aboutsummaryrefslogtreecommitdiff
path: root/gcc/gimple-predicate-analysis.cc
blob: afe01e7f4b8d95e513da9903205e7e0cee2ba53c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
/* Support for simple predicate analysis.

   Copyright (C) 2001-2022 Free Software Foundation, Inc.
   Contributed by Xinliang David Li <davidxl@google.com>
   Generalized by Martin Sebor <msebor@redhat.com>

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   any later version.

   GCC is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#define INCLUDE_STRING
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "gimple-iterator.h"
#include "tree-ssa.h"
#include "tree-cfg.h"
#include "cfghooks.h"
#include "attribs.h"
#include "builtins.h"
#include "calls.h"
#include "value-query.h"
#include "cfganal.h"
#include "tree-eh.h"
#include "gimple-fold.h"

#include "gimple-predicate-analysis.h"

#define DEBUG_PREDICATE_ANALYZER 1

/* In our predicate normal form we have MAX_NUM_CHAINS or predicates
   and in those MAX_CHAIN_LEN (inverted) and predicates.  */
#define MAX_NUM_CHAINS 8
#define MAX_CHAIN_LEN 5

/* Return true if X1 is the negation of X2.  */

static inline bool
pred_neg_p (const pred_info &x1, const pred_info &x2)
{
  if (!operand_equal_p (x1.pred_lhs, x2.pred_lhs, 0)
      || !operand_equal_p (x1.pred_rhs, x2.pred_rhs, 0))
    return false;

  tree_code c1 = x1.cond_code, c2;
  if (x1.invert == x2.invert)
    c2 = invert_tree_comparison (x2.cond_code, false);
  else
    c2 = x2.cond_code;

  return c1 == c2;
}

/* Return whether the condition (VAL CMPC BOUNDARY) is true.  */

static bool
is_value_included_in (tree val, tree boundary, tree_code cmpc)
{
  /* Only handle integer constant here.  */
  if (TREE_CODE (val) != INTEGER_CST || TREE_CODE (boundary) != INTEGER_CST)
    return true;

  bool inverted = false;
  if (cmpc == GE_EXPR || cmpc == GT_EXPR || cmpc == NE_EXPR)
    {
      cmpc = invert_tree_comparison (cmpc, false);
      inverted = true;
    }

  bool result;
  if (cmpc == EQ_EXPR)
    result = tree_int_cst_equal (val, boundary);
  else if (cmpc == LT_EXPR)
    result = tree_int_cst_lt (val, boundary);
  else
    {
      gcc_assert (cmpc == LE_EXPR);
      result = tree_int_cst_le (val, boundary);
    }

  if (inverted)
    result ^= 1;

  return result;
}

/* Format the vector of edges EV as a string.  */

static std::string
format_edge_vec (const vec<edge> &ev)
{
  std::string str;

  unsigned n = ev.length ();
  for (unsigned i = 0; i < n; ++i)
    {
      char es[32];
      const_edge e = ev[i];
      sprintf (es, "%u -> %u", e->src->index, e->dest->index);
      str += es;
      if (i + 1 < n)
	str += ", ";
    }
  return str;
}

/* Format the first N elements of the array of vector of edges EVA as
   a string.  */

static std::string
format_edge_vecs (const vec<edge> eva[], unsigned n)
{
  std::string str;

  for (unsigned i = 0; i != n; ++i)
    {
      str += '{';
      str += format_edge_vec (eva[i]);
      str += '}';
      if (i + 1 < n)
	str += ", ";
    }
  return str;
}

/* Dump a single pred_info to F.  */

static void
dump_pred_info (FILE *f, const pred_info &pred)
{
  if (pred.invert)
    fprintf (f, "NOT (");
  print_generic_expr (f, pred.pred_lhs);
  fprintf (f, " %s ", op_symbol_code (pred.cond_code));
  print_generic_expr (f, pred.pred_rhs);
  if (pred.invert)
    fputc (')', f);
}

/* Dump a pred_chain to F.  */

static void
dump_pred_chain (FILE *f, const pred_chain &chain)
{
  unsigned np = chain.length ();
  for (unsigned j = 0; j < np; j++)
    {
      if (j > 0)
	fprintf (f, " AND (");
      else
	fputc ('(', f);
      dump_pred_info (f, chain[j]);
      fputc (')', f);
    }
}

/* Return the 'normalized' conditional code with operand swapping
   and condition inversion controlled by SWAP_COND and INVERT.  */

static tree_code
get_cmp_code (tree_code orig_cmp_code, bool swap_cond, bool invert)
{
  tree_code tc = orig_cmp_code;

  if (swap_cond)
    tc = swap_tree_comparison (orig_cmp_code);
  if (invert)
    tc = invert_tree_comparison (tc, false);

  switch (tc)
    {
    case LT_EXPR:
    case LE_EXPR:
    case GT_EXPR:
    case GE_EXPR:
    case EQ_EXPR:
    case NE_EXPR:
      break;
    default:
      return ERROR_MARK;
    }
  return tc;
}

/* Return true if PRED is common among all predicate chains in PREDS
   (and therefore can be factored out).  */

static bool
find_matching_predicate_in_rest_chains (const pred_info &pred,
					const pred_chain_union &preds)
{
  /* Trival case.  */
  if (preds.length () == 1)
    return true;

  for (unsigned i = 1; i < preds.length (); i++)
    {
      bool found = false;
      const pred_chain &chain = preds[i];
      unsigned n = chain.length ();
      for (unsigned j = 0; j < n; j++)
	{
	  const pred_info &pred2 = chain[j];
	  /* Can relax the condition comparison to not use address
	     comparison.  However, the most common case is that
	     multiple control dependent paths share a common path
	     prefix, so address comparison should be ok.  */
	  if (operand_equal_p (pred2.pred_lhs, pred.pred_lhs, 0)
	      && operand_equal_p (pred2.pred_rhs, pred.pred_rhs, 0)
	      && pred2.invert == pred.invert)
	    {
	      found = true;
	      break;
	    }
	}
      if (!found)
	return false;
    }
  return true;
}

/* Find a predicate to examine against paths of interest.  If there
   is no predicate of the "FLAG_VAR CMP CONST" form, try to find one
   of that's the form "FLAG_VAR CMP FLAG_VAR" with value range info.
   PHI is the phi node whose incoming (interesting) paths need to be
   examined.  On success, return the comparison code, set defintion
   gimple of FLAG_DEF and BOUNDARY_CST.  Otherwise return ERROR_MARK.  */

static tree_code
find_var_cmp_const (pred_chain_union preds, gphi *phi, gimple **flag_def,
		    tree *boundary_cst)
{
  tree_code vrinfo_code = ERROR_MARK;
  gimple *vrinfo_def = NULL;
  tree vrinfo_cst = NULL;

  gcc_assert (preds.length () > 0);
  pred_chain chain = preds[0];
  for (unsigned i = 0; i < chain.length (); i++)
    {
      bool use_vrinfo_p = false;
      const pred_info &pred = chain[i];
      tree cond_lhs = pred.pred_lhs;
      tree cond_rhs = pred.pred_rhs;
      if (cond_lhs == NULL_TREE || cond_rhs == NULL_TREE)
	continue;

      tree_code code = get_cmp_code (pred.cond_code, false, pred.invert);
      if (code == ERROR_MARK)
	continue;

      /* Convert to the canonical form SSA_NAME CMP CONSTANT.  */
      if (TREE_CODE (cond_lhs) == SSA_NAME
	  && is_gimple_constant (cond_rhs))
	;
      else if (TREE_CODE (cond_rhs) == SSA_NAME
	       && is_gimple_constant (cond_lhs))
	{
	  std::swap (cond_lhs, cond_rhs);
	  if ((code = get_cmp_code (code, true, false)) == ERROR_MARK)
	    continue;
	}
      /* Check if we can take advantage of FLAG_VAR COMP FLAG_VAR predicate
	 with value range info.  Note only first of such case is handled.  */
      else if (vrinfo_code == ERROR_MARK
	       && TREE_CODE (cond_lhs) == SSA_NAME
	       && TREE_CODE (cond_rhs) == SSA_NAME)
	{
	  gimple* lhs_def = SSA_NAME_DEF_STMT (cond_lhs);
	  if (!lhs_def || gimple_code (lhs_def) != GIMPLE_PHI
	      || gimple_bb (lhs_def) != gimple_bb (phi))
	    {
	      std::swap (cond_lhs, cond_rhs);
	      if ((code = get_cmp_code (code, true, false)) == ERROR_MARK)
		continue;
	    }

	  /* Check value range info of rhs, do following transforms:
	       flag_var < [min, max]  ->  flag_var < max
	       flag_var > [min, max]  ->  flag_var > min

	     We can also transform LE_EXPR/GE_EXPR to LT_EXPR/GT_EXPR:
	       flag_var <= [min, max] ->  flag_var < [min, max+1]
	       flag_var >= [min, max] ->  flag_var > [min-1, max]
	     if no overflow/wrap.  */
	  tree type = TREE_TYPE (cond_lhs);
	  value_range r;
	  if (!INTEGRAL_TYPE_P (type)
	      || !get_range_query (cfun)->range_of_expr (r, cond_rhs)
	      || r.kind () != VR_RANGE)
	    continue;

	  wide_int min = r.lower_bound ();
	  wide_int max = r.upper_bound ();
	  if (code == LE_EXPR
	      && max != wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type)))
	    {
	      code = LT_EXPR;
	      max = max + 1;
	    }
	  if (code == GE_EXPR
	      && min != wi::min_value (TYPE_PRECISION (type), TYPE_SIGN (type)))
	    {
	      code = GT_EXPR;
	      min = min - 1;
	    }
	  if (code == LT_EXPR)
	    cond_rhs = wide_int_to_tree (type, max);
	  else if (code == GT_EXPR)
	    cond_rhs = wide_int_to_tree (type, min);
	  else
	    continue;

	  use_vrinfo_p = true;
	}
      else
	continue;

      if ((*flag_def = SSA_NAME_DEF_STMT (cond_lhs)) == NULL)
	continue;

      if (gimple_code (*flag_def) != GIMPLE_PHI
	  || gimple_bb (*flag_def) != gimple_bb (phi)
	  || !find_matching_predicate_in_rest_chains (pred, preds))
	continue;

      /* Return if any "flag_var comp const" predicate is found.  */
      if (!use_vrinfo_p)
	{
	  *boundary_cst = cond_rhs;
	  return code;
	}
      /* Record if any "flag_var comp flag_var[vinfo]" predicate is found.  */
      else if (vrinfo_code == ERROR_MARK)
	{
	  vrinfo_code = code;
	  vrinfo_def = *flag_def;
	  vrinfo_cst = cond_rhs;
	}
    }
  /* Return the "flag_var cmp flag_var[vinfo]" predicate we found.  */
  if (vrinfo_code != ERROR_MARK)
    {
      *flag_def = vrinfo_def;
      *boundary_cst = vrinfo_cst;
    }
  return vrinfo_code;
}

/* Return true if all interesting opnds are pruned, false otherwise.
   PHI is the phi node with interesting operands, OPNDS is the bitmap
   of the interesting operand positions, FLAG_DEF is the statement
   defining the flag guarding the use of the PHI output, BOUNDARY_CST
   is the const value used in the predicate associated with the flag,
   CMP_CODE is the comparison code used in the predicate, VISITED_PHIS
   is the pointer set of phis visited, and VISITED_FLAG_PHIS is
   the pointer to the pointer set of flag definitions that are also
   phis.

   Example scenario:

   BB1:
     flag_1 = phi <0, 1>			// (1)
     var_1  = phi <undef, some_val>


   BB2:
     flag_2 = phi <0,   flag_1, flag_1>		// (2)
     var_2  = phi <undef, var_1, var_1>
     if (flag_2 == 1)
       goto BB3;

   BB3:
     use of var_2				// (3)

   Because some flag arg in (1) is not constant, if we do not look into
   the flag phis recursively, it is conservatively treated as unknown and
   var_1 is thought to flow into use at (3).  Since var_1 is potentially
   uninitialized a false warning will be emitted.
   Checking recursively into (1), the compiler can find out that only
   some_val (which is defined) can flow into (3) which is OK.  */

bool
uninit_analysis::prune_phi_opnds (gphi *phi, unsigned opnds, gphi *flag_def,
				  tree boundary_cst, tree_code cmp_code,
				  hash_set<gphi *> *visited_phis,
				  bitmap *visited_flag_phis)
{
  /* The Boolean predicate guarding the PHI definition.  Initialized
     lazily from PHI in the first call to is_use_guarded() and cached
     for subsequent iterations.  */
  uninit_analysis def_preds (m_eval);

  unsigned n = MIN (m_eval.max_phi_args, gimple_phi_num_args (flag_def));
  for (unsigned i = 0; i < n; i++)
    {
      if (!MASK_TEST_BIT (opnds, i))
	continue;

      tree flag_arg = gimple_phi_arg_def (flag_def, i);
      if (!is_gimple_constant (flag_arg))
	{
	  if (TREE_CODE (flag_arg) != SSA_NAME)
	    return false;

	  gphi *flag_arg_def = dyn_cast<gphi *> (SSA_NAME_DEF_STMT (flag_arg));
	  if (!flag_arg_def)
	    return false;

	  tree phi_arg = gimple_phi_arg_def (phi, i);
	  if (TREE_CODE (phi_arg) != SSA_NAME)
	    return false;

	  gphi *phi_arg_def = dyn_cast<gphi *> (SSA_NAME_DEF_STMT (phi_arg));
	  if (!phi_arg_def)
	    return false;

	  if (gimple_bb (phi_arg_def) != gimple_bb (flag_arg_def))
	    return false;

	  if (!*visited_flag_phis)
	    *visited_flag_phis = BITMAP_ALLOC (NULL);

	  tree phi_result = gimple_phi_result (flag_arg_def);
	  if (bitmap_bit_p (*visited_flag_phis, SSA_NAME_VERSION (phi_result)))
	    return false;

	  bitmap_set_bit (*visited_flag_phis, SSA_NAME_VERSION (phi_result));

	  /* Now recursively try to prune the interesting phi args.  */
	  unsigned opnds_arg_phi = m_eval.phi_arg_set (phi_arg_def);
	  if (!prune_phi_opnds (phi_arg_def, opnds_arg_phi, flag_arg_def,
				boundary_cst, cmp_code, visited_phis,
				visited_flag_phis))
	    return false;

	  bitmap_clear_bit (*visited_flag_phis, SSA_NAME_VERSION (phi_result));
	  continue;
	}

      /* Now check if the constant is in the guarded range.  */
      if (is_value_included_in (flag_arg, boundary_cst, cmp_code))
	{
	  /* Now that we know that this undefined edge is not pruned.
	     If the operand is defined by another phi, we can further
	     prune the incoming edges of that phi by checking
	     the predicates of this operands.  */

	  tree opnd = gimple_phi_arg_def (phi, i);
	  gimple *opnd_def = SSA_NAME_DEF_STMT (opnd);
	  if (gphi *opnd_def_phi = dyn_cast <gphi *> (opnd_def))
	    {
	      unsigned opnds2 = m_eval.phi_arg_set (opnd_def_phi);
	      if (!MASK_EMPTY (opnds2))
		{
		  edge opnd_edge = gimple_phi_arg_edge (phi, i);
		  if (def_preds.is_use_guarded (phi, opnd_edge->src,
						opnd_def_phi, opnds2,
						visited_phis))
		    return false;
		}
	    }
	  else
	    return false;
	}
    }

  return true;
}

/* Recursively compute the set PHI's incoming edges with "uninteresting"
   operands of a phi chain, i.e., those for which EVAL returns false.
   CD_ROOT is the control dependence root from which edges are collected
   up the CFG nodes that it's dominated by.  *EDGES holds the result, and
   VISITED is used for detecting cycles.  */

void
uninit_analysis::collect_phi_def_edges (gphi *phi, basic_block cd_root,
					vec<edge> *edges,
					hash_set<gimple *> *visited)
{
  if (visited->elements () == 0
      && DEBUG_PREDICATE_ANALYZER
      && dump_file)
    {
      fprintf (dump_file, "%s for cd_root %u and ",
	       __func__, cd_root->index);
      print_gimple_stmt (dump_file, phi, 0);

    }

  if (visited->add (phi))
    return;

  unsigned n = gimple_phi_num_args (phi);
  unsigned opnds_arg_phi = m_eval.phi_arg_set (phi);
  for (unsigned i = 0; i < n; i++)
    {
      if (!MASK_TEST_BIT (opnds_arg_phi, i))
	{
	  /* Add the edge for a not maybe-undefined edge value.  */
	  edge opnd_edge = gimple_phi_arg_edge (phi, i);
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file,
		       "\tFound def edge %i -> %i for cd_root %i "
		       "and operand %u of: ",
		       opnd_edge->src->index, opnd_edge->dest->index,
		       cd_root->index, i);
	      print_gimple_stmt (dump_file, phi, 0);
	    }
	  edges->safe_push (opnd_edge);
	  continue;
	}
      else
	{
	  tree opnd = gimple_phi_arg_def (phi, i);
	  if (TREE_CODE (opnd) == SSA_NAME)
	    {
	      gimple *def = SSA_NAME_DEF_STMT (opnd);
	      if (gimple_code (def) == GIMPLE_PHI
		  && dominated_by_p (CDI_DOMINATORS, gimple_bb (def), cd_root))
		/* Process PHI defs of maybe-undefined edge values
		   recursively.  */
		collect_phi_def_edges (as_a<gphi *> (def), cd_root, edges,
				       visited);
	    }
	}
    }
}

/* Return a bitset of all PHI arguments or zero if there are too many.  */

unsigned
uninit_analysis::func_t::phi_arg_set (gphi *phi)
{
  unsigned n = gimple_phi_num_args (phi);

  if (max_phi_args < n)
    return 0;

  /* Set the least significant N bits.  */
  return (1U << n) - 1;
}

/* Determine if the predicate set of the use does not overlap with that
   of the interesting paths.  The most common senario of guarded use is
   in Example 1:
     Example 1:
	   if (some_cond)
	   {
	      x = ...;   // set x to valid
	      flag = true;
	   }

	    ... some code ...

	   if (flag)
	      use (x);   // use when x is valid

     The real world examples are usually more complicated, but similar
     and usually result from inlining:

	 bool init_func (int * x)
	 {
	     if (some_cond)
		return false;
	     *x  =  ...;   // set *x to valid
	     return true;
	 }

	 void foo (..)
	 {
	     int x;

	     if (!init_func (&x))
		return;

	     .. some_code ...
	     use (x);      // use when x is valid
	 }

     Another possible use scenario is in the following trivial example:

     Example 2:
	  if (n > 0)
	     x = 1;
	  ...
	  if (n > 0)
	    {
	      if (m < 2)
		 ... = x;
	    }

     Predicate analysis needs to compute the composite predicate:

       1) 'x' use predicate: (n > 0) .AND. (m < 2)
       2) 'x' default value  (non-def) predicate: .NOT. (n > 0)
       (the predicate chain for phi operand defs can be computed
       starting from a bb that is control equivalent to the phi's
       bb and is dominating the operand def.)

       and check overlapping:
	  (n > 0) .AND. (m < 2) .AND. (.NOT. (n > 0))
	<==> false

     This implementation provides a framework that can handle different
     scenarios.  (Note that many simple cases are handled properly without
     the predicate analysis if jump threading eliminates the merge point
     thus makes path-sensitive analysis unnecessary.)

     PHI is the phi node whose incoming (undefined) paths need to be
     pruned, and OPNDS is the bitmap holding interesting operand
     positions.  VISITED is the pointer set of phi stmts being
     checked.  */

bool
uninit_analysis::overlap (gphi *phi, unsigned opnds, hash_set<gphi *> *visited,
			  const predicate &use_preds)
{
  gimple *flag_def = NULL;
  tree boundary_cst = NULL_TREE;
  bitmap visited_flag_phis = NULL;

  /* Find within the common prefix of multiple predicate chains
     a predicate that is a comparison of a flag variable against
     a constant.  */
  tree_code cmp_code = find_var_cmp_const (use_preds.chain (), phi, &flag_def,
					   &boundary_cst);
  if (cmp_code == ERROR_MARK)
    return true;

  /* Now check all the uninit incoming edges have a constant flag
     value that is in conflict with the use guard/predicate.  */
  gphi *phi_def = as_a<gphi *> (flag_def);
  bool all_pruned = prune_phi_opnds (phi, opnds, phi_def, boundary_cst,
				     cmp_code, visited,
				     &visited_flag_phis);

  if (visited_flag_phis)
    BITMAP_FREE (visited_flag_phis);

  return !all_pruned;
}

/* Return true if two predicates PRED1 and X2 are equivalent.  Assume
   the expressions have already properly re-associated.  */

static inline bool
pred_equal_p (const pred_info &pred1, const pred_info &pred2)
{
  if (!operand_equal_p (pred1.pred_lhs, pred2.pred_lhs, 0)
      || !operand_equal_p (pred1.pred_rhs, pred2.pred_rhs, 0))
    return false;

  tree_code c1 = pred1.cond_code, c2;
  if (pred1.invert != pred2.invert
      && TREE_CODE_CLASS (pred2.cond_code) == tcc_comparison)
    c2 = invert_tree_comparison (pred2.cond_code, false);
  else
    c2 = pred2.cond_code;

  return c1 == c2;
}

/* Return true if PRED tests inequality (i.e., X != Y).  */

static inline bool
is_neq_relop_p (const pred_info &pred)
{

  return ((pred.cond_code == NE_EXPR && !pred.invert)
	  || (pred.cond_code == EQ_EXPR && pred.invert));
}

/* Returns true if PRED is of the form X != 0.  */

static inline bool
is_neq_zero_form_p (const pred_info &pred)
{
  if (!is_neq_relop_p (pred) || !integer_zerop (pred.pred_rhs)
      || TREE_CODE (pred.pred_lhs) != SSA_NAME)
    return false;
  return true;
}

/* Return true if PRED is equivalent to X != 0.  */

static inline bool
pred_expr_equal_p (const pred_info &pred, tree expr)
{
  if (!is_neq_zero_form_p (pred))
    return false;

  return operand_equal_p (pred.pred_lhs, expr, 0);
}

/* Return true if VAL satisfies (x CMPC BOUNDARY) predicate.  CMPC can
   be either one of the range comparison codes ({GE,LT,EQ,NE}_EXPR and
   the like), or BIT_AND_EXPR.  EXACT_P is only meaningful for the latter.
   Modify the question from VAL & BOUNDARY != 0 to VAL & BOUNDARY == VAL.
   For other values of CMPC, EXACT_P is ignored.  */

static bool
value_sat_pred_p (tree val, tree boundary, tree_code cmpc,
		  bool exact_p = false)
{
  if (cmpc != BIT_AND_EXPR)
    return is_value_included_in (val, boundary, cmpc);

  wide_int andw = wi::to_wide (val) & wi::to_wide (boundary);
  if (exact_p)
    return andw == wi::to_wide (val);

  return andw.to_uhwi ();
}

/* Return true if the domain of single predicate expression PRED1
   is a subset of that of PRED2, and false if it cannot be proved.  */

static bool
subset_of (const pred_info &pred1, const pred_info &pred2)
{
  if (pred_equal_p (pred1, pred2))
    return true;

  if ((TREE_CODE (pred1.pred_rhs) != INTEGER_CST)
      || (TREE_CODE (pred2.pred_rhs) != INTEGER_CST))
    return false;

  if (!operand_equal_p (pred1.pred_lhs, pred2.pred_lhs, 0))
    return false;

  tree_code code1 = pred1.cond_code;
  if (pred1.invert)
    code1 = invert_tree_comparison (code1, false);
  tree_code code2 = pred2.cond_code;
  if (pred2.invert)
    code2 = invert_tree_comparison (code2, false);

  if (code2 == NE_EXPR && code1 == NE_EXPR)
    return false;

  if (code2 == NE_EXPR)
    return !value_sat_pred_p (pred2.pred_rhs, pred1.pred_rhs, code1);

  if (code1 == EQ_EXPR)
    return value_sat_pred_p (pred1.pred_rhs, pred2.pred_rhs, code2);

  if (code1 == code2)
    return value_sat_pred_p (pred1.pred_rhs, pred2.pred_rhs, code2,
			     code1 == BIT_AND_EXPR);

  return false;
}

/* Return true if the domain of CHAIN1 is a subset of that of CHAIN2.
   Return false if it cannot be proven so.  */

static bool
subset_of (const pred_chain &chain1, const pred_chain &chain2)
{
  unsigned np1 = chain1.length ();
  unsigned np2 = chain2.length ();
  for (unsigned i2 = 0; i2 < np2; i2++)
    {
      bool found = false;
      const pred_info &info2 = chain2[i2];
      for (unsigned i1 = 0; i1 < np1; i1++)
	{
	  const pred_info &info1 = chain1[i1];
	  if (subset_of (info1, info2))
	    {
	      found = true;
	      break;
	    }
	}
      if (!found)
	return false;
    }
  return true;
}

/* Return true if the domain defined by the predicate chain PREDS is
   a subset of the domain of *THIS.  Return false if PREDS's domain
   is not a subset of any of the sub-domains of *THIS (corresponding
   to each individual chains in it), even though it may be still be
   a subset of whole domain of *THIS which is the union (ORed) of all
   its subdomains.  In other words, the result is conservative.  */

bool
predicate::includes (const pred_chain &chain) const
{
  for (unsigned i = 0; i < m_preds.length (); i++)
    if (subset_of (chain, m_preds[i]))
      return true;

  return false;
}

/* Return true if the domain defined by *THIS is a superset of PREDS's
   domain.
   Avoid building generic trees (and rely on the folding capability
   of the compiler), and instead perform brute force comparison of
   individual predicate chains (this won't be a computationally costly
   since the chains are pretty short).  Returning false does not
   necessarily mean *THIS is not a superset of *PREDS, only that
   it need not be since the analysis cannot prove it.  */

bool
predicate::superset_of (const predicate &preds) const
{
  for (unsigned i = 0; i < preds.m_preds.length (); i++)
    if (!includes (preds.m_preds[i]))
      return false;

  return true;
}

/* Create a predicate of the form OP != 0 and push it the work list CHAIN.  */

static void
push_to_worklist (tree op, pred_chain *chain, hash_set<tree> *mark_set)
{
  if (mark_set->contains (op))
    return;
  mark_set->add (op);

  pred_info arg_pred;
  arg_pred.pred_lhs = op;
  arg_pred.pred_rhs = integer_zero_node;
  arg_pred.cond_code = NE_EXPR;
  arg_pred.invert = false;
  chain->safe_push (arg_pred);
}

/* Return a pred_info for a gimple assignment CMP_ASSIGN with comparison
   rhs.  */

static pred_info
get_pred_info_from_cmp (const gimple *cmp_assign)
{
  pred_info pred;
  pred.pred_lhs = gimple_assign_rhs1 (cmp_assign);
  pred.pred_rhs = gimple_assign_rhs2 (cmp_assign);
  pred.cond_code = gimple_assign_rhs_code (cmp_assign);
  pred.invert = false;
  return pred;
}

/* If PHI is a degenerate phi with all operands having the same value (relop)
   update *PRED to that value and return true.  Otherwise return false.  */

static bool
is_degenerate_phi (gimple *phi, pred_info *pred)
{
  tree op0 = gimple_phi_arg_def (phi, 0);

  if (TREE_CODE (op0) != SSA_NAME)
    return false;

  gimple *def0 = SSA_NAME_DEF_STMT (op0);
  if (gimple_code (def0) != GIMPLE_ASSIGN)
    return false;

  if (TREE_CODE_CLASS (gimple_assign_rhs_code (def0)) != tcc_comparison)
    return false;

  pred_info pred0 = get_pred_info_from_cmp (def0);

  unsigned n = gimple_phi_num_args (phi);
  for (unsigned i = 1; i < n; ++i)
    {
      tree op = gimple_phi_arg_def (phi, i);
      if (TREE_CODE (op) != SSA_NAME)
	return false;

      gimple *def = SSA_NAME_DEF_STMT (op);
      if (gimple_code (def) != GIMPLE_ASSIGN)
	return false;

      if (TREE_CODE_CLASS (gimple_assign_rhs_code (def)) != tcc_comparison)
	return false;

      pred_info pred = get_pred_info_from_cmp (def);
      if (!pred_equal_p (pred, pred0))
	return false;
    }

  *pred = pred0;
  return true;
}

/* If compute_control_dep_chain bailed out due to limits this routine
   tries to build a partial sparse path using dominators.  Returns
   path edges whose predicates are always true when reaching E.  */

static void
simple_control_dep_chain (vec<edge>& chain, basic_block from, basic_block to)
{
  if (!dominated_by_p (CDI_DOMINATORS, to, from))
    return;

  basic_block src = to;
  while (src != from
	 && chain.length () <= MAX_CHAIN_LEN)
    {
      basic_block dest = src;
      src = get_immediate_dominator (CDI_DOMINATORS, src);
      if (single_pred_p (dest))
	{
	  edge pred_e = single_pred_edge (dest);
	  gcc_assert (pred_e->src == src);
	  if (!(pred_e->flags & ((EDGE_FAKE | EDGE_ABNORMAL | EDGE_DFS_BACK)))
	      && !single_succ_p (src))
	    chain.safe_push (pred_e);
	}
    }
}

/* Perform a DFS walk on predecessor edges to mark the region denoted
   by the EXIT_SRC block and DOM which dominates EXIT_SRC, including DOM.
   Blocks in the region are marked with FLAG and added to BBS.  BBS is
   filled up to its capacity only after which the walk is terminated
   and false is returned.  If the whole region was marked, true is returned.  */

static bool
dfs_mark_dominating_region (basic_block exit_src, basic_block dom, int flag,
			    vec<basic_block> &bbs)
{
  if (exit_src == dom || exit_src->flags & flag)
    return true;
  if (!bbs.space (1))
    return false;
  bbs.quick_push (exit_src);
  exit_src->flags |= flag;
  auto_vec<edge_iterator, 20> stack (bbs.allocated () - bbs.length () + 1);
  stack.quick_push (ei_start (exit_src->preds));
  while (!stack.is_empty ())
    {
      /* Look at the edge on the top of the stack.  */
      edge_iterator ei = stack.last ();
      basic_block src = ei_edge (ei)->src;

      /* Check if the edge source has been visited yet.  */
      if (!(src->flags & flag))
	{
	  /* Mark the source if there's still space.  If not, return early.  */
	  if (!bbs.space (1))
	    return false;
	  src->flags |= flag;
	  bbs.quick_push (src);

	  /* Queue its predecessors if we didn't reach DOM.  */
	  if (src != dom && EDGE_COUNT (src->preds) > 0)
	    stack.quick_push (ei_start (src->preds));
	}
      else
	{
	  if (!ei_one_before_end_p (ei))
	    ei_next (&stack.last ());
	  else
	    stack.pop ();
	}
    }
  return true;
}

static bool
compute_control_dep_chain (basic_block dom_bb, const_basic_block dep_bb,
			   vec<edge> cd_chains[], unsigned *num_chains,
			   vec<edge> &cur_cd_chain, unsigned *num_calls,
			   unsigned in_region, unsigned depth,
			   bool *complete_p);

/* Helper for compute_control_dep_chain that walks the post-dominator
   chain from CD_BB up unto TARGET_BB looking for paths to DEP_BB.  */

static bool
compute_control_dep_chain_pdom (basic_block cd_bb, const_basic_block dep_bb,
				basic_block target_bb,
				vec<edge> cd_chains[], unsigned *num_chains,
				vec<edge> &cur_cd_chain, unsigned *num_calls,
				unsigned in_region, unsigned depth,
				bool *complete_p)
{
  bool found_cd_chain = false;
  while (cd_bb != target_bb)
    {
      if (cd_bb == dep_bb)
	{
	  /* Found a direct control dependence.  */
	  if (*num_chains < MAX_NUM_CHAINS)
	    {
	      if (DEBUG_PREDICATE_ANALYZER && dump_file)
		fprintf (dump_file, "%*s pushing { %s }\n",
			 depth, "", format_edge_vec (cur_cd_chain).c_str ());
	      cd_chains[*num_chains] = cur_cd_chain.copy ();
	      (*num_chains)++;
	    }
	  found_cd_chain = true;
	  /* Check path from next edge.  */
	  break;
	}

      /* If the dominating region has been marked avoid walking outside.  */
      if (in_region != 0 && !(cd_bb->flags & in_region))
	break;

      /* Count the number of steps we perform to limit compile-time.
	 This should cover both recursion and the post-dominator walk.  */
      if (*num_calls > (unsigned)param_uninit_control_dep_attempts)
	{
	  if (dump_file)
	    fprintf (dump_file, "param_uninit_control_dep_attempts "
		     "exceeded: %u\n", *num_calls);
	  *complete_p = false;
	  break;
	}
      ++*num_calls;

      /* Check if DEP_BB is indirectly control-dependent on DOM_BB.  */
      if (!single_succ_p (cd_bb)
	  && compute_control_dep_chain (cd_bb, dep_bb, cd_chains,
					num_chains, cur_cd_chain,
					num_calls, in_region, depth + 1,
					complete_p))
	{
	  found_cd_chain = true;
	  break;
	}

      /* The post-dominator walk will reach a backedge only
	 from a forwarder, otherwise it should choose to exit
	 the SCC.  */
      if (single_succ_p (cd_bb)
	  && single_succ_edge (cd_bb)->flags & EDGE_DFS_BACK)
	break;
      basic_block prev_cd_bb = cd_bb;
      cd_bb = get_immediate_dominator (CDI_POST_DOMINATORS, cd_bb);
      if (cd_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
	break;
      /* Pick up conditions toward the post dominator such like
	 loop exit conditions.  See gcc.dg/uninit-pred-11.c and
	 gcc.dg/unninit-pred-12.c and PR106754.  */
      if (single_pred_p (cd_bb))
	{
	  edge e2 = single_pred_edge (cd_bb);
	  gcc_assert (e2->src == prev_cd_bb);
	  /* But avoid adding fallthru or abnormal edges.  */
	  if (!(e2->flags & (EDGE_FAKE | EDGE_ABNORMAL | EDGE_DFS_BACK))
	      && !single_succ_p (prev_cd_bb))
	    cur_cd_chain.safe_push (e2);
	}
    }
  return found_cd_chain;
}


/* Recursively compute the control dependence chains (paths of edges)
   from the dependent basic block, DEP_BB, up to the dominating basic
   block, DOM_BB (the head node of a chain should be dominated by it),
   storing them in the CD_CHAINS array.
   CUR_CD_CHAIN is the current chain being computed.
   *NUM_CHAINS is total number of chains in the CD_CHAINS array.
   *NUM_CALLS is the number of recursive calls to control unbounded
   recursion.
   Return true if the information is successfully computed, false if
   there is no control dependence or not computed.
   *COMPLETE_P is set to false if we stopped walking due to limits.
   In this case there might be missing chains.  */

static bool
compute_control_dep_chain (basic_block dom_bb, const_basic_block dep_bb,
			   vec<edge> cd_chains[], unsigned *num_chains,
			   vec<edge> &cur_cd_chain, unsigned *num_calls,
			   unsigned in_region, unsigned depth,
			   bool *complete_p)
{
  /* In our recursive calls this doesn't happen.  */
  if (single_succ_p (dom_bb))
    return false;

  /* FIXME: Use a set instead.  */
  unsigned cur_chain_len = cur_cd_chain.length ();
  if (cur_chain_len > MAX_CHAIN_LEN)
    {
      if (dump_file)
	fprintf (dump_file, "MAX_CHAIN_LEN exceeded: %u\n", cur_chain_len);

      *complete_p = false;
      return false;
    }

  if (cur_chain_len > 5)
    {
      if (dump_file)
	fprintf (dump_file, "chain length exceeds 5: %u\n", cur_chain_len);
    }

  if (DEBUG_PREDICATE_ANALYZER && dump_file)
    fprintf (dump_file,
	     "%*s%s (dom_bb = %u, dep_bb = %u, ..., "
	     "cur_cd_chain = { %s }, ...)\n",
	     depth, "", __func__, dom_bb->index, dep_bb->index,
	     format_edge_vec (cur_cd_chain).c_str ());

  bool found_cd_chain = false;

  /* Iterate over DOM_BB's successors.  */
  edge e;
  edge_iterator ei;
  FOR_EACH_EDGE (e, ei, dom_bb->succs)
    {
      if (e->flags & (EDGE_FAKE | EDGE_ABNORMAL | EDGE_DFS_BACK))
	continue;

      basic_block cd_bb = e->dest;
      unsigned pop_mark = cur_cd_chain.length ();
      cur_cd_chain.safe_push (e);
      basic_block target_bb
	= get_immediate_dominator (CDI_POST_DOMINATORS, dom_bb);
      /* Walk the post-dominator chain up to the CFG merge.  */
      found_cd_chain
	  |= compute_control_dep_chain_pdom (cd_bb, dep_bb, target_bb,
					     cd_chains, num_chains,
					     cur_cd_chain, num_calls,
					     in_region, depth, complete_p);
      cur_cd_chain.truncate (pop_mark);
      gcc_assert (cur_cd_chain.length () == cur_chain_len);
    }

  gcc_assert (cur_cd_chain.length () == cur_chain_len);
  return found_cd_chain;
}

/* Wrapper around the compute_control_dep_chain worker above.  Returns
   true when the collected set of chains in CD_CHAINS is complete.  */

static bool
compute_control_dep_chain (basic_block dom_bb, const_basic_block dep_bb,
			   vec<edge> cd_chains[], unsigned *num_chains,
			   unsigned in_region = 0)
{
  auto_vec<edge, MAX_CHAIN_LEN + 1> cur_cd_chain;
  unsigned num_calls = 0;
  unsigned depth = 0;
  bool complete_p = true;
  /* Walk the post-dominator chain.  */
  compute_control_dep_chain_pdom (dom_bb, dep_bb, NULL, cd_chains,
				  num_chains, cur_cd_chain, &num_calls,
				  in_region, depth, &complete_p);
  return complete_p;
}

/* Implemented simplifications:

   1a) ((x IOR y) != 0) AND (x != 0) is equivalent to (x != 0);
   1b) [!](X rel y) AND [!](X rel y') where y == y' or both constant
       can possibly be simplified
   2) (X AND Y) OR (!X AND Y) is equivalent to Y;
   3) X OR (!X AND Y) is equivalent to (X OR Y);
   4) ((x IAND y) != 0) || (x != 0 AND y != 0)) is equivalent to
      (x != 0 AND y != 0)
   5) (X AND Y) OR (!X AND Z) OR (!Y AND Z) is equivalent to
      (X AND Y) OR Z

   PREDS is the predicate chains, and N is the number of chains.  */

/* Implement rule 1a above.  PREDS is the AND predicate to simplify
   in place.  */

static void
simplify_1a (pred_chain &chain)
{
  bool simplified = false;
  pred_chain s_chain = vNULL;

  unsigned n = chain.length ();
  for (unsigned i = 0; i < n; i++)
    {
      pred_info &a_pred = chain[i];

      if (!a_pred.pred_lhs
	  || !is_neq_zero_form_p (a_pred))
	continue;

      gimple *def_stmt = SSA_NAME_DEF_STMT (a_pred.pred_lhs);
      if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
	continue;

      if (gimple_assign_rhs_code (def_stmt) != BIT_IOR_EXPR)
	continue;

      for (unsigned j = 0; j < n; j++)
	{
	  const pred_info &b_pred = chain[j];

	  if (!b_pred.pred_lhs
	      || !is_neq_zero_form_p (b_pred))
	    continue;

	  if (pred_expr_equal_p (b_pred, gimple_assign_rhs1 (def_stmt))
	      || pred_expr_equal_p (b_pred, gimple_assign_rhs2 (def_stmt)))
	    {
	      /* Mark A_PRED for removal from PREDS.  */
	      a_pred.pred_lhs = NULL;
	      a_pred.pred_rhs = NULL;
	      simplified = true;
	      break;
	    }
	}
    }

  if (!simplified)
    return;

  /* Remove predicates marked above.  */
  for (unsigned i = 0; i < n; i++)
    {
      pred_info &a_pred = chain[i];
      if (!a_pred.pred_lhs)
	continue;
      s_chain.safe_push (a_pred);
    }

  chain.release ();
  chain = s_chain;
}

/* Implement rule 1b above.  PREDS is the AND predicate to simplify
   in place.  Returns true if CHAIN simplifies to true or false.  */

static bool
simplify_1b (pred_chain &chain)
{
  for (unsigned i = 0; i < chain.length (); i++)
    {
      pred_info &a_pred = chain[i];

      for (unsigned j = i + 1; j < chain.length (); ++j)
	{
	  pred_info &b_pred = chain[j];

	  if (!operand_equal_p (a_pred.pred_lhs, b_pred.pred_lhs)
	      || (!operand_equal_p (a_pred.pred_rhs, b_pred.pred_rhs)
		  && !(CONSTANT_CLASS_P (a_pred.pred_rhs)
		       && CONSTANT_CLASS_P (b_pred.pred_rhs))))
	    continue;

	  tree_code a_code = a_pred.cond_code;
	  if (a_pred.invert)
	    a_code = invert_tree_comparison (a_code, false);
	  tree_code b_code = b_pred.cond_code;
	  if (b_pred.invert)
	    b_code = invert_tree_comparison (b_code, false);
	  /* Try to combine X a_code Y && X b_code Y'.  */
	  tree comb = maybe_fold_and_comparisons (boolean_type_node,
						  a_code,
						  a_pred.pred_lhs,
						  a_pred.pred_rhs,
						  b_code,
						  b_pred.pred_lhs,
						  b_pred.pred_rhs, NULL);
	  if (!comb)
	    ;
	  else if (integer_zerop (comb))
	    return true;
	  else if (integer_truep (comb))
	    {
	      chain.ordered_remove (j);
	      chain.ordered_remove (i);
	      if (chain.is_empty ())
		return true;
	      i--;
	      break;
	    }
	  else if (COMPARISON_CLASS_P (comb)
		   && operand_equal_p (a_pred.pred_lhs, TREE_OPERAND (comb, 0)))
	    {
	      chain.ordered_remove (j);
	      a_pred.cond_code = TREE_CODE (comb);
	      a_pred.pred_rhs = TREE_OPERAND (comb, 1);
	      a_pred.invert = false;
	      j--;
	    }
	}
    }

  return false;
}

/* Implements rule 2 for the OR predicate PREDS:

   2) (X AND Y) OR (!X AND Y) is equivalent to Y.  */

bool
predicate::simplify_2 ()
{
  bool simplified = false;

  /* (X AND Y) OR (!X AND Y) is equivalent to Y.
     (X AND Y) OR (X AND !Y) is equivalent to X.  */

  for (unsigned i = 0; i < m_preds.length (); i++)
    {
      pred_chain &a_chain = m_preds[i];

      for (unsigned j = i + 1; j < m_preds.length (); j++)
	{
	  pred_chain &b_chain = m_preds[j];
	  if (b_chain.length () != a_chain.length ())
	    continue;

	  unsigned neg_idx = -1U;
	  for (unsigned k = 0; k < a_chain.length (); ++k)
	    {
	      if (pred_equal_p (a_chain[k], b_chain[k]))
		continue;
	      if (neg_idx != -1U)
		{
		  neg_idx = -1U;
		  break;
		}
	      if (pred_neg_p (a_chain[k], b_chain[k]))
		neg_idx = k;
	      else
		break;
	    }
	  /* If we found equal chains with one negated predicate
	     simplify.  */
	  if (neg_idx != -1U)
	    {
	      a_chain.ordered_remove (neg_idx);
	      m_preds.ordered_remove (j);
	      simplified = true;
	      if (a_chain.is_empty ())
		{
		  /* A && !A simplifies to true, wipe the whole predicate.  */
		  for (unsigned k = 0; k < m_preds.length (); ++k)
		    m_preds[k].release ();
		  m_preds.truncate (0);
		}
	      break;
	    }
	}
    }

  return simplified;
}

/* Implement rule 3 for the OR predicate PREDS:

   3) x OR (!x AND y) is equivalent to x OR y.  */

bool
predicate::simplify_3 ()
{
  /* Now iteratively simplify X OR (!X AND Z ..)
       into X OR (Z ...).  */

  unsigned n = m_preds.length ();
  if (n < 2)
    return false;

  bool simplified = false;
  for (unsigned i = 0; i < n; i++)
    {
      const pred_chain &a_chain = m_preds[i];

      if (a_chain.length () != 1)
	continue;

      const pred_info &x = a_chain[0];
      for (unsigned j = 0; j < n; j++)
	{
	  if (j == i)
	    continue;

	  pred_chain b_chain = m_preds[j];
	  if (b_chain.length () < 2)
	    continue;

	  for (unsigned k = 0; k < b_chain.length (); k++)
	    {
	      const pred_info &x2 = b_chain[k];
	      if (pred_neg_p (x, x2))
		{
		  b_chain.unordered_remove (k);
		  simplified = true;
		  break;
		}
	    }
	}
    }
  return simplified;
}

/* Implement rule 4 for the OR predicate PREDS:

   2) ((x AND y) != 0) OR (x != 0 AND y != 0) is equivalent to
       (x != 0 AND y != 0).   */

bool
predicate::simplify_4 ()
{
  bool simplified = false;
  pred_chain_union s_preds = vNULL;

  unsigned n = m_preds.length ();
  for (unsigned i = 0; i < n; i++)
    {
      pred_chain a_chain = m_preds[i];
      if (a_chain.length () != 1)
	continue;

      const pred_info &z = a_chain[0];
      if (!is_neq_zero_form_p (z))
	continue;

      gimple *def_stmt = SSA_NAME_DEF_STMT (z.pred_lhs);
      if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
	continue;

      if (gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
	continue;

      for (unsigned j = 0; j < n; j++)
	{
	  if (j == i)
	    continue;

	  pred_chain b_chain = m_preds[j];
	  if (b_chain.length () != 2)
	    continue;

	  const pred_info &x2 = b_chain[0];
	  const pred_info &y2 = b_chain[1];
	  if (!is_neq_zero_form_p (x2) || !is_neq_zero_form_p (y2))
	    continue;

	  if ((pred_expr_equal_p (x2, gimple_assign_rhs1 (def_stmt))
	       && pred_expr_equal_p (y2, gimple_assign_rhs2 (def_stmt)))
	      || (pred_expr_equal_p (x2, gimple_assign_rhs2 (def_stmt))
		  && pred_expr_equal_p (y2, gimple_assign_rhs1 (def_stmt))))
	    {
	      /* Kill a_chain.  */
	      a_chain.release ();
	      simplified = true;
	      break;
	    }
	}
    }
  /* Now clean up the chain.  */
  if (simplified)
    {
      for (unsigned i = 0; i < n; i++)
	{
	  if (m_preds[i].is_empty ())
	    continue;
	  s_preds.safe_push (m_preds[i]);
	}

      m_preds.release ();
      m_preds = s_preds;
      s_preds = vNULL;
    }

  return simplified;
}

/* Simplify predicates in *THIS.  */

void
predicate::simplify (gimple *use_or_def, bool is_use)
{
  if (dump_file && dump_flags & TDF_DETAILS)
    {
      fprintf (dump_file, "Before simplication ");
      dump (dump_file, use_or_def, is_use ? "[USE]:\n" : "[DEF]:\n");
    }

  for (unsigned i = 0; i < m_preds.length (); i++)
    {
      ::simplify_1a (m_preds[i]);
      if (::simplify_1b (m_preds[i]))
	{
	  m_preds[i].release ();
	  m_preds.ordered_remove (i);
	  i--;
	}
    }

  if (m_preds.length () < 2)
    return;

  bool changed;
  do
    {
      changed = false;
      if (simplify_2 ())
	changed = true;

      if (simplify_3 ())
	changed = true;

      if (simplify_4 ())
	changed = true;
    }
  while (changed);
}

/* Attempt to normalize predicate chains by following UD chains by
   building up a big tree of either IOR operations or AND operations,
   and converting the IOR tree into a pred_chain_union or the BIT_AND
   tree into a pred_chain.
   Example:

  _3 = _2 RELOP1 _1;
  _6 = _5 RELOP2 _4;
  _9 = _8 RELOP3 _7;
  _10 = _3 | _6;
  _12 = _9 | _0;
  _t = _10 | _12;

  then _t != 0 will be normalized into a pred_chain_union

   (_2 RELOP1 _1) OR (_5 RELOP2 _4) OR (_8 RELOP3 _7) OR (_0 != 0)

   Similarly given:

  _3 = _2 RELOP1 _1;
  _6 = _5 RELOP2 _4;
  _9 = _8 RELOP3 _7;
  _10 = _3 & _6;
  _12 = _9 & _0;

  then _t != 0 will be normalized into a pred_chain:
  (_2 RELOP1 _1) AND (_5 RELOP2 _4) AND (_8 RELOP3 _7) AND (_0 != 0)
  */

/* Normalize predicate PRED:
   1) if PRED can no longer be normalized, append it to *THIS.
   2) otherwise if PRED is of the form x != 0, follow x's definition
      and put normalized predicates into WORK_LIST.  */

void
predicate::normalize (pred_chain *norm_chain,
		      pred_info pred,
		      tree_code and_or_code,
		      pred_chain *work_list,
		      hash_set<tree> *mark_set)
{
  if (!is_neq_zero_form_p (pred))
    {
      if (and_or_code == BIT_IOR_EXPR)
	push_pred (pred);
      else
	norm_chain->safe_push (pred);
      return;
    }

  gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);

  if (gimple_code (def_stmt) == GIMPLE_PHI
      && is_degenerate_phi (def_stmt, &pred))
    /* PRED has been modified above.  */
    work_list->safe_push (pred);
  else if (gimple_code (def_stmt) == GIMPLE_PHI && and_or_code == BIT_IOR_EXPR)
    {
      unsigned n = gimple_phi_num_args (def_stmt);

      /* Punt for a nonzero constant.  The predicate should be one guarding
	 the phi edge.  */
      for (unsigned i = 0; i < n; ++i)
	{
	  tree op = gimple_phi_arg_def (def_stmt, i);
	  if (TREE_CODE (op) == INTEGER_CST && !integer_zerop (op))
	    {
	      push_pred (pred);
	      return;
	    }
	}

      for (unsigned i = 0; i < n; ++i)
	{
	  tree op = gimple_phi_arg_def (def_stmt, i);
	  if (integer_zerop (op))
	    continue;

	  push_to_worklist (op, work_list, mark_set);
	}
    }
  else if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
    {
      if (and_or_code == BIT_IOR_EXPR)
	push_pred (pred);
      else
	norm_chain->safe_push (pred);
    }
  else if (gimple_assign_rhs_code (def_stmt) == and_or_code)
    {
      /* Avoid splitting up bit manipulations like x & 3 or y | 1.  */
      if (is_gimple_min_invariant (gimple_assign_rhs2 (def_stmt)))
	{
	  /* But treat x & 3 as a condition.  */
	  if (and_or_code == BIT_AND_EXPR)
	    {
	      pred_info n_pred;
	      n_pred.pred_lhs = gimple_assign_rhs1 (def_stmt);
	      n_pred.pred_rhs = gimple_assign_rhs2 (def_stmt);
	      n_pred.cond_code = and_or_code;
	      n_pred.invert = false;
	      norm_chain->safe_push (n_pred);
	    }
	}
      else
	{
	  push_to_worklist (gimple_assign_rhs1 (def_stmt), work_list, mark_set);
	  push_to_worklist (gimple_assign_rhs2 (def_stmt), work_list, mark_set);
	}
    }
  else if (TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt))
	   == tcc_comparison)
    {
      pred_info n_pred = get_pred_info_from_cmp (def_stmt);
      if (and_or_code == BIT_IOR_EXPR)
	push_pred (n_pred);
      else
	norm_chain->safe_push (n_pred);
    }
  else
    {
      if (and_or_code == BIT_IOR_EXPR)
	push_pred (pred);
      else
	norm_chain->safe_push (pred);
    }
}

/* Normalize PRED and store the normalized predicates in THIS->M_PREDS.  */

void
predicate::normalize (const pred_info &pred)
{
  if (!is_neq_zero_form_p (pred))
    {
      push_pred (pred);
      return;
    }

  tree_code and_or_code = ERROR_MARK;

  gimple *def_stmt = SSA_NAME_DEF_STMT (pred.pred_lhs);
  if (gimple_code (def_stmt) == GIMPLE_ASSIGN)
    and_or_code = gimple_assign_rhs_code (def_stmt);
  if (and_or_code != BIT_IOR_EXPR && and_or_code != BIT_AND_EXPR)
    {
      if (TREE_CODE_CLASS (and_or_code) == tcc_comparison)
	{
	  pred_info n_pred = get_pred_info_from_cmp (def_stmt);
	  push_pred (n_pred);
	}
      else
	push_pred (pred);
      return;
    }


  pred_chain norm_chain = vNULL;
  pred_chain work_list = vNULL;
  work_list.safe_push (pred);
  hash_set<tree> mark_set;

  while (!work_list.is_empty ())
    {
      pred_info a_pred = work_list.pop ();
      normalize (&norm_chain, a_pred, and_or_code, &work_list, &mark_set);
    }

  if (and_or_code == BIT_AND_EXPR)
    m_preds.safe_push (norm_chain);

  work_list.release ();
}

/* Normalize a single predicate PRED_CHAIN and append it to *THIS.  */

void
predicate::normalize (const pred_chain &chain)
{
  pred_chain work_list = vNULL;
  hash_set<tree> mark_set;
  for (unsigned i = 0; i < chain.length (); i++)
    {
      work_list.safe_push (chain[i]);
      mark_set.add (chain[i].pred_lhs);
    }

  /* Normalized chain of predicates built up below.  */
  pred_chain norm_chain = vNULL;
  while (!work_list.is_empty ())
    {
      pred_info pi = work_list.pop ();
      /* The predicate object is not modified here, only NORM_CHAIN and
	 WORK_LIST are appended to.  */
      unsigned oldlen = m_preds.length ();
      normalize (&norm_chain, pi, BIT_AND_EXPR, &work_list, &mark_set);
      gcc_assert (m_preds.length () == oldlen);
    }

  m_preds.safe_push (norm_chain);
  work_list.release ();
}

/* Normalize predicate chains in THIS.  */

void
predicate::normalize (gimple *use_or_def, bool is_use)
{
  if (dump_file && dump_flags & TDF_DETAILS)
    {
      fprintf (dump_file, "Before normalization ");
      dump (dump_file, use_or_def, is_use ? "[USE]:\n" : "[DEF]:\n");
    }

  predicate norm_preds (empty_val ());
  for (unsigned i = 0; i < m_preds.length (); i++)
    {
      if (m_preds[i].length () != 1)
	norm_preds.normalize (m_preds[i]);
      else
	norm_preds.normalize (m_preds[i][0]);
    }

  *this = norm_preds;

  if (dump_file)
    {
      fprintf (dump_file, "After normalization ");
      dump (dump_file, use_or_def, is_use ? "[USE]:\n" : "[DEF]:\n");
    }
}

/* Convert the chains of control dependence edges into a set of predicates.
   A control dependence chain is represented by a vector edges.  DEP_CHAINS
   points to an array of NUM_CHAINS dependence chains. One edge in
   a dependence chain is mapped to predicate expression represented by
   pred_info type.  One dependence chain is converted to a composite
   predicate that is the result of AND operation of pred_info mapped to
   each edge.  A composite predicate is represented by a vector of
   pred_info.  Sets M_PREDS to the resulting composite predicates.  */

void
predicate::init_from_control_deps (const vec<edge> *dep_chains,
				   unsigned num_chains, bool is_use)
{
  gcc_assert (is_empty ());

  if (num_chains == 0)
    return;

  if (DEBUG_PREDICATE_ANALYZER && dump_file)
    fprintf (dump_file, "init_from_control_deps [%s] {%s}:\n",
	     is_use ? "USE" : "DEF",
	     format_edge_vecs (dep_chains, num_chains).c_str ());

  /* Convert the control dependency chain into a set of predicates.  */
  m_preds.reserve (num_chains);

  for (unsigned i = 0; i < num_chains; i++)
    {
      /* One path through the CFG represents a logical conjunction
	 of the predicates.  */
      const vec<edge> &path = dep_chains[i];

      bool has_valid_pred = false;
      /* The chain of predicates guarding the definition along this path.  */
      pred_chain t_chain{ };
      for (unsigned j = 0; j < path.length (); j++)
	{
	  edge e = path[j];
	  basic_block guard_bb = e->src;

	  gcc_assert (!empty_block_p (guard_bb) && !single_succ_p (guard_bb));

	  /* Skip this edge if it is bypassing an abort - when the
	     condition is not satisfied we are neither reaching the
	     definition nor the use so it isn't meaningful.  Note if
	     we are processing the use predicate the condition is
	     meaningful.  See PR65244.  */
	  if (!is_use && EDGE_COUNT (e->src->succs) == 2)
	    {
	      edge e1;
	      edge_iterator ei1;
	      bool skip = false;

	      FOR_EACH_EDGE (e1, ei1, e->src->succs)
		{
		  if (EDGE_COUNT (e1->dest->succs) == 0)
		    {
		      skip = true;
		      break;
		    }
		}
	      if (skip)
		{
		  has_valid_pred = true;
		  continue;
		}
	    }
	  /* Get the conditional controlling the bb exit edge.  */
	  gimple *cond_stmt = last_stmt (guard_bb);
	  if (gimple_code (cond_stmt) == GIMPLE_COND)
	    {
	      /* The true edge corresponds to the uninteresting condition.
		 Add the negated predicate(s) for the edge to record
		 the interesting condition.  */
	      pred_info one_pred;
	      one_pred.pred_lhs = gimple_cond_lhs (cond_stmt);
	      one_pred.pred_rhs = gimple_cond_rhs (cond_stmt);
	      one_pred.cond_code = gimple_cond_code (cond_stmt);
	      one_pred.invert = !!(e->flags & EDGE_FALSE_VALUE);

	      t_chain.safe_push (one_pred);

	      if (DEBUG_PREDICATE_ANALYZER && dump_file)
		{
		  fprintf (dump_file, "%d -> %d: one_pred = ",
			   e->src->index, e->dest->index);
		  dump_pred_info (dump_file, one_pred);
		  fputc ('\n', dump_file);
		}

	      has_valid_pred = true;
	    }
	  else if (gswitch *gs = dyn_cast<gswitch *> (cond_stmt))
	    {
	      /* Find the case label, but avoid quadratic behavior.  */
	      tree l = get_cases_for_edge (e, gs);
	      /* If more than one label reaches this block or the case
		 label doesn't have a contiguous range of values (like the
		 default one) fail.  */
	      if (!l || CASE_CHAIN (l) || !CASE_LOW (l))
		has_valid_pred = false;
	      else if (!CASE_HIGH (l)
		      || operand_equal_p (CASE_LOW (l), CASE_HIGH (l)))
		{
		  pred_info one_pred;
		  one_pred.pred_lhs = gimple_switch_index (gs);
		  one_pred.pred_rhs = CASE_LOW (l);
		  one_pred.cond_code = EQ_EXPR;
		  one_pred.invert = false;
		  t_chain.safe_push (one_pred);
		  has_valid_pred = true;
		}
	      else
		{
		  /* Support a case label with a range with
		     two predicates.  We're overcommitting on
		     the MAX_CHAIN_LEN budget by at most a factor
		     of two here.  */
		  pred_info one_pred;
		  one_pred.pred_lhs = gimple_switch_index (gs);
		  one_pred.pred_rhs = CASE_LOW (l);
		  one_pred.cond_code = GE_EXPR;
		  one_pred.invert = false;
		  t_chain.safe_push (one_pred);
		  one_pred.pred_rhs = CASE_HIGH (l);
		  one_pred.cond_code = LE_EXPR;
		  t_chain.safe_push (one_pred);
		  has_valid_pred = true;
		}
	    }
	  else if (stmt_can_throw_internal (cfun, cond_stmt)
		   && !(e->flags & EDGE_EH))
	    /* Ignore the exceptional control flow and proceed as if
	       E were a fallthru without a controlling predicate for
	       both the USE (valid) and DEF (questionable) case.  */
	    has_valid_pred = true;
	  else
	    has_valid_pred = false;

	  /* For USE predicates we can drop components of the
	     AND chain.  */
	  if (!has_valid_pred && !is_use)
	    break;
	}

      /* For DEF predicates we have to drop components of the OR chain
	 on failure.  */
      if (!has_valid_pred && !is_use)
	{
	  t_chain.release ();
	  continue;
	}

      /* When we add || 1 simply prune the chain and return.  */
      if (t_chain.is_empty ())
	{
	  t_chain.release ();
	  for (auto chain : m_preds)
	    chain.release ();
	  m_preds.truncate (0);
	  break;
	}

      m_preds.quick_push (t_chain);
    }

  if (DEBUG_PREDICATE_ANALYZER && dump_file)
    dump (dump_file);
}

/* Store a PRED in *THIS.  */

void
predicate::push_pred (const pred_info &pred)
{
  pred_chain chain = vNULL;
  chain.safe_push (pred);
  m_preds.safe_push (chain);
}

/* Dump predicates in *THIS to F.  */

void
predicate::dump (FILE *f) const
{
  unsigned np = m_preds.length ();
  if (np == 0)
    {
      fprintf (f, "\tTRUE (empty)\n");
      return;
    }

  for (unsigned i = 0; i < np; i++)
    {
      if (i > 0)
	fprintf (f, "\tOR (");
      else
	fprintf (f, "\t(");
      dump_pred_chain (f, m_preds[i]);
      fprintf (f, ")\n");
    }
}

/* Dump predicates in *THIS to stderr.  */

void
predicate::debug () const
{
  dump (stderr);
}

/* Dump predicates in *THIS for STMT prepended by MSG to F.  */

void
predicate::dump (FILE *f, gimple *stmt, const char *msg) const
{
  fprintf (f, "%s", msg);
  if (stmt)
    {
      fputc ('\t', f);
      print_gimple_stmt (f, stmt, 0);
      fprintf (f, "  is conditional on:\n");
    }

  dump (f);
}

/* Initialize USE_PREDS with the predicates of the control dependence chains
   between the basic block DEF_BB that defines a variable of interst and
   USE_BB that uses the variable, respectively.  */

bool
uninit_analysis::init_use_preds (predicate &use_preds, basic_block def_bb,
				 basic_block use_bb)
{
  if (DEBUG_PREDICATE_ANALYZER && dump_file)
    fprintf (dump_file, "init_use_preds (def_bb = %u, use_bb = %u)\n",
	     def_bb->index, use_bb->index);

  gcc_assert (use_preds.is_empty ()
	      && dominated_by_p (CDI_DOMINATORS, use_bb, def_bb));

  /* Set CD_ROOT to the basic block closest to USE_BB that is the control
     equivalent of (is guarded by the same predicate as) DEF_BB that also
     dominates USE_BB.  This mimics the inner loop in
     compute_control_dep_chain.  */
  basic_block cd_root = def_bb;
  do
    {
      basic_block pdom = get_immediate_dominator (CDI_POST_DOMINATORS, cd_root);

      /* Stop at a loop exit which is also postdominating cd_root.  */
      if (single_pred_p (pdom) && !single_succ_p (cd_root))
	break;

      if (!dominated_by_p (CDI_DOMINATORS, pdom, cd_root)
	  || !dominated_by_p (CDI_DOMINATORS, use_bb, pdom))
	break;

      cd_root = pdom;
    }
  while (1);

  auto_bb_flag in_region (cfun);
  auto_vec<basic_block, 20> region (MIN (n_basic_blocks_for_fn (cfun),
					 param_uninit_control_dep_attempts));

  /* Set DEP_CHAINS to the set of edges between CD_ROOT and USE_BB.
     Each DEP_CHAINS element is a series of edges whose conditions
     are logical conjunctions.  Together, the DEP_CHAINS vector is
     used below to initialize an OR expression of the conjunctions.  */
  unsigned num_chains = 0;
  auto_vec<edge> dep_chains[MAX_NUM_CHAINS];

  if (!dfs_mark_dominating_region (use_bb, cd_root, in_region, region)
      || !compute_control_dep_chain (cd_root, use_bb, dep_chains, &num_chains,
				     in_region))
    {
      /* If the info in dep_chains is not complete we need to use a
	 conservative approximation for the use predicate.  */
      if (DEBUG_PREDICATE_ANALYZER && dump_file)
	fprintf (dump_file, "init_use_preds: dep_chain incomplete, using "
		 "conservative approximation\n");
      num_chains = 1;
      dep_chains[0].truncate (0);
      simple_control_dep_chain (dep_chains[0], cd_root, use_bb);
    }

  /* Unmark the region.  */
  for (auto bb : region)
    bb->flags &= ~in_region;

  /* From the set of edges computed above initialize *THIS as the OR
     condition under which the definition in DEF_BB is used in USE_BB.
     Each OR subexpression is represented by one element of DEP_CHAINS,
     where each element consists of a series of AND subexpressions.  */
  use_preds.init_from_control_deps (dep_chains, num_chains, true);
  return !use_preds.is_empty ();
}

/* Release resources in *THIS.  */

predicate::~predicate ()
{
  unsigned n = m_preds.length ();
  for (unsigned i = 0; i != n; ++i)
    m_preds[i].release ();
  m_preds.release ();
}

/* Copy-assign RHS to *THIS.  */

predicate&
predicate::operator= (const predicate &rhs)
{
  if (this == &rhs)
    return *this;

  m_cval = rhs.m_cval;

  unsigned n = m_preds.length ();
  for (unsigned i = 0; i != n; ++i)
    m_preds[i].release ();
  m_preds.release ();

  n = rhs.m_preds.length ();
  for (unsigned i = 0; i != n; ++i)
    {
      const pred_chain &chain = rhs.m_preds[i];
      m_preds.safe_push (chain.copy ());
    }

  return *this;
}

/* For each use edge of PHI, compute all control dependence chains
   and convert those to the composite predicates in M_PREDS.
   Return true if a nonempty predicate has been obtained.  */

bool
uninit_analysis::init_from_phi_def (gphi *phi)
{
  gcc_assert (m_phi_def_preds.is_empty ());

  basic_block phi_bb = gimple_bb (phi);
  /* Find the closest dominating bb to be the control dependence root.  */
  basic_block cd_root = get_immediate_dominator (CDI_DOMINATORS, phi_bb);
  if (!cd_root)
    return false;

  /* Set DEF_EDGES to the edges to the PHI from the bb's that provide
     definitions of each of the PHI operands for which M_EVAL is false.  */
  auto_vec<edge> def_edges;
  hash_set<gimple *> visited_phis;
  collect_phi_def_edges (phi, cd_root, &def_edges, &visited_phis);

  unsigned nedges = def_edges.length ();
  if (nedges == 0)
    return false;

  auto_bb_flag in_region (cfun);
  auto_vec<basic_block, 20> region (MIN (n_basic_blocks_for_fn (cfun),
					 param_uninit_control_dep_attempts));
  /* Pre-mark the PHI incoming edges PHI block to make sure we only walk
     interesting edges from there.  */
  for (unsigned i = 0; i < nedges; i++)
    {
      if (!(def_edges[i]->dest->flags & in_region))
	{
	  if (!region.space (1))
	    break;
	  def_edges[i]->dest->flags |= in_region;
	  region.quick_push (def_edges[i]->dest);
	}
    }
  for (unsigned i = 0; i < nedges; i++)
    if (!dfs_mark_dominating_region (def_edges[i]->src, cd_root,
				     in_region, region))
      break;

  unsigned num_chains = 0;
  auto_vec<edge> dep_chains[MAX_NUM_CHAINS];
  for (unsigned i = 0; i < nedges; i++)
    {
      edge e = def_edges[i];
      unsigned prev_nc = num_chains;
      bool complete_p = compute_control_dep_chain (cd_root, e->src, dep_chains,
						   &num_chains, in_region);

      /* Update the newly added chains with the phi operand edge.  */
      if (EDGE_COUNT (e->src->succs) > 1)
	{
	  if (complete_p
	      && prev_nc == num_chains
	      && num_chains < MAX_NUM_CHAINS)
	    /* We can only add a chain for the PHI operand edge when the
	       collected info was complete, otherwise the predicate may
	       not be conservative.  */
	    dep_chains[num_chains++] = vNULL;
	  for (unsigned j = prev_nc; j < num_chains; j++)
	    dep_chains[j].safe_push (e);
	}
    }

  /* Unmark the region.  */
  for (auto bb : region)
    bb->flags &= ~in_region;

  /* Convert control dependence chains to the predicate in *THIS under
     which the PHI operands are defined to values for which M_EVAL is
     false.  */
  m_phi_def_preds.init_from_control_deps (dep_chains, num_chains, false);
  return !m_phi_def_preds.is_empty ();
}

/* Compute the predicates that guard the use USE_STMT and check if
   the incoming paths that have an empty (or possibly empty) definition
   can be pruned.  Return true if it can be determined that the use of
   PHI's def in USE_STMT is guarded by a predicate set that does not
   overlap with the predicate sets of all runtime paths that do not
   have a definition.

   Return false if the use is not guarded or if it cannot be determined.
   USE_BB is the bb of the use (for phi operand use, the bb is not the bb
   of the phi stmt, but the source bb of the operand edge).

   OPNDS is a bitmap with a bit set for each PHI operand of interest.

   THIS->M_PREDS contains the (memoized) defining predicate chains of
   a PHI.  If THIS->M_PREDS is empty, the PHI's defining predicate
   chains are computed and stored into THIS->M_PREDS as needed.

   VISITED_PHIS is a pointer set of phis being visited.  */

bool
uninit_analysis::is_use_guarded (gimple *use_stmt, basic_block use_bb,
				 gphi *phi, unsigned opnds,
				 hash_set<gphi *> *visited)
{
  if (visited->add (phi))
    return false;

  /* The basic block where the PHI is defined.  */
  basic_block def_bb = gimple_bb (phi);

  /* Try to build the predicate expression under which the PHI flows
     into its use.  This will be empty if the PHI is defined and used
     in the same bb.  */
  predicate use_preds (true);
  if (!init_use_preds (use_preds, def_bb, use_bb))
    return false;

  use_preds.simplify (use_stmt, /*is_use=*/true);
  if (use_preds.is_false ())
    return true;
  if (use_preds.is_true ())
    return false;
  use_preds.normalize (use_stmt, /*is_use=*/true);

  /* Try to prune the dead incoming phi edges.  */
  if (!overlap (phi, opnds, visited, use_preds))
    {
      if (DEBUG_PREDICATE_ANALYZER && dump_file)
	fputs ("found predicate overlap\n", dump_file);

      return true;
    }

  if (m_phi_def_preds.is_empty ())
    {
      /* Lazily initialize *THIS from PHI.  */
      if (!init_from_phi_def (phi))
	return false;

      m_phi_def_preds.simplify (phi);
      if (m_phi_def_preds.is_false ())
	return false;
      if (m_phi_def_preds.is_true ())
	return true;
      m_phi_def_preds.normalize (phi);
    }

  /* Return true if the predicate guarding the valid definition (i.e.,
     *THIS) is a superset of the predicate guarding the use (i.e.,
     USE_PREDS).  */
  if (m_phi_def_preds.superset_of (use_preds))
    return true;

  return false;
}

/* Public interface to the above. */

bool
uninit_analysis::is_use_guarded (gimple *stmt, basic_block use_bb, gphi *phi,
				 unsigned opnds)
{
  hash_set<gphi *> visited;
  return is_use_guarded (stmt, use_bb, phi, opnds, &visited);
}