1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
|
/* Code for GIMPLE range related routines.
Copyright (C) 2019-2023 Free Software Foundation, Inc.
Contributed by Andrew MacLeod <amacleod@redhat.com>
and Aldy Hernandez <aldyh@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "fold-const.h"
#include "tree-cfg.h"
#include "cfgloop.h"
#include "tree-scalar-evolution.h"
#include "gimple-range.h"
#include "gimple-fold.h"
#include "gimple-walk.h"
gimple_ranger::gimple_ranger (bool use_imm_uses) :
non_executable_edge_flag (cfun),
m_cache (non_executable_edge_flag, use_imm_uses),
tracer (""),
current_bb (NULL)
{
// If the cache has a relation oracle, use it.
m_oracle = m_cache.oracle ();
if (dump_file && (param_ranger_debug & RANGER_DEBUG_TRACE))
tracer.enable_trace ();
m_stmt_list.create (0);
m_stmt_list.safe_grow (num_ssa_names);
m_stmt_list.truncate (0);
// Ensure the not_executable flag is clear everywhere.
if (flag_checking)
{
basic_block bb;
FOR_ALL_BB_FN (bb, cfun)
{
edge_iterator ei;
edge e;
FOR_EACH_EDGE (e, ei, bb->succs)
gcc_checking_assert ((e->flags & non_executable_edge_flag) == 0);
}
}
}
gimple_ranger::~gimple_ranger ()
{
m_stmt_list.release ();
}
// Return a range_query which accesses just the known global values.
range_query &
gimple_ranger::const_query ()
{
return m_cache.const_query ();
}
bool
gimple_ranger::range_of_expr (vrange &r, tree expr, gimple *stmt)
{
unsigned idx;
if (!gimple_range_ssa_p (expr))
return get_tree_range (r, expr, stmt);
if ((idx = tracer.header ("range_of_expr(")))
{
print_generic_expr (dump_file, expr, TDF_SLIM);
fputs (")", dump_file);
if (stmt)
{
fputs (" at stmt ", dump_file);
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
}
else
fputs ("\n", dump_file);
}
// If there is no statement, just get the global value.
if (!stmt)
{
Value_Range tmp (TREE_TYPE (expr));
m_cache.get_global_range (r, expr);
// Pick up implied context information from the on-entry cache
// if current_bb is set. Do not attempt any new calculations.
if (current_bb && m_cache.block_range (tmp, current_bb, expr, false))
{
r.intersect (tmp);
char str[80];
sprintf (str, "picked up range from bb %d\n",current_bb->index);
if (idx)
tracer.print (idx, str);
}
}
// For a debug stmt, pick the best value currently available, do not
// trigger new value calculations. PR 100781.
else if (is_gimple_debug (stmt))
m_cache.range_of_expr (r, expr, stmt);
else
{
basic_block bb = gimple_bb (stmt);
gimple *def_stmt = SSA_NAME_DEF_STMT (expr);
// If name is defined in this block, try to get an range from S.
if (def_stmt && gimple_bb (def_stmt) == bb)
{
// Declared in this block, if it has a global set, check for an
// override from a block walk, otherwise calculate it.
if (m_cache.get_global_range (r, expr))
m_cache.block_range (r, bb, expr, false);
else
range_of_stmt (r, def_stmt, expr);
}
// Otherwise OP comes from outside this block, use range on entry.
else
range_on_entry (r, bb, expr);
}
if (idx)
tracer.trailer (idx, "range_of_expr", true, expr, r);
return true;
}
// Return the range of NAME on entry to block BB in R.
void
gimple_ranger::range_on_entry (vrange &r, basic_block bb, tree name)
{
Value_Range entry_range (TREE_TYPE (name));
gcc_checking_assert (gimple_range_ssa_p (name));
unsigned idx;
if ((idx = tracer.header ("range_on_entry (")))
{
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, ") to BB %d\n", bb->index);
}
// Start with any known range
range_of_stmt (r, SSA_NAME_DEF_STMT (name), name);
// Now see if there is any on_entry value which may refine it.
if (m_cache.block_range (entry_range, bb, name))
r.intersect (entry_range);
if (idx)
tracer.trailer (idx, "range_on_entry", true, name, r);
}
// Calculate the range for NAME at the end of block BB and return it in R.
// Return false if no range can be calculated.
void
gimple_ranger::range_on_exit (vrange &r, basic_block bb, tree name)
{
// on-exit from the exit block?
gcc_checking_assert (gimple_range_ssa_p (name));
unsigned idx;
if ((idx = tracer.header ("range_on_exit (")))
{
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, ") from BB %d\n", bb->index);
}
gimple *s = SSA_NAME_DEF_STMT (name);
basic_block def_bb = gimple_bb (s);
// If this is not the definition block, get the range on the last stmt in
// the block... if there is one.
if (def_bb != bb)
s = last_nondebug_stmt (bb);
// If there is no statement provided, get the range_on_entry for this block.
if (s)
range_of_expr (r, name, s);
else
range_on_entry (r, bb, name);
gcc_checking_assert (r.undefined_p ()
|| range_compatible_p (r.type (), TREE_TYPE (name)));
if (idx)
tracer.trailer (idx, "range_on_exit", true, name, r);
}
// Calculate a range for NAME on edge E and return it in R.
bool
gimple_ranger::range_on_edge (vrange &r, edge e, tree name)
{
Value_Range edge_range (TREE_TYPE (name));
if (!r.supports_type_p (TREE_TYPE (name)))
return false;
// Do not process values along abnormal edges.
if (e->flags & EDGE_ABNORMAL)
return get_tree_range (r, name, NULL);
unsigned idx;
if ((idx = tracer.header ("range_on_edge (")))
{
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, ") on edge %d->%d\n", e->src->index, e->dest->index);
}
// Check to see if the edge is executable.
if ((e->flags & non_executable_edge_flag))
{
r.set_undefined ();
if (idx)
tracer.trailer (idx, "range_on_edge [Unexecutable] ", true,
name, r);
return true;
}
bool res = true;
if (!gimple_range_ssa_p (name))
res = get_tree_range (r, name, NULL);
else
{
range_on_exit (r, e->src, name);
// If this is not an abnormal edge, check for a non-null exit .
if ((e->flags & (EDGE_EH | EDGE_ABNORMAL)) == 0)
m_cache.m_exit.maybe_adjust_range (r, name, e->src);
gcc_checking_assert (r.undefined_p ()
|| range_compatible_p (r.type(), TREE_TYPE (name)));
// Check to see if NAME is defined on edge e.
if (m_cache.range_on_edge (edge_range, e, name))
r.intersect (edge_range);
}
if (idx)
tracer.trailer (idx, "range_on_edge", res, name, r);
return res;
}
// fold_range wrapper for range_of_stmt to use as an internal client.
bool
gimple_ranger::fold_range_internal (vrange &r, gimple *s, tree name)
{
fold_using_range f;
fur_depend src (s, &(gori ()), this);
return f.fold_stmt (r, s, src, name);
}
// Calculate a range for statement S and return it in R. If NAME is
// provided it represents the SSA_NAME on the LHS of the statement.
// It is only required if there is more than one lhs/output. Check
// the global cache for NAME first to see if the evaluation can be
// avoided. If a range cannot be calculated, return false and UNDEFINED.
bool
gimple_ranger::range_of_stmt (vrange &r, gimple *s, tree name)
{
bool res;
r.set_undefined ();
unsigned idx;
if ((idx = tracer.header ("range_of_stmt (")))
{
if (name)
print_generic_expr (dump_file, name, TDF_SLIM);
fputs (") at stmt ", dump_file);
print_gimple_stmt (dump_file, s, 0, TDF_SLIM);
}
if (!name)
name = gimple_get_lhs (s);
// If no name, simply call the base routine.
if (!name)
{
res = fold_range_internal (r, s, NULL_TREE);
if (res && is_a <gcond *> (s))
{
// Update any exports in the cache if this is a gimple cond statement.
tree exp;
basic_block bb = gimple_bb (s);
FOR_EACH_GORI_EXPORT_NAME (m_cache.m_gori, bb, exp)
m_cache.propagate_updated_value (exp, bb);
}
}
else if (!gimple_range_ssa_p (name))
res = get_tree_range (r, name, NULL);
else
{
bool current;
// Check if the stmt has already been processed.
if (m_cache.get_global_range (r, name, current))
{
// If it isn't stale, use this cached value.
if (current)
{
if (idx)
tracer.trailer (idx, " cached", true, name, r);
return true;
}
}
else
prefill_stmt_dependencies (name);
// Calculate a new value.
Value_Range tmp (TREE_TYPE (name));
fold_range_internal (tmp, s, name);
// Combine the new value with the old value. This is required because
// the way value propagation works, when the IL changes on the fly we
// can sometimes get different results. See PR 97741.
bool changed = r.intersect (tmp);
m_cache.set_global_range (name, r, changed);
res = true;
}
if (idx)
tracer.trailer (idx, "range_of_stmt", res, name, r);
return res;
}
// Check if NAME is a dependency that needs resolving, and push it on the
// stack if so. R is a scratch range.
inline void
gimple_ranger::prefill_name (vrange &r, tree name)
{
if (!gimple_range_ssa_p (name))
return;
gimple *stmt = SSA_NAME_DEF_STMT (name);
if (!gimple_range_op_handler::supported_p (stmt) && !is_a<gphi *> (stmt))
return;
bool current;
// If this op has not been processed yet, then push it on the stack
if (!m_cache.get_global_range (r, name, current))
m_stmt_list.safe_push (name);
}
// This routine will seed the global cache with most of the dependencies of
// NAME. This prevents excessive call depth through the normal API.
void
gimple_ranger::prefill_stmt_dependencies (tree ssa)
{
if (SSA_NAME_IS_DEFAULT_DEF (ssa))
return;
unsigned idx;
gimple *stmt = SSA_NAME_DEF_STMT (ssa);
gcc_checking_assert (stmt && gimple_bb (stmt));
// Only pre-process range-ops and phis.
if (!gimple_range_op_handler::supported_p (stmt) && !is_a<gphi *> (stmt))
return;
// Mark where on the stack we are starting.
unsigned start = m_stmt_list.length ();
m_stmt_list.safe_push (ssa);
idx = tracer.header ("ROS dependence fill\n");
// Loop until back at the start point.
while (m_stmt_list.length () > start)
{
tree name = m_stmt_list.last ();
// NULL is a marker which indicates the next name in the stack has now
// been fully resolved, so we can fold it.
if (!name)
{
// Pop the NULL, then pop the name.
m_stmt_list.pop ();
name = m_stmt_list.pop ();
// Don't fold initial request, it will be calculated upon return.
if (m_stmt_list.length () > start)
{
// Fold and save the value for NAME.
stmt = SSA_NAME_DEF_STMT (name);
Value_Range r (TREE_TYPE (name));
fold_range_internal (r, stmt, name);
// Make sure we don't lose any current global info.
Value_Range tmp (TREE_TYPE (name));
m_cache.get_global_range (tmp, name);
bool changed = tmp.intersect (r);
m_cache.set_global_range (name, tmp, changed);
}
continue;
}
// Add marker indicating previous NAME in list should be folded
// when we get to this NULL.
m_stmt_list.safe_push (NULL_TREE);
stmt = SSA_NAME_DEF_STMT (name);
if (idx)
{
tracer.print (idx, "ROS dep fill (");
print_generic_expr (dump_file, name, TDF_SLIM);
fputs (") at stmt ", dump_file);
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
}
gphi *phi = dyn_cast <gphi *> (stmt);
if (phi)
{
Value_Range r (TREE_TYPE (gimple_phi_result (phi)));
for (unsigned x = 0; x < gimple_phi_num_args (phi); x++)
prefill_name (r, gimple_phi_arg_def (phi, x));
}
else
{
gimple_range_op_handler handler (stmt);
if (handler)
{
tree op = handler.operand2 ();
if (op)
{
Value_Range r (TREE_TYPE (op));
prefill_name (r, op);
}
op = handler.operand1 ();
if (op)
{
Value_Range r (TREE_TYPE (op));
prefill_name (r, op);
}
}
}
}
if (idx)
{
unsupported_range r;
tracer.trailer (idx, "ROS ", false, ssa, r);
}
}
// This routine will invoke the gimple fold_stmt routine, providing context to
// range_of_expr calls via an private internal API.
bool
gimple_ranger::fold_stmt (gimple_stmt_iterator *gsi, tree (*valueize) (tree))
{
gimple *stmt = gsi_stmt (*gsi);
current_bb = gimple_bb (stmt);
bool ret = ::fold_stmt (gsi, valueize);
current_bb = NULL;
return ret;
}
// Called during dominator walks to register any inferred ranges that take
// effect from this point forward.
void
gimple_ranger::register_inferred_ranges (gimple *s)
{
// First, export the LHS if it is a new global range.
tree lhs = gimple_get_lhs (s);
if (lhs)
{
Value_Range tmp (TREE_TYPE (lhs));
if (range_of_stmt (tmp, s, lhs) && !tmp.varying_p ()
&& set_range_info (lhs, tmp) && dump_file)
{
fprintf (dump_file, "Global Exported: ");
print_generic_expr (dump_file, lhs, TDF_SLIM);
fprintf (dump_file, " = ");
tmp.dump (dump_file);
fputc ('\n', dump_file);
}
}
m_cache.apply_inferred_ranges (s);
}
// This function will walk the statements in BB to determine if any
// discovered inferred ranges in the block have any transitive effects,
// and if so, register those effects in BB.
void
gimple_ranger::register_transitive_inferred_ranges (basic_block bb)
{
// Return if there are no inferred ranges in BB.
infer_range_manager &infer = m_cache.m_exit;
if (!infer.has_range_p (bb))
return;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Checking for transitive inferred ranges in BB %d\n",
bb->index);
for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
gsi_next (&si))
{
gimple *s = gsi_stmt (si);
tree lhs = gimple_get_lhs (s);
// If the LHS already has an inferred effect, leave it be.
if (!gimple_range_ssa_p (lhs) || infer.has_range_p (lhs, bb))
continue;
// Pick up global value.
Value_Range g (TREE_TYPE (lhs));
range_of_expr (g, lhs);
// If either dependency has an inferred range, check if recalculating
// the LHS is different than the global value. If so, register it as
// an inferred range as well.
Value_Range r (TREE_TYPE (lhs));
r.set_undefined ();
tree name1 = gori ().depend1 (lhs);
tree name2 = gori ().depend2 (lhs);
if ((name1 && infer.has_range_p (name1, bb))
|| (name2 && infer.has_range_p (name2, bb)))
{
// Check if folding S produces a different result.
if (fold_range (r, s, this) && g != r)
{
infer.add_range (lhs, bb, r);
m_cache.register_inferred_value (r, lhs, bb);
}
}
}
}
// When a statement S has changed since the result was cached, re-evaluate
// and update the global cache.
void
gimple_ranger::update_stmt (gimple *s)
{
tree lhs = gimple_get_lhs (s);
if (!lhs || !gimple_range_ssa_p (lhs))
return;
Value_Range r (TREE_TYPE (lhs));
// Only update if it already had a value.
if (m_cache.get_global_range (r, lhs))
{
// Re-calculate a new value using just cache values.
Value_Range tmp (TREE_TYPE (lhs));
fold_using_range f;
fur_stmt src (s, &m_cache);
f.fold_stmt (tmp, s, src, lhs);
// Combine the new value with the old value to check for a change.
if (r.intersect (tmp))
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
print_generic_expr (dump_file, lhs, TDF_SLIM);
fprintf (dump_file, " : global value re-evaluated to ");
r.dump (dump_file);
fputc ('\n', dump_file);
}
m_cache.set_global_range (lhs, r);
}
}
}
// This routine will export whatever global ranges are known to GCC
// SSA_RANGE_NAME_INFO and SSA_NAME_PTR_INFO fields.
void
gimple_ranger::export_global_ranges ()
{
/* Cleared after the table header has been printed. */
bool print_header = true;
for (unsigned x = 1; x < num_ssa_names; x++)
{
tree name = ssa_name (x);
if (!name)
continue;
Value_Range r (TREE_TYPE (name));
if (name && !SSA_NAME_IN_FREE_LIST (name)
&& gimple_range_ssa_p (name)
&& m_cache.get_global_range (r, name)
&& !r.varying_p())
{
bool updated = set_range_info (name, r);
if (!updated || !dump_file)
continue;
if (print_header)
{
/* Print the header only when there's something else
to print below. */
fprintf (dump_file, "Exported global range table:\n");
fprintf (dump_file, "============================\n");
print_header = false;
}
print_generic_expr (dump_file, name , TDF_SLIM);
fprintf (dump_file, " : ");
r.dump (dump_file);
fprintf (dump_file, "\n");
}
}
}
// Print the known table values to file F.
void
gimple_ranger::dump_bb (FILE *f, basic_block bb)
{
unsigned x;
edge_iterator ei;
edge e;
fprintf (f, "\n=========== BB %d ============\n", bb->index);
m_cache.dump_bb (f, bb);
::dump_bb (f, bb, 4, TDF_NONE);
// Now find any globals defined in this block.
for (x = 1; x < num_ssa_names; x++)
{
tree name = ssa_name (x);
if (!gimple_range_ssa_p (name) || !SSA_NAME_DEF_STMT (name))
continue;
Value_Range range (TREE_TYPE (name));
if (gimple_bb (SSA_NAME_DEF_STMT (name)) == bb
&& m_cache.get_global_range (range, name))
{
if (!range.varying_p ())
{
print_generic_expr (f, name, TDF_SLIM);
fprintf (f, " : ");
range.dump (f);
fprintf (f, "\n");
}
}
}
// And now outgoing edges, if they define anything.
FOR_EACH_EDGE (e, ei, bb->succs)
{
for (x = 1; x < num_ssa_names; x++)
{
tree name = gimple_range_ssa_p (ssa_name (x));
if (!name || !gori ().has_edge_range_p (name, e))
continue;
Value_Range range (TREE_TYPE (name));
if (m_cache.range_on_edge (range, e, name))
{
gimple *s = SSA_NAME_DEF_STMT (name);
Value_Range tmp_range (TREE_TYPE (name));
// Only print the range if this is the def block, or
// the on entry cache for either end of the edge is
// set.
if ((s && bb == gimple_bb (s)) ||
m_cache.block_range (tmp_range, bb, name, false) ||
m_cache.block_range (tmp_range, e->dest, name, false))
{
if (!range.varying_p ())
{
fprintf (f, "%d->%d ", e->src->index,
e->dest->index);
char c = ' ';
if (e->flags & EDGE_TRUE_VALUE)
fprintf (f, " (T)%c", c);
else if (e->flags & EDGE_FALSE_VALUE)
fprintf (f, " (F)%c", c);
else
fprintf (f, " ");
print_generic_expr (f, name, TDF_SLIM);
fprintf(f, " : \t");
range.dump(f);
fprintf (f, "\n");
}
}
}
}
}
}
// Print the known table values to file F.
void
gimple_ranger::dump (FILE *f)
{
basic_block bb;
FOR_EACH_BB_FN (bb, cfun)
dump_bb (f, bb);
m_cache.dump (f);
}
void
gimple_ranger::debug ()
{
dump (stderr);
}
/* Create a new ranger instance and associate it with function FUN.
Each call must be paired with a call to disable_ranger to release
resources. */
gimple_ranger *
enable_ranger (struct function *fun, bool use_imm_uses)
{
gimple_ranger *r;
gcc_checking_assert (!fun->x_range_query);
r = new gimple_ranger (use_imm_uses);
fun->x_range_query = r;
return r;
}
/* Destroy and release the ranger instance associated with function FUN
and replace it the global ranger. */
void
disable_ranger (struct function *fun)
{
gcc_checking_assert (fun->x_range_query);
delete fun->x_range_query;
fun->x_range_query = NULL;
}
// ------------------------------------------------------------------------
// If there is a non-varying value associated with NAME, return true and the
// range in R.
bool
assume_query::assume_range_p (vrange &r, tree name)
{
if (global.get_range (r, name))
return !r.varying_p ();
return false;
}
// Query used by GORI to pick up any known value on entry to a block.
bool
assume_query::range_of_expr (vrange &r, tree expr, gimple *stmt)
{
if (!gimple_range_ssa_p (expr))
return get_tree_range (r, expr, stmt);
if (!global.get_range (r, expr))
r.set_varying (TREE_TYPE (expr));
return true;
}
// If the current function returns an integral value, and has a single return
// statement, it will calculate any SSA_NAMES it can determine ranges for
// assuming the function returns 1.
assume_query::assume_query ()
{
basic_block exit_bb = EXIT_BLOCK_PTR_FOR_FN (cfun);
if (single_pred_p (exit_bb))
{
basic_block bb = single_pred (exit_bb);
gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
if (gsi_end_p (gsi))
return;
gimple *s = gsi_stmt (gsi);
if (!is_a<greturn *> (s))
return;
greturn *gret = as_a<greturn *> (s);
tree op = gimple_return_retval (gret);
if (!gimple_range_ssa_p (op))
return;
tree lhs_type = TREE_TYPE (op);
if (!irange::supports_p (lhs_type))
return;
unsigned prec = TYPE_PRECISION (lhs_type);
int_range<2> lhs_range (lhs_type, wi::one (prec), wi::one (prec));
global.set_range (op, lhs_range);
gimple *def = SSA_NAME_DEF_STMT (op);
if (!def || gimple_get_lhs (def) != op)
return;
fur_stmt src (gret, this);
calculate_stmt (def, lhs_range, src);
}
}
// Evaluate operand OP on statement S, using the provided LHS range.
// If successful, set the range in the global table, then visit OP's def stmt.
void
assume_query::calculate_op (tree op, gimple *s, vrange &lhs, fur_source &src)
{
Value_Range op_range (TREE_TYPE (op));
if (m_gori.compute_operand_range (op_range, s, lhs, op, src)
&& !op_range.varying_p ())
{
Value_Range range (TREE_TYPE (op));
if (global.get_range (range, op))
op_range.intersect (range);
global.set_range (op, op_range);
gimple *def_stmt = SSA_NAME_DEF_STMT (op);
if (def_stmt && gimple_get_lhs (def_stmt) == op)
calculate_stmt (def_stmt, op_range, src);
}
}
// Evaluate PHI statement, using the provided LHS range.
// Check each constant argument predecessor if it can be taken
// provide LHS to any symbolic arguments, and process their def statements.
void
assume_query::calculate_phi (gphi *phi, vrange &lhs_range, fur_source &src)
{
for (unsigned x= 0; x < gimple_phi_num_args (phi); x++)
{
tree arg = gimple_phi_arg_def (phi, x);
Value_Range arg_range (TREE_TYPE (arg));
if (gimple_range_ssa_p (arg))
{
// A symbol arg will be the LHS value.
arg_range = lhs_range;
range_cast (arg_range, TREE_TYPE (arg));
if (!global.get_range (arg_range, arg))
{
global.set_range (arg, arg_range);
gimple *def_stmt = SSA_NAME_DEF_STMT (arg);
if (def_stmt && gimple_get_lhs (def_stmt) == arg)
calculate_stmt (def_stmt, arg_range, src);
}
}
else if (get_tree_range (arg_range, arg, NULL))
{
// If this is a constant value that differs from LHS, this
// edge cannot be taken.
arg_range.intersect (lhs_range);
if (arg_range.undefined_p ())
continue;
// Otherwise check the condition feeding this edge.
edge e = gimple_phi_arg_edge (phi, x);
check_taken_edge (e, src);
}
}
}
// If an edge is known to be taken, examine the outgoing edge to see
// if it carries any range information that can also be evaluated.
void
assume_query::check_taken_edge (edge e, fur_source &src)
{
gimple *stmt = gimple_outgoing_range_stmt_p (e->src);
if (stmt && is_a<gcond *> (stmt))
{
int_range<2> cond;
gcond_edge_range (cond, e);
calculate_stmt (stmt, cond, src);
}
}
// Evaluate statement S which produces range LHS_RANGE.
void
assume_query::calculate_stmt (gimple *s, vrange &lhs_range, fur_source &src)
{
gimple_range_op_handler handler (s);
if (handler)
{
tree op = gimple_range_ssa_p (handler.operand1 ());
if (op)
calculate_op (op, s, lhs_range, src);
op = gimple_range_ssa_p (handler.operand2 ());
if (op)
calculate_op (op, s, lhs_range, src);
}
else if (is_a<gphi *> (s))
{
calculate_phi (as_a<gphi *> (s), lhs_range, src);
// Don't further check predecessors of blocks with PHIs.
return;
}
// Even if the walk back terminates before the top, if this is a single
// predecessor block, see if the predecessor provided any ranges to get here.
if (single_pred_p (gimple_bb (s)))
check_taken_edge (single_pred_edge (gimple_bb (s)), src);
}
// Show everything that was calculated.
void
assume_query::dump (FILE *f)
{
fprintf (f, "Assumption details calculated:\n");
for (unsigned i = 0; i < num_ssa_names; i++)
{
tree name = ssa_name (i);
if (!name || !gimple_range_ssa_p (name))
continue;
tree type = TREE_TYPE (name);
if (!Value_Range::supports_type_p (type))
continue;
Value_Range assume_range (type);
if (assume_range_p (assume_range, name))
{
print_generic_expr (f, name, TDF_SLIM);
fprintf (f, " -> ");
assume_range.dump (f);
fputc ('\n', f);
}
}
fprintf (f, "------------------------------\n");
}
|