1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
|
/* Gimple ranger SSA cache implementation.
Copyright (C) 2017-2022 Free Software Foundation, Inc.
Contributed by Andrew MacLeod <amacleod@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "insn-codes.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "gimple-range.h"
#include "value-range-storage.h"
#include "tree-cfg.h"
#include "target.h"
#include "attribs.h"
#include "gimple-iterator.h"
#include "gimple-walk.h"
#include "cfganal.h"
#define DEBUG_RANGE_CACHE (dump_file \
&& (param_ranger_debug & RANGER_DEBUG_CACHE))
// This class represents the API into a cache of ranges for an SSA_NAME.
// Routines must be implemented to set, get, and query if a value is set.
class ssa_block_ranges
{
public:
ssa_block_ranges (tree t) : m_type (t) { }
virtual bool set_bb_range (const_basic_block bb, const vrange &r) = 0;
virtual bool get_bb_range (vrange &r, const_basic_block bb) = 0;
virtual bool bb_range_p (const_basic_block bb) = 0;
void dump(FILE *f);
private:
tree m_type;
};
// Print the list of known ranges for file F in a nice format.
void
ssa_block_ranges::dump (FILE *f)
{
basic_block bb;
Value_Range r (m_type);
FOR_EACH_BB_FN (bb, cfun)
if (get_bb_range (r, bb))
{
fprintf (f, "BB%d -> ", bb->index);
r.dump (f);
fprintf (f, "\n");
}
}
// This class implements the range cache as a linear vector, indexed by BB.
// It caches a varying and undefined range which are used instead of
// allocating new ones each time.
class sbr_vector : public ssa_block_ranges
{
public:
sbr_vector (tree t, vrange_allocator *allocator);
virtual bool set_bb_range (const_basic_block bb, const vrange &r) override;
virtual bool get_bb_range (vrange &r, const_basic_block bb) override;
virtual bool bb_range_p (const_basic_block bb) override;
protected:
vrange **m_tab; // Non growing vector.
int m_tab_size;
vrange *m_varying;
vrange *m_undefined;
tree m_type;
vrange_allocator *m_range_allocator;
void grow ();
};
// Initialize a block cache for an ssa_name of type T.
sbr_vector::sbr_vector (tree t, vrange_allocator *allocator)
: ssa_block_ranges (t)
{
gcc_checking_assert (TYPE_P (t));
m_type = t;
m_range_allocator = allocator;
m_tab_size = last_basic_block_for_fn (cfun) + 1;
m_tab = static_cast <vrange **>
(allocator->alloc (m_tab_size * sizeof (vrange *)));
memset (m_tab, 0, m_tab_size * sizeof (vrange *));
// Create the cached type range.
m_varying = m_range_allocator->alloc_vrange (t);
m_undefined = m_range_allocator->alloc_vrange (t);
m_varying->set_varying (t);
m_undefined->set_undefined ();
}
// Grow the vector when the CFG has increased in size.
void
sbr_vector::grow ()
{
int curr_bb_size = last_basic_block_for_fn (cfun);
gcc_checking_assert (curr_bb_size > m_tab_size);
// Increase the max of a)128, b)needed increase * 2, c)10% of current_size.
int inc = MAX ((curr_bb_size - m_tab_size) * 2, 128);
inc = MAX (inc, curr_bb_size / 10);
int new_size = inc + curr_bb_size;
// Allocate new memory, copy the old vector and clear the new space.
vrange **t = static_cast <vrange **>
(m_range_allocator->alloc (new_size * sizeof (vrange *)));
memcpy (t, m_tab, m_tab_size * sizeof (vrange *));
memset (t + m_tab_size, 0, (new_size - m_tab_size) * sizeof (vrange *));
m_tab = t;
m_tab_size = new_size;
}
// Set the range for block BB to be R.
bool
sbr_vector::set_bb_range (const_basic_block bb, const vrange &r)
{
vrange *m;
if (bb->index >= m_tab_size)
grow ();
if (r.varying_p ())
m = m_varying;
else if (r.undefined_p ())
m = m_undefined;
else
m = m_range_allocator->clone (r);
m_tab[bb->index] = m;
return true;
}
// Return the range associated with block BB in R. Return false if
// there is no range.
bool
sbr_vector::get_bb_range (vrange &r, const_basic_block bb)
{
if (bb->index >= m_tab_size)
return false;
vrange *m = m_tab[bb->index];
if (m)
{
r = *m;
return true;
}
return false;
}
// Return true if a range is present.
bool
sbr_vector::bb_range_p (const_basic_block bb)
{
if (bb->index < m_tab_size)
return m_tab[bb->index] != NULL;
return false;
}
// This class implements the on entry cache via a sparse bitmap.
// It uses the quad bit routines to access 4 bits at a time.
// A value of 0 (the default) means there is no entry, and a value of
// 1 thru SBR_NUM represents an element in the m_range vector.
// Varying is given the first value (1) and pre-cached.
// SBR_NUM + 1 represents the value of UNDEFINED, and is never stored.
// SBR_NUM is the number of values that can be cached.
// Indexes are 1..SBR_NUM and are stored locally at m_range[0..SBR_NUM-1]
#define SBR_NUM 14
#define SBR_UNDEF SBR_NUM + 1
#define SBR_VARYING 1
class sbr_sparse_bitmap : public ssa_block_ranges
{
public:
sbr_sparse_bitmap (tree t, vrange_allocator *allocator, bitmap_obstack *bm);
virtual bool set_bb_range (const_basic_block bb, const vrange &r) override;
virtual bool get_bb_range (vrange &r, const_basic_block bb) override;
virtual bool bb_range_p (const_basic_block bb) override;
private:
void bitmap_set_quad (bitmap head, int quad, int quad_value);
int bitmap_get_quad (const_bitmap head, int quad);
vrange_allocator *m_range_allocator;
vrange *m_range[SBR_NUM];
bitmap_head bitvec;
tree m_type;
};
// Initialize a block cache for an ssa_name of type T.
sbr_sparse_bitmap::sbr_sparse_bitmap (tree t, vrange_allocator *allocator,
bitmap_obstack *bm)
: ssa_block_ranges (t)
{
gcc_checking_assert (TYPE_P (t));
m_type = t;
bitmap_initialize (&bitvec, bm);
bitmap_tree_view (&bitvec);
m_range_allocator = allocator;
// Pre-cache varying.
m_range[0] = m_range_allocator->alloc_vrange (t);
m_range[0]->set_varying (t);
// Pre-cache zero and non-zero values for pointers.
if (POINTER_TYPE_P (t))
{
m_range[1] = m_range_allocator->alloc_vrange (t);
m_range[1]->set_nonzero (t);
m_range[2] = m_range_allocator->alloc_vrange (t);
m_range[2]->set_zero (t);
}
else
m_range[1] = m_range[2] = NULL;
// Clear SBR_NUM entries.
for (int x = 3; x < SBR_NUM; x++)
m_range[x] = 0;
}
// Set 4 bit values in a sparse bitmap. This allows a bitmap to
// function as a sparse array of 4 bit values.
// QUAD is the index, QUAD_VALUE is the 4 bit value to set.
inline void
sbr_sparse_bitmap::bitmap_set_quad (bitmap head, int quad, int quad_value)
{
bitmap_set_aligned_chunk (head, quad, 4, (BITMAP_WORD) quad_value);
}
// Get a 4 bit value from a sparse bitmap. This allows a bitmap to
// function as a sparse array of 4 bit values.
// QUAD is the index.
inline int
sbr_sparse_bitmap::bitmap_get_quad (const_bitmap head, int quad)
{
return (int) bitmap_get_aligned_chunk (head, quad, 4);
}
// Set the range on entry to basic block BB to R.
bool
sbr_sparse_bitmap::set_bb_range (const_basic_block bb, const vrange &r)
{
if (r.undefined_p ())
{
bitmap_set_quad (&bitvec, bb->index, SBR_UNDEF);
return true;
}
// Loop thru the values to see if R is already present.
for (int x = 0; x < SBR_NUM; x++)
if (!m_range[x] || r == *(m_range[x]))
{
if (!m_range[x])
m_range[x] = m_range_allocator->clone (r);
bitmap_set_quad (&bitvec, bb->index, x + 1);
return true;
}
// All values are taken, default to VARYING.
bitmap_set_quad (&bitvec, bb->index, SBR_VARYING);
return false;
}
// Return the range associated with block BB in R. Return false if
// there is no range.
bool
sbr_sparse_bitmap::get_bb_range (vrange &r, const_basic_block bb)
{
int value = bitmap_get_quad (&bitvec, bb->index);
if (!value)
return false;
gcc_checking_assert (value <= SBR_UNDEF);
if (value == SBR_UNDEF)
r.set_undefined ();
else
r = *(m_range[value - 1]);
return true;
}
// Return true if a range is present.
bool
sbr_sparse_bitmap::bb_range_p (const_basic_block bb)
{
return (bitmap_get_quad (&bitvec, bb->index) != 0);
}
// -------------------------------------------------------------------------
// Initialize the block cache.
block_range_cache::block_range_cache ()
{
bitmap_obstack_initialize (&m_bitmaps);
m_ssa_ranges.create (0);
m_ssa_ranges.safe_grow_cleared (num_ssa_names);
m_range_allocator = new obstack_vrange_allocator;
}
// Remove any m_block_caches which have been created.
block_range_cache::~block_range_cache ()
{
delete m_range_allocator;
// Release the vector itself.
m_ssa_ranges.release ();
bitmap_obstack_release (&m_bitmaps);
}
// Set the range for NAME on entry to block BB to R.
// If it has not been accessed yet, allocate it first.
bool
block_range_cache::set_bb_range (tree name, const_basic_block bb,
const vrange &r)
{
unsigned v = SSA_NAME_VERSION (name);
if (v >= m_ssa_ranges.length ())
m_ssa_ranges.safe_grow_cleared (num_ssa_names + 1);
if (!m_ssa_ranges[v])
{
// Use sparse representation if there are too many basic blocks.
if (last_basic_block_for_fn (cfun) > param_evrp_sparse_threshold)
{
void *r = m_range_allocator->alloc (sizeof (sbr_sparse_bitmap));
m_ssa_ranges[v] = new (r) sbr_sparse_bitmap (TREE_TYPE (name),
m_range_allocator,
&m_bitmaps);
}
else
{
// Otherwise use the default vector implemntation.
void *r = m_range_allocator->alloc (sizeof (sbr_vector));
m_ssa_ranges[v] = new (r) sbr_vector (TREE_TYPE (name),
m_range_allocator);
}
}
return m_ssa_ranges[v]->set_bb_range (bb, r);
}
// Return a pointer to the ssa_block_cache for NAME. If it has not been
// accessed yet, return NULL.
inline ssa_block_ranges *
block_range_cache::query_block_ranges (tree name)
{
unsigned v = SSA_NAME_VERSION (name);
if (v >= m_ssa_ranges.length () || !m_ssa_ranges[v])
return NULL;
return m_ssa_ranges[v];
}
// Return the range for NAME on entry to BB in R. Return true if there
// is one.
bool
block_range_cache::get_bb_range (vrange &r, tree name, const_basic_block bb)
{
ssa_block_ranges *ptr = query_block_ranges (name);
if (ptr)
return ptr->get_bb_range (r, bb);
return false;
}
// Return true if NAME has a range set in block BB.
bool
block_range_cache::bb_range_p (tree name, const_basic_block bb)
{
ssa_block_ranges *ptr = query_block_ranges (name);
if (ptr)
return ptr->bb_range_p (bb);
return false;
}
// Print all known block caches to file F.
void
block_range_cache::dump (FILE *f)
{
unsigned x;
for (x = 0; x < m_ssa_ranges.length (); ++x)
{
if (m_ssa_ranges[x])
{
fprintf (f, " Ranges for ");
print_generic_expr (f, ssa_name (x), TDF_NONE);
fprintf (f, ":\n");
m_ssa_ranges[x]->dump (f);
fprintf (f, "\n");
}
}
}
// Print all known ranges on entry to blobk BB to file F.
void
block_range_cache::dump (FILE *f, basic_block bb, bool print_varying)
{
unsigned x;
bool summarize_varying = false;
for (x = 1; x < m_ssa_ranges.length (); ++x)
{
if (!gimple_range_ssa_p (ssa_name (x)))
continue;
Value_Range r (TREE_TYPE (ssa_name (x)));
if (m_ssa_ranges[x] && m_ssa_ranges[x]->get_bb_range (r, bb))
{
if (!print_varying && r.varying_p ())
{
summarize_varying = true;
continue;
}
print_generic_expr (f, ssa_name (x), TDF_NONE);
fprintf (f, "\t");
r.dump(f);
fprintf (f, "\n");
}
}
// If there were any varying entries, lump them all together.
if (summarize_varying)
{
fprintf (f, "VARYING_P on entry : ");
for (x = 1; x < num_ssa_names; ++x)
{
if (!gimple_range_ssa_p (ssa_name (x)))
continue;
Value_Range r (TREE_TYPE (ssa_name (x)));
if (m_ssa_ranges[x] && m_ssa_ranges[x]->get_bb_range (r, bb))
{
if (r.varying_p ())
{
print_generic_expr (f, ssa_name (x), TDF_NONE);
fprintf (f, " ");
}
}
}
fprintf (f, "\n");
}
}
// -------------------------------------------------------------------------
// Initialize a global cache.
ssa_global_cache::ssa_global_cache ()
{
m_tab.create (0);
m_range_allocator = new obstack_vrange_allocator;
}
// Deconstruct a global cache.
ssa_global_cache::~ssa_global_cache ()
{
m_tab.release ();
delete m_range_allocator;
}
// Retrieve the global range of NAME from cache memory if it exists.
// Return the value in R.
bool
ssa_global_cache::get_global_range (vrange &r, tree name) const
{
unsigned v = SSA_NAME_VERSION (name);
if (v >= m_tab.length ())
return false;
vrange *stow = m_tab[v];
if (!stow)
return false;
r = *stow;
return true;
}
// Set the range for NAME to R in the global cache.
// Return TRUE if there was already a range set, otherwise false.
bool
ssa_global_cache::set_global_range (tree name, const vrange &r)
{
unsigned v = SSA_NAME_VERSION (name);
if (v >= m_tab.length ())
m_tab.safe_grow_cleared (num_ssa_names + 1);
vrange *m = m_tab[v];
if (m && m->fits_p (r))
*m = r;
else
m_tab[v] = m_range_allocator->clone (r);
return m != NULL;
}
// Set the range for NAME to R in the glonbal cache.
void
ssa_global_cache::clear_global_range (tree name)
{
unsigned v = SSA_NAME_VERSION (name);
if (v >= m_tab.length ())
m_tab.safe_grow_cleared (num_ssa_names + 1);
m_tab[v] = NULL;
}
// Clear the global cache.
void
ssa_global_cache::clear ()
{
if (m_tab.address ())
memset (m_tab.address(), 0, m_tab.length () * sizeof (vrange *));
}
// Dump the contents of the global cache to F.
void
ssa_global_cache::dump (FILE *f)
{
/* Cleared after the table header has been printed. */
bool print_header = true;
for (unsigned x = 1; x < num_ssa_names; x++)
{
if (!gimple_range_ssa_p (ssa_name (x)))
continue;
Value_Range r (TREE_TYPE (ssa_name (x)));
if (get_global_range (r, ssa_name (x)) && !r.varying_p ())
{
if (print_header)
{
/* Print the header only when there's something else
to print below. */
fprintf (f, "Non-varying global ranges:\n");
fprintf (f, "=========================:\n");
print_header = false;
}
print_generic_expr (f, ssa_name (x), TDF_NONE);
fprintf (f, " : ");
r.dump (f);
fprintf (f, "\n");
}
}
if (!print_header)
fputc ('\n', f);
}
// --------------------------------------------------------------------------
// This class will manage the timestamps for each ssa_name.
// When a value is calculated, the timestamp is set to the current time.
// Current time is then incremented. Any dependencies will already have
// been calculated, and will thus have older timestamps.
// If one of those values is ever calculated again, it will get a newer
// timestamp, and the "current_p" check will fail.
class temporal_cache
{
public:
temporal_cache ();
~temporal_cache ();
bool current_p (tree name, tree dep1, tree dep2) const;
void set_timestamp (tree name);
void set_always_current (tree name);
private:
unsigned temporal_value (unsigned ssa) const;
unsigned m_current_time;
vec <unsigned> m_timestamp;
};
inline
temporal_cache::temporal_cache ()
{
m_current_time = 1;
m_timestamp.create (0);
m_timestamp.safe_grow_cleared (num_ssa_names);
}
inline
temporal_cache::~temporal_cache ()
{
m_timestamp.release ();
}
// Return the timestamp value for SSA, or 0 if there isnt one.
inline unsigned
temporal_cache::temporal_value (unsigned ssa) const
{
if (ssa >= m_timestamp.length ())
return 0;
return m_timestamp[ssa];
}
// Return TRUE if the timestampe for NAME is newer than any of its dependents.
// Up to 2 dependencies can be checked.
bool
temporal_cache::current_p (tree name, tree dep1, tree dep2) const
{
unsigned ts = temporal_value (SSA_NAME_VERSION (name));
if (ts == 0)
return true;
// Any non-registered dependencies will have a value of 0 and thus be older.
// Return true if time is newer than either dependent.
if (dep1 && ts < temporal_value (SSA_NAME_VERSION (dep1)))
return false;
if (dep2 && ts < temporal_value (SSA_NAME_VERSION (dep2)))
return false;
return true;
}
// This increments the global timer and sets the timestamp for NAME.
inline void
temporal_cache::set_timestamp (tree name)
{
unsigned v = SSA_NAME_VERSION (name);
if (v >= m_timestamp.length ())
m_timestamp.safe_grow_cleared (num_ssa_names + 20);
m_timestamp[v] = ++m_current_time;
}
// Set the timestamp to 0, marking it as "always up to date".
inline void
temporal_cache::set_always_current (tree name)
{
unsigned v = SSA_NAME_VERSION (name);
if (v >= m_timestamp.length ())
m_timestamp.safe_grow_cleared (num_ssa_names + 20);
m_timestamp[v] = 0;
}
// --------------------------------------------------------------------------
// This class provides an abstraction of a list of blocks to be updated
// by the cache. It is currently a stack but could be changed. It also
// maintains a list of blocks which have failed propagation, and does not
// enter any of those blocks into the list.
// A vector over the BBs is maintained, and an entry of 0 means it is not in
// a list. Otherwise, the entry is the next block in the list. -1 terminates
// the list. m_head points to the top of the list, -1 if the list is empty.
class update_list
{
public:
update_list ();
~update_list ();
void add (basic_block bb);
basic_block pop ();
inline bool empty_p () { return m_update_head == -1; }
inline void clear_failures () { bitmap_clear (m_propfail); }
inline void propagation_failed (basic_block bb)
{ bitmap_set_bit (m_propfail, bb->index); }
private:
vec<int> m_update_list;
int m_update_head;
bitmap m_propfail;
};
// Create an update list.
update_list::update_list ()
{
m_update_list.create (0);
m_update_list.safe_grow_cleared (last_basic_block_for_fn (cfun) + 64);
m_update_head = -1;
m_propfail = BITMAP_ALLOC (NULL);
}
// Destroy an update list.
update_list::~update_list ()
{
m_update_list.release ();
BITMAP_FREE (m_propfail);
}
// Add BB to the list of blocks to update, unless it's already in the list.
void
update_list::add (basic_block bb)
{
int i = bb->index;
// If propagation has failed for BB, or its already in the list, don't
// add it again.
if ((unsigned)i >= m_update_list.length ())
m_update_list.safe_grow_cleared (i + 64);
if (!m_update_list[i] && !bitmap_bit_p (m_propfail, i))
{
if (empty_p ())
{
m_update_head = i;
m_update_list[i] = -1;
}
else
{
gcc_checking_assert (m_update_head > 0);
m_update_list[i] = m_update_head;
m_update_head = i;
}
}
}
// Remove a block from the list.
basic_block
update_list::pop ()
{
gcc_checking_assert (!empty_p ());
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, m_update_head);
int pop = m_update_head;
m_update_head = m_update_list[pop];
m_update_list[pop] = 0;
return bb;
}
// --------------------------------------------------------------------------
ranger_cache::ranger_cache (int not_executable_flag, bool use_imm_uses)
: m_gori (not_executable_flag),
m_exit (use_imm_uses)
{
m_workback.create (0);
m_workback.safe_grow_cleared (last_basic_block_for_fn (cfun));
m_workback.truncate (0);
m_temporal = new temporal_cache;
// If DOM info is available, spawn an oracle as well.
if (dom_info_available_p (CDI_DOMINATORS))
m_oracle = new dom_oracle ();
else
m_oracle = NULL;
unsigned x, lim = last_basic_block_for_fn (cfun);
// Calculate outgoing range info upfront. This will fully populate the
// m_maybe_variant bitmap which will help eliminate processing of names
// which never have their ranges adjusted.
for (x = 0; x < lim ; x++)
{
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, x);
if (bb)
m_gori.exports (bb);
}
m_update = new update_list ();
}
ranger_cache::~ranger_cache ()
{
delete m_update;
if (m_oracle)
delete m_oracle;
delete m_temporal;
m_workback.release ();
}
// Dump the global caches to file F. if GORI_DUMP is true, dump the
// gori map as well.
void
ranger_cache::dump (FILE *f)
{
m_globals.dump (f);
fprintf (f, "\n");
}
// Dump the caches for basic block BB to file F.
void
ranger_cache::dump_bb (FILE *f, basic_block bb)
{
m_gori.gori_map::dump (f, bb, false);
m_on_entry.dump (f, bb);
if (m_oracle)
m_oracle->dump (f, bb);
}
// Get the global range for NAME, and return in R. Return false if the
// global range is not set, and return the legacy global value in R.
bool
ranger_cache::get_global_range (vrange &r, tree name) const
{
if (m_globals.get_global_range (r, name))
return true;
gimple_range_global (r, name);
return false;
}
// Get the global range for NAME, and return in R. Return false if the
// global range is not set, and R will contain the legacy global value.
// CURRENT_P is set to true if the value was in cache and not stale.
// Otherwise, set CURRENT_P to false and mark as it always current.
// If the global cache did not have a value, initialize it as well.
// After this call, the global cache will have a value.
bool
ranger_cache::get_global_range (vrange &r, tree name, bool ¤t_p)
{
bool had_global = get_global_range (r, name);
// If there was a global value, set current flag, otherwise set a value.
current_p = false;
if (had_global)
current_p = r.singleton_p ()
|| m_temporal->current_p (name, m_gori.depend1 (name),
m_gori.depend2 (name));
else
m_globals.set_global_range (name, r);
// If the existing value was not current, mark it as always current.
if (!current_p)
m_temporal->set_always_current (name);
return had_global;
}
// Set the global range of NAME to R and give it a timestamp.
void
ranger_cache::set_global_range (tree name, const vrange &r)
{
if (m_globals.set_global_range (name, r))
{
// If there was already a range set, propagate the new value.
basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (name));
if (!bb)
bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
if (DEBUG_RANGE_CACHE)
fprintf (dump_file, " GLOBAL :");
propagate_updated_value (name, bb);
}
// Constants no longer need to tracked. Any further refinement has to be
// undefined. Propagation works better with constants. PR 100512.
// Pointers which resolve to non-zero also do not need
// tracking in the cache as they will never change. See PR 98866.
// Timestamp must always be updated, or dependent calculations may
// not include this latest value. PR 100774.
if (r.singleton_p ()
|| (POINTER_TYPE_P (TREE_TYPE (name)) && r.nonzero_p ()))
m_gori.set_range_invariant (name);
m_temporal->set_timestamp (name);
}
// Provide lookup for the gori-computes class to access the best known range
// of an ssa_name in any given basic block. Note, this does no additonal
// lookups, just accesses the data that is already known.
// Get the range of NAME when the def occurs in block BB. If BB is NULL
// get the best global value available.
void
ranger_cache::range_of_def (vrange &r, tree name, basic_block bb)
{
gcc_checking_assert (gimple_range_ssa_p (name));
gcc_checking_assert (!bb || bb == gimple_bb (SSA_NAME_DEF_STMT (name)));
// Pick up the best global range available.
if (!m_globals.get_global_range (r, name))
{
// If that fails, try to calculate the range using just global values.
gimple *s = SSA_NAME_DEF_STMT (name);
if (gimple_get_lhs (s) == name)
fold_range (r, s, get_global_range_query ());
else
gimple_range_global (r, name);
}
}
// Get the range of NAME as it occurs on entry to block BB. Use MODE for
// lookups.
void
ranger_cache::entry_range (vrange &r, tree name, basic_block bb,
enum rfd_mode mode)
{
if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
{
gimple_range_global (r, name);
return;
}
// Look for the on-entry value of name in BB from the cache.
// Otherwise pick up the best available global value.
if (!m_on_entry.get_bb_range (r, name, bb))
if (!range_from_dom (r, name, bb, mode))
range_of_def (r, name);
}
// Get the range of NAME as it occurs on exit from block BB. Use MODE for
// lookups.
void
ranger_cache::exit_range (vrange &r, tree name, basic_block bb,
enum rfd_mode mode)
{
if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
{
gimple_range_global (r, name);
return;
}
gimple *s = SSA_NAME_DEF_STMT (name);
basic_block def_bb = gimple_bb (s);
if (def_bb == bb)
range_of_def (r, name, bb);
else
entry_range (r, name, bb, mode);
}
// Get the range of NAME on edge E using MODE, return the result in R.
// Always returns a range and true.
bool
ranger_cache::edge_range (vrange &r, edge e, tree name, enum rfd_mode mode)
{
exit_range (r, name, e->src, mode);
// If this is not an abnormal edge, check for inferred ranges on exit.
if ((e->flags & (EDGE_EH | EDGE_ABNORMAL)) == 0)
m_exit.maybe_adjust_range (r, name, e->src);
Value_Range er (TREE_TYPE (name));
if (m_gori.outgoing_edge_range_p (er, e, name, *this))
r.intersect (er);
return true;
}
// Implement range_of_expr.
bool
ranger_cache::range_of_expr (vrange &r, tree name, gimple *stmt)
{
if (!gimple_range_ssa_p (name))
{
get_tree_range (r, name, stmt);
return true;
}
basic_block bb = gimple_bb (stmt);
gimple *def_stmt = SSA_NAME_DEF_STMT (name);
basic_block def_bb = gimple_bb (def_stmt);
if (bb == def_bb)
range_of_def (r, name, bb);
else
entry_range (r, name, bb, RFD_NONE);
return true;
}
// Implement range_on_edge. Always return the best available range using
// the current cache values.
bool
ranger_cache::range_on_edge (vrange &r, edge e, tree expr)
{
if (gimple_range_ssa_p (expr))
return edge_range (r, e, expr, RFD_NONE);
return get_tree_range (r, expr, NULL);
}
// Return a static range for NAME on entry to basic block BB in R. If
// calc is true, fill any cache entries required between BB and the
// def block for NAME. Otherwise, return false if the cache is empty.
bool
ranger_cache::block_range (vrange &r, basic_block bb, tree name, bool calc)
{
gcc_checking_assert (gimple_range_ssa_p (name));
// If there are no range calculations anywhere in the IL, global range
// applies everywhere, so don't bother caching it.
if (!m_gori.has_edge_range_p (name))
return false;
if (calc)
{
gimple *def_stmt = SSA_NAME_DEF_STMT (name);
basic_block def_bb = NULL;
if (def_stmt)
def_bb = gimple_bb (def_stmt);;
if (!def_bb)
{
// If we get to the entry block, this better be a default def
// or range_on_entry was called for a block not dominated by
// the def.
gcc_checking_assert (SSA_NAME_IS_DEFAULT_DEF (name));
def_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
}
// There is no range on entry for the definition block.
if (def_bb == bb)
return false;
// Otherwise, go figure out what is known in predecessor blocks.
fill_block_cache (name, bb, def_bb);
gcc_checking_assert (m_on_entry.bb_range_p (name, bb));
}
return m_on_entry.get_bb_range (r, name, bb);
}
// If there is anything in the propagation update_list, continue
// processing NAME until the list of blocks is empty.
void
ranger_cache::propagate_cache (tree name)
{
basic_block bb;
edge_iterator ei;
edge e;
tree type = TREE_TYPE (name);
Value_Range new_range (type);
Value_Range current_range (type);
Value_Range e_range (type);
// Process each block by seeing if its calculated range on entry is
// the same as its cached value. If there is a difference, update
// the cache to reflect the new value, and check to see if any
// successors have cache entries which may need to be checked for
// updates.
while (!m_update->empty_p ())
{
bb = m_update->pop ();
gcc_checking_assert (m_on_entry.bb_range_p (name, bb));
m_on_entry.get_bb_range (current_range, name, bb);
if (DEBUG_RANGE_CACHE)
{
fprintf (dump_file, "FWD visiting block %d for ", bb->index);
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, " starting range : ");
current_range.dump (dump_file);
fprintf (dump_file, "\n");
}
// Calculate the "new" range on entry by unioning the pred edges.
new_range.set_undefined ();
FOR_EACH_EDGE (e, ei, bb->preds)
{
range_on_edge (e_range, e, name);
if (DEBUG_RANGE_CACHE)
{
fprintf (dump_file, " edge %d->%d :", e->src->index, bb->index);
e_range.dump (dump_file);
fprintf (dump_file, "\n");
}
new_range.union_ (e_range);
if (new_range.varying_p ())
break;
}
// If the range on entry has changed, update it.
if (new_range != current_range)
{
bool ok_p = m_on_entry.set_bb_range (name, bb, new_range);
// If the cache couldn't set the value, mark it as failed.
if (!ok_p)
m_update->propagation_failed (bb);
if (DEBUG_RANGE_CACHE)
{
if (!ok_p)
{
fprintf (dump_file, " Cache failure to store value:");
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, " ");
}
else
{
fprintf (dump_file, " Updating range to ");
new_range.dump (dump_file);
}
fprintf (dump_file, "\n Updating blocks :");
}
// Mark each successor that has a range to re-check its range
FOR_EACH_EDGE (e, ei, bb->succs)
if (m_on_entry.bb_range_p (name, e->dest))
{
if (DEBUG_RANGE_CACHE)
fprintf (dump_file, " bb%d",e->dest->index);
m_update->add (e->dest);
}
if (DEBUG_RANGE_CACHE)
fprintf (dump_file, "\n");
}
}
if (DEBUG_RANGE_CACHE)
{
fprintf (dump_file, "DONE visiting blocks for ");
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, "\n");
}
m_update->clear_failures ();
}
// Check to see if an update to the value for NAME in BB has any effect
// on values already in the on-entry cache for successor blocks.
// If it does, update them. Don't visit any blocks which dont have a cache
// entry.
void
ranger_cache::propagate_updated_value (tree name, basic_block bb)
{
edge e;
edge_iterator ei;
// The update work list should be empty at this point.
gcc_checking_assert (m_update->empty_p ());
gcc_checking_assert (bb);
if (DEBUG_RANGE_CACHE)
{
fprintf (dump_file, " UPDATE cache for ");
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, " in BB %d : successors : ", bb->index);
}
FOR_EACH_EDGE (e, ei, bb->succs)
{
// Only update active cache entries.
if (m_on_entry.bb_range_p (name, e->dest))
{
m_update->add (e->dest);
if (DEBUG_RANGE_CACHE)
fprintf (dump_file, " UPDATE: bb%d", e->dest->index);
}
}
if (!m_update->empty_p ())
{
if (DEBUG_RANGE_CACHE)
fprintf (dump_file, "\n");
propagate_cache (name);
}
else
{
if (DEBUG_RANGE_CACHE)
fprintf (dump_file, " : No updates!\n");
}
}
// Make sure that the range-on-entry cache for NAME is set for block BB.
// Work back through the CFG to DEF_BB ensuring the range is calculated
// on the block/edges leading back to that point.
void
ranger_cache::fill_block_cache (tree name, basic_block bb, basic_block def_bb)
{
edge_iterator ei;
edge e;
tree type = TREE_TYPE (name);
Value_Range block_result (type);
Value_Range undefined (type);
// At this point we shouldn't be looking at the def, entry block.
gcc_checking_assert (bb != def_bb && bb != ENTRY_BLOCK_PTR_FOR_FN (cfun));
gcc_checking_assert (m_workback.length () == 0);
// If the block cache is set, then we've already visited this block.
if (m_on_entry.bb_range_p (name, bb))
return;
if (DEBUG_RANGE_CACHE)
{
fprintf (dump_file, "\n");
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, " : ");
}
// Check if a dominators can supply the range.
if (range_from_dom (block_result, name, bb, RFD_FILL))
{
if (DEBUG_RANGE_CACHE)
{
fprintf (dump_file, "Filled from dominator! : ");
block_result.dump (dump_file);
fprintf (dump_file, "\n");
}
// See if any equivalences can refine it.
if (m_oracle)
{
tree equiv_name;
relation_kind rel;
int prec = TYPE_PRECISION (type);
FOR_EACH_PARTIAL_AND_FULL_EQUIV (m_oracle, bb, name, equiv_name, rel)
{
basic_block equiv_bb = gimple_bb (SSA_NAME_DEF_STMT (equiv_name));
// Ignore partial equivs that are smaller than this object.
if (rel != VREL_EQ && prec > pe_to_bits (rel))
continue;
// Check if the equiv has any ranges calculated.
if (!m_gori.has_edge_range_p (equiv_name))
continue;
// Check if the equiv definition dominates this block
if (equiv_bb == bb ||
(equiv_bb && !dominated_by_p (CDI_DOMINATORS, bb, equiv_bb)))
continue;
if (DEBUG_RANGE_CACHE)
{
if (rel == VREL_EQ)
fprintf (dump_file, "Checking Equivalence (");
else
fprintf (dump_file, "Checking Partial equiv (");
print_relation (dump_file, rel);
fprintf (dump_file, ") ");
print_generic_expr (dump_file, equiv_name, TDF_SLIM);
fprintf (dump_file, "\n");
}
Value_Range equiv_range (TREE_TYPE (equiv_name));
if (range_from_dom (equiv_range, equiv_name, bb, RFD_READ_ONLY))
{
if (rel != VREL_EQ)
range_cast (equiv_range, type);
if (block_result.intersect (equiv_range))
{
if (DEBUG_RANGE_CACHE)
{
if (rel == VREL_EQ)
fprintf (dump_file, "Equivalence update! : ");
else
fprintf (dump_file, "Partial equiv update! : ");
print_generic_expr (dump_file, equiv_name, TDF_SLIM);
fprintf (dump_file, " has range : ");
equiv_range.dump (dump_file);
fprintf (dump_file, " refining range to :");
block_result.dump (dump_file);
fprintf (dump_file, "\n");
}
}
}
}
}
m_on_entry.set_bb_range (name, bb, block_result);
gcc_checking_assert (m_workback.length () == 0);
return;
}
// Visit each block back to the DEF. Initialize each one to UNDEFINED.
// m_visited at the end will contain all the blocks that we needed to set
// the range_on_entry cache for.
m_workback.quick_push (bb);
undefined.set_undefined ();
m_on_entry.set_bb_range (name, bb, undefined);
gcc_checking_assert (m_update->empty_p ());
while (m_workback.length () > 0)
{
basic_block node = m_workback.pop ();
if (DEBUG_RANGE_CACHE)
{
fprintf (dump_file, "BACK visiting block %d for ", node->index);
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, "\n");
}
FOR_EACH_EDGE (e, ei, node->preds)
{
basic_block pred = e->src;
Value_Range r (TREE_TYPE (name));
if (DEBUG_RANGE_CACHE)
fprintf (dump_file, " %d->%d ",e->src->index, e->dest->index);
// If the pred block is the def block add this BB to update list.
if (pred == def_bb)
{
m_update->add (node);
continue;
}
// If the pred is entry but NOT def, then it is used before
// defined, it'll get set to [] and no need to update it.
if (pred == ENTRY_BLOCK_PTR_FOR_FN (cfun))
{
if (DEBUG_RANGE_CACHE)
fprintf (dump_file, "entry: bail.");
continue;
}
// Regardless of whether we have visited pred or not, if the
// pred has inferred ranges, revisit this block.
// Don't search the DOM tree.
if (m_exit.has_range_p (name, pred))
{
if (DEBUG_RANGE_CACHE)
fprintf (dump_file, "Inferred range: update ");
m_update->add (node);
}
// If the pred block already has a range, or if it can contribute
// something new. Ie, the edge generates a range of some sort.
if (m_on_entry.get_bb_range (r, name, pred))
{
if (DEBUG_RANGE_CACHE)
{
fprintf (dump_file, "has cache, ");
r.dump (dump_file);
fprintf (dump_file, ", ");
}
if (!r.undefined_p () || m_gori.has_edge_range_p (name, e))
{
m_update->add (node);
if (DEBUG_RANGE_CACHE)
fprintf (dump_file, "update. ");
}
continue;
}
if (DEBUG_RANGE_CACHE)
fprintf (dump_file, "pushing undefined pred block.\n");
// If the pred hasn't been visited (has no range), add it to
// the list.
gcc_checking_assert (!m_on_entry.bb_range_p (name, pred));
m_on_entry.set_bb_range (name, pred, undefined);
m_workback.quick_push (pred);
}
}
if (DEBUG_RANGE_CACHE)
fprintf (dump_file, "\n");
// Now fill in the marked blocks with values.
propagate_cache (name);
if (DEBUG_RANGE_CACHE)
fprintf (dump_file, " Propagation update done.\n");
}
// Resolve the range of BB if the dominators range is R by calculating incoming
// edges to this block. All lead back to the dominator so should be cheap.
// The range for BB is set and returned in R.
void
ranger_cache::resolve_dom (vrange &r, tree name, basic_block bb)
{
basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (name));
basic_block dom_bb = get_immediate_dominator (CDI_DOMINATORS, bb);
// if it doesn't already have a value, store the incoming range.
if (!m_on_entry.bb_range_p (name, dom_bb) && def_bb != dom_bb)
{
// If the range can't be store, don't try to accumulate
// the range in PREV_BB due to excessive recalculations.
if (!m_on_entry.set_bb_range (name, dom_bb, r))
return;
}
// With the dominator set, we should be able to cheaply query
// each incoming edge now and accumulate the results.
r.set_undefined ();
edge e;
edge_iterator ei;
Value_Range er (TREE_TYPE (name));
FOR_EACH_EDGE (e, ei, bb->preds)
{
edge_range (er, e, name, RFD_READ_ONLY);
r.union_ (er);
}
// Set the cache in PREV_BB so it is not calculated again.
m_on_entry.set_bb_range (name, bb, r);
}
// Get the range of NAME from dominators of BB and return it in R. Search the
// dominator tree based on MODE.
bool
ranger_cache::range_from_dom (vrange &r, tree name, basic_block start_bb,
enum rfd_mode mode)
{
if (mode == RFD_NONE || !dom_info_available_p (CDI_DOMINATORS))
return false;
// Search back to the definition block or entry block.
basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (name));
if (def_bb == NULL)
def_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
basic_block bb;
basic_block prev_bb = start_bb;
// Track any inferred ranges seen.
Value_Range infer (TREE_TYPE (name));
infer.set_varying (TREE_TYPE (name));
// Range on entry to the DEF block should not be queried.
gcc_checking_assert (start_bb != def_bb);
unsigned start_limit = m_workback.length ();
// Default value is global range.
get_global_range (r, name);
// The dominator of EXIT_BLOCK doesn't seem to be set, so at least handle
// the common single exit cases.
if (start_bb == EXIT_BLOCK_PTR_FOR_FN (cfun) && single_pred_p (start_bb))
bb = single_pred_edge (start_bb)->src;
else
bb = get_immediate_dominator (CDI_DOMINATORS, start_bb);
// Search until a value is found, pushing blocks which may need calculating.
for ( ; bb; prev_bb = bb, bb = get_immediate_dominator (CDI_DOMINATORS, bb))
{
// Accumulate any block exit inferred ranges.
m_exit.maybe_adjust_range (infer, name, bb);
// This block has an outgoing range.
if (m_gori.has_edge_range_p (name, bb))
m_workback.quick_push (prev_bb);
else
{
// Normally join blocks don't carry any new range information on
// incoming edges. If the first incoming edge to this block does
// generate a range, calculate the ranges if all incoming edges
// are also dominated by the dominator. (Avoids backedges which
// will break the rule of moving only upward in the domniator tree).
// If the first pred does not generate a range, then we will be
// using the dominator range anyway, so thats all the check needed.
if (EDGE_COUNT (prev_bb->preds) > 1
&& m_gori.has_edge_range_p (name, EDGE_PRED (prev_bb, 0)->src))
{
edge e;
edge_iterator ei;
bool all_dom = true;
FOR_EACH_EDGE (e, ei, prev_bb->preds)
if (e->src != bb
&& !dominated_by_p (CDI_DOMINATORS, e->src, bb))
{
all_dom = false;
break;
}
if (all_dom)
m_workback.quick_push (prev_bb);
}
}
if (def_bb == bb)
break;
if (m_on_entry.get_bb_range (r, name, bb))
break;
}
if (DEBUG_RANGE_CACHE)
{
fprintf (dump_file, "CACHE: BB %d DOM query for ", start_bb->index);
print_generic_expr (dump_file, name, TDF_SLIM);
fprintf (dump_file, ", found ");
r.dump (dump_file);
if (bb)
fprintf (dump_file, " at BB%d\n", bb->index);
else
fprintf (dump_file, " at function top\n");
}
// Now process any blocks wit incoming edges that nay have adjustemnts.
while (m_workback.length () > start_limit)
{
Value_Range er (TREE_TYPE (name));
prev_bb = m_workback.pop ();
if (!single_pred_p (prev_bb))
{
// Non single pred means we need to cache a vsalue in the dominator
// so we can cheaply calculate incoming edges to this block, and
// then store the resulting value. If processing mode is not
// RFD_FILL, then the cache cant be stored to, so don't try.
// Otherwise this becomes a quadratic timed calculation.
if (mode == RFD_FILL)
resolve_dom (r, name, prev_bb);
continue;
}
edge e = single_pred_edge (prev_bb);
bb = e->src;
if (m_gori.outgoing_edge_range_p (er, e, name, *this))
{
r.intersect (er);
// If this is a normal edge, apply any inferred ranges.
if ((e->flags & (EDGE_EH | EDGE_ABNORMAL)) == 0)
m_exit.maybe_adjust_range (r, name, bb);
if (DEBUG_RANGE_CACHE)
{
fprintf (dump_file, "CACHE: Adjusted edge range for %d->%d : ",
bb->index, prev_bb->index);
r.dump (dump_file);
fprintf (dump_file, "\n");
}
}
}
// Apply non-null if appropriate.
if (!has_abnormal_call_or_eh_pred_edge_p (start_bb))
r.intersect (infer);
if (DEBUG_RANGE_CACHE)
{
fprintf (dump_file, "CACHE: Range for DOM returns : ");
r.dump (dump_file);
fprintf (dump_file, "\n");
}
return true;
}
// This routine is used during a block walk to move the state of non-null for
// any operands on stmt S to nonnull.
void
ranger_cache::apply_inferred_ranges (gimple *s)
{
bool update = true;
basic_block bb = gimple_bb (s);
gimple_infer_range infer(s);
if (infer.num () == 0)
return;
// Do not update the on-entry cache for block ending stmts.
if (stmt_ends_bb_p (s))
{
edge_iterator ei;
edge e;
FOR_EACH_EDGE (e, ei, gimple_bb (s)->succs)
if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
break;
if (e == NULL)
update = false;
}
for (unsigned x = 0; x < infer.num (); x++)
{
tree name = infer.name (x);
m_exit.add_range (name, bb, infer.range (x));
if (update)
{
Value_Range r (TREE_TYPE (name));
if (!m_on_entry.get_bb_range (r, name, bb))
exit_range (r, name, bb, RFD_READ_ONLY);
if (r.intersect (infer.range (x)))
{
m_on_entry.set_bb_range (name, bb, r);
// If this range was invariant before, remove invariance.
if (!m_gori.has_edge_range_p (name))
m_gori.set_range_invariant (name, false);
}
}
}
}
|