aboutsummaryrefslogtreecommitdiff
path: root/gcc/gimple-range-infer.cc
blob: 98642e2438fc6aeab09088ca5f70f5fe45793f69 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
/* Gimple range inference implementation.
   Copyright (C) 2022-2024 Free Software Foundation, Inc.
   Contributed by Andrew MacLeod <amacleod@redhat.com>.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "insn-codes.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "gimple-range.h"
#include "value-range-storage.h"
#include "tree-cfg.h"
#include "target.h"
#include "attribs.h"
#include "gimple-iterator.h"
#include "gimple-walk.h"
#include "cfganal.h"
#include "tree-dfa.h"

// Create the global oracle.

infer_range_oracle infer_oracle;

// This class is merely an accessor which is granted internals to
// gimple_infer_range such that non_null_loadstore as a static callback can
// call the protected add_nonzero ().
// Static functions ccannot be friends, so we do it through a class wrapper.

class non_null_wrapper
{
public:
  inline non_null_wrapper (gimple_infer_range *infer) : m_infer (infer) { }
  inline void add_nonzero (tree name) { m_infer->add_nonzero (name); }
  inline void add_range (tree t, vrange &r) { m_infer->add_range (t, r); }
private:
  gimple_infer_range *m_infer;
};

// Adapted from infer_nonnull_range_by_dereference and check_loadstore
// to process nonnull ssa_name OP in S.  DATA contains a pointer to a
// stmt range inference instance.

static bool
non_null_loadstore (gimple *, tree op, tree, void *data)
{
  if (TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
    {
      /* Some address spaces may legitimately dereference zero.  */
      addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (op));
      if (!targetm.addr_space.zero_address_valid (as))
	{
	  non_null_wrapper wrapper ((gimple_infer_range *)data);
	  wrapper.add_nonzero (TREE_OPERAND (op, 0));
	}
    }
  return false;
}

// Process an ASSUME call to see if there are any inferred ranges available.

void
gimple_infer_range::check_assume_func (gcall *call)
{
  tree arg;
  unsigned i;
  tree assume_id = TREE_OPERAND (gimple_call_arg (call, 0), 0);
  if (!assume_id)
    return;
  struct function *fun = DECL_STRUCT_FUNCTION (assume_id);
  if (!fun)
    return;
  // Loop over arguments, matching them to the assume parameters.
  for (arg = DECL_ARGUMENTS (assume_id), i = 1;
       arg && i < gimple_call_num_args (call);
       i++, arg = DECL_CHAIN (arg))
    {
      tree op = gimple_call_arg (call, i);
      tree type = TREE_TYPE (op);
      if (gimple_range_ssa_p (op) && value_range::supports_type_p (type))
	{
	  tree default_def = ssa_default_def (fun, arg);
	  if (!default_def || type != TREE_TYPE (default_def))
	    continue;
	  // Query the global range of the default def in the assume function.
	  value_range assume_range (type);
	  gimple_range_global (assume_range, default_def, fun);
	  // If there is a non-varying result, add it as an inferred range.
	  if (!assume_range.varying_p ())
	    {
	      add_range (op, assume_range);
	      if (dump_file)
		{
		  print_generic_expr (dump_file, assume_id, TDF_SLIM);
		  fprintf (dump_file, " assume inferred range of ");
		  print_generic_expr (dump_file, op, TDF_SLIM);
		  fprintf (dump_file, " (param ");
		  print_generic_expr (dump_file, arg, TDF_SLIM);
		  fprintf (dump_file, ") = ");
		  assume_range.dump (dump_file);
		  fputc ('\n', dump_file);
		}
	    }
	}
    }
}

// Add NAME and RANGE to the range inference summary.

void
gimple_infer_range::add_range (tree name, vrange &range)
{
  // Do not add an inferred range if it is VARYING.
  if (range.varying_p ())
    return;
  m_names[num_args] = name;
  m_ranges[num_args] = range;
  if (num_args < size_limit - 1)
    num_args++;
}

// Add a nonzero range for NAME to the range inference summary.

void
gimple_infer_range::add_nonzero (tree name)
{
  if (!gimple_range_ssa_p (name))
    return;
  prange nz;
  nz.set_nonzero (TREE_TYPE (name));
  add_range (name, nz);
}

// Process S for range inference and fill in the summary list.
// This is the routine where new inferred ranges should be added.
// If USE_RANGEOPS is true, invoke range-ops on stmts with a single
// ssa-name aa constant to reflect an inferred range. ie
// x_2 = y_3 + 1 will provide an inferred range for y_3 of [-INF, +INF - 1].
// This defaults to FALSE as it can be expensive.,

gimple_infer_range::gimple_infer_range (gimple *s, bool use_rangeops)
{
  num_args = 0;

  if (is_a<gphi *> (s))
    return;

  if (is_a<gcall *> (s) && flag_delete_null_pointer_checks)
    {
      tree fntype = gimple_call_fntype (s);
      bitmap nonnullargs = get_nonnull_args (fntype);
      // Process any non-null arguments
      if (nonnullargs)
	{
	  for (unsigned i = 0; i < gimple_call_num_args (s); i++)
	    {
	      if (bitmap_empty_p (nonnullargs)
		  || bitmap_bit_p (nonnullargs, i))
		{
		  tree op = gimple_call_arg (s, i);
		  if (POINTER_TYPE_P (TREE_TYPE (op)))
		    add_nonzero (op);
		}
	    }
	  BITMAP_FREE (nonnullargs);
	}
      // Fallthru and walk load/store ops now.
    }

  // Check for inferred ranges from ASSUME calls.
  if (is_a<gcall *> (s) && gimple_call_internal_p (s)
      && gimple_call_internal_fn (s) == IFN_ASSUME)
    check_assume_func (as_a<gcall *> (s));

  // Look for possible non-null values.
  if (flag_delete_null_pointer_checks && gimple_code (s) != GIMPLE_ASM
      && !gimple_clobber_p (s))
    walk_stmt_load_store_ops (s, (void *)this, non_null_loadstore,
			      non_null_loadstore);

  // Gated by flag.
  if (!use_rangeops)
    return;

  // Check if there are any inferred ranges from range-ops.
  gimple_range_op_handler handler (s);
  if (!handler)
    return;

  // Only proceed if ONE operand is an SSA_NAME,  This may provide an
  // inferred range for 'y + 3' , but will bypass expressions like
  // 'y + z' as it depends on symbolic values.
  tree ssa1 = gimple_range_ssa_p (handler.operand1 ());
  tree ssa2 = gimple_range_ssa_p (handler.operand2 ());
  if ((ssa1 != NULL) == (ssa2 != NULL))
    return;

  // The other operand should be a constant, so just use the global range
  // query to pick up any other values.
  if (ssa1)
    {
      value_range op1 (TREE_TYPE (ssa1));
      if (op1_range (op1, s, get_global_range_query ()) && !op1.varying_p ())
	add_range (ssa1, op1);
    }
  else
    {
      gcc_checking_assert (ssa2);
      value_range op2 (TREE_TYPE (ssa2));
      if (op2_range (op2, s, get_global_range_query ()) && !op2.varying_p ())
	add_range (ssa2, op2);
    }
}

// Create an single inferred range for NAMe using range R.

gimple_infer_range::gimple_infer_range (tree name, vrange &r)
{
  num_args = 0;
  add_range (name, r);
}

// -------------------------------------------------------------------------

// This class is an element in the list of inferred ranges.

class exit_range
{
public:
  tree name;
  gimple *stmt;
  vrange_storage *range;
  exit_range *next;
};


// If there is an element which matches SSA, return a pointer to the element.
// Otherwise return NULL.

exit_range *
infer_range_manager::exit_range_head::find_ptr (tree ssa)
{
  // Return NULL if SSA is not in this list.
  if (!m_names || !bitmap_bit_p (m_names, SSA_NAME_VERSION (ssa)))
    return NULL;
  for (exit_range *ptr = head; ptr != NULL; ptr = ptr->next)
    if (ptr->name == ssa)
      return ptr;
  // Should be unreachable.
  gcc_unreachable ();
  return NULL;
}

// Construct a range infer manager.  DO_SEARCH indicates whether an immediate
// use scan should be made the first time a name is processed.  This is for
// on-demand clients who may not visit every statement and may miss uses.

infer_range_manager::infer_range_manager (bool do_search)
{
  bitmap_obstack_initialize (&m_bitmaps);
  m_on_exit.create (0);
  m_on_exit.safe_grow_cleared (last_basic_block_for_fn (cfun) + 1);
  // m_seen == NULL indicates no scanning.  Otherwise the bit indicates a
  // scan has been performed on NAME.
  if (do_search)
    m_seen = BITMAP_ALLOC (&m_bitmaps);
  else
    m_seen = NULL;
  obstack_init (&m_list_obstack);
  // Non-zero elements are very common, so cache them for each ssa-name.
  m_nonzero.create (0);
  m_nonzero.safe_grow_cleared (num_ssa_names + 1);
  m_range_allocator = new vrange_allocator;
}

// Destruct a range infer manager.

infer_range_manager::~infer_range_manager ()
{
  m_nonzero.release ();
  obstack_free (&m_list_obstack, NULL);
  m_on_exit.release ();
  bitmap_obstack_release (&m_bitmaps);
  delete m_range_allocator;
}

// Return a non-zero range value of the appropriate type for NAME from
// the cache, creating it if necessary.

const vrange&
infer_range_manager::get_nonzero (tree name)
{
  unsigned v = SSA_NAME_VERSION (name);
  if (v >= m_nonzero.length ())
    m_nonzero.safe_grow_cleared (num_ssa_names + 20);
  if (!m_nonzero[v])
    {
      m_nonzero[v]
	= (irange *) m_range_allocator->alloc (sizeof (int_range <2>));
      m_nonzero[v]->set_nonzero (TREE_TYPE (name));
    }
  return *(m_nonzero[v]);
}

// Return TRUE if NAME has a range inference in block BB.  If NAME is NULL,
// return TRUE if there are any name sin BB.

bool
infer_range_manager::has_range_p (basic_block bb, tree name)
{
  // Check if this is an immediate use search model.
  if (name && m_seen && !bitmap_bit_p (m_seen, SSA_NAME_VERSION (name)))
    register_all_uses (name);

  if (bb->index >= (int)m_on_exit.length ())
    return false;

  bitmap b = m_on_exit[bb->index].m_names;
  if (!b)
    return false;

  if (name)
    return bitmap_bit_p (m_on_exit[bb->index].m_names, SSA_NAME_VERSION (name));
  return !bitmap_empty_p (b);
}

// Return TRUE if NAME has a range inference in block BB, and adjust range R
// to include it.

bool
infer_range_manager::maybe_adjust_range (vrange &r, tree name, basic_block bb)
{
  if (!has_range_p (bb, name))
    return false;
  exit_range *ptr = m_on_exit[bb->index].find_ptr (name);
  gcc_checking_assert (ptr);
  // Return true if this exit range changes R, otherwise false.
  tree type = TREE_TYPE (name);
  value_range tmp (type);
  ptr->range->get_vrange (tmp, type);
  return r.intersect (tmp);
}

// Add all inferred ranges in INFER at stmt S.

void
infer_range_manager::add_ranges (gimple *s, gimple_infer_range &infer)
{
  for (unsigned x = 0; x < infer.num (); x++)
    add_range (infer.name (x), s, infer.range (x));
}

// Add range R as an inferred range for NAME on stmt S.

void
infer_range_manager::add_range (tree name, gimple *s, const vrange &r)
{
  basic_block bb = gimple_bb (s);
  if (!bb)
    return;
  if (bb->index >= (int)m_on_exit.length ())
    m_on_exit.safe_grow_cleared (last_basic_block_for_fn (cfun) + 1);

  // Create the summary list bitmap if it doesn't exist.
  if (!m_on_exit[bb->index].m_names)
      m_on_exit[bb->index].m_names = BITMAP_ALLOC (&m_bitmaps);

  if (dump_file && (dump_flags & TDF_DETAILS))
   {
     fprintf (dump_file, "   on-exit update ");
     print_generic_expr (dump_file, name, TDF_SLIM);
     fprintf (dump_file, " in BB%d : ",bb->index);
     r.dump (dump_file);
     fprintf (dump_file, "\n");
   }

  // If NAME already has a range, intersect them and done.
  exit_range *ptr = m_on_exit[bb->index].find_ptr (name);
  if (ptr)
    {
      tree type = TREE_TYPE (name);
      value_range cur (r), name_range (type);
      ptr->range->get_vrange (name_range, type);
      // If no new info is added, just return.
      if (!cur.intersect (name_range))
	return;
      if (ptr->range->fits_p (cur))
	ptr->range->set_vrange (cur);
      else
	ptr->range = m_range_allocator->clone (cur);
      ptr->stmt = s;
      return;
    }

  // Otherwise create a record.
  bitmap_set_bit (m_on_exit[bb->index].m_names, SSA_NAME_VERSION (name));
  ptr = (exit_range *)obstack_alloc (&m_list_obstack, sizeof (exit_range));
  ptr->range = m_range_allocator->clone (r);
  ptr->name = name;
  ptr->stmt = s;
  ptr->next = m_on_exit[bb->index].head;
  m_on_exit[bb->index].head = ptr;
}

// Add a non-zero inferred range for NAME at stmt S.

void
infer_range_manager::add_nonzero (tree name, gimple *s)
{
  add_range (name, s, get_nonzero (name));
}

// Follow immediate use chains and find all inferred ranges for NAME.

void
infer_range_manager::register_all_uses (tree name)
{
  gcc_checking_assert (m_seen);

  // Check if we've already processed this name.
  unsigned v = SSA_NAME_VERSION (name);
  if (bitmap_bit_p (m_seen, v))
     return;
  bitmap_set_bit (m_seen, v);

  use_operand_p use_p;
  imm_use_iterator iter;

  // Loop over each immediate use and see if it has an inferred range.
  FOR_EACH_IMM_USE_FAST (use_p, iter, name)
    {
      gimple *s = USE_STMT (use_p);
      gimple_infer_range infer (s);
      for (unsigned x = 0; x < infer.num (); x++)
	{
	  if (name == infer.name (x))
	    add_range (name, s, infer.range (x));
	}
    }
}