aboutsummaryrefslogtreecommitdiff
path: root/gcc/gimple-range.cc
blob: 4f5d5024fa9fe0169987bb59930e429370db07b6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
/* Code for GIMPLE range related routines.
   Copyright (C) 2019-2020 Free Software Foundation, Inc.
   Contributed by Andrew MacLeod <amacleod@redhat.com>
   and Aldy Hernandez <aldyh@redhat.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "insn-codes.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "gimple-iterator.h"
#include "optabs-tree.h"
#include "gimple-fold.h"
#include "tree-cfg.h"
#include "fold-const.h"
#include "tree-cfg.h"
#include "wide-int.h"
#include "fold-const.h"
#include "case-cfn-macros.h"
#include "omp-general.h"
#include "cfgloop.h"
#include "tree-ssa-loop.h"
#include "tree-scalar-evolution.h"
#include "dbgcnt.h"
#include "alloc-pool.h"
#include "vr-values.h"
#include "gimple-range.h"


// Adjust the range for a pointer difference where the operands came
// from a memchr.
//
// This notices the following sequence:
//
//	def = __builtin_memchr (arg, 0, sz)
//	n = def - arg
//
// The range for N can be narrowed to [0, PTRDIFF_MAX - 1].

static void
adjust_pointer_diff_expr (irange &res, const gimple *diff_stmt)
{
  tree op0 = gimple_assign_rhs1 (diff_stmt);
  tree op1 = gimple_assign_rhs2 (diff_stmt);
  tree op0_ptype = TREE_TYPE (TREE_TYPE (op0));
  tree op1_ptype = TREE_TYPE (TREE_TYPE (op1));
  gimple *call;

  if (TREE_CODE (op0) == SSA_NAME
      && TREE_CODE (op1) == SSA_NAME
      && (call = SSA_NAME_DEF_STMT (op0))
      && is_gimple_call (call)
      && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
      && TYPE_MODE (op0_ptype) == TYPE_MODE (char_type_node)
      && TYPE_PRECISION (op0_ptype) == TYPE_PRECISION (char_type_node)
      && TYPE_MODE (op1_ptype) == TYPE_MODE (char_type_node)
      && TYPE_PRECISION (op1_ptype) == TYPE_PRECISION (char_type_node)
      && gimple_call_builtin_p (call, BUILT_IN_MEMCHR)
      && vrp_operand_equal_p (op1, gimple_call_arg (call, 0))
      && integer_zerop (gimple_call_arg (call, 1)))
    {
      tree max = vrp_val_max (ptrdiff_type_node);
      wide_int wmax = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
      tree expr_type = gimple_expr_type (diff_stmt);
      tree range_min = build_zero_cst (expr_type);
      tree range_max = wide_int_to_tree (expr_type, wmax - 1);
      int_range<2> r (range_min, range_max);
      res.intersect (r);
    }
}

// This function looks for situations when walking the use/def chains
// may provide additonal contextual range information not exposed on
// this statement.  Like knowing the IMAGPART return value from a
// builtin function is a boolean result.

// We should rework how we're called, as we have an op_unknown entry
// for IMAGPART_EXPR and POINTER_DIFF_EXPR in range-ops just so this
// function gets called.

static void
gimple_range_adjustment (irange &res, const gimple *stmt)
{
  switch (gimple_expr_code (stmt))
    {
    case POINTER_DIFF_EXPR:
      adjust_pointer_diff_expr (res, stmt);
      return;

    case IMAGPART_EXPR:
      {
	tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
	if (TREE_CODE (name) == SSA_NAME)
	  {
	    gimple *def_stmt = SSA_NAME_DEF_STMT (name);
	    if (def_stmt && is_gimple_call (def_stmt)
		&& gimple_call_internal_p (def_stmt))
	      {
		switch (gimple_call_internal_fn (def_stmt))
		  {
		  case IFN_ADD_OVERFLOW:
		  case IFN_SUB_OVERFLOW:
		  case IFN_MUL_OVERFLOW:
		  case IFN_ATOMIC_COMPARE_EXCHANGE:
		    {
		      int_range<2> r;
		      r.set_varying (boolean_type_node);
		      tree type = TREE_TYPE (gimple_assign_lhs (stmt));
		      range_cast (r, type);
		      res.intersect (r);
		    }
		  default:
		    break;
		  }
	      }
	  }
	break;
      }

    default:
      break;
    }
}

// Return a range in R for the tree EXPR.  Return true if a range is
// representable, and UNDEFINED/false if not.

bool
get_tree_range (irange &r, tree expr)
{
  tree type;
  if (TYPE_P (expr))
    type = expr;
  else
    type = TREE_TYPE (expr);

  // Return false if the type isn't suported.
  if (!irange::supports_type_p (type))
    {
      r.set_undefined ();
      return false;
    }

  switch (TREE_CODE (expr))
    {
      case INTEGER_CST:
	if (TREE_OVERFLOW_P (expr))
	  expr = drop_tree_overflow (expr);
	r.set (expr, expr);
	return true;

      case SSA_NAME:
	r = gimple_range_global (expr);
	return true;

      case ADDR_EXPR:
        {
	  // Handle &var which can show up in phi arguments.
	  bool ov;
	  if (tree_single_nonzero_warnv_p (expr, &ov))
	    {
	      r = range_nonzero (type);
	      return true;
	    }
	  break;
	}

      default:
        break;
    }
  r.set_varying (type);
  return true;
}

// Fold this unary statement using R1 as operand1's range, returning
// the result in RES.  Return false if the operation fails.

bool
gimple_range_fold (irange &res, const gimple *stmt, const irange &r1)
{
  gcc_checking_assert (gimple_range_handler (stmt));

  tree type = gimple_expr_type (stmt);
  // Unary SSA operations require the LHS type as the second range.
  int_range<2> r2 (type);

  return gimple_range_fold (res, stmt, r1, r2);
}

// Fold this binary statement using R1 and R2 as the operands ranges,
// returning the result in RES.  Return false if the operation fails.

bool
gimple_range_fold (irange &res, const gimple *stmt,
		   const irange &r1, const irange &r2)
{
  gcc_checking_assert (gimple_range_handler (stmt));

  gimple_range_handler (stmt)->fold_range (res, gimple_expr_type (stmt),
					   r1, r2);

  // If there are any gimple lookups, do those now.
  gimple_range_adjustment (res, stmt);
  return true;
}

// Return the base of the RHS of an assignment.

tree
gimple_range_base_of_assignment (const gimple *stmt)
{
  gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN);
  tree op1 = gimple_assign_rhs1 (stmt);
  if (gimple_assign_rhs_code (stmt) == ADDR_EXPR)
    return get_base_address (TREE_OPERAND (op1, 0));
  return op1;
}

// Return the first operand of this statement if it is a valid operand
// supported by ranges, otherwise return NULL_TREE.  Special case is
// &(SSA_NAME expr), return the SSA_NAME instead of the ADDR expr.

tree
gimple_range_operand1 (const gimple *stmt)
{
  gcc_checking_assert (gimple_range_handler (stmt));

  switch (gimple_code (stmt))
    {
      case GIMPLE_COND:
	return gimple_cond_lhs (stmt);
      case GIMPLE_ASSIGN:
	{
	  tree base = gimple_range_base_of_assignment (stmt);
	  if (base && TREE_CODE (base) == MEM_REF)
	    {
	      // If the base address is an SSA_NAME, we return it
	      // here.  This allows processing of the range of that
	      // name, while the rest of the expression is simply
	      // ignored.  The code in range_ops will see the
	      // ADDR_EXPR and do the right thing.
	      tree ssa = TREE_OPERAND (base, 0);
	      if (TREE_CODE (ssa) == SSA_NAME)
		return ssa;
	    }
	  return base;
	}
      default:
	break;
    }
  return NULL;
}

// Return the second operand of statement STMT, otherwise return NULL_TREE.

tree
gimple_range_operand2 (const gimple *stmt)
{
  gcc_checking_assert (gimple_range_handler (stmt));

  switch (gimple_code (stmt))
    {
    case GIMPLE_COND:
      return gimple_cond_rhs (stmt);
    case GIMPLE_ASSIGN:
      if (gimple_num_ops (stmt) >= 3)
	return gimple_assign_rhs2 (stmt);
    default:
      break;
    }
  return NULL_TREE;
}

// Calculate what we can determine of the range of this unary
// statement's operand if the lhs of the expression has the range
// LHS_RANGE.  Return false if nothing can be determined.

bool
gimple_range_calc_op1 (irange &r, const gimple *stmt, const irange &lhs_range)
{
  gcc_checking_assert (gimple_num_ops (stmt) < 3);

  // An empty range is viral.
  tree type = TREE_TYPE (gimple_range_operand1 (stmt));
  if (lhs_range.undefined_p ())
    {
      r.set_undefined ();
      return true;
    }
  // Unary operations require the type of the first operand in the
  // second range position.
  int_range<2> type_range (type);
  return gimple_range_handler (stmt)->op1_range (r, type, lhs_range,
						 type_range);
}

// Calculate what we can determine of the range of this statement's
// first operand if the lhs of the expression has the range LHS_RANGE
// and the second operand has the range OP2_RANGE.  Return false if
// nothing can be determined.

bool
gimple_range_calc_op1 (irange &r, const gimple *stmt,
		       const irange &lhs_range, const irange &op2_range)
{
  // Unary operation are allowed to pass a range in for second operand
  // as there are often additional restrictions beyond the type which
  // can be imposed.  See operator_cast::op1_range().
  tree type = TREE_TYPE (gimple_range_operand1 (stmt));
  // An empty range is viral.
  if (op2_range.undefined_p () || lhs_range.undefined_p ())
    {
      r.set_undefined ();
      return true;
    }
  return gimple_range_handler (stmt)->op1_range (r, type, lhs_range,
						 op2_range);
}

// Calculate what we can determine of the range of this statement's
// second operand if the lhs of the expression has the range LHS_RANGE
// and the first operand has the range OP1_RANGE.  Return false if
// nothing can be determined.

bool
gimple_range_calc_op2 (irange &r, const gimple *stmt,
		       const irange &lhs_range, const irange &op1_range)
{
  tree type = TREE_TYPE (gimple_range_operand2 (stmt));
  // An empty range is viral.
  if (op1_range.undefined_p () || lhs_range.undefined_p ())
    {
      r.set_undefined ();
      return true;
    }
  return gimple_range_handler (stmt)->op2_range (r, type, lhs_range,
						 op1_range);
}

// Calculate a range for statement S and return it in R. If NAME is provided it
// represents the SSA_NAME on the LHS of the statement. It is only required
// if there is more than one lhs/output.  If a range cannot
// be calculated, return false.

bool
gimple_ranger::calc_stmt (irange &r, gimple *s, tree name)
{
  bool res = false;
  // If name is specified, make sure it is an LHS of S.
  gcc_checking_assert (name ? SSA_NAME_DEF_STMT (name) == s : true);

  if (gimple_range_handler (s))
    res = range_of_range_op (r, s);
  else if (is_a<gphi *>(s))
    res = range_of_phi (r, as_a<gphi *> (s));
  else if (is_a<gcall *>(s))
    res = range_of_call (r, as_a<gcall *> (s));
  else if (is_a<gassign *> (s) && gimple_assign_rhs_code (s) == COND_EXPR)
    res = range_of_cond_expr (r, as_a<gassign *> (s));

  if (!res)
    {
      // If no name is specified, try the expression kind.
      if (!name)
	{
	  tree t = gimple_expr_type (s);
	  if (!irange::supports_type_p (t))
	    return false;
	  r.set_varying (t);
	  return true;
	}
      if (!gimple_range_ssa_p (name))
	return false;
      // We don't understand the stmt, so return the global range.
      r = gimple_range_global (name);
      return true;
    }

  if (r.undefined_p ())
    return true;

  // We sometimes get compatible types copied from operands, make sure
  // the correct type is being returned.
  if (name && TREE_TYPE (name) != r.type ())
    {
      gcc_checking_assert (range_compatible_p (r.type (), TREE_TYPE (name)));
      range_cast (r, TREE_TYPE (name));
    }
  return true;
}

// Calculate a range for range_op statement S and return it in R.  If any
// If a range cannot be calculated, return false.

bool
gimple_ranger::range_of_range_op (irange &r, gimple *s)
{
  int_range_max range1, range2;
  tree lhs = gimple_get_lhs (s);
  tree type = gimple_expr_type (s);
  gcc_checking_assert (irange::supports_type_p (type));

  tree op1 = gimple_range_operand1 (s);
  tree op2 = gimple_range_operand2 (s);

  if (lhs)
    {
      // Register potential dependencies for stale value tracking.
      m_cache.register_dependency (lhs, op1);
      m_cache.register_dependency (lhs, op2);
    }

  if (gimple_code (s) == GIMPLE_ASSIGN
      && gimple_assign_rhs_code (s) == ADDR_EXPR)
    return range_of_address (r, s);

  if (range_of_expr (range1, op1, s))
    {
      if (!op2)
	return gimple_range_fold (r, s, range1);

      if (range_of_expr (range2, op2, s))
	return gimple_range_fold (r, s, range1, range2);
    }
  r.set_varying (type);
  return true;
}

// Calculate the range of an assignment containing an ADDR_EXPR.
// Return the range in R.
// If a range cannot be calculated, set it to VARYING and return true.

bool
gimple_ranger::range_of_address (irange &r, gimple *stmt)
{
  gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN);
  gcc_checking_assert (gimple_assign_rhs_code (stmt) == ADDR_EXPR);

  bool strict_overflow_p;
  tree expr = gimple_assign_rhs1 (stmt);
  poly_int64 bitsize, bitpos;
  tree offset;
  machine_mode mode;
  int unsignedp, reversep, volatilep;
  tree base = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize,
				   &bitpos, &offset, &mode, &unsignedp,
				   &reversep, &volatilep);


  if (base != NULL_TREE
      && TREE_CODE (base) == MEM_REF
      && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
    {
      tree ssa = TREE_OPERAND (base, 0);
      gcc_checking_assert (irange::supports_type_p (TREE_TYPE (ssa)));
      range_of_expr (r, ssa, stmt);
      range_cast (r, TREE_TYPE (gimple_assign_rhs1 (stmt)));

      poly_offset_int off = 0;
      bool off_cst = false;
      if (offset == NULL_TREE || TREE_CODE (offset) == INTEGER_CST)
	{
	  off = mem_ref_offset (base);
	  if (offset)
	    off += poly_offset_int::from (wi::to_poly_wide (offset),
					  SIGNED);
	  off <<= LOG2_BITS_PER_UNIT;
	  off += bitpos;
	  off_cst = true;
	}
      /* If &X->a is equal to X, the range of X is the result.  */
      if (off_cst && known_eq (off, 0))
	  return true;
      else if (flag_delete_null_pointer_checks
	       && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
	{
	 /* For -fdelete-null-pointer-checks -fno-wrapv-pointer we don't
	 allow going from non-NULL pointer to NULL.  */
	   if(!range_includes_zero_p (&r))
	    return true;
	}
      /* If MEM_REF has a "positive" offset, consider it non-NULL
	 always, for -fdelete-null-pointer-checks also "negative"
	 ones.  Punt for unknown offsets (e.g. variable ones).  */
      if (!TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr))
	  && off_cst
	  && known_ne (off, 0)
	  && (flag_delete_null_pointer_checks || known_gt (off, 0)))
	{
	  r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
	  return true;
	}
      r = int_range<2> (TREE_TYPE (gimple_assign_rhs1 (stmt)));
      return true;
    }

  // Handle "= &a".
  if (tree_single_nonzero_warnv_p (expr, &strict_overflow_p))
    {
      r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt)));
      return true;
    }

  // Otherwise return varying.
  r = int_range<2> (TREE_TYPE (gimple_assign_rhs1 (stmt)));
  return true;
}

// Calculate a range for phi statement S and return it in R.
// If a range cannot be calculated, return false.

bool
gimple_ranger::range_of_phi (irange &r, gphi *phi)
{
  tree phi_def = gimple_phi_result (phi);
  tree type = TREE_TYPE (phi_def);
  int_range_max arg_range;
  unsigned x;

  if (!irange::supports_type_p (type))
    return false;

  // Start with an empty range, unioning in each argument's range.
  r.set_undefined ();
  for (x = 0; x < gimple_phi_num_args (phi); x++)
    {
      tree arg = gimple_phi_arg_def (phi, x);
      edge e = gimple_phi_arg_edge (phi, x);

      // Register potential dependencies for stale value tracking.
      m_cache.register_dependency (phi_def, arg);

      range_on_edge (arg_range, e, arg);
      r.union_ (arg_range);
      // Once the value reaches varying, stop looking.
      if (r.varying_p ())
	break;
    }

  // If SCEV is available, query if this PHI has any knonwn values.
  if (scev_initialized_p () && !POINTER_TYPE_P (TREE_TYPE (phi_def)))
    {
      value_range loop_range;
      class loop *l = loop_containing_stmt (phi);
      if (l && loop_outer (l))
        {
	  range_of_ssa_name_with_loop_info (loop_range, phi_def, l, phi);
	  if (!loop_range.varying_p ())
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
		  fprintf (dump_file, "   Loops range found for ");
		  print_generic_expr (dump_file, phi_def, TDF_SLIM);
		  fprintf (dump_file, ": ");
		  loop_range.dump (dump_file);
		  fprintf (dump_file, " and calculated range :");
		  r.dump (dump_file);
		  fprintf (dump_file, "\n");
		}
	      r.intersect (loop_range);
	    }
	}
    }

  return true;
}

// Calculate a range for call statement S and return it in R.
// If a range cannot be calculated, return false.

bool
gimple_ranger::range_of_call (irange &r, gcall *call)
{
  tree type = gimple_call_return_type (call);
  tree lhs = gimple_call_lhs (call);
  bool strict_overflow_p;

  if (!irange::supports_type_p (type))
    return false;

  if (range_of_builtin_call (r, call))
    ;
  else if (gimple_stmt_nonnegative_warnv_p (call, &strict_overflow_p))
    r.set (build_int_cst (type, 0), TYPE_MAX_VALUE (type));
  else if (gimple_call_nonnull_result_p (call)
	   || gimple_call_nonnull_arg (call))
    r = range_nonzero (type);
  else
    r.set_varying (type);

  // If there is an LHS, intersect that with what is known.
  if (lhs)
    {
      value_range def;
      def = gimple_range_global (lhs);
      r.intersect (def);
    }
  return true;
}

// Return the range of a __builtin_ubsan* in CALL and set it in R.
// CODE is the type of ubsan call (PLUS_EXPR, MINUS_EXPR or
// MULT_EXPR).

static void
range_of_builtin_ubsan_call (range_query &query, irange &r, gcall *call,
			     tree_code code)
{
  gcc_checking_assert (code == PLUS_EXPR || code == MINUS_EXPR
		       || code == MULT_EXPR);
  tree type = gimple_call_return_type (call);
  range_operator *op = range_op_handler (code, type);
  gcc_checking_assert (op);
  int_range_max ir0, ir1;
  tree arg0 = gimple_call_arg (call, 0);
  tree arg1 = gimple_call_arg (call, 1);
  query.range_of_expr (ir0, arg0, call);
  query.range_of_expr (ir1, arg1, call);

  bool saved_flag_wrapv = flag_wrapv;
  // Pretend the arithmetic is wrapping.  If there is any overflow,
  // we'll complain, but will actually do wrapping operation.
  flag_wrapv = 1;
  op->fold_range (r, type, ir0, ir1);
  flag_wrapv = saved_flag_wrapv;

  // If for both arguments vrp_valueize returned non-NULL, this should
  // have been already folded and if not, it wasn't folded because of
  // overflow.  Avoid removing the UBSAN_CHECK_* calls in that case.
  if (r.singleton_p ())
    r.set_varying (type);
}

// For a builtin in CALL, return a range in R if known and return
// TRUE.  Otherwise return FALSE.

bool
range_of_builtin_call (range_query &query, irange &r, gcall *call)
{
  combined_fn func = gimple_call_combined_fn (call);
  if (func == CFN_LAST)
    return false;

  tree type = gimple_call_return_type (call);
  tree arg;
  int mini, maxi, zerov = 0, prec;
  scalar_int_mode mode;

  switch (func)
    {
    case CFN_BUILT_IN_CONSTANT_P:
      if (cfun->after_inlining)
	{
	  r.set_zero (type);
	  // r.equiv_clear ();
	  return true;
	}
      arg = gimple_call_arg (call, 0);
      if (query.range_of_expr (r, arg, call) && r.singleton_p ())
	{
	  r.set (build_one_cst (type), build_one_cst (type));
	  return true;
	}
      break;

    CASE_CFN_FFS:
    CASE_CFN_POPCOUNT:
      // __builtin_ffs* and __builtin_popcount* return [0, prec].
      arg = gimple_call_arg (call, 0);
      prec = TYPE_PRECISION (TREE_TYPE (arg));
      mini = 0;
      maxi = prec;
      query.range_of_expr (r, arg, call);
      // If arg is non-zero, then ffs or popcount are non-zero.
      if (!range_includes_zero_p (&r))
	mini = 1;
      // If some high bits are known to be zero, decrease the maximum.
      if (!r.undefined_p ())
	{
	  if (TYPE_SIGN (r.type ()) == SIGNED)
	    range_cast (r, unsigned_type_for (r.type ()));
	  wide_int max = r.upper_bound ();
	  maxi = wi::floor_log2 (max) + 1;
	}
      r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
      return true;

    CASE_CFN_PARITY:
      r.set (build_zero_cst (type), build_one_cst (type));
      return true;

    CASE_CFN_CLZ:
      // __builtin_c[lt]z* return [0, prec-1], except when the
      // argument is 0, but that is undefined behavior.
      //
      // For __builtin_c[lt]z* consider argument of 0 always undefined
      // behavior, for internal fns depending on C?Z_DEFINED_VALUE_AT_ZERO.
      arg = gimple_call_arg (call, 0);
      prec = TYPE_PRECISION (TREE_TYPE (arg));
      mini = 0;
      maxi = prec - 1;
      mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
      if (gimple_call_internal_p (call))
	{
	  if (optab_handler (clz_optab, mode) != CODE_FOR_nothing
	      && CLZ_DEFINED_VALUE_AT_ZERO (mode, zerov) == 2)
	    {
	      // Only handle the single common value.
	      if (zerov == prec)
		maxi = prec;
	      else
		// Magic value to give up, unless we can prove arg is non-zero.
		mini = -2;
	    }
	}

      query.range_of_expr (r, arg, call);
      // From clz of minimum we can compute result maximum.
      if (r.constant_p ())
	{
	  int newmaxi = prec - 1 - wi::floor_log2 (r.lower_bound ());
	  // Argument is unsigned, so do nothing if it is [0, ...] range.
	  if (newmaxi != prec)
	    {
	      mini = 0;
	      maxi = newmaxi;
	    }
	}
      else if (!range_includes_zero_p (&r))
	{
	  maxi = prec - 1;
	  mini = 0;
	}
      if (mini == -2)
	break;
      // From clz of maximum we can compute result minimum.
      if (r.constant_p ())
	{
	  int newmini = prec - 1 - wi::floor_log2 (r.upper_bound ());
	  if (newmini == prec)
	    {
	      // Argument range is [0, 0].  If CLZ_DEFINED_VALUE_AT_ZERO
	      // is 2 with VALUE of prec, return [prec, prec], otherwise
	      // ignore the range.
	      if (maxi == prec)
		mini = prec;
	    }
	  else
	    mini = newmini;
	}
      if (mini == -2)
	break;
      r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
      return true;

    CASE_CFN_CTZ:
      // __builtin_ctz* return [0, prec-1], except for when the
      // argument is 0, but that is undefined behavior.
      //
      // For __builtin_ctz* consider argument of 0 always undefined
      // behavior, for internal fns depending on CTZ_DEFINED_VALUE_AT_ZERO.
      arg = gimple_call_arg (call, 0);
      prec = TYPE_PRECISION (TREE_TYPE (arg));
      mini = 0;
      maxi = prec - 1;
      mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg));
      if (gimple_call_internal_p (call))
	{
	  if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing
	      && CTZ_DEFINED_VALUE_AT_ZERO (mode, zerov) == 2)
	    {
	      // Handle only the two common values.
	      if (zerov == -1)
		mini = -1;
	      else if (zerov == prec)
		maxi = prec;
	      else
		// Magic value to give up, unless we can prove arg is non-zero.
		mini = -2;
	    }
	}
      query.range_of_expr (r, arg, call);
      if (!r.undefined_p ())
	{
	  if (r.lower_bound () != 0)
	    {
	      mini = 0;
	      maxi = prec - 1;
	    }
	  // If some high bits are known to be zero, we can decrease
	  // the maximum.
	  wide_int max = r.upper_bound ();
	  if (max == 0)
	    {
	      // Argument is [0, 0].  If CTZ_DEFINED_VALUE_AT_ZERO
	      // is 2 with value -1 or prec, return [-1, -1] or [prec, prec].
	      // Otherwise ignore the range.
	      if (mini == -1)
		maxi = -1;
	      else if (maxi == prec)
		mini = prec;
	    }
	  // If value at zero is prec and 0 is in the range, we can't lower
	  // the upper bound.  We could create two separate ranges though,
	  // [0,floor_log2(max)][prec,prec] though.
	  else if (maxi != prec)
	    maxi = wi::floor_log2 (max);
	}
      if (mini == -2)
	break;
      r.set (build_int_cst (type, mini), build_int_cst (type, maxi));
      return true;

    CASE_CFN_CLRSB:
      arg = gimple_call_arg (call, 0);
      prec = TYPE_PRECISION (TREE_TYPE (arg));
      r.set (build_int_cst (type, 0), build_int_cst (type, prec - 1));
      return true;
    case CFN_UBSAN_CHECK_ADD:
      range_of_builtin_ubsan_call (query, r, call, PLUS_EXPR);
      return true;
    case CFN_UBSAN_CHECK_SUB:
      range_of_builtin_ubsan_call (query, r, call, MINUS_EXPR);
      return true;
    case CFN_UBSAN_CHECK_MUL:
      range_of_builtin_ubsan_call (query, r, call, MULT_EXPR);
      return true;

    case CFN_GOACC_DIM_SIZE:
    case CFN_GOACC_DIM_POS:
      // Optimizing these two internal functions helps the loop
      // optimizer eliminate outer comparisons.  Size is [1,N]
      // and pos is [0,N-1].
      {
	bool is_pos = func == CFN_GOACC_DIM_POS;
	int axis = oacc_get_ifn_dim_arg (call);
	int size = oacc_get_fn_dim_size (current_function_decl, axis);
	if (!size)
	  // If it's dynamic, the backend might know a hardware limitation.
	  size = targetm.goacc.dim_limit (axis);

	r.set (build_int_cst (type, is_pos ? 0 : 1),
	       size
	       ? build_int_cst (type, size - is_pos) : vrp_val_max (type));
	return true;
      }

    case CFN_BUILT_IN_STRLEN:
      if (tree lhs = gimple_call_lhs (call))
	if (ptrdiff_type_node
	    && (TYPE_PRECISION (ptrdiff_type_node)
		== TYPE_PRECISION (TREE_TYPE (lhs))))
	  {
	    tree type = TREE_TYPE (lhs);
	    tree max = vrp_val_max (ptrdiff_type_node);
	    wide_int wmax
	      = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
	    tree range_min = build_zero_cst (type);
	    // To account for the terminating NULL, the maximum length
	    // is one less than the maximum array size, which in turn
	    // is one less than PTRDIFF_MAX (or SIZE_MAX where it's
	    // smaller than the former type).
	    // FIXME: Use max_object_size() - 1 here.
	    tree range_max = wide_int_to_tree (type, wmax - 2);
	    r.set (range_min, range_max);
	    return true;
	  }
      break;
    default:
      break;
    }
  return false;
}


bool
gimple_ranger::range_of_builtin_call (irange &r, gcall *call)
{
  return ::range_of_builtin_call (*this, r, call);
}

// Calculate a range for COND_EXPR statement S and return it in R.
// If a range cannot be calculated, return false.

bool
gimple_ranger::range_of_cond_expr  (irange &r, gassign *s)
{
  int_range_max cond_range, range1, range2;
  tree cond = gimple_assign_rhs1 (s);
  tree op1 = gimple_assign_rhs2 (s);
  tree op2 = gimple_assign_rhs3 (s);

  gcc_checking_assert (gimple_assign_rhs_code (s) == COND_EXPR);
  gcc_checking_assert (useless_type_conversion_p  (TREE_TYPE (op1),
						   TREE_TYPE (op2)));
  if (!irange::supports_type_p (TREE_TYPE (op1)))
    return false;

  range_of_expr (cond_range, cond, s);
  range_of_expr (range1, op1, s);
  range_of_expr (range2, op2, s);

  // If the condition is known, choose the appropriate expression.
  if (cond_range.singleton_p ())
    {
      // False, pick second operand.
      if (cond_range.zero_p ())
	r = range2;
      else
	r = range1;
    }
  else
    {
      r = range1;
      r.union_ (range2);
    }
  return true;
}

bool
gimple_ranger::range_of_expr (irange &r, tree expr, gimple *stmt)
{
  if (!gimple_range_ssa_p (expr))
    return get_tree_range (r, expr);

  // If there is no statement, just get the global value.
  if (!stmt)
    {
      if (!m_cache.get_global_range (r, expr))
        r = gimple_range_global (expr);
      return true;
    }

  basic_block bb = gimple_bb (stmt);
  gimple *def_stmt = SSA_NAME_DEF_STMT (expr);

  // If name is defined in this block, try to get an range from S.
  if (def_stmt && gimple_bb (def_stmt) == bb)
    range_of_stmt (r, def_stmt, expr);
  else
    // Otherwise OP comes from outside this block, use range on entry.
    range_on_entry (r, bb, expr);

  // No range yet, see if there is a dereference in the block.
  // We don't care if it's between the def and a use within a block
  // because the entire block must be executed anyway.
  // FIXME:?? For non-call exceptions we could have a statement throw
  // which causes an early block exit.
  // in which case we may need to walk from S back to the def/top of block
  // to make sure the deref happens between S and there before claiming
  // there is a deref.   Punt for now.
  if (!cfun->can_throw_non_call_exceptions && r.varying_p () &&
      m_cache.m_non_null.non_null_deref_p (expr, bb))
    r = range_nonzero (TREE_TYPE (expr));

  return true;
}

// Return the range of NAME on entry to block BB in R.

void
gimple_ranger::range_on_entry (irange &r, basic_block bb, tree name)
{
  int_range_max entry_range;
  gcc_checking_assert (gimple_range_ssa_p (name));

  // Start with any known range
  range_of_stmt (r, SSA_NAME_DEF_STMT (name), name);

  // Now see if there is any on_entry value which may refine it.
  if (m_cache.block_range (entry_range, bb, name))
    r.intersect (entry_range);
}

// Calculate the range for NAME at the end of block BB and return it in R.
// Return false if no range can be calculated.

void
gimple_ranger::range_on_exit (irange &r, basic_block bb, tree name)
{
  // on-exit from the exit block?
  gcc_checking_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
  gcc_checking_assert (gimple_range_ssa_p (name));

  gimple *s = last_stmt (bb);
  // If there is no statement in the block and this isn't the entry
  // block, go get the range_on_entry for this block.  For the entry
  // block, a NULL stmt will return the global value for NAME.
  if (!s && bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
    range_on_entry (r, bb, name);
  else
    range_of_expr (r, name, s);
  gcc_checking_assert (r.undefined_p ()
		       || range_compatible_p (r.type (), TREE_TYPE (name)));
}

// Calculate a range for NAME on edge E and return it in R.

bool
gimple_ranger::range_on_edge (irange &r, edge e, tree name)
{
  int_range_max edge_range;
  gcc_checking_assert (irange::supports_type_p (TREE_TYPE (name)));

  // PHI arguments can be constants, catch these here.
  if (!gimple_range_ssa_p (name))
    return range_of_expr (r, name);

  range_on_exit (r, e->src, name);
  gcc_checking_assert  (r.undefined_p ()
			|| range_compatible_p (r.type(), TREE_TYPE (name)));

  // Check to see if NAME is defined on edge e.
  if (m_cache.outgoing_edge_range_p (edge_range, e, name))
    r.intersect (edge_range);

  return true;
}

// Calculate a range for statement S and return it in R.  If NAME is
// provided it represents the SSA_NAME on the LHS of the statement.
// It is only required if there is more than one lhs/output.  Check
// the global cache for NAME first to see if the evaluation can be
// avoided.  If a range cannot be calculated, return false and UNDEFINED.

bool
gimple_ranger::range_of_stmt (irange &r, gimple *s, tree name)
{
  r.set_undefined ();

  if (!name)
    name = gimple_get_lhs (s);

  // If no name, simply call the base routine.
  if (!name)
    return calc_stmt (r, s, NULL_TREE);

  if (!gimple_range_ssa_p (name))
    return false;

  // Check if the stmt has already been processed, and is not stale.
  if (m_cache.get_non_stale_global_range (r, name))
    return true;

  // Otherwise calculate a new value.
  int_range_max tmp;
  calc_stmt (tmp, s, name);

  // Combine the new value with the old value.  This is required because
  // the way value propagation works, when the IL changes on the fly we
  // can sometimes get different results.  See PR 97741.
  r.intersect (tmp);
  m_cache.set_global_range (name, r);
  return true;
}

// This routine will export whatever global ranges are known to GCC
// SSA_RANGE_NAME_INFO fields.

void
gimple_ranger::export_global_ranges ()
{
  unsigned x;
  int_range_max r;
  if (dump_file)
    {
      fprintf (dump_file, "Exported global range table\n");
      fprintf (dump_file, "===========================\n");
    }

  for ( x = 1; x < num_ssa_names; x++)
    {
      tree name = ssa_name (x);
      if (name && !SSA_NAME_IN_FREE_LIST (name)
	  && gimple_range_ssa_p (name)
	  && m_cache.get_global_range (r, name)
	  && !r.varying_p())
	{
	  // Make sure the new range is a subset of the old range.
	  int_range_max old_range;
	  old_range = gimple_range_global (name);
	  old_range.intersect (r);
	  /* Disable this while we fix tree-ssa/pr61743-2.c.  */
	  //gcc_checking_assert (old_range == r);

	  // WTF? Can't write non-null pointer ranges?? stupid set_range_info!
	  if (!POINTER_TYPE_P (TREE_TYPE (name)) && !r.undefined_p ())
	    {
	      value_range vr = r;
	      set_range_info (name, vr);
	      if (dump_file)
		{
		  print_generic_expr (dump_file, name , TDF_SLIM);
		  fprintf (dump_file, " --> ");
		  vr.dump (dump_file);
		  fprintf (dump_file, "\n");
		  fprintf (dump_file, "         irange : ");
		  r.dump (dump_file);
		  fprintf (dump_file, "\n");
		}
	    }
	}
    }
}

// Print the known table values to file F.

void
gimple_ranger::dump (FILE *f)
{
  basic_block bb;

  FOR_EACH_BB_FN (bb, cfun)
    {
      unsigned x;
      edge_iterator ei;
      edge e;
      int_range_max range;
      fprintf (f, "\n=========== BB %d ============\n", bb->index);
      m_cache.dump (f, bb);

      dump_bb (f, bb, 4, TDF_NONE);

      // Now find any globals defined in this block.
      for (x = 1; x < num_ssa_names; x++)
	{
	  tree name = ssa_name (x);
	  if (gimple_range_ssa_p (name) && SSA_NAME_DEF_STMT (name) &&
	      gimple_bb (SSA_NAME_DEF_STMT (name)) == bb &&
	      m_cache.get_global_range (range, name))
	    {
	      if (!range.varying_p ())
	       {
		 print_generic_expr (f, name, TDF_SLIM);
		 fprintf (f, " : ");
		 range.dump (f);
		 fprintf (f, "\n");
	       }

	    }
	}

      // And now outgoing edges, if they define anything.
      FOR_EACH_EDGE (e, ei, bb->succs)
	{
	  for (x = 1; x < num_ssa_names; x++)
	    {
	      tree name = gimple_range_ssa_p (ssa_name (x));
	      if (name && m_cache.outgoing_edge_range_p (range, e, name))
		{
		  gimple *s = SSA_NAME_DEF_STMT (name);
		  // Only print the range if this is the def block, or
		  // the on entry cache for either end of the edge is
		  // set.
		  if ((s && bb == gimple_bb (s)) ||
		      m_cache.block_range (range, bb, name, false) ||
		      m_cache.block_range (range, e->dest, name, false))
		    {
		      range_on_edge (range, e, name);
		      if (!range.varying_p ())
			{
			  fprintf (f, "%d->%d ", e->src->index,
				   e->dest->index);
			  char c = ' ';
			  if (e->flags & EDGE_TRUE_VALUE)
			    fprintf (f, " (T)%c", c);
			  else if (e->flags & EDGE_FALSE_VALUE)
			    fprintf (f, " (F)%c", c);
			  else
			    fprintf (f, "     ");
			  print_generic_expr (f, name, TDF_SLIM);
			  fprintf(f, " : \t");
			  range.dump(f);
			  fprintf (f, "\n");
			}
		    }
		}
	    }
	}
    }

  m_cache.dump (dump_file, (dump_flags & TDF_DETAILS) != 0);
}

// If SCEV has any information about phi node NAME, return it as a range in R.

void
gimple_ranger::range_of_ssa_name_with_loop_info (irange &r, tree name,
						 class loop *l, gphi *phi)
{
  gcc_checking_assert (TREE_CODE (name) == SSA_NAME);
  tree min, max, type = TREE_TYPE (name);
  if (bounds_of_var_in_loop (&min, &max, this, l, phi, name))
    {
      // ?? We could do better here.  Since MIN/MAX can only be an
      // SSA, SSA +- INTEGER_CST, or INTEGER_CST, we could easily call
      // the ranger and solve anything not an integer.
      if (TREE_CODE (min) != INTEGER_CST)
	min = vrp_val_min (type);
      if (TREE_CODE (max) != INTEGER_CST)
	max = vrp_val_max (type);
      r.set (min, max);
    }
  else
    r.set_varying (type);
}

// --------------------------------------------------------------------------
// trace_ranger implementation.


trace_ranger::trace_ranger ()
{
  indent = 0;
  trace_count = 0;
}

// If dumping, return true and print the prefix for the next output line.

bool
trace_ranger::dumping (unsigned counter, bool trailing)
{
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      // Print counter index as well as INDENT spaces.
      if (!trailing)
	fprintf (dump_file, " %-7u ", counter);
      else
	fprintf (dump_file, "         ");
      unsigned x;
      for (x = 0; x< indent; x++)
	fputc (' ', dump_file);
      return true;
    }
  return false;
}

// After calling a routine, if dumping, print the CALLER, NAME, and RESULT,
// returning RESULT.

bool
trace_ranger::trailer (unsigned counter, const char *caller, bool result,
		       tree name, const irange &r)
{
  if (dumping (counter, true))
    {
      indent -= bump;
      fputs(result ? "TRUE : " : "FALSE : ", dump_file);
      fprintf (dump_file, "(%u) ", counter);
      fputs (caller, dump_file);
      fputs (" (",dump_file);
      if (name)
	print_generic_expr (dump_file, name, TDF_SLIM);
      fputs (") ",dump_file);
      if (result)
	{
	  r.dump (dump_file);
	  fputc('\n', dump_file);
	}
      else
	fputc('\n', dump_file);
      // Marks the end of a request.
      if (indent == 0)
	fputc('\n', dump_file);
    }
  return result;
}

// Tracing version of range_on_edge.  Call it with printing wrappers.

bool
trace_ranger::range_on_edge (irange &r, edge e, tree name)
{
  unsigned idx = ++trace_count;
  if (dumping (idx))
    {
      fprintf (dump_file, "range_on_edge (");
      print_generic_expr (dump_file, name, TDF_SLIM);
      fprintf (dump_file, ") on edge %d->%d\n", e->src->index, e->dest->index);
      indent += bump;
    }

  bool res = gimple_ranger::range_on_edge (r, e, name);
  trailer (idx, "range_on_edge", true, name, r);
  return res;
}

// Tracing version of range_on_entry.  Call it with printing wrappers.

void
trace_ranger::range_on_entry (irange &r, basic_block bb, tree name)
{
  unsigned idx = ++trace_count;
  if (dumping (idx))
    {
      fprintf (dump_file, "range_on_entry (");
      print_generic_expr (dump_file, name, TDF_SLIM);
      fprintf (dump_file, ") to BB %d\n", bb->index);
      indent += bump;
    }

  gimple_ranger::range_on_entry (r, bb, name);

  trailer (idx, "range_on_entry", true, name, r);
}

// Tracing version of range_on_exit.  Call it with printing wrappers.

void
trace_ranger::range_on_exit (irange &r, basic_block bb, tree name)
{
  unsigned idx = ++trace_count;
  if (dumping (idx))
    {
      fprintf (dump_file, "range_on_exit (");
      print_generic_expr (dump_file, name, TDF_SLIM);
      fprintf (dump_file, ") from BB %d\n", bb->index);
      indent += bump;
    }

  gimple_ranger::range_on_exit (r, bb, name);

  trailer (idx, "range_on_exit", true, name, r);
}

// Tracing version of range_of_stmt.  Call it with printing wrappers.

bool
trace_ranger::range_of_stmt (irange &r, gimple *s, tree name)
{
  bool res;
  unsigned idx = ++trace_count;
  if (dumping (idx))
    {
      fprintf (dump_file, "range_of_stmt (");
      if (name)
	print_generic_expr (dump_file, name, TDF_SLIM);
      fputs (") at stmt ", dump_file);
      print_gimple_stmt (dump_file, s, 0, TDF_SLIM);
      indent += bump;
    }

  res = gimple_ranger::range_of_stmt (r, s, name);

  return trailer (idx, "range_of_stmt", res, name, r);
}

// Tracing version of range_of_expr.  Call it with printing wrappers.

bool
trace_ranger::range_of_expr (irange &r, tree name, gimple *s)
{
  bool res;
  unsigned idx = ++trace_count;
  if (dumping (idx))
    {
      fprintf (dump_file, "range_of_expr(");
      print_generic_expr (dump_file, name, TDF_SLIM);
      fputs (")", dump_file);
      if (s)
	{
	  fputs (" at stmt ", dump_file);
	  print_gimple_stmt (dump_file, s, 0, TDF_SLIM);
	}
      else
	fputs ("\n", dump_file);
      indent += bump;
    }

  res = gimple_ranger::range_of_expr (r, name, s);

  return trailer (idx, "range_of_expr", res, name, r);
}