aboutsummaryrefslogtreecommitdiff
path: root/gcc/go/gofrontend/export.cc
blob: 7373deee310b0bd9029f3b2271ec0847e9993f2e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
// export.cc -- Export declarations in Go frontend.

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "go-system.h"

#include "go-c.h"
#include "go-diagnostics.h"
#include "go-sha1.h"
#include "gogo.h"
#include "types.h"
#include "expressions.h"
#include "statements.h"
#include "export.h"
#include "go-linemap.h"
#include "backend.h"

// This file handles exporting global declarations.

// Class Export.

const int Export::magic_len;

// Current version magic string.
const char Export::cur_magic[Export::magic_len] =
  {
    'v', '3', ';', '\n'
  };

// Magic strings for previous versions (still supported).
const char Export::v1_magic[Export::magic_len] =
  {
    'v', '1', ';', '\n'
  };
const char Export::v2_magic[Export::magic_len] =
  {
    'v', '2', ';', '\n'
  };

const int Export::checksum_len;

// Type hash table operations, treating aliases as distinct.

class Type_hash_alias_identical
{
 public:
  unsigned int
  operator()(const Type* type) const
  {
    return type->hash_for_method(NULL,
				 (Type::COMPARE_ERRORS
				  | Type::COMPARE_TAGS
				  | Type::COMPARE_EMBEDDED_INTERFACES
				  | Type::COMPARE_ALIASES));
  }
};

class Type_alias_identical
{
 public:
  bool
  operator()(const Type* t1, const Type* t2) const
  {
    return Type::are_identical(t1, t2,
			       (Type::COMPARE_ERRORS
				| Type::COMPARE_TAGS
                                | Type::COMPARE_EMBEDDED_INTERFACES
				| Type::COMPARE_ALIASES),
			       NULL);
  }
};

// Mapping from Type objects to a constant index.
typedef Unordered_map_hash(const Type*, int, Type_hash_alias_identical,
                           Type_alias_identical) Type_refs;

// Implementation object for class Export.  Hidden implementation avoids
// having to #include types.h in export.h, or use a static map.

struct Export_impl {
  Type_refs type_refs;
};

// Constructor.

Export::Export(Stream* stream)
    : stream_(stream), type_index_(1), packages_(), impl_(new Export_impl)
{
  go_assert(Export::checksum_len == Go_sha1_helper::checksum_len);
}

// Destructor.

Export::~Export()
{
  delete this->impl_;
}

// A traversal class to collect functions and global variables
// referenced by inlined functions, and also to gather up
// referenced types that need to be included in the exports.

class Collect_export_references : public Traverse
{
 public:
  Collect_export_references(Export* exp,
			    const std::map<std::string, Package*>& packages,
                            Unordered_set(Named_object*)* exports,
                            Unordered_set(const Package*)* imports)
    : Traverse(traverse_expressions
               | traverse_types),
      exp_(exp), packages_(packages), exports_(exports), imports_(imports),
      inline_fcn_worklist_(NULL), exports_finalized_(false)
  { }

  // Initial entry point; performs a walk to expand the exports set.
  void
  expand_exports(std::vector<Named_object*>* inlinable_functions);

  // Second entry point (called after the method above), to find
  // all types referenced by exports.
  void
  prepare_types(const std::vector<Named_object*>& sorted_exports);

  // Third entry point (called after the method above), to find
  // all types in expressions referenced by exports.
  void
  prepare_expressions(const std::vector<Named_object*>& sorted_exports);

 protected:
  // Override of parent class method.
  int
  expression(Expression**);

  // Override of parent class method.
  int
  type(Type* type);

  // Traverse the components of a function type.
  void
  traverse_function_type(Function_type*);

  // Traverse the methods of a named type, and register its package.
  void
  traverse_named_type(Named_type*);

 private:

  // Add a named object to the exports set (during expand_exports()).
  // Returns TRUE if a new object was added to the exports set,
  // FALSE otherwise.
  bool
  add_to_exports(Named_object*);

  // The exporter.
  Export* exp_;
  // The list of packages known to this compilation.
  const std::map<std::string, Package*>& packages_;
  // The set of named objects to export.
  Unordered_set(Named_object*)* exports_;
  // Set containing all directly and indirectly imported packages.
  Unordered_set(const Package*)* imports_;
  // Functions we've already traversed and don't need to visit again.
  Unordered_set(Named_object*) checked_functions_;
  // Worklist of functions we are exporting with inline bodies that need
  // to be checked.
  std::vector<Named_object*>* inline_fcn_worklist_;
  // Set to true if expand_exports() has been called and is complete.
  bool exports_finalized_;
};

void
Collect_export_references::expand_exports(std::vector<Named_object*>* fcns)
{
  this->inline_fcn_worklist_ = fcns;
  while (!this->inline_fcn_worklist_->empty())
    {
      Named_object* no = this->inline_fcn_worklist_->back();
      this->inline_fcn_worklist_->pop_back();
      std::pair<Unordered_set(Named_object*)::iterator, bool> ins =
	this->checked_functions_.insert(no);
      if (ins.second)
	{
	  // This traversal may add new objects to this->exports_ and new
	  // functions to this->inline_fcn_worklist_.
	  no->func_value()->block()->traverse(this);
	}
    }
  this->inline_fcn_worklist_ = NULL;
  this->exports_finalized_ = true;
}

bool
Collect_export_references::add_to_exports(Named_object* no)
{
  std::pair<Unordered_set(Named_object*)::iterator, bool> ins =
      this->exports_->insert(no);
  // If the export list has been finalized, then we should not be
  // adding anything new to the exports set.
  go_assert(!this->exports_finalized_ || !ins.second);
  return ins.second;
}

int
Collect_export_references::expression(Expression** pexpr)
{
  const Expression* expr = *pexpr;

  const Var_expression* ve = expr->var_expression();
  if (ve != NULL)
    {
      Named_object* no = ve->named_object();
      if (no->is_variable() && no->var_value()->is_global())
	{
          const Package* var_package = no->package();
          if (var_package != NULL)
            this->imports_->insert(var_package);

	  this->add_to_exports(no);
	  no->var_value()->set_is_referenced_by_inline();
	}
      return TRAVERSE_CONTINUE;
    }

  const Func_expression* fe = expr->func_expression();
  if (fe != NULL)
    {
      Named_object* no = fe->named_object();

      const Package* func_package = fe->named_object()->package();
      if (func_package != NULL)
        this->imports_->insert(func_package);

      if (no->is_function_declaration()
	  && no->func_declaration_value()->type()->is_builtin())
	return TRAVERSE_CONTINUE;

      if (this->inline_fcn_worklist_ != NULL)
        {
          bool added = this->add_to_exports(no);

          if (no->is_function())
            no->func_value()->set_is_referenced_by_inline();

          // If 'added' is false then this object was already in
          // exports_, in which case it was already added to
          // check_inline_refs_ the first time we added it to exports_, so
          // we don't need to add it again.
          if (added
              && no->is_function()
              && no->func_value()->export_for_inlining())
            this->inline_fcn_worklist_->push_back(no);
        }

      return TRAVERSE_CONTINUE;
    }

  const Named_object* nco = expr->named_constant();
  if (nco != 0)
    {
      const Named_constant *nc = nco->const_value();
      Type::traverse(nc->type(), this);
      return TRAVERSE_CONTINUE;
    }

  const Call_expression* call = expr->call_expression();
  if (call != NULL)
    {
      const Builtin_call_expression* bce = call->builtin_call_expression();
      if (bce != NULL
	  && (bce->code() == Builtin_call_expression::BUILTIN_ADD
	      || bce->code() == Builtin_call_expression::BUILTIN_SLICE))
	{
	  // This is a reference to unsafe.Add or unsafe.Slice.  Make
	  // sure we list the "unsafe" package in the imports and give
	  // it a package index.
	  const std::map<std::string, Package*>::const_iterator p =
	    this->packages_.find("unsafe");
	  go_assert(p != this->packages_.end());
	  this->imports_->insert(p->second);
	}
    }

  return TRAVERSE_CONTINUE;
}

// Collect up the set of types mentioned in expressions of things we're exporting,
// and collect all the packages encountered during type traversal, to make sure
// we can declare things referered to indirectly (for example, in the body of an
// exported inline function from another package).

void
Collect_export_references::prepare_expressions(const std::vector<Named_object*>& sorted_exports)
{
  for (std::vector<Named_object*>::const_iterator p = sorted_exports.begin();
       p != sorted_exports.end();
       ++p)
    {
      Named_object* no = *p;
      if (no->classification() == Named_object::NAMED_OBJECT_CONST)
        {
          Expression* e = no->const_value()->expr();
          if (e != NULL)
            Expression::traverse(&e, this);
        }
    }
}

// Collect up the set of types mentioned in things we're exporting, and collect
// all the packages encountered during type traversal, to make sure we can
// declare things referered to indirectly (for example, in the body of an
// exported inline function from another package).

void
Collect_export_references::prepare_types(const std::vector<Named_object*>& sorted_exports)
{
  // Iterate through the exported objects and traverse any types encountered.
  for (std::vector<Named_object*>::const_iterator p = sorted_exports.begin();
       p != sorted_exports.end();
       ++p)
    {
      Named_object* no = *p;
      switch (no->classification())
	{
	case Named_object::NAMED_OBJECT_CONST:
	  {
	    Type* t = no->const_value()->type();
	    if (t != NULL && !t->is_abstract())
	      Type::traverse(t, this);
	  }
	  break;

	case Named_object::NAMED_OBJECT_TYPE:
	  Type::traverse(no->type_value()->real_type(), this);
	  this->traverse_named_type(no->type_value());
	  break;

	case Named_object::NAMED_OBJECT_VAR:
	  Type::traverse(no->var_value()->type(), this);
	  break;

	case Named_object::NAMED_OBJECT_FUNC:
	  {
	    Function* fn = no->func_value();
	    this->traverse_function_type(fn->type());
	    if (fn->export_for_inlining())
	      fn->block()->traverse(this);
	  }
	  break;

	case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
	  this->traverse_function_type(no->func_declaration_value()->type());
	  break;

	default:
	  // We shouldn't see anything else.  If we do we'll give an
	  // error later when we try to actually export it.
	  break;
	}
    }
}

// Record referenced type, record package imports, and make sure we traverse
// methods of named types.

int
Collect_export_references::type(Type* type)
{
  // Skip forwarders; don't try to give them a type index.
  if (type->forward_declaration_type() != NULL)
    return TRAVERSE_CONTINUE;

  // Skip the void type, which we'll see when exporting
  // unsafe.Pointer.  The void type is not itself exported, because
  // Pointer_type::do_export checks for it.
  if (type->is_void_type())
    return TRAVERSE_SKIP_COMPONENTS;

  // Skip the nil type, turns up in function bodies.
  if (type->is_nil_type())
    return TRAVERSE_SKIP_COMPONENTS;

  // Skip abstract types.  We should never see these in real code,
  // only in things like const declarations.
  if (type->is_abstract())
    return TRAVERSE_SKIP_COMPONENTS;

  if (!this->exp_->record_type(type))
    {
      // We've already seen this type.
      return TRAVERSE_SKIP_COMPONENTS;
    }

  // At this stage of compilation traversing interface types traverses
  // the final list of methods, but we export the locally defined
  // methods.  If there is an embedded interface type we need to make
  // sure to export that.  Check classification, rather than calling
  // the interface_type method, because we want to handle named types
  // below.
  if (type->classification() == Type::TYPE_INTERFACE)
    {
      Interface_type* it = type->interface_type();
      const Typed_identifier_list* methods = it->local_methods();
      if (methods != NULL)
	{
	  for (Typed_identifier_list::const_iterator p = methods->begin();
	       p != methods->end();
	       ++p)
	    {
	      if (p->name().empty())
		Type::traverse(p->type(), this);
	      else
		this->traverse_function_type(p->type()->function_type());
	    }
	}
      return TRAVERSE_SKIP_COMPONENTS;
    }

  Named_type* nt = type->named_type();
  if (nt != NULL)
    this->traverse_named_type(nt);

  return TRAVERSE_CONTINUE;
}

void
Collect_export_references::traverse_named_type(Named_type* nt)
{
  const Package* package = nt->named_object()->package();
  if (package != NULL)
    this->imports_->insert(package);

  // We have to traverse the methods of named types, because we are
  // going to export them.  This is not done by ordinary type
  // traversal.
  const Bindings* methods = nt->local_methods();
  if (methods != NULL)
    {
      for (Bindings::const_definitions_iterator pm =
	     methods->begin_definitions();
	   pm != methods->end_definitions();
	   ++pm)
	{
	  Function* fn = (*pm)->func_value();
	  this->traverse_function_type(fn->type());
	  if (fn->export_for_inlining())
	    fn->block()->traverse(this);
	}

      for (Bindings::const_declarations_iterator pm =
	     methods->begin_declarations();
	   pm != methods->end_declarations();
	   ++pm)
	{
	  Named_object* mno = pm->second;
	  if (mno->is_function_declaration())
	    this->traverse_function_type(mno->func_declaration_value()->type());
	}
    }
}

// Traverse the types in a function type.  We don't need the function
// type itself, just the receiver, parameter, and result types.

void
Collect_export_references::traverse_function_type(Function_type* type)
{
  go_assert(type != NULL);
  if (this->remember_type(type))
    return;
  const Typed_identifier* receiver = type->receiver();
  if (receiver != NULL)
    Type::traverse(receiver->type(), this);
  const Typed_identifier_list* parameters = type->parameters();
  if (parameters != NULL)
    parameters->traverse(this);
  const Typed_identifier_list* results = type->results();
  if (results != NULL)
    results->traverse(this);
}

// Return true if we should export NO.

static bool
should_export(Named_object* no)
{
  // We only export objects which are locally defined.
  if (no->package() != NULL)
    return false;

  // We don't export packages.
  if (no->is_package())
    return false;

  // We don't export hidden names.
  if (Gogo::is_hidden_name(no->name()))
    return false;

  // We don't export various special functions.
  if (Gogo::special_name_pos(no->name()) != std::string::npos)
    return false;

  // Methods are exported with the type, not here.
  if (no->is_function()
      && no->func_value()->type()->is_method())
    return false;
  if (no->is_function_declaration()
      && no->func_declaration_value()->type()->is_method())
    return false;

  // Don't export dummy global variables created for initializers when
  // used with sinks.
  if (no->is_variable() && no->name()[0] == '_' && no->name()[1] == '.')
    return false;

  return true;
}

// Compare Typed_identifier_list's.

static int
compare_til(const Typed_identifier_list*, const Typed_identifier_list*);

// A functor to sort Named_object pointers by name.

struct Sort_bindings
{
  bool
  operator()(const Named_object* n1, const Named_object* n2) const
  {
    if (n1 == n2)
      return false;

    if (n1->package() != n2->package())
      {
	if (n1->package() == NULL)
	  return true;
	if (n2->package() == NULL)
	  return false;

	// Make sure we don't see the same pkgpath twice.
	const std::string& p1(n1->package()->pkgpath());
	const std::string& p2(n2->package()->pkgpath());
	go_assert(p1 != p2);

	return p1 < p2;
      }

    if (n1->name() != n2->name())
      return n1->name() < n2->name();

    // We shouldn't see the same name twice, but it can happen for
    // nested type names.

    go_assert(n1->is_type() && n2->is_type());

    unsigned int ind1;
    const Named_object* g1 = n1->type_value()->in_function(&ind1);
    unsigned int ind2;
    const Named_object* g2 = n2->type_value()->in_function(&ind2);

    if (g1 == NULL)
      {
	go_assert(g2 != NULL);
	return true;
      }
    else if (g2 == NULL)
      return false;
    else if (g1 == g2)
      {
	go_assert(ind1 != ind2);
	return ind1 < ind2;
      }
    else if ((g1->package() != g2->package()) || (g1->name() != g2->name()))
      return Sort_bindings()(g1, g2);
    else
      {
	// This case can happen if g1 or g2 is a method.
	if (g1 != NULL && g1->func_value()->is_method())
	  {
	    const Typed_identifier* r = g1->func_value()->type()->receiver();
	    g1 = r->type()->named_type()->named_object();
	  }
	if (g2 != NULL && g2->func_value()->is_method())
	  {
	    const Typed_identifier* r = g2->func_value()->type()->receiver();
	    g2 = r->type()->named_type()->named_object();
	  }
	return Sort_bindings()(g1, g2);
      }
  }
};

// A functor to sort types for export.

struct Sort_types
{
  bool
  operator()(const Type* t1, const Type* t2) const
  {
    t1 = t1->forwarded();
    t2 = t2->forwarded();

    const Named_type* nt1 = t1->named_type();
    const Named_type* nt2 = t2->named_type();
    if (nt1 != NULL)
      {
	if (nt2 != NULL)
	  {
	    Sort_bindings sb;
	    return sb(nt1->named_object(), nt2->named_object());
	  }
	else
	  return true;
      }
    else if (nt2 != NULL)
      return false;
    if (t1->classification() != t2->classification())
      return t1->classification() < t2->classification();
    Gogo* gogo = go_get_gogo();
    Backend_name b1;
    gogo->type_descriptor_backend_name(t1, NULL, &b1);
    Backend_name b2;
    gogo->type_descriptor_backend_name(t2, NULL, &b2);

    std::string n1 = b1.name();
    std::string n2 = b2.name();
    if (n1 != n2)
      return n1 < n2;

    // We should never see equal types here.  If we do, we may not
    // generate an identical output file for identical input.  But the
    // backend names can be equal because we want to treat aliases
    // differently while type_descriptor_backend_name does not.  In
    // that case we need to traverse the type elements.

    // t1 == t2 in case std::sort compares elements to themselves.
    if (t1 == t2)
      return false;

    Sort_types sort;
    Type_alias_identical identical;
    go_assert(!identical(t1, t2));

    switch (t1->classification())
      {
      case Type::TYPE_ERROR:
	return false;

      case Type::TYPE_VOID:
      case Type::TYPE_BOOLEAN:
      case Type::TYPE_INTEGER:
      case Type::TYPE_FLOAT:
      case Type::TYPE_COMPLEX:
      case Type::TYPE_STRING:
      case Type::TYPE_SINK:
      case Type::TYPE_NIL:
      case Type::TYPE_CALL_MULTIPLE_RESULT:
      case Type::TYPE_NAMED:
      case Type::TYPE_FORWARD:
      default:
	go_unreachable();

      case Type::TYPE_FUNCTION:
	{
	  const Function_type* ft1 = t1->function_type();
	  const Function_type* ft2 = t2->function_type();
	  const Typed_identifier* r1 = ft1->receiver();
	  const Typed_identifier* r2 = ft2->receiver();
	  if (r1 == NULL)
	    go_assert(r2 == NULL);
	  else
	    {
	      go_assert(r2 != NULL);
	      const Type* rt1 = r1->type()->forwarded();
	      const Type* rt2 = r2->type()->forwarded();
	      if (!identical(rt1, rt2))
		return sort(rt1, rt2);
	    }

	  const Typed_identifier_list* p1 = ft1->parameters();
	  const Typed_identifier_list* p2 = ft2->parameters();
	  if (p1 == NULL || p1->empty())
	    go_assert(p2 == NULL || p2->empty());
	  else
	    {
	      go_assert(p2 != NULL && !p2->empty());
	      int i = compare_til(p1, p2);
	      if (i < 0)
		return false;
	      else if (i > 0)
		return true;
	    }

	  p1 = ft1->results();
	  p2 = ft2->results();
	  if (p1 == NULL || p1->empty())
	    go_assert(p2 == NULL || p2->empty());
	  else
	    {
	      go_assert(p2 != NULL && !p2->empty());
	      int i = compare_til(p1, p2);
	      if (i < 0)
		return false;
	      else if (i > 0)
		return true;
	    }

	  go_unreachable();
	}

      case Type::TYPE_POINTER:
	{
	  const Type* p1 = t1->points_to()->forwarded();
	  const Type* p2 = t2->points_to()->forwarded();
	  go_assert(!identical(p1, p2));
	  return sort(p1, p2);
	}

      case Type::TYPE_STRUCT:
	{
	  const Struct_type* s1 = t1->struct_type();
	  const Struct_type* s2 = t2->struct_type();
	  const Struct_field_list* f1 = s1->fields();
	  const Struct_field_list* f2 = s2->fields();
	  go_assert(f1 != NULL && f2 != NULL);
	  Struct_field_list::const_iterator p1 = f1->begin();
	  Struct_field_list::const_iterator p2 = f2->begin();
	  for (; p2 != f2->end(); ++p1, ++p2)
	    {
	      go_assert(p1 != f1->end());
	      go_assert(p1->field_name() == p2->field_name());
	      go_assert(p1->is_anonymous() == p2->is_anonymous());
	      const Type* ft1 = p1->type()->forwarded();
	      const Type* ft2 = p2->type()->forwarded();
	      if (!identical(ft1, ft2))
		return sort(ft1, ft2);
	    }
	  go_assert(p1 == f1->end());
	  go_unreachable();
	}

      case Type::TYPE_ARRAY:
	{
	  const Type* e1 = t1->array_type()->element_type()->forwarded();
	  const Type* e2 = t2->array_type()->element_type()->forwarded();
	  go_assert(!identical(e1, e2));
	  return sort(e1, e2);
	}

      case Type::TYPE_MAP:
	{
	  const Map_type* m1 = t1->map_type();
	  const Map_type* m2 = t2->map_type();
	  const Type* k1 = m1->key_type()->forwarded();
	  const Type* k2 = m2->key_type()->forwarded();
	  if (!identical(k1, k2))
	    return sort(k1, k2);
	  const Type* v1 = m1->val_type()->forwarded();
	  const Type* v2 = m2->val_type()->forwarded();
	  go_assert(!identical(v1, v2));
	  return sort(v1, v2);
	}

      case Type::TYPE_CHANNEL:
	{
	  const Type* e1 = t1->channel_type()->element_type()->forwarded();
	  const Type* e2 = t2->channel_type()->element_type()->forwarded();
	  go_assert(!identical(e1, e2));
	  return sort(e1, e2);
	}

      case Type::TYPE_INTERFACE:
	{
	  const Interface_type* it1 = t1->interface_type();
	  const Interface_type* it2 = t2->interface_type();
	  const Typed_identifier_list* m1 = it1->local_methods();
	  const Typed_identifier_list* m2 = it2->local_methods();

	  // We know the full method lists are the same, because the
	  // mangled type names were the same, but here we are looking
	  // at the local method lists, which include embedded
	  // interfaces, and we can have an embedded empty interface.
	  if (m1 == NULL || m1->empty())
	    {
	      go_assert(m2 != NULL && !m2->empty());
	      return true;
	    }
	  else if (m2 == NULL || m2->empty())
	    {
	      go_assert(m1 != NULL && !m1->empty());
	      return false;
	    }

	  int i = compare_til(m1, m2);
	  if (i < 0)
	    return false;
	  else if (i > 0)
	    return true;
	  else
	    go_unreachable();
	}
      }
  }
};

// Compare Typed_identifier_list's with Sort_types, returning -1, 0, +1.

static int
compare_til(
    const Typed_identifier_list* til1,
    const Typed_identifier_list* til2)
{
  Type_alias_identical identical;
  Sort_types sort;
  Typed_identifier_list::const_iterator p1 = til1->begin();
  Typed_identifier_list::const_iterator p2 = til2->begin();
  for (; p2 != til2->end(); ++p1, ++p2)
    {
      if (p1 == til1->end())
	return -1;
      const Type* t1 = p1->type()->forwarded();
      const Type* t2 = p2->type()->forwarded();
      if (!identical(t1, t2))
	{
	  if (sort(t1, t2))
	    return -1;
	  else
	    return +1;
	}
    }
  if (p1 != til1->end())
    return +1;
  return 0;
}

// Export those identifiers marked for exporting.

void
Export::export_globals(const std::string& package_name,
		       const std::string& prefix,
		       const std::string& pkgpath,
		       const std::map<std::string, Package*>& packages,
		       const std::map<std::string, Package*>& imports,
		       const std::string& import_init_fn,
                       const Import_init_set& imported_init_fns,
		       const Bindings* bindings,
                       Unordered_set(Named_object*)* functions_marked_inline)
{
  // If there have been any errors so far, don't try to export
  // anything.  That way the export code doesn't have to worry about
  // mismatched types or other confusions.
  if (saw_errors())
    return;

  // EXPORTS is the set of objects to export.  CHECK_INLINE_REFS is a
  // list of exported function with inline bodies that need to be
  // checked for references to other objects.  Every function on
  // CHECK_INLINE_REFS is also on EXPORTS.
  Unordered_set(Named_object*) exports;
  std::vector<Named_object*> check_inline_refs;
  check_inline_refs.reserve(functions_marked_inline->size());

  // Add all functions/methods from the "marked inlined" set to the
  // CHECK_INLINE_REFS worklist.
  for (Unordered_set(Named_object*)::const_iterator p = functions_marked_inline->begin();
       p != functions_marked_inline->end();
       ++p)
      check_inline_refs.push_back(*p);

  for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
       p != bindings->end_definitions();
       ++p)
    {
      if (should_export(*p))
        exports.insert(*p);
    }

  for (Bindings::const_declarations_iterator p =
	 bindings->begin_declarations();
       p != bindings->end_declarations();
       ++p)
    {
      // We export a function declaration as it may be implemented in
      // supporting C code.  We do not export type declarations.
      if (p->second->is_function_declaration()
	  && should_export(p->second))
	exports.insert(p->second);
    }

  // Track all imported packages mentioned in export data.
  Unordered_set(const Package*) all_imports;

  Collect_export_references collect(this, packages, &exports, &all_imports);

  // Walk the set of inlinable routine bodies collected above. This
  // can potentially expand the exports set.
  collect.expand_exports(&check_inline_refs);

  // Export the symbols in sorted order.  That will reduce cases where
  // irrelevant changes to the source code affect the exported
  // interface.
  std::vector<Named_object*> sorted_exports;
  sorted_exports.reserve(exports.size());

  for (Unordered_set(Named_object*)::const_iterator p = exports.begin();
       p != exports.end();
       ++p)
    {
      sorted_exports.push_back(*p);

      const Package* pkg = (*p)->package();
      if (pkg != NULL)
	all_imports.insert(pkg);
    }

  std::sort(sorted_exports.begin(), sorted_exports.end(), Sort_bindings());

  // Collect up the set of types mentioned in things we're exporting,
  // and any packages that may be referred to indirectly.
  collect.prepare_types(sorted_exports);
  collect.prepare_expressions(sorted_exports);

  // Assign indexes to all exported types and types referenced by
  // things we're exporting.  Return value is index of first non-exported
  // type.
  int unexported_type_index = this->assign_type_indices(sorted_exports);

  // Although the export data is readable, at least this version is,
  // it is conceptually a binary format.  Start with a four byte
  // version number.
  this->write_bytes(Export::cur_magic, Export::magic_len);

  // The package name.
  this->write_c_string("package ");
  this->write_string(package_name);
  this->write_c_string("\n");

  // The prefix or package path, used for all global symbols.
  if (prefix.empty())
    {
      go_assert(!pkgpath.empty());
      this->write_c_string("pkgpath ");
      this->write_string(pkgpath);
    }
  else
    {
      this->write_c_string("prefix ");
      this->write_string(prefix);
    }
  this->write_c_string("\n");

  this->write_packages(packages);

  this->write_imports(imports, all_imports);

  this->write_imported_init_fns(package_name, import_init_fn,
				imported_init_fns);

  // FIXME: It might be clever to add something about the processor
  // and ABI being used, although ideally any problems in that area
  // would be caught by the linker.

  // Write out all the types, both exported and not.
  this->write_types(unexported_type_index);

  // Write out the non-type export data.
  for (std::vector<Named_object*>::const_iterator p = sorted_exports.begin();
       p != sorted_exports.end();
       ++p)
    {
      if (!(*p)->is_type())
	(*p)->export_named_object(this);
    }

  std::string checksum = this->stream_->checksum();
  std::string s = "checksum ";
  for (std::string::const_iterator p = checksum.begin();
       p != checksum.end();
       ++p)
    {
      unsigned char c = *p;
      unsigned int dig = c >> 4;
      s += dig < 10 ? '0' + dig : 'A' + dig - 10;
      dig = c & 0xf;
      s += dig < 10 ? '0' + dig : 'A' + dig - 10;
    }
  s += "\n";
  this->stream_->write_checksum(s);
}

// Record a type in the "to be indexed" set. Return true if the type
// was not already in the set, false otherwise.

bool
Export::record_type(Type* type)
{
  type = type->forwarded();
  std::pair<Type_refs::iterator, bool> ins =
    this->impl_->type_refs.insert(std::make_pair(type, 0));
  return ins.second;
}

// Assign the specified type an index.

void
Export::set_type_index(const Type* type)
{
  type = type->forwarded();
  Type_refs::iterator p = this->impl_->type_refs.find(type);
  go_assert(p != this->impl_->type_refs.end());
  int index = this->type_index_;
  ++this->type_index_;
  go_assert(p->second == 0);
  p->second = index;
}

// This helper assigns type indices to all types mentioned directly or
// indirectly in the things we're exporting. Actual exported types are given
// indices according to where the appear on the sorted exports list; all other
// types appear afterwards. Return value is the total number of exported types
// plus 1, e.g. the index of the 1st non-exported type.

int
Export::assign_type_indices(const std::vector<Named_object*>& sorted_exports)
{
  // Assign indexes to all the exported types.
  for (std::vector<Named_object*>::const_iterator p = sorted_exports.begin();
       p != sorted_exports.end();
       ++p)
    {
      if (!(*p)->is_type())
	continue;
      this->record_type((*p)->type_value());
      this->set_type_index((*p)->type_value());
    }
  int ret = this->type_index_;

  // Collect export-referenced, non-builtin types.
  std::vector<const Type*> types;
  types.reserve(this->impl_->type_refs.size());
  for (Type_refs::const_iterator p = this->impl_->type_refs.begin();
       p != this->impl_->type_refs.end();
       ++p)
    {
      const Type* t = p->first;
      if (p->second != 0)
        continue;
      types.push_back(t);
    }

  // Sort the types.
  std::sort(types.begin(), types.end(), Sort_types());

  // Assign numbers to the sorted list.
  for (std::vector<const Type *>::const_iterator p = types.begin();
       p != types.end();
       ++p)
    this->set_type_index((*p));

  return ret;
}

// Sort packages.

static bool
packages_compare(const Package* a, const Package* b)
{
  if (a->package_name() < b->package_name())
    return true;
  else if (a->package_name() > b->package_name())
    return false;

  if (a->pkgpath() < b->pkgpath())
    return true;
  else if (a->pkgpath() > b->pkgpath())
    return false;

  // In principle if we get here then a == b.  Try to do something sensible
  // even if the import information is inconsistent.
  if (a->pkgpath_symbol() < b->pkgpath_symbol())
    return true;
  else if (a->pkgpath_symbol() > b->pkgpath_symbol())
    return false;

  return a < b;
}

// Write out all the known packages whose pkgpath symbol is not a
// simple transformation of the pkgpath, so that the importing code
// can reliably know it.

void
Export::write_packages(const std::map<std::string, Package*>& packages)
{
  // Sort for consistent output.
  std::vector<Package*> out;
  for (std::map<std::string, Package*>::const_iterator p = packages.begin();
       p != packages.end();
       ++p)
    {
      if (p->second->pkgpath_symbol()
	  != Gogo::pkgpath_for_symbol(p->second->pkgpath()))
	out.push_back(p->second);
    }

  std::sort(out.begin(), out.end(), packages_compare);

  for (std::vector<Package*>::const_iterator p = out.begin();
       p != out.end();
       ++p)
    {
      this->write_c_string("package ");
      this->write_string((*p)->package_name());
      this->write_c_string(" ");
      this->write_string((*p)->pkgpath());
      this->write_c_string(" ");
      this->write_string((*p)->pkgpath_symbol());
      this->write_c_string("\n");
    }
}

// Sort imported packages.

static bool
import_compare(const std::pair<std::string, Package*>& a,
	       const std::pair<std::string, Package*>& b)
{
  return a.first < b.first;
}

// Write out the imported packages.

void
Export::write_imports(const std::map<std::string, Package*>& imports,
		      const Unordered_set(const Package*)& all_imports)
{
  // Sort the imports for more consistent output.
  Unordered_set(const Package*) seen;
  std::vector<std::pair<std::string, Package*> > sorted_imports;
  for (std::map<std::string, Package*>::const_iterator p = imports.begin();
       p != imports.end();
       ++p)
    {
      sorted_imports.push_back(std::make_pair(p->first, p->second));
      seen.insert(p->second);
    }

  std::sort(sorted_imports.begin(), sorted_imports.end(), import_compare);

  int package_index = 1;
  for (std::vector<std::pair<std::string, Package*> >::const_iterator p =
	 sorted_imports.begin();
       p != sorted_imports.end();
       ++p)
    {
      this->write_c_string("import ");
      this->write_string(p->second->package_name());
      this->write_c_string(" ");
      this->write_string(p->second->pkgpath());
      this->write_c_string(" \"");
      this->write_string(p->first);
      this->write_c_string("\"\n");

      this->packages_[p->second] = package_index;
      package_index++;
    }

  // Write out a separate list of indirectly imported packages.
  std::vector<const Package*> indirect_imports;
  for (Unordered_set(const Package*)::const_iterator p =
	 all_imports.begin();
       p != all_imports.end();
       ++p)
    {
      if (seen.find(*p) == seen.end())
	indirect_imports.push_back(*p);
    }

  std::sort(indirect_imports.begin(), indirect_imports.end(),
	    packages_compare);

  for (std::vector<const Package*>::const_iterator p =
	 indirect_imports.begin();
       p != indirect_imports.end();
       ++p)
    {
      this->write_c_string("indirectimport ");
      this->write_string((*p)->package_name());
      this->write_c_string(" ");
      this->write_string((*p)->pkgpath());
      this->write_c_string("\n");

      this->packages_[*p] = package_index;
      package_index++;
    }
}

void
Export::add_init_graph_edge(Init_graph* init_graph, unsigned src, unsigned sink)
{
  Init_graph::iterator it = init_graph->find(src);
  if (it != init_graph->end())
    it->second.insert(sink);
  else
    {
      std::set<unsigned> succs;
      succs.insert(sink);
      (*init_graph)[src] = succs;
    }
}

// Constructs the imported portion of the init graph, e.g. those
// edges that we read from imported packages.

void
Export::populate_init_graph(Init_graph* init_graph,
                            const Import_init_set& imported_init_fns,
                            const std::map<std::string, unsigned>& init_idx)
{
  for (Import_init_set::const_iterator p = imported_init_fns.begin();
       p != imported_init_fns.end();
       ++p)
    {
      const Import_init* ii = *p;
      if (ii->is_dummy())
        continue;
      std::map<std::string, unsigned>::const_iterator srcit =
          init_idx.find(ii->init_name());
      go_assert(srcit != init_idx.end());
      unsigned src = srcit->second;
      for (std::set<std::string>::const_iterator pci = ii->precursors().begin();
           pci != ii->precursors().end();
           ++pci)
	{
	  std::map<std::string, unsigned>::const_iterator it =
	      init_idx.find(*pci);
	  go_assert(it != init_idx.end());
	  unsigned sink = it->second;
	  add_init_graph_edge(init_graph, src, sink);
	}
    }
}

// Write out the initialization functions which need to run for this
// package.

void
Export::write_imported_init_fns(const std::string& package_name,
                                const std::string& import_init_fn,
                                const Import_init_set& imported_init_fns)
{
  if (import_init_fn.empty() && imported_init_fns.empty()) return;

  // Maps a given init function to the its index in the exported "init" clause.
  std::map<std::string, unsigned> init_idx;

  this->write_c_string("init");

  if (!import_init_fn.empty())
    {
      this->write_c_string(" ");
      this->write_string(package_name);
      this->write_c_string(" ");
      this->write_string(import_init_fn);
      init_idx[import_init_fn] = 0;
    }

  if (imported_init_fns.empty())
    {
      this->write_c_string("\n");
      return;
    }

  typedef std::map<int, std::vector<std::string> > level_map;
  Init_graph init_graph;
  level_map inits_at_level;

  // Walk through the set of import inits (already sorted by
  // init fcn name) and write them out to the exports.
  for (Import_init_set::const_iterator p = imported_init_fns.begin();
       p != imported_init_fns.end();
       ++p)
    {
      const Import_init* ii = *p;

      if (ii->init_name() == import_init_fn)
	continue;

      this->write_c_string(" ");
      this->write_string(ii->package_name());
      this->write_c_string(" ");
      this->write_string(ii->init_name());

      // Populate init_idx.
      go_assert(init_idx.find(ii->init_name()) == init_idx.end());
      unsigned idx = init_idx.size();
      init_idx[ii->init_name()] = idx;

      // If the init function has a non-negative priority value, this
      // is an indication that it was referred to in an older version
      // export data section (e.g. we read a legacy object
      // file). Record such init fcns so that we can fix up the graph
      // for them (handled later in this function).
      if (ii->priority() > 0)
	{
	  level_map::iterator it = inits_at_level.find(ii->priority());
	  if (it == inits_at_level.end())
	    {
	      std::vector<std::string> l;
	      l.push_back(ii->init_name());
	      inits_at_level[ii->priority()] = l;
	    }
	  else
	    it->second.push_back(ii->init_name());
	}
    }
  this->write_c_string("\n");

  // Create the init graph. Start by populating the graph with
  // all the edges we inherited from imported packages.
  populate_init_graph(&init_graph, imported_init_fns, init_idx);

  // Now add edges from the local init function to each of the
  // imported fcns.
  if (!import_init_fn.empty() && import_init_fn[0] != '~')
    {
      unsigned src = 0;
      go_assert(init_idx[import_init_fn] == 0);
      for (Import_init_set::const_iterator p = imported_init_fns.begin();
           p != imported_init_fns.end();
           ++p)
	{
          const Import_init* ii = *p;
          if (ii->is_dummy())
            continue;
	  unsigned sink = init_idx[ii->init_name()];
	  add_init_graph_edge(&init_graph, src, sink);
	}
    }

  // In the scenario where one or more of the packages we imported
  // was written with the legacy export data format, add dummy edges
  // to capture the priority relationships. Here is a package import
  // graph as an example:
  //
  //       *A
  //       /|
  //      / |
  //     B  *C
  //       /|
  //      / |
  //    *D *E
  //     | /|
  //     |/ |
  //    *F  *G
  //
  // Let's suppose that the object for package "C" is from an old
  // gccgo, e.g. it has the old export data format. All other
  // packages are compiled with the new compiler and have the new
  // format. Packages with *'s have init functions. The scenario is
  // that we're compiling a package "A"; during this process we'll
  // read the export data for "C". It should look something like
  //
  //   init F F..import 1 G G..import 1 D D..import 2 E E..import 2;
  //
  // To capture this information and convey it to the consumers of
  // "A", the code below adds edges to the graph from each priority K
  // function to every priority K-1 function for appropriate values
  // of K. This will potentially add more edges than we need (for
  // example, an edge from D to G), but given that we don't expect
  // to see large numbers of old objects, this will hopefully be OK.

  if (inits_at_level.size() > 0)
    {
      for (level_map::reverse_iterator it = inits_at_level.rbegin();
           it != inits_at_level.rend(); ++it)
	{
	  int level = it->first;
	  if (level < 2) break;
	  const std::vector<std::string>& fcns_at_level = it->second;
	  for (std::vector<std::string>::const_iterator sit =
	           fcns_at_level.begin();
	       sit != fcns_at_level.end(); ++sit)
	    {
	      unsigned src = init_idx[*sit];
	      level_map::iterator it2 = inits_at_level.find(level - 1);
	      if (it2 != inits_at_level.end())
		{
		  const std::vector<std::string> fcns_at_lm1 = it2->second;
		  for (std::vector<std::string>::const_iterator mit =
		           fcns_at_lm1.begin();
		       mit != fcns_at_lm1.end(); ++mit)
		    {
		      unsigned sink = init_idx[*mit];
		      add_init_graph_edge(&init_graph, src, sink);
		    }
		}
	    }
	}
    }

  // Write out the resulting graph.
  this->write_c_string("init_graph");
  for (Init_graph::const_iterator ki = init_graph.begin();
       ki != init_graph.end(); ++ki)
    {
      unsigned src = ki->first;
      const std::set<unsigned>& successors = ki->second;
      for (std::set<unsigned>::const_iterator vi = successors.begin();
           vi != successors.end(); ++vi)
	{
	  this->write_c_string(" ");
	  this->write_unsigned(src);
	  unsigned sink = (*vi);
	  this->write_c_string(" ");
	  this->write_unsigned(sink);
	}
    }
  this->write_c_string("\n");
}

// Write the types to the export stream.

void
Export::write_types(int unexported_type_index)
{
  // Map from type index to type.
  std::vector<const Type*> types(static_cast<size_t>(this->type_index_));
  for (Type_refs::const_iterator p = this->impl_->type_refs.begin();
       p != this->impl_->type_refs.end();
       ++p)
    {
      if (p->second >= 0)
	types.at(p->second) = p->first;
    }

  // Write the type information to a buffer.
  Stream_to_string type_data;
  Export::Stream* orig_stream = this->stream_;
  this->stream_ = &type_data;

  std::vector<size_t> type_sizes(static_cast<size_t>(this->type_index_));
  type_sizes[0] = 0;

  // Start at 1 because type index 0 is not used.
  size_t start_size = 0;
  for (int i = 1; i < this->type_index_; ++i)
    {
      this->write_type_definition(types[i], i);

      size_t cur_size = type_data.string().size();
      type_sizes[i] = cur_size - start_size;
      start_size = cur_size;
    }

  // Back to original stream.
  this->stream_ = orig_stream;

  // The line "types MAXP1 EXPORTEDP1 SIZES..." appears before the
  // types.  MAXP1 is one more than the maximum type index used; that
  // is, it is the size of the array we need to allocate to hold all
  // the values.  Indexes 1 up to but not including EXPORTEDP1 are the
  // exported types.  The other types are not exported.  SIZES... is a
  // list of MAXP1-1 entries listing the size of the type definition
  // for each type, starting at index 1.
  char buf[100];
  snprintf(buf, sizeof buf, "types %d %d", this->type_index_,
	   unexported_type_index);
  this->write_c_string(buf);

  // Start at 1 because type index 0 is not used.
  for (int i = 1; i < this->type_index_; ++i)
    {
      snprintf(buf, sizeof buf, " %lu",
	       static_cast<unsigned long>(type_sizes[i]));
      this->write_c_string(buf);
    }
  this->write_c_string("\n");
  this->write_string(type_data.string());
}

// Write a single type to the export stream.

void
Export::write_type_definition(const Type* type, int index)
{
  this->write_c_string("type ");

  char buf[30];
  snprintf(buf, sizeof buf, "%d ", index);
  this->write_c_string(buf);

  const Named_type* nt = type->named_type();
  if (nt != NULL)
    {
      const Named_object* no = nt->named_object();
      const Package* package = no->package();

      this->write_c_string("\"");
      if (package != NULL && !Gogo::is_hidden_name(no->name()))
	{
	  this->write_string(package->pkgpath());
	  this->write_c_string(".");
	}
      this->write_string(nt->named_object()->name());
      this->write_c_string("\" ");

      if (!nt->in_heap())
	this->write_c_string("notinheap ");

      if (nt->is_alias())
	this->write_c_string("= ");
    }

  type->export_type(this);

  // Type::export_type will print a newline for a named type, but not
  // otherwise.
  if (nt == NULL)
    this->write_c_string("\n");
}

// Write a name to the export stream.

void
Export::write_name(const std::string& name)
{
  if (name.empty())
    this->write_c_string("?");
  else
    this->write_string(Gogo::unpack_hidden_name(name));
}

// Write an integer value to the export stream.

void
Export::write_int(int value)
{
  char buf[100];
  snprintf(buf, sizeof buf, "%d", value);
  this->write_c_string(buf);
}

// Write an integer value to the export stream.

void
Export::write_unsigned(unsigned value)
{
  char buf[100];
  snprintf(buf, sizeof buf, "%u", value);
  this->write_c_string(buf);
}

// Return the index of a package.

int
Export::package_index(const Package* pkg) const
{
  Unordered_map(const Package *, int)::const_iterator p =
    this->packages_.find(pkg);
  go_assert(p != this->packages_.end());
  int index = p->second;
  go_assert(index != 0);
  return index;
}

// Return the index of the "unsafe" package.

int
Export::unsafe_package_index() const
{
  for (Unordered_map(const Package*, int)::const_iterator p =
	 this->packages_.begin();
       p != this->packages_.end();
       ++p)
    {
      if (p->first->pkgpath() == "unsafe")
	{
	  go_assert(p->second != 0);
	  return p->second;
	}
    }
  go_unreachable();
}

// Return the index of a type.

int
Export::type_index(const Type* type)
{
  type = type->forwarded();
  Type_refs::const_iterator p = this->impl_->type_refs.find(type);
  go_assert(p != this->impl_->type_refs.end());
  int index = p->second;
  go_assert(index != 0);
  return index;
}

// Export a type.

void
Export::write_type(const Type* type)
{
  int index = this->type_index(type);
  char buf[30];
  snprintf(buf, sizeof buf, "<type %d>", index);
  this->write_c_string(buf);
}

// Export a type to a function body.

void
Export::write_type_to(const Type* type, Export_function_body* efb)
{
  int index = this->type_index(type);
  char buf[30];
  snprintf(buf, sizeof buf, "<type %d>", index);
  efb->write_c_string(buf);
}

// Export escape note.

void
Export::write_escape(std::string* note)
{
  if (note != NULL && *note != "esc:0x0")
    {
      this->write_c_string(" ");
      char buf[50];
      go_assert(note->find("esc:") != std::string::npos);
      snprintf(buf, sizeof buf, "<%s>", note->c_str());
      this->write_c_string(buf);
    }
}

// Add the builtin types to the export table.

void
Export::register_builtin_types(Gogo* gogo)
{
  this->register_builtin_type(gogo, "int8", BUILTIN_INT8);
  this->register_builtin_type(gogo, "int16", BUILTIN_INT16);
  this->register_builtin_type(gogo, "int32", BUILTIN_INT32);
  this->register_builtin_type(gogo, "int64", BUILTIN_INT64);
  this->register_builtin_type(gogo, "uint8", BUILTIN_UINT8);
  this->register_builtin_type(gogo, "uint16", BUILTIN_UINT16);
  this->register_builtin_type(gogo, "uint32", BUILTIN_UINT32);
  this->register_builtin_type(gogo, "uint64", BUILTIN_UINT64);
  this->register_builtin_type(gogo, "float32", BUILTIN_FLOAT32);
  this->register_builtin_type(gogo, "float64", BUILTIN_FLOAT64);
  this->register_builtin_type(gogo, "complex64", BUILTIN_COMPLEX64);
  this->register_builtin_type(gogo, "complex128", BUILTIN_COMPLEX128);
  this->register_builtin_type(gogo, "int", BUILTIN_INT);
  this->register_builtin_type(gogo, "uint", BUILTIN_UINT);
  this->register_builtin_type(gogo, "uintptr", BUILTIN_UINTPTR);
  this->register_builtin_type(gogo, "bool", BUILTIN_BOOL);
  this->register_builtin_type(gogo, "string", BUILTIN_STRING);
  this->register_builtin_type(gogo, "error", BUILTIN_ERROR);
  this->register_builtin_type(gogo, "byte", BUILTIN_BYTE);
  this->register_builtin_type(gogo, "rune", BUILTIN_RUNE);
}

// Register one builtin type in the export table.

void
Export::register_builtin_type(Gogo* gogo, const char* name, Builtin_code code)
{
  Named_object* named_object = gogo->lookup_global(name);
  go_assert(named_object != NULL && named_object->is_type());
  std::pair<Type_refs::iterator, bool> ins =
    this->impl_->type_refs.insert(std::make_pair(named_object->type_value(), code));
  go_assert(ins.second);

  // We also insert the underlying type.  We can see the underlying
  // type at least for string and bool.  It's OK if this insert
  // fails--we expect duplications here, and it doesn't matter when
  // they occur.
  Type* real_type = named_object->type_value()->real_type();
  this->impl_->type_refs.insert(std::make_pair(real_type, code));
}

// Class Export::Stream.

Export::Stream::Stream()
{
  this->sha1_helper_ = go_create_sha1_helper();
  go_assert(this->sha1_helper_ != NULL);
}

Export::Stream::~Stream()
{
}

// Write bytes to the stream.  This keeps a checksum of bytes as they
// go by.

void
Export::Stream::write_and_sum_bytes(const char* bytes, size_t length)
{
  this->sha1_helper_->process_bytes(bytes, length);
  this->do_write(bytes, length);
}

// Get the checksum.

std::string
Export::Stream::checksum()
{
  std::string rval = this->sha1_helper_->finish();
  delete this->sha1_helper_;
  return rval;
}

// Write the checksum string to the export data.

void
Export::Stream::write_checksum(const std::string& s)
{
  this->do_write(s.data(), s.length());
}

// Class Stream_to_section.

Stream_to_section::Stream_to_section(Backend* backend)
    : backend_(backend)
{
}

// Write data to a section.

void
Stream_to_section::do_write(const char* bytes, size_t length)
{
  this->backend_->write_export_data (bytes, length);
}

// Class Export_function_body.

// Record a temporary statement.

unsigned int
Export_function_body::record_temporary(const Temporary_statement* temp)
{
  unsigned int ret = this->next_temporary_index_;
  if (ret > 0x7fffffff)
    go_error_at(temp->location(),
		"too many temporary statements in export data");
  ++this->next_temporary_index_;
  std::pair<const Temporary_statement*, unsigned int> val(temp, ret);
  std::pair<Unordered_map(const Temporary_statement*, unsigned int)::iterator,
	    bool> ins = this->temporary_indexes_.insert(val);
  go_assert(ins.second);
  return ret;
}

// Return the index of a temporary statement.

unsigned int
Export_function_body::temporary_index(const Temporary_statement* temp)
{
  Unordered_map(const Temporary_statement*, unsigned int)::const_iterator p =
    this->temporary_indexes_.find(temp);
  go_assert(p != this->temporary_indexes_.end());
  return p->second;
}

// Return the index of an unnamed label.  If it doesn't already have
// an index, give it one.

unsigned int
Export_function_body::unnamed_label_index(const Unnamed_label* label)
{
  unsigned int next = this->next_label_index_;
  std::pair<const Unnamed_label*, unsigned int> val(label, next);
  std::pair<Unordered_map(const Unnamed_label*, unsigned int)::iterator,
	    bool> ins =
    this->label_indexes_.insert(val);
  if (!ins.second)
    return ins.first->second;
  else
    {
      if (next > 0x7fffffff)
	go_error_at(label->location(),
		    "too many unnamed labels in export data");
      ++this->next_label_index_;
      return next;
    }
}