aboutsummaryrefslogtreecommitdiff
path: root/gcc/go/gofrontend/export.cc
blob: 27b76801d5cd9e18d3e255a78167c62353eeb8c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
// export.cc -- Export declarations in Go frontend.

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include "go-system.h"

#include "go-sha1.h"
#include "go-c.h"

#include "gogo.h"
#include "types.h"
#include "statements.h"
#include "export.h"

#include "go-linemap.h"
#include "backend.h"

// This file handles exporting global declarations.

// Class Export.

const int Export::magic_len;

// Current version magic string.
const char Export::cur_magic[Export::magic_len] =
  {
    'v', '2', ';', '\n'
  };

// Magic string for previous version (still supported)
const char Export::v1_magic[Export::magic_len] =
  {
    'v', '1', ';', '\n'
  };

const int Export::checksum_len;

// Constructor.

Export::Export(Stream* stream)
  : stream_(stream), type_refs_(), type_index_(1), packages_()
{
  go_assert(Export::checksum_len == Go_sha1_helper::checksum_len);
}

// A functor to sort Named_object pointers by name.

struct Sort_bindings
{
  bool
  operator()(const Named_object* n1, const Named_object* n2) const
  { return n1->name() < n2->name(); }
};

// Return true if we should export NO.

static bool
should_export(Named_object* no)
{
  // We only export objects which are locally defined.
  if (no->package() != NULL)
    return false;

  // We don't export packages.
  if (no->is_package())
    return false;

  // We don't export hidden names.
  if (Gogo::is_hidden_name(no->name()))
    return false;

  // We don't export nested functions.
  if (no->is_function() && no->func_value()->enclosing() != NULL)
    return false;

  // We don't export thunks.
  if (no->is_function() && Gogo::is_thunk(no))
    return false;

  // Methods are exported with the type, not here.
  if (no->is_function()
      && no->func_value()->type()->is_method())
    return false;
  if (no->is_function_declaration()
      && no->func_declaration_value()->type()->is_method())
    return false;

  // Don't export dummy global variables created for initializers when
  // used with sinks.
  if (no->is_variable() && no->name()[0] == '_' && no->name()[1] == '.')
    return false;

  return true;
}

// Export those identifiers marked for exporting.

void
Export::export_globals(const std::string& package_name,
		       const std::string& prefix,
		       const std::string& pkgpath,
		       const std::map<std::string, Package*>& packages,
		       const std::map<std::string, Package*>& imports,
		       const std::string& import_init_fn,
                       const Import_init_set& imported_init_fns,
		       const Bindings* bindings)
{
  // If there have been any errors so far, don't try to export
  // anything.  That way the export code doesn't have to worry about
  // mismatched types or other confusions.
  if (saw_errors())
    return;

  // Export the symbols in sorted order.  That will reduce cases where
  // irrelevant changes to the source code affect the exported
  // interface.
  std::vector<Named_object*> exports;
  exports.reserve(bindings->size_definitions());

  for (Bindings::const_definitions_iterator p = bindings->begin_definitions();
       p != bindings->end_definitions();
       ++p)
    if (should_export(*p))
      exports.push_back(*p);

  for (Bindings::const_declarations_iterator p =
	 bindings->begin_declarations();
       p != bindings->end_declarations();
       ++p)
    {
      // We export a function declaration as it may be implemented in
      // supporting C code.  We do not export type declarations.
      if (p->second->is_function_declaration()
	  && should_export(p->second))
	exports.push_back(p->second);
    }

  std::sort(exports.begin(), exports.end(), Sort_bindings());

  // Although the export data is readable, at least this version is,
  // it is conceptually a binary format.  Start with a four byte
  // version number.
  this->write_bytes(Export::cur_magic, Export::magic_len);

  // The package name.
  this->write_c_string("package ");
  this->write_string(package_name);
  this->write_c_string(";\n");

  // The prefix or package path, used for all global symbols.
  if (prefix.empty())
    {
      go_assert(!pkgpath.empty());
      this->write_c_string("pkgpath ");
      this->write_string(pkgpath);
    }
  else
    {
      this->write_c_string("prefix ");
      this->write_string(prefix);
    }
  this->write_c_string(";\n");

  this->write_packages(packages);

  this->write_imports(imports);

  this->write_imported_init_fns(package_name, import_init_fn,
				imported_init_fns);

  // FIXME: It might be clever to add something about the processor
  // and ABI being used, although ideally any problems in that area
  // would be caught by the linker.

  for (std::vector<Named_object*>::const_iterator p = exports.begin();
       p != exports.end();
       ++p)
    (*p)->export_named_object(this);

  std::string checksum = this->stream_->checksum();
  std::string s = "checksum ";
  for (std::string::const_iterator p = checksum.begin();
       p != checksum.end();
       ++p)
    {
      unsigned char c = *p;
      unsigned int dig = c >> 4;
      s += dig < 10 ? '0' + dig : 'A' + dig - 10;
      dig = c & 0xf;
      s += dig < 10 ? '0' + dig : 'A' + dig - 10;
    }
  s += ";\n";
  this->stream_->write_checksum(s);
}

// Sort packages.

static bool
packages_compare(const Package* a, const Package* b)
{
  return a->package_name() < b->package_name();
}

// Write out all the known packages whose pkgpath symbol is not a
// simple transformation of the pkgpath, so that the importing code
// can reliably know it.

void
Export::write_packages(const std::map<std::string, Package*>& packages)
{
  // Sort for consistent output.
  std::vector<Package*> out;
  for (std::map<std::string, Package*>::const_iterator p = packages.begin();
       p != packages.end();
       ++p)
    {
      if (p->second->pkgpath_symbol()
	  != Gogo::pkgpath_for_symbol(p->second->pkgpath()))
	out.push_back(p->second);
    }

  std::sort(out.begin(), out.end(), packages_compare);

  for (std::vector<Package*>::const_iterator p = out.begin();
       p != out.end();
       ++p)
    {
      this->write_c_string("package ");
      this->write_string((*p)->package_name());
      this->write_c_string(" ");
      this->write_string((*p)->pkgpath());
      this->write_c_string(" ");
      this->write_string((*p)->pkgpath_symbol());
      this->write_c_string(";\n");
    }
}

// Sort imported packages.

static bool
import_compare(const std::pair<std::string, Package*>& a,
	       const std::pair<std::string, Package*>& b)
{
  return a.first < b.first;
}

// Write out the imported packages.

void
Export::write_imports(const std::map<std::string, Package*>& imports)
{
  // Sort the imports for more consistent output.
  std::vector<std::pair<std::string, Package*> > sorted_imports;
  for (std::map<std::string, Package*>::const_iterator p = imports.begin();
       p != imports.end();
       ++p)
    sorted_imports.push_back(std::make_pair(p->first, p->second));

  std::sort(sorted_imports.begin(), sorted_imports.end(), import_compare);

  for (std::vector<std::pair<std::string, Package*> >::const_iterator p =
	 sorted_imports.begin();
       p != sorted_imports.end();
       ++p)
    {
      this->write_c_string("import ");
      this->write_string(p->second->package_name());
      this->write_c_string(" ");
      this->write_string(p->second->pkgpath());
      this->write_c_string(" \"");
      this->write_string(p->first);
      this->write_c_string("\";\n");

      this->packages_.insert(p->second);
    }
}

void
Export::add_init_graph_edge(Init_graph* init_graph, unsigned src, unsigned sink)
{
  Init_graph::iterator it = init_graph->find(src);
  if (it != init_graph->end())
    it->second.insert(sink);
  else
    {
      std::set<unsigned> succs;
      succs.insert(sink);
      (*init_graph)[src] = succs;
    }
}

// Constructs the imported portion of the init graph, e.g. those
// edges that we read from imported packages.

void
Export::populate_init_graph(Init_graph* init_graph,
                            const Import_init_set& imported_init_fns,
                            const std::map<std::string, unsigned>& init_idx)
{
  for (Import_init_set::const_iterator p = imported_init_fns.begin();
       p != imported_init_fns.end();
       ++p)
    {
      const Import_init* ii = *p;
      std::map<std::string, unsigned>::const_iterator srcit =
          init_idx.find(ii->init_name());
      go_assert(srcit != init_idx.end());
      unsigned src = srcit->second;
      for (std::set<std::string>::const_iterator pci = ii->precursors().begin();
           pci != ii->precursors().end();
           ++pci)
	{
	  std::map<std::string, unsigned>::const_iterator it =
	      init_idx.find(*pci);
	  go_assert(it != init_idx.end());
	  unsigned sink = it->second;
	  add_init_graph_edge(init_graph, src, sink);
	}
    }
}

// Write out the initialization functions which need to run for this
// package.

void
Export::write_imported_init_fns(const std::string& package_name,
                                const std::string& import_init_fn,
                                const Import_init_set& imported_init_fns)
{
  if (import_init_fn.empty() && imported_init_fns.empty()) return;

  // Maps a given init function to the its index in the exported "init" clause.
  std::map<std::string, unsigned> init_idx;

  this->write_c_string("init");

  if (!import_init_fn.empty())
    {
      this->write_c_string(" ");
      this->write_string(package_name);
      this->write_c_string(" ");
      this->write_string(import_init_fn);
      init_idx[import_init_fn] = 0;
    }

  if (imported_init_fns.empty())
    {
      this->write_c_string(";\n");
      return;
    }

  typedef std::map<int, std::vector<std::string> > level_map;
  Init_graph init_graph;
  level_map inits_at_level;

  // Walk through the set of import inits (already sorted by
  // init fcn name) and write them out to the exports.
  for (Import_init_set::const_iterator p = imported_init_fns.begin();
       p != imported_init_fns.end();
       ++p)
    {
      const Import_init* ii = *p;

      if (ii->init_name() == import_init_fn)
	continue;

      this->write_c_string(" ");
      this->write_string(ii->package_name());
      this->write_c_string(" ");
      this->write_string(ii->init_name());

      // Populate init_idx.
      go_assert(init_idx.find(ii->init_name()) == init_idx.end());
      unsigned idx = init_idx.size();
      init_idx[ii->init_name()] = idx;

      // If the init function has a non-negative priority value, this
      // is an indication that it was referred to in an older version
      // export data section (e.g. we read a legacy object
      // file). Record such init fcns so that we can fix up the graph
      // for them (handled later in this function).
      if (ii->priority() > 0)
	{
	  level_map::iterator it = inits_at_level.find(ii->priority());
	  if (it == inits_at_level.end())
	    {
	      std::vector<std::string> l;
	      l.push_back(ii->init_name());
	      inits_at_level[ii->priority()] = l;
	    }
	  else
	    it->second.push_back(ii->init_name());
	}
    }
  this->write_c_string(";\n");

  // Create the init graph. Start by populating the graph with
  // all the edges we inherited from imported packages.
  populate_init_graph(&init_graph, imported_init_fns, init_idx);

  // Now add edges from the local init function to each of the
  // imported fcns.
  if (!import_init_fn.empty())
    {
      unsigned src = 0;
      go_assert(init_idx[import_init_fn] == 0);
      for (Import_init_set::const_iterator p = imported_init_fns.begin();
           p != imported_init_fns.end();
           ++p)
	{
          const Import_init* ii = *p;
	  unsigned sink = init_idx[ii->init_name()];
	  add_init_graph_edge(&init_graph, src, sink);
	}
    }

  // In the scenario where one or more of the packages we imported
  // was written with the legacy export data format, add dummy edges
  // to capture the priority relationships. Here is a package import
  // graph as an example:
  //
  //       *A
  //       /|
  //      / |
  //     B  *C
  //       /|
  //      / |
  //    *D *E
  //     | /|
  //     |/ |
  //    *F  *G
  //
  // Let's suppose that the object for package "C" is from an old
  // gccgo, e.g. it has the old export data format. All other
  // packages are compiled with the new compiler and have the new
  // format. Packages with *'s have init functions. The scenario is
  // that we're compiling a package "A"; during this process we'll
  // read the export data for "C". It should look something like
  //
  //   init F F..import 1 G G..import 1 D D..import 2 E E..import 2;
  //
  // To capture this information and convey it to the consumers of
  // "A", the code below adds edges to the graph from each priority K
  // function to every priority K-1 function for appropriate values
  // of K. This will potentially add more edges than we need (for
  // example, an edge from D to G), but given that we don't expect
  // to see large numbers of old objects, this will hopefully be OK.

  if (inits_at_level.size() > 0)
    {
      for (level_map::reverse_iterator it = inits_at_level.rbegin();
           it != inits_at_level.rend(); ++it)
	{
	  int level = it->first;
	  if (level < 2) break;
	  const std::vector<std::string>& fcns_at_level = it->second;
	  for (std::vector<std::string>::const_iterator sit =
	           fcns_at_level.begin();
	       sit != fcns_at_level.end(); ++sit)
	    {
	      unsigned src = init_idx[*sit];
	      level_map::iterator it2 = inits_at_level.find(level - 1);
	      if (it2 != inits_at_level.end())
		{
		  const std::vector<std::string> fcns_at_lm1 = it2->second;
		  for (std::vector<std::string>::const_iterator mit =
		           fcns_at_lm1.begin();
		       mit != fcns_at_lm1.end(); ++mit)
		    {
		      unsigned sink = init_idx[*mit];
		      add_init_graph_edge(&init_graph, src, sink);
		    }
		}
	    }
	}
    }

  // Write out the resulting graph.
  this->write_c_string("init_graph");
  for (Init_graph::const_iterator ki = init_graph.begin();
       ki != init_graph.end(); ++ki)
    {
      unsigned src = ki->first;
      const std::set<unsigned>& successors = ki->second;
      for (std::set<unsigned>::const_iterator vi = successors.begin();
           vi != successors.end(); ++vi)
	{
	  this->write_c_string(" ");
	  this->write_unsigned(src);
	  unsigned sink = (*vi);
	  this->write_c_string(" ");
	  this->write_unsigned(sink);
	}
    }
  this->write_c_string(";\n");
}

// Write a name to the export stream.

void
Export::write_name(const std::string& name)
{
  if (name.empty())
    this->write_c_string("?");
  else
    this->write_string(Gogo::message_name(name));
}

// Write an integer value to the export stream.

void
Export::write_int(int value)
{
  char buf[100];
  snprintf(buf, sizeof buf, "%d", value);
  this->write_c_string(buf);
}

// Write an integer value to the export stream.

void
Export::write_unsigned(unsigned value)
{
  char buf[100];
  snprintf(buf, sizeof buf, "%u", value);
  this->write_c_string(buf);
}

// Export a type.  We have to ensure that on import we create a single
// Named_type node for each named type.  We do this by keeping a hash
// table mapping named types to reference numbers.  The first time we
// see a named type we assign it a reference number by making an entry
// in the hash table.  If we see it again, we just refer to the
// reference number.

// Named types are, of course, associated with packages.  Note that we
// may see a named type when importing one package, and then later see
// the same named type when importing a different package.  The home
// package may or may not be imported during this compilation.  The
// reference number scheme has to get this all right.  Basic approach
// taken from "On the Linearization of Graphs and Writing Symbol
// Files" by Robert Griesemer.

void
Export::write_type(const Type* type)
{
  // We don't want to assign a reference number to a forward
  // declaration to a type which was defined later.
  type = type->forwarded();

  Type_refs::const_iterator p = this->type_refs_.find(type);
  if (p != this->type_refs_.end())
    {
      // This type was already in the table.
      int index = p->second;
      go_assert(index != 0);
      char buf[30];
      snprintf(buf, sizeof buf, "<type %d>", index);
      this->write_c_string(buf);
      return;
    }

  const Named_type* named_type = type->named_type();
  const Forward_declaration_type* forward = type->forward_declaration_type();

  int index = this->type_index_;
  ++this->type_index_;

  char buf[30];
  snprintf(buf, sizeof buf, "<type %d ", index);
  this->write_c_string(buf);

  if (named_type != NULL || forward != NULL)
    {
      const Named_object* named_object;
      if (named_type != NULL)
	{
	  // The builtin types should have been predefined.
	  go_assert(!Linemap::is_predeclared_location(named_type->location())
		     || (named_type->named_object()->package()->package_name()
			 == "unsafe"));
	  named_object = named_type->named_object();
	}
      else
	named_object = forward->named_object();

      const Package* package = named_object->package();

      std::string s = "\"";
      if (package != NULL && !Gogo::is_hidden_name(named_object->name()))
	{
	  s += package->pkgpath();
	  s += '.';
	}
      s += named_object->name();
      s += "\" ";
      this->write_string(s);

      // It is possible that this type was imported indirectly, and is
      // not in a package in the import list.  If we have not
      // mentioned this package before, write out the package name
      // here so that any package importing this one will know it.
      if (package != NULL
	  && this->packages_.find(package) == this->packages_.end())
	{
	  this->write_c_string("\"");
	  this->write_string(package->package_name());
	  this->packages_.insert(package);
	  this->write_c_string("\" ");
	}

      // We must add a named type to the table now, since the
      // definition of the type may refer to the named type via a
      // pointer.
      this->type_refs_[type] = index;

      if (named_type != NULL && named_type->is_alias())
	this->write_c_string("= ");
    }

  type->export_type(this);

  this->write_c_string(">");

  if (named_type == NULL)
    this->type_refs_[type] = index;
}

// Export escape note.

void
Export::write_escape(std::string* note)
{
  if (note != NULL && *note != "esc:0x0")
    {
      this->write_c_string(" ");
      char buf[50];
      go_assert(note->find("esc:") != std::string::npos);
      snprintf(buf, sizeof buf, "<%s>", note->c_str());
      this->write_c_string(buf);
    }
}

// Add the builtin types to the export table.

void
Export::register_builtin_types(Gogo* gogo)
{
  this->register_builtin_type(gogo, "int8", BUILTIN_INT8);
  this->register_builtin_type(gogo, "int16", BUILTIN_INT16);
  this->register_builtin_type(gogo, "int32", BUILTIN_INT32);
  this->register_builtin_type(gogo, "int64", BUILTIN_INT64);
  this->register_builtin_type(gogo, "uint8", BUILTIN_UINT8);
  this->register_builtin_type(gogo, "uint16", BUILTIN_UINT16);
  this->register_builtin_type(gogo, "uint32", BUILTIN_UINT32);
  this->register_builtin_type(gogo, "uint64", BUILTIN_UINT64);
  this->register_builtin_type(gogo, "float32", BUILTIN_FLOAT32);
  this->register_builtin_type(gogo, "float64", BUILTIN_FLOAT64);
  this->register_builtin_type(gogo, "complex64", BUILTIN_COMPLEX64);
  this->register_builtin_type(gogo, "complex128", BUILTIN_COMPLEX128);
  this->register_builtin_type(gogo, "int", BUILTIN_INT);
  this->register_builtin_type(gogo, "uint", BUILTIN_UINT);
  this->register_builtin_type(gogo, "uintptr", BUILTIN_UINTPTR);
  this->register_builtin_type(gogo, "bool", BUILTIN_BOOL);
  this->register_builtin_type(gogo, "string", BUILTIN_STRING);
  this->register_builtin_type(gogo, "error", BUILTIN_ERROR);
  this->register_builtin_type(gogo, "byte", BUILTIN_BYTE);
  this->register_builtin_type(gogo, "rune", BUILTIN_RUNE);
}

// Register one builtin type in the export table.

void
Export::register_builtin_type(Gogo* gogo, const char* name, Builtin_code code)
{
  Named_object* named_object = gogo->lookup_global(name);
  go_assert(named_object != NULL && named_object->is_type());
  std::pair<Type_refs::iterator, bool> ins =
    this->type_refs_.insert(std::make_pair(named_object->type_value(), code));
  go_assert(ins.second);

  // We also insert the underlying type.  We can see the underlying
  // type at least for string and bool.  We skip the type aliases byte
  // and rune here.
  if (code != BUILTIN_BYTE && code != BUILTIN_RUNE)
    {
      Type* real_type = named_object->type_value()->real_type();
      ins = this->type_refs_.insert(std::make_pair(real_type, code));
      go_assert(ins.second);
    }
}

// Class Export::Stream.

Export::Stream::Stream()
{
  this->sha1_helper_ = go_create_sha1_helper();
  go_assert(this->sha1_helper_ != NULL);
}

Export::Stream::~Stream()
{
}

// Write bytes to the stream.  This keeps a checksum of bytes as they
// go by.

void
Export::Stream::write_and_sum_bytes(const char* bytes, size_t length)
{
  this->sha1_helper_->process_bytes(bytes, length);
  this->do_write(bytes, length);
}

// Get the checksum.

std::string
Export::Stream::checksum()
{
  std::string rval = this->sha1_helper_->finish();
  delete this->sha1_helper_;
  return rval;
}

// Write the checksum string to the export data.

void
Export::Stream::write_checksum(const std::string& s)
{
  this->do_write(s.data(), s.length());
}

// Class Stream_to_section.

Stream_to_section::Stream_to_section(Backend* backend)
    : backend_(backend)
{
}

// Write data to a section.

void
Stream_to_section::do_write(const char* bytes, size_t length)
{
  this->backend_->write_export_data (bytes, length);
}