1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
|
/* Pass to detect and issue warnings for violations of the restrict
qualifier.
Copyright (C) 2017-2022 Free Software Foundation, Inc.
Contributed by Martin Sebor <msebor@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "pointer-query.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "gimple-ssa-warn-access.h"
#include "gimple-ssa-warn-restrict.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "gimple-iterator.h"
#include "tree-dfa.h"
#include "tree-ssa.h"
#include "tree-cfg.h"
#include "tree-object-size.h"
#include "calls.h"
#include "cfgloop.h"
#include "intl.h"
#include "gimple-range.h"
namespace {
const pass_data pass_data_wrestrict = {
GIMPLE_PASS,
"wrestrict",
OPTGROUP_NONE,
TV_NONE,
PROP_cfg, /* Properties_required. */
0, /* properties_provided. */
0, /* properties_destroyed. */
0, /* properties_start */
0, /* properties_finish */
};
/* Pass to detect violations of strict aliasing requirements in calls
to built-in string and raw memory functions. */
class pass_wrestrict : public gimple_opt_pass
{
public:
pass_wrestrict (gcc::context *);
bool gate (function *) final override;
unsigned int execute (function *) final override;
void check_call (gimple *);
void check_block (basic_block);
/* A pointer_query object to store information about pointers and
their targets in. */
pointer_query m_ptr_qry;
};
pass_wrestrict::pass_wrestrict (gcc::context *ctxt)
: gimple_opt_pass (pass_data_wrestrict, ctxt),
m_ptr_qry ()
{ }
bool
pass_wrestrict::gate (function *fun ATTRIBUTE_UNUSED)
{
return warn_array_bounds || warn_restrict || warn_stringop_overflow;
}
void
pass_wrestrict::check_block (basic_block bb)
{
/* Iterate over statements, looking for function calls. */
for (auto si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple *stmt = gsi_stmt (si);
if (!is_gimple_call (stmt))
continue;
check_call (stmt);
}
}
unsigned
pass_wrestrict::execute (function *fun)
{
/* Create a new ranger instance and associate it with FUN. */
m_ptr_qry.rvals = enable_ranger (fun);
basic_block bb;
FOR_EACH_BB_FN (bb, fun)
check_block (bb);
m_ptr_qry.flush_cache ();
/* Release the ranger instance and replace it with a global ranger.
Also reset the pointer since calling disable_ranger() deletes it. */
disable_ranger (fun);
m_ptr_qry.rvals = NULL;
return 0;
}
/* Description of a memory reference by a built-in function. This
is similar to ao_ref but made especially suitable for -Wrestrict
and not for optimization. */
class builtin_memref
{
public:
/* The original pointer argument to the built-in function. */
tree ptr;
/* The referenced subobject or NULL if not available, and the base
object of the memory reference or NULL. */
tree ref;
tree base;
/* The size of the BASE object, PTRDIFF_MAX if indeterminate,
and negative until (possibly lazily) initialized. */
offset_int basesize;
/* Same for the subobject. */
offset_int refsize;
/* The non-negative offset of the referenced subobject. Used to avoid
warnings for (apparently) possibly but not definitively overlapping
accesses to member arrays. Negative when unknown/invalid. */
offset_int refoff;
/* The offset range relative to the base. */
offset_int offrange[2];
/* The size range of the access to this reference. */
offset_int sizrange[2];
/* Cached result of get_max_objsize(). */
const offset_int maxobjsize;
/* True for "bounded" string functions like strncat, and strncpy
and their variants that specify either an exact or upper bound
on the size of the accesses they perform. For strncat both
the source and destination references are bounded. For strncpy
only the destination reference is. */
bool strbounded_p;
builtin_memref (pointer_query &, gimple *, tree, tree);
tree offset_out_of_bounds (int, offset_int[3]) const;
private:
/* Call statement to the built-in. */
gimple *stmt;
pointer_query &m_ptr_qry;
/* Ctor helper to set or extend OFFRANGE based on argument. */
void extend_offset_range (tree);
/* Ctor helper to determine BASE and OFFRANGE from argument. */
void set_base_and_offset (tree);
};
/* Description of a memory access by a raw memory or string built-in
function involving a pair of builtin_memref's. */
class builtin_access
{
public:
/* Destination and source memory reference. */
builtin_memref* const dstref;
builtin_memref* const srcref;
/* The size range of the access. It's the greater of the accesses
to the two references. */
HOST_WIDE_INT sizrange[2];
/* The minimum and maximum offset of an overlap of the access
(if it does, in fact, overlap), and the size of the overlap. */
HOST_WIDE_INT ovloff[2];
HOST_WIDE_INT ovlsiz[2];
/* True to consider valid only accesses to the smallest subobject
and false for raw memory functions. */
bool strict () const
{
return (detect_overlap != &builtin_access::generic_overlap
&& detect_overlap != &builtin_access::no_overlap);
}
builtin_access (pointer_query &, gimple *,
builtin_memref &, builtin_memref &);
/* Entry point to determine overlap. */
bool overlap ();
offset_int write_off (tree) const;
void dump (FILE *) const;
private:
/* Implementation functions used to determine overlap. */
bool generic_overlap ();
bool strcat_overlap ();
bool strcpy_overlap ();
bool no_overlap ()
{
return false;
}
offset_int overlap_size (const offset_int [2], const offset_int[2],
offset_int [2]);
private:
/* Temporaries used to compute the final result. */
offset_int dstoff[2];
offset_int srcoff[2];
offset_int dstsiz[2];
offset_int srcsiz[2];
/* Pointer to a member function to call to determine overlap. */
bool (builtin_access::*detect_overlap) ();
};
/* Initialize a memory reference representation from a pointer EXPR and
a size SIZE in bytes. If SIZE is NULL_TREE then the size is assumed
to be unknown. STMT is the statement in which expr appears in. */
builtin_memref::builtin_memref (pointer_query &ptrqry, gimple *stmt, tree expr,
tree size)
: ptr (expr),
ref (),
base (),
basesize (-1),
refsize (-1),
refoff (HOST_WIDE_INT_MIN),
offrange (),
sizrange (),
maxobjsize (tree_to_shwi (max_object_size ())),
strbounded_p (),
stmt (stmt),
m_ptr_qry (ptrqry)
{
/* Unfortunately, wide_int default ctor is a no-op so array members
of the type must be set individually. */
offrange[0] = offrange[1] = 0;
sizrange[0] = sizrange[1] = 0;
if (!expr)
return;
/* Find the BASE object or pointer referenced by EXPR and set
the offset range OFFRANGE in the process. */
set_base_and_offset (expr);
if (size)
{
tree range[2];
/* Determine the size range, allowing for the result to be [0, 0]
for SIZE in the anti-range ~[0, N] where N >= PTRDIFF_MAX. */
get_size_range (m_ptr_qry.rvals, size, stmt, range, SR_ALLOW_ZERO);
sizrange[0] = wi::to_offset (range[0]);
sizrange[1] = wi::to_offset (range[1]);
/* get_size_range returns SIZE_MAX for the maximum size.
Constrain it to the real maximum of PTRDIFF_MAX. */
if (sizrange[0] <= maxobjsize && sizrange[1] > maxobjsize)
sizrange[1] = maxobjsize;
}
else
sizrange[1] = maxobjsize;
if (!DECL_P (base))
return;
/* If the offset could be in the range of the referenced object
constrain its bounds so neither exceeds those of the object. */
if (offrange[0] < 0 && offrange[1] > 0)
offrange[0] = 0;
offset_int maxoff = maxobjsize;
tree basetype = TREE_TYPE (base);
if (TREE_CODE (basetype) == ARRAY_TYPE)
{
if (ref && array_at_struct_end_p (ref))
; /* Use the maximum possible offset for last member arrays. */
else if (tree basesize = TYPE_SIZE_UNIT (basetype))
if (TREE_CODE (basesize) == INTEGER_CST)
/* Size could be non-constant for a variable-length type such
as a struct with a VLA member (a GCC extension). */
maxoff = wi::to_offset (basesize);
}
if (offrange[0] >= 0)
{
if (offrange[1] < 0)
offrange[1] = offrange[0] <= maxoff ? maxoff : maxobjsize;
else if (offrange[0] <= maxoff && offrange[1] > maxoff)
offrange[1] = maxoff;
}
}
/* Based on the initial length of the destination STARTLEN, returns
the offset of the first write access from the beginning of
the destination. Nonzero only for strcat-type of calls. */
offset_int builtin_access::write_off (tree startlen) const
{
if (detect_overlap != &builtin_access::strcat_overlap
|| !startlen || TREE_CODE (startlen) != INTEGER_CST)
return 0;
return wi::to_offset (startlen);
}
/* Ctor helper to set or extend OFFRANGE based on the OFFSET argument.
Pointer offsets are represented as unsigned sizetype but must be
treated as signed. */
void
builtin_memref::extend_offset_range (tree offset)
{
if (TREE_CODE (offset) == INTEGER_CST)
{
offset_int off = int_cst_value (offset);
if (off != 0)
{
offrange[0] += off;
offrange[1] += off;
}
return;
}
if (TREE_CODE (offset) == SSA_NAME)
{
/* A pointer offset is represented as sizetype but treated
as signed. */
wide_int min, max;
value_range_kind rng = VR_VARYING;
value_range vr;
if (m_ptr_qry.rvals->range_of_expr (vr, offset, stmt))
{
rng = vr.kind ();
if (!vr.undefined_p ())
{
min = wi::to_wide (vr.min ());
max = wi::to_wide (vr.max ());
}
}
if (rng == VR_ANTI_RANGE && wi::lts_p (max, min))
{
/* Convert an anti-range whose upper bound is less than
its lower bound to a signed range. */
offrange[0] += offset_int::from (max + 1, SIGNED);
offrange[1] += offset_int::from (min - 1, SIGNED);
return;
}
if (rng == VR_RANGE
&& (DECL_P (base) || wi::lts_p (min, max)))
{
/* Preserve the bounds of the range for an offset into
a known object (it may be adjusted later relative to
a constant offset from its beginning). Otherwise use
the bounds only when they are ascending when treated
as signed. */
offrange[0] += offset_int::from (min, SIGNED);
offrange[1] += offset_int::from (max, SIGNED);
return;
}
/* Handle an anti-range the same as no range at all. */
gimple *stmt = SSA_NAME_DEF_STMT (offset);
tree type;
if (is_gimple_assign (stmt)
&& (type = TREE_TYPE (gimple_assign_rhs1 (stmt)))
&& INTEGRAL_TYPE_P (type))
{
tree_code code = gimple_assign_rhs_code (stmt);
if (code == NOP_EXPR)
{
/* Use the bounds of the type of the NOP_EXPR operand
even if it's signed. The result doesn't trigger
warnings but makes their output more readable. */
offrange[0] += wi::to_offset (TYPE_MIN_VALUE (type));
offrange[1] += wi::to_offset (TYPE_MAX_VALUE (type));
return;
}
}
}
const offset_int maxoff = tree_to_shwi (max_object_size ()) >> 1;
const offset_int minoff = -maxoff - 1;
offrange[0] += minoff;
offrange[1] += maxoff;
}
/* Determines the base object or pointer of the reference EXPR
and the offset range from the beginning of the base. */
void
builtin_memref::set_base_and_offset (tree expr)
{
tree offset = NULL_TREE;
if (TREE_CODE (expr) == SSA_NAME)
{
/* Try to tease the offset out of the pointer. */
gimple *stmt = SSA_NAME_DEF_STMT (expr);
if (!base
&& gimple_assign_single_p (stmt)
&& gimple_assign_rhs_code (stmt) == ADDR_EXPR)
expr = gimple_assign_rhs1 (stmt);
else if (is_gimple_assign (stmt))
{
tree_code code = gimple_assign_rhs_code (stmt);
if (CONVERT_EXPR_CODE_P (code))
{
tree rhs = gimple_assign_rhs1 (stmt);
if (POINTER_TYPE_P (TREE_TYPE (rhs)))
expr = gimple_assign_rhs1 (stmt);
else
{
base = expr;
return;
}
}
else if (code == POINTER_PLUS_EXPR)
{
expr = gimple_assign_rhs1 (stmt);
offset = gimple_assign_rhs2 (stmt);
}
else
{
base = expr;
return;
}
}
else
{
/* FIXME: Handle PHI nodes in case like:
_12 = &MEM[(void *)&a + 2B] + _10;
<bb> [local count: 1073741824]:
# prephitmp_13 = PHI <_12, &MEM[(void *)&a + 2B]>
memcpy (prephitmp_13, p_7(D), 6); */
base = expr;
return;
}
}
if (TREE_CODE (expr) == ADDR_EXPR)
expr = TREE_OPERAND (expr, 0);
/* Stash the reference for offset validation. */
ref = expr;
poly_int64 bitsize, bitpos;
tree var_off;
machine_mode mode;
int sign, reverse, vol;
/* Determine the base object or pointer of the reference and
the constant bit offset from the beginning of the base.
If the offset has a non-constant component, it will be in
VAR_OFF. MODE, SIGN, REVERSE, and VOL are write only and
unused here. */
base = get_inner_reference (expr, &bitsize, &bitpos, &var_off,
&mode, &sign, &reverse, &vol);
/* get_inner_reference is not expected to return null. */
gcc_assert (base != NULL);
if (offset)
extend_offset_range (offset);
poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
/* Convert the poly_int64 offset to offset_int. The offset
should be constant but be prepared for it not to be just in
case. */
offset_int cstoff;
if (bytepos.is_constant (&cstoff))
{
offrange[0] += cstoff;
offrange[1] += cstoff;
/* Besides the reference saved above, also stash the offset
for validation. */
if (TREE_CODE (expr) == COMPONENT_REF)
refoff = cstoff;
}
else
offrange[1] += maxobjsize;
if (var_off)
{
if (TREE_CODE (var_off) == INTEGER_CST)
{
cstoff = wi::to_offset (var_off);
offrange[0] += cstoff;
offrange[1] += cstoff;
}
else
offrange[1] += maxobjsize;
}
if (TREE_CODE (base) == MEM_REF)
{
tree memrefoff = fold_convert (ptrdiff_type_node, TREE_OPERAND (base, 1));
extend_offset_range (memrefoff);
if (refoff != HOST_WIDE_INT_MIN
&& TREE_CODE (expr) == COMPONENT_REF)
{
/* Bump up the offset of the referenced subobject to reflect
the offset to the enclosing object. For example, so that
in
struct S { char a, b[3]; } s[2];
strcpy (s[1].b, "1234");
REFOFF is set to s[1].b - (char*)s. */
offset_int off = tree_to_shwi (memrefoff);
refoff += off;
if (!integer_zerop (memrefoff)
&& !COMPLETE_TYPE_P (TREE_TYPE (expr))
&& multiple_of_p (sizetype, memrefoff,
TYPE_SIZE_UNIT (TREE_TYPE (base)), true))
/* A non-zero offset into an array of struct with flexible array
members implies that the array is empty because there is no
way to initialize such a member when it belongs to an array.
This must be some sort of a bug. */
refsize = 0;
}
base = TREE_OPERAND (base, 0);
}
if (TREE_CODE (ref) == COMPONENT_REF)
if (tree size = component_ref_size (ref))
if (TREE_CODE (size) == INTEGER_CST)
refsize = wi::to_offset (size);
if (TREE_CODE (base) == SSA_NAME)
set_base_and_offset (base);
}
/* Return error_mark_node if the signed offset exceeds the bounds
of the address space (PTRDIFF_MAX). Otherwise, return either BASE
or REF when the offset exceeds the bounds of the BASE or REF object,
and set OOBOFF to the past-the-end offset formed by the reference,
including its size. OOBOFF is initially setto the range of offsets,
and OOBOFF[2] to the offset of the first write access (nonzero for
the strcat family). When STRICT is nonzero use REF size, when
available, otherwise use BASE size. When STRICT is greater than 1,
use the size of the last array member as the bound, otherwise treat
such a member as a flexible array member. Return NULL when the offset
is in bounds. */
tree
builtin_memref::offset_out_of_bounds (int strict, offset_int ooboff[3]) const
{
if (!ptr)
return NULL_TREE;
/* The offset of the first write access or zero. */
offset_int wroff = ooboff[2];
/* A temporary, possibly adjusted, copy of the offset range. */
offset_int offrng[2] = { ooboff[0], ooboff[1] };
if (DECL_P (base) && TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
{
/* Check for offset in an anti-range with a negative lower bound.
For such a range, consider only the non-negative subrange. */
if (offrng[1] < offrng[0] && offrng[1] < 0)
offrng[1] = maxobjsize;
}
/* Conservative offset of the last byte of the referenced object. */
offset_int endoff;
/* The bounds need not be ordered. Set HIB to use as the index
of the larger of the bounds and LOB as the opposite. */
bool hib = wi::les_p (offrng[0], offrng[1]);
bool lob = !hib;
/* Set to the size remaining in the object after subtracting
REFOFF. It may become negative as a result of negative indices
into the enclosing object, such as in:
extern struct S { char a[4], b[3], c[1]; } *p;
strcpy (p[-3].b, "123"); */
offset_int size = basesize;
tree obj = base;
const bool decl_p = DECL_P (obj);
if (basesize < 0)
{
endoff = offrng[lob] + (sizrange[0] - wroff);
/* For a reference through a pointer to an object of unknown size
all initial offsets are considered valid, positive as well as
negative, since the pointer itself can point past the beginning
of the object. However, the sum of the lower bound of the offset
and that of the size must be less than or equal than PTRDIFF_MAX. */
if (endoff > maxobjsize)
return error_mark_node;
/* When the referenced subobject is known, the end offset must be
within its bounds. Otherwise there is nothing to do. */
if (strict
&& !decl_p
&& ref
&& refsize >= 0
&& TREE_CODE (ref) == COMPONENT_REF)
{
/* If REFOFF is negative, SIZE will become negative here. */
size = refoff + refsize;
obj = ref;
}
else
return NULL_TREE;
}
/* A reference to an object of known size must be within the bounds
of either the base object or the subobject (see above for when
a subobject can be used). */
if ((decl_p && offrng[hib] < 0) || offrng[lob] > size)
return obj;
/* The extent of the reference must also be within the bounds of
the base object (if known) or the subobject or the maximum object
size otherwise. */
endoff = offrng[lob] + sizrange[0];
if (endoff > maxobjsize)
return error_mark_node;
if (strict
&& decl_p
&& ref
&& refsize >= 0
&& TREE_CODE (ref) == COMPONENT_REF)
{
/* If the reference is to a member subobject of a declared object,
the offset must be within the bounds of the subobject. */
size = refoff + refsize;
obj = ref;
}
if (endoff <= size)
return NULL_TREE;
/* Set the out-of-bounds offset range to be one greater than
that delimited by the reference including its size. */
ooboff[lob] = size;
if (endoff > ooboff[lob])
ooboff[hib] = endoff - 1;
else
ooboff[hib] = offrng[lob] + sizrange[1];
return obj;
}
/* Create an association between the memory references DST and SRC
for access by a call EXPR to a memory or string built-in funtion. */
builtin_access::builtin_access (pointer_query &ptrqry, gimple *call,
builtin_memref &dst,
builtin_memref &src)
: dstref (&dst), srcref (&src), sizrange (), ovloff (), ovlsiz (),
dstoff (), srcoff (), dstsiz (), srcsiz ()
{
dstoff[0] = dst.offrange[0];
dstoff[1] = dst.offrange[1];
/* Zero out since the offset_int ctors invoked above are no-op. */
srcoff[0] = srcoff[1] = 0;
dstsiz[0] = dstsiz[1] = 0;
srcsiz[0] = srcsiz[1] = 0;
/* Object Size Type to use to determine the size of the destination
and source objects. Overridden below for raw memory functions. */
int ostype = 1;
/* True when the size of one reference depends on the offset of
itself or the other. */
bool depends_p = true;
/* True when the size of the destination reference DSTREF has been
determined from SRCREF and so needs to be adjusted by the latter's
offset. Only meaningful for bounded string functions like strncpy. */
bool dstadjust_p = false;
/* The size argument number (depends on the built-in). */
unsigned sizeargno = 2;
tree func = gimple_call_fndecl (call);
switch (DECL_FUNCTION_CODE (func))
{
case BUILT_IN_MEMCPY:
case BUILT_IN_MEMCPY_CHK:
case BUILT_IN_MEMPCPY:
case BUILT_IN_MEMPCPY_CHK:
ostype = 0;
depends_p = false;
detect_overlap = &builtin_access::generic_overlap;
break;
case BUILT_IN_MEMMOVE:
case BUILT_IN_MEMMOVE_CHK:
/* For memmove there is never any overlap to check for. */
ostype = 0;
depends_p = false;
detect_overlap = &builtin_access::no_overlap;
break;
case BUILT_IN_MEMSET:
case BUILT_IN_MEMSET_CHK:
/* For memset there is never any overlap to check for. */
ostype = 0;
depends_p = false;
detect_overlap = &builtin_access::no_overlap;
break;
case BUILT_IN_STPNCPY:
case BUILT_IN_STPNCPY_CHK:
case BUILT_IN_STRNCPY:
case BUILT_IN_STRNCPY_CHK:
dstref->strbounded_p = true;
detect_overlap = &builtin_access::strcpy_overlap;
break;
case BUILT_IN_STPCPY:
case BUILT_IN_STPCPY_CHK:
case BUILT_IN_STRCPY:
case BUILT_IN_STRCPY_CHK:
detect_overlap = &builtin_access::strcpy_overlap;
break;
case BUILT_IN_STRCAT:
case BUILT_IN_STRCAT_CHK:
detect_overlap = &builtin_access::strcat_overlap;
break;
case BUILT_IN_STRNCAT:
case BUILT_IN_STRNCAT_CHK:
dstref->strbounded_p = true;
srcref->strbounded_p = true;
detect_overlap = &builtin_access::strcat_overlap;
break;
default:
/* Handle other string functions here whose access may need
to be validated for in-bounds offsets and non-overlapping
copies. */
return;
}
/* Try to determine the size of the base object. compute_objsize
expects a pointer so create one if BASE is a non-pointer object. */
if (dst.basesize < 0)
{
access_ref aref;
if (ptrqry.get_ref (dst.base, call, &aref, ostype) && aref.base0)
dst.basesize = aref.sizrng[1];
else
dst.basesize = HOST_WIDE_INT_MIN;
}
if (src.base && src.basesize < 0)
{
access_ref aref;
if (ptrqry.get_ref (src.base, call, &aref, ostype) && aref.base0)
src.basesize = aref.sizrng[1];
else
src.basesize = HOST_WIDE_INT_MIN;
}
const offset_int maxobjsize = dst.maxobjsize;
/* Make adjustments for references to the same object by string
built-in functions to reflect the constraints imposed by
the function. */
/* For bounded string functions determine the range of the bound
on the access. For others, the range stays unbounded. */
offset_int bounds[2] = { maxobjsize, maxobjsize };
if (dstref->strbounded_p)
{
unsigned nargs = gimple_call_num_args (call);
if (nargs <= sizeargno)
return;
tree size = gimple_call_arg (call, sizeargno);
tree range[2];
if (get_size_range (ptrqry.rvals, size, call, range, true))
{
bounds[0] = wi::to_offset (range[0]);
bounds[1] = wi::to_offset (range[1]);
}
/* If both references' size ranges are indeterminate use the last
(size) argument from the function call as a substitute. This
may only be necessary for strncpy (but not for memcpy where
the size range would have been already determined this way). */
if (dstref->sizrange[0] == 0 && dstref->sizrange[1] == maxobjsize
&& srcref->sizrange[0] == 0 && srcref->sizrange[1] == maxobjsize)
{
dstref->sizrange[0] = bounds[0];
dstref->sizrange[1] = bounds[1];
}
}
bool dstsize_set = false;
/* The size range of one reference involving the same base object
can be determined from the size range of the other reference.
This makes it possible to compute accurate offsets for warnings
involving functions like strcpy where the length of just one of
the two arguments is known (determined by tree-ssa-strlen). */
if (dstref->sizrange[0] == 0 && dstref->sizrange[1] == maxobjsize)
{
/* When the destination size is unknown set it to the size of
the source. */
dstref->sizrange[0] = srcref->sizrange[0];
dstref->sizrange[1] = srcref->sizrange[1];
dstsize_set = true;
}
else if (srcref->sizrange[0] == 0 && srcref->sizrange[1] == maxobjsize)
{
/* When the size of the source access is unknown set it to the size
of the destination first and adjust it later if necessary. */
srcref->sizrange[0] = dstref->sizrange[0];
srcref->sizrange[1] = dstref->sizrange[1];
if (depends_p)
{
if (dstref->strbounded_p)
{
/* Read access by strncpy is constrained by the third
argument but except for a zero bound is at least one. */
srcref->sizrange[0] = bounds[1] > 0 ? 1 : 0;
offset_int bound = wi::umin (srcref->basesize, bounds[1]);
if (bound < srcref->sizrange[1])
srcref->sizrange[1] = bound;
}
/* For string functions, adjust the size range of the source
reference by the inverse boundaries of the offset (because
the higher the offset into the string the shorter its
length). */
if (srcref->offrange[1] >= 0
&& srcref->offrange[1] < srcref->sizrange[0])
srcref->sizrange[0] -= srcref->offrange[1];
else
srcref->sizrange[0] = 1;
if (srcref->offrange[0] > 0)
{
if (srcref->offrange[0] < srcref->sizrange[1])
srcref->sizrange[1] -= srcref->offrange[0];
else
srcref->sizrange[1] = 0;
}
dstadjust_p = true;
}
}
if (detect_overlap == &builtin_access::generic_overlap)
{
if (dstref->strbounded_p)
{
dstref->sizrange[0] = bounds[0];
dstref->sizrange[1] = bounds[1];
if (dstref->sizrange[0] < srcref->sizrange[0])
srcref->sizrange[0] = dstref->sizrange[0];
if (dstref->sizrange[1] < srcref->sizrange[1])
srcref->sizrange[1] = dstref->sizrange[1];
}
}
else if (detect_overlap == &builtin_access::strcpy_overlap)
{
if (!dstref->strbounded_p)
{
/* For strcpy, adjust the destination size range to match that
of the source computed above. */
if (depends_p && dstadjust_p)
{
dstref->sizrange[0] = srcref->sizrange[0];
dstref->sizrange[1] = srcref->sizrange[1];
}
}
}
else if (!dstsize_set && detect_overlap == &builtin_access::strcat_overlap)
{
dstref->sizrange[0] += srcref->sizrange[0] - 1;
dstref->sizrange[1] += srcref->sizrange[1] - 1;
}
if (dstref->strbounded_p)
{
/* For strncpy, adjust the destination size range to match that
of the source computed above. */
dstref->sizrange[0] = bounds[0];
dstref->sizrange[1] = bounds[1];
if (bounds[0] < srcref->sizrange[0])
srcref->sizrange[0] = bounds[0];
if (bounds[1] < srcref->sizrange[1])
srcref->sizrange[1] = bounds[1];
}
}
offset_int
builtin_access::overlap_size (const offset_int a[2], const offset_int b[2],
offset_int *off)
{
const offset_int *p = a;
const offset_int *q = b;
/* Point P at the bigger of the two ranges and Q at the smaller. */
if (wi::lts_p (a[1] - a[0], b[1] - b[0]))
{
p = b;
q = a;
}
if (p[0] < q[0])
{
if (p[1] < q[0])
return 0;
*off = q[0];
return wi::smin (p[1], q[1]) - q[0];
}
if (q[1] < p[0])
return 0;
off[0] = p[0];
return q[1] - p[0];
}
/* Return true if the bounded mempry (memcpy amd similar) or string function
access (strncpy and similar) ACS overlaps. */
bool
builtin_access::generic_overlap ()
{
builtin_access &acs = *this;
const builtin_memref *dstref = acs.dstref;
const builtin_memref *srcref = acs.srcref;
gcc_assert (dstref->base == srcref->base);
const offset_int maxobjsize = acs.dstref->maxobjsize;
offset_int maxsize = dstref->basesize < 0 ? maxobjsize : dstref->basesize;
/* Adjust the larger bounds of the offsets (which may be the first
element if the lower bound is larger than the upper bound) to
make them valid for the smallest access (if possible) but no smaller
than the smaller bounds. */
gcc_assert (wi::les_p (acs.dstoff[0], acs.dstoff[1]));
if (maxsize < acs.dstoff[1] + acs.dstsiz[0])
acs.dstoff[1] = maxsize - acs.dstsiz[0];
if (acs.dstoff[1] < acs.dstoff[0])
acs.dstoff[1] = acs.dstoff[0];
gcc_assert (wi::les_p (acs.srcoff[0], acs.srcoff[1]));
if (maxsize < acs.srcoff[1] + acs.srcsiz[0])
acs.srcoff[1] = maxsize - acs.srcsiz[0];
if (acs.srcoff[1] < acs.srcoff[0])
acs.srcoff[1] = acs.srcoff[0];
/* Determine the minimum and maximum space for the access given
the offsets. */
offset_int space[2];
space[0] = wi::abs (acs.dstoff[0] - acs.srcoff[0]);
space[1] = space[0];
offset_int d = wi::abs (acs.dstoff[0] - acs.srcoff[1]);
if (acs.srcsiz[0] > 0)
{
if (d < space[0])
space[0] = d;
if (space[1] < d)
space[1] = d;
}
else
space[1] = acs.dstsiz[1];
d = wi::abs (acs.dstoff[1] - acs.srcoff[0]);
if (d < space[0])
space[0] = d;
if (space[1] < d)
space[1] = d;
/* Treat raw memory functions both of whose references are bounded
as special and permit uncertain overlaps to go undetected. For
all kinds of constant offset and constant size accesses, if
overlap isn't certain it is not possible. */
bool overlap_possible = space[0] < acs.dstsiz[1];
if (!overlap_possible)
return false;
bool overlap_certain = space[1] < acs.dstsiz[0];
/* True when the size of one reference depends on the offset of
the other. */
bool depends_p = detect_overlap != &builtin_access::generic_overlap;
if (!overlap_certain)
{
if (!dstref->strbounded_p && !depends_p)
/* Memcpy only considers certain overlap. */
return false;
/* There's no way to distinguish an access to the same member
of a structure from one to two distinct members of the same
structure. Give up to avoid excessive false positives. */
tree basetype = TREE_TYPE (dstref->base);
if (POINTER_TYPE_P (basetype))
basetype = TREE_TYPE (basetype);
else
while (TREE_CODE (basetype) == ARRAY_TYPE)
basetype = TREE_TYPE (basetype);
if (RECORD_OR_UNION_TYPE_P (basetype))
return false;
}
/* True for stpcpy and strcpy. */
bool stxcpy_p = (!dstref->strbounded_p
&& detect_overlap == &builtin_access::strcpy_overlap);
if (dstref->refoff >= 0
&& srcref->refoff >= 0
&& dstref->refoff != srcref->refoff
&& (stxcpy_p || dstref->strbounded_p || srcref->strbounded_p))
return false;
offset_int siz[2] = { maxobjsize + 1, 0 };
ovloff[0] = HOST_WIDE_INT_MAX;
ovloff[1] = HOST_WIDE_INT_MIN;
if (stxcpy_p)
{
/* Iterate over the extreme locations (on the horizontal axis formed
by their offsets) and sizes of two regions and find their smallest
and largest overlap and the corresponding offsets. */
for (unsigned i = 0; i != 2; ++i)
{
const offset_int a[2] = {
acs.dstoff[i], acs.dstoff[i] + acs.dstsiz[!i]
};
const offset_int b[2] = {
acs.srcoff[i], acs.srcoff[i] + acs.srcsiz[!i]
};
offset_int off;
offset_int sz = overlap_size (a, b, &off);
if (sz < siz[0])
siz[0] = sz;
if (siz[1] <= sz)
siz[1] = sz;
if (sz != 0)
{
if (wi::lts_p (off, ovloff[0]))
ovloff[0] = off.to_shwi ();
if (wi::lts_p (ovloff[1], off))
ovloff[1] = off.to_shwi ();
}
}
}
else
{
/* Iterate over the extreme locations (on the horizontal axis
formed by their offsets) and sizes of the two regions and
find their smallest and largest overlap and the corresponding
offsets. */
for (unsigned io = 0; io != 2; ++io)
for (unsigned is = 0; is != 2; ++is)
{
const offset_int a[2] = {
acs.dstoff[io], acs.dstoff[io] + acs.dstsiz[is]
};
for (unsigned jo = 0; jo != 2; ++jo)
for (unsigned js = 0; js != 2; ++js)
{
const offset_int b[2] = {
acs.srcoff[jo], acs.srcoff[jo] + acs.srcsiz[js]
};
offset_int off;
offset_int sz = overlap_size (a, b, &off);
if (sz < siz[0])
siz[0] = sz;
if (siz[1] <= sz)
siz[1] = sz;
if (sz != 0)
{
if (wi::lts_p (off, ovloff[0]))
ovloff[0] = off.to_shwi ();
if (wi::lts_p (ovloff[1], off))
ovloff[1] = off.to_shwi ();
}
}
}
}
ovlsiz[0] = siz[0].to_shwi ();
ovlsiz[1] = siz[1].to_shwi ();
/* Adjust the overlap offset range to reflect the overlap size range. */
if (ovlsiz[0] == 0 && ovlsiz[1] > 1)
ovloff[1] = ovloff[0] + ovlsiz[1] - 1;
return true;
}
/* Return true if the strcat-like access overlaps. */
bool
builtin_access::strcat_overlap ()
{
builtin_access &acs = *this;
const builtin_memref *dstref = acs.dstref;
const builtin_memref *srcref = acs.srcref;
gcc_assert (dstref->base == srcref->base);
const offset_int maxobjsize = acs.dstref->maxobjsize;
gcc_assert (dstref->base && dstref->base == srcref->base);
/* Adjust for strcat-like accesses. */
/* As a special case for strcat, set the DSTREF offsets to the length
of the destination string since the function starts writing over
its terminating nul, and set the destination size to 1 for the length
of the nul. */
acs.dstoff[0] += dstsiz[0] - srcref->sizrange[0];
acs.dstoff[1] += dstsiz[1] - srcref->sizrange[1];
bool strfunc_unknown_args = acs.dstsiz[0] == 0 && acs.dstsiz[1] != 0;
/* The lower bound is zero when the size is unknown because then
overlap is not certain. */
acs.dstsiz[0] = strfunc_unknown_args ? 0 : 1;
acs.dstsiz[1] = 1;
offset_int maxsize = dstref->basesize < 0 ? maxobjsize : dstref->basesize;
/* For references to the same base object, determine if there's a pair
of valid offsets into the two references such that access between
them doesn't overlap. Adjust both upper bounds to be valid for
the smaller size (i.e., at most MAXSIZE - SIZE). */
if (maxsize < acs.dstoff[1] + acs.dstsiz[0])
acs.dstoff[1] = maxsize - acs.dstsiz[0];
if (maxsize < acs.srcoff[1] + acs.srcsiz[0])
acs.srcoff[1] = maxsize - acs.srcsiz[0];
/* Check to see if there's enough space for both accesses without
overlap. Determine the optimistic (maximum) amount of available
space. */
offset_int space;
if (acs.dstoff[0] <= acs.srcoff[0])
{
if (acs.dstoff[1] < acs.srcoff[1])
space = acs.srcoff[1] + acs.srcsiz[0] - acs.dstoff[0];
else
space = acs.dstoff[1] + acs.dstsiz[0] - acs.srcoff[0];
}
else
space = acs.dstoff[1] + acs.dstsiz[0] - acs.srcoff[0];
/* Overlap is certain if the distance between the farthest offsets
of the opposite accesses is less than the sum of the lower bounds
of the sizes of the two accesses. */
bool overlap_certain = space < acs.dstsiz[0] + acs.srcsiz[0];
/* For a constant-offset, constant size access, consider the largest
distance between the offset bounds and the lower bound of the access
size. If the overlap isn't certain return success. */
if (!overlap_certain
&& acs.dstoff[0] == acs.dstoff[1]
&& acs.srcoff[0] == acs.srcoff[1]
&& acs.dstsiz[0] == acs.dstsiz[1]
&& acs.srcsiz[0] == acs.srcsiz[1])
return false;
/* Overlap is not certain but may be possible. */
offset_int access_min = acs.dstsiz[0] + acs.srcsiz[0];
/* Determine the conservative (minimum) amount of space. */
space = wi::abs (acs.dstoff[0] - acs.srcoff[0]);
offset_int d = wi::abs (acs.dstoff[0] - acs.srcoff[1]);
if (d < space)
space = d;
d = wi::abs (acs.dstoff[1] - acs.srcoff[0]);
if (d < space)
space = d;
/* For a strict test (used for strcpy and similar with unknown or
variable bounds or sizes), consider the smallest distance between
the offset bounds and either the upper bound of the access size
if known, or the lower bound otherwise. */
if (access_min <= space && (access_min != 0 || !strfunc_unknown_args))
return false;
/* When strcat overlap is certain it is always a single byte:
the terminating NUL, regardless of offsets and sizes. When
overlap is only possible its range is [0, 1]. */
acs.ovlsiz[0] = dstref->sizrange[0] == dstref->sizrange[1] ? 1 : 0;
acs.ovlsiz[1] = 1;
offset_int endoff
= dstref->offrange[0] + (dstref->sizrange[0] - srcref->sizrange[0]);
if (endoff <= srcref->offrange[0])
acs.ovloff[0] = wi::smin (maxobjsize, srcref->offrange[0]).to_shwi ();
else
acs.ovloff[0] = wi::smin (maxobjsize, endoff).to_shwi ();
acs.sizrange[0] = wi::smax (wi::abs (endoff - srcref->offrange[0]) + 1,
srcref->sizrange[0]).to_shwi ();
if (dstref->offrange[0] == dstref->offrange[1])
{
if (srcref->offrange[0] == srcref->offrange[1])
acs.ovloff[1] = acs.ovloff[0];
else
acs.ovloff[1]
= wi::smin (maxobjsize,
srcref->offrange[1] + srcref->sizrange[1]).to_shwi ();
}
else
acs.ovloff[1]
= wi::smin (maxobjsize,
dstref->offrange[1] + dstref->sizrange[1]).to_shwi ();
if (acs.sizrange[0] == 0)
acs.sizrange[0] = 1;
acs.sizrange[1] = wi::smax (acs.dstsiz[1], srcref->sizrange[1]).to_shwi ();
return true;
}
/* Return true if the strcpy-like access overlaps. */
bool
builtin_access::strcpy_overlap ()
{
return generic_overlap ();
}
/* For a BASE of array type, clamp REFOFF to at most [0, BASE_SIZE]
if known, or [0, MAXOBJSIZE] otherwise. */
static void
clamp_offset (tree base, offset_int refoff[2], offset_int maxobjsize)
{
if (!base || TREE_CODE (TREE_TYPE (base)) != ARRAY_TYPE)
return;
if (refoff[0] < 0 && refoff[1] >= 0)
refoff[0] = 0;
if (refoff[1] < refoff[0])
{
offset_int maxsize = maxobjsize;
if (tree size = TYPE_SIZE_UNIT (TREE_TYPE (base)))
maxsize = wi::to_offset (size);
refoff[1] = wi::umin (refoff[1], maxsize);
}
}
/* Return true if DSTREF and SRCREF describe accesses that either overlap
one another or that, in order not to overlap, would imply that the size
of the referenced object(s) exceeds the maximum size of an object. Set
Otherwise, if DSTREF and SRCREF do not definitely overlap (even though
they may overlap in a way that's not apparent from the available data),
return false. */
bool
builtin_access::overlap ()
{
builtin_access &acs = *this;
const offset_int maxobjsize = dstref->maxobjsize;
acs.sizrange[0] = wi::smax (dstref->sizrange[0],
srcref->sizrange[0]).to_shwi ();
acs.sizrange[1] = wi::smax (dstref->sizrange[1],
srcref->sizrange[1]).to_shwi ();
/* Check to see if the two references refer to regions that are
too large not to overlap in the address space (whose maximum
size is PTRDIFF_MAX). */
offset_int size = dstref->sizrange[0] + srcref->sizrange[0];
if (maxobjsize < size)
{
acs.ovloff[0] = (maxobjsize - dstref->sizrange[0]).to_shwi ();
acs.ovlsiz[0] = (size - maxobjsize).to_shwi ();
return true;
}
/* If both base objects aren't known return the maximum possible
offset that would make them not overlap. */
if (!dstref->base || !srcref->base)
return false;
/* If the base object is an array adjust the bounds of the offset
to be non-negative and within the bounds of the array if possible. */
clamp_offset (dstref->base, acs.dstoff, maxobjsize);
acs.srcoff[0] = srcref->offrange[0];
acs.srcoff[1] = srcref->offrange[1];
clamp_offset (srcref->base, acs.srcoff, maxobjsize);
/* When the upper bound of the offset is less than the lower bound
the former is the result of a negative offset being represented
as a large positive value or vice versa. The resulting range is
a union of two subranges: [MIN, UB] and [LB, MAX]. Since such
a union is not representable using the current data structure
replace it with the full range of offsets. */
if (acs.dstoff[1] < acs.dstoff[0])
{
acs.dstoff[0] = -maxobjsize - 1;
acs.dstoff[1] = maxobjsize;
}
/* Validate the offset and size of each reference on its own first.
This is independent of whether or not the base objects are the
same. Normally, this would have already been detected and
diagnosed by -Warray-bounds, unless it has been disabled. */
offset_int maxoff = acs.dstoff[0] + dstref->sizrange[0];
if (maxobjsize < maxoff)
{
acs.ovlsiz[0] = (maxoff - maxobjsize).to_shwi ();
acs.ovloff[0] = acs.dstoff[0].to_shwi () - acs.ovlsiz[0];
return true;
}
/* Repeat the same as above but for the source offsets. */
if (acs.srcoff[1] < acs.srcoff[0])
{
acs.srcoff[0] = -maxobjsize - 1;
acs.srcoff[1] = maxobjsize;
}
maxoff = acs.srcoff[0] + srcref->sizrange[0];
if (maxobjsize < maxoff)
{
acs.ovlsiz[0] = (maxoff - maxobjsize).to_shwi ();
acs.ovlsiz[1] = (acs.srcoff[0] + srcref->sizrange[1]
- maxobjsize).to_shwi ();
acs.ovloff[0] = acs.srcoff[0].to_shwi () - acs.ovlsiz[0];
return true;
}
if (dstref->base != srcref->base)
return false;
acs.dstsiz[0] = dstref->sizrange[0];
acs.dstsiz[1] = dstref->sizrange[1];
acs.srcsiz[0] = srcref->sizrange[0];
acs.srcsiz[1] = srcref->sizrange[1];
/* Call the appropriate function to determine the overlap. */
if ((this->*detect_overlap) ())
{
if (!sizrange[1])
{
/* Unless the access size range has already been set, do so here. */
sizrange[0] = wi::smax (acs.dstsiz[0], srcref->sizrange[0]).to_shwi ();
sizrange[1] = wi::smax (acs.dstsiz[1], srcref->sizrange[1]).to_shwi ();
}
return true;
}
return false;
}
/* Attempt to detect and diagnose an overlapping copy in a call expression
EXPR involving an access ACS to a built-in memory or string function.
Return true when one has been detected, false otherwise. */
static bool
maybe_diag_overlap (location_t loc, gimple *call, builtin_access &acs)
{
if (!acs.overlap ())
return false;
if (warning_suppressed_p (call, OPT_Wrestrict))
return true;
/* For convenience. */
const builtin_memref &dstref = *acs.dstref;
const builtin_memref &srcref = *acs.srcref;
/* Determine the range of offsets and sizes of the overlap if it
exists and issue diagnostics. */
HOST_WIDE_INT *ovloff = acs.ovloff;
HOST_WIDE_INT *ovlsiz = acs.ovlsiz;
HOST_WIDE_INT *sizrange = acs.sizrange;
tree func = gimple_call_fndecl (call);
/* To avoid a combinatorial explosion of diagnostics format the offsets
or their ranges as strings and use them in the warning calls below. */
char offstr[3][64];
if (dstref.offrange[0] == dstref.offrange[1]
|| dstref.offrange[1] > HOST_WIDE_INT_MAX)
sprintf (offstr[0], HOST_WIDE_INT_PRINT_DEC,
dstref.offrange[0].to_shwi ());
else
sprintf (offstr[0],
"[" HOST_WIDE_INT_PRINT_DEC ", " HOST_WIDE_INT_PRINT_DEC "]",
dstref.offrange[0].to_shwi (),
dstref.offrange[1].to_shwi ());
if (srcref.offrange[0] == srcref.offrange[1]
|| srcref.offrange[1] > HOST_WIDE_INT_MAX)
sprintf (offstr[1],
HOST_WIDE_INT_PRINT_DEC,
srcref.offrange[0].to_shwi ());
else
sprintf (offstr[1],
"[" HOST_WIDE_INT_PRINT_DEC ", " HOST_WIDE_INT_PRINT_DEC "]",
srcref.offrange[0].to_shwi (),
srcref.offrange[1].to_shwi ());
if (ovloff[0] == ovloff[1] || !ovloff[1])
sprintf (offstr[2], HOST_WIDE_INT_PRINT_DEC, ovloff[0]);
else
sprintf (offstr[2],
"[" HOST_WIDE_INT_PRINT_DEC ", " HOST_WIDE_INT_PRINT_DEC "]",
ovloff[0], ovloff[1]);
const offset_int maxobjsize = dstref.maxobjsize;
bool must_overlap = ovlsiz[0] > 0;
if (ovlsiz[1] == 0)
ovlsiz[1] = ovlsiz[0];
if (must_overlap)
{
/* Issue definitive "overlaps" diagnostic in this block. */
if (sizrange[0] == sizrange[1])
{
if (ovlsiz[0] == ovlsiz[1])
warning_at (loc, OPT_Wrestrict,
sizrange[0] == 1
? (ovlsiz[0] == 1
? G_("%qD accessing %wu byte at offsets %s "
"and %s overlaps %wu byte at offset %s")
: G_("%qD accessing %wu byte at offsets %s "
"and %s overlaps %wu bytes at offset "
"%s"))
: (ovlsiz[0] == 1
? G_("%qD accessing %wu bytes at offsets %s "
"and %s overlaps %wu byte at offset %s")
: G_("%qD accessing %wu bytes at offsets %s "
"and %s overlaps %wu bytes at offset "
"%s")),
func, sizrange[0],
offstr[0], offstr[1], ovlsiz[0], offstr[2]);
else if (ovlsiz[1] >= 0 && ovlsiz[1] < maxobjsize.to_shwi ())
warning_n (loc, OPT_Wrestrict, sizrange[0],
"%qD accessing %wu byte at offsets %s "
"and %s overlaps between %wu and %wu bytes "
"at offset %s",
"%qD accessing %wu bytes at offsets %s "
"and %s overlaps between %wu and %wu bytes "
"at offset %s",
func, sizrange[0], offstr[0], offstr[1],
ovlsiz[0], ovlsiz[1], offstr[2]);
else
warning_n (loc, OPT_Wrestrict, sizrange[0],
"%qD accessing %wu byte at offsets %s and "
"%s overlaps %wu or more bytes at offset %s",
"%qD accessing %wu bytes at offsets %s and "
"%s overlaps %wu or more bytes at offset %s",
func, sizrange[0],
offstr[0], offstr[1], ovlsiz[0], offstr[2]);
return true;
}
if (sizrange[1] >= 0 && sizrange[1] < maxobjsize.to_shwi ())
{
if (ovlsiz[0] == ovlsiz[1])
warning_n (loc, OPT_Wrestrict, ovlsiz[0],
"%qD accessing between %wu and %wu bytes "
"at offsets %s and %s overlaps %wu byte at "
"offset %s",
"%qD accessing between %wu and %wu bytes "
"at offsets %s and %s overlaps %wu bytes "
"at offset %s",
func, sizrange[0], sizrange[1],
offstr[0], offstr[1], ovlsiz[0], offstr[2]);
else if (ovlsiz[1] >= 0 && ovlsiz[1] < maxobjsize.to_shwi ())
warning_at (loc, OPT_Wrestrict,
"%qD accessing between %wu and %wu bytes at "
"offsets %s and %s overlaps between %wu and %wu "
"bytes at offset %s",
func, sizrange[0], sizrange[1],
offstr[0], offstr[1], ovlsiz[0], ovlsiz[1],
offstr[2]);
else
warning_at (loc, OPT_Wrestrict,
"%qD accessing between %wu and %wu bytes at "
"offsets %s and %s overlaps %wu or more bytes "
"at offset %s",
func, sizrange[0], sizrange[1],
offstr[0], offstr[1], ovlsiz[0], offstr[2]);
return true;
}
if (ovlsiz[0] != ovlsiz[1])
ovlsiz[1] = maxobjsize.to_shwi ();
if (ovlsiz[0] == ovlsiz[1])
warning_n (loc, OPT_Wrestrict, ovlsiz[0],
"%qD accessing %wu or more bytes at offsets "
"%s and %s overlaps %wu byte at offset %s",
"%qD accessing %wu or more bytes at offsets "
"%s and %s overlaps %wu bytes at offset %s",
func, sizrange[0], offstr[0], offstr[1],
ovlsiz[0], offstr[2]);
else if (ovlsiz[1] >= 0 && ovlsiz[1] < maxobjsize.to_shwi ())
warning_at (loc, OPT_Wrestrict,
"%qD accessing %wu or more bytes at offsets %s "
"and %s overlaps between %wu and %wu bytes "
"at offset %s",
func, sizrange[0], offstr[0], offstr[1],
ovlsiz[0], ovlsiz[1], offstr[2]);
else
warning_at (loc, OPT_Wrestrict,
"%qD accessing %wu or more bytes at offsets %s "
"and %s overlaps %wu or more bytes at offset %s",
func, sizrange[0], offstr[0], offstr[1],
ovlsiz[0], offstr[2]);
return true;
}
/* Use more concise wording when one of the offsets is unbounded
to avoid confusing the user with large and mostly meaningless
numbers. */
bool open_range;
if (DECL_P (dstref.base) && TREE_CODE (TREE_TYPE (dstref.base)) == ARRAY_TYPE)
open_range = ((dstref.offrange[0] == 0
&& dstref.offrange[1] == maxobjsize)
|| (srcref.offrange[0] == 0
&& srcref.offrange[1] == maxobjsize));
else
open_range = ((dstref.offrange[0] == -maxobjsize - 1
&& dstref.offrange[1] == maxobjsize)
|| (srcref.offrange[0] == -maxobjsize - 1
&& srcref.offrange[1] == maxobjsize));
if (sizrange[0] == sizrange[1] || sizrange[1] == 1)
{
if (ovlsiz[1] == 1)
{
if (open_range)
warning_n (loc, OPT_Wrestrict, sizrange[1],
"%qD accessing %wu byte may overlap "
"%wu byte",
"%qD accessing %wu bytes may overlap "
"%wu byte",
func, sizrange[1], ovlsiz[1]);
else
warning_n (loc, OPT_Wrestrict, sizrange[1],
"%qD accessing %wu byte at offsets %s "
"and %s may overlap %wu byte at offset %s",
"%qD accessing %wu bytes at offsets %s "
"and %s may overlap %wu byte at offset %s",
func, sizrange[1], offstr[0], offstr[1],
ovlsiz[1], offstr[2]);
return true;
}
if (open_range)
warning_n (loc, OPT_Wrestrict, sizrange[1],
"%qD accessing %wu byte may overlap "
"up to %wu bytes",
"%qD accessing %wu bytes may overlap "
"up to %wu bytes",
func, sizrange[1], ovlsiz[1]);
else
warning_n (loc, OPT_Wrestrict, sizrange[1],
"%qD accessing %wu byte at offsets %s and "
"%s may overlap up to %wu bytes at offset %s",
"%qD accessing %wu bytes at offsets %s and "
"%s may overlap up to %wu bytes at offset %s",
func, sizrange[1], offstr[0], offstr[1],
ovlsiz[1], offstr[2]);
return true;
}
if (sizrange[1] >= 0 && sizrange[1] < maxobjsize.to_shwi ())
{
if (open_range)
warning_n (loc, OPT_Wrestrict, ovlsiz[1],
"%qD accessing between %wu and %wu bytes "
"may overlap %wu byte",
"%qD accessing between %wu and %wu bytes "
"may overlap up to %wu bytes",
func, sizrange[0], sizrange[1], ovlsiz[1]);
else
warning_n (loc, OPT_Wrestrict, ovlsiz[1],
"%qD accessing between %wu and %wu bytes "
"at offsets %s and %s may overlap %wu byte "
"at offset %s",
"%qD accessing between %wu and %wu bytes "
"at offsets %s and %s may overlap up to %wu "
"bytes at offset %s",
func, sizrange[0], sizrange[1],
offstr[0], offstr[1], ovlsiz[1], offstr[2]);
return true;
}
warning_n (loc, OPT_Wrestrict, ovlsiz[1],
"%qD accessing %wu or more bytes at offsets %s "
"and %s may overlap %wu byte at offset %s",
"%qD accessing %wu or more bytes at offsets %s "
"and %s may overlap up to %wu bytes at offset %s",
func, sizrange[0], offstr[0], offstr[1],
ovlsiz[1], offstr[2]);
return true;
}
/* Validate REF size and offsets in an expression passed as an argument
to a CALL to a built-in function FUNC to make sure they are within
the bounds of the referenced object if its size is known, or
PTRDIFF_MAX otherwise. DO_WARN is true when a diagnostic should
be issued, false otherwise.
Both initial values of the offsets and their final value computed
by the function by incrementing the initial value by the size are
validated. Return the warning number if the offsets are not valid
and a diagnostic has been issued, or would have been issued if
DO_WARN had been true, otherwise an invalid warning number. */
static opt_code
maybe_diag_access_bounds (gimple *call, tree func, int strict,
const builtin_memref &ref, offset_int wroff,
bool do_warn)
{
location_t loc = gimple_location (call);
const offset_int maxobjsize = ref.maxobjsize;
/* Check for excessive size first and regardless of warning options
since the result is used to make codegen decisions. */
if (ref.sizrange[0] > maxobjsize)
{
const opt_code opt = OPT_Wstringop_overflow_;
/* Return true without issuing a warning. */
if (!do_warn)
return opt;
if (ref.ref && warning_suppressed_p (ref.ref, OPT_Wstringop_overflow_))
return no_warning;
bool warned = false;
if (warn_stringop_overflow)
{
if (ref.sizrange[0] == ref.sizrange[1])
warned = warning_at (loc, opt,
"%qD specified bound %wu "
"exceeds maximum object size %wu",
func, ref.sizrange[0].to_uhwi (),
maxobjsize.to_uhwi ());
else
warned = warning_at (loc, opt,
"%qD specified bound between %wu and %wu "
"exceeds maximum object size %wu",
func, ref.sizrange[0].to_uhwi (),
ref.sizrange[1].to_uhwi (),
maxobjsize.to_uhwi ());
return warned ? opt : no_warning;
}
}
/* Check for out-bounds pointers regardless of warning options since
the result is used to make codegen decisions. An excessive WROFF
can only come up as a result of an invalid strncat bound and is
diagnosed separately using a more meaningful warning. */
if (maxobjsize < wroff)
wroff = 0;
offset_int ooboff[] = { ref.offrange[0], ref.offrange[1], wroff };
tree oobref = ref.offset_out_of_bounds (strict, ooboff);
if (!oobref)
return no_warning;
const opt_code opt = OPT_Warray_bounds;
/* Return true without issuing a warning. */
if (!do_warn)
return opt;
if (!warn_array_bounds)
return no_warning;
if (warning_suppressed_p (ref.ptr, opt)
|| (ref.ref && warning_suppressed_p (ref.ref, opt)))
return no_warning;
char rangestr[2][64];
if (ooboff[0] == ooboff[1]
|| (ooboff[0] != ref.offrange[0]
&& ooboff[0].to_shwi () >= ooboff[1].to_shwi ()))
sprintf (rangestr[0], "%lli", (long long) ooboff[0].to_shwi ());
else
sprintf (rangestr[0], "[%lli, %lli]",
(long long) ooboff[0].to_shwi (),
(long long) ooboff[1].to_shwi ());
bool warned = false;
if (oobref == error_mark_node)
{
if (ref.sizrange[0] == ref.sizrange[1])
sprintf (rangestr[1], "%llu",
(unsigned long long) ref.sizrange[0].to_shwi ());
else
sprintf (rangestr[1], "[%lli, %lli]",
(unsigned long long) ref.sizrange[0].to_uhwi (),
(unsigned long long) ref.sizrange[1].to_uhwi ());
tree type;
if (DECL_P (ref.base)
&& TREE_CODE (type = TREE_TYPE (ref.base)) == ARRAY_TYPE)
{
auto_diagnostic_group d;
if (warning_at (loc, opt,
"%qD pointer overflow between offset %s "
"and size %s accessing array %qD with type %qT",
func, rangestr[0], rangestr[1], ref.base, type))
{
inform (DECL_SOURCE_LOCATION (ref.base),
"array %qD declared here", ref.base);
warned = true;
}
else
warned = warning_at (loc, opt,
"%qD pointer overflow between offset %s "
"and size %s",
func, rangestr[0], rangestr[1]);
}
else
warned = warning_at (loc, opt,
"%qD pointer overflow between offset %s "
"and size %s",
func, rangestr[0], rangestr[1]);
}
else if (oobref == ref.base)
{
/* True when the offset formed by an access to the reference
is out of bounds, rather than the initial offset wich is
in bounds. This implies access past the end. */
bool form = ooboff[0] != ref.offrange[0];
if (DECL_P (ref.base))
{
auto_diagnostic_group d;
if ((ref.basesize < maxobjsize
&& warning_at (loc, opt,
form
? G_("%qD forming offset %s is out of "
"the bounds [0, %wu] of object %qD with "
"type %qT")
: G_("%qD offset %s is out of the bounds "
"[0, %wu] of object %qD with type %qT"),
func, rangestr[0], ref.basesize.to_uhwi (),
ref.base, TREE_TYPE (ref.base)))
|| warning_at (loc, opt,
form
? G_("%qD forming offset %s is out of "
"the bounds of object %qD with type %qT")
: G_("%qD offset %s is out of the bounds "
"of object %qD with type %qT"),
func, rangestr[0],
ref.base, TREE_TYPE (ref.base)))
{
inform (DECL_SOURCE_LOCATION (ref.base),
"%qD declared here", ref.base);
warned = true;
}
}
else if (ref.basesize < maxobjsize)
warned = warning_at (loc, opt,
form
? G_("%qD forming offset %s is out "
"of the bounds [0, %wu]")
: G_("%qD offset %s is out "
"of the bounds [0, %wu]"),
func, rangestr[0], ref.basesize.to_uhwi ());
else
warned = warning_at (loc, opt,
form
? G_("%qD forming offset %s is out of bounds")
: G_("%qD offset %s is out of bounds"),
func, rangestr[0]);
}
else if (TREE_CODE (ref.ref) == MEM_REF)
{
tree refop = TREE_OPERAND (ref.ref, 0);
tree type = TREE_TYPE (refop);
if (POINTER_TYPE_P (type))
type = TREE_TYPE (type);
type = TYPE_MAIN_VARIANT (type);
if (warning_at (loc, opt,
"%qD offset %s from the object at %qE is out "
"of the bounds of %qT",
func, rangestr[0], ref.base, type))
{
if (TREE_CODE (ref.ref) == COMPONENT_REF)
refop = TREE_OPERAND (ref.ref, 1);
if (DECL_P (refop))
inform (DECL_SOURCE_LOCATION (refop),
"subobject %qD declared here", refop);
warned = true;
}
}
else
{
tree refop = TREE_OPERAND (ref.ref, 0);
tree type = TYPE_MAIN_VARIANT (TREE_TYPE (ref.ref));
if (warning_at (loc, opt,
"%qD offset %s from the object at %qE is out "
"of the bounds of referenced subobject %qD with "
"type %qT at offset %wi",
func, rangestr[0], ref.base,
TREE_OPERAND (ref.ref, 1), type,
ref.refoff.to_shwi ()))
{
if (TREE_CODE (ref.ref) == COMPONENT_REF)
refop = TREE_OPERAND (ref.ref, 1);
if (DECL_P (refop))
inform (DECL_SOURCE_LOCATION (refop),
"subobject %qD declared here", refop);
warned = true;
}
}
return warned ? opt : no_warning;
}
/* Check a CALL statement for restrict-violations and issue warnings
if/when appropriate. */
void
pass_wrestrict::check_call (gimple *call)
{
/* Avoid checking the call if it has already been diagnosed for
some reason. */
if (warning_suppressed_p (call, OPT_Wrestrict))
return;
tree func = gimple_call_fndecl (call);
if (!func || !fndecl_built_in_p (func, BUILT_IN_NORMAL))
return;
/* Argument number to extract from the call (depends on the built-in
and its kind). */
unsigned dst_idx = -1;
unsigned src_idx = -1;
unsigned bnd_idx = -1;
/* Is this CALL to a string function (as opposed to one to a raw
memory function). */
bool strfun = true;
switch (DECL_FUNCTION_CODE (func))
{
case BUILT_IN_MEMCPY:
case BUILT_IN_MEMCPY_CHK:
case BUILT_IN_MEMPCPY:
case BUILT_IN_MEMPCPY_CHK:
case BUILT_IN_MEMMOVE:
case BUILT_IN_MEMMOVE_CHK:
strfun = false;
/* Fall through. */
case BUILT_IN_STPNCPY:
case BUILT_IN_STPNCPY_CHK:
case BUILT_IN_STRNCAT:
case BUILT_IN_STRNCAT_CHK:
case BUILT_IN_STRNCPY:
case BUILT_IN_STRNCPY_CHK:
dst_idx = 0;
src_idx = 1;
bnd_idx = 2;
break;
case BUILT_IN_MEMSET:
case BUILT_IN_MEMSET_CHK:
dst_idx = 0;
bnd_idx = 2;
break;
case BUILT_IN_STPCPY:
case BUILT_IN_STPCPY_CHK:
case BUILT_IN_STRCPY:
case BUILT_IN_STRCPY_CHK:
case BUILT_IN_STRCAT:
case BUILT_IN_STRCAT_CHK:
dst_idx = 0;
src_idx = 1;
break;
default:
/* Handle other string functions here whose access may need
to be validated for in-bounds offsets and non-overlapping
copies. */
return;
}
unsigned nargs = gimple_call_num_args (call);
tree dst = dst_idx < nargs ? gimple_call_arg (call, dst_idx) : NULL_TREE;
tree src = src_idx < nargs ? gimple_call_arg (call, src_idx) : NULL_TREE;
tree dstwr = bnd_idx < nargs ? gimple_call_arg (call, bnd_idx) : NULL_TREE;
/* For string functions with an unspecified or unknown bound,
assume the size of the access is one. */
if (!dstwr && strfun)
dstwr = size_one_node;
/* DST and SRC can be null for a call with an insufficient number
of arguments to a built-in function declared without a protype. */
if (!dst || (src_idx < nargs && !src))
return;
/* DST, SRC, or DSTWR can also have the wrong type in a call to
a function declared without a prototype. Avoid checking such
invalid calls. */
if (TREE_CODE (TREE_TYPE (dst)) != POINTER_TYPE
|| (src && TREE_CODE (TREE_TYPE (src)) != POINTER_TYPE)
|| (dstwr && !INTEGRAL_TYPE_P (TREE_TYPE (dstwr))))
return;
opt_code opt = check_bounds_or_overlap (m_ptr_qry, call, dst, src, dstwr,
NULL_TREE);
/* Avoid diagnosing the call again. */
suppress_warning (call, opt);
}
} /* anonymous namespace */
/* Attempt to detect and diagnose invalid offset bounds and (except for
memmove) overlapping copy in a call expression EXPR from SRC to DST
and DSTSIZE and SRCSIZE bytes, respectively. Both DSTSIZE and
SRCSIZE may be NULL. DO_WARN is false to detect either problem
without issue a warning. Return the OPT_Wxxx constant corresponding
to the warning if one has been detected and zero otherwise. */
opt_code
check_bounds_or_overlap (gimple *call, tree dst, tree src, tree dstsize,
tree srcsize, bool bounds_only /* = false */,
bool do_warn /* = true */)
{
pointer_query ptrqry (get_range_query (cfun));
return check_bounds_or_overlap (ptrqry,
call, dst, src, dstsize, srcsize,
bounds_only, do_warn);
}
opt_code
check_bounds_or_overlap (pointer_query &ptrqry,
gimple *call, tree dst, tree src, tree dstsize,
tree srcsize, bool bounds_only /* = false */,
bool do_warn /* = true */)
{
tree func = gimple_call_fndecl (call);
builtin_memref dstref (ptrqry, call, dst, dstsize);
builtin_memref srcref (ptrqry, call, src, srcsize);
/* Create a descriptor of the access. This may adjust both DSTREF
and SRCREF based on one another and the kind of the access. */
builtin_access acs (ptrqry, call, dstref, srcref);
/* Set STRICT to the value of the -Warray-bounds=N argument for
string functions or when N > 1. */
int strict = (acs.strict () || warn_array_bounds > 1 ? warn_array_bounds : 0);
/* The starting offset of the destination write access. Nonzero only
for the strcat family of functions. */
offset_int wroff = acs.write_off (dstsize);
/* Validate offsets to each reference before the access first to make
sure they are within the bounds of the destination object if its
size is known, or PTRDIFF_MAX otherwise. */
opt_code opt
= maybe_diag_access_bounds (call, func, strict, dstref, wroff, do_warn);
if (opt == no_warning)
opt = maybe_diag_access_bounds (call, func, strict, srcref, 0, do_warn);
if (opt != no_warning)
{
if (do_warn)
suppress_warning (call, opt);
return opt;
}
if (!warn_restrict || bounds_only || !src)
return no_warning;
if (!bounds_only)
{
switch (DECL_FUNCTION_CODE (func))
{
case BUILT_IN_MEMMOVE:
case BUILT_IN_MEMMOVE_CHK:
case BUILT_IN_MEMSET:
case BUILT_IN_MEMSET_CHK:
return no_warning;
default:
break;
}
}
location_t loc = gimple_location (call);
if (operand_equal_p (dst, src, 0))
{
/* Issue -Wrestrict unless the pointers are null (those do
not point to objects and so do not indicate an overlap;
such calls could be the result of sanitization and jump
threading). */
if (!integer_zerop (dst) && !warning_suppressed_p (call, OPT_Wrestrict))
{
warning_at (loc, OPT_Wrestrict,
"%qD source argument is the same as destination",
func);
suppress_warning (call, OPT_Wrestrict);
return OPT_Wrestrict;
}
return no_warning;
}
/* Return false when overlap has been detected. */
if (maybe_diag_overlap (loc, call, acs))
{
suppress_warning (call, OPT_Wrestrict);
return OPT_Wrestrict;
}
return no_warning;
}
gimple_opt_pass *
make_pass_warn_restrict (gcc::context *ctxt)
{
return new pass_wrestrict (ctxt);
}
DEBUG_FUNCTION void
dump_builtin_memref (FILE *fp, const builtin_memref &ref)
{
fprintf (fp, "\n ptr = ");
print_generic_expr (fp, ref.ptr, TDF_LINENO);
fprintf (fp, "\n ref = ");
if (ref.ref)
print_generic_expr (fp, ref.ref, TDF_LINENO);
else
fputs ("null", fp);
fprintf (fp, "\n base = ");
print_generic_expr (fp, ref.base, TDF_LINENO);
fprintf (fp,
"\n basesize = %lli"
"\n refsize = %lli"
"\n refoff = %lli"
"\n offrange = [%lli, %lli]"
"\n sizrange = [%lli, %lli]"
"\n strbounded_p = %s\n",
(long long)ref.basesize.to_shwi (),
(long long)ref.refsize.to_shwi (),
(long long)ref.refoff.to_shwi (),
(long long)ref.offrange[0].to_shwi (),
(long long)ref.offrange[1].to_shwi (),
(long long)ref.sizrange[0].to_shwi (),
(long long)ref.sizrange[1].to_shwi (),
ref.strbounded_p ? "true" : "false");
}
void
builtin_access::dump (FILE *fp) const
{
fprintf (fp, " dstref:");
dump_builtin_memref (fp, *dstref);
fprintf (fp, "\n srcref:");
dump_builtin_memref (fp, *srcref);
fprintf (fp,
" sizrange = [%lli, %lli]\n"
" ovloff = [%lli, %lli]\n"
" ovlsiz = [%lli, %lli]\n"
" dstoff = [%lli, %lli]\n"
" dstsiz = [%lli, %lli]\n"
" srcoff = [%lli, %lli]\n"
" srcsiz = [%lli, %lli]\n",
(long long)sizrange[0], (long long)sizrange[1],
(long long)ovloff[0], (long long)ovloff[1],
(long long)ovlsiz[0], (long long)ovlsiz[1],
(long long)dstoff[0].to_shwi (), (long long)dstoff[1].to_shwi (),
(long long)dstsiz[0].to_shwi (), (long long)dstsiz[1].to_shwi (),
(long long)srcoff[0].to_shwi (), (long long)srcoff[1].to_shwi (),
(long long)srcsiz[0].to_shwi (), (long long)srcsiz[1].to_shwi ());
}
DEBUG_FUNCTION void
dump_builtin_access (FILE *fp, gimple *stmt, const builtin_access &acs)
{
if (stmt)
{
fprintf (fp, "\nDumping builtin_access for ");
print_gimple_expr (fp, stmt, TDF_LINENO);
fputs (":\n", fp);
}
acs.dump (fp);
}
DEBUG_FUNCTION void
debug (gimple *stmt, const builtin_access &acs)
{
dump_builtin_access (stdout, stmt, acs);
}
|