1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
|
/* Loop interchange.
Copyright (C) 2017-2024 Free Software Foundation, Inc.
Contributed by ARM Ltd.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#define INCLUDE_MEMORY
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "is-a.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "fold-const.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "cfgloop.h"
#include "tree-ssa.h"
#include "tree-scalar-evolution.h"
#include "tree-ssa-loop-manip.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop-ivopts.h"
#include "tree-ssa-dce.h"
#include "tree-data-ref.h"
#include "tree-vectorizer.h"
/* This pass performs loop interchange: for example, the loop nest
for (int j = 0; j < N; j++)
for (int k = 0; k < N; k++)
for (int i = 0; i < N; i++)
c[i][j] = c[i][j] + a[i][k]*b[k][j];
is transformed to
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < N; k++)
c[i][j] = c[i][j] + a[i][k]*b[k][j];
This pass implements loop interchange in the following steps:
1) Find perfect loop nest for each innermost loop and compute data
dependence relations for it. For above example, loop nest is
<loop_j, loop_k, loop_i>.
2) From innermost to outermost loop, this pass tries to interchange
each loop pair. For above case, it firstly tries to interchange
<loop_k, loop_i> and loop nest becomes <loop_j, loop_i, loop_k>.
Then it tries to interchange <loop_j, loop_i> and loop nest becomes
<loop_i, loop_j, loop_k>. The overall effect is to move innermost
loop to the outermost position. For loop pair <loop_i, loop_j>
to be interchanged, we:
3) Check if data dependence relations are valid for loop interchange.
4) Check if both loops can be interchanged in terms of transformation.
5) Check if interchanging the two loops is profitable.
6) Interchange the two loops by mapping induction variables.
This pass also handles reductions in loop nest. So far we only support
simple reduction of inner loop and double reduction of the loop nest. */
/* Maximum number of stmts in each loop that should be interchanged. */
#define MAX_NUM_STMT (param_loop_interchange_max_num_stmts)
/* Maximum number of data references in loop nest. */
#define MAX_DATAREFS (param_loop_max_datarefs_for_datadeps)
/* Comparison ratio of access stride between inner/outer loops to be
interchanged. This is the minimum stride ratio for loop interchange
to be profitable. */
#define OUTER_STRIDE_RATIO (param_loop_interchange_stride_ratio)
/* The same as above, but we require higher ratio for interchanging the
innermost two loops. */
#define INNER_STRIDE_RATIO ((OUTER_STRIDE_RATIO) + 1)
/* Comparison ratio of stmt cost between inner/outer loops. Loops won't
be interchanged if outer loop has too many stmts. */
#define STMT_COST_RATIO (3)
/* Vector of strides that DR accesses in each level loop of a loop nest. */
#define DR_ACCESS_STRIDE(dr) ((vec<tree> *) dr->aux)
/* Structure recording loop induction variable. */
typedef struct induction
{
/* IV itself. */
tree var;
/* IV's initializing value, which is the init arg of the IV PHI node. */
tree init_val;
/* IV's initializing expr, which is (the expanded result of) init_val. */
tree init_expr;
/* IV's step. */
tree step;
} *induction_p;
/* Enum type for loop reduction variable. */
enum reduction_type
{
UNKNOWN_RTYPE = 0,
SIMPLE_RTYPE,
DOUBLE_RTYPE
};
/* Structure recording loop reduction variable. */
typedef struct reduction
{
/* Reduction itself. */
tree var;
/* PHI node defining reduction variable. */
gphi *phi;
/* Init and next variables of the reduction. */
tree init;
tree next;
/* Lcssa PHI node if reduction is used outside of its definition loop. */
gphi *lcssa_phi;
/* Stmts defining init and next. */
gimple *producer;
gimple *consumer;
/* If init is loaded from memory, this is the loading memory reference. */
tree init_ref;
/* If reduction is finally stored to memory, this is the stored memory
reference. */
tree fini_ref;
enum reduction_type type;
} *reduction_p;
/* Dump reduction RE. */
static void
dump_reduction (reduction_p re)
{
if (re->type == SIMPLE_RTYPE)
fprintf (dump_file, " Simple reduction: ");
else if (re->type == DOUBLE_RTYPE)
fprintf (dump_file, " Double reduction: ");
else
fprintf (dump_file, " Unknown reduction: ");
print_gimple_stmt (dump_file, re->phi, 0);
}
/* Dump LOOP's induction IV. */
static void
dump_induction (class loop *loop, induction_p iv)
{
fprintf (dump_file, " Induction: ");
print_generic_expr (dump_file, iv->var, TDF_SLIM);
fprintf (dump_file, " = {");
print_generic_expr (dump_file, iv->init_expr, TDF_SLIM);
fprintf (dump_file, ", ");
print_generic_expr (dump_file, iv->step, TDF_SLIM);
fprintf (dump_file, "}_%d\n", loop->num);
}
/* Loop candidate for interchange. */
class loop_cand
{
public:
loop_cand (class loop *, class loop *);
~loop_cand ();
reduction_p find_reduction_by_stmt (gimple *);
void classify_simple_reduction (reduction_p);
bool analyze_iloop_reduction_var (tree);
bool analyze_oloop_reduction_var (loop_cand *, tree);
bool analyze_induction_var (tree, tree);
bool analyze_carried_vars (loop_cand *);
bool analyze_lcssa_phis (void);
bool can_interchange_p (loop_cand *);
void undo_simple_reduction (reduction_p, bitmap);
/* The loop itself. */
class loop *m_loop;
/* The outer loop for interchange. It equals to loop if this loop cand
itself represents the outer loop. */
class loop *m_outer;
/* Vector of induction variables in loop. */
vec<induction_p> m_inductions;
/* Vector of reduction variables in loop. */
vec<reduction_p> m_reductions;
/* Lcssa PHI nodes of this loop. */
vec<gphi *> m_lcssa_nodes;
/* Single exit edge of this loop. */
edge m_exit;
/* Basic blocks of this loop. */
basic_block *m_bbs;
/* Number of stmts of this loop. Inner loops' stmts are not included. */
int m_num_stmts;
/* Number of constant initialized simple reduction. */
int m_const_init_reduc;
};
/* Constructor. */
loop_cand::loop_cand (class loop *loop, class loop *outer)
: m_loop (loop), m_outer (outer), m_exit (single_exit (loop)),
m_bbs (get_loop_body (loop)), m_num_stmts (0), m_const_init_reduc (0)
{
m_inductions.create (3);
m_reductions.create (3);
m_lcssa_nodes.create (3);
}
/* Destructor. */
loop_cand::~loop_cand ()
{
induction_p iv;
for (unsigned i = 0; m_inductions.iterate (i, &iv); ++i)
free (iv);
reduction_p re;
for (unsigned i = 0; m_reductions.iterate (i, &re); ++i)
free (re);
m_inductions.release ();
m_reductions.release ();
m_lcssa_nodes.release ();
free (m_bbs);
}
/* Return single use stmt of VAR in LOOP, otherwise return NULL. */
static gimple *
single_use_in_loop (tree var, class loop *loop)
{
gimple *stmt, *res = NULL;
use_operand_p use_p;
imm_use_iterator iterator;
FOR_EACH_IMM_USE_FAST (use_p, iterator, var)
{
stmt = USE_STMT (use_p);
if (is_gimple_debug (stmt))
continue;
if (!flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
continue;
if (res)
return NULL;
res = stmt;
}
return res;
}
/* Return true if E is unsupported in loop interchange, i.e, E is a complex
edge or part of irreducible loop. */
static inline bool
unsupported_edge (edge e)
{
return (e->flags & (EDGE_COMPLEX | EDGE_IRREDUCIBLE_LOOP));
}
/* Return the reduction if STMT is one of its lcssa PHI, producer or consumer
stmt. */
reduction_p
loop_cand::find_reduction_by_stmt (gimple *stmt)
{
gphi *phi = dyn_cast <gphi *> (stmt);
reduction_p re;
for (unsigned i = 0; m_reductions.iterate (i, &re); ++i)
if ((phi != NULL && phi == re->lcssa_phi)
|| (stmt == re->producer || stmt == re->consumer))
return re;
return NULL;
}
/* Return true if current loop_cand be interchanged. ILOOP is not NULL if
current loop_cand is outer loop in loop nest. */
bool
loop_cand::can_interchange_p (loop_cand *iloop)
{
/* For now we only support at most one reduction. */
unsigned allowed_reduction_num = 1;
/* Only support reduction if the loop nest to be interchanged is the
innermostin two loops. */
if ((iloop == NULL && m_loop->inner != NULL)
|| (iloop != NULL && iloop->m_loop->inner != NULL))
allowed_reduction_num = 0;
if (m_reductions.length () > allowed_reduction_num
|| (m_reductions.length () == 1
&& m_reductions[0]->type == UNKNOWN_RTYPE))
return false;
/* Only support lcssa PHI node which is for reduction. */
if (m_lcssa_nodes.length () > allowed_reduction_num)
return false;
/* Check if basic block has any unsupported operation. Note basic blocks
of inner loops are not checked here. */
for (unsigned i = 0; i < m_loop->num_nodes; i++)
{
basic_block bb = m_bbs[i];
gphi_iterator psi;
gimple_stmt_iterator gsi;
/* Skip basic blocks of inner loops. */
if (bb->loop_father != m_loop)
continue;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (is_gimple_debug (stmt))
continue;
if (gimple_has_side_effects (stmt))
return false;
m_num_stmts++;
if (gcall *call = dyn_cast <gcall *> (stmt))
{
/* In basic block of outer loop, the call should be cheap since
it will be moved to inner loop. */
if (iloop != NULL
&& !gimple_inexpensive_call_p (call))
return false;
continue;
}
if (!iloop || !gimple_vuse (stmt))
continue;
/* Support stmt accessing memory in outer loop only if it is for
inner loop's reduction. */
if (iloop->find_reduction_by_stmt (stmt))
continue;
tree lhs;
/* Support loop invariant memory reference if it's only used once by
inner loop. */
/* ??? How's this checking for invariantness? */
if (gimple_assign_single_p (stmt)
&& (lhs = gimple_assign_lhs (stmt)) != NULL_TREE
&& TREE_CODE (lhs) == SSA_NAME
&& single_use_in_loop (lhs, iloop->m_loop))
continue;
return false;
}
/* Check if loop has too many stmts. */
if (m_num_stmts > MAX_NUM_STMT)
return false;
/* Allow PHI nodes in any basic block of inner loop, PHI nodes in outer
loop's header, or PHI nodes in dest bb of inner loop's exit edge. */
if (!iloop || bb == m_loop->header
|| bb == iloop->m_exit->dest)
continue;
/* Don't allow any other PHI nodes. */
for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
if (!virtual_operand_p (PHI_RESULT (psi.phi ())))
return false;
}
return true;
}
/* Programmers and optimizers (like loop store motion) may optimize code:
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
a[i] += b[j][i] * c[j][i];
into reduction:
for (int i = 0; i < N; i++)
{
// producer. Note sum can be intitialized to a constant.
int sum = a[i];
for (int j = 0; j < N; j++)
{
sum += b[j][i] * c[j][i];
}
// consumer.
a[i] = sum;
}
The result code can't be interchanged without undoing the optimization.
This function classifies this kind reduction and records information so
that we can undo the store motion during interchange. */
void
loop_cand::classify_simple_reduction (reduction_p re)
{
gimple *producer, *consumer;
/* Check init variable of reduction and how it is initialized. */
if (TREE_CODE (re->init) == SSA_NAME)
{
producer = SSA_NAME_DEF_STMT (re->init);
re->producer = producer;
basic_block bb = gimple_bb (producer);
if (!bb || bb->loop_father != m_outer)
return;
if (!gimple_assign_load_p (producer))
return;
re->init_ref = gimple_assign_rhs1 (producer);
}
else if (CONSTANT_CLASS_P (re->init))
m_const_init_reduc++;
else
return;
/* Check how reduction variable is used. */
consumer = single_use_in_loop (PHI_RESULT (re->lcssa_phi), m_outer);
if (!consumer
|| !gimple_store_p (consumer))
return;
re->fini_ref = gimple_get_lhs (consumer);
re->consumer = consumer;
/* Simple reduction with constant initializer. */
if (!re->init_ref)
{
gcc_assert (CONSTANT_CLASS_P (re->init));
re->init_ref = unshare_expr (re->fini_ref);
}
/* Require memory references in producer and consumer are the same so
that we can undo reduction during interchange. */
if (re->init_ref && !operand_equal_p (re->init_ref, re->fini_ref, 0))
return;
re->type = SIMPLE_RTYPE;
}
/* Analyze reduction variable VAR for inner loop of the loop nest to be
interchanged. Return true if analysis succeeds. */
bool
loop_cand::analyze_iloop_reduction_var (tree var)
{
gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (var));
gphi *lcssa_phi = NULL, *use_phi;
tree init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (m_loop));
tree next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (m_loop));
reduction_p re;
gimple *stmt, *next_def, *single_use = NULL;
use_operand_p use_p;
imm_use_iterator iterator;
if (TREE_CODE (next) != SSA_NAME)
return false;
next_def = SSA_NAME_DEF_STMT (next);
basic_block bb = gimple_bb (next_def);
if (!bb || !flow_bb_inside_loop_p (m_loop, bb))
return false;
/* In restricted reduction, the var is (and must be) used in defining
the updated var. The process can be depicted as below:
var ;; = PHI<init, next>
|
|
v
+---------------------+
| reduction operators | <-- other operands
+---------------------+
|
|
v
next
In terms loop interchange, we don't change how NEXT is computed based
on VAR and OTHER OPERANDS. In case of double reduction in loop nest
to be interchanged, we don't changed it at all. In the case of simple
reduction in inner loop, we only make change how VAR/NEXT is loaded or
stored. With these conditions, we can relax restrictions on reduction
in a way that reduction operation is seen as black box. In general,
we can ignore reassociation of reduction operator; we can handle fake
reductions in which VAR is not even used to compute NEXT. */
if (! single_imm_use (var, &use_p, &single_use)
|| ! flow_bb_inside_loop_p (m_loop, gimple_bb (single_use)))
return false;
/* Check the reduction operation. We require a left-associative operation.
For FP math we also need to be allowed to associate operations. */
if (gassign *ass = dyn_cast <gassign *> (single_use))
{
enum tree_code code = gimple_assign_rhs_code (ass);
if (! (associative_tree_code (code)
|| (code == MINUS_EXPR
&& use_p->use == gimple_assign_rhs1_ptr (ass)))
|| (FLOAT_TYPE_P (TREE_TYPE (var))
&& ! flag_associative_math))
return false;
}
else
return false;
/* Handle and verify a series of stmts feeding the reduction op. */
if (single_use != next_def
&& !check_reduction_path (dump_user_location_t (), m_loop, phi, next,
gimple_assign_rhs_code (single_use)))
return false;
/* Only support cases in which INIT is used in inner loop. */
if (TREE_CODE (init) == SSA_NAME)
FOR_EACH_IMM_USE_FAST (use_p, iterator, init)
{
stmt = USE_STMT (use_p);
if (is_gimple_debug (stmt))
continue;
if (!flow_bb_inside_loop_p (m_loop, gimple_bb (stmt)))
return false;
}
FOR_EACH_IMM_USE_FAST (use_p, iterator, next)
{
stmt = USE_STMT (use_p);
if (is_gimple_debug (stmt))
continue;
/* Or else it's used in PHI itself. */
use_phi = dyn_cast <gphi *> (stmt);
if (use_phi == phi)
continue;
if (use_phi != NULL
&& lcssa_phi == NULL
&& gimple_bb (stmt) == m_exit->dest
&& PHI_ARG_DEF_FROM_EDGE (use_phi, m_exit) == next)
lcssa_phi = use_phi;
else
return false;
}
if (!lcssa_phi)
return false;
re = XCNEW (struct reduction);
re->var = var;
re->init = init;
re->next = next;
re->phi = phi;
re->lcssa_phi = lcssa_phi;
classify_simple_reduction (re);
if (dump_file && (dump_flags & TDF_DETAILS))
dump_reduction (re);
m_reductions.safe_push (re);
return true;
}
/* Analyze reduction variable VAR for outer loop of the loop nest to be
interchanged. ILOOP is not NULL and points to inner loop. For the
moment, we only support double reduction for outer loop, like:
for (int i = 0; i < n; i++)
{
int sum = 0;
for (int j = 0; j < n; j++) // outer loop
for (int k = 0; k < n; k++) // inner loop
sum += a[i][k]*b[k][j];
s[i] = sum;
}
Note the innermost two loops are the loop nest to be interchanged.
Return true if analysis succeeds. */
bool
loop_cand::analyze_oloop_reduction_var (loop_cand *iloop, tree var)
{
gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (var));
gphi *lcssa_phi = NULL, *use_phi;
tree init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (m_loop));
tree next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (m_loop));
reduction_p re;
gimple *stmt, *next_def;
use_operand_p use_p;
imm_use_iterator iterator;
if (TREE_CODE (next) != SSA_NAME)
return false;
next_def = SSA_NAME_DEF_STMT (next);
basic_block bb = gimple_bb (next_def);
if (!bb || !flow_bb_inside_loop_p (m_loop, bb))
return false;
/* Find inner loop's simple reduction that uses var as initializer. */
reduction_p inner_re = NULL;
for (unsigned i = 0; iloop->m_reductions.iterate (i, &inner_re); ++i)
if (inner_re->init == var || operand_equal_p (inner_re->init, var, 0))
break;
if (inner_re == NULL
|| inner_re->type != UNKNOWN_RTYPE
|| inner_re->producer != phi)
return false;
/* In case of double reduction, outer loop's reduction should be updated
by inner loop's simple reduction. */
if (next_def != inner_re->lcssa_phi)
return false;
/* Outer loop's reduction should only be used to initialize inner loop's
simple reduction. */
if (! single_imm_use (var, &use_p, &stmt)
|| stmt != inner_re->phi)
return false;
/* Check this reduction is correctly used outside of loop via lcssa phi. */
FOR_EACH_IMM_USE_FAST (use_p, iterator, next)
{
stmt = USE_STMT (use_p);
if (is_gimple_debug (stmt))
continue;
/* Or else it's used in PHI itself. */
use_phi = dyn_cast <gphi *> (stmt);
if (use_phi == phi)
continue;
if (lcssa_phi == NULL
&& use_phi != NULL
&& gimple_bb (stmt) == m_exit->dest
&& PHI_ARG_DEF_FROM_EDGE (use_phi, m_exit) == next)
lcssa_phi = use_phi;
else
return false;
}
if (!lcssa_phi)
return false;
re = XCNEW (struct reduction);
re->var = var;
re->init = init;
re->next = next;
re->phi = phi;
re->lcssa_phi = lcssa_phi;
re->type = DOUBLE_RTYPE;
inner_re->type = DOUBLE_RTYPE;
if (dump_file && (dump_flags & TDF_DETAILS))
dump_reduction (re);
m_reductions.safe_push (re);
return true;
}
/* Return true if VAR is induction variable of current loop whose scev is
specified by CHREC. */
bool
loop_cand::analyze_induction_var (tree var, tree chrec)
{
gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (var));
tree init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (m_loop));
/* Var is loop invariant, though it's unlikely to happen. */
if (tree_does_not_contain_chrecs (chrec))
{
/* Punt on floating point invariants if honoring signed zeros,
representing that as + 0.0 would change the result if init
is -0.0. Similarly for SNaNs it can raise exception. */
if (HONOR_SIGNED_ZEROS (chrec) || HONOR_SNANS (chrec))
return false;
struct induction *iv = XCNEW (struct induction);
iv->var = var;
iv->init_val = init;
iv->init_expr = chrec;
iv->step = build_zero_cst (TREE_TYPE (chrec));
m_inductions.safe_push (iv);
return true;
}
if (TREE_CODE (chrec) != POLYNOMIAL_CHREC
|| CHREC_VARIABLE (chrec) != (unsigned) m_loop->num
|| tree_contains_chrecs (CHREC_LEFT (chrec), NULL)
|| tree_contains_chrecs (CHREC_RIGHT (chrec), NULL))
return false;
struct induction *iv = XCNEW (struct induction);
iv->var = var;
iv->init_val = init;
iv->init_expr = CHREC_LEFT (chrec);
iv->step = CHREC_RIGHT (chrec);
if (dump_file && (dump_flags & TDF_DETAILS))
dump_induction (m_loop, iv);
m_inductions.safe_push (iv);
return true;
}
/* Return true if all loop carried variables defined in loop header can
be successfully analyzed. */
bool
loop_cand::analyze_carried_vars (loop_cand *iloop)
{
edge e = loop_preheader_edge (m_outer);
gphi_iterator gsi;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\nLoop(%d) carried vars:\n", m_loop->num);
for (gsi = gsi_start_phis (m_loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
tree var = PHI_RESULT (phi);
if (virtual_operand_p (var))
continue;
tree chrec = analyze_scalar_evolution (m_loop, var);
chrec = instantiate_scev (e, m_loop, chrec);
/* Analyze var as reduction variable. */
if (chrec_contains_undetermined (chrec)
|| chrec_contains_symbols_defined_in_loop (chrec, m_outer->num))
{
if (iloop && !analyze_oloop_reduction_var (iloop, var))
return false;
if (!iloop && !analyze_iloop_reduction_var (var))
return false;
}
/* Analyze var as induction variable. */
else if (!analyze_induction_var (var, chrec))
return false;
}
return true;
}
/* Return TRUE if loop closed PHI nodes can be analyzed successfully. */
bool
loop_cand::analyze_lcssa_phis (void)
{
gphi_iterator gsi;
for (gsi = gsi_start_phis (m_exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
if (virtual_operand_p (PHI_RESULT (phi)))
continue;
/* TODO: We only support lcssa phi for reduction for now. */
if (!find_reduction_by_stmt (phi))
return false;
}
return true;
}
/* CONSUMER is a stmt in BB storing reduction result into memory object.
When the reduction is intialized from constant value, we need to add
a stmt loading from the memory object to target basic block in inner
loop during undoing the reduction. Problem is that memory reference
may use ssa variables not dominating the target basic block. This
function finds all stmts on which CONSUMER depends in basic block BB,
records and returns them via STMTS. */
static void
find_deps_in_bb_for_stmt (gimple_seq *stmts, basic_block bb, gimple *consumer)
{
auto_vec<gimple *, 4> worklist;
use_operand_p use_p;
ssa_op_iter iter;
gimple *stmt, *def_stmt;
gimple_stmt_iterator gsi;
/* First clear flag for stmts in bb. */
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
gimple_set_plf (gsi_stmt (gsi), GF_PLF_1, false);
/* DFS search all depended stmts in bb and mark flag for these stmts. */
worklist.safe_push (consumer);
while (!worklist.is_empty ())
{
stmt = worklist.pop ();
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
{
def_stmt = SSA_NAME_DEF_STMT (USE_FROM_PTR (use_p));
if (is_a <gphi *> (def_stmt)
|| gimple_bb (def_stmt) != bb
|| gimple_plf (def_stmt, GF_PLF_1))
continue;
worklist.safe_push (def_stmt);
}
gimple_set_plf (stmt, GF_PLF_1, true);
}
for (gsi = gsi_start_nondebug_bb (bb);
!gsi_end_p (gsi) && (stmt = gsi_stmt (gsi)) != consumer;)
{
/* Move dep stmts to sequence STMTS. */
if (gimple_plf (stmt, GF_PLF_1))
{
gsi_remove (&gsi, false);
gimple_seq_add_stmt_without_update (stmts, stmt);
}
else
gsi_next_nondebug (&gsi);
}
}
/* User can write, optimizers can generate simple reduction RE for inner
loop. In order to make interchange valid, we have to undo reduction by
moving producer and consumer stmts into the inner loop. For example,
below code:
init = MEM_REF[idx]; //producer
loop:
var = phi<init, next>
next = var op ...
reduc_sum = phi<next>
MEM_REF[idx] = reduc_sum //consumer
is transformed into:
loop:
new_var = MEM_REF[idx]; //producer after moving
next = new_var op ...
MEM_REF[idx] = next; //consumer after moving
Note if the reduction variable is initialized to constant, like:
var = phi<0.0, next>
we compute new_var as below:
loop:
tmp = MEM_REF[idx];
new_var = !first_iteration ? tmp : 0.0;
so that the initial const is used in the first iteration of loop. Also
record ssa variables for dead code elimination in DCE_SEEDS. */
void
loop_cand::undo_simple_reduction (reduction_p re, bitmap dce_seeds)
{
gimple *stmt;
gimple_stmt_iterator from, to = gsi_after_labels (m_loop->header);
gimple_seq stmts = NULL;
tree new_var;
/* Prepare the initialization stmts and insert it to inner loop. */
if (re->producer != NULL)
{
gimple_set_vuse (re->producer, NULL_TREE);
update_stmt (re->producer);
from = gsi_for_stmt (re->producer);
gsi_remove (&from, false);
gimple_seq_add_stmt_without_update (&stmts, re->producer);
new_var = re->init;
}
else
{
/* Find all stmts on which expression "MEM_REF[idx]" depends. */
find_deps_in_bb_for_stmt (&stmts, gimple_bb (re->consumer), re->consumer);
/* Because we generate new stmt loading from the MEM_REF to TMP. */
tree cond, tmp = copy_ssa_name (re->var);
stmt = gimple_build_assign (tmp, re->init_ref);
gimple_seq_add_stmt_without_update (&stmts, stmt);
/* Init new_var to MEM_REF or CONST depending on if it is the first
iteration. */
induction_p iv = m_inductions[0];
cond = make_ssa_name (boolean_type_node);
stmt = gimple_build_assign (cond, NE_EXPR, iv->var, iv->init_val);
gimple_seq_add_stmt_without_update (&stmts, stmt);
new_var = copy_ssa_name (re->var);
stmt = gimple_build_assign (new_var, COND_EXPR, cond, tmp, re->init);
gimple_seq_add_stmt_without_update (&stmts, stmt);
}
gsi_insert_seq_before (&to, stmts, GSI_SAME_STMT);
/* Replace all uses of reduction var with new variable. */
use_operand_p use_p;
imm_use_iterator iterator;
FOR_EACH_IMM_USE_STMT (stmt, iterator, re->var)
{
FOR_EACH_IMM_USE_ON_STMT (use_p, iterator)
SET_USE (use_p, new_var);
update_stmt (stmt);
}
/* Move consumer stmt into inner loop, just after reduction next's def. */
unlink_stmt_vdef (re->consumer);
release_ssa_name (gimple_vdef (re->consumer));
gimple_set_vdef (re->consumer, NULL_TREE);
gimple_set_vuse (re->consumer, NULL_TREE);
gimple_assign_set_rhs1 (re->consumer, re->next);
update_stmt (re->consumer);
from = gsi_for_stmt (re->consumer);
to = gsi_for_stmt (SSA_NAME_DEF_STMT (re->next));
gsi_move_after (&from, &to);
/* Mark the reduction variables for DCE. */
bitmap_set_bit (dce_seeds, SSA_NAME_VERSION (re->var));
bitmap_set_bit (dce_seeds, SSA_NAME_VERSION (PHI_RESULT (re->lcssa_phi)));
}
/* Free DATAREFS and its auxiliary memory. */
static void
free_data_refs_with_aux (vec<data_reference_p> datarefs)
{
data_reference_p dr;
for (unsigned i = 0; datarefs.iterate (i, &dr); ++i)
if (dr->aux != NULL)
{
DR_ACCESS_STRIDE (dr)->release ();
delete (vec<tree> *) dr->aux;
}
free_data_refs (datarefs);
}
/* Class for loop interchange transformation. */
class tree_loop_interchange
{
public:
tree_loop_interchange (vec<class loop *> loop_nest)
: m_loop_nest (loop_nest), m_niters_iv_var (NULL_TREE),
m_dce_seeds (BITMAP_ALLOC (NULL)) { }
~tree_loop_interchange () { BITMAP_FREE (m_dce_seeds); }
bool interchange (vec<data_reference_p>, vec<ddr_p>);
private:
void update_data_info (unsigned, unsigned, vec<data_reference_p>, vec<ddr_p>);
bool valid_data_dependences (unsigned, unsigned, vec<ddr_p>);
void interchange_loops (loop_cand &, loop_cand &);
void map_inductions_to_loop (loop_cand &, loop_cand &);
void move_code_to_inner_loop (class loop *, class loop *, basic_block *);
/* The whole loop nest in which interchange is ongoing. */
vec<class loop *> m_loop_nest;
/* We create new IV which is only used in loop's exit condition check.
In case of 3-level loop nest interchange, when we interchange the
innermost two loops, new IV created in the middle level loop does
not need to be preserved in interchanging the outermost two loops
later. We record the IV so that it can be skipped. */
tree m_niters_iv_var;
/* Bitmap of seed variables for dead code elimination after interchange. */
bitmap m_dce_seeds;
};
/* Update data refs' access stride and dependence information after loop
interchange. I_IDX/O_IDX gives indices of interchanged loops in loop
nest. DATAREFS are data references. DDRS are data dependences. */
void
tree_loop_interchange::update_data_info (unsigned i_idx, unsigned o_idx,
vec<data_reference_p> datarefs,
vec<ddr_p> ddrs)
{
struct data_reference *dr;
struct data_dependence_relation *ddr;
/* Update strides of data references. */
for (unsigned i = 0; datarefs.iterate (i, &dr); ++i)
{
vec<tree> *stride = DR_ACCESS_STRIDE (dr);
gcc_assert (stride->length () > i_idx);
std::swap ((*stride)[i_idx], (*stride)[o_idx]);
}
/* Update data dependences. */
for (unsigned i = 0; ddrs.iterate (i, &ddr); ++i)
if (DDR_ARE_DEPENDENT (ddr) != chrec_known)
{
for (unsigned j = 0; j < DDR_NUM_DIST_VECTS (ddr); ++j)
{
lambda_vector dist_vect = DDR_DIST_VECT (ddr, j);
std::swap (dist_vect[i_idx], dist_vect[o_idx]);
}
}
}
/* Check data dependence relations, return TRUE if it's valid to interchange
two loops specified by I_IDX/O_IDX. Theoretically, interchanging the two
loops is valid only if dist vector, after interchanging, doesn't have '>'
as the leftmost non-'=' direction. Practically, this function have been
conservative here by not checking some valid cases. */
bool
tree_loop_interchange::valid_data_dependences (unsigned i_idx, unsigned o_idx,
vec<ddr_p> ddrs)
{
struct data_dependence_relation *ddr;
for (unsigned i = 0; ddrs.iterate (i, &ddr); ++i)
{
/* Skip no-dependence case. */
if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
continue;
for (unsigned j = 0; j < DDR_NUM_DIST_VECTS (ddr); ++j)
{
lambda_vector dist_vect = DDR_DIST_VECT (ddr, j);
unsigned level = dependence_level (dist_vect, m_loop_nest.length ());
/* If there is no carried dependence. */
if (level == 0)
continue;
level --;
/* If dependence is not carried by any loop in between the two
loops [oloop, iloop] to interchange. */
if (level < o_idx || level > i_idx)
continue;
/* Be conservative, skip case if either direction at i_idx/o_idx
levels is not '=' or '<'. */
if ((!DDR_REVERSED_P (ddr) && dist_vect[i_idx] < 0)
|| (DDR_REVERSED_P (ddr) && dist_vect[i_idx] > 0)
|| (!DDR_REVERSED_P (ddr) && dist_vect[o_idx] < 0)
|| (DDR_REVERSED_P (ddr) && dist_vect[o_idx] > 0))
return false;
}
}
return true;
}
/* Interchange two loops specified by ILOOP and OLOOP. */
void
tree_loop_interchange::interchange_loops (loop_cand &iloop, loop_cand &oloop)
{
reduction_p re;
gimple_stmt_iterator gsi;
tree i_niters, o_niters, var_after;
/* Undo inner loop's simple reduction. */
for (unsigned i = 0; iloop.m_reductions.iterate (i, &re); ++i)
if (re->type != DOUBLE_RTYPE)
{
if (re->producer)
reset_debug_uses (re->producer);
iloop.undo_simple_reduction (re, m_dce_seeds);
}
/* Only need to reset debug uses for double reduction. */
for (unsigned i = 0; oloop.m_reductions.iterate (i, &re); ++i)
{
gcc_assert (re->type == DOUBLE_RTYPE);
reset_debug_uses (SSA_NAME_DEF_STMT (re->var));
reset_debug_uses (SSA_NAME_DEF_STMT (re->next));
}
/* Prepare niters for both loops. */
class loop *loop_nest = m_loop_nest[0];
edge instantiate_below = loop_preheader_edge (loop_nest);
gsi = gsi_last_bb (loop_preheader_edge (loop_nest)->src);
i_niters = number_of_latch_executions (iloop.m_loop);
i_niters = analyze_scalar_evolution (loop_outer (iloop.m_loop), i_niters);
i_niters = instantiate_scev (instantiate_below, loop_outer (iloop.m_loop),
i_niters);
i_niters = force_gimple_operand_gsi (&gsi, unshare_expr (i_niters), true,
NULL_TREE, false, GSI_CONTINUE_LINKING);
o_niters = number_of_latch_executions (oloop.m_loop);
if (oloop.m_loop != loop_nest)
{
o_niters = analyze_scalar_evolution (loop_outer (oloop.m_loop), o_niters);
o_niters = instantiate_scev (instantiate_below, loop_outer (oloop.m_loop),
o_niters);
}
o_niters = force_gimple_operand_gsi (&gsi, unshare_expr (o_niters), true,
NULL_TREE, false, GSI_CONTINUE_LINKING);
/* Move src's code to tgt loop. This is necessary when src is the outer
loop and tgt is the inner loop. */
move_code_to_inner_loop (oloop.m_loop, iloop.m_loop, oloop.m_bbs);
/* Map outer loop's IV to inner loop, and vice versa. */
map_inductions_to_loop (oloop, iloop);
map_inductions_to_loop (iloop, oloop);
/* Create canonical IV for both loops. Note canonical IV for outer/inner
loop is actually from inner/outer loop. Also we record the new IV
created for the outer loop so that it can be skipped in later loop
interchange. */
create_canonical_iv (oloop.m_loop, oloop.m_exit,
i_niters, &m_niters_iv_var, &var_after);
bitmap_set_bit (m_dce_seeds, SSA_NAME_VERSION (var_after));
create_canonical_iv (iloop.m_loop, iloop.m_exit,
o_niters, NULL, &var_after);
bitmap_set_bit (m_dce_seeds, SSA_NAME_VERSION (var_after));
/* Scrap niters estimation of interchanged loops. */
iloop.m_loop->any_upper_bound = false;
iloop.m_loop->any_likely_upper_bound = false;
free_numbers_of_iterations_estimates (iloop.m_loop);
oloop.m_loop->any_upper_bound = false;
oloop.m_loop->any_likely_upper_bound = false;
free_numbers_of_iterations_estimates (oloop.m_loop);
/* Clear all cached scev information. This is expensive but shouldn't be
a problem given we interchange in very limited times. */
scev_reset_htab ();
/* ??? The association between the loop data structure and the
CFG changed, so what was loop N at the source level is now
loop M. We should think of retaining the association or breaking
it fully by creating a new loop instead of re-using the "wrong" one. */
}
/* Map induction variables of SRC loop to TGT loop. The function firstly
creates the same IV of SRC loop in TGT loop, then deletes the original
IV and re-initialize it using the newly created IV. For example, loop
nest:
for (i = 0; i < N; i++)
for (j = 0; j < M; j++)
{
//use of i;
//use of j;
}
will be transformed into:
for (jj = 0; jj < M; jj++)
for (ii = 0; ii < N; ii++)
{
//use of ii;
//use of jj;
}
after loop interchange. */
void
tree_loop_interchange::map_inductions_to_loop (loop_cand &src, loop_cand &tgt)
{
induction_p iv;
edge e = tgt.m_exit;
gimple_stmt_iterator incr_pos = gsi_last_bb (e->src), gsi;
/* Map source loop's IV to target loop. */
for (unsigned i = 0; src.m_inductions.iterate (i, &iv); ++i)
{
gimple *use_stmt, *stmt = SSA_NAME_DEF_STMT (iv->var);
gcc_assert (is_a <gphi *> (stmt));
use_operand_p use_p;
/* Only map original IV to target loop. */
if (m_niters_iv_var != iv->var)
{
/* Map the IV by creating the same one in target loop. */
tree var_before, var_after;
tree base = unshare_expr (iv->init_expr);
tree step = unshare_expr (iv->step);
create_iv (base, PLUS_EXPR, step, SSA_NAME_VAR (iv->var),
tgt.m_loop, &incr_pos, false, &var_before, &var_after);
bitmap_set_bit (m_dce_seeds, SSA_NAME_VERSION (var_before));
bitmap_set_bit (m_dce_seeds, SSA_NAME_VERSION (var_after));
/* Replace uses of the original IV var with newly created IV var. */
imm_use_iterator imm_iter;
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, iv->var)
{
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
SET_USE (use_p, var_before);
update_stmt (use_stmt);
}
}
/* Mark all uses for DCE. */
ssa_op_iter op_iter;
FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, op_iter, SSA_OP_USE)
{
tree use = USE_FROM_PTR (use_p);
if (TREE_CODE (use) == SSA_NAME
&& ! SSA_NAME_IS_DEFAULT_DEF (use))
bitmap_set_bit (m_dce_seeds, SSA_NAME_VERSION (use));
}
/* Delete definition of the original IV in the source loop. */
gsi = gsi_for_stmt (stmt);
remove_phi_node (&gsi, true);
}
}
/* Move stmts of outer loop to inner loop. */
void
tree_loop_interchange::move_code_to_inner_loop (class loop *outer,
class loop *inner,
basic_block *outer_bbs)
{
basic_block oloop_exit_bb = single_exit (outer)->src;
gimple_stmt_iterator gsi, to;
for (unsigned i = 0; i < outer->num_nodes; i++)
{
basic_block bb = outer_bbs[i];
/* Skip basic blocks of inner loop. */
if (flow_bb_inside_loop_p (inner, bb))
continue;
/* Move code from header/latch to header/latch. */
if (bb == outer->header)
to = gsi_after_labels (inner->header);
else if (bb == outer->latch)
to = gsi_after_labels (inner->latch);
else
/* Otherwise, simply move to exit->src. */
to = gsi_last_bb (single_exit (inner)->src);
for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
{
gimple *stmt = gsi_stmt (gsi);
if (oloop_exit_bb == bb
&& stmt == gsi_stmt (gsi_last_bb (oloop_exit_bb)))
{
gsi_next (&gsi);
continue;
}
if (gimple_vdef (stmt))
{
unlink_stmt_vdef (stmt);
release_ssa_name (gimple_vdef (stmt));
gimple_set_vdef (stmt, NULL_TREE);
}
if (gimple_vuse (stmt))
{
gimple_set_vuse (stmt, NULL_TREE);
update_stmt (stmt);
}
reset_debug_uses (stmt);
gsi_move_before (&gsi, &to);
}
}
}
/* Given data reference DR in LOOP_NEST, the function computes DR's access
stride at each level of loop from innermost LOOP to outer. On success,
it saves access stride at each level loop in a vector which is pointed
by DR->aux. For example:
int arr[100][100][100];
for (i = 0; i < 100; i++) ;(DR->aux)strides[0] = 40000
for (j = 100; j > 0; j--) ;(DR->aux)strides[1] = 400
for (k = 0; k < 100; k++) ;(DR->aux)strides[2] = 4
arr[i][j - 1][k] = 0; */
static void
compute_access_stride (class loop *&loop_nest, class loop *loop,
data_reference_p dr)
{
vec<tree> *strides = new vec<tree> ();
dr->aux = strides;
basic_block bb = gimple_bb (DR_STMT (dr));
if (!flow_bb_inside_loop_p (loop_nest, bb))
return;
while (!flow_bb_inside_loop_p (loop, bb))
{
strides->safe_push (build_int_cst (sizetype, 0));
loop = loop_outer (loop);
}
gcc_assert (loop == bb->loop_father);
tree ref = DR_REF (dr);
if (TREE_CODE (ref) == COMPONENT_REF
&& DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
{
/* We can't take address of bitfields. If the bitfield is at constant
offset from the start of the struct, just use address of the
struct, for analysis of the strides that shouldn't matter. */
if (!TREE_OPERAND (ref, 2)
|| TREE_CODE (TREE_OPERAND (ref, 2)) == INTEGER_CST)
ref = TREE_OPERAND (ref, 0);
/* Otherwise, if we have a bit field representative, use that. */
else if (DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (ref, 1))
!= NULL_TREE)
{
tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (ref, 1));
ref = build3 (COMPONENT_REF, TREE_TYPE (repr), TREE_OPERAND (ref, 0),
repr, TREE_OPERAND (ref, 2));
}
/* Otherwise punt. */
else
return;
}
tree scev_base = build_fold_addr_expr (ref);
tree scev = analyze_scalar_evolution (loop, scev_base);
if (chrec_contains_undetermined (scev))
return;
tree orig_scev = scev;
do
{
scev = instantiate_scev (loop_preheader_edge (loop_nest),
loop, orig_scev);
if (! chrec_contains_undetermined (scev))
break;
/* If we couldn't instantiate for the desired nest, shrink it. */
if (loop_nest == loop)
return;
loop_nest = loop_nest->inner;
} while (1);
tree sl = scev;
class loop *expected = loop;
while (TREE_CODE (sl) == POLYNOMIAL_CHREC)
{
class loop *sl_loop = get_chrec_loop (sl);
while (sl_loop != expected)
{
strides->safe_push (size_int (0));
expected = loop_outer (expected);
}
strides->safe_push (CHREC_RIGHT (sl));
sl = CHREC_LEFT (sl);
expected = loop_outer (expected);
}
if (! tree_contains_chrecs (sl, NULL))
while (expected != loop_outer (loop_nest))
{
strides->safe_push (size_int (0));
expected = loop_outer (expected);
}
}
/* Given loop nest LOOP_NEST with innermost LOOP, the function computes
access strides with respect to each level loop for all data refs in
DATAREFS from inner loop to outer loop. On success, it returns the
outermost loop that access strides can be computed successfully for
all data references. If access strides cannot be computed at least
for two levels of loop for any data reference, it returns NULL. */
static class loop *
compute_access_strides (class loop *loop_nest, class loop *loop,
vec<data_reference_p> datarefs)
{
unsigned i, j, num_loops = (unsigned) -1;
data_reference_p dr;
vec<tree> *stride;
class loop *interesting_loop_nest = loop_nest;
for (i = 0; datarefs.iterate (i, &dr); ++i)
{
compute_access_stride (interesting_loop_nest, loop, dr);
stride = DR_ACCESS_STRIDE (dr);
if (stride->length () < num_loops)
{
num_loops = stride->length ();
if (num_loops < 2)
return NULL;
}
}
for (i = 0; datarefs.iterate (i, &dr); ++i)
{
stride = DR_ACCESS_STRIDE (dr);
if (stride->length () > num_loops)
stride->truncate (num_loops);
for (j = 0; j < (num_loops >> 1); ++j)
std::swap ((*stride)[j], (*stride)[num_loops - j - 1]);
}
loop = superloop_at_depth (loop, loop_depth (loop) + 1 - num_loops);
gcc_assert (loop_nest == loop || flow_loop_nested_p (loop_nest, loop));
return loop;
}
/* Prune access strides for data references in DATAREFS by removing strides
of loops that isn't in current LOOP_NEST. */
static void
prune_access_strides_not_in_loop (class loop *loop_nest,
class loop *innermost,
vec<data_reference_p> datarefs)
{
data_reference_p dr;
unsigned num_loops = loop_depth (innermost) - loop_depth (loop_nest) + 1;
gcc_assert (num_loops > 1);
/* Block remove strides of loops that is not in current loop nest. */
for (unsigned i = 0; datarefs.iterate (i, &dr); ++i)
{
vec<tree> *stride = DR_ACCESS_STRIDE (dr);
if (stride->length () > num_loops)
stride->block_remove (0, stride->length () - num_loops);
}
}
/* Dump access strides for all DATAREFS. */
static void
dump_access_strides (vec<data_reference_p> datarefs)
{
data_reference_p dr;
fprintf (dump_file, "Access Strides for DRs:\n");
for (unsigned i = 0; datarefs.iterate (i, &dr); ++i)
{
fprintf (dump_file, " ");
print_generic_expr (dump_file, DR_REF (dr), TDF_SLIM);
fprintf (dump_file, ":\t\t<");
vec<tree> *stride = DR_ACCESS_STRIDE (dr);
unsigned num_loops = stride->length ();
for (unsigned j = 0; j < num_loops; ++j)
{
print_generic_expr (dump_file, (*stride)[j], TDF_SLIM);
fprintf (dump_file, "%s", (j < num_loops - 1) ? ",\t" : ">\n");
}
}
}
/* Return true if it's profitable to interchange two loops whose index
in whole loop nest vector are I_IDX/O_IDX respectively. The function
computes and compares three types information from all DATAREFS:
1) Access stride for loop I_IDX and O_IDX.
2) Number of invariant memory references with respect to I_IDX before
and after loop interchange.
3) Flags indicating if all memory references access sequential memory
in ILOOP, before and after loop interchange.
If INNMOST_LOOP_P is true, the two loops for interchanging are the two
innermost loops in loop nest. This function also dumps information if
DUMP_INFO_P is true. */
static bool
should_interchange_loops (unsigned i_idx, unsigned o_idx,
vec<data_reference_p> datarefs,
unsigned i_stmt_cost, unsigned o_stmt_cost,
bool innermost_loops_p, bool dump_info_p = true)
{
unsigned HOST_WIDE_INT ratio;
unsigned i, j, num_old_inv_drs = 0, num_new_inv_drs = 0;
struct data_reference *dr;
bool all_seq_dr_before_p = true, all_seq_dr_after_p = true;
widest_int iloop_strides = 0, oloop_strides = 0;
unsigned num_unresolved_drs = 0;
unsigned num_resolved_ok_drs = 0;
unsigned num_resolved_not_ok_drs = 0;
if (dump_info_p && dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\nData ref strides:\n\tmem_ref:\t\tiloop\toloop\n");
for (i = 0; datarefs.iterate (i, &dr); ++i)
{
vec<tree> *stride = DR_ACCESS_STRIDE (dr);
tree iloop_stride = (*stride)[i_idx], oloop_stride = (*stride)[o_idx];
bool subloop_stride_p = false;
/* Data ref can't be invariant or sequential access at current loop if
its address changes with respect to any subloops. */
for (j = i_idx + 1; j < stride->length (); ++j)
if (!integer_zerop ((*stride)[j]))
{
subloop_stride_p = true;
break;
}
if (integer_zerop (iloop_stride))
{
if (!subloop_stride_p)
num_old_inv_drs++;
}
if (integer_zerop (oloop_stride))
{
if (!subloop_stride_p)
num_new_inv_drs++;
}
if (TREE_CODE (iloop_stride) == INTEGER_CST
&& TREE_CODE (oloop_stride) == INTEGER_CST)
{
iloop_strides = wi::add (iloop_strides, wi::to_widest (iloop_stride));
oloop_strides = wi::add (oloop_strides, wi::to_widest (oloop_stride));
}
else if (multiple_of_p (TREE_TYPE (iloop_stride),
iloop_stride, oloop_stride))
num_resolved_ok_drs++;
else if (multiple_of_p (TREE_TYPE (iloop_stride),
oloop_stride, iloop_stride))
num_resolved_not_ok_drs++;
else
num_unresolved_drs++;
/* Data ref can't be sequential access if its address changes in sub
loop. */
if (subloop_stride_p)
{
all_seq_dr_before_p = false;
all_seq_dr_after_p = false;
continue;
}
/* Track if all data references are sequential accesses before/after loop
interchange. Note invariant is considered sequential here. */
tree access_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
if (all_seq_dr_before_p
&& ! (integer_zerop (iloop_stride)
|| operand_equal_p (access_size, iloop_stride, 0)))
all_seq_dr_before_p = false;
if (all_seq_dr_after_p
&& ! (integer_zerop (oloop_stride)
|| operand_equal_p (access_size, oloop_stride, 0)))
all_seq_dr_after_p = false;
}
if (dump_info_p && dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\toverall:\t\t");
print_decu (iloop_strides, dump_file);
fprintf (dump_file, "\t");
print_decu (oloop_strides, dump_file);
fprintf (dump_file, "\n");
fprintf (dump_file, "Invariant data ref: before(%d), after(%d)\n",
num_old_inv_drs, num_new_inv_drs);
fprintf (dump_file, "All consecutive stride: before(%s), after(%s)\n",
all_seq_dr_before_p ? "true" : "false",
all_seq_dr_after_p ? "true" : "false");
fprintf (dump_file, "OK to interchage with variable strides: %d\n",
num_resolved_ok_drs);
fprintf (dump_file, "Not OK to interchage with variable strides: %d\n",
num_resolved_not_ok_drs);
fprintf (dump_file, "Variable strides we cannot decide: %d\n",
num_unresolved_drs);
fprintf (dump_file, "Stmt cost of inner loop: %d\n", i_stmt_cost);
fprintf (dump_file, "Stmt cost of outer loop: %d\n", o_stmt_cost);
}
if (num_unresolved_drs != 0 || num_resolved_not_ok_drs != 0)
return false;
/* Stmts of outer loop will be moved to inner loop. If there are two many
such stmts, it could make inner loop costly. Here we compare stmt cost
between outer and inner loops. */
if (i_stmt_cost && o_stmt_cost
&& num_old_inv_drs + o_stmt_cost > num_new_inv_drs
&& o_stmt_cost * STMT_COST_RATIO > i_stmt_cost)
return false;
/* We use different stride comparison ratio for interchanging innermost
two loops or not. The idea is to be conservative in interchange for
the innermost loops. */
ratio = innermost_loops_p ? INNER_STRIDE_RATIO : OUTER_STRIDE_RATIO;
/* Do interchange if it gives better data locality behavior. */
if (wi::gtu_p (iloop_strides, wi::mul (oloop_strides, ratio)))
return true;
if (wi::gtu_p (iloop_strides, oloop_strides))
{
/* Or it creates more invariant memory references. */
if ((!all_seq_dr_before_p || all_seq_dr_after_p)
&& num_new_inv_drs > num_old_inv_drs)
return true;
/* Or it makes all memory references sequential. */
if (num_new_inv_drs >= num_old_inv_drs
&& !all_seq_dr_before_p && all_seq_dr_after_p)
return true;
}
return false;
}
/* Try to interchange inner loop of a loop nest to outer level. */
bool
tree_loop_interchange::interchange (vec<data_reference_p> datarefs,
vec<ddr_p> ddrs)
{
dump_user_location_t loc = find_loop_location (m_loop_nest[0]);
bool changed_p = false;
/* In each iteration we try to interchange I-th loop with (I+1)-th loop.
The overall effect is to push inner loop to outermost level in whole
loop nest. */
for (unsigned i = m_loop_nest.length (); i > 1; --i)
{
unsigned i_idx = i - 1, o_idx = i - 2;
/* Check validity for loop interchange. */
if (!valid_data_dependences (i_idx, o_idx, ddrs))
break;
loop_cand iloop (m_loop_nest[i_idx], m_loop_nest[o_idx]);
loop_cand oloop (m_loop_nest[o_idx], m_loop_nest[o_idx]);
/* Check if we can do transformation for loop interchange. */
if (!iloop.analyze_carried_vars (NULL)
|| !iloop.analyze_lcssa_phis ()
|| !oloop.analyze_carried_vars (&iloop)
|| !oloop.analyze_lcssa_phis ()
|| !iloop.can_interchange_p (NULL)
|| !oloop.can_interchange_p (&iloop))
break;
/* Outer loop's stmts will be moved to inner loop during interchange.
If there are many of them, it may make inner loop very costly. We
need to check number of outer loop's stmts in profit cost model of
interchange. */
int stmt_cost = oloop.m_num_stmts;
/* Count out the exit checking stmt of outer loop. */
stmt_cost --;
/* Count out IV's increasing stmt, IVOPTs takes care if it. */
stmt_cost -= oloop.m_inductions.length ();
/* Count in the additional load and cond_expr stmts caused by inner
loop's constant initialized reduction. */
stmt_cost += iloop.m_const_init_reduc * 2;
if (stmt_cost < 0)
stmt_cost = 0;
/* Check profitability for loop interchange. */
if (should_interchange_loops (i_idx, o_idx, datarefs,
(unsigned) iloop.m_num_stmts,
(unsigned) stmt_cost,
iloop.m_loop->inner == NULL))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Loop_pair<outer:%d, inner:%d> is interchanged\n\n",
oloop.m_loop->num, iloop.m_loop->num);
changed_p = true;
interchange_loops (iloop, oloop);
/* No need to update if there is no further loop interchange. */
if (o_idx > 0)
update_data_info (i_idx, o_idx, datarefs, ddrs);
}
else
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Loop_pair<outer:%d, inner:%d> is not interchanged\n\n",
oloop.m_loop->num, iloop.m_loop->num);
}
}
simple_dce_from_worklist (m_dce_seeds);
if (changed_p && dump_enabled_p ())
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loc,
"loops interchanged in loop nest\n");
return changed_p;
}
/* Loop interchange pass. */
namespace {
const pass_data pass_data_linterchange =
{
GIMPLE_PASS, /* type */
"linterchange", /* name */
OPTGROUP_LOOP, /* optinfo_flags */
TV_LINTERCHANGE, /* tv_id */
PROP_cfg, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_linterchange : public gimple_opt_pass
{
public:
pass_linterchange (gcc::context *ctxt)
: gimple_opt_pass (pass_data_linterchange, ctxt)
{}
/* opt_pass methods: */
opt_pass * clone () final override { return new pass_linterchange (m_ctxt); }
bool gate (function *) final override { return flag_loop_interchange; }
unsigned int execute (function *) final override;
}; // class pass_linterchange
/* Return true if LOOP has proper form for interchange. We check three
conditions in the function:
1) In general, a loop can be interchanged only if it doesn't have
basic blocks other than header, exit and latch besides possible
inner loop nest. This basically restricts loop interchange to
below form loop nests:
header<---+
| |
v |
INNER_LOOP |
| |
v |
exit--->latch
2) Data reference in basic block that executes in different times
than loop head/exit is not allowed.
3) Record the innermost outer loop that doesn't form rectangle loop
nest with LOOP. */
static bool
proper_loop_form_for_interchange (class loop *loop, class loop **min_outer)
{
edge e0, e1, exit;
/* Don't interchange if loop has unsupported information for the moment. */
if (loop->safelen > 0
|| loop->constraints != 0
|| loop->can_be_parallel
|| loop->dont_vectorize
|| loop->force_vectorize
|| loop->in_oacc_kernels_region
|| loop->orig_loop_num != 0
|| loop->simduid != NULL_TREE)
return false;
/* Don't interchange if outer loop has basic block other than header, exit
and latch. */
if (loop->inner != NULL
&& loop->num_nodes != loop->inner->num_nodes + 3)
return false;
if ((exit = single_dom_exit (loop)) == NULL)
return false;
/* Check control flow on loop header/exit blocks. */
if (loop->header == exit->src
&& (EDGE_COUNT (loop->header->preds) != 2
|| EDGE_COUNT (loop->header->succs) != 2))
return false;
else if (loop->header != exit->src
&& (EDGE_COUNT (loop->header->preds) != 2
|| !single_succ_p (loop->header)
|| unsupported_edge (single_succ_edge (loop->header))
|| EDGE_COUNT (exit->src->succs) != 2
|| !single_pred_p (exit->src)
|| unsupported_edge (single_pred_edge (exit->src))))
return false;
e0 = EDGE_PRED (loop->header, 0);
e1 = EDGE_PRED (loop->header, 1);
if (unsupported_edge (e0) || unsupported_edge (e1)
|| (e0->src != loop->latch && e1->src != loop->latch)
|| (e0->src->loop_father == loop && e1->src->loop_father == loop))
return false;
e0 = EDGE_SUCC (exit->src, 0);
e1 = EDGE_SUCC (exit->src, 1);
if (unsupported_edge (e0) || unsupported_edge (e1)
|| (e0->dest != loop->latch && e1->dest != loop->latch)
|| (e0->dest->loop_father == loop && e1->dest->loop_father == loop))
return false;
/* Don't interchange if any reference is in basic block that doesn't
dominate exit block. */
basic_block *bbs = get_loop_body (loop);
for (unsigned i = 0; i < loop->num_nodes; i++)
{
basic_block bb = bbs[i];
if (bb->loop_father != loop
|| bb == loop->header || bb == exit->src
|| dominated_by_p (CDI_DOMINATORS, exit->src, bb))
continue;
for (gimple_stmt_iterator gsi = gsi_start_nondebug_bb (bb);
!gsi_end_p (gsi); gsi_next_nondebug (&gsi))
if (gimple_vuse (gsi_stmt (gsi)))
{
free (bbs);
return false;
}
}
free (bbs);
tree niters = number_of_latch_executions (loop);
niters = analyze_scalar_evolution (loop_outer (loop), niters);
if (!niters || chrec_contains_undetermined (niters))
return false;
/* Record the innermost outer loop that doesn't form rectangle loop nest. */
for (loop_p loop2 = loop_outer (loop);
loop2 && flow_loop_nested_p (*min_outer, loop2);
loop2 = loop_outer (loop2))
{
niters = instantiate_scev (loop_preheader_edge (loop2),
loop_outer (loop), niters);
if (!evolution_function_is_invariant_p (niters, loop2->num))
{
*min_outer = loop2;
break;
}
}
return true;
}
/* Return true if any two adjacent loops in loop nest [INNERMOST, LOOP_NEST]
should be interchanged by looking into all DATAREFS. */
static bool
should_interchange_loop_nest (class loop *loop_nest, class loop *innermost,
vec<data_reference_p> datarefs)
{
unsigned idx = loop_depth (innermost) - loop_depth (loop_nest);
gcc_assert (idx > 0);
/* Check if any two adjacent loops should be interchanged. */
for (class loop *loop = innermost;
loop != loop_nest; loop = loop_outer (loop), idx--)
if (should_interchange_loops (idx, idx - 1, datarefs, 0, 0,
loop == innermost, false))
return true;
return false;
}
/* Given loop nest LOOP_NEST and data references DATAREFS, compute data
dependences for loop interchange and store it in DDRS. Note we compute
dependences directly rather than call generic interface so that we can
return on unknown dependence instantly. */
static bool
tree_loop_interchange_compute_ddrs (vec<loop_p> loop_nest,
vec<data_reference_p> datarefs,
vec<ddr_p> *ddrs)
{
struct data_reference *a, *b;
class loop *innermost = loop_nest.last ();
for (unsigned i = 0; datarefs.iterate (i, &a); ++i)
{
bool a_outer_p = gimple_bb (DR_STMT (a))->loop_father != innermost;
for (unsigned j = i + 1; datarefs.iterate (j, &b); ++j)
if (DR_IS_WRITE (a) || DR_IS_WRITE (b))
{
bool b_outer_p = gimple_bb (DR_STMT (b))->loop_father != innermost;
/* Don't support multiple write references in outer loop. */
if (a_outer_p && b_outer_p && DR_IS_WRITE (a) && DR_IS_WRITE (b))
return false;
ddr_p ddr = initialize_data_dependence_relation (a, b, loop_nest);
ddrs->safe_push (ddr);
compute_affine_dependence (ddr, loop_nest[0]);
/* Give up if ddr is unknown dependence or classic direct vector
is not available. */
if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know
|| (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
&& DDR_NUM_DIR_VECTS (ddr) == 0))
return false;
/* If either data references is in outer loop of nest, we require
no dependence here because the data reference need to be moved
into inner loop during interchange. */
if (a_outer_p && b_outer_p
&& operand_equal_p (DR_REF (a), DR_REF (b), 0))
continue;
if (DDR_ARE_DEPENDENT (ddr) != chrec_known
&& (a_outer_p || b_outer_p))
return false;
}
}
return true;
}
/* Prune DATAREFS by removing any data reference not inside of LOOP. */
static inline void
prune_datarefs_not_in_loop (class loop *loop, vec<data_reference_p> datarefs)
{
unsigned i, j;
struct data_reference *dr;
for (i = 0, j = 0; datarefs.iterate (i, &dr); ++i)
{
if (flow_bb_inside_loop_p (loop, gimple_bb (DR_STMT (dr))))
datarefs[j++] = dr;
else
{
if (dr->aux)
{
DR_ACCESS_STRIDE (dr)->release ();
delete (vec<tree> *) dr->aux;
}
free_data_ref (dr);
}
}
datarefs.truncate (j);
}
/* Find and store data references in DATAREFS for LOOP nest. If there's
difficult data reference in a basic block, we shrink the loop nest to
inner loop of that basic block's father loop. On success, return the
outer loop of the result loop nest. */
static class loop *
prepare_data_references (class loop *loop, vec<data_reference_p> *datarefs)
{
class loop *loop_nest = loop;
vec<data_reference_p> *bb_refs;
basic_block bb, *bbs = get_loop_body_in_dom_order (loop);
for (unsigned i = 0; i < loop->num_nodes; i++)
bbs[i]->aux = NULL;
/* Find data references for all basic blocks. Shrink loop nest on difficult
data reference. */
for (unsigned i = 0; loop_nest && i < loop->num_nodes; ++i)
{
bb = bbs[i];
if (!flow_bb_inside_loop_p (loop_nest, bb))
continue;
bb_refs = new vec<data_reference_p> ();
if (find_data_references_in_bb (loop, bb, bb_refs) == chrec_dont_know)
{
loop_nest = bb->loop_father->inner;
if (loop_nest && !loop_nest->inner)
loop_nest = NULL;
free_data_refs (*bb_refs);
delete bb_refs;
}
else if (bb_refs->is_empty ())
{
bb_refs->release ();
delete bb_refs;
}
else
bb->aux = bb_refs;
}
/* Collect all data references in loop nest. */
for (unsigned i = 0; i < loop->num_nodes; i++)
{
bb = bbs[i];
if (!bb->aux)
continue;
bb_refs = (vec<data_reference_p> *) bb->aux;
if (loop_nest && flow_bb_inside_loop_p (loop_nest, bb))
{
datarefs->safe_splice (*bb_refs);
bb_refs->release ();
}
else
free_data_refs (*bb_refs);
delete bb_refs;
bb->aux = NULL;
}
free (bbs);
return loop_nest;
}
/* Given innermost LOOP, return true if perfect loop nest can be found and
data dependences can be computed. If succeed, record the perfect loop
nest in LOOP_NEST; record all data references in DATAREFS and record all
data dependence relations in DDRS.
We do support a restricted form of imperfect loop nest, i.e, loop nest
with load/store in outer loop initializing/finalizing simple reduction
of the innermost loop. For such outer loop reference, we require that
it has no dependence with others sinve it will be moved to inner loop
in interchange. */
static bool
prepare_perfect_loop_nest (class loop *loop, vec<loop_p> *loop_nest,
vec<data_reference_p> *datarefs, vec<ddr_p> *ddrs)
{
class loop *start_loop = NULL, *innermost = loop;
class loop *outermost = loops_for_fn (cfun)->tree_root;
/* Find loop nest from the innermost loop. The outermost is the innermost
outer*/
while (loop->num != 0 && loop->inner == start_loop
&& flow_loop_nested_p (outermost, loop))
{
if (!proper_loop_form_for_interchange (loop, &outermost))
break;
start_loop = loop;
/* If this loop has sibling loop, the father loop won't be in perfect
loop nest. */
if (loop->next != NULL)
break;
loop = loop_outer (loop);
}
if (!start_loop || !start_loop->inner)
return false;
/* Prepare the data reference vector for the loop nest, pruning outer
loops we cannot handle. */
start_loop = prepare_data_references (start_loop, datarefs);
if (!start_loop
/* Check if there is no data reference. */
|| datarefs->is_empty ()
/* Check if there are too many of data references. */
|| (int) datarefs->length () > MAX_DATAREFS)
return false;
/* Compute access strides for all data references, pruning outer
loops we cannot analyze refs in. */
start_loop = compute_access_strides (start_loop, innermost, *datarefs);
if (!start_loop)
return false;
/* Check if any interchange is profitable in the loop nest. */
if (!should_interchange_loop_nest (start_loop, innermost, *datarefs))
return false;
/* Check if data dependences can be computed for loop nest starting from
start_loop. */
loop = start_loop;
do {
loop_nest->truncate (0);
if (loop != start_loop)
prune_datarefs_not_in_loop (start_loop, *datarefs);
if (find_loop_nest (start_loop, loop_nest)
&& tree_loop_interchange_compute_ddrs (*loop_nest, *datarefs, ddrs))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"\nConsider loop interchange for loop_nest<%d - %d>\n",
start_loop->num, innermost->num);
if (loop != start_loop)
prune_access_strides_not_in_loop (start_loop, innermost, *datarefs);
if (dump_file && (dump_flags & TDF_DETAILS))
dump_access_strides (*datarefs);
return true;
}
free_dependence_relations (*ddrs);
*ddrs = vNULL;
/* Try to compute data dependences with the outermost loop stripped. */
loop = start_loop;
start_loop = start_loop->inner;
} while (start_loop && start_loop->inner);
return false;
}
/* Main entry for loop interchange pass. */
unsigned int
pass_linterchange::execute (function *fun)
{
if (number_of_loops (fun) <= 2)
return 0;
bool changed_p = false;
for (auto loop : loops_list (cfun, LI_ONLY_INNERMOST))
{
vec<loop_p> loop_nest = vNULL;
vec<data_reference_p> datarefs = vNULL;
vec<ddr_p> ddrs = vNULL;
if (prepare_perfect_loop_nest (loop, &loop_nest, &datarefs, &ddrs))
{
tree_loop_interchange loop_interchange (loop_nest);
changed_p |= loop_interchange.interchange (datarefs, ddrs);
}
free_dependence_relations (ddrs);
free_data_refs_with_aux (datarefs);
loop_nest.release ();
}
if (changed_p)
{
unsigned todo = TODO_update_ssa_only_virtuals;
todo |= loop_invariant_motion_in_fun (cfun, false);
scev_reset ();
return todo;
}
return 0;
}
} // anon namespace
gimple_opt_pass *
make_pass_linterchange (gcc::context *ctxt)
{
return new pass_linterchange (ctxt);
}
|