aboutsummaryrefslogtreecommitdiff
path: root/gcc/gimple-range-phi.cc
blob: 9884a0ebbb0241c1219a1391b6a300daae3cbbf3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
/* Gimple range phi analysis.
   Copyright (C) 2023 Free Software Foundation, Inc.
   Contributed by Andrew MacLeod <amacleod@redhat.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "insn-codes.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "gimple-range.h"
#include "gimple-range-cache.h"
#include "value-range-storage.h"
#include "tree-cfg.h"
#include "target.h"
#include "attribs.h"
#include "gimple-iterator.h"
#include "gimple-walk.h"
#include "cfganal.h"

// There can be only one running at a time.
static phi_analyzer *phi_analysis_object = NULL;

// Initialize a PHI analyzer with range query Q.

void
phi_analysis_initialize (range_query &q)
{
  gcc_checking_assert (!phi_analysis_object);
  phi_analysis_object = new phi_analyzer (q);
}

// Terminate the current PHI analyzer.  if F is non-null, dump the tables

void
phi_analysis_finalize ()
{
  gcc_checking_assert (phi_analysis_object);
  delete phi_analysis_object;
  phi_analysis_object = NULL;
}

// Return TRUE is there is a PHI analyzer operating.
bool
phi_analysis_available_p ()
{
  return phi_analysis_object != NULL;
}

// Return the phi analyzer object.

phi_analyzer &phi_analysis ()
{
  gcc_checking_assert (phi_analysis_object);
  return *phi_analysis_object;
}

// Initialize a phi_group from another group G.

phi_group::phi_group (const phi_group &g)
{
  m_group = g.m_group;
  m_modifier = g.m_modifier;
  m_modifier_op = g.m_modifier_op;
  m_vr = g.m_vr;
}

// Create a new phi_group with members BM, initial range INIT_RANGE, modifier
// statement MOD on edge MOD_EDGE, and resolve values using query Q.  Calculate
// the range for the group if possible, otherwise set it to VARYING.

phi_group::phi_group (bitmap bm, irange &init_range, gimple *mod,
		      range_query *q)
{
  // we dont expect a modifer and no inital value, so trap to have a look.
  // perhaps they are dead cycles and we can just used UNDEFINED.
  gcc_checking_assert (!init_range.undefined_p ());
  gcc_checking_assert (!init_range.varying_p ());

  m_modifier_op = is_modifier_p (mod, bm);
  m_group = bm;
  m_vr = init_range;
  m_modifier = mod;
  // No modifier means the initial range is the full range.
  // Otherwise try to calculate a range.
  if (!m_modifier_op || calculate_using_modifier (q))
    return;
  // Couldn't calculate a range, set to varying.
  m_vr.set_varying (init_range.type ());
}

// Return 0 if S is not a modifier statment for group members BM.
// If it could be a modifier, return which operand position (1 or 2)
// the phi member occurs in.
unsigned
phi_group::is_modifier_p (gimple *s, const bitmap bm)
{
  if (!s)
    return 0;
  gimple_range_op_handler handler (s);
  if (handler)
    {
      tree op1 = gimple_range_ssa_p (handler.operand1 ());
      tree op2 = gimple_range_ssa_p (handler.operand2 ());
      // Also disallow modifiers that have 2 ssa-names.
      if (op1 && !op2 && bitmap_bit_p (bm, SSA_NAME_VERSION (op1)))
	return 1;
      else if (op2 && !op1 && bitmap_bit_p (bm, SSA_NAME_VERSION (op2)))
	return 2;
    }
  return 0;
}

// Calulcate the range of the phi group using range_query Q.

bool
phi_group::calculate_using_modifier (range_query *q)
{
  // Look at the modifier for any relation
  relation_trio trio = fold_relations (m_modifier, q);
  relation_kind k = VREL_VARYING;
  if (m_modifier_op == 1)
    k = trio.lhs_op1 ();
  else if (m_modifier_op == 2)
    k = trio.lhs_op2 ();
  else
    return false;

  // Examine modifier and run 10 iterations to see if it convergences.
  // The constructor initilaized m_vr to the initial value already.
  const unsigned num_iter = 10;
  int_range_max nv;
  int_range_max iter_value = m_vr;
  for (unsigned x = 0; x < num_iter; x++)
    {
      if (!fold_range (nv, m_modifier, iter_value, q))
	break;
      // If union does nothing, then we have convergence.
      if (!iter_value.union_ (nv))
	{
	  if (iter_value.varying_p ())
	    break;
	  m_vr = iter_value;
	  return true;
	}
    }

  // If we can resolve the range using relations, use that range.
  if (refine_using_relation (k))
    return true;

  // Never converged, so bail for now. we could examine the pattern
  // from m_initial to m_vr as an extension  Especially if we had a way
  // to project the actual number of iterations (SCEV?)
  //
  //  We can also try to identify "parallel" phis to get loop counts and
  //  determine the number of iterations of these parallel PHIs.
  //
  return false;
}


// IF the modifier statement has a relation K between the modifier and the
// PHI member in it, we can project a range based on that.
// ie,  a_2 = PHI <0, a_3>   and a_3 = a_2 + 1
// if the relation a_3 > a_2 is present, the know the range is [0, +INF]
// m_vr contains the initial value for the PHI range.

bool
phi_group::refine_using_relation (relation_kind k)
{
  if (k == VREL_VARYING)
    return false;
  tree type = m_vr.type ();
  // If the type wraps, then relations dont tell us much.
  if (TYPE_OVERFLOW_WRAPS (type))
    return false;

  int_range<2> type_range;
  type_range.set_varying (type);
  switch (k)
    {
    case VREL_LT:
    case VREL_LE:
      {
	// Value always decreases.
	m_vr.set (type, type_range.lower_bound (), m_vr.upper_bound ());
	return true;
      }

    case VREL_GT:
    case VREL_GE:
      {
	// Value always increases.
	m_vr.set (type, m_vr.lower_bound (), type_range.upper_bound ());
	return true;
      }

      // If its always equal, then its simply the initial value.
      // which is what m_vr has already been set to.
    case VREL_EQ:
      return true;

    default:
      break;
    }

  return false;
}

// Dump the information for a phi group to file F.

void
phi_group::dump (FILE *f)
{
  unsigned i;
  bitmap_iterator bi;
  fprintf (f, "PHI GROUP < ");

  EXECUTE_IF_SET_IN_BITMAP (m_group, 0, i, bi)
    {
      print_generic_expr (f, ssa_name (i), TDF_SLIM);
      fputc (' ',f);
    }
  fprintf (f, "> : range : ");
  m_vr.dump (f);
  fprintf (f, "\n  Modifier : ");
  if (m_modifier)
    print_gimple_stmt (f, m_modifier, 0, TDF_SLIM);
  else
    fprintf (f, "NONE\n");
}

// -------------------------------------------------------------------------

// Construct a phi analyzer which uses range_query G to pick up values.

phi_analyzer::phi_analyzer (range_query &g) : m_global (g)
{
  m_work.create (0);
  m_work.safe_grow (20);

  m_tab.create (0);
//   m_tab.safe_grow_cleared (num_ssa_names + 100);
  bitmap_obstack_initialize (&m_bitmaps);
  m_simple = BITMAP_ALLOC (&m_bitmaps);
  m_current = BITMAP_ALLOC (&m_bitmaps);
}

// Destruct a PHI analyzer.

phi_analyzer::~phi_analyzer ()
{
  bitmap_obstack_release (&m_bitmaps);
  m_tab.release ();
  m_work.release ();
}

//  Return the group, if any, that NAME is part of.  Do no analysis.

phi_group *
phi_analyzer::group (tree name) const
{
  gcc_checking_assert (TREE_CODE (name) == SSA_NAME);
  if (!is_a<gphi *> (SSA_NAME_DEF_STMT (name)))
    return NULL;
  unsigned v = SSA_NAME_VERSION (name);
  if (v >= m_tab.length ())
    return NULL;
  return m_tab[v];
}

// Return the group NAME is associated with, if any.  If name has not been
// procvessed yet, do the analysis to determine if it is part of a group
// and return that.

phi_group *
phi_analyzer::operator[] (tree name)
{
  gcc_checking_assert (TREE_CODE (name) == SSA_NAME);

  //  Initial support for irange only.
  if (!irange::supports_p (TREE_TYPE (name)))
    return NULL;
  if (!is_a<gphi *> (SSA_NAME_DEF_STMT (name)))
    return NULL;

  unsigned v = SSA_NAME_VERSION (name);
  // Already been processed and not part of a group.
  if (bitmap_bit_p (m_simple, v))
    return NULL;

  if (v >= m_tab.length () || !m_tab[v])
    {
      process_phi (as_a<gphi *> (SSA_NAME_DEF_STMT (name)));
      if (bitmap_bit_p (m_simple, v))
	return  NULL;
     // If m_simple bit isn't set, and process_phi didn't allocated the table
     // no group was created, so return NULL.
     if (v >= m_tab.length ())
      return NULL;
    }
  return m_tab[v];
}

// Process phi node PHI to see if it it part of a group.

void
phi_analyzer::process_phi (gphi *phi)
{
  gcc_checking_assert (!group (gimple_phi_result (phi)));
  bool cycle_p = true;

  // Start with the LHS of the PHI in the worklist.
  unsigned x;
  m_work.truncate (0);
  m_work.safe_push (gimple_phi_result (phi));
  unsigned phi_count = 1;
  bitmap_clear (m_current);

  // We can only have 2 externals: an initial value and a modifier.
  // Any more than that and this fails to be a group.
  unsigned m_num_extern = 0;
  tree m_external[2];
  edge m_ext_edge[2];
  int_range_max init_range;
  init_range.set_undefined ();

  while (m_work.length () > 0)
    {
      tree phi_def = m_work.pop ();
      gphi *phi_stmt = as_a<gphi *> (SSA_NAME_DEF_STMT (phi_def));
      // if the phi is already in a different cycle, we don't try to merge.
      if (group (phi_def))
	{
	  cycle_p = false;
	  break;
	}
      bitmap_set_bit (m_current, SSA_NAME_VERSION (phi_def));
      // Process the args.
      for (x = 0; x < gimple_phi_num_args (phi_stmt); x++)
	{
	  tree arg = gimple_phi_arg_def (phi_stmt, x);
	  if (arg == phi_def)
	    continue;
	  enum tree_code code = TREE_CODE (arg);
	  if (code == SSA_NAME)
	    {
	      unsigned v = SSA_NAME_VERSION (arg);
	      // Already a member of this potential group.
	      if (bitmap_bit_p (m_current, v))
		continue;
	      // Part of a different group ends cycle possibility.
	      if (group (arg) || bitmap_bit_p (m_simple, v))
		{
		  cycle_p = false;
		  break;
		}
	      // Check if its a PHI to examine.
	      gimple *arg_stmt = SSA_NAME_DEF_STMT (arg);
	      if (arg_stmt && is_a<gphi *> (arg_stmt))
		{
		  phi_count++;
		  m_work.safe_push (arg);
		  continue;
		}
	      // More than 2 outside names is too complicated.
	      if (m_num_extern >= 2)
		{
		  cycle_p = false;
		  break;
		}
	      m_external[m_num_extern] = arg;
	      m_ext_edge[m_num_extern++] = gimple_phi_arg_edge (phi_stmt, x);
	    }
	  else if (code == INTEGER_CST)
	    {
	      // Constants are just added to the initialization value.
	      int_range<1> val (TREE_TYPE (arg), wi::to_wide (arg),
				wi::to_wide (arg));
	      init_range.union_ (val);
	    }
	  else
	    {
	      // Everything else terminates the cycle.
	      cycle_p = false;
	      break;
	    }
	}
    }

  // If there are less than 2 names, just return.  This PHI may be included
  // by another PHI, making it simple or a group of one will prevent a larger
  // group from being formed.
  if (phi_count < 2)
    return;
  gcc_checking_assert (!bitmap_empty_p (m_current));

  phi_group *g = NULL;
  if (cycle_p)
    {
      bool valid = true;
      gimple *mod = NULL;
      signed init_idx = -1;
      // At this point all the PHIs have been added to the bitmap.
      // the external list needs to be checked for initial values and modifiers.
      for (x = 0; x < m_num_extern; x++)
	{
	  tree name = m_external[x];
	  if (TREE_CODE (name) == SSA_NAME
	      && phi_group::is_modifier_p (SSA_NAME_DEF_STMT (name), m_current))
	    {
	      // Can't have multiple modifiers.
	      if (mod)
		valid = false;
	      mod = SSA_NAME_DEF_STMT (name);
	      continue;
	    }
	  // Can't have 2 initializers either.
	  if (init_idx != -1)
	    valid = false;
	  init_idx = x;
	}
      int_range_max init_sym;
      // If there is an symbolic initializer as well, include it here.
      if (valid && init_idx != -1)
	{
	  if (m_global.range_on_edge (init_sym, m_ext_edge[init_idx],
				      m_external[init_idx]))
	    init_range.union_ (init_sym);
	  else
	    valid = false;
	}
      if (valid && !init_range.varying_p () && !init_range.undefined_p ())
	{
	  // Try to create a group based on m_current. If a result comes back
	  // with a range that isn't varying, create the group.
	  phi_group cyc (m_current, init_range, mod, &m_global);
	  if (!cyc.range ().varying_p ())
	    {
	      g = new phi_group (cyc);
	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
		  fprintf (dump_file, "PHI ANALYZER : New ");
		  g->dump (dump_file);
		  fprintf (dump_file,"  Initial range was ");
		  init_range.dump (dump_file);
		  if (init_idx != -1)
		    {
		      fprintf (dump_file, " including symbolic ");
		      print_generic_expr (dump_file, m_external[init_idx],
					  TDF_SLIM);
		      fprintf (dump_file, " on edge %d->%d with range ",
			       m_ext_edge[init_idx]->src->index,
			       m_ext_edge[init_idx]->dest->index);
		      init_sym.dump (dump_file);
		    }
		  fputc ('\n',dump_file);
		}
	    }
	}
    }
  // If this dpoesn;t form a group, all members are instead simple phis.
  if (!g)
    {
      bitmap_ior_into (m_simple, m_current);
      return;
    }

  if (num_ssa_names >= m_tab.length ())
    m_tab.safe_grow_cleared (num_ssa_names + 100);

  // Now set all entries in the group to this record.
  unsigned i;
  bitmap_iterator bi;
  EXECUTE_IF_SET_IN_BITMAP (m_current, 0, i, bi)
    {
      // Can't be in more than one group.
      gcc_checking_assert (m_tab[i] == NULL);
      m_tab[i] = g;
    }
  // Allocate a new bitmap for the next time as the original one is now part
  // of the new phi group.
  m_current = BITMAP_ALLOC (&m_bitmaps);
}

void
phi_analyzer::dump (FILE *f)
{
  bool header = false;
  bitmap_clear (m_current);
  for (unsigned x = 0; x < m_tab.length (); x++)
    {
      if (bitmap_bit_p (m_simple, x))
	continue;
      if (bitmap_bit_p (m_current, x))
	continue;
      if (m_tab[x] == NULL)
	continue;
      phi_group *g = m_tab[x];
      bitmap_ior_into (m_current, g->group ());
      if (!header)
	{
	  header = true;
	  fprintf (f, "\nPHI GROUPS:\n");
	}
      g->dump (f);
    }
}