aboutsummaryrefslogtreecommitdiff
path: root/gcc/gimple-loop-jam.cc
blob: bf01e0ba646772e5cab3d47305e43ac734db50f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
/* Loop unroll-and-jam.
   Copyright (C) 2017-2024 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.

GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#define INCLUDE_MEMORY
#include "system.h"
#include "coretypes.h"
#include "tree-pass.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "fold-const.h"
#include "tree-cfg.h"
#include "tree-ssa.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop.h"
#include "tree-ssa-loop-manip.h"
#include "cfgloop.h"
#include "tree-scalar-evolution.h"
#include "gimple-iterator.h"
#include "cfghooks.h"
#include "tree-data-ref.h"
#include "tree-ssa-loop-ivopts.h"
#include "tree-vectorizer.h"
#include "tree-ssa-sccvn.h"
#include "tree-cfgcleanup.h"

/* Unroll and Jam transformation
   
   This is a combination of two transformations, where the second
   is not always valid.  It's applicable if a loop nest has redundancies
   over the iterations of an outer loop while not having that with
   an inner loop.

   Given this nest:
       for (i) {
	 for (j) {
	   B(i,j)
	 }
       }

   first unroll:
       for (i by 2) {
	 for (j) {
	   B(i,j)
	 }
	 for (j) {
	   B(i+1,j)
	 }
       }

   then fuse the two adjacent inner loops resulting from that:
       for (i by 2) {
	 for (j) {
	   B(i,j)
	   B(i+1,j)
	 }
       }

   As the order of evaluations of the body B changes this is valid
   only in certain situations: all distance vectors need to be forward.
   Additionally if there are multiple induction variables than just
   a counting control IV (j above) we can also deal with some situations.

   The validity is checked by unroll_jam_possible_p, and the data-dep
   testing below.

   A trivial example where the fusion is wrong would be when
   B(i,j) == x[j-1] = x[j];
       for (i by 2) {
	 for (j) {
	   x[j-1] = x[j];
	 }
	 for (j) {
	   x[j-1] = x[j];
	 }
       }  effect: move content to front by two elements
       -->
       for (i by 2) {
	 for (j) {
	   x[j-1] = x[j];
	   x[j-1] = x[j];
	 }
       }  effect: move content to front by one element
*/

/* Modify the loop tree for the fact that all code once belonging
   to the OLD loop or the outer loop of OLD now is inside LOOP.  */

static void
merge_loop_tree (class loop *loop, class loop *old)
{
  basic_block *bbs;
  int i, n;
  class loop *subloop;
  edge e;
  edge_iterator ei;

  /* Find its nodes.  */
  bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
  n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));

  for (i = 0; i < n; i++)
    {
      /* If the block was direct child of OLD loop it's now part
	 of LOOP.  If it was outside OLD, then it moved into LOOP
	 as well.  This avoids changing the loop father for BBs
	 in inner loops of OLD.  */
      if (bbs[i]->loop_father == old
	  || loop_depth (bbs[i]->loop_father) < loop_depth (old))
	{
	  remove_bb_from_loops (bbs[i]);
	  add_bb_to_loop (bbs[i], loop);
	  continue;
	}

      /* If we find a direct subloop of OLD, move it to LOOP.  */
      subloop = bbs[i]->loop_father;
      if (loop_outer (subloop) == old && subloop->header == bbs[i])
	{
	  flow_loop_tree_node_remove (subloop);
	  flow_loop_tree_node_add (loop, subloop);
	}
    }

  /* Update the information about loop exit edges.  */
  for (i = 0; i < n; i++)
    {
      FOR_EACH_EDGE (e, ei, bbs[i]->succs)
	{
	  rescan_loop_exit (e, false, false);
	}
    }

  loop->num_nodes = n;

  free (bbs);
}

/* BB is part of the outer loop of an unroll-and-jam situation.
   Check if any statements therein would prevent the transformation.  */

static bool
bb_prevents_fusion_p (basic_block bb)
{
  gimple_stmt_iterator gsi;
  /* BB is duplicated by outer unrolling and then all N-1 first copies
     move into the body of the fused inner loop.  If BB exits the outer loop
     the last copy still does so, and the first N-1 copies are cancelled
     by loop unrolling, so also after fusion it's the exit block.
     But there might be other reasons that prevent fusion:
       * stores or unknown side-effects prevent fusion
       * loads don't
       * computations into SSA names: these aren't problematic.  Their
	 result will be unused on the exit edges of the first N-1 copies
	 (those aren't taken after unrolling).  If they are used on the
	 other edge (the one leading to the outer latch block) they are
	 loop-carried (on the outer loop) and the Nth copy of BB will
	 compute them again (i.e. the first N-1 copies will be dead).  */
  for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      gimple *g = gsi_stmt (gsi);
      if (gimple_vdef (g) || gimple_has_side_effects (g))
	return true;
    }
  return false;
}

/* Given an inner loop LOOP (of some OUTER loop) determine if
   we can safely fuse copies of it (generated by outer unrolling).
   If so return true, otherwise return false.  */

static bool
unroll_jam_possible_p (class loop *outer, class loop *loop)
{
  basic_block *bbs;
  int i, n;
  class tree_niter_desc niter;

  /* When fusing the loops we skip the latch block
     of the first one, so it mustn't have any effects to
     preserve.  */
  if (!empty_block_p (loop->latch))
    return false;

  edge exit;
  if (!(exit = single_exit (loop)))
    return false;

  /* We need a perfect nest.  Quick check for adjacent inner loops.  */
  if (outer->inner != loop || loop->next)
    return false;

  /* Prevent head-controlled inner loops, that we usually have.
     The guard block would need to be accepted
     (invariant condition either entering or skipping the loop),
     without also accepting arbitrary control flow.  When unswitching
     ran before us (as with -O3) this won't be a problem because its
     outer loop unswitching will have moved out the invariant condition.

     If we do that we need to extend fuse_loops() to cope with this
     by threading through the (still invariant) copied condition
     between the two loop copies.  */
  if (!dominated_by_p (CDI_DOMINATORS, outer->latch, loop->header))
    return false;

  /* The number of iterations of the inner loop must be loop invariant
     with respect to the outer loop.  */
  if (!number_of_iterations_exit (loop, single_exit (loop), &niter,
				 false, true)
      || niter.cmp == ERROR_MARK
      || !integer_zerop (niter.may_be_zero)
      || !expr_invariant_in_loop_p (outer, niter.niter))
    return false;

  /* If the inner loop produces any values that are used inside the
     outer loop (except the virtual op) then it can flow
     back (perhaps indirectly) into the inner loop.  This prevents
     fusion: without fusion the value at the last iteration is used,
     with fusion the value after the initial iteration is used.

     If all uses are outside the outer loop this doesn't prevent fusion;
     the value of the last iteration is still used (and the values from
     all intermediate iterations are dead).  */
  gphi_iterator psi;
  for (psi = gsi_start_phis (single_exit (loop)->dest);
       !gsi_end_p (psi); gsi_next (&psi))
    {
      imm_use_iterator imm_iter;
      use_operand_p use_p;
      tree op = gimple_phi_result (psi.phi ());
      if (virtual_operand_p (op))
	continue;
      FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
	{
	  gimple *use_stmt = USE_STMT (use_p);
	  if (!is_gimple_debug (use_stmt)
	      && flow_bb_inside_loop_p (outer, gimple_bb (use_stmt)))
	    return false;
	}
    }

  /* And check blocks belonging to just outer loop.  */
  bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
  n = get_loop_body_with_size (outer, bbs, n_basic_blocks_for_fn (cfun));

  for (i = 0; i < n; i++)
    if (bbs[i]->loop_father == outer
	&& (bb_prevents_fusion_p (bbs[i])
	    /* Outer loop exits must come after the inner loop, otherwise
	       we'll put the outer loop exit into the fused inner loop.  */
	    || (loop_exits_from_bb_p (outer, bbs[i])
		&& !dominated_by_p (CDI_DOMINATORS, bbs[i], exit->src))))
      break;
  free (bbs);
  if (i != n)
    return false;

  /* For now we can safely fuse copies of LOOP only if all
     loop carried variables are inductions (or the virtual op).

     We could handle reductions as well (the initial value in the second
     body would be the after-iter value of the first body) if it's over
     an associative and commutative operation.  We wouldn't
     be able to handle unknown cycles.  */
  for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
    {
      affine_iv iv;
      tree op = gimple_phi_result (psi.phi ());

      if (virtual_operand_p (op))
	continue;
      if (!simple_iv (loop, loop, op, &iv, true))
	return false;
      /* The inductions must be regular, loop invariant step and initial
	 value.  */
      if (!expr_invariant_in_loop_p (outer, iv.step)
	  || !expr_invariant_in_loop_p (outer, iv.base))
	return false;
      /* XXX With more effort we could also be able to deal with inductions
	 where the initial value is loop variant but a simple IV in the
	 outer loop.  The initial value for the second body would be
	 the original initial value plus iv.base.step.  The next value
	 for the fused loop would be the original next value of the first
	 copy, _not_ the next value of the second body.  */
    }

  return true;
}

/* Fuse LOOP with all further neighbors.  The loops are expected to
   be in appropriate form.  */

static void
fuse_loops (class loop *loop)
{
  class loop *next = loop->next;

  while (next)
    {
      edge e;

      remove_branch (single_pred_edge (loop->latch));
      /* Make delete_basic_block not fiddle with the loop structure.  */
      basic_block oldlatch = loop->latch;
      loop->latch = NULL;
      delete_basic_block (oldlatch);
      e = redirect_edge_and_branch (loop_latch_edge (next),
				    loop->header);
      loop->latch = e->src;
      flush_pending_stmts (e);

      gcc_assert (EDGE_COUNT (next->header->preds) == 1);

      /* The PHI nodes of the second body (single-argument now)
	 need adjustments to use the right values: either directly
	 the value of the corresponding PHI in the first copy or
	 the one leaving the first body which unrolling did for us.

	 See also unroll_jam_possible_p() for further possibilities.  */
      gphi_iterator psi_first, psi_second;
      e = single_pred_edge (next->header);
      for (psi_first = gsi_start_phis (loop->header),
	   psi_second = gsi_start_phis (next->header);
	   !gsi_end_p (psi_first);
	   gsi_next (&psi_first), gsi_next (&psi_second))
	{
	  gphi *phi_first = psi_first.phi ();
	  gphi *phi_second = psi_second.phi ();
	  tree firstop = gimple_phi_result (phi_first);
	  /* The virtual operand is correct already as it's
	     always live at exit, hence has a LCSSA node and outer
	     loop unrolling updated SSA form.  */
	  if (virtual_operand_p (firstop))
	    continue;

	  /* Due to unroll_jam_possible_p() we know that this is
	     an induction.  The second body goes over the same
	     iteration space.  */
	  add_phi_arg (phi_second, firstop, e,
		       gimple_location (phi_first));
	}
      gcc_assert (gsi_end_p (psi_second));

      merge_loop_tree (loop, next);
      gcc_assert (!next->num_nodes);
      class loop *ln = next->next;
      delete_loop (next);
      next = ln;
    }
}

/* Return true if any of the access functions for dataref A
   isn't invariant with respect to loop LOOP_NEST.  */
static bool
any_access_function_variant_p (const struct data_reference *a,
			       const class loop *loop_nest)
{
  vec<tree> fns = DR_ACCESS_FNS (a);

  for (tree t : fns)
    if (!evolution_function_is_invariant_p (t, loop_nest->num))
      return true;

  return false;
}

/* Returns true if the distance in DDR can be determined and adjusts
   the unroll factor in *UNROLL to make unrolling valid for that distance.
   Otherwise return false.  DDR is with respect to the outer loop of INNER.

   If this data dep can lead to a removed memory reference, increment
   *REMOVED and adjust *PROFIT_UNROLL to be the necessary unroll factor
   for this to happen.  */

static bool
adjust_unroll_factor (class loop *inner, struct data_dependence_relation *ddr,
		      unsigned *unroll, unsigned *profit_unroll,
		      unsigned *removed)
{
  bool ret = false;
  if (DDR_ARE_DEPENDENT (ddr) != chrec_known)
    {
      if (DDR_NUM_DIST_VECTS (ddr) == 0)
	return false;
      unsigned i;
      lambda_vector dist_v;
      FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
	{
	  /* A distance (a,b) is at worst transformed into (a/N,b) by the
	     unrolling (factor N), so the transformation is valid if
	     a >= N, or b > 0, or b is zero and a > 0.  Otherwise the unroll
	     factor needs to be limited so that the first condition holds.
	     That may limit the factor down to zero in the worst case.  */
	  lambda_int dist = dist_v[0];
	  if (dist < 0)
	    gcc_unreachable ();
	  else if (dist >= (lambda_int)*unroll)
	    ;
	  else if (lambda_vector_zerop (dist_v + 1, DDR_NB_LOOPS (ddr) - 1))
	    {
	      /* We have (a,0) with a < N, so this will be transformed into
	         (0,0) after unrolling by N.  This might potentially be a
		 problem, if it's not a read-read dependency.  */
	      if (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr)))
		;
	      else
		{
		  /* So, at least one is a write, and we might reduce the
		     distance vector to (0,0).  This is still no problem
		     if both data-refs are affine with respect to the inner
		     loops.  But if one of them is invariant with respect
		     to an inner loop our reordering implicit in loop fusion
		     corrupts the program, as our data dependences don't
		     capture this.  E.g. for:
		       for (0 <= i < n)
		         for (0 <= j < m)
		           a[i][0] = a[i+1][0] + 2;    // (1)
		           b[i][j] = b[i+1][j] + 2;    // (2)
		     the distance vector for both statements is (-1,0),
		     but exchanging the order for (2) is okay, while
		     for (1) it is not.  To see this, write out the original
		     accesses (assume m is 2):
		       a i j original
		       0 0 0 r a[1][0] b[1][0]
		       1 0 0 w a[0][0] b[0][0]
		       2 0 1 r a[1][0] b[1][1]
		       3 0 1 w a[0][0] b[0][1]
		       4 1 0 r a[2][0] b[2][0]
		       5 1 0 w a[1][0] b[1][0]
		     after unroll-by-2 and fusion the accesses are done in
		     this order (from column a): 0,1, 4,5, 2,3, i.e. this:
		       a i j transformed
		       0 0 0 r a[1][0] b[1][0]
		       1 0 0 w a[0][0] b[0][0]
		       4 1 0 r a[2][0] b[2][0]
		       5 1 0 w a[1][0] b[1][0]
		       2 0 1 r a[1][0] b[1][1]  
		       3 0 1 w a[0][0] b[0][1]
		     Note how access 2 accesses the same element as access 5
		     for array 'a' but not for array 'b'.  */
		  if (any_access_function_variant_p (DDR_A (ddr), inner)
		      && any_access_function_variant_p (DDR_B (ddr), inner))
		    ;
		  else
		    /* And if any dataref of this pair is invariant with
		       respect to the inner loop, we have no chance than
		       to reduce the unroll factor.  */
		    *unroll = dist;
		}
	    }
	  else if (lambda_vector_lexico_pos (dist_v + 1, DDR_NB_LOOPS (ddr) - 1))
	    ;
	  else
	    *unroll = dist;

	  /* With a distance (a,0) it's always profitable to unroll-and-jam
	     (by a+1), because one memory reference will go away.  With
	     (a,b) and b != 0 that's less clear.  We will increase the
	     number of streams without lowering the number of mem refs.
	     So for now only handle the first situation.  */
	  if (lambda_vector_zerop (dist_v + 1, DDR_NB_LOOPS (ddr) - 1))
	    {
	      *profit_unroll = MAX (*profit_unroll, (unsigned)dist + 1);
	      (*removed)++;
	    }

	  ret = true;
	}
    }
  return ret;
}

/* Main entry point for the unroll-and-jam transformation
   described above.  */

static unsigned int
tree_loop_unroll_and_jam (void)
{
  unsigned int todo = 0;

  gcc_assert (scev_initialized_p ());

  /* Go through all innermost loops.  */
  for (auto loop : loops_list (cfun, LI_ONLY_INNERMOST))
    {
      class loop *outer = loop_outer (loop);

      if (loop_depth (loop) < 2
	  || optimize_loop_nest_for_size_p (outer))
	continue;

      if (!unroll_jam_possible_p (outer, loop))
	continue;

      vec<data_reference_p> datarefs = vNULL;
      vec<ddr_p> dependences = vNULL;
      unsigned unroll_factor, profit_unroll, removed;
      class tree_niter_desc desc;
      bool unroll = false;

      auto_vec<loop_p, 3> loop_nest;
      if (!compute_data_dependences_for_loop (outer, true, &loop_nest,
					      &datarefs, &dependences))
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "Cannot analyze data dependencies\n");
	  free_data_refs (datarefs);
	  free_dependence_relations (dependences);
	  continue;
	}
      if (!datarefs.length ())
	continue;

      if (dump_file && (dump_flags & TDF_DETAILS))
	dump_data_dependence_relations (dump_file, dependences);

      unroll_factor = (unsigned)-1;
      profit_unroll = 1;
      removed = 0;

      /* Check all dependencies.  */
      unsigned i;
      struct data_dependence_relation *ddr;
      FOR_EACH_VEC_ELT (dependences, i, ddr)
	{
	  struct data_reference *dra, *drb;

	  /* If the refs are independend there's nothing to do.  */
	  if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
	    continue;

	  dra = DDR_A (ddr);
	  drb = DDR_B (ddr);

	  /* Nothing interesting for the self dependencies, except for WAW if
	     the access function is not affine or constant because we may end
	     up reordering writes to the same location.  */
	  if (dra == drb)
	    {
	      if (DR_IS_WRITE (dra)
		  && !DR_ACCESS_FNS (dra).is_empty ()
		  && DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
		{
		  unroll_factor = 0;
		  break;
		}
	      else
		continue;
	    }

	  /* Now check the distance vector, for determining a sensible
	     outer unroll factor, and for validity of merging the inner
	     loop copies.  */
	  if (!adjust_unroll_factor (loop, ddr, &unroll_factor, &profit_unroll,
				     &removed))
	    {
	      /* Couldn't get the distance vector.  For two reads that's
		 harmless (we assume we should unroll).  For at least
		 one write this means we can't check the dependence direction
		 and hence can't determine safety.  */

	      if (DR_IS_WRITE (dra) || DR_IS_WRITE (drb))
		{
		  unroll_factor = 0;
		  break;
		}
	    }
	}

      /* We regard a user-specified minimum percentage of zero as a request
	 to ignore all profitability concerns and apply the transformation
	 always.  */
      if (!param_unroll_jam_min_percent)
	profit_unroll = MAX(2, profit_unroll);
      else if (removed * 100 / datarefs.length ()
	  < (unsigned)param_unroll_jam_min_percent)
	profit_unroll = 1;
      if (unroll_factor > profit_unroll)
	unroll_factor = profit_unroll;
      if (unroll_factor > (unsigned)param_unroll_jam_max_unroll)
	unroll_factor = param_unroll_jam_max_unroll;
      unroll = (unroll_factor > 1
		&& can_unroll_loop_p (outer, unroll_factor, &desc));

      if (unroll)
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS,
			     find_loop_location (outer),
			     "applying unroll and jam with factor %d\n",
			     unroll_factor);
	  initialize_original_copy_tables ();
	  tree_unroll_loop (outer, unroll_factor, &desc);
	  free_original_copy_tables ();
	  fuse_loops (outer->inner);
	  todo |= TODO_cleanup_cfg;

	  auto_bitmap exit_bbs;
	  bitmap_set_bit (exit_bbs, single_exit (outer)->dest->index);
	  todo |= do_rpo_vn (cfun, loop_preheader_edge (outer), exit_bbs);
	}

      loop_nest.release ();
      free_dependence_relations (dependences);
      free_data_refs (datarefs);
    }

  if (todo)
    {
      free_dominance_info (CDI_DOMINATORS);
      /* We need to cleanup the CFG first since otherwise SSA form can
	 be not up-to-date from the VN run.  */
      if (todo & TODO_cleanup_cfg)
	{
	  cleanup_tree_cfg ();
	  todo &= ~TODO_cleanup_cfg;
	}
      rewrite_into_loop_closed_ssa (NULL, 0);
      scev_reset ();
    }
  return todo;
}

/* Pass boilerplate */

namespace {

const pass_data pass_data_loop_jam =
{
  GIMPLE_PASS, /* type */
  "unrolljam", /* name */
  OPTGROUP_LOOP, /* optinfo_flags */
  TV_LOOP_JAM, /* tv_id */
  PROP_cfg, /* properties_required */
  0, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  0, /* todo_flags_finish */
};

class pass_loop_jam : public gimple_opt_pass
{
public:
  pass_loop_jam (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_loop_jam, ctxt)
  {}

  /* opt_pass methods: */
  bool gate (function *) final override { return flag_unroll_jam != 0; }
  unsigned int execute (function *) final override;

};

unsigned int
pass_loop_jam::execute (function *fun)
{
  if (number_of_loops (fun) <= 1)
    return 0;

  return tree_loop_unroll_and_jam ();
}

}

gimple_opt_pass *
make_pass_loop_jam (gcc::context *ctxt)
{
  return new pass_loop_jam (ctxt);
}