aboutsummaryrefslogtreecommitdiff
path: root/gcc/gimple-ssa-sccopy.cc
blob: ac5ec32eb32b034d37637311df88023cb16ad2c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
/* Strongly-connected copy propagation pass for the GNU compiler.
   Copyright (C) 2023 Free Software Foundation, Inc.
   Contributed by Filip Kastl <fkastl@suse.cz>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-iterator.h"
#include "vec.h"
#include "hash-set.h"
#include <algorithm>
#include "ssa-iterators.h"
#include "gimple-fold.h"
#include "gimplify.h"
#include "tree-cfg.h"
#include "tree-eh.h"
#include "builtins.h"
#include "tree-ssa-dce.h"
#include "fold-const.h"

/* Strongly connected copy propagation pass.

   This is a lightweight copy propagation pass that is also able to eliminate
   redundant PHI statements.  The pass considers the following types of copy
   statements:

   1 An assignment statement with a single argument.

   _3 = _2;
   _4 = 5;

   2 A degenerate PHI statement.  A degenerate PHI is a PHI that only refers to
     itself or one other value.

   _5 = PHI <_1>;
   _6 = PHI <_6, _6, _1, _1>;
   _7 = PHI <16, _7>;

   3 A set of PHI statements that only refer to each other or to one other
     value.

   _8 = PHI <_9, _10>;
   _9 = PHI <_8, _10>;
   _10 = PHI <_8, _9, _1>;

   All of these statements produce copies and can be eliminated from the
   program.  For a copy statement we identify the value it creates a copy of
   and replace references to the statement with the value -- we propagate the
   copy.

   _3 = _2; // Replace all occurences of _3 by _2

   _8 = PHI <_9, _10>;
   _9 = PHI <_8, _10>;
   _10 = PHI <_8, _9, _1>; // Replace all occurences of _8, _9 and _10 by _1

   To find all three types of copy statements we use an algorithm based on
   strongly-connected components (SCCs) in dataflow graph.  The algorithm was
   introduced in an article from 2013[1]. We describe the algorithm bellow.

   To identify SCCs we implement the Robert Tarjan's SCC algorithm.  For the
   SCC computation we wrap potential copy statements in the 'vertex' struct.
   To each of these statements we also assign a vertex number ('vxnum'). Since
   the main algorithm has to be able to compute SCCs of subgraphs of the whole
   dataflow graph we use GIMPLE stmt flags to prevent Tarjan's algorithm from
   leaving the subgraph.

   References:

     [1] Simple and Efficient Construction of Static Single Assignmemnt Form,
     Braun, Buchwald, Hack, Leissa, Mallon, Zwinkau, 2013, LNCS vol. 7791,
     Section 3.2.  */

/* Bitmap tracking statements which were propagated to be removed at the end of
   the pass.  */

static bitmap dead_stmts;

/* State of vertex during SCC discovery.

   unvisited  Vertex hasn't yet been popped from worklist.
   vopen      DFS has visited vertex for the first time.  Vertex has been put
	      on Tarjan stack.
   closed     DFS has backtracked through vertex.  At this point, vertex
	      doesn't have any unvisited neighbors.
   in_scc     Vertex has been popped from Tarjan stack.  */

enum vstate
{
  unvisited,
  vopen,
  closed,
  in_scc
};

/* Information about a vertex.  Used by SCC discovery.  */

struct vertex
{
  bool active; /* scc_discovery::compute_sccs () only considers a subgraph of
		  the whole dataflow graph.  It uses this flag so that it knows
		  which vertices are part of this subgraph.  */
  vstate state;
  unsigned index;
  unsigned lowlink;
};

/* SCC discovery.

   Used to find SCCs in a dataflow graph.  Implements Tarjan's SCC
   algorithm.  */

class scc_discovery
{
public:
  scc_discovery ();
  ~scc_discovery ();
  auto_vec<vec<gimple *>> compute_sccs (vec<gimple *> &stmts);

private:
  unsigned curr_generation = 0;
  vertex* vertices; /* Indexed by SSA_NAME_VERSION.  */
  auto_vec<unsigned> worklist; /* DFS stack.  */
  auto_vec<unsigned> stack; /* Tarjan stack.  */

  void visit_neighbor (tree neigh_tree, unsigned parent_vxnum);
};

scc_discovery::scc_discovery ()
{
  /* Create vertex struct for each SSA name.  */
  vertices = XNEWVEC (struct vertex, num_ssa_names);
  unsigned i = 0;
  for (i = 0; i < num_ssa_names; i++)
    vertices[i].active = false;
}

scc_discovery::~scc_discovery ()
{
  XDELETEVEC (vertices);
}

/* Part of 'scc_discovery::compute_sccs ()'.  */

void
scc_discovery::visit_neighbor (tree neigh_tree, unsigned parent_version)
{
  if (TREE_CODE (neigh_tree) != SSA_NAME)
    return; /* Skip any neighbor that isn't an SSA name.  */
  unsigned neigh_version = SSA_NAME_VERSION (neigh_tree);

  /* Skip neighbors outside the subgraph that Tarjan currently works
     with.  */
  if (!vertices[neigh_version].active)
    return;

  vstate neigh_state = vertices[neigh_version].state;
  vstate parent_state = vertices[parent_version].state;
  if (parent_state == vopen) /* We're currently opening parent.  */
    {
      /* Put unvisited neighbors on worklist.  Update lowlink of parent
	 vertex according to indices of neighbors present on stack.  */
      switch (neigh_state)
	{
	case unvisited:
	  worklist.safe_push (neigh_version);
	  break;
	case vopen:
	case closed:
	  vertices[parent_version].lowlink
	    = std::min (vertices[parent_version].lowlink,
			vertices[neigh_version].index);
	  break;
	case in_scc:
	  /* Ignore these edges.  */
	  break;
	}
    }
  else if (parent_state == closed) /* We're currently closing parent.  */
    {
      /* Update lowlink of parent vertex according to lowlinks of
	 children of parent (in terms of DFS tree).  */
      if (neigh_state == closed)
	{
	  vertices[parent_version].lowlink
	    = std::min (vertices[parent_version].lowlink,
			vertices[neigh_version].lowlink);
	}
    }
}

/* Compute SCCs in dataflow graph on given statements 'stmts'.  Ignore
   statements outside 'stmts'.  Return the SCCs in a reverse topological
   order.

   stmt_may_generate_copy () must be true for all statements from 'stmts'!  */

auto_vec<vec<gimple *>>
scc_discovery::compute_sccs (vec<gimple *> &stmts)
{
  auto_vec<vec<gimple *>> sccs;

  for (gimple *stmt : stmts)
    {
      unsigned i;
      switch (gimple_code (stmt))
	{
	  case GIMPLE_ASSIGN:
	    i = SSA_NAME_VERSION (gimple_assign_lhs (stmt));
	    break;
	  case GIMPLE_PHI:
	    i = SSA_NAME_VERSION (gimple_phi_result (stmt));
	    break;
	  default:
	    gcc_unreachable ();
	}

      vertices[i].index = 0;
      vertices[i].lowlink = 0;
      vertices[i].state = unvisited;
      vertices[i].active = true; /* Mark the subgraph we'll be working on so
				    that we don't leave it.  */

      worklist.safe_push (i);
    }

  /* Worklist loop.  */
  unsigned curr_index = 0;
  while (!worklist.is_empty ())
    {
      unsigned i = worklist.pop ();
      gimple *stmt = SSA_NAME_DEF_STMT (ssa_name (i));
      vstate state = vertices[i].state;

      if (state == unvisited)
	{
	  vertices[i].state = vopen;

	  /* Assign index to this vertex.  */
	  vertices[i].index = curr_index;
	  vertices[i].lowlink = curr_index;
	  curr_index++;

	  /* Put vertex on stack and also on worklist to be closed later.  */
	  stack.safe_push (i);
	  worklist.safe_push (i);
	}
      else if (state == vopen)
	vertices[i].state = closed;

      /* Visit neighbors of this vertex.  */
      tree op;
      gphi *phi;
      switch (gimple_code (stmt))
	{
	  case GIMPLE_PHI:
	    phi = as_a <gphi *> (stmt);
	    unsigned j;
	    for (j = 0; j < gimple_phi_num_args (phi); j++)
	      {
		op = gimple_phi_arg_def (phi, j);
		visit_neighbor (op, i);
	      }
	    break;
	  case GIMPLE_ASSIGN:
	    op = gimple_assign_rhs1 (stmt);
	    visit_neighbor (op, i);
	    break;
	  default:
	    gcc_unreachable ();
	}

      /* If we've just closed a root vertex of an scc, pop scc from stack.  */
      if (state == vopen && vertices[i].lowlink == vertices[i].index)
	{
	  vec<gimple *> scc = vNULL;

	  unsigned j;
	  do
	    {
	      j = stack.pop ();
	      scc.safe_push (SSA_NAME_DEF_STMT (ssa_name (j)));
	      vertices[j].state = in_scc;
	    }
	  while (j != i);

	  sccs.safe_push (scc);
	}
    }

  if (!stack.is_empty ())
    gcc_unreachable ();

  /* Clear 'active' flags.  */
  for (gimple *stmt : stmts)
    {
      unsigned i;
      switch (gimple_code (stmt))
	{
	  case GIMPLE_ASSIGN:
	    i = SSA_NAME_VERSION (gimple_assign_lhs (stmt));
	    break;
	  case GIMPLE_PHI:
	    i = SSA_NAME_VERSION (gimple_phi_result (stmt));
	    break;
	  default:
	    gcc_unreachable ();
	}

      vertices[i].active = false;
    }

  return sccs;
}

/* Could this statement potentially be a copy statement?

   This pass only considers statements for which this function returns 'true'.
   Those are basically PHI functions and assignment statements similar to

   _2 = _1;
   or
   _2 = 5;  */

static bool
stmt_may_generate_copy (gimple *stmt)
{
  /* A PHI may generate a copy.  */
  if (gimple_code (stmt) == GIMPLE_PHI)
    {
      gphi *phi = as_a <gphi *> (stmt);

      /* No OCCURS_IN_ABNORMAL_PHI SSA names in lhs nor rhs.  */
      if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (phi)))
	return false;

      unsigned i;
      for (i = 0; i < gimple_phi_num_args (phi); i++)
	{
	  tree op = gimple_phi_arg_def (phi, i);
	  if (TREE_CODE (op) == SSA_NAME
	      && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
	    return false;
	}

      /* If PHI has more than one unique non-SSA arguments, it won't generate a
	 copy.  */
      tree const_op = NULL_TREE;
      for (i = 0; i < gimple_phi_num_args (phi); i++)
	{
	  tree op = gimple_phi_arg_def (phi, i);
	  if (TREE_CODE (op) != SSA_NAME)
	    {
	      if (const_op && !operand_equal_p (op, const_op))
		return false;
	      const_op = op;
	    }
	}

      return true;
    }

  /* Or a statement of type _2 = _1; OR _2 = 5; may generate a copy.  */

  if (!gimple_assign_single_p (stmt))
    return false;

  tree lhs = gimple_assign_lhs (stmt);
  tree rhs = gimple_assign_rhs1 (stmt);

  if (TREE_CODE (lhs) != SSA_NAME)
    return false;

  /* lhs shouldn't flow through any abnormal edges.  */
  if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
    return false;

  if (is_gimple_min_invariant (rhs))
    return true;  /* A statement of type _2 = 5;.  */

  if (TREE_CODE (rhs) != SSA_NAME)
    return false;

  /* rhs shouldn't flow through any abnormal edges.  */
  if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs))
    return false;

  /* It is possible that lhs has more alignment or value range information.  By
     propagating we would lose this information.  So in the case that alignment
     or value range information differs, we are conservative and do not
     propagate.

     FIXME: Propagate alignment and value range info the same way copy-prop
     does.  */
  if (POINTER_TYPE_P (TREE_TYPE (lhs))
      && POINTER_TYPE_P (TREE_TYPE (rhs))
      && SSA_NAME_PTR_INFO (lhs) != SSA_NAME_PTR_INFO (rhs))
    return false;
  if (!POINTER_TYPE_P (TREE_TYPE (lhs))
      && !POINTER_TYPE_P (TREE_TYPE (rhs))
      && SSA_NAME_RANGE_INFO (lhs) != SSA_NAME_RANGE_INFO (rhs))
    return false;

  return true;  /* A statement of type _2 = _1;.  */
}

/* Return all statements in cfun that could generate copies.  All statements
   for which stmt_may_generate_copy returns 'true'.  */

static auto_vec<gimple *>
get_all_stmt_may_generate_copy (void)
{
  auto_vec<gimple *> result;

  basic_block bb;
  FOR_EACH_BB_FN (bb, cfun)
    {
      gimple_stmt_iterator gsi;
      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  gimple *s = gsi_stmt (gsi);
	  if (stmt_may_generate_copy (s))
	    result.safe_push (s);
	}

      gphi_iterator pi;
      for (pi = gsi_start_phis (bb); !gsi_end_p (pi); gsi_next (&pi))
	{
	  gimple *s = pi.phi ();
	  if (stmt_may_generate_copy (s))
	    result.safe_push (s);
	}
    }

  return result;
}

/* For each statement from given SCC, replace its usages by value
   VAL.  */

static void
replace_scc_by_value (vec<gimple *> scc, tree val)
{
  for (gimple *stmt : scc)
    {
      tree name = gimple_get_lhs (stmt);
      replace_uses_by (name, val);
      bitmap_set_bit (dead_stmts, SSA_NAME_VERSION (name));
    }

  if (dump_file)
    fprintf (dump_file, "Replacing SCC of size %d\n", scc.length ());
}

/* Part of 'sccopy_propagate ()'.  */

static void
sccopy_visit_op (tree op, hash_set<tree> &outer_ops,
		 hash_set<gimple *> &scc_set, bool &is_inner,
		 tree &last_outer_op)
{
  bool op_in_scc = false;

  if (TREE_CODE (op) == SSA_NAME)
    {
      gimple *op_stmt = SSA_NAME_DEF_STMT (op);
      if (scc_set.contains (op_stmt))
	op_in_scc = true;
    }

  if (!op_in_scc)
    {
      outer_ops.add (op);
      last_outer_op = op;
      is_inner = false;
    }
}

/* Main function of this pass.  Find and propagate all three types of copy
   statements (see pass description above).

   This is an implementation of an algorithm from the paper Simple and
   Efficient Construction of Static Single Assignmemnt Form[1].  It is based
   on strongly-connected components (SCCs) in dataflow graph.  The original
   algorithm only considers PHI statements.  We extend it to also consider
   assignment statements of type _2 = _1;.

   The algorithm is based on this definition of a set of redundant PHIs[1]:

     A non-empty set P of PHI functions is redundant iff the PHI functions just
     reference each other or one other value

   It uses this lemma[1]:

     Let P be a redundant set of PHI functions.  Then there is a
     strongly-connected component S subset of P that is also redundant.

   The algorithm works in this way:

     1 Find SCCs
     2 For each SCC S in topological order:
     3   Construct set 'inner' of statements that only have other statements
	 from S on their right hand side
     4   Construct set 'outer' of values that originate outside S and appear on
	 right hand side of some statement from S
     5   If |outer| = 1, outer only contains a value v.  Statements in S only
	 refer to each other or to v -- they are redundant.  Propagate v.
	 Else, recurse on statements in inner.

   The implementation is non-recursive.

   References:

     [1] Simple and Efficient Construction of Static Single Assignmemnt Form,
     Braun, Buchwald, Hack, Leissa, Mallon, Zwinkau, 2013, LNCS vol. 7791,
     Section 3.2.  */

static void
sccopy_propagate ()
{
  auto_vec<gimple *> useful_stmts = get_all_stmt_may_generate_copy ();
  scc_discovery discovery;

  auto_vec<vec<gimple *>> worklist = discovery.compute_sccs (useful_stmts);

  while (!worklist.is_empty ())
    {
      vec<gimple *> scc = worklist.pop ();

      auto_vec<gimple *> inner;
      hash_set<tree> outer_ops;
      tree last_outer_op = NULL_TREE;

      /* Prepare hash set of PHIs in scc to query later.  */
      hash_set<gimple *> scc_set;
      for (gimple *stmt : scc)
	scc_set.add (stmt);

      for (gimple *stmt : scc)
	{
	  bool is_inner = true;

	  gphi *phi;
	  tree op;

	  switch (gimple_code (stmt))
	    {
	      case GIMPLE_PHI:
		phi = as_a <gphi *> (stmt);
		unsigned j;
		for (j = 0; j < gimple_phi_num_args (phi); j++)
		  {
		    op = gimple_phi_arg_def (phi, j);
		    sccopy_visit_op (op, outer_ops, scc_set, is_inner,
				   last_outer_op);
		  }
		break;
	      case GIMPLE_ASSIGN:
		op = gimple_assign_rhs1 (stmt);
		sccopy_visit_op (op, outer_ops, scc_set, is_inner,
			       last_outer_op);
		break;
	      default:
		gcc_unreachable ();
	    }

	  if (is_inner)
	    inner.safe_push (stmt);
	}

      if (outer_ops.elements () == 1)
	{
	  /* The only operand in outer_ops.  */
	  tree outer_op = last_outer_op;
	  replace_scc_by_value (scc, outer_op);
	}
      else if (outer_ops.elements () > 1)
	{
	  /* Add inner sccs to worklist.  */
	  auto_vec<vec<gimple *>> inner_sccs
	    = discovery.compute_sccs (inner);
	  for (vec<gimple *> inner_scc : inner_sccs)
	    worklist.safe_push (inner_scc);
	}
      else
	gcc_unreachable ();

      scc.release ();
    }
}

/* Called when pass execution starts.  */

static void
init_sccopy (void)
{
  /* For propagated statements.  */
  dead_stmts = BITMAP_ALLOC (NULL);
}

/* Called before pass execution ends.  */

static void
finalize_sccopy (void)
{
  /* Remove all propagated statements.  */
  simple_dce_from_worklist (dead_stmts);
  BITMAP_FREE (dead_stmts);

  /* Propagating a constant may create dead eh edges.  */
  basic_block bb;
  FOR_EACH_BB_FN (bb, cfun)
    gimple_purge_dead_eh_edges (bb);
}

namespace {

const pass_data pass_data_sccopy =
{
  GIMPLE_PASS, /* type */
  "sccopy", /* name */
  OPTGROUP_NONE, /* optinfo_flags */
  TV_NONE, /* tv_id */
  ( PROP_cfg | PROP_ssa ), /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  TODO_update_ssa | TODO_cleanup_cfg, /* todo_flags_finish */
};

class pass_sccopy : public gimple_opt_pass
{
public:
  pass_sccopy (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_sccopy, ctxt)
  {}

  /* opt_pass methods: */
  virtual bool gate (function *) { return true; }
  virtual unsigned int execute (function *);
  opt_pass * clone () final override { return new pass_sccopy (m_ctxt); }
}; // class pass_sccopy

unsigned
pass_sccopy::execute (function *)
{
  init_sccopy ();
  sccopy_propagate ();
  finalize_sccopy ();
  return 0;
}

} // anon namespace

gimple_opt_pass *
make_pass_sccopy (gcc::context *ctxt)
{
  return new pass_sccopy (ctxt);
}