1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
|
/* Translation of isl AST to Gimple.
Copyright (C) 2014-2017 Free Software Foundation, Inc.
Contributed by Roman Gareev <gareevroman@gmail.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#define USES_ISL
#include "config.h"
#ifdef HAVE_isl
#define INCLUDE_MAP
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "cfghooks.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "params.h"
#include "fold-const.h"
#include "gimple-fold.h"
#include "gimple-iterator.h"
#include "gimplify.h"
#include "gimplify-me.h"
#include "tree-eh.h"
#include "tree-ssa-loop.h"
#include "tree-ssa-operands.h"
#include "tree-ssa-propagate.h"
#include "tree-pass.h"
#include "cfgloop.h"
#include "tree-data-ref.h"
#include "tree-ssa-loop-manip.h"
#include "tree-scalar-evolution.h"
#include "gimple-ssa.h"
#include "tree-phinodes.h"
#include "tree-into-ssa.h"
#include "ssa-iterators.h"
#include "tree-cfg.h"
#include "gimple-pretty-print.h"
#include "cfganal.h"
#include "value-prof.h"
#include "tree-ssa.h"
#include "tree-vectorizer.h"
#include "graphite.h"
struct ast_build_info
{
ast_build_info()
: is_parallelizable(false)
{ }
bool is_parallelizable;
};
/* IVS_PARAMS maps isl's scattering and parameter identifiers
to corresponding trees. */
typedef std::map<isl_id *, tree> ivs_params;
/* Free all memory allocated for isl's identifiers. */
static void ivs_params_clear (ivs_params &ip)
{
std::map<isl_id *, tree>::iterator it;
for (it = ip.begin ();
it != ip.end (); it++)
{
isl_id_free (it->first);
}
}
/* Set the "separate" option for the schedule node. */
static isl_schedule_node *
set_separate_option (__isl_take isl_schedule_node *node, void *user)
{
if (user)
return node;
if (isl_schedule_node_get_type (node) != isl_schedule_node_band)
return node;
/* Set the "separate" option unless it is set earlier to another option. */
if (isl_schedule_node_band_member_get_ast_loop_type (node, 0)
== isl_ast_loop_default)
return isl_schedule_node_band_member_set_ast_loop_type
(node, 0, isl_ast_loop_separate);
return node;
}
/* Print SCHEDULE under an AST form on file F. */
void
print_schedule_ast (FILE *f, __isl_keep isl_schedule *schedule, scop_p scop)
{
isl_set *set = isl_set_params (isl_set_copy (scop->param_context));
isl_ast_build *context = isl_ast_build_from_context (set);
isl_ast_node *ast
= isl_ast_build_node_from_schedule (context, isl_schedule_copy (schedule));
isl_ast_build_free (context);
print_isl_ast (f, ast);
isl_ast_node_free (ast);
}
DEBUG_FUNCTION void
debug_schedule_ast (__isl_keep isl_schedule *s, scop_p scop)
{
print_schedule_ast (stderr, s, scop);
}
enum phi_node_kind
{
unknown_phi,
loop_phi,
close_phi,
cond_phi
};
class translate_isl_ast_to_gimple
{
public:
translate_isl_ast_to_gimple (sese_info_p r);
edge translate_isl_ast (loop_p context_loop, __isl_keep isl_ast_node *node,
edge next_e, ivs_params &ip);
edge translate_isl_ast_node_for (loop_p context_loop,
__isl_keep isl_ast_node *node,
edge next_e, ivs_params &ip);
edge translate_isl_ast_for_loop (loop_p context_loop,
__isl_keep isl_ast_node *node_for,
edge next_e,
tree type, tree lb, tree ub,
ivs_params &ip);
edge translate_isl_ast_node_if (loop_p context_loop,
__isl_keep isl_ast_node *node,
edge next_e, ivs_params &ip);
edge translate_isl_ast_node_user (__isl_keep isl_ast_node *node,
edge next_e, ivs_params &ip);
edge translate_isl_ast_node_block (loop_p context_loop,
__isl_keep isl_ast_node *node,
edge next_e, ivs_params &ip);
tree unary_op_to_tree (tree type, __isl_take isl_ast_expr *expr,
ivs_params &ip);
tree binary_op_to_tree (tree type, __isl_take isl_ast_expr *expr,
ivs_params &ip);
tree ternary_op_to_tree (tree type, __isl_take isl_ast_expr *expr,
ivs_params &ip);
tree nary_op_to_tree (tree type, __isl_take isl_ast_expr *expr,
ivs_params &ip);
tree gcc_expression_from_isl_expression (tree type,
__isl_take isl_ast_expr *,
ivs_params &ip);
tree gcc_expression_from_isl_ast_expr_id (tree type,
__isl_keep isl_ast_expr *expr_id,
ivs_params &ip);
widest_int widest_int_from_isl_expr_int (__isl_keep isl_ast_expr *expr);
tree gcc_expression_from_isl_expr_int (tree type,
__isl_take isl_ast_expr *expr);
tree gcc_expression_from_isl_expr_op (tree type,
__isl_take isl_ast_expr *expr,
ivs_params &ip);
struct loop *graphite_create_new_loop (edge entry_edge,
__isl_keep isl_ast_node *node_for,
loop_p outer, tree type,
tree lb, tree ub, ivs_params &ip);
edge graphite_create_new_guard (edge entry_edge,
__isl_take isl_ast_expr *if_cond,
ivs_params &ip);
void build_iv_mapping (vec<tree> iv_map, gimple_poly_bb_p gbb,
__isl_keep isl_ast_expr *user_expr, ivs_params &ip,
sese_l ®ion);
void add_parameters_to_ivs_params (scop_p scop, ivs_params &ip);
__isl_give isl_ast_build *generate_isl_context (scop_p scop);
__isl_give isl_ast_node * scop_to_isl_ast (scop_p scop);
tree get_rename_from_scev (tree old_name, gimple_seq *stmts, loop_p loop,
vec<tree> iv_map);
void graphite_copy_stmts_from_block (basic_block bb, basic_block new_bb,
vec<tree> iv_map);
edge copy_bb_and_scalar_dependences (basic_block bb, edge next_e,
vec<tree> iv_map);
void set_rename (tree old_name, tree expr);
void gsi_insert_earliest (gimple_seq seq);
bool codegen_error_p () const { return codegen_error; }
void set_codegen_error ()
{
codegen_error = true;
gcc_assert (! flag_checking
|| PARAM_VALUE (PARAM_GRAPHITE_ALLOW_CODEGEN_ERRORS));
}
bool is_constant (tree op) const
{
return TREE_CODE (op) == INTEGER_CST
|| TREE_CODE (op) == REAL_CST
|| TREE_CODE (op) == COMPLEX_CST
|| TREE_CODE (op) == VECTOR_CST;
}
private:
/* The region to be translated. */
sese_info_p region;
/* This flag is set when an error occurred during the translation of isl AST
to Gimple. */
bool codegen_error;
/* A vector of all the edges at if_condition merge points. */
auto_vec<edge, 2> merge_points;
tree graphite_expr_type;
};
translate_isl_ast_to_gimple::translate_isl_ast_to_gimple (sese_info_p r)
: region (r), codegen_error (false)
{
/* We always try to use signed 128 bit types, but fall back to smaller types
in case a platform does not provide types of these sizes. In the future we
should use isl to derive the optimal type for each subexpression. */
int max_mode_int_precision
= GET_MODE_PRECISION (int_mode_for_size (MAX_FIXED_MODE_SIZE, 0).require ());
int graphite_expr_type_precision
= 128 <= max_mode_int_precision ? 128 : max_mode_int_precision;
graphite_expr_type
= build_nonstandard_integer_type (graphite_expr_type_precision, 0);
}
/* Return the tree variable that corresponds to the given isl ast identifier
expression (an isl_ast_expr of type isl_ast_expr_id).
FIXME: We should replace blind conversion of id's type with derivation
of the optimal type when we get the corresponding isl support. Blindly
converting type sizes may be problematic when we switch to smaller
types. */
tree translate_isl_ast_to_gimple::
gcc_expression_from_isl_ast_expr_id (tree type,
__isl_take isl_ast_expr *expr_id,
ivs_params &ip)
{
gcc_assert (isl_ast_expr_get_type (expr_id) == isl_ast_expr_id);
isl_id *tmp_isl_id = isl_ast_expr_get_id (expr_id);
std::map<isl_id *, tree>::iterator res;
res = ip.find (tmp_isl_id);
isl_id_free (tmp_isl_id);
gcc_assert (res != ip.end () &&
"Could not map isl_id to tree expression");
isl_ast_expr_free (expr_id);
tree t = res->second;
if (useless_type_conversion_p (type, TREE_TYPE (t)))
return t;
return fold_convert (type, t);
}
/* Converts an isl_ast_expr_int expression E to a widest_int.
Raises a code generation error when the constant doesn't fit. */
widest_int translate_isl_ast_to_gimple::
widest_int_from_isl_expr_int (__isl_keep isl_ast_expr *expr)
{
gcc_assert (isl_ast_expr_get_type (expr) == isl_ast_expr_int);
isl_val *val = isl_ast_expr_get_val (expr);
size_t n = isl_val_n_abs_num_chunks (val, sizeof (HOST_WIDE_INT));
HOST_WIDE_INT *chunks = XALLOCAVEC (HOST_WIDE_INT, n);
if (n > WIDE_INT_MAX_ELTS
|| isl_val_get_abs_num_chunks (val, sizeof (HOST_WIDE_INT), chunks) == -1)
{
isl_val_free (val);
set_codegen_error ();
return 0;
}
widest_int wi = widest_int::from_array (chunks, n, true);
if (isl_val_is_neg (val))
wi = -wi;
isl_val_free (val);
return wi;
}
/* Converts an isl_ast_expr_int expression E to a GCC expression tree of
type TYPE. Raises a code generation error when the constant doesn't fit. */
tree translate_isl_ast_to_gimple::
gcc_expression_from_isl_expr_int (tree type, __isl_take isl_ast_expr *expr)
{
widest_int wi = widest_int_from_isl_expr_int (expr);
isl_ast_expr_free (expr);
if (codegen_error_p ())
return NULL_TREE;
if (wi::min_precision (wi, TYPE_SIGN (type)) > TYPE_PRECISION (type))
{
set_codegen_error ();
return NULL_TREE;
}
return wide_int_to_tree (type, wi);
}
/* Converts a binary isl_ast_expr_op expression E to a GCC expression tree of
type TYPE. */
tree translate_isl_ast_to_gimple::
binary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, ivs_params &ip)
{
enum isl_ast_op_type expr_type = isl_ast_expr_get_op_type (expr);
isl_ast_expr *arg_expr = isl_ast_expr_get_op_arg (expr, 0);
tree tree_lhs_expr = gcc_expression_from_isl_expression (type, arg_expr, ip);
arg_expr = isl_ast_expr_get_op_arg (expr, 1);
isl_ast_expr_free (expr);
/* From our constraint generation we may get modulo operations that
we cannot represent explicitely but that are no-ops for TYPE.
Elide those. */
if (expr_type == isl_ast_op_pdiv_r
&& isl_ast_expr_get_type (arg_expr) == isl_ast_expr_int
&& (wi::exact_log2 (widest_int_from_isl_expr_int (arg_expr))
>= TYPE_PRECISION (type)))
{
isl_ast_expr_free (arg_expr);
return tree_lhs_expr;
}
tree tree_rhs_expr = gcc_expression_from_isl_expression (type, arg_expr, ip);
if (codegen_error_p ())
return NULL_TREE;
switch (expr_type)
{
case isl_ast_op_add:
return fold_build2 (PLUS_EXPR, type, tree_lhs_expr, tree_rhs_expr);
case isl_ast_op_sub:
return fold_build2 (MINUS_EXPR, type, tree_lhs_expr, tree_rhs_expr);
case isl_ast_op_mul:
return fold_build2 (MULT_EXPR, type, tree_lhs_expr, tree_rhs_expr);
case isl_ast_op_div:
return fold_build2 (EXACT_DIV_EXPR, type, tree_lhs_expr, tree_rhs_expr);
case isl_ast_op_pdiv_q:
return fold_build2 (TRUNC_DIV_EXPR, type, tree_lhs_expr, tree_rhs_expr);
case isl_ast_op_zdiv_r:
case isl_ast_op_pdiv_r:
return fold_build2 (TRUNC_MOD_EXPR, type, tree_lhs_expr, tree_rhs_expr);
case isl_ast_op_fdiv_q:
return fold_build2 (FLOOR_DIV_EXPR, type, tree_lhs_expr, tree_rhs_expr);
case isl_ast_op_and:
return fold_build2 (TRUTH_ANDIF_EXPR, type,
tree_lhs_expr, tree_rhs_expr);
case isl_ast_op_or:
return fold_build2 (TRUTH_ORIF_EXPR, type, tree_lhs_expr, tree_rhs_expr);
case isl_ast_op_eq:
return fold_build2 (EQ_EXPR, type, tree_lhs_expr, tree_rhs_expr);
case isl_ast_op_le:
return fold_build2 (LE_EXPR, type, tree_lhs_expr, tree_rhs_expr);
case isl_ast_op_lt:
return fold_build2 (LT_EXPR, type, tree_lhs_expr, tree_rhs_expr);
case isl_ast_op_ge:
return fold_build2 (GE_EXPR, type, tree_lhs_expr, tree_rhs_expr);
case isl_ast_op_gt:
return fold_build2 (GT_EXPR, type, tree_lhs_expr, tree_rhs_expr);
default:
gcc_unreachable ();
}
}
/* Converts a ternary isl_ast_expr_op expression E to a GCC expression tree of
type TYPE. */
tree translate_isl_ast_to_gimple::
ternary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, ivs_params &ip)
{
enum isl_ast_op_type t = isl_ast_expr_get_op_type (expr);
gcc_assert (t == isl_ast_op_cond || t == isl_ast_op_select);
isl_ast_expr *arg_expr = isl_ast_expr_get_op_arg (expr, 0);
tree a = gcc_expression_from_isl_expression (type, arg_expr, ip);
arg_expr = isl_ast_expr_get_op_arg (expr, 1);
tree b = gcc_expression_from_isl_expression (type, arg_expr, ip);
arg_expr = isl_ast_expr_get_op_arg (expr, 2);
tree c = gcc_expression_from_isl_expression (type, arg_expr, ip);
isl_ast_expr_free (expr);
if (codegen_error_p ())
return NULL_TREE;
return fold_build3 (COND_EXPR, type, a, b, c);
}
/* Converts a unary isl_ast_expr_op expression E to a GCC expression tree of
type TYPE. */
tree translate_isl_ast_to_gimple::
unary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, ivs_params &ip)
{
gcc_assert (isl_ast_expr_get_op_type (expr) == isl_ast_op_minus);
isl_ast_expr *arg_expr = isl_ast_expr_get_op_arg (expr, 0);
tree tree_expr = gcc_expression_from_isl_expression (type, arg_expr, ip);
isl_ast_expr_free (expr);
return codegen_error_p () ? NULL_TREE
: fold_build1 (NEGATE_EXPR, type, tree_expr);
}
/* Converts an isl_ast_expr_op expression E with unknown number of arguments
to a GCC expression tree of type TYPE. */
tree translate_isl_ast_to_gimple::
nary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, ivs_params &ip)
{
enum tree_code op_code;
switch (isl_ast_expr_get_op_type (expr))
{
case isl_ast_op_max:
op_code = MAX_EXPR;
break;
case isl_ast_op_min:
op_code = MIN_EXPR;
break;
default:
gcc_unreachable ();
}
isl_ast_expr *arg_expr = isl_ast_expr_get_op_arg (expr, 0);
tree res = gcc_expression_from_isl_expression (type, arg_expr, ip);
if (codegen_error_p ())
{
isl_ast_expr_free (expr);
return NULL_TREE;
}
int i;
for (i = 1; i < isl_ast_expr_get_op_n_arg (expr); i++)
{
arg_expr = isl_ast_expr_get_op_arg (expr, i);
tree t = gcc_expression_from_isl_expression (type, arg_expr, ip);
if (codegen_error_p ())
{
isl_ast_expr_free (expr);
return NULL_TREE;
}
res = fold_build2 (op_code, type, res, t);
}
isl_ast_expr_free (expr);
return res;
}
/* Converts an isl_ast_expr_op expression E to a GCC expression tree of
type TYPE. */
tree translate_isl_ast_to_gimple::
gcc_expression_from_isl_expr_op (tree type, __isl_take isl_ast_expr *expr,
ivs_params &ip)
{
if (codegen_error_p ())
{
isl_ast_expr_free (expr);
return NULL_TREE;
}
gcc_assert (isl_ast_expr_get_type (expr) == isl_ast_expr_op);
switch (isl_ast_expr_get_op_type (expr))
{
/* These isl ast expressions are not supported yet. */
case isl_ast_op_error:
case isl_ast_op_call:
case isl_ast_op_and_then:
case isl_ast_op_or_else:
gcc_unreachable ();
case isl_ast_op_max:
case isl_ast_op_min:
return nary_op_to_tree (type, expr, ip);
case isl_ast_op_add:
case isl_ast_op_sub:
case isl_ast_op_mul:
case isl_ast_op_div:
case isl_ast_op_pdiv_q:
case isl_ast_op_pdiv_r:
case isl_ast_op_fdiv_q:
case isl_ast_op_zdiv_r:
case isl_ast_op_and:
case isl_ast_op_or:
case isl_ast_op_eq:
case isl_ast_op_le:
case isl_ast_op_lt:
case isl_ast_op_ge:
case isl_ast_op_gt:
return binary_op_to_tree (type, expr, ip);
case isl_ast_op_minus:
return unary_op_to_tree (type, expr, ip);
case isl_ast_op_cond:
case isl_ast_op_select:
return ternary_op_to_tree (type, expr, ip);
default:
gcc_unreachable ();
}
return NULL_TREE;
}
/* Converts an isl AST expression E back to a GCC expression tree of
type TYPE. */
tree translate_isl_ast_to_gimple::
gcc_expression_from_isl_expression (tree type, __isl_take isl_ast_expr *expr,
ivs_params &ip)
{
if (codegen_error_p ())
{
isl_ast_expr_free (expr);
return NULL_TREE;
}
switch (isl_ast_expr_get_type (expr))
{
case isl_ast_expr_id:
return gcc_expression_from_isl_ast_expr_id (type, expr, ip);
case isl_ast_expr_int:
return gcc_expression_from_isl_expr_int (type, expr);
case isl_ast_expr_op:
return gcc_expression_from_isl_expr_op (type, expr, ip);
default:
gcc_unreachable ();
}
return NULL_TREE;
}
/* Creates a new LOOP corresponding to isl_ast_node_for. Inserts an
induction variable for the new LOOP. New LOOP is attached to CFG
starting at ENTRY_EDGE. LOOP is inserted into the loop tree and
becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds
isl's scattering name to the induction variable created for the
loop of STMT. The new induction variable is inserted in the NEWIVS
vector and is of type TYPE. */
struct loop *translate_isl_ast_to_gimple::
graphite_create_new_loop (edge entry_edge, __isl_keep isl_ast_node *node_for,
loop_p outer, tree type, tree lb, tree ub,
ivs_params &ip)
{
isl_ast_expr *for_inc = isl_ast_node_for_get_inc (node_for);
tree stride = gcc_expression_from_isl_expression (type, for_inc, ip);
/* To fail code generation, we generate wrong code until we discard it. */
if (codegen_error_p ())
stride = integer_zero_node;
tree ivvar = create_tmp_var (type, "graphite_IV");
tree iv, iv_after_increment;
loop_p loop = create_empty_loop_on_edge
(entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment,
outer ? outer : entry_edge->src->loop_father);
isl_ast_expr *for_iterator = isl_ast_node_for_get_iterator (node_for);
isl_id *id = isl_ast_expr_get_id (for_iterator);
std::map<isl_id *, tree>::iterator res;
res = ip.find (id);
if (ip.count (id))
isl_id_free (res->first);
ip[id] = iv;
isl_ast_expr_free (for_iterator);
return loop;
}
/* Create the loop for a isl_ast_node_for.
- NEXT_E is the edge where new generated code should be attached. */
edge translate_isl_ast_to_gimple::
translate_isl_ast_for_loop (loop_p context_loop,
__isl_keep isl_ast_node *node_for, edge next_e,
tree type, tree lb, tree ub,
ivs_params &ip)
{
gcc_assert (isl_ast_node_get_type (node_for) == isl_ast_node_for);
struct loop *loop = graphite_create_new_loop (next_e, node_for, context_loop,
type, lb, ub, ip);
edge last_e = single_exit (loop);
edge to_body = single_succ_edge (loop->header);
basic_block after = to_body->dest;
/* Translate the body of the loop. */
isl_ast_node *for_body = isl_ast_node_for_get_body (node_for);
next_e = translate_isl_ast (loop, for_body, to_body, ip);
isl_ast_node_free (for_body);
/* Early return if we failed to translate loop body. */
if (!next_e || codegen_error_p ())
return NULL;
if (next_e->dest != after)
redirect_edge_succ_nodup (next_e, after);
set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src);
if (flag_loop_parallelize_all)
{
isl_id *id = isl_ast_node_get_annotation (node_for);
gcc_assert (id);
ast_build_info *for_info = (ast_build_info *) isl_id_get_user (id);
loop->can_be_parallel = for_info->is_parallelizable;
free (for_info);
isl_id_free (id);
}
return last_e;
}
/* We use this function to get the upper bound because of the form,
which is used by isl to represent loops:
for (iterator = init; cond; iterator += inc)
{
...
}
The loop condition is an arbitrary expression, which contains the
current loop iterator.
(e.g. iterator + 3 < B && C > iterator + A)
We have to know the upper bound of the iterator to generate a loop
in Gimple form. It can be obtained from the special representation
of the loop condition, which is generated by isl,
if the ast_build_atomic_upper_bound option is set. In this case,
isl generates a loop condition that consists of the current loop
iterator, + an operator (< or <=) and an expression not involving
the iterator, which is processed and returned by this function.
(e.g iterator <= upper-bound-expression-without-iterator) */
static __isl_give isl_ast_expr *
get_upper_bound (__isl_keep isl_ast_node *node_for)
{
gcc_assert (isl_ast_node_get_type (node_for) == isl_ast_node_for);
isl_ast_expr *for_cond = isl_ast_node_for_get_cond (node_for);
gcc_assert (isl_ast_expr_get_type (for_cond) == isl_ast_expr_op);
isl_ast_expr *res;
switch (isl_ast_expr_get_op_type (for_cond))
{
case isl_ast_op_le:
res = isl_ast_expr_get_op_arg (for_cond, 1);
break;
case isl_ast_op_lt:
{
/* (iterator < ub) => (iterator <= ub - 1). */
isl_val *one =
isl_val_int_from_si (isl_ast_expr_get_ctx (for_cond), 1);
isl_ast_expr *ub = isl_ast_expr_get_op_arg (for_cond, 1);
res = isl_ast_expr_sub (ub, isl_ast_expr_from_val (one));
break;
}
default:
gcc_unreachable ();
}
isl_ast_expr_free (for_cond);
return res;
}
/* Translates an isl_ast_node_for to Gimple. */
edge translate_isl_ast_to_gimple::
translate_isl_ast_node_for (loop_p context_loop, __isl_keep isl_ast_node *node,
edge next_e, ivs_params &ip)
{
gcc_assert (isl_ast_node_get_type (node) == isl_ast_node_for);
tree type = graphite_expr_type;
isl_ast_expr *for_init = isl_ast_node_for_get_init (node);
tree lb = gcc_expression_from_isl_expression (type, for_init, ip);
/* To fail code generation, we generate wrong code until we discard it. */
if (codegen_error_p ())
lb = integer_zero_node;
isl_ast_expr *upper_bound = get_upper_bound (node);
tree ub = gcc_expression_from_isl_expression (type, upper_bound, ip);
/* To fail code generation, we generate wrong code until we discard it. */
if (codegen_error_p ())
ub = integer_zero_node;
edge last_e = single_succ_edge (split_edge (next_e));
/* Compensate for the fact that we emit a do { } while loop from
a for ISL AST.
??? We often miss constraints on niter because the SESE region
doesn't cover loop header copies. Ideally we'd add constraints
for all relevant dominating conditions. */
if (TREE_CODE (lb) == INTEGER_CST && TREE_CODE (ub) == INTEGER_CST
&& tree_int_cst_compare (lb, ub) <= 0)
;
else
{
tree one = build_one_cst (POINTER_TYPE_P (type) ? sizetype : type);
/* Adding +1 and using LT_EXPR helps with loop latches that have a
loop iteration count of "PARAMETER - 1". For PARAMETER == 0 this
becomes 2^k-1 due to integer overflow, and the condition lb <= ub
is true, even if we do not want this. However lb < ub + 1 is false,
as expected. */
tree ub_one = fold_build2 (POINTER_TYPE_P (type)
? POINTER_PLUS_EXPR : PLUS_EXPR,
type, ub, one);
create_empty_if_region_on_edge (next_e,
fold_build2 (LT_EXPR, boolean_type_node,
lb, ub_one));
next_e = get_true_edge_from_guard_bb (next_e->dest);
}
translate_isl_ast_for_loop (context_loop, node, next_e,
type, lb, ub, ip);
return last_e;
}
/* Inserts in iv_map a tuple (OLD_LOOP->num, NEW_NAME) for the induction
variables of the loops around GBB in SESE.
FIXME: Instead of using a vec<tree> that maps each loop id to a possible
chrec, we could consider using a map<int, tree> that maps loop ids to the
corresponding tree expressions. */
void translate_isl_ast_to_gimple::
build_iv_mapping (vec<tree> iv_map, gimple_poly_bb_p gbb,
__isl_keep isl_ast_expr *user_expr, ivs_params &ip,
sese_l ®ion)
{
gcc_assert (isl_ast_expr_get_type (user_expr) == isl_ast_expr_op &&
isl_ast_expr_get_op_type (user_expr) == isl_ast_op_call);
int i;
isl_ast_expr *arg_expr;
for (i = 1; i < isl_ast_expr_get_op_n_arg (user_expr); i++)
{
arg_expr = isl_ast_expr_get_op_arg (user_expr, i);
tree type = graphite_expr_type;
tree t = gcc_expression_from_isl_expression (type, arg_expr, ip);
/* To fail code generation, we generate wrong code until we discard it. */
if (codegen_error_p ())
t = integer_zero_node;
loop_p old_loop = gbb_loop_at_index (gbb, region, i - 1);
iv_map[old_loop->num] = t;
}
}
/* Translates an isl_ast_node_user to Gimple.
FIXME: We should remove iv_map.create (loop->num + 1), if it is possible. */
edge translate_isl_ast_to_gimple::
translate_isl_ast_node_user (__isl_keep isl_ast_node *node,
edge next_e, ivs_params &ip)
{
gcc_assert (isl_ast_node_get_type (node) == isl_ast_node_user);
isl_ast_expr *user_expr = isl_ast_node_user_get_expr (node);
isl_ast_expr *name_expr = isl_ast_expr_get_op_arg (user_expr, 0);
gcc_assert (isl_ast_expr_get_type (name_expr) == isl_ast_expr_id);
isl_id *name_id = isl_ast_expr_get_id (name_expr);
poly_bb_p pbb = (poly_bb_p) isl_id_get_user (name_id);
gcc_assert (pbb);
gimple_poly_bb_p gbb = PBB_BLACK_BOX (pbb);
isl_ast_expr_free (name_expr);
isl_id_free (name_id);
gcc_assert (GBB_BB (gbb) != ENTRY_BLOCK_PTR_FOR_FN (cfun) &&
"The entry block should not even appear within a scop");
const int nb_loops = number_of_loops (cfun);
vec<tree> iv_map;
iv_map.create (nb_loops);
iv_map.safe_grow_cleared (nb_loops);
build_iv_mapping (iv_map, gbb, user_expr, ip, pbb->scop->scop_info->region);
isl_ast_expr_free (user_expr);
basic_block old_bb = GBB_BB (gbb);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file,
"[codegen] copying from bb_%d on edge (bb_%d, bb_%d)\n",
old_bb->index, next_e->src->index, next_e->dest->index);
print_loops_bb (dump_file, GBB_BB (gbb), 0, 3);
}
next_e = copy_bb_and_scalar_dependences (old_bb, next_e, iv_map);
iv_map.release ();
if (codegen_error_p ())
return NULL;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "[codegen] (after copy) new basic block\n");
print_loops_bb (dump_file, next_e->src, 0, 3);
}
return next_e;
}
/* Translates an isl_ast_node_block to Gimple. */
edge translate_isl_ast_to_gimple::
translate_isl_ast_node_block (loop_p context_loop,
__isl_keep isl_ast_node *node,
edge next_e, ivs_params &ip)
{
gcc_assert (isl_ast_node_get_type (node) == isl_ast_node_block);
isl_ast_node_list *node_list = isl_ast_node_block_get_children (node);
int i;
for (i = 0; i < isl_ast_node_list_n_ast_node (node_list); i++)
{
isl_ast_node *tmp_node = isl_ast_node_list_get_ast_node (node_list, i);
next_e = translate_isl_ast (context_loop, tmp_node, next_e, ip);
isl_ast_node_free (tmp_node);
}
isl_ast_node_list_free (node_list);
return next_e;
}
/* Creates a new if region corresponding to isl's cond. */
edge translate_isl_ast_to_gimple::
graphite_create_new_guard (edge entry_edge, __isl_take isl_ast_expr *if_cond,
ivs_params &ip)
{
tree type = graphite_expr_type;
tree cond_expr = gcc_expression_from_isl_expression (type, if_cond, ip);
/* To fail code generation, we generate wrong code until we discard it. */
if (codegen_error_p ())
cond_expr = integer_zero_node;
edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
return exit_edge;
}
/* Translates an isl_ast_node_if to Gimple. */
edge translate_isl_ast_to_gimple::
translate_isl_ast_node_if (loop_p context_loop,
__isl_keep isl_ast_node *node,
edge next_e, ivs_params &ip)
{
gcc_assert (isl_ast_node_get_type (node) == isl_ast_node_if);
isl_ast_expr *if_cond = isl_ast_node_if_get_cond (node);
edge last_e = graphite_create_new_guard (next_e, if_cond, ip);
edge true_e = get_true_edge_from_guard_bb (next_e->dest);
merge_points.safe_push (last_e);
isl_ast_node *then_node = isl_ast_node_if_get_then (node);
translate_isl_ast (context_loop, then_node, true_e, ip);
isl_ast_node_free (then_node);
edge false_e = get_false_edge_from_guard_bb (next_e->dest);
isl_ast_node *else_node = isl_ast_node_if_get_else (node);
if (isl_ast_node_get_type (else_node) != isl_ast_node_error)
translate_isl_ast (context_loop, else_node, false_e, ip);
isl_ast_node_free (else_node);
return last_e;
}
/* Translates an isl AST node NODE to GCC representation in the
context of a SESE. */
edge translate_isl_ast_to_gimple::
translate_isl_ast (loop_p context_loop, __isl_keep isl_ast_node *node,
edge next_e, ivs_params &ip)
{
if (codegen_error_p ())
return NULL;
switch (isl_ast_node_get_type (node))
{
case isl_ast_node_error:
gcc_unreachable ();
case isl_ast_node_for:
return translate_isl_ast_node_for (context_loop, node,
next_e, ip);
case isl_ast_node_if:
return translate_isl_ast_node_if (context_loop, node,
next_e, ip);
case isl_ast_node_user:
return translate_isl_ast_node_user (node, next_e, ip);
case isl_ast_node_block:
return translate_isl_ast_node_block (context_loop, node,
next_e, ip);
case isl_ast_node_mark:
{
isl_ast_node *n = isl_ast_node_mark_get_node (node);
edge e = translate_isl_ast (context_loop, n, next_e, ip);
isl_ast_node_free (n);
return e;
}
default:
gcc_unreachable ();
}
}
/* Register in RENAME_MAP the rename tuple (OLD_NAME, EXPR).
When OLD_NAME and EXPR are the same we assert. */
void translate_isl_ast_to_gimple::
set_rename (tree old_name, tree expr)
{
if (dump_file)
{
fprintf (dump_file, "[codegen] setting rename: old_name = ");
print_generic_expr (dump_file, old_name);
fprintf (dump_file, ", new decl = ");
print_generic_expr (dump_file, expr);
fprintf (dump_file, "\n");
}
bool res = region->rename_map->put (old_name, expr);
gcc_assert (! res);
}
/* Return an iterator to the instructions comes last in the execution order.
Either GSI1 and GSI2 should belong to the same basic block or one of their
respective basic blocks should dominate the other. */
gimple_stmt_iterator
later_of_the_two (gimple_stmt_iterator gsi1, gimple_stmt_iterator gsi2)
{
basic_block bb1 = gsi_bb (gsi1);
basic_block bb2 = gsi_bb (gsi2);
/* Find the iterator which is the latest. */
if (bb1 == bb2)
{
gimple *stmt1 = gsi_stmt (gsi1);
gimple *stmt2 = gsi_stmt (gsi2);
if (stmt1 != NULL && stmt2 != NULL)
{
bool is_phi1 = gimple_code (stmt1) == GIMPLE_PHI;
bool is_phi2 = gimple_code (stmt2) == GIMPLE_PHI;
if (is_phi1 != is_phi2)
return is_phi1 ? gsi2 : gsi1;
}
/* For empty basic blocks gsis point to the end of the sequence. Since
there is no operator== defined for gimple_stmt_iterator and for gsis
not pointing to a valid statement gsi_next would assert. */
gimple_stmt_iterator gsi = gsi1;
do {
if (gsi_stmt (gsi) == gsi_stmt (gsi2))
return gsi2;
gsi_next (&gsi);
} while (!gsi_end_p (gsi));
return gsi1;
}
/* Find the basic block closest to the basic block which defines stmt. */
if (dominated_by_p (CDI_DOMINATORS, bb1, bb2))
return gsi1;
gcc_assert (dominated_by_p (CDI_DOMINATORS, bb2, bb1));
return gsi2;
}
/* Insert each statement from SEQ at its earliest insertion p. */
void translate_isl_ast_to_gimple::
gsi_insert_earliest (gimple_seq seq)
{
update_modified_stmts (seq);
sese_l &codegen_region = region->if_region->true_region->region;
basic_block begin_bb = get_entry_bb (codegen_region);
/* Inserting the gimple statements in a vector because gimple_seq behave
in strage ways when inserting the stmts from it into different basic
blocks one at a time. */
auto_vec<gimple *, 3> stmts;
for (gimple_stmt_iterator gsi = gsi_start (seq); !gsi_end_p (gsi);
gsi_next (&gsi))
stmts.safe_push (gsi_stmt (gsi));
int i;
gimple *use_stmt;
FOR_EACH_VEC_ELT (stmts, i, use_stmt)
{
gcc_assert (gimple_code (use_stmt) != GIMPLE_PHI);
gimple_stmt_iterator gsi_def_stmt = gsi_start_bb_nondebug (begin_bb);
use_operand_p use_p;
ssa_op_iter op_iter;
FOR_EACH_SSA_USE_OPERAND (use_p, use_stmt, op_iter, SSA_OP_USE)
{
/* Iterator to the current def of use_p. For function parameters or
anything where def is not found, insert at the beginning of the
generated region. */
gimple_stmt_iterator gsi_stmt = gsi_def_stmt;
tree op = USE_FROM_PTR (use_p);
gimple *stmt = SSA_NAME_DEF_STMT (op);
if (stmt && (gimple_code (stmt) != GIMPLE_NOP))
gsi_stmt = gsi_for_stmt (stmt);
/* For region parameters, insert at the beginning of the generated
region. */
if (!bb_in_sese_p (gsi_bb (gsi_stmt), codegen_region))
gsi_stmt = gsi_def_stmt;
gsi_def_stmt = later_of_the_two (gsi_stmt, gsi_def_stmt);
}
if (!gsi_stmt (gsi_def_stmt))
{
gimple_stmt_iterator gsi = gsi_after_labels (gsi_bb (gsi_def_stmt));
gsi_insert_before (&gsi, use_stmt, GSI_NEW_STMT);
}
else if (gimple_code (gsi_stmt (gsi_def_stmt)) == GIMPLE_PHI)
{
gimple_stmt_iterator bsi
= gsi_start_bb_nondebug (gsi_bb (gsi_def_stmt));
/* Insert right after the PHI statements. */
gsi_insert_before (&bsi, use_stmt, GSI_NEW_STMT);
}
else
gsi_insert_after (&gsi_def_stmt, use_stmt, GSI_NEW_STMT);
if (dump_file)
{
fprintf (dump_file, "[codegen] inserting statement in BB %d: ",
gimple_bb (use_stmt)->index);
print_gimple_stmt (dump_file, use_stmt, 0, TDF_VOPS | TDF_MEMSYMS);
}
}
}
/* For ops which are scev_analyzeable, we can regenerate a new name from its
scalar evolution around LOOP. */
tree translate_isl_ast_to_gimple::
get_rename_from_scev (tree old_name, gimple_seq *stmts, loop_p loop,
vec<tree> iv_map)
{
tree scev = scalar_evolution_in_region (region->region, loop, old_name);
/* At this point we should know the exact scev for each
scalar SSA_NAME used in the scop: all the other scalar
SSA_NAMEs should have been translated out of SSA using
arrays with one element. */
tree new_expr;
if (chrec_contains_undetermined (scev))
{
set_codegen_error ();
return build_zero_cst (TREE_TYPE (old_name));
}
new_expr = chrec_apply_map (scev, iv_map);
/* The apply should produce an expression tree containing
the uses of the new induction variables. We should be
able to use new_expr instead of the old_name in the newly
generated loop nest. */
if (chrec_contains_undetermined (new_expr)
|| tree_contains_chrecs (new_expr, NULL))
{
set_codegen_error ();
return build_zero_cst (TREE_TYPE (old_name));
}
/* Replace the old_name with the new_expr. */
return force_gimple_operand (unshare_expr (new_expr), stmts,
true, NULL_TREE);
}
/* Return true if STMT should be copied from region to the new code-generated
region. LABELs, CONDITIONS, induction-variables and region parameters need
not be copied. */
static bool
should_copy_to_new_region (gimple *stmt, sese_info_p region)
{
/* Do not copy labels or conditions. */
if (gimple_code (stmt) == GIMPLE_LABEL
|| gimple_code (stmt) == GIMPLE_COND)
return false;
tree lhs;
/* Do not copy induction variables. */
if (is_gimple_assign (stmt)
&& (lhs = gimple_assign_lhs (stmt))
&& TREE_CODE (lhs) == SSA_NAME
&& is_gimple_reg (lhs)
&& scev_analyzable_p (lhs, region->region))
return false;
return true;
}
/* Duplicates the statements of basic block BB into basic block NEW_BB
and compute the new induction variables according to the IV_MAP. */
void translate_isl_ast_to_gimple::
graphite_copy_stmts_from_block (basic_block bb, basic_block new_bb,
vec<tree> iv_map)
{
/* Iterator poining to the place where new statement (s) will be inserted. */
gimple_stmt_iterator gsi_tgt = gsi_last_bb (new_bb);
for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (!should_copy_to_new_region (stmt, region))
continue;
/* Create a new copy of STMT and duplicate STMT's virtual
operands. */
gimple *copy = gimple_copy (stmt);
/* Rather than not copying debug stmts we reset them.
??? Where we can rewrite uses without inserting new
stmts we could simply do that. */
if (is_gimple_debug (copy))
{
if (gimple_debug_bind_p (copy))
gimple_debug_bind_reset_value (copy);
else if (gimple_debug_source_bind_p (copy))
;
else
gcc_unreachable ();
}
maybe_duplicate_eh_stmt (copy, stmt);
gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
/* Crete new names for each def in the copied stmt. */
def_operand_p def_p;
ssa_op_iter op_iter;
FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
{
tree old_name = DEF_FROM_PTR (def_p);
create_new_def_for (old_name, copy, def_p);
}
gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
if (dump_file)
{
fprintf (dump_file, "[codegen] inserting statement: ");
print_gimple_stmt (dump_file, copy, 0);
}
/* For each SCEV analyzable SSA_NAME, rename their usage. */
ssa_op_iter iter;
use_operand_p use_p;
if (!is_gimple_debug (copy))
{
bool changed = false;
FOR_EACH_SSA_USE_OPERAND (use_p, copy, iter, SSA_OP_USE)
{
tree old_name = USE_FROM_PTR (use_p);
if (TREE_CODE (old_name) != SSA_NAME
|| SSA_NAME_IS_DEFAULT_DEF (old_name)
|| ! scev_analyzable_p (old_name, region->region))
continue;
gimple_seq stmts = NULL;
tree new_name = get_rename_from_scev (old_name, &stmts,
bb->loop_father, iv_map);
if (! codegen_error_p ())
gsi_insert_earliest (stmts);
replace_exp (use_p, new_name);
changed = true;
}
if (changed)
fold_stmt_inplace (&gsi_tgt);
}
update_stmt (copy);
}
}
/* Copies BB and includes in the copied BB all the statements that can
be reached following the use-def chains from the memory accesses,
and returns the next edge following this new block. */
edge translate_isl_ast_to_gimple::
copy_bb_and_scalar_dependences (basic_block bb, edge next_e, vec<tree> iv_map)
{
basic_block new_bb = split_edge (next_e);
gimple_stmt_iterator gsi_tgt = gsi_last_bb (new_bb);
for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi);
gsi_next (&psi))
{
gphi *phi = psi.phi ();
tree res = gimple_phi_result (phi);
if (virtual_operand_p (res)
|| scev_analyzable_p (res, region->region))
continue;
tree new_phi_def;
tree *rename = region->rename_map->get (res);
if (! rename)
{
new_phi_def = create_tmp_reg (TREE_TYPE (res));
set_rename (res, new_phi_def);
}
else
new_phi_def = *rename;
gassign *ass = gimple_build_assign (NULL_TREE, new_phi_def);
create_new_def_for (res, ass, NULL);
gsi_insert_after (&gsi_tgt, ass, GSI_NEW_STMT);
}
graphite_copy_stmts_from_block (bb, new_bb, iv_map);
/* Insert out-of SSA copies on the original BB outgoing edges. */
gsi_tgt = gsi_last_bb (new_bb);
basic_block bb_for_succs = bb;
if (bb_for_succs == bb_for_succs->loop_father->latch
&& bb_in_sese_p (bb_for_succs, region->region)
&& sese_trivially_empty_bb_p (bb_for_succs))
bb_for_succs = NULL;
while (bb_for_succs)
{
basic_block latch = NULL;
edge_iterator ei;
edge e;
FOR_EACH_EDGE (e, ei, bb_for_succs->succs)
{
for (gphi_iterator psi = gsi_start_phis (e->dest); !gsi_end_p (psi);
gsi_next (&psi))
{
gphi *phi = psi.phi ();
tree res = gimple_phi_result (phi);
if (virtual_operand_p (res)
|| scev_analyzable_p (res, region->region))
continue;
tree new_phi_def;
tree *rename = region->rename_map->get (res);
if (! rename)
{
new_phi_def = create_tmp_reg (TREE_TYPE (res));
set_rename (res, new_phi_def);
}
else
new_phi_def = *rename;
tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
if (TREE_CODE (arg) == SSA_NAME
&& scev_analyzable_p (arg, region->region))
{
gimple_seq stmts = NULL;
tree new_name = get_rename_from_scev (arg, &stmts,
bb->loop_father,
iv_map);
if (! codegen_error_p ())
gsi_insert_earliest (stmts);
arg = new_name;
}
gassign *ass = gimple_build_assign (new_phi_def, arg);
gsi_insert_after (&gsi_tgt, ass, GSI_NEW_STMT);
}
if (e->dest == bb_for_succs->loop_father->latch
&& bb_in_sese_p (e->dest, region->region)
&& sese_trivially_empty_bb_p (e->dest))
latch = e->dest;
}
bb_for_succs = latch;
}
return single_succ_edge (new_bb);
}
/* Add isl's parameter identifiers and corresponding trees to ivs_params. */
void translate_isl_ast_to_gimple::
add_parameters_to_ivs_params (scop_p scop, ivs_params &ip)
{
sese_info_p region = scop->scop_info;
unsigned nb_parameters = isl_set_dim (scop->param_context, isl_dim_param);
gcc_assert (nb_parameters == sese_nb_params (region));
unsigned i;
tree param;
FOR_EACH_VEC_ELT (region->params, i, param)
{
isl_id *tmp_id = isl_set_get_dim_id (scop->param_context,
isl_dim_param, i);
ip[tmp_id] = param;
}
}
/* Generates a build, which specifies the constraints on the parameters. */
__isl_give isl_ast_build *translate_isl_ast_to_gimple::
generate_isl_context (scop_p scop)
{
isl_set *context_isl = isl_set_params (isl_set_copy (scop->param_context));
return isl_ast_build_from_context (context_isl);
}
/* This method is executed before the construction of a for node. */
__isl_give isl_id *
ast_build_before_for (__isl_keep isl_ast_build *build, void *user)
{
isl_union_map *dependences = (isl_union_map *) user;
ast_build_info *for_info = XNEW (struct ast_build_info);
isl_union_map *schedule = isl_ast_build_get_schedule (build);
isl_space *schedule_space = isl_ast_build_get_schedule_space (build);
int dimension = isl_space_dim (schedule_space, isl_dim_out);
for_info->is_parallelizable =
!carries_deps (schedule, dependences, dimension);
isl_union_map_free (schedule);
isl_space_free (schedule_space);
isl_id *id = isl_id_alloc (isl_ast_build_get_ctx (build), "", for_info);
return id;
}
/* Generate isl AST from schedule of SCOP. */
__isl_give isl_ast_node *translate_isl_ast_to_gimple::
scop_to_isl_ast (scop_p scop)
{
int old_err = isl_options_get_on_error (scop->isl_context);
int old_max_operations = isl_ctx_get_max_operations (scop->isl_context);
int max_operations = PARAM_VALUE (PARAM_MAX_ISL_OPERATIONS);
if (max_operations)
isl_ctx_set_max_operations (scop->isl_context, max_operations);
isl_options_set_on_error (scop->isl_context, ISL_ON_ERROR_CONTINUE);
gcc_assert (scop->transformed_schedule);
/* Set the separate option to reduce control flow overhead. */
isl_schedule *schedule = isl_schedule_map_schedule_node_bottom_up
(isl_schedule_copy (scop->transformed_schedule), set_separate_option, NULL);
isl_ast_build *context_isl = generate_isl_context (scop);
if (flag_loop_parallelize_all)
{
scop_get_dependences (scop);
context_isl =
isl_ast_build_set_before_each_for (context_isl, ast_build_before_for,
scop->dependence);
}
isl_ast_node *ast_isl = isl_ast_build_node_from_schedule
(context_isl, schedule);
isl_ast_build_free (context_isl);
isl_options_set_on_error (scop->isl_context, old_err);
isl_ctx_reset_operations (scop->isl_context);
isl_ctx_set_max_operations (scop->isl_context, old_max_operations);
if (isl_ctx_last_error (scop->isl_context) != isl_error_none)
{
location_t loc = find_loop_location
(scop->scop_info->region.entry->dest->loop_father);
if (isl_ctx_last_error (scop->isl_context) == isl_error_quota)
dump_printf_loc (MSG_MISSED_OPTIMIZATION, loc,
"loop nest not optimized, AST generation timed out "
"after %d operations [--param max-isl-operations]\n",
max_operations);
else
dump_printf_loc (MSG_MISSED_OPTIMIZATION, loc,
"loop nest not optimized, ISL AST generation "
"signalled an error\n");
isl_ast_node_free (ast_isl);
return NULL;
}
return ast_isl;
}
/* Generate out-of-SSA copies for the entry edge FALSE_ENTRY/TRUE_ENTRY
in REGION. */
static void
generate_entry_out_of_ssa_copies (edge false_entry,
edge true_entry,
sese_info_p region)
{
gimple_stmt_iterator gsi_tgt = gsi_start_bb (true_entry->dest);
for (gphi_iterator psi = gsi_start_phis (false_entry->dest);
!gsi_end_p (psi); gsi_next (&psi))
{
gphi *phi = psi.phi ();
tree res = gimple_phi_result (phi);
if (virtual_operand_p (res))
continue;
/* When there's no out-of-SSA var registered do not bother
to create one. */
tree *rename = region->rename_map->get (res);
if (! rename)
continue;
tree new_phi_def = *rename;
gassign *ass = gimple_build_assign (new_phi_def,
PHI_ARG_DEF_FROM_EDGE (phi,
false_entry));
gsi_insert_after (&gsi_tgt, ass, GSI_NEW_STMT);
}
}
/* GIMPLE Loop Generator: generates loops in GIMPLE form for the given SCOP.
Return true if code generation succeeded. */
bool
graphite_regenerate_ast_isl (scop_p scop)
{
sese_info_p region = scop->scop_info;
translate_isl_ast_to_gimple t (region);
ifsese if_region = NULL;
isl_ast_node *root_node;
ivs_params ip;
timevar_push (TV_GRAPHITE_CODE_GEN);
t.add_parameters_to_ivs_params (scop, ip);
root_node = t.scop_to_isl_ast (scop);
if (! root_node)
{
ivs_params_clear (ip);
timevar_pop (TV_GRAPHITE_CODE_GEN);
return false;
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "[scheduler] original schedule:\n");
print_isl_schedule (dump_file, scop->original_schedule);
fprintf (dump_file, "[scheduler] isl transformed schedule:\n");
print_isl_schedule (dump_file, scop->transformed_schedule);
fprintf (dump_file, "[scheduler] original ast:\n");
print_schedule_ast (dump_file, scop->original_schedule, scop);
fprintf (dump_file, "[scheduler] AST generated by isl:\n");
print_isl_ast (dump_file, root_node);
}
if_region = move_sese_in_condition (region);
region->if_region = if_region;
loop_p context_loop = region->region.entry->src->loop_father;
edge e = single_succ_edge (if_region->true_region->region.entry->dest);
basic_block bb = split_edge (e);
/* Update the true_region exit edge. */
region->if_region->true_region->region.exit = single_succ_edge (bb);
t.translate_isl_ast (context_loop, root_node, e, ip);
if (! t.codegen_error_p ())
{
generate_entry_out_of_ssa_copies (if_region->false_region->region.entry,
if_region->true_region->region.entry,
region);
sese_insert_phis_for_liveouts (region,
if_region->region->region.exit->src,
if_region->false_region->region.exit,
if_region->true_region->region.exit);
if (dump_file)
fprintf (dump_file, "[codegen] isl AST to Gimple succeeded.\n");
}
if (t.codegen_error_p ())
{
location_t loc = find_loop_location
(scop->scop_info->region.entry->dest->loop_father);
dump_printf_loc (MSG_MISSED_OPTIMIZATION, loc,
"loop nest not optimized, code generation error\n");
/* Remove the unreachable region. */
remove_edge_and_dominated_blocks (if_region->true_region->region.entry);
basic_block ifb = if_region->false_region->region.entry->src;
gimple_stmt_iterator gsi = gsi_last_bb (ifb);
gsi_remove (&gsi, true);
if_region->false_region->region.entry->flags &= ~EDGE_FALSE_VALUE;
if_region->false_region->region.entry->flags |= EDGE_FALLTHRU;
/* remove_edge_and_dominated_blocks marks loops for removal but
doesn't actually remove them (fix that...). */
loop_p loop;
FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
if (! loop->header)
delete_loop (loop);
}
/* We are delaying SSA update to after code-generating all SCOPs.
This is because we analyzed DRs and parameters on the unmodified
IL and thus rely on SSA update to pick up new dominating definitions
from for example SESE liveout PHIs. This is also for efficiency
as SSA update does work depending on the size of the function. */
free (if_region->true_region);
free (if_region->region);
free (if_region);
ivs_params_clear (ip);
isl_ast_node_free (root_node);
timevar_pop (TV_GRAPHITE_CODE_GEN);
return !t.codegen_error_p ();
}
#endif /* HAVE_isl */
|