_USE_OPERAND (use_p, def_stmt, iter, SSA_OP_USE)
    {
      tree use_tr = USE_FROM_PTR (use_p);

      /* Do not copy parameters that have been generated in the header of the
	 scop.  */
      if (region->parameter_rename_map->get(use_tr))
	continue;

      gimple *def_of_use = SSA_NAME_DEF_STMT (use_tr);
      if (!def_of_use)
	continue;

      copy_def (use_tr, def_of_use, region, to_region, gsi);
    }

  gimple *copy = gimple_copy (def_stmt);
  gsi_insert_after (gsi, copy, GSI_NEW_STMT);

  /* Create new names for all the definitions created by COPY and
     add replacement mappings for each new name.  */
  def_operand_p def_p;
  ssa_op_iter op_iter;
  FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
    {
      tree old_name = DEF_FROM_PTR (def_p);
      tree new_name = create_new_def_for (old_name, copy, def_p);
      region->parameter_rename_map->put(old_name, new_name);
    }

  update_stmt (copy);
}

static void
copy_internal_parameters (sese_info_p region, sese_info_p to_region)
{
  /* For all the parameters which definitino is in the if_region->false_region,
     insert code on true_region (if_region->true_region->entry). */

  int i;
  tree tr;
  gimple_stmt_iterator gsi = gsi_start_bb(to_region->region.entry->dest);

  FOR_EACH_VEC_ELT (region->params, i, tr)
    {
      // If def is not in region.
      gimple *def_stmt = SSA_NAME_DEF_STMT (tr);
      if (def_stmt)
	copy_def (tr, def_stmt, region, to_region, &gsi);
    }
}

/* GIMPLE Loop Generator: generates loops in GIMPLE form for the given SCOP.
   Return true if code generation succeeded.  */

bool
graphite_regenerate_ast_isl (scop_p scop)
{
  sese_info_p region = scop->scop_info;
  translate_isl_ast_to_gimple t (region);

  ifsese if_region = NULL;
  isl_ast_node *root_node;
  ivs_params ip;

  timevar_push (TV_GRAPHITE_CODE_GEN);
  t.add_parameters_to_ivs_params (scop, ip);
  root_node = t.scop_to_isl_ast (scop);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "[scheduler] original schedule:\n");
      print_isl_schedule (dump_file, scop->original_schedule);
      fprintf (dump_file, "[scheduler] isl transformed schedule:\n");
      print_isl_schedule (dump_file, scop->transformed_schedule);

      fprintf (dump_file, "[scheduler] original ast:\n");
      print_schedule_ast (dump_file, scop->original_schedule, scop);
      fprintf (dump_file, "[scheduler] AST generated by isl:\n");
      print_isl_ast (dump_file, root_node);
    }

  recompute_all_dominators ();
  graphite_verify ();

  if_region = move_sese_in_condition (region);
  region->if_region = if_region;
  recompute_all_dominators ();

  loop_p context_loop = region->region.entry->src->loop_father;

  /* Copy all the parameters which are defined in the region.  */
  copy_internal_parameters(if_region->false_region, if_region->true_region);

  edge e = single_succ_edge (if_region->true_region->region.entry->dest);
  basic_block bb = split_edge (e);

  /* Update the true_region exit edge.  */
  region->if_region->true_region->region.exit = single_succ_edge (bb);

  t.translate_isl_ast (context_loop, root_node, e, ip);
  if (t.codegen_error_p ())
    {
      if (dump_file)
	fprintf (dump_file, "codegen error: "
		 "reverting back to the original code.\n");
      set_ifsese_condition (if_region, integer_zero_node);
    }
  else
    {
      t.translate_pending_phi_nodes ();
      if (!t.codegen_error_p ())
	{
	  sese_insert_phis_for_liveouts (region,
					 if_region->region->region.exit->src,
					 if_region->false_region->region.exit,
					 if_region->true_region->region.exit);
	  mark_virtual_operands_for_renaming (cfun);
	  update_ssa (TODO_update_ssa);


	  graphite_verify ();
	  scev_reset ();
	  recompute_all_dominators ();
	  graphite_verify ();

	  if (dump_file)
	    fprintf (dump_file, "[codegen] isl AST to Gimple succeeded.\n");
	}
      else
	{
	  if (dump_file)
	    fprintf (dump_file, "[codegen] unsuccessful in translating"
		     " pending phis, reverting back to the original code.\n");
	  set_ifsese_condition (if_region, integer_zero_node);
	}
    }

  free (if_region->true_region);
  free (if_region->region);
  free (if_region);

  ivs_params_clear (ip);
  isl_ast_node_free (root_node);
  timevar_pop (TV_GRAPHITE_CODE_GEN);

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      loop_p loop;
      int num_no_dependency = 0;

      FOR_EACH_LOOP (loop, 0)
	if (loop->can_be_parallel)
	  num_no_dependency++;

      fprintf (dump_file, "%d loops carried no dependency.\n",
	       num_no_dependency);
    }

  return !t.codegen_error_p ();
}

#endif  /* HAVE_isl */