1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
|
/* Statement simplification on GIMPLE.
Copyright (C) 2010-2024 Free Software Foundation, Inc.
Split out from tree-ssa-ccp.cc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "predict.h"
#include "ssa.h"
#include "cgraph.h"
#include "gimple-pretty-print.h"
#include "gimple-ssa-warn-access.h"
#include "gimple-ssa-warn-restrict.h"
#include "fold-const.h"
#include "stmt.h"
#include "expr.h"
#include "stor-layout.h"
#include "dumpfile.h"
#include "gimple-iterator.h"
#include "gimple-fold.h"
#include "gimplify.h"
#include "tree-into-ssa.h"
#include "tree-dfa.h"
#include "tree-object-size.h"
#include "tree-ssa.h"
#include "tree-ssa-propagate.h"
#include "ipa-utils.h"
#include "tree-ssa-address.h"
#include "langhooks.h"
#include "gimplify-me.h"
#include "dbgcnt.h"
#include "builtins.h"
#include "tree-eh.h"
#include "gimple-match.h"
#include "gomp-constants.h"
#include "optabs-query.h"
#include "omp-general.h"
#include "tree-cfg.h"
#include "fold-const-call.h"
#include "stringpool.h"
#include "attribs.h"
#include "asan.h"
#include "diagnostic-core.h"
#include "intl.h"
#include "calls.h"
#include "tree-vector-builder.h"
#include "tree-ssa-strlen.h"
#include "varasm.h"
#include "internal-fn.h"
#include "gimple-range.h"
enum strlen_range_kind {
/* Compute the exact constant string length. */
SRK_STRLEN,
/* Compute the maximum constant string length. */
SRK_STRLENMAX,
/* Compute a range of string lengths bounded by object sizes. When
the length of a string cannot be determined, consider as the upper
bound the size of the enclosing object the string may be a member
or element of. Also determine the size of the largest character
array the string may refer to. */
SRK_LENRANGE,
/* Determine the integer value of the argument (not string length). */
SRK_INT_VALUE
};
static bool
get_range_strlen (tree, bitmap, strlen_range_kind, c_strlen_data *, unsigned);
/* Return true when DECL can be referenced from current unit.
FROM_DECL (if non-null) specify constructor of variable DECL was taken from.
We can get declarations that are not possible to reference for various
reasons:
1) When analyzing C++ virtual tables.
C++ virtual tables do have known constructors even
when they are keyed to other compilation unit.
Those tables can contain pointers to methods and vars
in other units. Those methods have both STATIC and EXTERNAL
set.
2) In WHOPR mode devirtualization might lead to reference
to method that was partitioned elsehwere.
In this case we have static VAR_DECL or FUNCTION_DECL
that has no corresponding callgraph/varpool node
declaring the body.
3) COMDAT functions referred by external vtables that
we devirtualize only during final compilation stage.
At this time we already decided that we will not output
the function body and thus we can't reference the symbol
directly. */
static bool
can_refer_decl_in_current_unit_p (tree decl, tree from_decl)
{
varpool_node *vnode;
struct cgraph_node *node;
symtab_node *snode;
if (DECL_ABSTRACT_P (decl))
return false;
/* We are concerned only about static/external vars and functions. */
if ((!TREE_STATIC (decl) && !DECL_EXTERNAL (decl))
|| !VAR_OR_FUNCTION_DECL_P (decl))
return true;
/* Static objects can be referred only if they are defined and not optimized
out yet. */
if (!TREE_PUBLIC (decl))
{
if (DECL_EXTERNAL (decl))
return false;
/* Before we start optimizing unreachable code we can be sure all
static objects are defined. */
if (symtab->function_flags_ready)
return true;
snode = symtab_node::get (decl);
if (!snode || !snode->definition)
return false;
node = dyn_cast <cgraph_node *> (snode);
return !node || !node->inlined_to;
}
/* We will later output the initializer, so we can refer to it.
So we are concerned only when DECL comes from initializer of
external var or var that has been optimized out. */
if (!from_decl
|| !VAR_P (from_decl)
|| (!DECL_EXTERNAL (from_decl)
&& (vnode = varpool_node::get (from_decl)) != NULL
&& vnode->definition)
|| (flag_ltrans
&& (vnode = varpool_node::get (from_decl)) != NULL
&& vnode->in_other_partition))
return true;
/* We are folding reference from external vtable. The vtable may reffer
to a symbol keyed to other compilation unit. The other compilation
unit may be in separate DSO and the symbol may be hidden. */
if (DECL_VISIBILITY_SPECIFIED (decl)
&& DECL_EXTERNAL (decl)
&& DECL_VISIBILITY (decl) != VISIBILITY_DEFAULT
&& (!(snode = symtab_node::get (decl)) || !snode->in_other_partition))
return false;
/* When function is public, we always can introduce new reference.
Exception are the COMDAT functions where introducing a direct
reference imply need to include function body in the curren tunit. */
if (TREE_PUBLIC (decl) && !DECL_COMDAT (decl))
return true;
/* We have COMDAT. We are going to check if we still have definition
or if the definition is going to be output in other partition.
Bypass this when gimplifying; all needed functions will be produced.
As observed in PR20991 for already optimized out comdat virtual functions
it may be tempting to not necessarily give up because the copy will be
output elsewhere when corresponding vtable is output.
This is however not possible - ABI specify that COMDATs are output in
units where they are used and when the other unit was compiled with LTO
it is possible that vtable was kept public while the function itself
was privatized. */
if (!symtab->function_flags_ready)
return true;
snode = symtab_node::get (decl);
if (!snode
|| ((!snode->definition || DECL_EXTERNAL (decl))
&& (!snode->in_other_partition
|| (!snode->forced_by_abi && !snode->force_output))))
return false;
node = dyn_cast <cgraph_node *> (snode);
return !node || !node->inlined_to;
}
/* Create a temporary for TYPE for a statement STMT. If the current function
is in SSA form, a SSA name is created. Otherwise a temporary register
is made. */
tree
create_tmp_reg_or_ssa_name (tree type, gimple *stmt)
{
if (gimple_in_ssa_p (cfun))
return make_ssa_name (type, stmt);
else
return create_tmp_reg (type);
}
/* CVAL is value taken from DECL_INITIAL of variable. Try to transform it into
acceptable form for is_gimple_min_invariant.
FROM_DECL (if non-NULL) specify variable whose constructor contains CVAL. */
tree
canonicalize_constructor_val (tree cval, tree from_decl)
{
if (CONSTANT_CLASS_P (cval))
return cval;
tree orig_cval = cval;
STRIP_NOPS (cval);
if (TREE_CODE (cval) == POINTER_PLUS_EXPR
&& TREE_CODE (TREE_OPERAND (cval, 1)) == INTEGER_CST)
{
tree ptr = TREE_OPERAND (cval, 0);
if (is_gimple_min_invariant (ptr))
cval = build1_loc (EXPR_LOCATION (cval),
ADDR_EXPR, TREE_TYPE (ptr),
fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (ptr)),
ptr,
fold_convert (ptr_type_node,
TREE_OPERAND (cval, 1))));
}
if (TREE_CODE (cval) == ADDR_EXPR)
{
tree base = NULL_TREE;
if (TREE_CODE (TREE_OPERAND (cval, 0)) == COMPOUND_LITERAL_EXPR)
{
base = COMPOUND_LITERAL_EXPR_DECL (TREE_OPERAND (cval, 0));
if (base)
TREE_OPERAND (cval, 0) = base;
}
else
base = get_base_address (TREE_OPERAND (cval, 0));
if (!base)
return NULL_TREE;
if (VAR_OR_FUNCTION_DECL_P (base)
&& !can_refer_decl_in_current_unit_p (base, from_decl))
return NULL_TREE;
if (TREE_TYPE (base) == error_mark_node)
return NULL_TREE;
if (VAR_P (base))
/* ??? We should be able to assert that TREE_ADDRESSABLE is set,
but since the use can be in a debug stmt we can't. */
;
else if (TREE_CODE (base) == FUNCTION_DECL)
{
/* Make sure we create a cgraph node for functions we'll reference.
They can be non-existent if the reference comes from an entry
of an external vtable for example. */
cgraph_node::get_create (base);
}
/* Fixup types in global initializers. */
if (TREE_TYPE (TREE_TYPE (cval)) != TREE_TYPE (TREE_OPERAND (cval, 0)))
cval = build_fold_addr_expr (TREE_OPERAND (cval, 0));
if (!useless_type_conversion_p (TREE_TYPE (orig_cval), TREE_TYPE (cval)))
cval = fold_convert (TREE_TYPE (orig_cval), cval);
return cval;
}
/* In CONSTRUCTORs we may see unfolded constants like (int (*) ()) 0. */
if (TREE_CODE (cval) == INTEGER_CST)
{
if (TREE_OVERFLOW_P (cval))
cval = drop_tree_overflow (cval);
if (!useless_type_conversion_p (TREE_TYPE (orig_cval), TREE_TYPE (cval)))
cval = fold_convert (TREE_TYPE (orig_cval), cval);
return cval;
}
return orig_cval;
}
/* If SYM is a constant variable with known value, return the value.
NULL_TREE is returned otherwise. */
tree
get_symbol_constant_value (tree sym)
{
tree val = ctor_for_folding (sym);
if (val != error_mark_node)
{
if (val)
{
val = canonicalize_constructor_val (unshare_expr (val), sym);
if (val
&& is_gimple_min_invariant (val)
&& useless_type_conversion_p (TREE_TYPE (sym), TREE_TYPE (val)))
return val;
else
return NULL_TREE;
}
/* Variables declared 'const' without an initializer
have zero as the initializer if they may not be
overridden at link or run time. */
if (!val
&& is_gimple_reg_type (TREE_TYPE (sym)))
return build_zero_cst (TREE_TYPE (sym));
}
return NULL_TREE;
}
/* Subroutine of fold_stmt. We perform constant folding of the
memory reference tree EXPR. */
static tree
maybe_fold_reference (tree expr)
{
tree result = NULL_TREE;
if ((TREE_CODE (expr) == VIEW_CONVERT_EXPR
|| TREE_CODE (expr) == REALPART_EXPR
|| TREE_CODE (expr) == IMAGPART_EXPR)
&& CONSTANT_CLASS_P (TREE_OPERAND (expr, 0)))
result = fold_unary_loc (EXPR_LOCATION (expr),
TREE_CODE (expr),
TREE_TYPE (expr),
TREE_OPERAND (expr, 0));
else if (TREE_CODE (expr) == BIT_FIELD_REF
&& CONSTANT_CLASS_P (TREE_OPERAND (expr, 0)))
result = fold_ternary_loc (EXPR_LOCATION (expr),
TREE_CODE (expr),
TREE_TYPE (expr),
TREE_OPERAND (expr, 0),
TREE_OPERAND (expr, 1),
TREE_OPERAND (expr, 2));
else
result = fold_const_aggregate_ref (expr);
if (result && is_gimple_min_invariant (result))
return result;
return NULL_TREE;
}
/* Return true if EXPR is an acceptable right-hand-side for a
GIMPLE assignment. We validate the entire tree, not just
the root node, thus catching expressions that embed complex
operands that are not permitted in GIMPLE. This function
is needed because the folding routines in fold-const.cc
may return such expressions in some cases, e.g., an array
access with an embedded index addition. It may make more
sense to have folding routines that are sensitive to the
constraints on GIMPLE operands, rather than abandoning any
any attempt to fold if the usual folding turns out to be too
aggressive. */
bool
valid_gimple_rhs_p (tree expr)
{
enum tree_code code = TREE_CODE (expr);
switch (TREE_CODE_CLASS (code))
{
case tcc_declaration:
if (!is_gimple_variable (expr))
return false;
break;
case tcc_constant:
/* All constants are ok. */
break;
case tcc_comparison:
/* GENERIC allows comparisons with non-boolean types, reject
those for GIMPLE. Let vector-typed comparisons pass - rules
for GENERIC and GIMPLE are the same here. */
if (!(INTEGRAL_TYPE_P (TREE_TYPE (expr))
&& (TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE
|| TYPE_PRECISION (TREE_TYPE (expr)) == 1))
&& ! VECTOR_TYPE_P (TREE_TYPE (expr)))
return false;
/* Fallthru. */
case tcc_binary:
if (!is_gimple_val (TREE_OPERAND (expr, 0))
|| !is_gimple_val (TREE_OPERAND (expr, 1)))
return false;
break;
case tcc_unary:
if (!is_gimple_val (TREE_OPERAND (expr, 0)))
return false;
break;
case tcc_expression:
switch (code)
{
case ADDR_EXPR:
{
tree t;
if (is_gimple_min_invariant (expr))
return true;
t = TREE_OPERAND (expr, 0);
while (handled_component_p (t))
{
/* ??? More checks needed, see the GIMPLE verifier. */
if ((TREE_CODE (t) == ARRAY_REF
|| TREE_CODE (t) == ARRAY_RANGE_REF)
&& !is_gimple_val (TREE_OPERAND (t, 1)))
return false;
t = TREE_OPERAND (t, 0);
}
if (!is_gimple_id (t))
return false;
}
break;
default:
if (get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS)
{
if (!is_gimple_val (TREE_OPERAND (expr, 0))
|| !is_gimple_val (TREE_OPERAND (expr, 1))
|| !is_gimple_val (TREE_OPERAND (expr, 2)))
return false;
break;
}
return false;
}
break;
case tcc_vl_exp:
return false;
case tcc_exceptional:
if (code == CONSTRUCTOR)
{
unsigned i;
tree elt;
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (expr), i, elt)
if (!is_gimple_val (elt))
return false;
return true;
}
if (code != SSA_NAME)
return false;
break;
case tcc_reference:
if (code == BIT_FIELD_REF)
return is_gimple_val (TREE_OPERAND (expr, 0));
return false;
default:
return false;
}
return true;
}
/* Attempt to fold an assignment statement pointed-to by SI. Returns a
replacement rhs for the statement or NULL_TREE if no simplification
could be made. It is assumed that the operands have been previously
folded. */
static tree
fold_gimple_assign (gimple_stmt_iterator *si)
{
gimple *stmt = gsi_stmt (*si);
enum tree_code subcode = gimple_assign_rhs_code (stmt);
location_t loc = gimple_location (stmt);
tree result = NULL_TREE;
switch (get_gimple_rhs_class (subcode))
{
case GIMPLE_SINGLE_RHS:
{
tree rhs = gimple_assign_rhs1 (stmt);
if (TREE_CLOBBER_P (rhs))
return NULL_TREE;
if (REFERENCE_CLASS_P (rhs))
return maybe_fold_reference (rhs);
else if (TREE_CODE (rhs) == OBJ_TYPE_REF)
{
tree val = OBJ_TYPE_REF_EXPR (rhs);
if (is_gimple_min_invariant (val))
return val;
else if (flag_devirtualize && virtual_method_call_p (rhs))
{
bool final;
vec <cgraph_node *>targets
= possible_polymorphic_call_targets (rhs, stmt, &final);
if (final && targets.length () <= 1 && dbg_cnt (devirt))
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, stmt,
"resolving virtual function address "
"reference to function %s\n",
targets.length () == 1
? targets[0]->name ()
: "NULL");
}
if (targets.length () == 1)
{
val = fold_convert (TREE_TYPE (val),
build_fold_addr_expr_loc
(loc, targets[0]->decl));
STRIP_USELESS_TYPE_CONVERSION (val);
}
else
/* We cannot use __builtin_unreachable here because it
cannot have address taken. */
val = build_int_cst (TREE_TYPE (val), 0);
return val;
}
}
}
else if (TREE_CODE (rhs) == ADDR_EXPR)
{
tree ref = TREE_OPERAND (rhs, 0);
if (TREE_CODE (ref) == MEM_REF
&& integer_zerop (TREE_OPERAND (ref, 1)))
{
result = TREE_OPERAND (ref, 0);
if (!useless_type_conversion_p (TREE_TYPE (rhs),
TREE_TYPE (result)))
result = build1 (NOP_EXPR, TREE_TYPE (rhs), result);
return result;
}
}
else if (TREE_CODE (rhs) == CONSTRUCTOR
&& TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE)
{
/* Fold a constant vector CONSTRUCTOR to VECTOR_CST. */
unsigned i;
tree val;
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val)
if (! CONSTANT_CLASS_P (val))
return NULL_TREE;
return build_vector_from_ctor (TREE_TYPE (rhs),
CONSTRUCTOR_ELTS (rhs));
}
else if (DECL_P (rhs)
&& is_gimple_reg_type (TREE_TYPE (rhs)))
return get_symbol_constant_value (rhs);
}
break;
case GIMPLE_UNARY_RHS:
break;
case GIMPLE_BINARY_RHS:
break;
case GIMPLE_TERNARY_RHS:
result = fold_ternary_loc (loc, subcode,
TREE_TYPE (gimple_assign_lhs (stmt)),
gimple_assign_rhs1 (stmt),
gimple_assign_rhs2 (stmt),
gimple_assign_rhs3 (stmt));
if (result)
{
STRIP_USELESS_TYPE_CONVERSION (result);
if (valid_gimple_rhs_p (result))
return result;
}
break;
case GIMPLE_INVALID_RHS:
gcc_unreachable ();
}
return NULL_TREE;
}
/* Replace a statement at *SI_P with a sequence of statements in STMTS,
adjusting the replacement stmts location and virtual operands.
If the statement has a lhs the last stmt in the sequence is expected
to assign to that lhs. */
void
gsi_replace_with_seq_vops (gimple_stmt_iterator *si_p, gimple_seq stmts)
{
gimple *stmt = gsi_stmt (*si_p);
if (gimple_has_location (stmt))
annotate_all_with_location (stmts, gimple_location (stmt));
/* First iterate over the replacement statements backward, assigning
virtual operands to their defining statements. */
gimple *laststore = NULL;
for (gimple_stmt_iterator i = gsi_last (stmts);
!gsi_end_p (i); gsi_prev (&i))
{
gimple *new_stmt = gsi_stmt (i);
if ((gimple_assign_single_p (new_stmt)
&& !is_gimple_reg (gimple_assign_lhs (new_stmt)))
|| (is_gimple_call (new_stmt)
&& (gimple_call_flags (new_stmt)
& (ECF_NOVOPS | ECF_PURE | ECF_CONST | ECF_NORETURN)) == 0))
{
tree vdef;
if (!laststore)
vdef = gimple_vdef (stmt);
else
vdef = make_ssa_name (gimple_vop (cfun), new_stmt);
gimple_set_vdef (new_stmt, vdef);
if (vdef && TREE_CODE (vdef) == SSA_NAME)
SSA_NAME_DEF_STMT (vdef) = new_stmt;
laststore = new_stmt;
}
}
/* Second iterate over the statements forward, assigning virtual
operands to their uses. */
tree reaching_vuse = gimple_vuse (stmt);
for (gimple_stmt_iterator i = gsi_start (stmts);
!gsi_end_p (i); gsi_next (&i))
{
gimple *new_stmt = gsi_stmt (i);
/* If the new statement possibly has a VUSE, update it with exact SSA
name we know will reach this one. */
if (gimple_has_mem_ops (new_stmt))
gimple_set_vuse (new_stmt, reaching_vuse);
gimple_set_modified (new_stmt, true);
if (gimple_vdef (new_stmt))
reaching_vuse = gimple_vdef (new_stmt);
}
/* If the new sequence does not do a store release the virtual
definition of the original statement. */
if (reaching_vuse
&& reaching_vuse == gimple_vuse (stmt))
{
tree vdef = gimple_vdef (stmt);
if (vdef
&& TREE_CODE (vdef) == SSA_NAME)
{
unlink_stmt_vdef (stmt);
release_ssa_name (vdef);
}
}
/* Finally replace the original statement with the sequence. */
gsi_replace_with_seq (si_p, stmts, false);
}
/* Helper function for update_gimple_call and
gimplify_and_update_call_from_tree. A GIMPLE_CALL STMT is being replaced
with GIMPLE_CALL NEW_STMT. */
static void
finish_update_gimple_call (gimple_stmt_iterator *si_p, gimple *new_stmt,
gimple *stmt)
{
tree lhs = gimple_call_lhs (stmt);
gimple_call_set_lhs (new_stmt, lhs);
if (lhs && TREE_CODE (lhs) == SSA_NAME)
SSA_NAME_DEF_STMT (lhs) = new_stmt;
gimple_move_vops (new_stmt, stmt);
gimple_set_location (new_stmt, gimple_location (stmt));
if (gimple_block (new_stmt) == NULL_TREE)
gimple_set_block (new_stmt, gimple_block (stmt));
gsi_replace (si_p, new_stmt, false);
}
/* Update a GIMPLE_CALL statement at iterator *SI_P to call to FN
with number of arguments NARGS, where the arguments in GIMPLE form
follow NARGS argument. */
bool
update_gimple_call (gimple_stmt_iterator *si_p, tree fn, int nargs, ...)
{
va_list ap;
gcall *new_stmt, *stmt = as_a <gcall *> (gsi_stmt (*si_p));
gcc_assert (is_gimple_call (stmt));
va_start (ap, nargs);
new_stmt = gimple_build_call_valist (fn, nargs, ap);
finish_update_gimple_call (si_p, new_stmt, stmt);
va_end (ap);
return true;
}
/* Return true if EXPR is a CALL_EXPR suitable for representation
as a single GIMPLE_CALL statement. If the arguments require
further gimplification, return false. */
static bool
valid_gimple_call_p (tree expr)
{
unsigned i, nargs;
if (TREE_CODE (expr) != CALL_EXPR)
return false;
nargs = call_expr_nargs (expr);
for (i = 0; i < nargs; i++)
{
tree arg = CALL_EXPR_ARG (expr, i);
if (is_gimple_reg_type (TREE_TYPE (arg)))
{
if (!is_gimple_val (arg))
return false;
}
else
if (!is_gimple_lvalue (arg))
return false;
}
return true;
}
/* Convert EXPR into a GIMPLE value suitable for substitution on the
RHS of an assignment. Insert the necessary statements before
iterator *SI_P. The statement at *SI_P, which must be a GIMPLE_CALL
is replaced. If the call is expected to produces a result, then it
is replaced by an assignment of the new RHS to the result variable.
If the result is to be ignored, then the call is replaced by a
GIMPLE_NOP. A proper VDEF chain is retained by making the first
VUSE and the last VDEF of the whole sequence be the same as the replaced
statement and using new SSA names for stores in between. */
void
gimplify_and_update_call_from_tree (gimple_stmt_iterator *si_p, tree expr)
{
tree lhs;
gimple *stmt, *new_stmt;
gimple_stmt_iterator i;
gimple_seq stmts = NULL;
stmt = gsi_stmt (*si_p);
gcc_assert (is_gimple_call (stmt));
if (valid_gimple_call_p (expr))
{
/* The call has simplified to another call. */
tree fn = CALL_EXPR_FN (expr);
unsigned i;
unsigned nargs = call_expr_nargs (expr);
vec<tree> args = vNULL;
gcall *new_stmt;
if (nargs > 0)
{
args.create (nargs);
args.safe_grow_cleared (nargs, true);
for (i = 0; i < nargs; i++)
args[i] = CALL_EXPR_ARG (expr, i);
}
new_stmt = gimple_build_call_vec (fn, args);
finish_update_gimple_call (si_p, new_stmt, stmt);
args.release ();
return;
}
lhs = gimple_call_lhs (stmt);
if (lhs == NULL_TREE)
{
push_gimplify_context (gimple_in_ssa_p (cfun));
gimplify_and_add (expr, &stmts);
pop_gimplify_context (NULL);
/* We can end up with folding a memcpy of an empty class assignment
which gets optimized away by C++ gimplification. */
if (gimple_seq_empty_p (stmts))
{
if (gimple_in_ssa_p (cfun))
{
unlink_stmt_vdef (stmt);
release_defs (stmt);
}
gsi_replace (si_p, gimple_build_nop (), false);
return;
}
}
else
{
tree tmp = force_gimple_operand (expr, &stmts, false, NULL_TREE);
new_stmt = gimple_build_assign (lhs, tmp);
i = gsi_last (stmts);
gsi_insert_after_without_update (&i, new_stmt,
GSI_CONTINUE_LINKING);
}
gsi_replace_with_seq_vops (si_p, stmts);
}
/* Print a message in the dump file recording transformation of FROM to TO. */
static void
dump_transformation (gcall *from, gcall *to)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, from, "simplified %T to %T\n",
gimple_call_fn (from), gimple_call_fn (to));
}
/* Replace the call at *GSI with the gimple value VAL. */
void
replace_call_with_value (gimple_stmt_iterator *gsi, tree val)
{
gimple *stmt = gsi_stmt (*gsi);
tree lhs = gimple_call_lhs (stmt);
gimple *repl;
if (lhs)
{
if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (val)))
val = fold_convert (TREE_TYPE (lhs), val);
repl = gimple_build_assign (lhs, val);
}
else
repl = gimple_build_nop ();
tree vdef = gimple_vdef (stmt);
if (vdef && TREE_CODE (vdef) == SSA_NAME)
{
unlink_stmt_vdef (stmt);
release_ssa_name (vdef);
}
gsi_replace (gsi, repl, false);
}
/* Replace the call at *GSI with the new call REPL and fold that
again. */
static void
replace_call_with_call_and_fold (gimple_stmt_iterator *gsi, gimple *repl)
{
gimple *stmt = gsi_stmt (*gsi);
dump_transformation (as_a <gcall *> (stmt), as_a <gcall *> (repl));
gimple_call_set_lhs (repl, gimple_call_lhs (stmt));
gimple_set_location (repl, gimple_location (stmt));
gimple_move_vops (repl, stmt);
gsi_replace (gsi, repl, false);
fold_stmt (gsi);
}
/* Return true if VAR is a VAR_DECL or a component thereof. */
static bool
var_decl_component_p (tree var)
{
tree inner = var;
while (handled_component_p (inner))
inner = TREE_OPERAND (inner, 0);
return (DECL_P (inner)
|| (TREE_CODE (inner) == MEM_REF
&& TREE_CODE (TREE_OPERAND (inner, 0)) == ADDR_EXPR));
}
/* Return TRUE if the SIZE argument, representing the size of an
object, is in a range of values of which exactly zero is valid. */
static bool
size_must_be_zero_p (tree size)
{
if (integer_zerop (size))
return true;
if (TREE_CODE (size) != SSA_NAME || !INTEGRAL_TYPE_P (TREE_TYPE (size)))
return false;
tree type = TREE_TYPE (size);
int prec = TYPE_PRECISION (type);
/* Compute the value of SSIZE_MAX, the largest positive value that
can be stored in ssize_t, the signed counterpart of size_t. */
wide_int ssize_max = wi::lshift (wi::one (prec), prec - 1) - 1;
wide_int zero = wi::zero (TYPE_PRECISION (type));
int_range_max valid_range (type, zero, ssize_max);
int_range_max vr;
get_range_query (cfun)->range_of_expr (vr, size);
if (vr.undefined_p ())
vr.set_varying (TREE_TYPE (size));
vr.intersect (valid_range);
return vr.zero_p ();
}
/* Optimize
a = {};
b = a;
into
a = {};
b = {};
Similarly for memset (&a, ..., sizeof (a)); instead of a = {};
and/or memcpy (&b, &a, sizeof (a)); instead of b = a; */
static bool
optimize_memcpy_to_memset (gimple_stmt_iterator *gsip, tree dest, tree src, tree len)
{
gimple *stmt = gsi_stmt (*gsip);
if (gimple_has_volatile_ops (stmt))
return false;
tree vuse = gimple_vuse (stmt);
if (vuse == NULL || TREE_CODE (vuse) != SSA_NAME)
return false;
gimple *defstmt = SSA_NAME_DEF_STMT (vuse);
tree src2 = NULL_TREE, len2 = NULL_TREE;
poly_int64 offset, offset2;
tree val = integer_zero_node;
if (gimple_store_p (defstmt)
&& gimple_assign_single_p (defstmt)
&& TREE_CODE (gimple_assign_rhs1 (defstmt)) == CONSTRUCTOR
&& !gimple_clobber_p (defstmt))
src2 = gimple_assign_lhs (defstmt);
else if (gimple_call_builtin_p (defstmt, BUILT_IN_MEMSET)
&& TREE_CODE (gimple_call_arg (defstmt, 0)) == ADDR_EXPR
&& TREE_CODE (gimple_call_arg (defstmt, 1)) == INTEGER_CST)
{
src2 = TREE_OPERAND (gimple_call_arg (defstmt, 0), 0);
len2 = gimple_call_arg (defstmt, 2);
val = gimple_call_arg (defstmt, 1);
/* For non-0 val, we'd have to transform stmt from assignment
into memset (only if dest is addressable). */
if (!integer_zerop (val) && is_gimple_assign (stmt))
src2 = NULL_TREE;
}
if (src2 == NULL_TREE)
return false;
if (len == NULL_TREE)
len = (TREE_CODE (src) == COMPONENT_REF
? DECL_SIZE_UNIT (TREE_OPERAND (src, 1))
: TYPE_SIZE_UNIT (TREE_TYPE (src)));
if (len2 == NULL_TREE)
len2 = (TREE_CODE (src2) == COMPONENT_REF
? DECL_SIZE_UNIT (TREE_OPERAND (src2, 1))
: TYPE_SIZE_UNIT (TREE_TYPE (src2)));
if (len == NULL_TREE
|| !poly_int_tree_p (len)
|| len2 == NULL_TREE
|| !poly_int_tree_p (len2))
return false;
src = get_addr_base_and_unit_offset (src, &offset);
src2 = get_addr_base_and_unit_offset (src2, &offset2);
if (src == NULL_TREE
|| src2 == NULL_TREE
|| maybe_lt (offset, offset2))
return false;
if (!operand_equal_p (src, src2, 0))
return false;
/* [ src + offset2, src + offset2 + len2 - 1 ] is set to val.
Make sure that
[ src + offset, src + offset + len - 1 ] is a subset of that. */
if (maybe_gt (wi::to_poly_offset (len) + (offset - offset2),
wi::to_poly_offset (len2)))
return false;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Simplified\n ");
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
fprintf (dump_file, "after previous\n ");
print_gimple_stmt (dump_file, defstmt, 0, dump_flags);
}
/* For simplicity, don't change the kind of the stmt,
turn dest = src; into dest = {}; and memcpy (&dest, &src, len);
into memset (&dest, val, len);
In theory we could change dest = src into memset if dest
is addressable (maybe beneficial if val is not 0), or
memcpy (&dest, &src, len) into dest = {} if len is the size
of dest, dest isn't volatile. */
if (is_gimple_assign (stmt))
{
tree ctor = build_constructor (TREE_TYPE (dest), NULL);
gimple_assign_set_rhs_from_tree (gsip, ctor);
update_stmt (stmt);
}
else /* If stmt is memcpy, transform it into memset. */
{
gcall *call = as_a <gcall *> (stmt);
tree fndecl = builtin_decl_implicit (BUILT_IN_MEMSET);
gimple_call_set_fndecl (call, fndecl);
gimple_call_set_fntype (call, TREE_TYPE (fndecl));
gimple_call_set_arg (call, 1, val);
update_stmt (stmt);
}
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "into\n ");
print_gimple_stmt (dump_file, stmt, 0, dump_flags);
}
return true;
}
/* Fold function call to builtin mem{{,p}cpy,move}. Try to detect and
diagnose (otherwise undefined) overlapping copies without preventing
folding. When folded, GCC guarantees that overlapping memcpy has
the same semantics as memmove. Call to the library memcpy need not
provide the same guarantee. Return false if no simplification can
be made. */
static bool
gimple_fold_builtin_memory_op (gimple_stmt_iterator *gsi,
tree dest, tree src, enum built_in_function code)
{
gimple *stmt = gsi_stmt (*gsi);
tree lhs = gimple_call_lhs (stmt);
tree len = gimple_call_arg (stmt, 2);
location_t loc = gimple_location (stmt);
/* If the LEN parameter is a constant zero or in range where
the only valid value is zero, return DEST. */
if (size_must_be_zero_p (len))
{
gimple *repl;
if (gimple_call_lhs (stmt))
repl = gimple_build_assign (gimple_call_lhs (stmt), dest);
else
repl = gimple_build_nop ();
tree vdef = gimple_vdef (stmt);
if (vdef && TREE_CODE (vdef) == SSA_NAME)
{
unlink_stmt_vdef (stmt);
release_ssa_name (vdef);
}
gsi_replace (gsi, repl, false);
return true;
}
/* If SRC and DEST are the same (and not volatile), return
DEST{,+LEN,+LEN-1}. */
if (operand_equal_p (src, dest, 0))
{
/* Avoid diagnosing exact overlap in calls to __builtin_memcpy.
It's safe and may even be emitted by GCC itself (see bug
32667). */
unlink_stmt_vdef (stmt);
if (gimple_vdef (stmt) && TREE_CODE (gimple_vdef (stmt)) == SSA_NAME)
release_ssa_name (gimple_vdef (stmt));
if (!lhs)
{
gsi_replace (gsi, gimple_build_nop (), false);
return true;
}
goto done;
}
else
{
/* We cannot (easily) change the type of the copy if it is a storage
order barrier, i.e. is equivalent to a VIEW_CONVERT_EXPR that can
modify the storage order of objects (see storage_order_barrier_p). */
tree srctype
= POINTER_TYPE_P (TREE_TYPE (src))
? TREE_TYPE (TREE_TYPE (src)) : NULL_TREE;
tree desttype
= POINTER_TYPE_P (TREE_TYPE (dest))
? TREE_TYPE (TREE_TYPE (dest)) : NULL_TREE;
tree destvar, srcvar, srcoff;
unsigned int src_align, dest_align;
unsigned HOST_WIDE_INT tmp_len;
const char *tmp_str;
/* Build accesses at offset zero with a ref-all character type. */
tree off0
= build_int_cst (build_pointer_type_for_mode (char_type_node,
ptr_mode, true), 0);
/* If we can perform the copy efficiently with first doing all loads
and then all stores inline it that way. Currently efficiently
means that we can load all the memory into a single integer
register which is what MOVE_MAX gives us. */
src_align = get_pointer_alignment (src);
dest_align = get_pointer_alignment (dest);
if (tree_fits_uhwi_p (len)
&& compare_tree_int (len, MOVE_MAX) <= 0
/* FIXME: Don't transform copies from strings with known length.
Until GCC 9 this prevented a case in gcc.dg/strlenopt-8.c
from being handled, and the case was XFAILed for that reason.
Now that it is handled and the XFAIL removed, as soon as other
strlenopt tests that rely on it for passing are adjusted, this
hack can be removed. */
&& !c_strlen (src, 1)
&& !((tmp_str = getbyterep (src, &tmp_len)) != NULL
&& memchr (tmp_str, 0, tmp_len) == NULL)
&& !(srctype
&& AGGREGATE_TYPE_P (srctype)
&& TYPE_REVERSE_STORAGE_ORDER (srctype))
&& !(desttype
&& AGGREGATE_TYPE_P (desttype)
&& TYPE_REVERSE_STORAGE_ORDER (desttype)))
{
unsigned ilen = tree_to_uhwi (len);
if (pow2p_hwi (ilen))
{
/* Detect out-of-bounds accesses without issuing warnings.
Avoid folding out-of-bounds copies but to avoid false
positives for unreachable code defer warning until after
DCE has worked its magic.
-Wrestrict is still diagnosed. */
if (int warning = check_bounds_or_overlap (as_a <gcall *>(stmt),
dest, src, len, len,
false, false))
if (warning != OPT_Wrestrict)
return false;
scalar_int_mode imode;
machine_mode mode;
if (int_mode_for_size (ilen * BITS_PER_UNIT, 0).exists (&imode)
&& bitwise_mode_for_size (ilen
* BITS_PER_UNIT).exists (&mode)
&& known_eq (GET_MODE_BITSIZE (mode), ilen * BITS_PER_UNIT)
/* If the destination pointer is not aligned we must be able
to emit an unaligned store. */
&& (dest_align >= GET_MODE_ALIGNMENT (mode)
|| !targetm.slow_unaligned_access (mode, dest_align)
|| (optab_handler (movmisalign_optab, mode)
!= CODE_FOR_nothing)))
{
tree type = bitwise_type_for_mode (mode);
tree srctype = type;
tree desttype = type;
if (src_align < GET_MODE_ALIGNMENT (mode))
srctype = build_aligned_type (type, src_align);
tree srcmem = fold_build2 (MEM_REF, srctype, src, off0);
tree tem = fold_const_aggregate_ref (srcmem);
if (tem)
srcmem = tem;
else if (src_align < GET_MODE_ALIGNMENT (mode)
&& targetm.slow_unaligned_access (mode, src_align)
&& (optab_handler (movmisalign_optab, mode)
== CODE_FOR_nothing))
srcmem = NULL_TREE;
if (srcmem)
{
gimple *new_stmt;
if (is_gimple_reg_type (TREE_TYPE (srcmem)))
{
new_stmt = gimple_build_assign (NULL_TREE, srcmem);
srcmem
= create_tmp_reg_or_ssa_name (TREE_TYPE (srcmem),
new_stmt);
gimple_assign_set_lhs (new_stmt, srcmem);
gimple_set_vuse (new_stmt, gimple_vuse (stmt));
gimple_set_location (new_stmt, loc);
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
}
if (dest_align < GET_MODE_ALIGNMENT (mode))
desttype = build_aligned_type (type, dest_align);
new_stmt
= gimple_build_assign (fold_build2 (MEM_REF, desttype,
dest, off0),
srcmem);
gimple_move_vops (new_stmt, stmt);
if (!lhs)
{
gsi_replace (gsi, new_stmt, false);
return true;
}
gimple_set_location (new_stmt, loc);
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
goto done;
}
}
}
}
if (code == BUILT_IN_MEMMOVE)
{
/* Both DEST and SRC must be pointer types.
??? This is what old code did. Is the testing for pointer types
really mandatory?
If either SRC is readonly or length is 1, we can use memcpy. */
if (!dest_align || !src_align)
return false;
if (readonly_data_expr (src)
|| (tree_fits_uhwi_p (len)
&& (MIN (src_align, dest_align) / BITS_PER_UNIT
>= tree_to_uhwi (len))))
{
tree fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
if (!fn)
return false;
gimple_call_set_fndecl (stmt, fn);
gimple_call_set_arg (stmt, 0, dest);
gimple_call_set_arg (stmt, 1, src);
fold_stmt (gsi);
return true;
}
/* If *src and *dest can't overlap, optimize into memcpy as well. */
if (TREE_CODE (src) == ADDR_EXPR
&& TREE_CODE (dest) == ADDR_EXPR)
{
tree src_base, dest_base, fn;
poly_int64 src_offset = 0, dest_offset = 0;
poly_uint64 maxsize;
srcvar = TREE_OPERAND (src, 0);
src_base = get_addr_base_and_unit_offset (srcvar, &src_offset);
if (src_base == NULL)
src_base = srcvar;
destvar = TREE_OPERAND (dest, 0);
dest_base = get_addr_base_and_unit_offset (destvar,
&dest_offset);
if (dest_base == NULL)
dest_base = destvar;
if (!poly_int_tree_p (len, &maxsize))
maxsize = -1;
if (SSA_VAR_P (src_base)
&& SSA_VAR_P (dest_base))
{
if (operand_equal_p (src_base, dest_base, 0)
&& ranges_maybe_overlap_p (src_offset, maxsize,
dest_offset, maxsize))
return false;
}
else if (TREE_CODE (src_base) == MEM_REF
&& TREE_CODE (dest_base) == MEM_REF)
{
if (! operand_equal_p (TREE_OPERAND (src_base, 0),
TREE_OPERAND (dest_base, 0), 0))
return false;
poly_offset_int full_src_offset
= mem_ref_offset (src_base) + src_offset;
poly_offset_int full_dest_offset
= mem_ref_offset (dest_base) + dest_offset;
if (ranges_maybe_overlap_p (full_src_offset, maxsize,
full_dest_offset, maxsize))
return false;
}
else
return false;
fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
if (!fn)
return false;
gimple_call_set_fndecl (stmt, fn);
gimple_call_set_arg (stmt, 0, dest);
gimple_call_set_arg (stmt, 1, src);
fold_stmt (gsi);
return true;
}
/* If the destination and source do not alias optimize into
memcpy as well. */
if ((is_gimple_min_invariant (dest)
|| TREE_CODE (dest) == SSA_NAME)
&& (is_gimple_min_invariant (src)
|| TREE_CODE (src) == SSA_NAME))
{
ao_ref destr, srcr;
ao_ref_init_from_ptr_and_size (&destr, dest, len);
ao_ref_init_from_ptr_and_size (&srcr, src, len);
if (!refs_may_alias_p_1 (&destr, &srcr, false))
{
tree fn;
fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
if (!fn)
return false;
gimple_call_set_fndecl (stmt, fn);
gimple_call_set_arg (stmt, 0, dest);
gimple_call_set_arg (stmt, 1, src);
fold_stmt (gsi);
return true;
}
}
return false;
}
/* Try to optimize the memcpy to memset if src and dest are addresses. */
if (code != BUILT_IN_MEMPCPY
&& TREE_CODE (dest) == ADDR_EXPR
&& TREE_CODE (src) == ADDR_EXPR
&& TREE_CODE (len) == INTEGER_CST
&& optimize_memcpy_to_memset (gsi, TREE_OPERAND (dest, 0),
TREE_OPERAND (src, 0), len))
return true;
if (!tree_fits_shwi_p (len))
return false;
if (!srctype
|| (AGGREGATE_TYPE_P (srctype)
&& TYPE_REVERSE_STORAGE_ORDER (srctype)))
return false;
if (!desttype
|| (AGGREGATE_TYPE_P (desttype)
&& TYPE_REVERSE_STORAGE_ORDER (desttype)))
return false;
/* In the following try to find a type that is most natural to be
used for the memcpy source and destination and that allows
the most optimization when memcpy is turned into a plain assignment
using that type. In theory we could always use a char[len] type
but that only gains us that the destination and source possibly
no longer will have their address taken. */
if (TREE_CODE (srctype) == ARRAY_TYPE
&& !tree_int_cst_equal (TYPE_SIZE_UNIT (srctype), len))
srctype = TREE_TYPE (srctype);
if (TREE_CODE (desttype) == ARRAY_TYPE
&& !tree_int_cst_equal (TYPE_SIZE_UNIT (desttype), len))
desttype = TREE_TYPE (desttype);
if (TREE_ADDRESSABLE (srctype)
|| TREE_ADDRESSABLE (desttype))
return false;
/* Make sure we are not copying using a floating-point mode or
a type whose size possibly does not match its precision. */
if (FLOAT_MODE_P (TYPE_MODE (desttype))
|| TREE_CODE (desttype) == BOOLEAN_TYPE
|| TREE_CODE (desttype) == ENUMERAL_TYPE)
desttype = bitwise_type_for_mode (TYPE_MODE (desttype));
if (FLOAT_MODE_P (TYPE_MODE (srctype))
|| TREE_CODE (srctype) == BOOLEAN_TYPE
|| TREE_CODE (srctype) == ENUMERAL_TYPE)
srctype = bitwise_type_for_mode (TYPE_MODE (srctype));
if (!srctype)
srctype = desttype;
if (!desttype)
desttype = srctype;
if (!srctype)
return false;
src_align = get_pointer_alignment (src);
dest_align = get_pointer_alignment (dest);
/* Choose between src and destination type for the access based
on alignment, whether the access constitutes a register access
and whether it may actually expose a declaration for SSA rewrite
or SRA decomposition. Also try to expose a string constant, we
might be able to concatenate several of them later into a single
string store. */
destvar = NULL_TREE;
srcvar = NULL_TREE;
if (TREE_CODE (dest) == ADDR_EXPR
&& var_decl_component_p (TREE_OPERAND (dest, 0))
&& tree_int_cst_equal (TYPE_SIZE_UNIT (desttype), len)
&& dest_align >= TYPE_ALIGN (desttype)
&& (is_gimple_reg_type (desttype)
|| src_align >= TYPE_ALIGN (desttype)))
destvar = fold_build2 (MEM_REF, desttype, dest, off0);
else if (TREE_CODE (src) == ADDR_EXPR
&& var_decl_component_p (TREE_OPERAND (src, 0))
&& tree_int_cst_equal (TYPE_SIZE_UNIT (srctype), len)
&& src_align >= TYPE_ALIGN (srctype)
&& (is_gimple_reg_type (srctype)
|| dest_align >= TYPE_ALIGN (srctype)))
srcvar = fold_build2 (MEM_REF, srctype, src, off0);
/* FIXME: Don't transform copies from strings with known original length.
As soon as strlenopt tests that rely on it for passing are adjusted,
this hack can be removed. */
else if (gimple_call_alloca_for_var_p (stmt)
&& (srcvar = string_constant (src, &srcoff, NULL, NULL))
&& integer_zerop (srcoff)
&& tree_int_cst_equal (TYPE_SIZE_UNIT (TREE_TYPE (srcvar)), len)
&& dest_align >= TYPE_ALIGN (TREE_TYPE (srcvar)))
srctype = TREE_TYPE (srcvar);
else
return false;
/* Now that we chose an access type express the other side in
terms of it if the target allows that with respect to alignment
constraints. */
if (srcvar == NULL_TREE)
{
if (src_align >= TYPE_ALIGN (desttype))
srcvar = fold_build2 (MEM_REF, desttype, src, off0);
else
{
enum machine_mode mode = TYPE_MODE (desttype);
if ((mode == BLKmode && STRICT_ALIGNMENT)
|| (targetm.slow_unaligned_access (mode, src_align)
&& (optab_handler (movmisalign_optab, mode)
== CODE_FOR_nothing)))
return false;
srctype = build_aligned_type (TYPE_MAIN_VARIANT (desttype),
src_align);
srcvar = fold_build2 (MEM_REF, srctype, src, off0);
}
}
else if (destvar == NULL_TREE)
{
if (dest_align >= TYPE_ALIGN (srctype))
destvar = fold_build2 (MEM_REF, srctype, dest, off0);
else
{
enum machine_mode mode = TYPE_MODE (srctype);
if ((mode == BLKmode && STRICT_ALIGNMENT)
|| (targetm.slow_unaligned_access (mode, dest_align)
&& (optab_handler (movmisalign_optab, mode)
== CODE_FOR_nothing)))
return false;
desttype = build_aligned_type (TYPE_MAIN_VARIANT (srctype),
dest_align);
destvar = fold_build2 (MEM_REF, desttype, dest, off0);
}
}
/* Same as above, detect out-of-bounds accesses without issuing
warnings. Avoid folding out-of-bounds copies but to avoid
false positives for unreachable code defer warning until
after DCE has worked its magic.
-Wrestrict is still diagnosed. */
if (int warning = check_bounds_or_overlap (as_a <gcall *>(stmt),
dest, src, len, len,
false, false))
if (warning != OPT_Wrestrict)
return false;
gimple *new_stmt;
if (is_gimple_reg_type (TREE_TYPE (srcvar)))
{
tree tem = fold_const_aggregate_ref (srcvar);
if (tem)
srcvar = tem;
if (! is_gimple_min_invariant (srcvar))
{
new_stmt = gimple_build_assign (NULL_TREE, srcvar);
srcvar = create_tmp_reg_or_ssa_name (TREE_TYPE (srcvar),
new_stmt);
gimple_assign_set_lhs (new_stmt, srcvar);
gimple_set_vuse (new_stmt, gimple_vuse (stmt));
gimple_set_location (new_stmt, loc);
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
}
new_stmt = gimple_build_assign (destvar, srcvar);
goto set_vop_and_replace;
}
/* We get an aggregate copy. If the source is a STRING_CST, then
directly use its type to perform the copy. */
if (TREE_CODE (srcvar) == STRING_CST)
desttype = srctype;
/* Or else, use an unsigned char[] type to perform the copy in order
to preserve padding and to avoid any issues with TREE_ADDRESSABLE
types or float modes behavior on copying. */
else
{
desttype = build_array_type_nelts (unsigned_char_type_node,
tree_to_uhwi (len));
srctype = desttype;
if (src_align > TYPE_ALIGN (srctype))
srctype = build_aligned_type (srctype, src_align);
srcvar = fold_build2 (MEM_REF, srctype, src, off0);
}
if (dest_align > TYPE_ALIGN (desttype))
desttype = build_aligned_type (desttype, dest_align);
destvar = fold_build2 (MEM_REF, desttype, dest, off0);
new_stmt = gimple_build_assign (destvar, srcvar);
set_vop_and_replace:
gimple_move_vops (new_stmt, stmt);
if (!lhs)
{
gsi_replace (gsi, new_stmt, false);
return true;
}
gimple_set_location (new_stmt, loc);
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
}
done:
gimple_seq stmts = NULL;
if (code == BUILT_IN_MEMCPY || code == BUILT_IN_MEMMOVE)
len = NULL_TREE;
else if (code == BUILT_IN_MEMPCPY)
{
len = gimple_convert_to_ptrofftype (&stmts, loc, len);
dest = gimple_build (&stmts, loc, POINTER_PLUS_EXPR,
TREE_TYPE (dest), dest, len);
}
else
gcc_unreachable ();
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
gimple *repl = gimple_build_assign (lhs, dest);
gsi_replace (gsi, repl, false);
return true;
}
/* Transform a call to built-in bcmp(a, b, len) at *GSI into one
to built-in memcmp (a, b, len). */
static bool
gimple_fold_builtin_bcmp (gimple_stmt_iterator *gsi)
{
tree fn = builtin_decl_implicit (BUILT_IN_MEMCMP);
if (!fn)
return false;
/* Transform bcmp (a, b, len) into memcmp (a, b, len). */
gimple *stmt = gsi_stmt (*gsi);
tree a = gimple_call_arg (stmt, 0);
tree b = gimple_call_arg (stmt, 1);
tree len = gimple_call_arg (stmt, 2);
gimple *repl = gimple_build_call (fn, 3, a, b, len);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
/* Transform a call to built-in bcopy (src, dest, len) at *GSI into one
to built-in memmove (dest, src, len). */
static bool
gimple_fold_builtin_bcopy (gimple_stmt_iterator *gsi)
{
tree fn = builtin_decl_implicit (BUILT_IN_MEMMOVE);
if (!fn)
return false;
/* bcopy has been removed from POSIX in Issue 7 but Issue 6 specifies
it's quivalent to memmove (not memcpy). Transform bcopy (src, dest,
len) into memmove (dest, src, len). */
gimple *stmt = gsi_stmt (*gsi);
tree src = gimple_call_arg (stmt, 0);
tree dest = gimple_call_arg (stmt, 1);
tree len = gimple_call_arg (stmt, 2);
gimple *repl = gimple_build_call (fn, 3, dest, src, len);
gimple_call_set_fntype (as_a <gcall *> (stmt), TREE_TYPE (fn));
replace_call_with_call_and_fold (gsi, repl);
return true;
}
/* Transform a call to built-in bzero (dest, len) at *GSI into one
to built-in memset (dest, 0, len). */
static bool
gimple_fold_builtin_bzero (gimple_stmt_iterator *gsi)
{
tree fn = builtin_decl_implicit (BUILT_IN_MEMSET);
if (!fn)
return false;
/* Transform bzero (dest, len) into memset (dest, 0, len). */
gimple *stmt = gsi_stmt (*gsi);
tree dest = gimple_call_arg (stmt, 0);
tree len = gimple_call_arg (stmt, 1);
gimple_seq seq = NULL;
gimple *repl = gimple_build_call (fn, 3, dest, integer_zero_node, len);
gimple_seq_add_stmt_without_update (&seq, repl);
gsi_replace_with_seq_vops (gsi, seq);
fold_stmt (gsi);
return true;
}
/* Fold function call to builtin memset or bzero at *GSI setting the
memory of size LEN to VAL. Return whether a simplification was made. */
static bool
gimple_fold_builtin_memset (gimple_stmt_iterator *gsi, tree c, tree len)
{
gimple *stmt = gsi_stmt (*gsi);
tree etype;
unsigned HOST_WIDE_INT length, cval;
/* If the LEN parameter is zero, return DEST. */
if (integer_zerop (len))
{
replace_call_with_value (gsi, gimple_call_arg (stmt, 0));
return true;
}
if (! tree_fits_uhwi_p (len))
return false;
if (TREE_CODE (c) != INTEGER_CST)
return false;
tree dest = gimple_call_arg (stmt, 0);
tree var = dest;
if (TREE_CODE (var) != ADDR_EXPR)
return false;
var = TREE_OPERAND (var, 0);
if (TREE_THIS_VOLATILE (var))
return false;
etype = TREE_TYPE (var);
if (TREE_CODE (etype) == ARRAY_TYPE)
etype = TREE_TYPE (etype);
if ((!INTEGRAL_TYPE_P (etype)
&& !POINTER_TYPE_P (etype))
|| TREE_CODE (etype) == BITINT_TYPE)
return NULL_TREE;
if (! var_decl_component_p (var))
return NULL_TREE;
length = tree_to_uhwi (len);
if (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (etype)) != length
|| (GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (etype))
!= GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (etype)))
|| get_pointer_alignment (dest) / BITS_PER_UNIT < length)
return NULL_TREE;
if (length > HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT)
return NULL_TREE;
if (!type_has_mode_precision_p (etype))
etype = lang_hooks.types.type_for_mode (SCALAR_INT_TYPE_MODE (etype),
TYPE_UNSIGNED (etype));
if (integer_zerop (c))
cval = 0;
else
{
if (CHAR_BIT != 8 || BITS_PER_UNIT != 8 || HOST_BITS_PER_WIDE_INT > 64)
return NULL_TREE;
cval = TREE_INT_CST_LOW (c);
cval &= 0xff;
cval |= cval << 8;
cval |= cval << 16;
cval |= (cval << 31) << 1;
}
var = fold_build2 (MEM_REF, etype, dest, build_int_cst (ptr_type_node, 0));
gimple *store = gimple_build_assign (var, build_int_cst_type (etype, cval));
gimple_move_vops (store, stmt);
gimple_set_location (store, gimple_location (stmt));
gsi_insert_before (gsi, store, GSI_SAME_STMT);
if (gimple_call_lhs (stmt))
{
gimple *asgn = gimple_build_assign (gimple_call_lhs (stmt), dest);
gsi_replace (gsi, asgn, false);
}
else
{
gimple_stmt_iterator gsi2 = *gsi;
gsi_prev (gsi);
gsi_remove (&gsi2, true);
}
return true;
}
/* Helper of get_range_strlen for ARG that is not an SSA_NAME. */
static bool
get_range_strlen_tree (tree arg, bitmap visited, strlen_range_kind rkind,
c_strlen_data *pdata, unsigned eltsize)
{
gcc_assert (TREE_CODE (arg) != SSA_NAME);
/* The length computed by this invocation of the function. */
tree val = NULL_TREE;
/* True if VAL is an optimistic (tight) bound determined from
the size of the character array in which the string may be
stored. In that case, the computed VAL is used to set
PDATA->MAXBOUND. */
bool tight_bound = false;
/* We can end up with &(*iftmp_1)[0] here as well, so handle it. */
if (TREE_CODE (arg) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
{
tree op = TREE_OPERAND (arg, 0);
if (integer_zerop (TREE_OPERAND (op, 1)))
{
tree aop0 = TREE_OPERAND (op, 0);
if (TREE_CODE (aop0) == INDIRECT_REF
&& TREE_CODE (TREE_OPERAND (aop0, 0)) == SSA_NAME)
return get_range_strlen (TREE_OPERAND (aop0, 0), visited, rkind,
pdata, eltsize);
}
else if (TREE_CODE (TREE_OPERAND (op, 0)) == COMPONENT_REF
&& rkind == SRK_LENRANGE)
{
/* Fail if an array is the last member of a struct object
since it could be treated as a (fake) flexible array
member. */
tree idx = TREE_OPERAND (op, 1);
arg = TREE_OPERAND (op, 0);
tree optype = TREE_TYPE (arg);
if (tree dom = TYPE_DOMAIN (optype))
if (tree bound = TYPE_MAX_VALUE (dom))
if (TREE_CODE (bound) == INTEGER_CST
&& TREE_CODE (idx) == INTEGER_CST
&& tree_int_cst_lt (bound, idx))
return false;
}
}
if (rkind == SRK_INT_VALUE)
{
/* We are computing the maximum value (not string length). */
val = arg;
if (TREE_CODE (val) != INTEGER_CST
|| tree_int_cst_sgn (val) < 0)
return false;
}
else
{
c_strlen_data lendata = { };
val = c_strlen (arg, 1, &lendata, eltsize);
if (!val && lendata.decl)
{
/* ARG refers to an unterminated const character array.
DATA.DECL with size DATA.LEN. */
val = lendata.minlen;
pdata->decl = lendata.decl;
}
}
/* Set if VAL represents the maximum length based on array size (set
when exact length cannot be determined). */
bool maxbound = false;
if (!val && rkind == SRK_LENRANGE)
{
if (TREE_CODE (arg) == ADDR_EXPR)
return get_range_strlen (TREE_OPERAND (arg, 0), visited, rkind,
pdata, eltsize);
if (TREE_CODE (arg) == ARRAY_REF)
{
tree optype = TREE_TYPE (TREE_OPERAND (arg, 0));
/* Determine the "innermost" array type. */
while (TREE_CODE (optype) == ARRAY_TYPE
&& TREE_CODE (TREE_TYPE (optype)) == ARRAY_TYPE)
optype = TREE_TYPE (optype);
/* Avoid arrays of pointers. */
tree eltype = TREE_TYPE (optype);
if (TREE_CODE (optype) != ARRAY_TYPE
|| !INTEGRAL_TYPE_P (eltype))
return false;
/* Fail when the array bound is unknown or zero. */
val = TYPE_SIZE_UNIT (optype);
if (!val
|| TREE_CODE (val) != INTEGER_CST
|| integer_zerop (val))
return false;
val = fold_build2 (MINUS_EXPR, TREE_TYPE (val), val,
integer_one_node);
/* Set the minimum size to zero since the string in
the array could have zero length. */
pdata->minlen = ssize_int (0);
tight_bound = true;
}
else if (TREE_CODE (arg) == COMPONENT_REF
&& (TREE_CODE (TREE_TYPE (TREE_OPERAND (arg, 1)))
== ARRAY_TYPE))
{
/* Use the type of the member array to determine the upper
bound on the length of the array. This may be overly
optimistic if the array itself isn't NUL-terminated and
the caller relies on the subsequent member to contain
the NUL but that would only be considered valid if
the array were the last member of a struct. */
tree fld = TREE_OPERAND (arg, 1);
tree optype = TREE_TYPE (fld);
/* Determine the "innermost" array type. */
while (TREE_CODE (optype) == ARRAY_TYPE
&& TREE_CODE (TREE_TYPE (optype)) == ARRAY_TYPE)
optype = TREE_TYPE (optype);
/* Fail when the array bound is unknown or zero. */
val = TYPE_SIZE_UNIT (optype);
if (!val
|| TREE_CODE (val) != INTEGER_CST
|| integer_zerop (val))
return false;
val = fold_build2 (MINUS_EXPR, TREE_TYPE (val), val,
integer_one_node);
/* Set the minimum size to zero since the string in
the array could have zero length. */
pdata->minlen = ssize_int (0);
/* The array size determined above is an optimistic bound
on the length. If the array isn't nul-terminated the
length computed by the library function would be greater.
Even though using strlen to cross the subobject boundary
is undefined, avoid drawing conclusions from the member
type about the length here. */
tight_bound = true;
}
else if (TREE_CODE (arg) == MEM_REF
&& TREE_CODE (TREE_TYPE (arg)) == ARRAY_TYPE
&& TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == INTEGER_TYPE
&& TREE_CODE (TREE_OPERAND (arg, 0)) == ADDR_EXPR)
{
/* Handle a MEM_REF into a DECL accessing an array of integers,
being conservative about references to extern structures with
flexible array members that can be initialized to arbitrary
numbers of elements as an extension (static structs are okay). */
tree ref = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
if ((TREE_CODE (ref) == PARM_DECL || VAR_P (ref))
&& (decl_binds_to_current_def_p (ref)
|| !array_ref_flexible_size_p (arg)))
{
/* Fail if the offset is out of bounds. Such accesses
should be diagnosed at some point. */
val = DECL_SIZE_UNIT (ref);
if (!val
|| TREE_CODE (val) != INTEGER_CST
|| integer_zerop (val))
return false;
poly_offset_int psiz = wi::to_offset (val);
poly_offset_int poff = mem_ref_offset (arg);
if (known_le (psiz, poff))
return false;
pdata->minlen = ssize_int (0);
/* Subtract the offset and one for the terminating nul. */
psiz -= poff;
psiz -= 1;
val = wide_int_to_tree (TREE_TYPE (val), psiz);
/* Since VAL reflects the size of a declared object
rather the type of the access it is not a tight bound. */
}
}
else if (TREE_CODE (arg) == PARM_DECL || VAR_P (arg))
{
/* Avoid handling pointers to arrays. GCC might misuse
a pointer to an array of one bound to point to an array
object of a greater bound. */
tree argtype = TREE_TYPE (arg);
if (TREE_CODE (argtype) == ARRAY_TYPE)
{
val = TYPE_SIZE_UNIT (argtype);
if (!val
|| TREE_CODE (val) != INTEGER_CST
|| integer_zerop (val))
return false;
val = wide_int_to_tree (TREE_TYPE (val),
wi::sub (wi::to_wide (val), 1));
/* Set the minimum size to zero since the string in
the array could have zero length. */
pdata->minlen = ssize_int (0);
}
}
maxbound = true;
}
if (!val)
return false;
/* Adjust the lower bound on the string length as necessary. */
if (!pdata->minlen
|| (rkind != SRK_STRLEN
&& TREE_CODE (pdata->minlen) == INTEGER_CST
&& TREE_CODE (val) == INTEGER_CST
&& tree_int_cst_lt (val, pdata->minlen)))
pdata->minlen = val;
if (pdata->maxbound && TREE_CODE (pdata->maxbound) == INTEGER_CST)
{
/* Adjust the tighter (more optimistic) string length bound
if necessary and proceed to adjust the more conservative
bound. */
if (TREE_CODE (val) == INTEGER_CST)
{
if (tree_int_cst_lt (pdata->maxbound, val))
pdata->maxbound = val;
}
else
pdata->maxbound = val;
}
else if (pdata->maxbound || maxbound)
/* Set PDATA->MAXBOUND only if it either isn't INTEGER_CST or
if VAL corresponds to the maximum length determined based
on the type of the object. */
pdata->maxbound = val;
if (tight_bound)
{
/* VAL computed above represents an optimistically tight bound
on the length of the string based on the referenced object's
or subobject's type. Determine the conservative upper bound
based on the enclosing object's size if possible. */
if (rkind == SRK_LENRANGE)
{
poly_int64 offset;
tree base = get_addr_base_and_unit_offset (arg, &offset);
if (!base)
{
/* When the call above fails due to a non-constant offset
assume the offset is zero and use the size of the whole
enclosing object instead. */
base = get_base_address (arg);
offset = 0;
}
/* If the base object is a pointer no upper bound on the length
can be determined. Otherwise the maximum length is equal to
the size of the enclosing object minus the offset of
the referenced subobject minus 1 (for the terminating nul). */
tree type = TREE_TYPE (base);
if (TREE_CODE (type) == POINTER_TYPE
|| (TREE_CODE (base) != PARM_DECL && !VAR_P (base))
|| !(val = DECL_SIZE_UNIT (base)))
val = build_all_ones_cst (size_type_node);
else
{
val = DECL_SIZE_UNIT (base);
val = fold_build2 (MINUS_EXPR, TREE_TYPE (val), val,
size_int (offset + 1));
}
}
else
return false;
}
if (pdata->maxlen)
{
/* Adjust the more conservative bound if possible/necessary
and fail otherwise. */
if (rkind != SRK_STRLEN)
{
if (TREE_CODE (pdata->maxlen) != INTEGER_CST
|| TREE_CODE (val) != INTEGER_CST)
return false;
if (tree_int_cst_lt (pdata->maxlen, val))
pdata->maxlen = val;
return true;
}
else if (simple_cst_equal (val, pdata->maxlen) != 1)
{
/* Fail if the length of this ARG is different from that
previously determined from another ARG. */
return false;
}
}
pdata->maxlen = val;
return rkind == SRK_LENRANGE || !integer_all_onesp (val);
}
/* For an ARG referencing one or more strings, try to obtain the range
of their lengths, or the size of the largest array ARG referes to if
the range of lengths cannot be determined, and store all in *PDATA.
For an integer ARG (when RKIND == SRK_INT_VALUE), try to determine
the maximum constant value.
If ARG is an SSA_NAME, follow its use-def chains. When RKIND ==
SRK_STRLEN, then if PDATA->MAXLEN is not equal to the determined
length or if we are unable to determine the length, return false.
VISITED is a bitmap of visited variables.
RKIND determines the kind of value or range to obtain (see
strlen_range_kind).
Set PDATA->DECL if ARG refers to an unterminated constant array.
On input, set ELTSIZE to 1 for normal single byte character strings,
and either 2 or 4 for wide characer strings (the size of wchar_t).
Return true if *PDATA was successfully populated and false otherwise. */
static bool
get_range_strlen (tree arg, bitmap visited,
strlen_range_kind rkind,
c_strlen_data *pdata, unsigned eltsize)
{
if (TREE_CODE (arg) != SSA_NAME)
return get_range_strlen_tree (arg, visited, rkind, pdata, eltsize);
/* If ARG is registered for SSA update we cannot look at its defining
statement. */
if (name_registered_for_update_p (arg))
return false;
/* If we were already here, break the infinite cycle. */
if (!bitmap_set_bit (visited, SSA_NAME_VERSION (arg)))
return true;
tree var = arg;
gimple *def_stmt = SSA_NAME_DEF_STMT (var);
switch (gimple_code (def_stmt))
{
case GIMPLE_ASSIGN:
/* The RHS of the statement defining VAR must either have a
constant length or come from another SSA_NAME with a constant
length. */
if (gimple_assign_single_p (def_stmt)
|| gimple_assign_unary_nop_p (def_stmt))
{
tree rhs = gimple_assign_rhs1 (def_stmt);
return get_range_strlen (rhs, visited, rkind, pdata, eltsize);
}
else if (gimple_assign_rhs_code (def_stmt) == COND_EXPR)
{
tree ops[2] = { gimple_assign_rhs2 (def_stmt),
gimple_assign_rhs3 (def_stmt) };
for (unsigned int i = 0; i < 2; i++)
if (!get_range_strlen (ops[i], visited, rkind, pdata, eltsize))
{
if (rkind != SRK_LENRANGE)
return false;
/* Set the upper bound to the maximum to prevent
it from being adjusted in the next iteration but
leave MINLEN and the more conservative MAXBOUND
determined so far alone (or leave them null if
they haven't been set yet). That the MINLEN is
in fact zero can be determined from MAXLEN being
unbounded but the discovered minimum is used for
diagnostics. */
pdata->maxlen = build_all_ones_cst (size_type_node);
}
return true;
}
return false;
case GIMPLE_PHI:
/* Unless RKIND == SRK_LENRANGE, all arguments of the PHI node
must have a constant length. */
for (unsigned i = 0; i < gimple_phi_num_args (def_stmt); i++)
{
tree arg = gimple_phi_arg (def_stmt, i)->def;
/* If this PHI has itself as an argument, we cannot
determine the string length of this argument. However,
if we can find a constant string length for the other
PHI args then we can still be sure that this is a
constant string length. So be optimistic and just
continue with the next argument. */
if (arg == gimple_phi_result (def_stmt))
continue;
if (!get_range_strlen (arg, visited, rkind, pdata, eltsize))
{
if (rkind != SRK_LENRANGE)
return false;
/* Set the upper bound to the maximum to prevent
it from being adjusted in the next iteration but
leave MINLEN and the more conservative MAXBOUND
determined so far alone (or leave them null if
they haven't been set yet). That the MINLEN is
in fact zero can be determined from MAXLEN being
unbounded but the discovered minimum is used for
diagnostics. */
pdata->maxlen = build_all_ones_cst (size_type_node);
}
}
return true;
default:
return false;
}
}
/* Try to obtain the range of the lengths of the string(s) referenced
by ARG, or the size of the largest array ARG refers to if the range
of lengths cannot be determined, and store all in *PDATA which must
be zero-initialized on input except PDATA->MAXBOUND may be set to
a non-null tree node other than INTEGER_CST to request to have it
set to the length of the longest string in a PHI. ELTSIZE is
the expected size of the string element in bytes: 1 for char and
some power of 2 for wide characters.
Return true if the range [PDATA->MINLEN, PDATA->MAXLEN] is suitable
for optimization. Returning false means that a nonzero PDATA->MINLEN
doesn't reflect the true lower bound of the range when PDATA->MAXLEN
is -1 (in that case, the actual range is indeterminate, i.e.,
[0, PTRDIFF_MAX - 2]. */
bool
get_range_strlen (tree arg, c_strlen_data *pdata, unsigned eltsize)
{
auto_bitmap visited;
tree maxbound = pdata->maxbound;
if (!get_range_strlen (arg, visited, SRK_LENRANGE, pdata, eltsize))
{
/* On failure extend the length range to an impossible maximum
(a valid MAXLEN must be less than PTRDIFF_MAX - 1). Other
members can stay unchanged regardless. */
pdata->minlen = ssize_int (0);
pdata->maxlen = build_all_ones_cst (size_type_node);
}
else if (!pdata->minlen)
pdata->minlen = ssize_int (0);
/* If it's unchanged from it initial non-null value, set the conservative
MAXBOUND to SIZE_MAX. Otherwise leave it null (if it is null). */
if (maxbound && pdata->maxbound == maxbound)
pdata->maxbound = build_all_ones_cst (size_type_node);
return !integer_all_onesp (pdata->maxlen);
}
/* Return the maximum value for ARG given RKIND (see strlen_range_kind).
For ARG of pointer types, NONSTR indicates if the caller is prepared
to handle unterminated strings. For integer ARG and when RKIND ==
SRK_INT_VALUE, NONSTR must be null.
If an unterminated array is discovered and our caller handles
unterminated arrays, then bubble up the offending DECL and
return the maximum size. Otherwise return NULL. */
static tree
get_maxval_strlen (tree arg, strlen_range_kind rkind, tree *nonstr = NULL)
{
/* A non-null NONSTR is meaningless when determining the maximum
value of an integer ARG. */
gcc_assert (rkind != SRK_INT_VALUE || nonstr == NULL);
/* ARG must have an integral type when RKIND says so. */
gcc_assert (rkind != SRK_INT_VALUE || INTEGRAL_TYPE_P (TREE_TYPE (arg)));
auto_bitmap visited;
/* Reset DATA.MAXLEN if the call fails or when DATA.MAXLEN
is unbounded. */
c_strlen_data lendata = { };
if (!get_range_strlen (arg, visited, rkind, &lendata, /* eltsize = */1))
lendata.maxlen = NULL_TREE;
else if (lendata.maxlen && integer_all_onesp (lendata.maxlen))
lendata.maxlen = NULL_TREE;
if (nonstr)
{
/* For callers prepared to handle unterminated arrays set
*NONSTR to point to the declaration of the array and return
the maximum length/size. */
*nonstr = lendata.decl;
return lendata.maxlen;
}
/* Fail if the constant array isn't nul-terminated. */
return lendata.decl ? NULL_TREE : lendata.maxlen;
}
/* Return true if LEN is known to be less than or equal to (or if STRICT is
true, strictly less than) the lower bound of SIZE at compile time and false
otherwise. */
static bool
known_lower (gimple *stmt, tree len, tree size, bool strict = false)
{
if (len == NULL_TREE)
return false;
wide_int size_range[2];
wide_int len_range[2];
if (get_range (len, stmt, len_range) && get_range (size, stmt, size_range))
{
if (strict)
return wi::ltu_p (len_range[1], size_range[0]);
else
return wi::leu_p (len_range[1], size_range[0]);
}
return false;
}
/* Fold function call to builtin strcpy with arguments DEST and SRC.
If LEN is not NULL, it represents the length of the string to be
copied. Return NULL_TREE if no simplification can be made. */
static bool
gimple_fold_builtin_strcpy (gimple_stmt_iterator *gsi,
tree dest, tree src)
{
gimple *stmt = gsi_stmt (*gsi);
location_t loc = gimple_location (stmt);
tree fn;
/* If SRC and DEST are the same (and not volatile), return DEST. */
if (operand_equal_p (src, dest, 0))
{
/* Issue -Wrestrict unless the pointers are null (those do
not point to objects and so do not indicate an overlap;
such calls could be the result of sanitization and jump
threading). */
if (!integer_zerop (dest) && !warning_suppressed_p (stmt, OPT_Wrestrict))
{
tree func = gimple_call_fndecl (stmt);
warning_at (loc, OPT_Wrestrict,
"%qD source argument is the same as destination",
func);
}
replace_call_with_value (gsi, dest);
return true;
}
if (optimize_function_for_size_p (cfun))
return false;
fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
if (!fn)
return false;
/* Set to non-null if ARG refers to an unterminated array. */
tree nonstr = NULL;
tree len = get_maxval_strlen (src, SRK_STRLEN, &nonstr);
if (nonstr)
{
/* Avoid folding calls with unterminated arrays. */
if (!warning_suppressed_p (stmt, OPT_Wstringop_overread))
warn_string_no_nul (loc, stmt, "strcpy", src, nonstr);
suppress_warning (stmt, OPT_Wstringop_overread);
return false;
}
if (!len)
return false;
len = fold_convert_loc (loc, size_type_node, len);
len = size_binop_loc (loc, PLUS_EXPR, len, build_int_cst (size_type_node, 1));
len = force_gimple_operand_gsi (gsi, len, true,
NULL_TREE, true, GSI_SAME_STMT);
gimple *repl = gimple_build_call (fn, 3, dest, src, len);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
/* Fold function call to builtin strncpy with arguments DEST, SRC, and LEN.
If SLEN is not NULL, it represents the length of the source string.
Return NULL_TREE if no simplification can be made. */
static bool
gimple_fold_builtin_strncpy (gimple_stmt_iterator *gsi,
tree dest, tree src, tree len)
{
gimple *stmt = gsi_stmt (*gsi);
location_t loc = gimple_location (stmt);
bool nonstring = get_attr_nonstring_decl (dest) != NULL_TREE;
/* If the LEN parameter is zero, return DEST. */
if (integer_zerop (len))
{
/* Avoid warning if the destination refers to an array/pointer
decorate with attribute nonstring. */
if (!nonstring)
{
tree fndecl = gimple_call_fndecl (stmt);
/* Warn about the lack of nul termination: the result is not
a (nul-terminated) string. */
tree slen = get_maxval_strlen (src, SRK_STRLEN);
if (slen && !integer_zerop (slen))
warning_at (loc, OPT_Wstringop_truncation,
"%qD destination unchanged after copying no bytes "
"from a string of length %E",
fndecl, slen);
else
warning_at (loc, OPT_Wstringop_truncation,
"%qD destination unchanged after copying no bytes",
fndecl);
}
replace_call_with_value (gsi, dest);
return true;
}
/* We can't compare slen with len as constants below if len is not a
constant. */
if (TREE_CODE (len) != INTEGER_CST)
return false;
/* Now, we must be passed a constant src ptr parameter. */
tree slen = get_maxval_strlen (src, SRK_STRLEN);
if (!slen || TREE_CODE (slen) != INTEGER_CST)
return false;
/* The size of the source string including the terminating nul. */
tree ssize = size_binop_loc (loc, PLUS_EXPR, slen, ssize_int (1));
/* We do not support simplification of this case, though we do
support it when expanding trees into RTL. */
/* FIXME: generate a call to __builtin_memset. */
if (tree_int_cst_lt (ssize, len))
return false;
/* Diagnose truncation that leaves the copy unterminated. */
maybe_diag_stxncpy_trunc (*gsi, src, len);
/* OK transform into builtin memcpy. */
tree fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
if (!fn)
return false;
len = fold_convert_loc (loc, size_type_node, len);
len = force_gimple_operand_gsi (gsi, len, true,
NULL_TREE, true, GSI_SAME_STMT);
gimple *repl = gimple_build_call (fn, 3, dest, src, len);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
/* Fold function call to builtin strchr or strrchr.
If both arguments are constant, evaluate and fold the result,
otherwise simplify str(r)chr (str, 0) into str + strlen (str).
In general strlen is significantly faster than strchr
due to being a simpler operation. */
static bool
gimple_fold_builtin_strchr (gimple_stmt_iterator *gsi, bool is_strrchr)
{
gimple *stmt = gsi_stmt (*gsi);
tree str = gimple_call_arg (stmt, 0);
tree c = gimple_call_arg (stmt, 1);
location_t loc = gimple_location (stmt);
const char *p;
char ch;
if (!gimple_call_lhs (stmt))
return false;
/* Avoid folding if the first argument is not a nul-terminated array.
Defer warning until later. */
if (!check_nul_terminated_array (NULL_TREE, str))
return false;
if ((p = c_getstr (str)) && target_char_cst_p (c, &ch))
{
const char *p1 = is_strrchr ? strrchr (p, ch) : strchr (p, ch);
if (p1 == NULL)
{
replace_call_with_value (gsi, integer_zero_node);
return true;
}
tree len = build_int_cst (size_type_node, p1 - p);
gimple_seq stmts = NULL;
gimple *new_stmt = gimple_build_assign (gimple_call_lhs (stmt),
POINTER_PLUS_EXPR, str, len);
gimple_seq_add_stmt_without_update (&stmts, new_stmt);
gsi_replace_with_seq_vops (gsi, stmts);
return true;
}
if (!integer_zerop (c))
return false;
/* Transform strrchr (s, 0) to strchr (s, 0) when optimizing for size. */
if (is_strrchr && optimize_function_for_size_p (cfun))
{
tree strchr_fn = builtin_decl_implicit (BUILT_IN_STRCHR);
if (strchr_fn)
{
gimple *repl = gimple_build_call (strchr_fn, 2, str, c);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
return false;
}
tree len;
tree strlen_fn = builtin_decl_implicit (BUILT_IN_STRLEN);
if (!strlen_fn)
return false;
/* Create newstr = strlen (str). */
gimple_seq stmts = NULL;
gimple *new_stmt = gimple_build_call (strlen_fn, 1, str);
gimple_set_location (new_stmt, loc);
len = create_tmp_reg_or_ssa_name (size_type_node);
gimple_call_set_lhs (new_stmt, len);
gimple_seq_add_stmt_without_update (&stmts, new_stmt);
/* Create (str p+ strlen (str)). */
new_stmt = gimple_build_assign (gimple_call_lhs (stmt),
POINTER_PLUS_EXPR, str, len);
gimple_seq_add_stmt_without_update (&stmts, new_stmt);
gsi_replace_with_seq_vops (gsi, stmts);
/* gsi now points at the assignment to the lhs, get a
stmt iterator to the strlen.
??? We can't use gsi_for_stmt as that doesn't work when the
CFG isn't built yet. */
gimple_stmt_iterator gsi2 = *gsi;
gsi_prev (&gsi2);
fold_stmt (&gsi2);
return true;
}
/* Fold function call to builtin strstr.
If both arguments are constant, evaluate and fold the result,
additionally fold strstr (x, "") into x and strstr (x, "c")
into strchr (x, 'c'). */
static bool
gimple_fold_builtin_strstr (gimple_stmt_iterator *gsi)
{
gimple *stmt = gsi_stmt (*gsi);
if (!gimple_call_lhs (stmt))
return false;
tree haystack = gimple_call_arg (stmt, 0);
tree needle = gimple_call_arg (stmt, 1);
/* Avoid folding if either argument is not a nul-terminated array.
Defer warning until later. */
if (!check_nul_terminated_array (NULL_TREE, haystack)
|| !check_nul_terminated_array (NULL_TREE, needle))
return false;
const char *q = c_getstr (needle);
if (q == NULL)
return false;
if (const char *p = c_getstr (haystack))
{
const char *r = strstr (p, q);
if (r == NULL)
{
replace_call_with_value (gsi, integer_zero_node);
return true;
}
tree len = build_int_cst (size_type_node, r - p);
gimple_seq stmts = NULL;
gimple *new_stmt
= gimple_build_assign (gimple_call_lhs (stmt), POINTER_PLUS_EXPR,
haystack, len);
gimple_seq_add_stmt_without_update (&stmts, new_stmt);
gsi_replace_with_seq_vops (gsi, stmts);
return true;
}
/* For strstr (x, "") return x. */
if (q[0] == '\0')
{
replace_call_with_value (gsi, haystack);
return true;
}
/* Transform strstr (x, "c") into strchr (x, 'c'). */
if (q[1] == '\0')
{
tree strchr_fn = builtin_decl_implicit (BUILT_IN_STRCHR);
if (strchr_fn)
{
tree c = build_int_cst (integer_type_node, q[0]);
gimple *repl = gimple_build_call (strchr_fn, 2, haystack, c);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
}
return false;
}
/* Simplify a call to the strcat builtin. DST and SRC are the arguments
to the call.
Return NULL_TREE if no simplification was possible, otherwise return the
simplified form of the call as a tree.
The simplified form may be a constant or other expression which
computes the same value, but in a more efficient manner (including
calls to other builtin functions).
The call may contain arguments which need to be evaluated, but
which are not useful to determine the result of the call. In
this case we return a chain of COMPOUND_EXPRs. The LHS of each
COMPOUND_EXPR will be an argument which must be evaluated.
COMPOUND_EXPRs are chained through their RHS. The RHS of the last
COMPOUND_EXPR in the chain will contain the tree for the simplified
form of the builtin function call. */
static bool
gimple_fold_builtin_strcat (gimple_stmt_iterator *gsi, tree dst, tree src)
{
gimple *stmt = gsi_stmt (*gsi);
location_t loc = gimple_location (stmt);
const char *p = c_getstr (src);
/* If the string length is zero, return the dst parameter. */
if (p && *p == '\0')
{
replace_call_with_value (gsi, dst);
return true;
}
if (!optimize_bb_for_speed_p (gimple_bb (stmt)))
return false;
/* See if we can store by pieces into (dst + strlen(dst)). */
tree newdst;
tree strlen_fn = builtin_decl_implicit (BUILT_IN_STRLEN);
tree memcpy_fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
if (!strlen_fn || !memcpy_fn)
return false;
/* If the length of the source string isn't computable don't
split strcat into strlen and memcpy. */
tree len = get_maxval_strlen (src, SRK_STRLEN);
if (! len)
return false;
/* Create strlen (dst). */
gimple_seq stmts = NULL, stmts2;
gimple *repl = gimple_build_call (strlen_fn, 1, dst);
gimple_set_location (repl, loc);
newdst = create_tmp_reg_or_ssa_name (size_type_node);
gimple_call_set_lhs (repl, newdst);
gimple_seq_add_stmt_without_update (&stmts, repl);
/* Create (dst p+ strlen (dst)). */
newdst = fold_build_pointer_plus_loc (loc, dst, newdst);
newdst = force_gimple_operand (newdst, &stmts2, true, NULL_TREE);
gimple_seq_add_seq_without_update (&stmts, stmts2);
len = fold_convert_loc (loc, size_type_node, len);
len = size_binop_loc (loc, PLUS_EXPR, len,
build_int_cst (size_type_node, 1));
len = force_gimple_operand (len, &stmts2, true, NULL_TREE);
gimple_seq_add_seq_without_update (&stmts, stmts2);
repl = gimple_build_call (memcpy_fn, 3, newdst, src, len);
gimple_seq_add_stmt_without_update (&stmts, repl);
if (gimple_call_lhs (stmt))
{
repl = gimple_build_assign (gimple_call_lhs (stmt), dst);
gimple_seq_add_stmt_without_update (&stmts, repl);
gsi_replace_with_seq_vops (gsi, stmts);
/* gsi now points at the assignment to the lhs, get a
stmt iterator to the memcpy call.
??? We can't use gsi_for_stmt as that doesn't work when the
CFG isn't built yet. */
gimple_stmt_iterator gsi2 = *gsi;
gsi_prev (&gsi2);
fold_stmt (&gsi2);
}
else
{
gsi_replace_with_seq_vops (gsi, stmts);
fold_stmt (gsi);
}
return true;
}
/* Fold a call to the __strcat_chk builtin FNDECL. DEST, SRC, and SIZE
are the arguments to the call. */
static bool
gimple_fold_builtin_strcat_chk (gimple_stmt_iterator *gsi)
{
gimple *stmt = gsi_stmt (*gsi);
tree dest = gimple_call_arg (stmt, 0);
tree src = gimple_call_arg (stmt, 1);
tree size = gimple_call_arg (stmt, 2);
tree fn;
const char *p;
p = c_getstr (src);
/* If the SRC parameter is "", return DEST. */
if (p && *p == '\0')
{
replace_call_with_value (gsi, dest);
return true;
}
if (! tree_fits_uhwi_p (size) || ! integer_all_onesp (size))
return false;
/* If __builtin_strcat_chk is used, assume strcat is available. */
fn = builtin_decl_explicit (BUILT_IN_STRCAT);
if (!fn)
return false;
gimple *repl = gimple_build_call (fn, 2, dest, src);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
/* Simplify a call to the strncat builtin. */
static bool
gimple_fold_builtin_strncat (gimple_stmt_iterator *gsi)
{
gimple *stmt = gsi_stmt (*gsi);
tree dst = gimple_call_arg (stmt, 0);
tree src = gimple_call_arg (stmt, 1);
tree len = gimple_call_arg (stmt, 2);
tree src_len = c_strlen (src, 1);
/* If the requested length is zero, or the src parameter string
length is zero, return the dst parameter. */
if (integer_zerop (len) || (src_len && integer_zerop (src_len)))
{
replace_call_with_value (gsi, dst);
return true;
}
/* Return early if the requested len is less than the string length.
Warnings will be issued elsewhere later. */
if (!src_len || known_lower (stmt, len, src_len, true))
return false;
/* Warn on constant LEN. */
if (TREE_CODE (len) == INTEGER_CST)
{
bool nowarn = warning_suppressed_p (stmt, OPT_Wstringop_overflow_);
tree dstsize;
if (!nowarn && compute_builtin_object_size (dst, 1, &dstsize)
&& TREE_CODE (dstsize) == INTEGER_CST)
{
int cmpdst = tree_int_cst_compare (len, dstsize);
if (cmpdst >= 0)
{
tree fndecl = gimple_call_fndecl (stmt);
/* Strncat copies (at most) LEN bytes and always appends
the terminating NUL so the specified bound should never
be equal to (or greater than) the size of the destination.
If it is, the copy could overflow. */
location_t loc = gimple_location (stmt);
nowarn = warning_at (loc, OPT_Wstringop_overflow_,
cmpdst == 0
? G_("%qD specified bound %E equals "
"destination size")
: G_("%qD specified bound %E exceeds "
"destination size %E"),
fndecl, len, dstsize);
if (nowarn)
suppress_warning (stmt, OPT_Wstringop_overflow_);
}
}
if (!nowarn && TREE_CODE (src_len) == INTEGER_CST
&& tree_int_cst_compare (src_len, len) == 0)
{
tree fndecl = gimple_call_fndecl (stmt);
location_t loc = gimple_location (stmt);
/* To avoid possible overflow the specified bound should also
not be equal to the length of the source, even when the size
of the destination is unknown (it's not an uncommon mistake
to specify as the bound to strncpy the length of the source). */
if (warning_at (loc, OPT_Wstringop_overflow_,
"%qD specified bound %E equals source length",
fndecl, len))
suppress_warning (stmt, OPT_Wstringop_overflow_);
}
}
if (!known_lower (stmt, src_len, len))
return false;
tree fn = builtin_decl_implicit (BUILT_IN_STRCAT);
/* If the replacement _DECL isn't initialized, don't do the
transformation. */
if (!fn)
return false;
/* Otherwise, emit a call to strcat. */
gcall *repl = gimple_build_call (fn, 2, dst, src);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
/* Fold a call to the __strncat_chk builtin with arguments DEST, SRC,
LEN, and SIZE. */
static bool
gimple_fold_builtin_strncat_chk (gimple_stmt_iterator *gsi)
{
gimple *stmt = gsi_stmt (*gsi);
tree dest = gimple_call_arg (stmt, 0);
tree src = gimple_call_arg (stmt, 1);
tree len = gimple_call_arg (stmt, 2);
tree size = gimple_call_arg (stmt, 3);
tree fn;
const char *p;
p = c_getstr (src);
/* If the SRC parameter is "" or if LEN is 0, return DEST. */
if ((p && *p == '\0')
|| integer_zerop (len))
{
replace_call_with_value (gsi, dest);
return true;
}
if (! integer_all_onesp (size))
{
tree src_len = c_strlen (src, 1);
if (known_lower (stmt, src_len, len))
{
/* If LEN >= strlen (SRC), optimize into __strcat_chk. */
fn = builtin_decl_explicit (BUILT_IN_STRCAT_CHK);
if (!fn)
return false;
gimple *repl = gimple_build_call (fn, 3, dest, src, size);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
return false;
}
/* If __builtin_strncat_chk is used, assume strncat is available. */
fn = builtin_decl_explicit (BUILT_IN_STRNCAT);
if (!fn)
return false;
gimple *repl = gimple_build_call (fn, 3, dest, src, len);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
/* Build and append gimple statements to STMTS that would load a first
character of a memory location identified by STR. LOC is location
of the statement. */
static tree
gimple_load_first_char (location_t loc, tree str, gimple_seq *stmts)
{
tree var;
tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0);
tree cst_uchar_ptr_node
= build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true);
tree off0 = build_int_cst (cst_uchar_ptr_node, 0);
tree temp = fold_build2_loc (loc, MEM_REF, cst_uchar_node, str, off0);
gassign *stmt = gimple_build_assign (NULL_TREE, temp);
var = create_tmp_reg_or_ssa_name (cst_uchar_node, stmt);
gimple_assign_set_lhs (stmt, var);
gimple_seq_add_stmt_without_update (stmts, stmt);
return var;
}
/* Fold a call to the str{n}{case}cmp builtin pointed by GSI iterator. */
static bool
gimple_fold_builtin_string_compare (gimple_stmt_iterator *gsi)
{
gimple *stmt = gsi_stmt (*gsi);
tree callee = gimple_call_fndecl (stmt);
enum built_in_function fcode = DECL_FUNCTION_CODE (callee);
tree type = integer_type_node;
tree str1 = gimple_call_arg (stmt, 0);
tree str2 = gimple_call_arg (stmt, 1);
tree lhs = gimple_call_lhs (stmt);
tree bound_node = NULL_TREE;
unsigned HOST_WIDE_INT bound = HOST_WIDE_INT_M1U;
/* Handle strncmp and strncasecmp functions. */
if (gimple_call_num_args (stmt) == 3)
{
bound_node = gimple_call_arg (stmt, 2);
if (tree_fits_uhwi_p (bound_node))
bound = tree_to_uhwi (bound_node);
}
/* If the BOUND parameter is zero, return zero. */
if (bound == 0)
{
replace_call_with_value (gsi, integer_zero_node);
return true;
}
/* If ARG1 and ARG2 are the same (and not volatile), return zero. */
if (operand_equal_p (str1, str2, 0))
{
replace_call_with_value (gsi, integer_zero_node);
return true;
}
/* Initially set to the number of characters, including the terminating
nul if each array has one. LENx == strnlen (Sx, LENx) implies that
the array Sx is not terminated by a nul.
For nul-terminated strings then adjusted to their length so that
LENx == NULPOSx holds. */
unsigned HOST_WIDE_INT len1 = HOST_WIDE_INT_MAX, len2 = len1;
const char *p1 = getbyterep (str1, &len1);
const char *p2 = getbyterep (str2, &len2);
/* The position of the terminating nul character if one exists, otherwise
a value greater than LENx. */
unsigned HOST_WIDE_INT nulpos1 = HOST_WIDE_INT_MAX, nulpos2 = nulpos1;
if (p1)
{
size_t n = strnlen (p1, len1);
if (n < len1)
len1 = nulpos1 = n;
}
if (p2)
{
size_t n = strnlen (p2, len2);
if (n < len2)
len2 = nulpos2 = n;
}
/* For known strings, return an immediate value. */
if (p1 && p2)
{
int r = 0;
bool known_result = false;
switch (fcode)
{
case BUILT_IN_STRCMP:
case BUILT_IN_STRCMP_EQ:
if (len1 != nulpos1 || len2 != nulpos2)
break;
r = strcmp (p1, p2);
known_result = true;
break;
case BUILT_IN_STRNCMP:
case BUILT_IN_STRNCMP_EQ:
{
if (bound == HOST_WIDE_INT_M1U)
break;
/* Reduce the bound to be no more than the length
of the shorter of the two strings, or the sizes
of the unterminated arrays. */
unsigned HOST_WIDE_INT n = bound;
if (len1 == nulpos1 && len1 < n)
n = len1 + 1;
if (len2 == nulpos2 && len2 < n)
n = len2 + 1;
if (MIN (nulpos1, nulpos2) + 1 < n)
break;
r = strncmp (p1, p2, n);
known_result = true;
break;
}
/* Only handleable situation is where the string are equal (result 0),
which is already handled by operand_equal_p case. */
case BUILT_IN_STRCASECMP:
break;
case BUILT_IN_STRNCASECMP:
{
if (bound == HOST_WIDE_INT_M1U)
break;
r = strncmp (p1, p2, bound);
if (r == 0)
known_result = true;
break;
}
default:
gcc_unreachable ();
}
if (known_result)
{
replace_call_with_value (gsi, build_cmp_result (type, r));
return true;
}
}
bool nonzero_bound = (bound >= 1 && bound < HOST_WIDE_INT_M1U)
|| fcode == BUILT_IN_STRCMP
|| fcode == BUILT_IN_STRCMP_EQ
|| fcode == BUILT_IN_STRCASECMP;
location_t loc = gimple_location (stmt);
/* If the second arg is "", return *(const unsigned char*)arg1. */
if (p2 && *p2 == '\0' && nonzero_bound)
{
gimple_seq stmts = NULL;
tree var = gimple_load_first_char (loc, str1, &stmts);
if (lhs)
{
stmt = gimple_build_assign (lhs, NOP_EXPR, var);
gimple_seq_add_stmt_without_update (&stmts, stmt);
}
gsi_replace_with_seq_vops (gsi, stmts);
return true;
}
/* If the first arg is "", return -*(const unsigned char*)arg2. */
if (p1 && *p1 == '\0' && nonzero_bound)
{
gimple_seq stmts = NULL;
tree var = gimple_load_first_char (loc, str2, &stmts);
if (lhs)
{
tree c = create_tmp_reg_or_ssa_name (integer_type_node);
stmt = gimple_build_assign (c, NOP_EXPR, var);
gimple_seq_add_stmt_without_update (&stmts, stmt);
stmt = gimple_build_assign (lhs, NEGATE_EXPR, c);
gimple_seq_add_stmt_without_update (&stmts, stmt);
}
gsi_replace_with_seq_vops (gsi, stmts);
return true;
}
/* If BOUND is one, return an expression corresponding to
(*(const unsigned char*)arg2 - *(const unsigned char*)arg1). */
if (fcode == BUILT_IN_STRNCMP && bound == 1)
{
gimple_seq stmts = NULL;
tree temp1 = gimple_load_first_char (loc, str1, &stmts);
tree temp2 = gimple_load_first_char (loc, str2, &stmts);
if (lhs)
{
tree c1 = create_tmp_reg_or_ssa_name (integer_type_node);
gassign *convert1 = gimple_build_assign (c1, NOP_EXPR, temp1);
gimple_seq_add_stmt_without_update (&stmts, convert1);
tree c2 = create_tmp_reg_or_ssa_name (integer_type_node);
gassign *convert2 = gimple_build_assign (c2, NOP_EXPR, temp2);
gimple_seq_add_stmt_without_update (&stmts, convert2);
stmt = gimple_build_assign (lhs, MINUS_EXPR, c1, c2);
gimple_seq_add_stmt_without_update (&stmts, stmt);
}
gsi_replace_with_seq_vops (gsi, stmts);
return true;
}
/* If BOUND is greater than the length of one constant string,
and the other argument is also a nul-terminated string, replace
strncmp with strcmp. */
if (fcode == BUILT_IN_STRNCMP
&& bound > 0 && bound < HOST_WIDE_INT_M1U
&& ((p2 && len2 < bound && len2 == nulpos2)
|| (p1 && len1 < bound && len1 == nulpos1)))
{
tree fn = builtin_decl_implicit (BUILT_IN_STRCMP);
if (!fn)
return false;
gimple *repl = gimple_build_call (fn, 2, str1, str2);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
return false;
}
/* Fold a call to the memchr pointed by GSI iterator. */
static bool
gimple_fold_builtin_memchr (gimple_stmt_iterator *gsi)
{
gimple *stmt = gsi_stmt (*gsi);
tree lhs = gimple_call_lhs (stmt);
tree arg1 = gimple_call_arg (stmt, 0);
tree arg2 = gimple_call_arg (stmt, 1);
tree len = gimple_call_arg (stmt, 2);
/* If the LEN parameter is zero, return zero. */
if (integer_zerop (len))
{
replace_call_with_value (gsi, build_int_cst (ptr_type_node, 0));
return true;
}
char c;
if (TREE_CODE (arg2) != INTEGER_CST
|| !tree_fits_uhwi_p (len)
|| !target_char_cst_p (arg2, &c))
return false;
unsigned HOST_WIDE_INT length = tree_to_uhwi (len);
unsigned HOST_WIDE_INT string_length;
const char *p1 = getbyterep (arg1, &string_length);
if (p1)
{
const char *r = (const char *)memchr (p1, c, MIN (length, string_length));
if (r == NULL)
{
tree mem_size, offset_node;
byte_representation (arg1, &offset_node, &mem_size, NULL);
unsigned HOST_WIDE_INT offset = (offset_node == NULL_TREE)
? 0 : tree_to_uhwi (offset_node);
/* MEM_SIZE is the size of the array the string literal
is stored in. */
unsigned HOST_WIDE_INT string_size = tree_to_uhwi (mem_size) - offset;
gcc_checking_assert (string_length <= string_size);
if (length <= string_size)
{
replace_call_with_value (gsi, build_int_cst (ptr_type_node, 0));
return true;
}
}
else
{
unsigned HOST_WIDE_INT offset = r - p1;
gimple_seq stmts = NULL;
if (lhs != NULL_TREE)
{
tree offset_cst = build_int_cst (sizetype, offset);
gassign *stmt = gimple_build_assign (lhs, POINTER_PLUS_EXPR,
arg1, offset_cst);
gimple_seq_add_stmt_without_update (&stmts, stmt);
}
else
gimple_seq_add_stmt_without_update (&stmts,
gimple_build_nop ());
gsi_replace_with_seq_vops (gsi, stmts);
return true;
}
}
return false;
}
/* Fold a call to the fputs builtin. ARG0 and ARG1 are the arguments
to the call. IGNORE is true if the value returned
by the builtin will be ignored. UNLOCKED is true is true if this
actually a call to fputs_unlocked. If LEN in non-NULL, it represents
the known length of the string. Return NULL_TREE if no simplification
was possible. */
static bool
gimple_fold_builtin_fputs (gimple_stmt_iterator *gsi,
tree arg0, tree arg1,
bool unlocked)
{
gimple *stmt = gsi_stmt (*gsi);
/* If we're using an unlocked function, assume the other unlocked
functions exist explicitly. */
tree const fn_fputc = (unlocked
? builtin_decl_explicit (BUILT_IN_FPUTC_UNLOCKED)
: builtin_decl_implicit (BUILT_IN_FPUTC));
tree const fn_fwrite = (unlocked
? builtin_decl_explicit (BUILT_IN_FWRITE_UNLOCKED)
: builtin_decl_implicit (BUILT_IN_FWRITE));
/* If the return value is used, don't do the transformation. */
if (gimple_call_lhs (stmt))
return false;
/* Get the length of the string passed to fputs. If the length
can't be determined, punt. */
tree len = get_maxval_strlen (arg0, SRK_STRLEN);
if (!len || TREE_CODE (len) != INTEGER_CST)
return false;
switch (compare_tree_int (len, 1))
{
case -1: /* length is 0, delete the call entirely . */
replace_call_with_value (gsi, integer_zero_node);
return true;
case 0: /* length is 1, call fputc. */
{
const char *p = c_getstr (arg0);
if (p != NULL)
{
if (!fn_fputc)
return false;
gimple *repl
= gimple_build_call (fn_fputc, 2,
build_int_cst (integer_type_node, p[0]),
arg1);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
}
/* FALLTHROUGH */
case 1: /* length is greater than 1, call fwrite. */
{
/* If optimizing for size keep fputs. */
if (optimize_function_for_size_p (cfun))
return false;
/* New argument list transforming fputs(string, stream) to
fwrite(string, 1, len, stream). */
if (!fn_fwrite)
return false;
gimple *repl
= gimple_build_call (fn_fwrite, 4, arg0, size_one_node,
fold_convert (size_type_node, len), arg1);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
default:
gcc_unreachable ();
}
}
/* Fold a call to the __mem{cpy,pcpy,move,set}_chk builtin.
DEST, SRC, LEN, and SIZE are the arguments to the call.
IGNORE is true, if return value can be ignored. FCODE is the BUILT_IN_*
code of the builtin. If MAXLEN is not NULL, it is maximum length
passed as third argument. */
static bool
gimple_fold_builtin_memory_chk (gimple_stmt_iterator *gsi,
tree dest, tree src, tree len, tree size,
enum built_in_function fcode)
{
gimple *stmt = gsi_stmt (*gsi);
location_t loc = gimple_location (stmt);
bool ignore = gimple_call_lhs (stmt) == NULL_TREE;
tree fn;
/* If SRC and DEST are the same (and not volatile), return DEST
(resp. DEST+LEN for __mempcpy_chk). */
if (fcode != BUILT_IN_MEMSET_CHK && operand_equal_p (src, dest, 0))
{
if (fcode != BUILT_IN_MEMPCPY_CHK)
{
replace_call_with_value (gsi, dest);
return true;
}
else
{
gimple_seq stmts = NULL;
len = gimple_convert_to_ptrofftype (&stmts, loc, len);
tree temp = gimple_build (&stmts, loc, POINTER_PLUS_EXPR,
TREE_TYPE (dest), dest, len);
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
replace_call_with_value (gsi, temp);
return true;
}
}
tree maxlen = get_maxval_strlen (len, SRK_INT_VALUE);
if (! integer_all_onesp (size)
&& !known_lower (stmt, len, size)
&& !known_lower (stmt, maxlen, size))
{
/* MAXLEN and LEN both cannot be proved to be less than SIZE, at
least try to optimize (void) __mempcpy_chk () into
(void) __memcpy_chk () */
if (fcode == BUILT_IN_MEMPCPY_CHK && ignore)
{
fn = builtin_decl_explicit (BUILT_IN_MEMCPY_CHK);
if (!fn)
return false;
gimple *repl = gimple_build_call (fn, 4, dest, src, len, size);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
return false;
}
fn = NULL_TREE;
/* If __builtin_mem{cpy,pcpy,move,set}_chk is used, assume
mem{cpy,pcpy,move,set} is available. */
switch (fcode)
{
case BUILT_IN_MEMCPY_CHK:
fn = builtin_decl_explicit (BUILT_IN_MEMCPY);
break;
case BUILT_IN_MEMPCPY_CHK:
fn = builtin_decl_explicit (BUILT_IN_MEMPCPY);
break;
case BUILT_IN_MEMMOVE_CHK:
fn = builtin_decl_explicit (BUILT_IN_MEMMOVE);
break;
case BUILT_IN_MEMSET_CHK:
fn = builtin_decl_explicit (BUILT_IN_MEMSET);
break;
default:
break;
}
if (!fn)
return false;
gimple *repl = gimple_build_call (fn, 3, dest, src, len);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
/* Fold a call to the __st[rp]cpy_chk builtin.
DEST, SRC, and SIZE are the arguments to the call.
IGNORE is true if return value can be ignored. FCODE is the BUILT_IN_*
code of the builtin. If MAXLEN is not NULL, it is maximum length of
strings passed as second argument. */
static bool
gimple_fold_builtin_stxcpy_chk (gimple_stmt_iterator *gsi,
tree dest,
tree src, tree size,
enum built_in_function fcode)
{
gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
location_t loc = gimple_location (stmt);
bool ignore = gimple_call_lhs (stmt) == NULL_TREE;
tree len, fn;
/* If SRC and DEST are the same (and not volatile), return DEST. */
if (fcode == BUILT_IN_STRCPY_CHK && operand_equal_p (src, dest, 0))
{
/* Issue -Wrestrict unless the pointers are null (those do
not point to objects and so do not indicate an overlap;
such calls could be the result of sanitization and jump
threading). */
if (!integer_zerop (dest)
&& !warning_suppressed_p (stmt, OPT_Wrestrict))
{
tree func = gimple_call_fndecl (stmt);
warning_at (loc, OPT_Wrestrict,
"%qD source argument is the same as destination",
func);
}
replace_call_with_value (gsi, dest);
return true;
}
tree maxlen = get_maxval_strlen (src, SRK_STRLENMAX);
if (! integer_all_onesp (size))
{
len = c_strlen (src, 1);
if (!known_lower (stmt, len, size, true)
&& !known_lower (stmt, maxlen, size, true))
{
if (fcode == BUILT_IN_STPCPY_CHK)
{
if (! ignore)
return false;
/* If return value of __stpcpy_chk is ignored,
optimize into __strcpy_chk. */
fn = builtin_decl_explicit (BUILT_IN_STRCPY_CHK);
if (!fn)
return false;
gimple *repl = gimple_build_call (fn, 3, dest, src, size);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
if (! len || TREE_SIDE_EFFECTS (len))
return false;
/* If c_strlen returned something, but not provably less than size,
transform __strcpy_chk into __memcpy_chk. */
fn = builtin_decl_explicit (BUILT_IN_MEMCPY_CHK);
if (!fn)
return false;
gimple_seq stmts = NULL;
len = force_gimple_operand (len, &stmts, true, NULL_TREE);
len = gimple_convert (&stmts, loc, size_type_node, len);
len = gimple_build (&stmts, loc, PLUS_EXPR, size_type_node, len,
build_int_cst (size_type_node, 1));
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
gimple *repl = gimple_build_call (fn, 4, dest, src, len, size);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
}
/* If __builtin_st{r,p}cpy_chk is used, assume st{r,p}cpy is available. */
fn = builtin_decl_explicit (fcode == BUILT_IN_STPCPY_CHK && !ignore
? BUILT_IN_STPCPY : BUILT_IN_STRCPY);
if (!fn)
return false;
gcall *repl = gimple_build_call (fn, 2, dest, src);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
/* Fold a call to the __st{r,p}ncpy_chk builtin. DEST, SRC, LEN, and SIZE
are the arguments to the call. If MAXLEN is not NULL, it is maximum
length passed as third argument. IGNORE is true if return value can be
ignored. FCODE is the BUILT_IN_* code of the builtin. */
static bool
gimple_fold_builtin_stxncpy_chk (gimple_stmt_iterator *gsi,
tree dest, tree src,
tree len, tree size,
enum built_in_function fcode)
{
gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
bool ignore = gimple_call_lhs (stmt) == NULL_TREE;
tree fn;
tree maxlen = get_maxval_strlen (len, SRK_INT_VALUE);
if (! integer_all_onesp (size)
&& !known_lower (stmt, len, size) && !known_lower (stmt, maxlen, size))
{
if (fcode == BUILT_IN_STPNCPY_CHK && ignore)
{
/* If return value of __stpncpy_chk is ignored,
optimize into __strncpy_chk. */
fn = builtin_decl_explicit (BUILT_IN_STRNCPY_CHK);
if (fn)
{
gimple *repl = gimple_build_call (fn, 4, dest, src, len, size);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
}
return false;
}
/* If __builtin_st{r,p}ncpy_chk is used, assume st{r,p}ncpy is available. */
fn = builtin_decl_explicit (fcode == BUILT_IN_STPNCPY_CHK && !ignore
? BUILT_IN_STPNCPY : BUILT_IN_STRNCPY);
if (!fn)
return false;
gcall *repl = gimple_build_call (fn, 3, dest, src, len);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
/* Fold function call to builtin stpcpy with arguments DEST and SRC.
Return NULL_TREE if no simplification can be made. */
static bool
gimple_fold_builtin_stpcpy (gimple_stmt_iterator *gsi)
{
gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
location_t loc = gimple_location (stmt);
tree dest = gimple_call_arg (stmt, 0);
tree src = gimple_call_arg (stmt, 1);
tree fn, lenp1;
/* If the result is unused, replace stpcpy with strcpy. */
if (gimple_call_lhs (stmt) == NULL_TREE)
{
tree fn = builtin_decl_implicit (BUILT_IN_STRCPY);
if (!fn)
return false;
gimple_call_set_fndecl (stmt, fn);
fold_stmt (gsi);
return true;
}
/* Set to non-null if ARG refers to an unterminated array. */
c_strlen_data data = { };
/* The size of the unterminated array if SRC referes to one. */
tree size;
/* True if the size is exact/constant, false if it's the lower bound
of a range. */
bool exact;
tree len = c_strlen (src, 1, &data, 1);
if (!len
|| TREE_CODE (len) != INTEGER_CST)
{
data.decl = unterminated_array (src, &size, &exact);
if (!data.decl)
return false;
}
if (data.decl)
{
/* Avoid folding calls with unterminated arrays. */
if (!warning_suppressed_p (stmt, OPT_Wstringop_overread))
warn_string_no_nul (loc, stmt, "stpcpy", src, data.decl, size,
exact);
suppress_warning (stmt, OPT_Wstringop_overread);
return false;
}
if (optimize_function_for_size_p (cfun)
/* If length is zero it's small enough. */
&& !integer_zerop (len))
return false;
/* If the source has a known length replace stpcpy with memcpy. */
fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
if (!fn)
return false;
gimple_seq stmts = NULL;
tree tem = gimple_convert (&stmts, loc, size_type_node, len);
lenp1 = gimple_build (&stmts, loc, PLUS_EXPR, size_type_node,
tem, build_int_cst (size_type_node, 1));
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
gcall *repl = gimple_build_call (fn, 3, dest, src, lenp1);
gimple_move_vops (repl, stmt);
gsi_insert_before (gsi, repl, GSI_SAME_STMT);
/* Replace the result with dest + len. */
stmts = NULL;
tem = gimple_convert (&stmts, loc, sizetype, len);
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
gassign *ret = gimple_build_assign (gimple_call_lhs (stmt),
POINTER_PLUS_EXPR, dest, tem);
gsi_replace (gsi, ret, false);
/* Finally fold the memcpy call. */
gimple_stmt_iterator gsi2 = *gsi;
gsi_prev (&gsi2);
fold_stmt (&gsi2);
return true;
}
/* Fold a call EXP to {,v}snprintf having NARGS passed as ARGS. Return
NULL_TREE if a normal call should be emitted rather than expanding
the function inline. FCODE is either BUILT_IN_SNPRINTF_CHK or
BUILT_IN_VSNPRINTF_CHK. If MAXLEN is not NULL, it is maximum length
passed as second argument. */
static bool
gimple_fold_builtin_snprintf_chk (gimple_stmt_iterator *gsi,
enum built_in_function fcode)
{
gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
tree dest, size, len, fn, fmt, flag;
const char *fmt_str;
/* Verify the required arguments in the original call. */
if (gimple_call_num_args (stmt) < 5)
return false;
dest = gimple_call_arg (stmt, 0);
len = gimple_call_arg (stmt, 1);
flag = gimple_call_arg (stmt, 2);
size = gimple_call_arg (stmt, 3);
fmt = gimple_call_arg (stmt, 4);
tree maxlen = get_maxval_strlen (len, SRK_INT_VALUE);
if (! integer_all_onesp (size)
&& !known_lower (stmt, len, size) && !known_lower (stmt, maxlen, size))
return false;
if (!init_target_chars ())
return false;
/* Only convert __{,v}snprintf_chk to {,v}snprintf if flag is 0
or if format doesn't contain % chars or is "%s". */
if (! integer_zerop (flag))
{
fmt_str = c_getstr (fmt);
if (fmt_str == NULL)
return false;
if (strchr (fmt_str, target_percent) != NULL
&& strcmp (fmt_str, target_percent_s))
return false;
}
/* If __builtin_{,v}snprintf_chk is used, assume {,v}snprintf is
available. */
fn = builtin_decl_explicit (fcode == BUILT_IN_VSNPRINTF_CHK
? BUILT_IN_VSNPRINTF : BUILT_IN_SNPRINTF);
if (!fn)
return false;
/* Replace the called function and the first 5 argument by 3 retaining
trailing varargs. */
gimple_call_set_fndecl (stmt, fn);
gimple_call_set_fntype (stmt, TREE_TYPE (fn));
gimple_call_set_arg (stmt, 0, dest);
gimple_call_set_arg (stmt, 1, len);
gimple_call_set_arg (stmt, 2, fmt);
for (unsigned i = 3; i < gimple_call_num_args (stmt) - 2; ++i)
gimple_call_set_arg (stmt, i, gimple_call_arg (stmt, i + 2));
gimple_set_num_ops (stmt, gimple_num_ops (stmt) - 2);
fold_stmt (gsi);
return true;
}
/* Fold a call EXP to __{,v}sprintf_chk having NARGS passed as ARGS.
Return NULL_TREE if a normal call should be emitted rather than
expanding the function inline. FCODE is either BUILT_IN_SPRINTF_CHK
or BUILT_IN_VSPRINTF_CHK. */
static bool
gimple_fold_builtin_sprintf_chk (gimple_stmt_iterator *gsi,
enum built_in_function fcode)
{
gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
tree dest, size, len, fn, fmt, flag;
const char *fmt_str;
unsigned nargs = gimple_call_num_args (stmt);
/* Verify the required arguments in the original call. */
if (nargs < 4)
return false;
dest = gimple_call_arg (stmt, 0);
flag = gimple_call_arg (stmt, 1);
size = gimple_call_arg (stmt, 2);
fmt = gimple_call_arg (stmt, 3);
len = NULL_TREE;
if (!init_target_chars ())
return false;
/* Check whether the format is a literal string constant. */
fmt_str = c_getstr (fmt);
if (fmt_str != NULL)
{
/* If the format doesn't contain % args or %%, we know the size. */
if (strchr (fmt_str, target_percent) == 0)
{
if (fcode != BUILT_IN_SPRINTF_CHK || nargs == 4)
len = build_int_cstu (size_type_node, strlen (fmt_str));
}
/* If the format is "%s" and first ... argument is a string literal,
we know the size too. */
else if (fcode == BUILT_IN_SPRINTF_CHK
&& strcmp (fmt_str, target_percent_s) == 0)
{
tree arg;
if (nargs == 5)
{
arg = gimple_call_arg (stmt, 4);
if (POINTER_TYPE_P (TREE_TYPE (arg)))
len = c_strlen (arg, 1);
}
}
}
if (! integer_all_onesp (size) && !known_lower (stmt, len, size, true))
return false;
/* Only convert __{,v}sprintf_chk to {,v}sprintf if flag is 0
or if format doesn't contain % chars or is "%s". */
if (! integer_zerop (flag))
{
if (fmt_str == NULL)
return false;
if (strchr (fmt_str, target_percent) != NULL
&& strcmp (fmt_str, target_percent_s))
return false;
}
/* If __builtin_{,v}sprintf_chk is used, assume {,v}sprintf is available. */
fn = builtin_decl_explicit (fcode == BUILT_IN_VSPRINTF_CHK
? BUILT_IN_VSPRINTF : BUILT_IN_SPRINTF);
if (!fn)
return false;
/* Replace the called function and the first 4 argument by 2 retaining
trailing varargs. */
gimple_call_set_fndecl (stmt, fn);
gimple_call_set_fntype (stmt, TREE_TYPE (fn));
gimple_call_set_arg (stmt, 0, dest);
gimple_call_set_arg (stmt, 1, fmt);
for (unsigned i = 2; i < gimple_call_num_args (stmt) - 2; ++i)
gimple_call_set_arg (stmt, i, gimple_call_arg (stmt, i + 2));
gimple_set_num_ops (stmt, gimple_num_ops (stmt) - 2);
fold_stmt (gsi);
return true;
}
/* Simplify a call to the sprintf builtin with arguments DEST, FMT, and ORIG.
ORIG may be null if this is a 2-argument call. We don't attempt to
simplify calls with more than 3 arguments.
Return true if simplification was possible, otherwise false. */
bool
gimple_fold_builtin_sprintf (gimple_stmt_iterator *gsi)
{
gimple *stmt = gsi_stmt (*gsi);
/* Verify the required arguments in the original call. We deal with two
types of sprintf() calls: 'sprintf (str, fmt)' and
'sprintf (dest, "%s", orig)'. */
if (gimple_call_num_args (stmt) > 3)
return false;
tree orig = NULL_TREE;
if (gimple_call_num_args (stmt) == 3)
orig = gimple_call_arg (stmt, 2);
/* Check whether the format is a literal string constant. */
tree fmt = gimple_call_arg (stmt, 1);
const char *fmt_str = c_getstr (fmt);
if (fmt_str == NULL)
return false;
tree dest = gimple_call_arg (stmt, 0);
if (!init_target_chars ())
return false;
tree fn = builtin_decl_implicit (BUILT_IN_STRCPY);
if (!fn)
return false;
/* If the format doesn't contain % args or %%, use strcpy. */
if (strchr (fmt_str, target_percent) == NULL)
{
/* Don't optimize sprintf (buf, "abc", ptr++). */
if (orig)
return false;
/* Convert sprintf (str, fmt) into strcpy (str, fmt) when
'format' is known to contain no % formats. */
gimple_seq stmts = NULL;
gimple *repl = gimple_build_call (fn, 2, dest, fmt);
/* Propagate the NO_WARNING bit to avoid issuing the same
warning more than once. */
copy_warning (repl, stmt);
gimple_seq_add_stmt_without_update (&stmts, repl);
if (tree lhs = gimple_call_lhs (stmt))
{
repl = gimple_build_assign (lhs, build_int_cst (TREE_TYPE (lhs),
strlen (fmt_str)));
gimple_seq_add_stmt_without_update (&stmts, repl);
gsi_replace_with_seq_vops (gsi, stmts);
/* gsi now points at the assignment to the lhs, get a
stmt iterator to the memcpy call.
??? We can't use gsi_for_stmt as that doesn't work when the
CFG isn't built yet. */
gimple_stmt_iterator gsi2 = *gsi;
gsi_prev (&gsi2);
fold_stmt (&gsi2);
}
else
{
gsi_replace_with_seq_vops (gsi, stmts);
fold_stmt (gsi);
}
return true;
}
/* If the format is "%s", use strcpy if the result isn't used. */
else if (fmt_str && strcmp (fmt_str, target_percent_s) == 0)
{
/* Don't crash on sprintf (str1, "%s"). */
if (!orig)
return false;
/* Don't fold calls with source arguments of invalid (nonpointer)
types. */
if (!POINTER_TYPE_P (TREE_TYPE (orig)))
return false;
tree orig_len = NULL_TREE;
if (gimple_call_lhs (stmt))
{
orig_len = get_maxval_strlen (orig, SRK_STRLEN);
if (!orig_len)
return false;
}
/* Convert sprintf (str1, "%s", str2) into strcpy (str1, str2). */
gimple_seq stmts = NULL;
gimple *repl = gimple_build_call (fn, 2, dest, orig);
/* Propagate the NO_WARNING bit to avoid issuing the same
warning more than once. */
copy_warning (repl, stmt);
gimple_seq_add_stmt_without_update (&stmts, repl);
if (tree lhs = gimple_call_lhs (stmt))
{
if (!useless_type_conversion_p (TREE_TYPE (lhs),
TREE_TYPE (orig_len)))
orig_len = fold_convert (TREE_TYPE (lhs), orig_len);
repl = gimple_build_assign (lhs, orig_len);
gimple_seq_add_stmt_without_update (&stmts, repl);
gsi_replace_with_seq_vops (gsi, stmts);
/* gsi now points at the assignment to the lhs, get a
stmt iterator to the memcpy call.
??? We can't use gsi_for_stmt as that doesn't work when the
CFG isn't built yet. */
gimple_stmt_iterator gsi2 = *gsi;
gsi_prev (&gsi2);
fold_stmt (&gsi2);
}
else
{
gsi_replace_with_seq_vops (gsi, stmts);
fold_stmt (gsi);
}
return true;
}
return false;
}
/* Simplify a call to the snprintf builtin with arguments DEST, DESTSIZE,
FMT, and ORIG. ORIG may be null if this is a 3-argument call. We don't
attempt to simplify calls with more than 4 arguments.
Return true if simplification was possible, otherwise false. */
bool
gimple_fold_builtin_snprintf (gimple_stmt_iterator *gsi)
{
gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
tree dest = gimple_call_arg (stmt, 0);
tree destsize = gimple_call_arg (stmt, 1);
tree fmt = gimple_call_arg (stmt, 2);
tree orig = NULL_TREE;
const char *fmt_str = NULL;
if (gimple_call_num_args (stmt) > 4)
return false;
if (gimple_call_num_args (stmt) == 4)
orig = gimple_call_arg (stmt, 3);
/* Check whether the format is a literal string constant. */
fmt_str = c_getstr (fmt);
if (fmt_str == NULL)
return false;
if (!init_target_chars ())
return false;
/* If the format doesn't contain % args or %%, use strcpy. */
if (strchr (fmt_str, target_percent) == NULL)
{
tree fn = builtin_decl_implicit (BUILT_IN_STRCPY);
if (!fn)
return false;
/* Don't optimize snprintf (buf, 4, "abc", ptr++). */
if (orig)
return false;
tree len = build_int_cstu (TREE_TYPE (destsize), strlen (fmt_str));
/* We could expand this as
memcpy (str, fmt, cst - 1); str[cst - 1] = '\0';
or to
memcpy (str, fmt_with_nul_at_cstm1, cst);
but in the former case that might increase code size
and in the latter case grow .rodata section too much.
So punt for now. */
if (!known_lower (stmt, len, destsize, true))
return false;
gimple_seq stmts = NULL;
gimple *repl = gimple_build_call (fn, 2, dest, fmt);
gimple_seq_add_stmt_without_update (&stmts, repl);
if (tree lhs = gimple_call_lhs (stmt))
{
repl = gimple_build_assign (lhs,
fold_convert (TREE_TYPE (lhs), len));
gimple_seq_add_stmt_without_update (&stmts, repl);
gsi_replace_with_seq_vops (gsi, stmts);
/* gsi now points at the assignment to the lhs, get a
stmt iterator to the memcpy call.
??? We can't use gsi_for_stmt as that doesn't work when the
CFG isn't built yet. */
gimple_stmt_iterator gsi2 = *gsi;
gsi_prev (&gsi2);
fold_stmt (&gsi2);
}
else
{
gsi_replace_with_seq_vops (gsi, stmts);
fold_stmt (gsi);
}
return true;
}
/* If the format is "%s", use strcpy if the result isn't used. */
else if (fmt_str && strcmp (fmt_str, target_percent_s) == 0)
{
tree fn = builtin_decl_implicit (BUILT_IN_STRCPY);
if (!fn)
return false;
/* Don't crash on snprintf (str1, cst, "%s"). */
if (!orig)
return false;
tree orig_len = get_maxval_strlen (orig, SRK_STRLEN);
/* We could expand this as
memcpy (str1, str2, cst - 1); str1[cst - 1] = '\0';
or to
memcpy (str1, str2_with_nul_at_cstm1, cst);
but in the former case that might increase code size
and in the latter case grow .rodata section too much.
So punt for now. */
if (!known_lower (stmt, orig_len, destsize, true))
return false;
/* Convert snprintf (str1, cst, "%s", str2) into
strcpy (str1, str2) if strlen (str2) < cst. */
gimple_seq stmts = NULL;
gimple *repl = gimple_build_call (fn, 2, dest, orig);
gimple_seq_add_stmt_without_update (&stmts, repl);
if (tree lhs = gimple_call_lhs (stmt))
{
if (!useless_type_conversion_p (TREE_TYPE (lhs),
TREE_TYPE (orig_len)))
orig_len = fold_convert (TREE_TYPE (lhs), orig_len);
repl = gimple_build_assign (lhs, orig_len);
gimple_seq_add_stmt_without_update (&stmts, repl);
gsi_replace_with_seq_vops (gsi, stmts);
/* gsi now points at the assignment to the lhs, get a
stmt iterator to the memcpy call.
??? We can't use gsi_for_stmt as that doesn't work when the
CFG isn't built yet. */
gimple_stmt_iterator gsi2 = *gsi;
gsi_prev (&gsi2);
fold_stmt (&gsi2);
}
else
{
gsi_replace_with_seq_vops (gsi, stmts);
fold_stmt (gsi);
}
return true;
}
return false;
}
/* Fold a call to the {,v}fprintf{,_unlocked} and __{,v}printf_chk builtins.
FP, FMT, and ARG are the arguments to the call. We don't fold calls with
more than 3 arguments, and ARG may be null in the 2-argument case.
Return NULL_TREE if no simplification was possible, otherwise return the
simplified form of the call as a tree. FCODE is the BUILT_IN_*
code of the function to be simplified. */
static bool
gimple_fold_builtin_fprintf (gimple_stmt_iterator *gsi,
tree fp, tree fmt, tree arg,
enum built_in_function fcode)
{
gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
tree fn_fputc, fn_fputs;
const char *fmt_str = NULL;
/* If the return value is used, don't do the transformation. */
if (gimple_call_lhs (stmt) != NULL_TREE)
return false;
/* Check whether the format is a literal string constant. */
fmt_str = c_getstr (fmt);
if (fmt_str == NULL)
return false;
if (fcode == BUILT_IN_FPRINTF_UNLOCKED)
{
/* If we're using an unlocked function, assume the other
unlocked functions exist explicitly. */
fn_fputc = builtin_decl_explicit (BUILT_IN_FPUTC_UNLOCKED);
fn_fputs = builtin_decl_explicit (BUILT_IN_FPUTS_UNLOCKED);
}
else
{
fn_fputc = builtin_decl_implicit (BUILT_IN_FPUTC);
fn_fputs = builtin_decl_implicit (BUILT_IN_FPUTS);
}
if (!init_target_chars ())
return false;
/* If the format doesn't contain % args or %%, use strcpy. */
if (strchr (fmt_str, target_percent) == NULL)
{
if (fcode != BUILT_IN_VFPRINTF && fcode != BUILT_IN_VFPRINTF_CHK
&& arg)
return false;
/* If the format specifier was "", fprintf does nothing. */
if (fmt_str[0] == '\0')
{
replace_call_with_value (gsi, NULL_TREE);
return true;
}
/* When "string" doesn't contain %, replace all cases of
fprintf (fp, string) with fputs (string, fp). The fputs
builtin will take care of special cases like length == 1. */
if (fn_fputs)
{
gcall *repl = gimple_build_call (fn_fputs, 2, fmt, fp);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
}
/* The other optimizations can be done only on the non-va_list variants. */
else if (fcode == BUILT_IN_VFPRINTF || fcode == BUILT_IN_VFPRINTF_CHK)
return false;
/* If the format specifier was "%s", call __builtin_fputs (arg, fp). */
else if (strcmp (fmt_str, target_percent_s) == 0)
{
if (!arg || ! POINTER_TYPE_P (TREE_TYPE (arg)))
return false;
if (fn_fputs)
{
gcall *repl = gimple_build_call (fn_fputs, 2, arg, fp);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
}
/* If the format specifier was "%c", call __builtin_fputc (arg, fp). */
else if (strcmp (fmt_str, target_percent_c) == 0)
{
if (!arg
|| ! useless_type_conversion_p (integer_type_node, TREE_TYPE (arg)))
return false;
if (fn_fputc)
{
gcall *repl = gimple_build_call (fn_fputc, 2, arg, fp);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
}
return false;
}
/* Fold a call to the {,v}printf{,_unlocked} and __{,v}printf_chk builtins.
FMT and ARG are the arguments to the call; we don't fold cases with
more than 2 arguments, and ARG may be null if this is a 1-argument case.
Return NULL_TREE if no simplification was possible, otherwise return the
simplified form of the call as a tree. FCODE is the BUILT_IN_*
code of the function to be simplified. */
static bool
gimple_fold_builtin_printf (gimple_stmt_iterator *gsi, tree fmt,
tree arg, enum built_in_function fcode)
{
gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
tree fn_putchar, fn_puts, newarg;
const char *fmt_str = NULL;
/* If the return value is used, don't do the transformation. */
if (gimple_call_lhs (stmt) != NULL_TREE)
return false;
/* Check whether the format is a literal string constant. */
fmt_str = c_getstr (fmt);
if (fmt_str == NULL)
return false;
if (fcode == BUILT_IN_PRINTF_UNLOCKED)
{
/* If we're using an unlocked function, assume the other
unlocked functions exist explicitly. */
fn_putchar = builtin_decl_explicit (BUILT_IN_PUTCHAR_UNLOCKED);
fn_puts = builtin_decl_explicit (BUILT_IN_PUTS_UNLOCKED);
}
else
{
fn_putchar = builtin_decl_implicit (BUILT_IN_PUTCHAR);
fn_puts = builtin_decl_implicit (BUILT_IN_PUTS);
}
if (!init_target_chars ())
return false;
if (strcmp (fmt_str, target_percent_s) == 0
|| strchr (fmt_str, target_percent) == NULL)
{
const char *str;
if (strcmp (fmt_str, target_percent_s) == 0)
{
if (fcode == BUILT_IN_VPRINTF || fcode == BUILT_IN_VPRINTF_CHK)
return false;
if (!arg || ! POINTER_TYPE_P (TREE_TYPE (arg)))
return false;
str = c_getstr (arg);
if (str == NULL)
return false;
}
else
{
/* The format specifier doesn't contain any '%' characters. */
if (fcode != BUILT_IN_VPRINTF && fcode != BUILT_IN_VPRINTF_CHK
&& arg)
return false;
str = fmt_str;
}
/* If the string was "", printf does nothing. */
if (str[0] == '\0')
{
replace_call_with_value (gsi, NULL_TREE);
return true;
}
/* If the string has length of 1, call putchar. */
if (str[1] == '\0')
{
/* Given printf("c"), (where c is any one character,)
convert "c"[0] to an int and pass that to the replacement
function. */
newarg = build_int_cst (integer_type_node, str[0]);
if (fn_putchar)
{
gcall *repl = gimple_build_call (fn_putchar, 1, newarg);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
}
else
{
/* If the string was "string\n", call puts("string"). */
size_t len = strlen (str);
if ((unsigned char)str[len - 1] == target_newline
&& (size_t) (int) len == len
&& (int) len > 0)
{
char *newstr;
/* Create a NUL-terminated string that's one char shorter
than the original, stripping off the trailing '\n'. */
newstr = xstrdup (str);
newstr[len - 1] = '\0';
newarg = build_string_literal (len, newstr);
free (newstr);
if (fn_puts)
{
gcall *repl = gimple_build_call (fn_puts, 1, newarg);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
}
else
/* We'd like to arrange to call fputs(string,stdout) here,
but we need stdout and don't have a way to get it yet. */
return false;
}
}
/* The other optimizations can be done only on the non-va_list variants. */
else if (fcode == BUILT_IN_VPRINTF || fcode == BUILT_IN_VPRINTF_CHK)
return false;
/* If the format specifier was "%s\n", call __builtin_puts(arg). */
else if (strcmp (fmt_str, target_percent_s_newline) == 0)
{
if (!arg || ! POINTER_TYPE_P (TREE_TYPE (arg)))
return false;
if (fn_puts)
{
gcall *repl = gimple_build_call (fn_puts, 1, arg);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
}
/* If the format specifier was "%c", call __builtin_putchar(arg). */
else if (strcmp (fmt_str, target_percent_c) == 0)
{
if (!arg || ! useless_type_conversion_p (integer_type_node,
TREE_TYPE (arg)))
return false;
if (fn_putchar)
{
gcall *repl = gimple_build_call (fn_putchar, 1, arg);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
}
return false;
}
/* Fold a call to __builtin_strlen with known length LEN. */
static bool
gimple_fold_builtin_strlen (gimple_stmt_iterator *gsi)
{
gimple *stmt = gsi_stmt (*gsi);
tree arg = gimple_call_arg (stmt, 0);
wide_int minlen;
wide_int maxlen;
c_strlen_data lendata = { };
if (get_range_strlen (arg, &lendata, /* eltsize = */ 1)
&& !lendata.decl
&& lendata.minlen && TREE_CODE (lendata.minlen) == INTEGER_CST
&& lendata.maxlen && TREE_CODE (lendata.maxlen) == INTEGER_CST)
{
/* The range of lengths refers to either a single constant
string or to the longest and shortest constant string
referenced by the argument of the strlen() call, or to
the strings that can possibly be stored in the arrays
the argument refers to. */
minlen = wi::to_wide (lendata.minlen);
maxlen = wi::to_wide (lendata.maxlen);
}
else
{
unsigned prec = TYPE_PRECISION (sizetype);
minlen = wi::shwi (0, prec);
maxlen = wi::to_wide (max_object_size (), prec) - 2;
}
/* For -fsanitize=address, don't optimize the upper bound of the
length to be able to diagnose UB on non-zero terminated arrays. */
if (sanitize_flags_p (SANITIZE_ADDRESS))
maxlen = wi::max_value (TYPE_PRECISION (sizetype), UNSIGNED);
if (minlen == maxlen)
{
/* Fold the strlen call to a constant. */
tree type = TREE_TYPE (lendata.minlen);
tree len = force_gimple_operand_gsi (gsi,
wide_int_to_tree (type, minlen),
true, NULL, true, GSI_SAME_STMT);
replace_call_with_value (gsi, len);
return true;
}
/* Set the strlen() range to [0, MAXLEN]. */
if (tree lhs = gimple_call_lhs (stmt))
set_strlen_range (lhs, minlen, maxlen);
return false;
}
static bool
gimple_fold_builtin_omp_is_initial_device (gimple_stmt_iterator *gsi)
{
#if ACCEL_COMPILER
replace_call_with_value (gsi, integer_zero_node);
return true;
#else
if (!ENABLE_OFFLOADING || symtab->state == EXPANSION)
{
replace_call_with_value (gsi, integer_one_node);
return true;
}
#endif
return false;
}
/* Fold a call to __builtin_acc_on_device. */
static bool
gimple_fold_builtin_acc_on_device (gimple_stmt_iterator *gsi, tree arg0)
{
/* Defer folding until we know which compiler we're in. */
if (symtab->state != EXPANSION)
return false;
unsigned val_host = GOMP_DEVICE_HOST;
unsigned val_dev = GOMP_DEVICE_NONE;
#ifdef ACCEL_COMPILER
val_host = GOMP_DEVICE_NOT_HOST;
val_dev = ACCEL_COMPILER_acc_device;
#endif
location_t loc = gimple_location (gsi_stmt (*gsi));
tree host_eq = make_ssa_name (boolean_type_node);
gimple *host_ass = gimple_build_assign
(host_eq, EQ_EXPR, arg0, build_int_cst (TREE_TYPE (arg0), val_host));
gimple_set_location (host_ass, loc);
gsi_insert_before (gsi, host_ass, GSI_SAME_STMT);
tree dev_eq = make_ssa_name (boolean_type_node);
gimple *dev_ass = gimple_build_assign
(dev_eq, EQ_EXPR, arg0, build_int_cst (TREE_TYPE (arg0), val_dev));
gimple_set_location (dev_ass, loc);
gsi_insert_before (gsi, dev_ass, GSI_SAME_STMT);
tree result = make_ssa_name (boolean_type_node);
gimple *result_ass = gimple_build_assign
(result, BIT_IOR_EXPR, host_eq, dev_eq);
gimple_set_location (result_ass, loc);
gsi_insert_before (gsi, result_ass, GSI_SAME_STMT);
replace_call_with_value (gsi, result);
return true;
}
/* Fold realloc (0, n) -> malloc (n). */
static bool
gimple_fold_builtin_realloc (gimple_stmt_iterator *gsi)
{
gimple *stmt = gsi_stmt (*gsi);
tree arg = gimple_call_arg (stmt, 0);
tree size = gimple_call_arg (stmt, 1);
if (operand_equal_p (arg, null_pointer_node, 0))
{
tree fn_malloc = builtin_decl_implicit (BUILT_IN_MALLOC);
if (fn_malloc)
{
gcall *repl = gimple_build_call (fn_malloc, 1, size);
replace_call_with_call_and_fold (gsi, repl);
return true;
}
}
return false;
}
/* Number of bytes into which any type but aggregate, vector or
_BitInt types should fit. */
static constexpr size_t clear_padding_unit
= MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT;
/* Buffer size on which __builtin_clear_padding folding code works. */
static const size_t clear_padding_buf_size = 32 * clear_padding_unit;
/* Data passed through __builtin_clear_padding folding. */
struct clear_padding_struct {
location_t loc;
/* 0 during __builtin_clear_padding folding, nonzero during
clear_type_padding_in_mask. In that case, instead of clearing the
non-padding bits in union_ptr array clear the padding bits in there. */
bool clear_in_mask;
tree base;
tree alias_type;
gimple_stmt_iterator *gsi;
/* Alignment of buf->base + 0. */
unsigned align;
/* Offset from buf->base. Should be always a multiple of UNITS_PER_WORD. */
HOST_WIDE_INT off;
/* Number of padding bytes before buf->off that don't have padding clear
code emitted yet. */
HOST_WIDE_INT padding_bytes;
/* The size of the whole object. Never emit code to touch
buf->base + buf->sz or following bytes. */
HOST_WIDE_INT sz;
/* Number of bytes recorded in buf->buf. */
size_t size;
/* When inside union, instead of emitting code we and bits inside of
the union_ptr array. */
unsigned char *union_ptr;
/* Set bits mean padding bits that need to be cleared by the builtin. */
unsigned char buf[clear_padding_buf_size + clear_padding_unit];
};
/* Emit code to clear padding requested in BUF->buf - set bits
in there stand for padding that should be cleared. FULL is true
if everything from the buffer should be flushed, otherwise
it can leave up to 2 * clear_padding_unit bytes for further
processing. */
static void
clear_padding_flush (clear_padding_struct *buf, bool full)
{
gcc_assert ((clear_padding_unit % UNITS_PER_WORD) == 0);
if (!full && buf->size < 2 * clear_padding_unit)
return;
gcc_assert ((buf->off % UNITS_PER_WORD) == 0);
size_t end = buf->size;
if (!full)
end = ((end - clear_padding_unit - 1) / clear_padding_unit
* clear_padding_unit);
size_t padding_bytes = buf->padding_bytes;
if (buf->union_ptr)
{
if (buf->clear_in_mask)
{
/* During clear_type_padding_in_mask, clear the padding
bits set in buf->buf in the buf->union_ptr mask. */
for (size_t i = 0; i < end; i++)
{
if (buf->buf[i] == (unsigned char) ~0)
padding_bytes++;
else
{
memset (&buf->union_ptr[buf->off + i - padding_bytes],
0, padding_bytes);
padding_bytes = 0;
buf->union_ptr[buf->off + i] &= ~buf->buf[i];
}
}
if (full)
{
memset (&buf->union_ptr[buf->off + end - padding_bytes],
0, padding_bytes);
buf->off = 0;
buf->size = 0;
buf->padding_bytes = 0;
}
else
{
memmove (buf->buf, buf->buf + end, buf->size - end);
buf->off += end;
buf->size -= end;
buf->padding_bytes = padding_bytes;
}
return;
}
/* Inside of a union, instead of emitting any code, instead
clear all bits in the union_ptr buffer that are clear
in buf. Whole padding bytes don't clear anything. */
for (size_t i = 0; i < end; i++)
{
if (buf->buf[i] == (unsigned char) ~0)
padding_bytes++;
else
{
padding_bytes = 0;
buf->union_ptr[buf->off + i] &= buf->buf[i];
}
}
if (full)
{
buf->off = 0;
buf->size = 0;
buf->padding_bytes = 0;
}
else
{
memmove (buf->buf, buf->buf + end, buf->size - end);
buf->off += end;
buf->size -= end;
buf->padding_bytes = padding_bytes;
}
return;
}
size_t wordsize = UNITS_PER_WORD;
for (size_t i = 0; i < end; i += wordsize)
{
size_t nonzero_first = wordsize;
size_t nonzero_last = 0;
size_t zero_first = wordsize;
size_t zero_last = 0;
bool all_ones = true, bytes_only = true;
if ((unsigned HOST_WIDE_INT) (buf->off + i + wordsize)
> (unsigned HOST_WIDE_INT) buf->sz)
{
gcc_assert (wordsize > 1);
wordsize /= 2;
i -= wordsize;
continue;
}
size_t endsize = end - i > wordsize ? wordsize : end - i;
for (size_t j = i; j < i + endsize; j++)
{
if (buf->buf[j])
{
if (nonzero_first == wordsize)
{
nonzero_first = j - i;
nonzero_last = j - i;
}
if (nonzero_last != j - i)
all_ones = false;
nonzero_last = j + 1 - i;
}
else
{
if (zero_first == wordsize)
zero_first = j - i;
zero_last = j + 1 - i;
}
if (buf->buf[j] != 0 && buf->buf[j] != (unsigned char) ~0)
{
all_ones = false;
bytes_only = false;
}
}
size_t padding_end = i;
if (padding_bytes)
{
if (nonzero_first == 0
&& nonzero_last == endsize
&& all_ones)
{
/* All bits are padding and we had some padding
before too. Just extend it. */
padding_bytes += endsize;
continue;
}
if (all_ones && nonzero_first == 0)
{
padding_bytes += nonzero_last;
padding_end += nonzero_last;
nonzero_first = wordsize;
nonzero_last = 0;
}
else if (bytes_only && nonzero_first == 0)
{
gcc_assert (zero_first && zero_first != wordsize);
padding_bytes += zero_first;
padding_end += zero_first;
}
tree atype, src;
if (padding_bytes == 1)
{
atype = char_type_node;
src = build_zero_cst (char_type_node);
}
else
{
atype = build_array_type_nelts (char_type_node, padding_bytes);
src = build_constructor (atype, NULL);
}
tree dst = build2_loc (buf->loc, MEM_REF, atype, buf->base,
build_int_cst (buf->alias_type,
buf->off + padding_end
- padding_bytes));
gimple *g = gimple_build_assign (dst, src);
gimple_set_location (g, buf->loc);
gsi_insert_before (buf->gsi, g, GSI_SAME_STMT);
padding_bytes = 0;
buf->padding_bytes = 0;
}
if (nonzero_first == wordsize)
/* All bits in a word are 0, there are no padding bits. */
continue;
if (all_ones && nonzero_last == endsize)
{
/* All bits between nonzero_first and end of word are padding
bits, start counting padding_bytes. */
padding_bytes = nonzero_last - nonzero_first;
continue;
}
if (bytes_only)
{
/* If bitfields aren't involved in this word, prefer storing
individual bytes or groups of them over performing a RMW
operation on the whole word. */
gcc_assert (i + zero_last <= end);
for (size_t j = padding_end; j < i + zero_last; j++)
{
if (buf->buf[j])
{
size_t k;
for (k = j; k < i + zero_last; k++)
if (buf->buf[k] == 0)
break;
HOST_WIDE_INT off = buf->off + j;
tree atype, src;
if (k - j == 1)
{
atype = char_type_node;
src = build_zero_cst (char_type_node);
}
else
{
atype = build_array_type_nelts (char_type_node, k - j);
src = build_constructor (atype, NULL);
}
tree dst = build2_loc (buf->loc, MEM_REF, atype,
buf->base,
build_int_cst (buf->alias_type, off));
gimple *g = gimple_build_assign (dst, src);
gimple_set_location (g, buf->loc);
gsi_insert_before (buf->gsi, g, GSI_SAME_STMT);
j = k;
}
}
if (nonzero_last == endsize)
padding_bytes = nonzero_last - zero_last;
continue;
}
for (size_t eltsz = 1; eltsz <= wordsize; eltsz <<= 1)
{
if (nonzero_last - nonzero_first <= eltsz
&& ((nonzero_first & ~(eltsz - 1))
== ((nonzero_last - 1) & ~(eltsz - 1))))
{
tree type;
if (eltsz == 1)
type = char_type_node;
else
type = lang_hooks.types.type_for_size (eltsz * BITS_PER_UNIT,
0);
size_t start = nonzero_first & ~(eltsz - 1);
HOST_WIDE_INT off = buf->off + i + start;
tree atype = type;
if (eltsz > 1 && buf->align < TYPE_ALIGN (type))
atype = build_aligned_type (type, buf->align);
tree dst = build2_loc (buf->loc, MEM_REF, atype, buf->base,
build_int_cst (buf->alias_type, off));
tree src;
gimple *g;
if (all_ones
&& nonzero_first == start
&& nonzero_last == start + eltsz)
src = build_zero_cst (type);
else
{
src = make_ssa_name (type);
tree tmp_dst = unshare_expr (dst);
/* The folding introduces a read from the tmp_dst, we should
prevent uninitialized warning analysis from issuing warning
for such fake read. In order to suppress warning only for
this expr, we should set the location of tmp_dst to
UNKNOWN_LOCATION first, then suppress_warning will call
set_no_warning_bit to set the no_warning flag only for
tmp_dst. */
SET_EXPR_LOCATION (tmp_dst, UNKNOWN_LOCATION);
suppress_warning (tmp_dst, OPT_Wuninitialized);
g = gimple_build_assign (src, tmp_dst);
gimple_set_location (g, buf->loc);
gsi_insert_before (buf->gsi, g, GSI_SAME_STMT);
tree mask = native_interpret_expr (type,
buf->buf + i + start,
eltsz);
gcc_assert (mask && TREE_CODE (mask) == INTEGER_CST);
mask = fold_build1 (BIT_NOT_EXPR, type, mask);
tree src_masked = make_ssa_name (type);
g = gimple_build_assign (src_masked, BIT_AND_EXPR,
src, mask);
gimple_set_location (g, buf->loc);
gsi_insert_before (buf->gsi, g, GSI_SAME_STMT);
src = src_masked;
}
g = gimple_build_assign (dst, src);
gimple_set_location (g, buf->loc);
gsi_insert_before (buf->gsi, g, GSI_SAME_STMT);
break;
}
}
}
if (full)
{
if (padding_bytes)
{
tree atype, src;
if (padding_bytes == 1)
{
atype = char_type_node;
src = build_zero_cst (char_type_node);
}
else
{
atype = build_array_type_nelts (char_type_node, padding_bytes);
src = build_constructor (atype, NULL);
}
tree dst = build2_loc (buf->loc, MEM_REF, atype, buf->base,
build_int_cst (buf->alias_type,
buf->off + end
- padding_bytes));
gimple *g = gimple_build_assign (dst, src);
gimple_set_location (g, buf->loc);
gsi_insert_before (buf->gsi, g, GSI_SAME_STMT);
}
size_t end_rem = end % UNITS_PER_WORD;
buf->off += end - end_rem;
buf->size = end_rem;
memset (buf->buf, 0, buf->size);
buf->padding_bytes = 0;
}
else
{
memmove (buf->buf, buf->buf + end, buf->size - end);
buf->off += end;
buf->size -= end;
buf->padding_bytes = padding_bytes;
}
}
/* Append PADDING_BYTES padding bytes. */
static void
clear_padding_add_padding (clear_padding_struct *buf,
HOST_WIDE_INT padding_bytes)
{
if (padding_bytes == 0)
return;
if ((unsigned HOST_WIDE_INT) padding_bytes + buf->size
> (unsigned HOST_WIDE_INT) clear_padding_buf_size)
clear_padding_flush (buf, false);
if ((unsigned HOST_WIDE_INT) padding_bytes + buf->size
> (unsigned HOST_WIDE_INT) clear_padding_buf_size)
{
memset (buf->buf + buf->size, ~0, clear_padding_buf_size - buf->size);
padding_bytes -= clear_padding_buf_size - buf->size;
buf->size = clear_padding_buf_size;
clear_padding_flush (buf, false);
gcc_assert (buf->padding_bytes);
/* At this point buf->buf[0] through buf->buf[buf->size - 1]
is guaranteed to be all ones. */
padding_bytes += buf->size;
buf->size = padding_bytes % UNITS_PER_WORD;
memset (buf->buf, ~0, buf->size);
buf->off += padding_bytes - buf->size;
buf->padding_bytes += padding_bytes - buf->size;
}
else
{
memset (buf->buf + buf->size, ~0, padding_bytes);
buf->size += padding_bytes;
}
}
static void clear_padding_type (clear_padding_struct *, tree,
HOST_WIDE_INT, bool);
/* Clear padding bits of union type TYPE. */
static void
clear_padding_union (clear_padding_struct *buf, tree type,
HOST_WIDE_INT sz, bool for_auto_init)
{
clear_padding_struct *union_buf;
HOST_WIDE_INT start_off = 0, next_off = 0;
size_t start_size = 0;
if (buf->union_ptr)
{
start_off = buf->off + buf->size;
next_off = start_off + sz;
start_size = start_off % UNITS_PER_WORD;
start_off -= start_size;
clear_padding_flush (buf, true);
union_buf = buf;
}
else
{
if (sz + buf->size > clear_padding_buf_size)
clear_padding_flush (buf, false);
union_buf = XALLOCA (clear_padding_struct);
union_buf->loc = buf->loc;
union_buf->clear_in_mask = buf->clear_in_mask;
union_buf->base = NULL_TREE;
union_buf->alias_type = NULL_TREE;
union_buf->gsi = NULL;
union_buf->align = 0;
union_buf->off = 0;
union_buf->padding_bytes = 0;
union_buf->sz = sz;
union_buf->size = 0;
if (sz + buf->size <= clear_padding_buf_size)
union_buf->union_ptr = buf->buf + buf->size;
else
union_buf->union_ptr = XNEWVEC (unsigned char, sz);
memset (union_buf->union_ptr, ~0, sz);
}
for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
if (TREE_CODE (field) == FIELD_DECL && !DECL_PADDING_P (field))
{
if (DECL_SIZE_UNIT (field) == NULL_TREE)
{
if (TREE_TYPE (field) == error_mark_node)
continue;
gcc_assert (TREE_CODE (TREE_TYPE (field)) == ARRAY_TYPE
&& !COMPLETE_TYPE_P (TREE_TYPE (field)));
if (!buf->clear_in_mask && !for_auto_init)
error_at (buf->loc, "flexible array member %qD does not have "
"well defined padding bits for %qs",
field, "__builtin_clear_padding");
continue;
}
HOST_WIDE_INT fldsz = tree_to_shwi (DECL_SIZE_UNIT (field));
gcc_assert (union_buf->size == 0);
union_buf->off = start_off;
union_buf->size = start_size;
memset (union_buf->buf, ~0, start_size);
clear_padding_type (union_buf, TREE_TYPE (field), fldsz, for_auto_init);
clear_padding_add_padding (union_buf, sz - fldsz);
clear_padding_flush (union_buf, true);
}
if (buf == union_buf)
{
buf->off = next_off;
buf->size = next_off % UNITS_PER_WORD;
buf->off -= buf->size;
memset (buf->buf, ~0, buf->size);
}
else if (sz + buf->size <= clear_padding_buf_size)
buf->size += sz;
else
{
unsigned char *union_ptr = union_buf->union_ptr;
while (sz)
{
clear_padding_flush (buf, false);
HOST_WIDE_INT this_sz
= MIN ((unsigned HOST_WIDE_INT) sz,
clear_padding_buf_size - buf->size);
memcpy (buf->buf + buf->size, union_ptr, this_sz);
buf->size += this_sz;
union_ptr += this_sz;
sz -= this_sz;
}
XDELETE (union_buf->union_ptr);
}
}
/* The only known floating point formats with padding bits are the
IEEE extended ones. */
static bool
clear_padding_real_needs_padding_p (tree type)
{
const struct real_format *fmt = REAL_MODE_FORMAT (TYPE_MODE (type));
return (fmt->b == 2
&& fmt->signbit_ro == fmt->signbit_rw
&& (fmt->signbit_ro == 79 || fmt->signbit_ro == 95));
}
/* _BitInt has padding bits if it isn't extended in the ABI and has smaller
precision than bits in limb or corresponding number of limbs. */
static bool
clear_padding_bitint_needs_padding_p (tree type)
{
struct bitint_info info;
bool ok = targetm.c.bitint_type_info (TYPE_PRECISION (type), &info);
gcc_assert (ok);
if (info.extended)
return false;
scalar_int_mode limb_mode = as_a <scalar_int_mode> (info.abi_limb_mode);
if (TYPE_PRECISION (type) < GET_MODE_PRECISION (limb_mode))
return true;
else if (TYPE_PRECISION (type) == GET_MODE_PRECISION (limb_mode))
return false;
else
return (((unsigned) TYPE_PRECISION (type))
% GET_MODE_PRECISION (limb_mode)) != 0;
}
/* Return true if TYPE might contain any padding bits. */
bool
clear_padding_type_may_have_padding_p (tree type)
{
switch (TREE_CODE (type))
{
case RECORD_TYPE:
case UNION_TYPE:
return true;
case ARRAY_TYPE:
case COMPLEX_TYPE:
case VECTOR_TYPE:
return clear_padding_type_may_have_padding_p (TREE_TYPE (type));
case REAL_TYPE:
return clear_padding_real_needs_padding_p (type);
case BITINT_TYPE:
return clear_padding_bitint_needs_padding_p (type);
default:
return false;
}
}
/* Return true if TYPE has padding bits aside from those in fields,
elements, etc. */
bool
type_has_padding_at_level_p (tree type)
{
switch (TREE_CODE (type))
{
case RECORD_TYPE:
{
tree bitpos = size_zero_node;
/* Expect fields to be sorted by bit position. */
for (tree f = TYPE_FIELDS (type); f; f = DECL_CHAIN (f))
if (TREE_CODE (f) == FIELD_DECL)
{
if (DECL_PADDING_P (f))
return true;
tree pos = bit_position (f);
if (simple_cst_equal (bitpos, pos) != 1)
return true;
if (!DECL_SIZE (f))
return true;
bitpos = int_const_binop (PLUS_EXPR, pos, DECL_SIZE (f));
}
if (simple_cst_equal (bitpos, TYPE_SIZE (type)) != 1)
return true;
return false;
}
case UNION_TYPE:
/* If any of the fields is smaller than the whole, there is padding. */
for (tree f = TYPE_FIELDS (type); f; f = DECL_CHAIN (f))
if (TREE_CODE (f) == FIELD_DECL)
if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
TREE_TYPE (type)) != 1)
return true;
return false;
case ARRAY_TYPE:
case COMPLEX_TYPE:
case VECTOR_TYPE:
/* No recursing here, no padding at this level. */
return false;
case REAL_TYPE:
return clear_padding_real_needs_padding_p (type);
case BITINT_TYPE:
return clear_padding_bitint_needs_padding_p (type);
default:
return false;
}
}
/* Emit a runtime loop:
for (; buf.base != end; buf.base += sz)
__builtin_clear_padding (buf.base); */
static void
clear_padding_emit_loop (clear_padding_struct *buf, tree type,
tree end, bool for_auto_init)
{
tree l1 = create_artificial_label (buf->loc);
tree l2 = create_artificial_label (buf->loc);
tree l3 = create_artificial_label (buf->loc);
gimple *g = gimple_build_goto (l2);
gimple_set_location (g, buf->loc);
gsi_insert_before (buf->gsi, g, GSI_SAME_STMT);
g = gimple_build_label (l1);
gimple_set_location (g, buf->loc);
gsi_insert_before (buf->gsi, g, GSI_SAME_STMT);
clear_padding_type (buf, type, buf->sz, for_auto_init);
clear_padding_flush (buf, true);
g = gimple_build_assign (buf->base, POINTER_PLUS_EXPR, buf->base,
size_int (buf->sz));
gimple_set_location (g, buf->loc);
gsi_insert_before (buf->gsi, g, GSI_SAME_STMT);
g = gimple_build_label (l2);
gimple_set_location (g, buf->loc);
gsi_insert_before (buf->gsi, g, GSI_SAME_STMT);
g = gimple_build_cond (NE_EXPR, buf->base, end, l1, l3);
gimple_set_location (g, buf->loc);
gsi_insert_before (buf->gsi, g, GSI_SAME_STMT);
g = gimple_build_label (l3);
gimple_set_location (g, buf->loc);
gsi_insert_before (buf->gsi, g, GSI_SAME_STMT);
}
/* Clear padding bits for TYPE. Called recursively from
gimple_fold_builtin_clear_padding. If FOR_AUTO_INIT is true,
the __builtin_clear_padding is not called by the end user,
instead, it's inserted by the compiler to initialize the
paddings of automatic variable. Therefore, we should not
emit the error messages for flexible array members to confuse
the end user. */
static void
clear_padding_type (clear_padding_struct *buf, tree type,
HOST_WIDE_INT sz, bool for_auto_init)
{
switch (TREE_CODE (type))
{
case RECORD_TYPE:
HOST_WIDE_INT cur_pos;
cur_pos = 0;
for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
if (TREE_CODE (field) == FIELD_DECL && !DECL_PADDING_P (field))
{
tree ftype = TREE_TYPE (field);
if (DECL_BIT_FIELD (field))
{
HOST_WIDE_INT fldsz = TYPE_PRECISION (ftype);
if (fldsz == 0)
continue;
HOST_WIDE_INT pos = int_byte_position (field);
if (pos >= sz)
continue;
HOST_WIDE_INT bpos
= tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field));
bpos %= BITS_PER_UNIT;
HOST_WIDE_INT end
= ROUND_UP (bpos + fldsz, BITS_PER_UNIT) / BITS_PER_UNIT;
if (pos + end > cur_pos)
{
clear_padding_add_padding (buf, pos + end - cur_pos);
cur_pos = pos + end;
}
gcc_assert (cur_pos > pos
&& ((unsigned HOST_WIDE_INT) buf->size
>= (unsigned HOST_WIDE_INT) cur_pos - pos));
unsigned char *p = buf->buf + buf->size - (cur_pos - pos);
if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
sorry_at (buf->loc, "PDP11 bit-field handling unsupported"
" in %qs", "__builtin_clear_padding");
else if (BYTES_BIG_ENDIAN)
{
/* Big endian. */
if (bpos + fldsz <= BITS_PER_UNIT)
*p &= ~(((1 << fldsz) - 1)
<< (BITS_PER_UNIT - bpos - fldsz));
else
{
if (bpos)
{
*p &= ~(((1U << BITS_PER_UNIT) - 1) >> bpos);
p++;
fldsz -= BITS_PER_UNIT - bpos;
}
memset (p, 0, fldsz / BITS_PER_UNIT);
p += fldsz / BITS_PER_UNIT;
fldsz %= BITS_PER_UNIT;
if (fldsz)
*p &= ((1U << BITS_PER_UNIT) - 1) >> fldsz;
}
}
else
{
/* Little endian. */
if (bpos + fldsz <= BITS_PER_UNIT)
*p &= ~(((1 << fldsz) - 1) << bpos);
else
{
if (bpos)
{
*p &= ~(((1 << BITS_PER_UNIT) - 1) << bpos);
p++;
fldsz -= BITS_PER_UNIT - bpos;
}
memset (p, 0, fldsz / BITS_PER_UNIT);
p += fldsz / BITS_PER_UNIT;
fldsz %= BITS_PER_UNIT;
if (fldsz)
*p &= ~((1 << fldsz) - 1);
}
}
}
else if (DECL_SIZE_UNIT (field) == NULL_TREE)
{
if (ftype == error_mark_node)
continue;
gcc_assert (TREE_CODE (ftype) == ARRAY_TYPE
&& !COMPLETE_TYPE_P (ftype));
if (!buf->clear_in_mask && !for_auto_init)
error_at (buf->loc, "flexible array member %qD does not "
"have well defined padding bits for %qs",
field, "__builtin_clear_padding");
}
else if (is_empty_type (ftype))
continue;
else
{
HOST_WIDE_INT pos = int_byte_position (field);
if (pos >= sz)
continue;
HOST_WIDE_INT fldsz = tree_to_shwi (DECL_SIZE_UNIT (field));
gcc_assert (pos >= 0 && fldsz >= 0 && pos >= cur_pos);
clear_padding_add_padding (buf, pos - cur_pos);
cur_pos = pos;
if (tree asbase = lang_hooks.types.classtype_as_base (field))
ftype = asbase;
clear_padding_type (buf, ftype, fldsz, for_auto_init);
cur_pos += fldsz;
}
}
gcc_assert (sz >= cur_pos);
clear_padding_add_padding (buf, sz - cur_pos);
break;
case ARRAY_TYPE:
HOST_WIDE_INT nelts, fldsz;
fldsz = int_size_in_bytes (TREE_TYPE (type));
if (fldsz == 0)
break;
nelts = sz / fldsz;
if (nelts > 1
&& sz > 8 * UNITS_PER_WORD
&& buf->union_ptr == NULL
&& clear_padding_type_may_have_padding_p (TREE_TYPE (type)))
{
/* For sufficiently large array of more than one elements,
emit a runtime loop to keep code size manageable. */
tree base = buf->base;
unsigned int prev_align = buf->align;
HOST_WIDE_INT off = buf->off + buf->size;
HOST_WIDE_INT prev_sz = buf->sz;
clear_padding_flush (buf, true);
tree elttype = TREE_TYPE (type);
buf->base = create_tmp_var (build_pointer_type (elttype));
tree end = make_ssa_name (TREE_TYPE (buf->base));
gimple *g = gimple_build_assign (buf->base, POINTER_PLUS_EXPR,
base, size_int (off));
gimple_set_location (g, buf->loc);
gsi_insert_before (buf->gsi, g, GSI_SAME_STMT);
g = gimple_build_assign (end, POINTER_PLUS_EXPR, buf->base,
size_int (sz));
gimple_set_location (g, buf->loc);
gsi_insert_before (buf->gsi, g, GSI_SAME_STMT);
buf->sz = fldsz;
buf->align = TYPE_ALIGN (elttype);
buf->off = 0;
buf->size = 0;
clear_padding_emit_loop (buf, elttype, end, for_auto_init);
off += sz;
buf->base = base;
buf->sz = prev_sz;
buf->align = prev_align;
buf->size = off % UNITS_PER_WORD;
buf->off = off - buf->size;
memset (buf->buf, 0, buf->size);
break;
}
for (HOST_WIDE_INT i = 0; i < nelts; i++)
clear_padding_type (buf, TREE_TYPE (type), fldsz, for_auto_init);
break;
case UNION_TYPE:
clear_padding_union (buf, type, sz, for_auto_init);
break;
case REAL_TYPE:
gcc_assert ((size_t) sz <= clear_padding_unit);
if ((unsigned HOST_WIDE_INT) sz + buf->size > clear_padding_buf_size)
clear_padding_flush (buf, false);
if (clear_padding_real_needs_padding_p (type))
{
/* Use native_interpret_real + native_encode_expr to figure out
which bits are padding. */
memset (buf->buf + buf->size, ~0, sz);
tree cst = native_interpret_real (type, buf->buf + buf->size, sz);
gcc_assert (cst && TREE_CODE (cst) == REAL_CST);
int len = native_encode_expr (cst, buf->buf + buf->size, sz);
gcc_assert (len > 0 && (size_t) len == (size_t) sz);
for (size_t i = 0; i < (size_t) sz; i++)
buf->buf[buf->size + i] ^= ~0;
}
else
memset (buf->buf + buf->size, 0, sz);
buf->size += sz;
break;
case COMPLEX_TYPE:
fldsz = int_size_in_bytes (TREE_TYPE (type));
clear_padding_type (buf, TREE_TYPE (type), fldsz, for_auto_init);
clear_padding_type (buf, TREE_TYPE (type), fldsz, for_auto_init);
break;
case VECTOR_TYPE:
nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
fldsz = int_size_in_bytes (TREE_TYPE (type));
for (HOST_WIDE_INT i = 0; i < nelts; i++)
clear_padding_type (buf, TREE_TYPE (type), fldsz, for_auto_init);
break;
case NULLPTR_TYPE:
gcc_assert ((size_t) sz <= clear_padding_unit);
if ((unsigned HOST_WIDE_INT) sz + buf->size > clear_padding_buf_size)
clear_padding_flush (buf, false);
memset (buf->buf + buf->size, ~0, sz);
buf->size += sz;
break;
case BITINT_TYPE:
{
struct bitint_info info;
bool ok = targetm.c.bitint_type_info (TYPE_PRECISION (type), &info);
gcc_assert (ok);
scalar_int_mode limb_mode
= as_a <scalar_int_mode> (info.abi_limb_mode);
if (TYPE_PRECISION (type) <= GET_MODE_PRECISION (limb_mode))
{
gcc_assert ((size_t) sz <= clear_padding_unit);
if ((unsigned HOST_WIDE_INT) sz + buf->size
> clear_padding_buf_size)
clear_padding_flush (buf, false);
if (!info.extended
&& TYPE_PRECISION (type) < GET_MODE_PRECISION (limb_mode))
{
int tprec = GET_MODE_PRECISION (limb_mode);
int prec = TYPE_PRECISION (type);
tree t = build_nonstandard_integer_type (tprec, 1);
tree cst = wide_int_to_tree (t, wi::mask (prec, true, tprec));
int len = native_encode_expr (cst, buf->buf + buf->size, sz);
gcc_assert (len > 0 && (size_t) len == (size_t) sz);
}
else
memset (buf->buf + buf->size, 0, sz);
buf->size += sz;
break;
}
tree limbtype
= build_nonstandard_integer_type (GET_MODE_PRECISION (limb_mode), 1);
fldsz = int_size_in_bytes (limbtype);
nelts = int_size_in_bytes (type) / fldsz;
for (HOST_WIDE_INT i = 0; i < nelts; i++)
{
if (!info.extended
&& i == (info.big_endian ? 0 : nelts - 1)
&& (((unsigned) TYPE_PRECISION (type))
% TYPE_PRECISION (limbtype)) != 0)
{
int tprec = GET_MODE_PRECISION (limb_mode);
int prec = (((unsigned) TYPE_PRECISION (type)) % tprec);
tree cst = wide_int_to_tree (limbtype,
wi::mask (prec, true, tprec));
int len = native_encode_expr (cst, buf->buf + buf->size,
fldsz);
gcc_assert (len > 0 && (size_t) len == (size_t) fldsz);
buf->size += fldsz;
}
else
clear_padding_type (buf, limbtype, fldsz, for_auto_init);
}
break;
}
default:
gcc_assert ((size_t) sz <= clear_padding_unit);
if ((unsigned HOST_WIDE_INT) sz + buf->size > clear_padding_buf_size)
clear_padding_flush (buf, false);
memset (buf->buf + buf->size, 0, sz);
buf->size += sz;
break;
}
}
/* Clear padding bits of TYPE in MASK. */
void
clear_type_padding_in_mask (tree type, unsigned char *mask)
{
clear_padding_struct buf;
buf.loc = UNKNOWN_LOCATION;
buf.clear_in_mask = true;
buf.base = NULL_TREE;
buf.alias_type = NULL_TREE;
buf.gsi = NULL;
buf.align = 0;
buf.off = 0;
buf.padding_bytes = 0;
buf.sz = int_size_in_bytes (type);
buf.size = 0;
buf.union_ptr = mask;
clear_padding_type (&buf, type, buf.sz, false);
clear_padding_flush (&buf, true);
}
/* Fold __builtin_clear_padding builtin. */
static bool
gimple_fold_builtin_clear_padding (gimple_stmt_iterator *gsi)
{
gimple *stmt = gsi_stmt (*gsi);
gcc_assert (gimple_call_num_args (stmt) == 2);
tree ptr = gimple_call_arg (stmt, 0);
tree typearg = gimple_call_arg (stmt, 1);
/* The 2nd argument of __builtin_clear_padding's value is used to
distinguish whether this call is made by the user or by the compiler
for automatic variable initialization. */
bool for_auto_init = (bool) TREE_INT_CST_LOW (typearg);
tree type = TREE_TYPE (TREE_TYPE (typearg));
location_t loc = gimple_location (stmt);
clear_padding_struct buf;
gimple_stmt_iterator gsiprev = *gsi;
/* This should be folded during the lower pass. */
gcc_assert (!gimple_in_ssa_p (cfun) && cfun->cfg == NULL);
gcc_assert (COMPLETE_TYPE_P (type));
gsi_prev (&gsiprev);
buf.loc = loc;
buf.clear_in_mask = false;
buf.base = ptr;
buf.alias_type = NULL_TREE;
buf.gsi = gsi;
buf.align = get_pointer_alignment (ptr);
unsigned int talign = min_align_of_type (type) * BITS_PER_UNIT;
buf.align = MAX (buf.align, talign);
buf.off = 0;
buf.padding_bytes = 0;
buf.size = 0;
buf.sz = int_size_in_bytes (type);
buf.union_ptr = NULL;
if (buf.sz < 0 && int_size_in_bytes (strip_array_types (type)) < 0)
sorry_at (loc, "%s not supported for variable length aggregates",
"__builtin_clear_padding");
/* The implementation currently assumes 8-bit host and target
chars which is the case for all currently supported targets
and hosts and is required e.g. for native_{encode,interpret}* APIs. */
else if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
sorry_at (loc, "%s not supported on this target",
"__builtin_clear_padding");
else if (!clear_padding_type_may_have_padding_p (type))
;
else if (TREE_CODE (type) == ARRAY_TYPE && buf.sz < 0)
{
tree sz = TYPE_SIZE_UNIT (type);
tree elttype = type;
/* Only supports C/C++ VLAs and flattens all the VLA levels. */
while (TREE_CODE (elttype) == ARRAY_TYPE
&& int_size_in_bytes (elttype) < 0)
elttype = TREE_TYPE (elttype);
HOST_WIDE_INT eltsz = int_size_in_bytes (elttype);
gcc_assert (eltsz >= 0);
if (eltsz)
{
buf.base = create_tmp_var (build_pointer_type (elttype));
tree end = make_ssa_name (TREE_TYPE (buf.base));
gimple *g = gimple_build_assign (buf.base, ptr);
gimple_set_location (g, loc);
gsi_insert_before (gsi, g, GSI_SAME_STMT);
g = gimple_build_assign (end, POINTER_PLUS_EXPR, buf.base, sz);
gimple_set_location (g, loc);
gsi_insert_before (gsi, g, GSI_SAME_STMT);
buf.sz = eltsz;
buf.align = TYPE_ALIGN (elttype);
buf.alias_type = build_pointer_type (elttype);
clear_padding_emit_loop (&buf, elttype, end, for_auto_init);
}
}
else
{
if (!is_gimple_mem_ref_addr (buf.base))
{
buf.base = make_ssa_name (TREE_TYPE (ptr));
gimple *g = gimple_build_assign (buf.base, ptr);
gimple_set_location (g, loc);
gsi_insert_before (gsi, g, GSI_SAME_STMT);
}
buf.alias_type = build_pointer_type (type);
clear_padding_type (&buf, type, buf.sz, for_auto_init);
clear_padding_flush (&buf, true);
}
gimple_stmt_iterator gsiprev2 = *gsi;
gsi_prev (&gsiprev2);
if (gsi_stmt (gsiprev) == gsi_stmt (gsiprev2))
gsi_replace (gsi, gimple_build_nop (), true);
else
{
gsi_remove (gsi, true);
*gsi = gsiprev2;
}
return true;
}
/* Fold the non-target builtin at *GSI and return whether any simplification
was made. */
static bool
gimple_fold_builtin (gimple_stmt_iterator *gsi)
{
gcall *stmt = as_a <gcall *>(gsi_stmt (*gsi));
tree callee = gimple_call_fndecl (stmt);
/* Give up for always_inline inline builtins until they are
inlined. */
if (avoid_folding_inline_builtin (callee))
return false;
unsigned n = gimple_call_num_args (stmt);
enum built_in_function fcode = DECL_FUNCTION_CODE (callee);
switch (fcode)
{
case BUILT_IN_BCMP:
return gimple_fold_builtin_bcmp (gsi);
case BUILT_IN_BCOPY:
return gimple_fold_builtin_bcopy (gsi);
case BUILT_IN_BZERO:
return gimple_fold_builtin_bzero (gsi);
case BUILT_IN_MEMSET:
return gimple_fold_builtin_memset (gsi,
gimple_call_arg (stmt, 1),
gimple_call_arg (stmt, 2));
case BUILT_IN_MEMCPY:
case BUILT_IN_MEMPCPY:
case BUILT_IN_MEMMOVE:
return gimple_fold_builtin_memory_op (gsi, gimple_call_arg (stmt, 0),
gimple_call_arg (stmt, 1), fcode);
case BUILT_IN_SPRINTF_CHK:
case BUILT_IN_VSPRINTF_CHK:
return gimple_fold_builtin_sprintf_chk (gsi, fcode);
case BUILT_IN_STRCAT_CHK:
return gimple_fold_builtin_strcat_chk (gsi);
case BUILT_IN_STRNCAT_CHK:
return gimple_fold_builtin_strncat_chk (gsi);
case BUILT_IN_STRLEN:
return gimple_fold_builtin_strlen (gsi);
case BUILT_IN_STRCPY:
return gimple_fold_builtin_strcpy (gsi,
gimple_call_arg (stmt, 0),
gimple_call_arg (stmt, 1));
case BUILT_IN_STRNCPY:
return gimple_fold_builtin_strncpy (gsi,
gimple_call_arg (stmt, 0),
gimple_call_arg (stmt, 1),
gimple_call_arg (stmt, 2));
case BUILT_IN_STRCAT:
return gimple_fold_builtin_strcat (gsi, gimple_call_arg (stmt, 0),
gimple_call_arg (stmt, 1));
case BUILT_IN_STRNCAT:
return gimple_fold_builtin_strncat (gsi);
case BUILT_IN_INDEX:
case BUILT_IN_STRCHR:
return gimple_fold_builtin_strchr (gsi, false);
case BUILT_IN_RINDEX:
case BUILT_IN_STRRCHR:
return gimple_fold_builtin_strchr (gsi, true);
case BUILT_IN_STRSTR:
return gimple_fold_builtin_strstr (gsi);
case BUILT_IN_STRCMP:
case BUILT_IN_STRCMP_EQ:
case BUILT_IN_STRCASECMP:
case BUILT_IN_STRNCMP:
case BUILT_IN_STRNCMP_EQ:
case BUILT_IN_STRNCASECMP:
return gimple_fold_builtin_string_compare (gsi);
case BUILT_IN_MEMCHR:
return gimple_fold_builtin_memchr (gsi);
case BUILT_IN_FPUTS:
return gimple_fold_builtin_fputs (gsi, gimple_call_arg (stmt, 0),
gimple_call_arg (stmt, 1), false);
case BUILT_IN_FPUTS_UNLOCKED:
return gimple_fold_builtin_fputs (gsi, gimple_call_arg (stmt, 0),
gimple_call_arg (stmt, 1), true);
case BUILT_IN_MEMCPY_CHK:
case BUILT_IN_MEMPCPY_CHK:
case BUILT_IN_MEMMOVE_CHK:
case BUILT_IN_MEMSET_CHK:
return gimple_fold_builtin_memory_chk (gsi,
gimple_call_arg (stmt, 0),
gimple_call_arg (stmt, 1),
gimple_call_arg (stmt, 2),
gimple_call_arg (stmt, 3),
fcode);
case BUILT_IN_STPCPY:
return gimple_fold_builtin_stpcpy (gsi);
case BUILT_IN_STRCPY_CHK:
case BUILT_IN_STPCPY_CHK:
return gimple_fold_builtin_stxcpy_chk (gsi,
gimple_call_arg (stmt, 0),
gimple_call_arg (stmt, 1),
gimple_call_arg (stmt, 2),
fcode);
case BUILT_IN_STRNCPY_CHK:
case BUILT_IN_STPNCPY_CHK:
return gimple_fold_builtin_stxncpy_chk (gsi,
gimple_call_arg (stmt, 0),
gimple_call_arg (stmt, 1),
gimple_call_arg (stmt, 2),
gimple_call_arg (stmt, 3),
fcode);
case BUILT_IN_SNPRINTF_CHK:
case BUILT_IN_VSNPRINTF_CHK:
return gimple_fold_builtin_snprintf_chk (gsi, fcode);
case BUILT_IN_FPRINTF:
case BUILT_IN_FPRINTF_UNLOCKED:
case BUILT_IN_VFPRINTF:
if (n == 2 || n == 3)
return gimple_fold_builtin_fprintf (gsi,
gimple_call_arg (stmt, 0),
gimple_call_arg (stmt, 1),
n == 3
? gimple_call_arg (stmt, 2)
: NULL_TREE,
fcode);
break;
case BUILT_IN_FPRINTF_CHK:
case BUILT_IN_VFPRINTF_CHK:
if (n == 3 || n == 4)
return gimple_fold_builtin_fprintf (gsi,
gimple_call_arg (stmt, 0),
gimple_call_arg (stmt, 2),
n == 4
? gimple_call_arg (stmt, 3)
: NULL_TREE,
fcode);
break;
case BUILT_IN_PRINTF:
case BUILT_IN_PRINTF_UNLOCKED:
case BUILT_IN_VPRINTF:
if (n == 1 || n == 2)
return gimple_fold_builtin_printf (gsi, gimple_call_arg (stmt, 0),
n == 2
? gimple_call_arg (stmt, 1)
: NULL_TREE, fcode);
break;
case BUILT_IN_PRINTF_CHK:
case BUILT_IN_VPRINTF_CHK:
if (n == 2 || n == 3)
return gimple_fold_builtin_printf (gsi, gimple_call_arg (stmt, 1),
n == 3
? gimple_call_arg (stmt, 2)
: NULL_TREE, fcode);
break;
case BUILT_IN_ACC_ON_DEVICE:
return gimple_fold_builtin_acc_on_device (gsi,
gimple_call_arg (stmt, 0));
case BUILT_IN_OMP_IS_INITIAL_DEVICE:
return gimple_fold_builtin_omp_is_initial_device (gsi);
case BUILT_IN_REALLOC:
return gimple_fold_builtin_realloc (gsi);
case BUILT_IN_CLEAR_PADDING:
return gimple_fold_builtin_clear_padding (gsi);
default:;
}
/* Try the generic builtin folder. */
bool ignore = (gimple_call_lhs (stmt) == NULL);
tree result = fold_call_stmt (stmt, ignore);
if (result)
{
if (ignore)
STRIP_NOPS (result);
else
result = fold_convert (gimple_call_return_type (stmt), result);
gimplify_and_update_call_from_tree (gsi, result);
return true;
}
return false;
}
/* Transform IFN_GOACC_DIM_SIZE and IFN_GOACC_DIM_POS internal
function calls to constants, where possible. */
static tree
fold_internal_goacc_dim (const gimple *call)
{
int axis = oacc_get_ifn_dim_arg (call);
int size = oacc_get_fn_dim_size (current_function_decl, axis);
tree result = NULL_TREE;
tree type = TREE_TYPE (gimple_call_lhs (call));
switch (gimple_call_internal_fn (call))
{
case IFN_GOACC_DIM_POS:
/* If the size is 1, we know the answer. */
if (size == 1)
result = build_int_cst (type, 0);
break;
case IFN_GOACC_DIM_SIZE:
/* If the size is not dynamic, we know the answer. */
if (size)
result = build_int_cst (type, size);
break;
default:
break;
}
return result;
}
/* Return true if stmt is __atomic_compare_exchange_N call which is suitable
for conversion into ATOMIC_COMPARE_EXCHANGE if the second argument is
&var where var is only addressable because of such calls. */
bool
optimize_atomic_compare_exchange_p (gimple *stmt)
{
if (gimple_call_num_args (stmt) != 6
|| !flag_inline_atomics
|| !optimize
|| sanitize_flags_p (SANITIZE_THREAD | SANITIZE_ADDRESS)
|| !gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)
|| !gimple_vdef (stmt)
|| !gimple_vuse (stmt))
return false;
tree fndecl = gimple_call_fndecl (stmt);
switch (DECL_FUNCTION_CODE (fndecl))
{
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
break;
default:
return false;
}
tree expected = gimple_call_arg (stmt, 1);
if (TREE_CODE (expected) != ADDR_EXPR
|| !SSA_VAR_P (TREE_OPERAND (expected, 0)))
return false;
tree etype = TREE_TYPE (TREE_OPERAND (expected, 0));
if (!is_gimple_reg_type (etype)
|| !auto_var_in_fn_p (TREE_OPERAND (expected, 0), current_function_decl)
|| TREE_THIS_VOLATILE (etype)
|| VECTOR_TYPE_P (etype)
|| TREE_CODE (etype) == COMPLEX_TYPE
/* Don't optimize floating point expected vars, VIEW_CONVERT_EXPRs
might not preserve all the bits. See PR71716. */
|| SCALAR_FLOAT_TYPE_P (etype)
|| maybe_ne (TYPE_PRECISION (etype),
GET_MODE_BITSIZE (TYPE_MODE (etype))))
return false;
tree weak = gimple_call_arg (stmt, 3);
if (!integer_zerop (weak) && !integer_onep (weak))
return false;
tree parmt = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
tree itype = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (parmt)));
machine_mode mode = TYPE_MODE (itype);
if (direct_optab_handler (atomic_compare_and_swap_optab, mode)
== CODE_FOR_nothing
&& optab_handler (sync_compare_and_swap_optab, mode) == CODE_FOR_nothing)
return false;
if (maybe_ne (int_size_in_bytes (etype), GET_MODE_SIZE (mode)))
return false;
return true;
}
/* Fold
r = __atomic_compare_exchange_N (p, &e, d, w, s, f);
into
_Complex uintN_t t = ATOMIC_COMPARE_EXCHANGE (p, e, d, w * 256 + N, s, f);
i = IMAGPART_EXPR <t>;
r = (_Bool) i;
e = REALPART_EXPR <t>; */
void
fold_builtin_atomic_compare_exchange (gimple_stmt_iterator *gsi)
{
gimple *stmt = gsi_stmt (*gsi);
tree fndecl = gimple_call_fndecl (stmt);
tree parmt = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
tree itype = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (parmt)));
tree ctype = build_complex_type (itype);
tree expected = TREE_OPERAND (gimple_call_arg (stmt, 1), 0);
bool throws = false;
edge e = NULL;
gimple *g = gimple_build_assign (make_ssa_name (TREE_TYPE (expected)),
expected);
gsi_insert_before (gsi, g, GSI_SAME_STMT);
gimple_stmt_iterator gsiret = gsi_for_stmt (g);
if (!useless_type_conversion_p (itype, TREE_TYPE (expected)))
{
g = gimple_build_assign (make_ssa_name (itype), VIEW_CONVERT_EXPR,
build1 (VIEW_CONVERT_EXPR, itype,
gimple_assign_lhs (g)));
gsi_insert_before (gsi, g, GSI_SAME_STMT);
}
int flag = (integer_onep (gimple_call_arg (stmt, 3)) ? 256 : 0)
+ int_size_in_bytes (itype);
g = gimple_build_call_internal (IFN_ATOMIC_COMPARE_EXCHANGE, 6,
gimple_call_arg (stmt, 0),
gimple_assign_lhs (g),
gimple_call_arg (stmt, 2),
build_int_cst (integer_type_node, flag),
gimple_call_arg (stmt, 4),
gimple_call_arg (stmt, 5));
tree lhs = make_ssa_name (ctype);
gimple_call_set_lhs (g, lhs);
gimple_move_vops (g, stmt);
tree oldlhs = gimple_call_lhs (stmt);
if (stmt_can_throw_internal (cfun, stmt))
{
throws = true;
e = find_fallthru_edge (gsi_bb (*gsi)->succs);
}
gimple_call_set_nothrow (as_a <gcall *> (g),
gimple_call_nothrow_p (as_a <gcall *> (stmt)));
gimple_call_set_lhs (stmt, NULL_TREE);
gsi_replace (gsi, g, true);
if (oldlhs)
{
g = gimple_build_assign (make_ssa_name (itype), IMAGPART_EXPR,
build1 (IMAGPART_EXPR, itype, lhs));
if (throws)
{
gsi_insert_on_edge_immediate (e, g);
*gsi = gsi_for_stmt (g);
}
else
gsi_insert_after (gsi, g, GSI_NEW_STMT);
g = gimple_build_assign (oldlhs, NOP_EXPR, gimple_assign_lhs (g));
gsi_insert_after (gsi, g, GSI_NEW_STMT);
}
g = gimple_build_assign (make_ssa_name (itype), REALPART_EXPR,
build1 (REALPART_EXPR, itype, lhs));
if (throws && oldlhs == NULL_TREE)
{
gsi_insert_on_edge_immediate (e, g);
*gsi = gsi_for_stmt (g);
}
else
gsi_insert_after (gsi, g, GSI_NEW_STMT);
if (!useless_type_conversion_p (TREE_TYPE (expected), itype))
{
g = gimple_build_assign (make_ssa_name (TREE_TYPE (expected)),
VIEW_CONVERT_EXPR,
build1 (VIEW_CONVERT_EXPR, TREE_TYPE (expected),
gimple_assign_lhs (g)));
gsi_insert_after (gsi, g, GSI_NEW_STMT);
}
g = gimple_build_assign (expected, SSA_NAME, gimple_assign_lhs (g));
gsi_insert_after (gsi, g, GSI_NEW_STMT);
*gsi = gsiret;
}
/* Return true if ARG0 CODE ARG1 in infinite signed precision operation
doesn't fit into TYPE. The test for overflow should be regardless of
-fwrapv, and even for unsigned types. */
bool
arith_overflowed_p (enum tree_code code, const_tree type,
const_tree arg0, const_tree arg1)
{
widest2_int warg0 = widest2_int_cst (arg0);
widest2_int warg1 = widest2_int_cst (arg1);
widest2_int wres;
switch (code)
{
case PLUS_EXPR: wres = wi::add (warg0, warg1); break;
case MINUS_EXPR: wres = wi::sub (warg0, warg1); break;
case MULT_EXPR: wres = wi::mul (warg0, warg1); break;
default: gcc_unreachable ();
}
signop sign = TYPE_SIGN (type);
if (sign == UNSIGNED && wi::neg_p (wres))
return true;
return wi::min_precision (wres, sign) > TYPE_PRECISION (type);
}
/* If IFN_{MASK,LEN,MASK_LEN}_LOAD/STORE call CALL is unconditional,
return a MEM_REF for the memory it references, otherwise return null.
VECTYPE is the type of the memory vector. MASK_P indicates it's for
MASK if true, otherwise it's for LEN. */
static tree
gimple_fold_partial_load_store_mem_ref (gcall *call, tree vectype, bool mask_p)
{
tree ptr = gimple_call_arg (call, 0);
tree alias_align = gimple_call_arg (call, 1);
if (!tree_fits_uhwi_p (alias_align))
return NULL_TREE;
if (mask_p)
{
tree mask = gimple_call_arg (call, 2);
if (!integer_all_onesp (mask))
return NULL_TREE;
}
else
{
internal_fn ifn = gimple_call_internal_fn (call);
int len_index = internal_fn_len_index (ifn);
tree basic_len = gimple_call_arg (call, len_index);
if (!poly_int_tree_p (basic_len))
return NULL_TREE;
tree bias = gimple_call_arg (call, len_index + 1);
gcc_assert (TREE_CODE (bias) == INTEGER_CST);
/* For LEN_LOAD/LEN_STORE/MASK_LEN_LOAD/MASK_LEN_STORE,
we don't fold when (bias + len) != VF. */
if (maybe_ne (wi::to_poly_widest (basic_len) + wi::to_widest (bias),
GET_MODE_NUNITS (TYPE_MODE (vectype))))
return NULL_TREE;
/* For MASK_LEN_{LOAD,STORE}, we should also check whether
the mask is all ones mask. */
if (ifn == IFN_MASK_LEN_LOAD || ifn == IFN_MASK_LEN_STORE)
{
tree mask = gimple_call_arg (call, internal_fn_mask_index (ifn));
if (!integer_all_onesp (mask))
return NULL_TREE;
}
}
unsigned HOST_WIDE_INT align = tree_to_uhwi (alias_align);
if (TYPE_ALIGN (vectype) != align)
vectype = build_aligned_type (vectype, align);
tree offset = build_zero_cst (TREE_TYPE (alias_align));
return fold_build2 (MEM_REF, vectype, ptr, offset);
}
/* Try to fold IFN_{MASK,LEN}_LOAD call CALL. Return true on success.
MASK_P indicates it's for MASK if true, otherwise it's for LEN. */
static bool
gimple_fold_partial_load (gimple_stmt_iterator *gsi, gcall *call, bool mask_p)
{
tree lhs = gimple_call_lhs (call);
if (!lhs)
return false;
if (tree rhs
= gimple_fold_partial_load_store_mem_ref (call, TREE_TYPE (lhs), mask_p))
{
gassign *new_stmt = gimple_build_assign (lhs, rhs);
gimple_set_location (new_stmt, gimple_location (call));
gimple_move_vops (new_stmt, call);
gsi_replace (gsi, new_stmt, false);
return true;
}
return false;
}
/* Try to fold IFN_{MASK,LEN}_STORE call CALL. Return true on success.
MASK_P indicates it's for MASK if true, otherwise it's for LEN. */
static bool
gimple_fold_partial_store (gimple_stmt_iterator *gsi, gcall *call,
bool mask_p)
{
internal_fn ifn = gimple_call_internal_fn (call);
tree rhs = gimple_call_arg (call, internal_fn_stored_value_index (ifn));
if (tree lhs
= gimple_fold_partial_load_store_mem_ref (call, TREE_TYPE (rhs), mask_p))
{
gassign *new_stmt = gimple_build_assign (lhs, rhs);
gimple_set_location (new_stmt, gimple_location (call));
gimple_move_vops (new_stmt, call);
gsi_replace (gsi, new_stmt, false);
return true;
}
return false;
}
/* Attempt to fold a call statement referenced by the statement iterator GSI.
The statement may be replaced by another statement, e.g., if the call
simplifies to a constant value. Return true if any changes were made.
It is assumed that the operands have been previously folded. */
static bool
gimple_fold_call (gimple_stmt_iterator *gsi, bool inplace)
{
gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi));
tree callee;
bool changed = false;
/* Check for virtual calls that became direct calls. */
callee = gimple_call_fn (stmt);
if (callee && TREE_CODE (callee) == OBJ_TYPE_REF)
{
if (gimple_call_addr_fndecl (OBJ_TYPE_REF_EXPR (callee)) != NULL_TREE)
{
if (dump_file && virtual_method_call_p (callee)
&& !possible_polymorphic_call_target_p
(callee, stmt, cgraph_node::get (gimple_call_addr_fndecl
(OBJ_TYPE_REF_EXPR (callee)))))
{
fprintf (dump_file,
"Type inheritance inconsistent devirtualization of ");
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
fprintf (dump_file, " to ");
print_generic_expr (dump_file, callee, TDF_SLIM);
fprintf (dump_file, "\n");
}
gimple_call_set_fn (stmt, OBJ_TYPE_REF_EXPR (callee));
changed = true;
}
else if (flag_devirtualize && !inplace && virtual_method_call_p (callee))
{
bool final;
vec <cgraph_node *>targets
= possible_polymorphic_call_targets (callee, stmt, &final);
if (final && targets.length () <= 1 && dbg_cnt (devirt))
{
tree lhs = gimple_call_lhs (stmt);
if (dump_enabled_p ())
{
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, stmt,
"folding virtual function call to %s\n",
targets.length () == 1
? targets[0]->name ()
: "__builtin_unreachable");
}
if (targets.length () == 1)
{
tree fndecl = targets[0]->decl;
gimple_call_set_fndecl (stmt, fndecl);
changed = true;
/* If changing the call to __cxa_pure_virtual
or similar noreturn function, adjust gimple_call_fntype
too. */
if (gimple_call_noreturn_p (stmt)
&& VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fndecl)))
&& TYPE_ARG_TYPES (TREE_TYPE (fndecl))
&& (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
== void_type_node))
gimple_call_set_fntype (stmt, TREE_TYPE (fndecl));
/* If the call becomes noreturn, remove the lhs. */
if (lhs
&& gimple_call_noreturn_p (stmt)
&& (VOID_TYPE_P (TREE_TYPE (gimple_call_fntype (stmt)))
|| should_remove_lhs_p (lhs)))
{
if (TREE_CODE (lhs) == SSA_NAME)
{
tree var = create_tmp_var (TREE_TYPE (lhs));
tree def = get_or_create_ssa_default_def (cfun, var);
gimple *new_stmt = gimple_build_assign (lhs, def);
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
}
gimple_call_set_lhs (stmt, NULL_TREE);
}
maybe_remove_unused_call_args (cfun, stmt);
}
else
{
location_t loc = gimple_location (stmt);
gimple *new_stmt = gimple_build_builtin_unreachable (loc);
gimple_call_set_ctrl_altering (new_stmt, false);
/* If the call had a SSA name as lhs morph that into
an uninitialized value. */
if (lhs && TREE_CODE (lhs) == SSA_NAME)
{
tree var = create_tmp_var (TREE_TYPE (lhs));
SET_SSA_NAME_VAR_OR_IDENTIFIER (lhs, var);
SSA_NAME_DEF_STMT (lhs) = gimple_build_nop ();
set_ssa_default_def (cfun, var, lhs);
}
gimple_move_vops (new_stmt, stmt);
gsi_replace (gsi, new_stmt, false);
return true;
}
}
}
}
/* Check for indirect calls that became direct calls, and then
no longer require a static chain. */
if (gimple_call_chain (stmt))
{
tree fn = gimple_call_fndecl (stmt);
if (fn && !DECL_STATIC_CHAIN (fn))
{
gimple_call_set_chain (stmt, NULL);
changed = true;
}
}
if (inplace)
return changed;
/* Check for builtins that CCP can handle using information not
available in the generic fold routines. */
if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
{
if (gimple_fold_builtin (gsi))
changed = true;
}
else if (gimple_call_builtin_p (stmt, BUILT_IN_MD))
{
changed |= targetm.gimple_fold_builtin (gsi);
}
else if (gimple_call_internal_p (stmt))
{
enum tree_code subcode = ERROR_MARK;
tree result = NULL_TREE;
bool cplx_result = false;
bool uaddc_usubc = false;
tree overflow = NULL_TREE;
switch (gimple_call_internal_fn (stmt))
{
case IFN_BUILTIN_EXPECT:
result = fold_builtin_expect (gimple_location (stmt),
gimple_call_arg (stmt, 0),
gimple_call_arg (stmt, 1),
gimple_call_arg (stmt, 2),
NULL_TREE);
break;
case IFN_UBSAN_OBJECT_SIZE:
{
tree offset = gimple_call_arg (stmt, 1);
tree objsize = gimple_call_arg (stmt, 2);
if (integer_all_onesp (objsize)
|| (TREE_CODE (offset) == INTEGER_CST
&& TREE_CODE (objsize) == INTEGER_CST
&& tree_int_cst_le (offset, objsize)))
{
replace_call_with_value (gsi, NULL_TREE);
return true;
}
}
break;
case IFN_UBSAN_PTR:
if (integer_zerop (gimple_call_arg (stmt, 1)))
{
replace_call_with_value (gsi, NULL_TREE);
return true;
}
break;
case IFN_UBSAN_BOUNDS:
{
tree index = gimple_call_arg (stmt, 1);
tree bound = gimple_call_arg (stmt, 2);
if (TREE_CODE (index) == INTEGER_CST
&& TREE_CODE (bound) == INTEGER_CST)
{
index = fold_convert (TREE_TYPE (bound), index);
if (TREE_CODE (index) == INTEGER_CST
&& tree_int_cst_lt (index, bound))
{
replace_call_with_value (gsi, NULL_TREE);
return true;
}
}
}
break;
case IFN_GOACC_DIM_SIZE:
case IFN_GOACC_DIM_POS:
result = fold_internal_goacc_dim (stmt);
break;
case IFN_UBSAN_CHECK_ADD:
subcode = PLUS_EXPR;
break;
case IFN_UBSAN_CHECK_SUB:
subcode = MINUS_EXPR;
break;
case IFN_UBSAN_CHECK_MUL:
subcode = MULT_EXPR;
break;
case IFN_ADD_OVERFLOW:
subcode = PLUS_EXPR;
cplx_result = true;
break;
case IFN_SUB_OVERFLOW:
subcode = MINUS_EXPR;
cplx_result = true;
break;
case IFN_MUL_OVERFLOW:
subcode = MULT_EXPR;
cplx_result = true;
break;
case IFN_UADDC:
subcode = PLUS_EXPR;
cplx_result = true;
uaddc_usubc = true;
break;
case IFN_USUBC:
subcode = MINUS_EXPR;
cplx_result = true;
uaddc_usubc = true;
break;
case IFN_MASK_LOAD:
changed |= gimple_fold_partial_load (gsi, stmt, true);
break;
case IFN_MASK_STORE:
changed |= gimple_fold_partial_store (gsi, stmt, true);
break;
case IFN_LEN_LOAD:
case IFN_MASK_LEN_LOAD:
changed |= gimple_fold_partial_load (gsi, stmt, false);
break;
case IFN_LEN_STORE:
case IFN_MASK_LEN_STORE:
changed |= gimple_fold_partial_store (gsi, stmt, false);
break;
default:
break;
}
if (subcode != ERROR_MARK)
{
tree arg0 = gimple_call_arg (stmt, 0);
tree arg1 = gimple_call_arg (stmt, 1);
tree arg2 = NULL_TREE;
tree type = TREE_TYPE (arg0);
if (cplx_result)
{
tree lhs = gimple_call_lhs (stmt);
if (lhs == NULL_TREE)
type = NULL_TREE;
else
type = TREE_TYPE (TREE_TYPE (lhs));
if (uaddc_usubc)
arg2 = gimple_call_arg (stmt, 2);
}
if (type == NULL_TREE)
;
else if (uaddc_usubc)
{
if (!integer_zerop (arg2))
;
/* x = y + 0 + 0; x = y - 0 - 0; */
else if (integer_zerop (arg1))
result = arg0;
/* x = 0 + y + 0; */
else if (subcode != MINUS_EXPR && integer_zerop (arg0))
result = arg1;
/* x = y - y - 0; */
else if (subcode == MINUS_EXPR
&& operand_equal_p (arg0, arg1, 0))
result = integer_zero_node;
}
/* x = y + 0; x = y - 0; x = y * 0; */
else if (integer_zerop (arg1))
result = subcode == MULT_EXPR ? integer_zero_node : arg0;
/* x = 0 + y; x = 0 * y; */
else if (subcode != MINUS_EXPR && integer_zerop (arg0))
result = subcode == MULT_EXPR ? integer_zero_node : arg1;
/* x = y - y; */
else if (subcode == MINUS_EXPR && operand_equal_p (arg0, arg1, 0))
result = integer_zero_node;
/* x = y * 1; x = 1 * y; */
else if (subcode == MULT_EXPR && integer_onep (arg1))
result = arg0;
else if (subcode == MULT_EXPR && integer_onep (arg0))
result = arg1;
if (result)
{
if (result == integer_zero_node)
result = build_zero_cst (type);
else if (cplx_result && TREE_TYPE (result) != type)
{
if (TREE_CODE (result) == INTEGER_CST)
{
if (arith_overflowed_p (PLUS_EXPR, type, result,
integer_zero_node))
overflow = build_one_cst (type);
}
else if ((!TYPE_UNSIGNED (TREE_TYPE (result))
&& TYPE_UNSIGNED (type))
|| (TYPE_PRECISION (type)
< (TYPE_PRECISION (TREE_TYPE (result))
+ (TYPE_UNSIGNED (TREE_TYPE (result))
&& !TYPE_UNSIGNED (type)))))
result = NULL_TREE;
if (result)
result = fold_convert (type, result);
}
}
}
if (result)
{
if (TREE_CODE (result) == INTEGER_CST && TREE_OVERFLOW (result))
result = drop_tree_overflow (result);
if (cplx_result)
{
if (overflow == NULL_TREE)
overflow = build_zero_cst (TREE_TYPE (result));
tree ctype = build_complex_type (TREE_TYPE (result));
if (TREE_CODE (result) == INTEGER_CST
&& TREE_CODE (overflow) == INTEGER_CST)
result = build_complex (ctype, result, overflow);
else
result = build2_loc (gimple_location (stmt), COMPLEX_EXPR,
ctype, result, overflow);
}
gimplify_and_update_call_from_tree (gsi, result);
changed = true;
}
}
return changed;
}
/* Return true whether NAME has a use on STMT. Note this can return
false even though there's a use on STMT if SSA operands are not
up-to-date. */
static bool
has_use_on_stmt (tree name, gimple *stmt)
{
ssa_op_iter iter;
tree op;
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
if (op == name)
return true;
return false;
}
/* Add the lhs of each statement of SEQ to DCE_WORKLIST. */
static void
mark_lhs_in_seq_for_dce (bitmap dce_worklist, gimple_seq seq)
{
if (!dce_worklist)
return;
for (gimple_stmt_iterator i = gsi_start (seq);
!gsi_end_p (i); gsi_next (&i))
{
gimple *stmt = gsi_stmt (i);
tree name = gimple_get_lhs (stmt);
if (name && TREE_CODE (name) == SSA_NAME)
bitmap_set_bit (dce_worklist, SSA_NAME_VERSION (name));
}
}
/* Worker for fold_stmt_1 dispatch to pattern based folding with
gimple_simplify.
Replaces *GSI with the simplification result in RCODE and OPS
and the associated statements in *SEQ. Does the replacement
according to INPLACE and returns true if the operation succeeded. */
static bool
replace_stmt_with_simplification (gimple_stmt_iterator *gsi,
gimple_match_op *res_op,
gimple_seq *seq, bool inplace,
bitmap dce_worklist)
{
gimple *stmt = gsi_stmt (*gsi);
tree *ops = res_op->ops;
unsigned int num_ops = res_op->num_ops;
/* Play safe and do not allow abnormals to be mentioned in
newly created statements. See also maybe_push_res_to_seq.
As an exception allow such uses if there was a use of the
same SSA name on the old stmt. */
for (unsigned int i = 0; i < num_ops; ++i)
if (TREE_CODE (ops[i]) == SSA_NAME
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ops[i])
&& !has_use_on_stmt (ops[i], stmt))
return false;
if (num_ops > 0 && COMPARISON_CLASS_P (ops[0]))
for (unsigned int i = 0; i < 2; ++i)
if (TREE_CODE (TREE_OPERAND (ops[0], i)) == SSA_NAME
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (TREE_OPERAND (ops[0], i))
&& !has_use_on_stmt (TREE_OPERAND (ops[0], i), stmt))
return false;
/* Don't insert new statements when INPLACE is true, even if we could
reuse STMT for the final statement. */
if (inplace && !gimple_seq_empty_p (*seq))
return false;
if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
{
gcc_assert (res_op->code.is_tree_code ());
auto code = tree_code (res_op->code);
if (TREE_CODE_CLASS (code) == tcc_comparison
/* GIMPLE_CONDs condition may not throw. */
&& (!flag_exceptions
|| !cfun->can_throw_non_call_exceptions
|| !operation_could_trap_p (code,
FLOAT_TYPE_P (TREE_TYPE (ops[0])),
false, NULL_TREE)))
gimple_cond_set_condition (cond_stmt, code, ops[0], ops[1]);
else if (code == SSA_NAME)
gimple_cond_set_condition (cond_stmt, NE_EXPR, ops[0],
build_zero_cst (TREE_TYPE (ops[0])));
else if (code == INTEGER_CST)
{
if (integer_zerop (ops[0]))
gimple_cond_make_false (cond_stmt);
else
gimple_cond_make_true (cond_stmt);
}
else if (!inplace)
{
tree res = maybe_push_res_to_seq (res_op, seq);
if (!res)
return false;
gimple_cond_set_condition (cond_stmt, NE_EXPR, res,
build_zero_cst (TREE_TYPE (res)));
}
else
return false;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "gimple_simplified to ");
if (!gimple_seq_empty_p (*seq))
print_gimple_seq (dump_file, *seq, 0, TDF_SLIM);
print_gimple_stmt (dump_file, gsi_stmt (*gsi),
0, TDF_SLIM);
}
// Mark the lhs of the new statements maybe for dce
mark_lhs_in_seq_for_dce (dce_worklist, *seq);
gsi_insert_seq_before (gsi, *seq, GSI_SAME_STMT);
return true;
}
else if (is_gimple_assign (stmt)
&& res_op->code.is_tree_code ())
{
auto code = tree_code (res_op->code);
if (!inplace
|| gimple_num_ops (stmt) > get_gimple_rhs_num_ops (code))
{
maybe_build_generic_op (res_op);
gimple_assign_set_rhs_with_ops (gsi, code,
res_op->op_or_null (0),
res_op->op_or_null (1),
res_op->op_or_null (2));
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "gimple_simplified to ");
if (!gimple_seq_empty_p (*seq))
print_gimple_seq (dump_file, *seq, 0, TDF_SLIM);
print_gimple_stmt (dump_file, gsi_stmt (*gsi),
0, TDF_SLIM);
}
// Mark the lhs of the new statements maybe for dce
mark_lhs_in_seq_for_dce (dce_worklist, *seq);
gsi_insert_seq_before (gsi, *seq, GSI_SAME_STMT);
return true;
}
}
else if (res_op->code.is_fn_code ()
&& gimple_call_combined_fn (stmt) == combined_fn (res_op->code))
{
gcc_assert (num_ops == gimple_call_num_args (stmt));
for (unsigned int i = 0; i < num_ops; ++i)
gimple_call_set_arg (stmt, i, ops[i]);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "gimple_simplified to ");
if (!gimple_seq_empty_p (*seq))
print_gimple_seq (dump_file, *seq, 0, TDF_SLIM);
print_gimple_stmt (dump_file, gsi_stmt (*gsi), 0, TDF_SLIM);
}
// Mark the lhs of the new statements maybe for dce
mark_lhs_in_seq_for_dce (dce_worklist, *seq);
gsi_insert_seq_before (gsi, *seq, GSI_SAME_STMT);
return true;
}
else if (!inplace)
{
if (gimple_has_lhs (stmt))
{
tree lhs = gimple_get_lhs (stmt);
if (!maybe_push_res_to_seq (res_op, seq, lhs))
return false;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "gimple_simplified to ");
print_gimple_seq (dump_file, *seq, 0, TDF_SLIM);
}
// Mark the lhs of the new statements maybe for dce
mark_lhs_in_seq_for_dce (dce_worklist, *seq);
gsi_replace_with_seq_vops (gsi, *seq);
return true;
}
else
gcc_unreachable ();
}
return false;
}
/* Canonicalize MEM_REFs invariant address operand after propagation. */
static bool
maybe_canonicalize_mem_ref_addr (tree *t, bool is_debug = false)
{
bool res = false;
tree *orig_t = t;
if (TREE_CODE (*t) == ADDR_EXPR)
t = &TREE_OPERAND (*t, 0);
/* The C and C++ frontends use an ARRAY_REF for indexing with their
generic vector extension. The actual vector referenced is
view-converted to an array type for this purpose. If the index
is constant the canonical representation in the middle-end is a
BIT_FIELD_REF so re-write the former to the latter here. */
if (TREE_CODE (*t) == ARRAY_REF
&& TREE_CODE (TREE_OPERAND (*t, 0)) == VIEW_CONVERT_EXPR
&& TREE_CODE (TREE_OPERAND (*t, 1)) == INTEGER_CST
&& VECTOR_TYPE_P (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (*t, 0), 0))))
{
tree vtype = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (*t, 0), 0));
if (VECTOR_TYPE_P (vtype))
{
tree low = array_ref_low_bound (*t);
if (TREE_CODE (low) == INTEGER_CST)
{
if (tree_int_cst_le (low, TREE_OPERAND (*t, 1)))
{
widest_int idx = wi::sub (wi::to_widest (TREE_OPERAND (*t, 1)),
wi::to_widest (low));
idx = wi::mul (idx, wi::to_widest
(TYPE_SIZE (TREE_TYPE (*t))));
widest_int ext
= wi::add (idx, wi::to_widest (TYPE_SIZE (TREE_TYPE (*t))));
if (wi::les_p (ext, wi::to_widest (TYPE_SIZE (vtype))))
{
*t = build3_loc (EXPR_LOCATION (*t), BIT_FIELD_REF,
TREE_TYPE (*t),
TREE_OPERAND (TREE_OPERAND (*t, 0), 0),
TYPE_SIZE (TREE_TYPE (*t)),
wide_int_to_tree (bitsizetype, idx));
res = true;
}
}
}
}
}
while (handled_component_p (*t))
t = &TREE_OPERAND (*t, 0);
/* Canonicalize MEM [&foo.bar, 0] which appears after propagating
of invariant addresses into a SSA name MEM_REF address. */
if (TREE_CODE (*t) == MEM_REF
|| TREE_CODE (*t) == TARGET_MEM_REF)
{
tree addr = TREE_OPERAND (*t, 0);
if (TREE_CODE (addr) == ADDR_EXPR
&& (TREE_CODE (TREE_OPERAND (addr, 0)) == MEM_REF
|| handled_component_p (TREE_OPERAND (addr, 0))))
{
tree base;
poly_int64 coffset;
base = get_addr_base_and_unit_offset (TREE_OPERAND (addr, 0),
&coffset);
if (!base)
{
if (is_debug)
return false;
gcc_unreachable ();
}
TREE_OPERAND (*t, 0) = build_fold_addr_expr (base);
TREE_OPERAND (*t, 1) = int_const_binop (PLUS_EXPR,
TREE_OPERAND (*t, 1),
size_int (coffset));
res = true;
}
gcc_checking_assert (TREE_CODE (TREE_OPERAND (*t, 0)) == DEBUG_EXPR_DECL
|| is_gimple_mem_ref_addr (TREE_OPERAND (*t, 0)));
}
/* Canonicalize back MEM_REFs to plain reference trees if the object
accessed is a decl that has the same access semantics as the MEM_REF. */
if (TREE_CODE (*t) == MEM_REF
&& TREE_CODE (TREE_OPERAND (*t, 0)) == ADDR_EXPR
&& integer_zerop (TREE_OPERAND (*t, 1))
&& MR_DEPENDENCE_CLIQUE (*t) == 0)
{
tree decl = TREE_OPERAND (TREE_OPERAND (*t, 0), 0);
tree alias_type = TREE_TYPE (TREE_OPERAND (*t, 1));
if (/* Same volatile qualification. */
TREE_THIS_VOLATILE (*t) == TREE_THIS_VOLATILE (decl)
/* Same TBAA behavior with -fstrict-aliasing. */
&& !TYPE_REF_CAN_ALIAS_ALL (alias_type)
&& (TYPE_MAIN_VARIANT (TREE_TYPE (decl))
== TYPE_MAIN_VARIANT (TREE_TYPE (alias_type)))
/* Same alignment. */
&& TYPE_ALIGN (TREE_TYPE (decl)) == TYPE_ALIGN (TREE_TYPE (*t))
/* We have to look out here to not drop a required conversion
from the rhs to the lhs if *t appears on the lhs or vice-versa
if it appears on the rhs. Thus require strict type
compatibility. */
&& types_compatible_p (TREE_TYPE (*t), TREE_TYPE (decl)))
{
*t = TREE_OPERAND (TREE_OPERAND (*t, 0), 0);
res = true;
}
}
else if (TREE_CODE (*orig_t) == ADDR_EXPR
&& TREE_CODE (*t) == MEM_REF
&& TREE_CODE (TREE_OPERAND (*t, 0)) == INTEGER_CST)
{
tree base;
poly_int64 coffset;
base = get_addr_base_and_unit_offset (TREE_OPERAND (*orig_t, 0),
&coffset);
if (base)
{
gcc_assert (TREE_CODE (base) == MEM_REF);
poly_int64 moffset;
if (mem_ref_offset (base).to_shwi (&moffset))
{
coffset += moffset;
if (wi::to_poly_wide (TREE_OPERAND (base, 0)).to_shwi (&moffset))
{
coffset += moffset;
*orig_t = build_int_cst (TREE_TYPE (*orig_t), coffset);
return true;
}
}
}
}
/* Canonicalize TARGET_MEM_REF in particular with respect to
the indexes becoming constant. */
else if (TREE_CODE (*t) == TARGET_MEM_REF)
{
tree tem = maybe_fold_tmr (*t);
if (tem)
{
*t = tem;
if (TREE_CODE (*orig_t) == ADDR_EXPR)
recompute_tree_invariant_for_addr_expr (*orig_t);
res = true;
}
}
return res;
}
/* Worker for both fold_stmt and fold_stmt_inplace. The INPLACE argument
distinguishes both cases. */
static bool
fold_stmt_1 (gimple_stmt_iterator *gsi, bool inplace, tree (*valueize) (tree),
bitmap dce_worklist = nullptr)
{
bool changed = false;
gimple *stmt = gsi_stmt (*gsi);
bool nowarning = warning_suppressed_p (stmt, OPT_Wstrict_overflow);
unsigned i;
fold_defer_overflow_warnings ();
/* First do required canonicalization of [TARGET_]MEM_REF addresses
after propagation.
??? This shouldn't be done in generic folding but in the
propagation helpers which also know whether an address was
propagated.
Also canonicalize operand order. */
switch (gimple_code (stmt))
{
case GIMPLE_ASSIGN:
if (gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS)
{
tree *rhs = gimple_assign_rhs1_ptr (stmt);
if ((REFERENCE_CLASS_P (*rhs)
|| TREE_CODE (*rhs) == ADDR_EXPR)
&& maybe_canonicalize_mem_ref_addr (rhs))
changed = true;
tree *lhs = gimple_assign_lhs_ptr (stmt);
if (REFERENCE_CLASS_P (*lhs)
&& maybe_canonicalize_mem_ref_addr (lhs))
changed = true;
/* Canonicalize &MEM[ssa_n, CST] to ssa_n p+ CST.
This cannot be done in maybe_canonicalize_mem_ref_addr
as the gimple now has two operands rather than one.
The same reason why this can't be done in
maybe_canonicalize_mem_ref_addr is the same reason why
this can't be done inplace. */
if (!inplace && TREE_CODE (*rhs) == ADDR_EXPR)
{
tree inner = TREE_OPERAND (*rhs, 0);
if (TREE_CODE (inner) == MEM_REF
&& TREE_CODE (TREE_OPERAND (inner, 0)) == SSA_NAME
&& TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST)
{
tree ptr = TREE_OPERAND (inner, 0);
tree addon = TREE_OPERAND (inner, 1);
addon = fold_convert (sizetype, addon);
gimple_assign_set_rhs_with_ops (gsi, POINTER_PLUS_EXPR,
ptr, addon);
changed = true;
stmt = gsi_stmt (*gsi);
}
}
}
else
{
/* Canonicalize operand order. */
enum tree_code code = gimple_assign_rhs_code (stmt);
if (TREE_CODE_CLASS (code) == tcc_comparison
|| commutative_tree_code (code)
|| commutative_ternary_tree_code (code))
{
tree rhs1 = gimple_assign_rhs1 (stmt);
tree rhs2 = gimple_assign_rhs2 (stmt);
if (tree_swap_operands_p (rhs1, rhs2))
{
gimple_assign_set_rhs1 (stmt, rhs2);
gimple_assign_set_rhs2 (stmt, rhs1);
if (TREE_CODE_CLASS (code) == tcc_comparison)
gimple_assign_set_rhs_code (stmt,
swap_tree_comparison (code));
changed = true;
}
}
}
break;
case GIMPLE_CALL:
{
gcall *call = as_a<gcall *> (stmt);
for (i = 0; i < gimple_call_num_args (call); ++i)
{
tree *arg = gimple_call_arg_ptr (call, i);
if (REFERENCE_CLASS_P (*arg)
&& maybe_canonicalize_mem_ref_addr (arg))
changed = true;
}
tree *lhs = gimple_call_lhs_ptr (call);
if (*lhs
&& REFERENCE_CLASS_P (*lhs)
&& maybe_canonicalize_mem_ref_addr (lhs))
changed = true;
if (*lhs)
{
combined_fn cfn = gimple_call_combined_fn (call);
internal_fn ifn = associated_internal_fn (cfn, TREE_TYPE (*lhs));
int opno = first_commutative_argument (ifn);
if (opno >= 0)
{
tree arg1 = gimple_call_arg (call, opno);
tree arg2 = gimple_call_arg (call, opno + 1);
if (tree_swap_operands_p (arg1, arg2))
{
gimple_call_set_arg (call, opno, arg2);
gimple_call_set_arg (call, opno + 1, arg1);
changed = true;
}
}
}
break;
}
case GIMPLE_ASM:
{
gasm *asm_stmt = as_a <gasm *> (stmt);
for (i = 0; i < gimple_asm_noutputs (asm_stmt); ++i)
{
tree link = gimple_asm_output_op (asm_stmt, i);
tree op = TREE_VALUE (link);
if (REFERENCE_CLASS_P (op)
&& maybe_canonicalize_mem_ref_addr (&TREE_VALUE (link)))
changed = true;
}
for (i = 0; i < gimple_asm_ninputs (asm_stmt); ++i)
{
tree link = gimple_asm_input_op (asm_stmt, i);
tree op = TREE_VALUE (link);
if ((REFERENCE_CLASS_P (op)
|| TREE_CODE (op) == ADDR_EXPR)
&& maybe_canonicalize_mem_ref_addr (&TREE_VALUE (link)))
changed = true;
}
}
break;
case GIMPLE_DEBUG:
if (gimple_debug_bind_p (stmt))
{
tree *val = gimple_debug_bind_get_value_ptr (stmt);
if (*val
&& (REFERENCE_CLASS_P (*val)
|| TREE_CODE (*val) == ADDR_EXPR)
&& maybe_canonicalize_mem_ref_addr (val, true))
changed = true;
}
break;
case GIMPLE_COND:
{
/* Canonicalize operand order. */
tree lhs = gimple_cond_lhs (stmt);
tree rhs = gimple_cond_rhs (stmt);
if (tree_swap_operands_p (lhs, rhs))
{
gcond *gc = as_a <gcond *> (stmt);
gimple_cond_set_lhs (gc, rhs);
gimple_cond_set_rhs (gc, lhs);
gimple_cond_set_code (gc,
swap_tree_comparison (gimple_cond_code (gc)));
changed = true;
}
}
default:;
}
/* Dispatch to pattern-based folding. */
if (!inplace
|| is_gimple_assign (stmt)
|| gimple_code (stmt) == GIMPLE_COND)
{
gimple_seq seq = NULL;
gimple_match_op res_op;
if (gimple_simplify (stmt, &res_op, inplace ? NULL : &seq,
valueize, valueize))
{
if (replace_stmt_with_simplification (gsi, &res_op, &seq, inplace,
dce_worklist))
changed = true;
else
gimple_seq_discard (seq);
}
}
stmt = gsi_stmt (*gsi);
/* Fold the main computation performed by the statement. */
switch (gimple_code (stmt))
{
case GIMPLE_ASSIGN:
{
if (gimple_assign_load_p (stmt) && gimple_store_p (stmt))
{
if (optimize_memcpy_to_memset (gsi, gimple_assign_lhs (stmt),
gimple_assign_rhs1 (stmt),
/* len = */NULL_TREE))
{
changed = true;
break;
}
}
/* Try to canonicalize for boolean-typed X the comparisons
X == 0, X == 1, X != 0, and X != 1. */
if (gimple_assign_rhs_code (stmt) == EQ_EXPR
|| gimple_assign_rhs_code (stmt) == NE_EXPR)
{
tree lhs = gimple_assign_lhs (stmt);
tree op1 = gimple_assign_rhs1 (stmt);
tree op2 = gimple_assign_rhs2 (stmt);
tree type = TREE_TYPE (op1);
/* Check whether the comparison operands are of the same boolean
type as the result type is.
Check that second operand is an integer-constant with value
one or zero. */
if (TREE_CODE (op2) == INTEGER_CST
&& (integer_zerop (op2) || integer_onep (op2))
&& useless_type_conversion_p (TREE_TYPE (lhs), type))
{
enum tree_code cmp_code = gimple_assign_rhs_code (stmt);
bool is_logical_not = false;
/* X == 0 and X != 1 is a logical-not.of X
X == 1 and X != 0 is X */
if ((cmp_code == EQ_EXPR && integer_zerop (op2))
|| (cmp_code == NE_EXPR && integer_onep (op2)))
is_logical_not = true;
if (is_logical_not == false)
gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op1), op1);
/* Only for one-bit precision typed X the transformation
!X -> ~X is valied. */
else if (TYPE_PRECISION (type) == 1)
gimple_assign_set_rhs_with_ops (gsi, BIT_NOT_EXPR, op1);
/* Otherwise we use !X -> X ^ 1. */
else
gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op1,
build_int_cst (type, 1));
changed = true;
break;
}
}
unsigned old_num_ops = gimple_num_ops (stmt);
tree lhs = gimple_assign_lhs (stmt);
tree new_rhs = fold_gimple_assign (gsi);
if (new_rhs
&& !useless_type_conversion_p (TREE_TYPE (lhs),
TREE_TYPE (new_rhs)))
new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
if (new_rhs
&& (!inplace
|| get_gimple_rhs_num_ops (TREE_CODE (new_rhs)) < old_num_ops))
{
gimple_assign_set_rhs_from_tree (gsi, new_rhs);
changed = true;
}
break;
}
case GIMPLE_CALL:
changed |= gimple_fold_call (gsi, inplace);
break;
case GIMPLE_DEBUG:
if (gimple_debug_bind_p (stmt))
{
tree val = gimple_debug_bind_get_value (stmt);
if (val && REFERENCE_CLASS_P (val))
{
tree tem = maybe_fold_reference (val);
if (tem)
{
gimple_debug_bind_set_value (stmt, tem);
changed = true;
}
}
}
break;
case GIMPLE_RETURN:
{
greturn *ret_stmt = as_a<greturn *> (stmt);
tree ret = gimple_return_retval(ret_stmt);
if (ret && TREE_CODE (ret) == SSA_NAME && valueize)
{
tree val = valueize (ret);
if (val && val != ret
&& may_propagate_copy (ret, val))
{
gimple_return_set_retval (ret_stmt, val);
changed = true;
}
}
}
break;
default:;
}
stmt = gsi_stmt (*gsi);
fold_undefer_overflow_warnings (changed && !nowarning, stmt, 0);
return changed;
}
/* Valueziation callback that ends up not following SSA edges. */
tree
no_follow_ssa_edges (tree)
{
return NULL_TREE;
}
/* Valueization callback that ends up following single-use SSA edges only. */
tree
follow_single_use_edges (tree val)
{
if (TREE_CODE (val) == SSA_NAME
&& !has_single_use (val))
return NULL_TREE;
return val;
}
/* Valueization callback that follows all SSA edges. */
tree
follow_all_ssa_edges (tree val)
{
return val;
}
/* Fold the statement pointed to by GSI. In some cases, this function may
replace the whole statement with a new one. Returns true iff folding
makes any changes.
The statement pointed to by GSI should be in valid gimple form but may
be in unfolded state as resulting from for example constant propagation
which can produce *&x = 0. */
bool
fold_stmt (gimple_stmt_iterator *gsi, bitmap dce_bitmap)
{
return fold_stmt_1 (gsi, false, no_follow_ssa_edges, dce_bitmap);
}
bool
fold_stmt (gimple_stmt_iterator *gsi, tree (*valueize) (tree), bitmap dce_bitmap)
{
return fold_stmt_1 (gsi, false, valueize, dce_bitmap);
}
/* Perform the minimal folding on statement *GSI. Only operations like
*&x created by constant propagation are handled. The statement cannot
be replaced with a new one. Return true if the statement was
changed, false otherwise.
The statement *GSI should be in valid gimple form but may
be in unfolded state as resulting from for example constant propagation
which can produce *&x = 0. */
bool
fold_stmt_inplace (gimple_stmt_iterator *gsi)
{
gimple *stmt = gsi_stmt (*gsi);
bool changed = fold_stmt_1 (gsi, true, no_follow_ssa_edges);
gcc_assert (gsi_stmt (*gsi) == stmt);
return changed;
}
/* Canonicalize and possibly invert the boolean EXPR; return NULL_TREE
if EXPR is null or we don't know how.
If non-null, the result always has boolean type. */
static tree
canonicalize_bool (tree expr, bool invert)
{
if (!expr)
return NULL_TREE;
else if (invert)
{
if (integer_nonzerop (expr))
return boolean_false_node;
else if (integer_zerop (expr))
return boolean_true_node;
else if (TREE_CODE (expr) == SSA_NAME)
return fold_build2 (EQ_EXPR, boolean_type_node, expr,
build_int_cst (TREE_TYPE (expr), 0));
else if (COMPARISON_CLASS_P (expr))
return fold_build2 (invert_tree_comparison (TREE_CODE (expr), false),
boolean_type_node,
TREE_OPERAND (expr, 0),
TREE_OPERAND (expr, 1));
else
return NULL_TREE;
}
else
{
if (TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE)
return expr;
if (integer_nonzerop (expr))
return boolean_true_node;
else if (integer_zerop (expr))
return boolean_false_node;
else if (TREE_CODE (expr) == SSA_NAME)
return fold_build2 (NE_EXPR, boolean_type_node, expr,
build_int_cst (TREE_TYPE (expr), 0));
else if (COMPARISON_CLASS_P (expr))
return fold_build2 (TREE_CODE (expr),
boolean_type_node,
TREE_OPERAND (expr, 0),
TREE_OPERAND (expr, 1));
else
return NULL_TREE;
}
}
/* Check to see if a boolean expression EXPR is logically equivalent to the
comparison (OP1 CODE OP2). Check for various identities involving
SSA_NAMEs. */
static bool
same_bool_comparison_p (const_tree expr, enum tree_code code,
const_tree op1, const_tree op2)
{
gimple *s;
/* The obvious case. */
if (TREE_CODE (expr) == code
&& operand_equal_p (TREE_OPERAND (expr, 0), op1, 0)
&& operand_equal_p (TREE_OPERAND (expr, 1), op2, 0))
return true;
/* Check for comparing (name, name != 0) and the case where expr
is an SSA_NAME with a definition matching the comparison. */
if (TREE_CODE (expr) == SSA_NAME
&& TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE)
{
if (operand_equal_p (expr, op1, 0))
return ((code == NE_EXPR && integer_zerop (op2))
|| (code == EQ_EXPR && integer_nonzerop (op2)));
s = SSA_NAME_DEF_STMT (expr);
if (is_gimple_assign (s)
&& gimple_assign_rhs_code (s) == code
&& operand_equal_p (gimple_assign_rhs1 (s), op1, 0)
&& operand_equal_p (gimple_assign_rhs2 (s), op2, 0))
return true;
}
/* If op1 is of the form (name != 0) or (name == 0), and the definition
of name is a comparison, recurse. */
if (TREE_CODE (op1) == SSA_NAME
&& TREE_CODE (TREE_TYPE (op1)) == BOOLEAN_TYPE)
{
s = SSA_NAME_DEF_STMT (op1);
if (is_gimple_assign (s)
&& TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
{
enum tree_code c = gimple_assign_rhs_code (s);
if ((c == NE_EXPR && integer_zerop (op2))
|| (c == EQ_EXPR && integer_nonzerop (op2)))
return same_bool_comparison_p (expr, c,
gimple_assign_rhs1 (s),
gimple_assign_rhs2 (s));
if ((c == EQ_EXPR && integer_zerop (op2))
|| (c == NE_EXPR && integer_nonzerop (op2)))
return same_bool_comparison_p (expr,
invert_tree_comparison (c, false),
gimple_assign_rhs1 (s),
gimple_assign_rhs2 (s));
}
}
return false;
}
/* Check to see if two boolean expressions OP1 and OP2 are logically
equivalent. */
static bool
same_bool_result_p (const_tree op1, const_tree op2)
{
/* Simple cases first. */
if (operand_equal_p (op1, op2, 0))
return true;
/* Check the cases where at least one of the operands is a comparison.
These are a bit smarter than operand_equal_p in that they apply some
identifies on SSA_NAMEs. */
if (COMPARISON_CLASS_P (op2)
&& same_bool_comparison_p (op1, TREE_CODE (op2),
TREE_OPERAND (op2, 0),
TREE_OPERAND (op2, 1)))
return true;
if (COMPARISON_CLASS_P (op1)
&& same_bool_comparison_p (op2, TREE_CODE (op1),
TREE_OPERAND (op1, 0),
TREE_OPERAND (op1, 1)))
return true;
/* Default case. */
return false;
}
/* Forward declarations for some mutually recursive functions. */
static tree
and_comparisons_1 (tree type, enum tree_code code1, tree op1a, tree op1b,
enum tree_code code2, tree op2a, tree op2b, basic_block);
static tree
and_var_with_comparison (tree type, tree var, bool invert,
enum tree_code code2, tree op2a, tree op2b,
basic_block);
static tree
and_var_with_comparison_1 (tree type, gimple *stmt,
enum tree_code code2, tree op2a, tree op2b,
basic_block);
static tree
or_comparisons_1 (tree, enum tree_code code1, tree op1a, tree op1b,
enum tree_code code2, tree op2a, tree op2b,
basic_block);
static tree
or_var_with_comparison (tree, tree var, bool invert,
enum tree_code code2, tree op2a, tree op2b,
basic_block);
static tree
or_var_with_comparison_1 (tree, gimple *stmt,
enum tree_code code2, tree op2a, tree op2b,
basic_block);
/* Helper function for and_comparisons_1: try to simplify the AND of the
ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B).
If INVERT is true, invert the value of the VAR before doing the AND.
Return NULL_EXPR if we can't simplify this to a single expression. */
static tree
and_var_with_comparison (tree type, tree var, bool invert,
enum tree_code code2, tree op2a, tree op2b,
basic_block outer_cond_bb)
{
tree t;
gimple *stmt = SSA_NAME_DEF_STMT (var);
/* We can only deal with variables whose definitions are assignments. */
if (!is_gimple_assign (stmt))
return NULL_TREE;
/* If we have an inverted comparison, apply DeMorgan's law and rewrite
!var AND (op2a code2 op2b) => !(var OR !(op2a code2 op2b))
Then we only have to consider the simpler non-inverted cases. */
if (invert)
t = or_var_with_comparison_1 (type, stmt,
invert_tree_comparison (code2, false),
op2a, op2b, outer_cond_bb);
else
t = and_var_with_comparison_1 (type, stmt, code2, op2a, op2b,
outer_cond_bb);
return canonicalize_bool (t, invert);
}
/* Try to simplify the AND of the ssa variable defined by the assignment
STMT with the comparison specified by (OP2A CODE2 OP2B).
Return NULL_EXPR if we can't simplify this to a single expression. */
static tree
and_var_with_comparison_1 (tree type, gimple *stmt,
enum tree_code code2, tree op2a, tree op2b,
basic_block outer_cond_bb)
{
tree var = gimple_assign_lhs (stmt);
tree true_test_var = NULL_TREE;
tree false_test_var = NULL_TREE;
enum tree_code innercode = gimple_assign_rhs_code (stmt);
/* Check for identities like (var AND (var == 0)) => false. */
if (TREE_CODE (op2a) == SSA_NAME
&& TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE)
{
if ((code2 == NE_EXPR && integer_zerop (op2b))
|| (code2 == EQ_EXPR && integer_nonzerop (op2b)))
{
true_test_var = op2a;
if (var == true_test_var)
return var;
}
else if ((code2 == EQ_EXPR && integer_zerop (op2b))
|| (code2 == NE_EXPR && integer_nonzerop (op2b)))
{
false_test_var = op2a;
if (var == false_test_var)
return boolean_false_node;
}
}
/* If the definition is a comparison, recurse on it. */
if (TREE_CODE_CLASS (innercode) == tcc_comparison)
{
tree t = and_comparisons_1 (type, innercode,
gimple_assign_rhs1 (stmt),
gimple_assign_rhs2 (stmt),
code2,
op2a,
op2b, outer_cond_bb);
if (t)
return t;
}
/* If the definition is an AND or OR expression, we may be able to
simplify by reassociating. */
if (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE
&& (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR))
{
tree inner1 = gimple_assign_rhs1 (stmt);
tree inner2 = gimple_assign_rhs2 (stmt);
gimple *s;
tree t;
tree partial = NULL_TREE;
bool is_and = (innercode == BIT_AND_EXPR);
/* Check for boolean identities that don't require recursive examination
of inner1/inner2:
inner1 AND (inner1 AND inner2) => inner1 AND inner2 => var
inner1 AND (inner1 OR inner2) => inner1
!inner1 AND (inner1 AND inner2) => false
!inner1 AND (inner1 OR inner2) => !inner1 AND inner2
Likewise for similar cases involving inner2. */
if (inner1 == true_test_var)
return (is_and ? var : inner1);
else if (inner2 == true_test_var)
return (is_and ? var : inner2);
else if (inner1 == false_test_var)
return (is_and
? boolean_false_node
: and_var_with_comparison (type, inner2, false, code2, op2a,
op2b, outer_cond_bb));
else if (inner2 == false_test_var)
return (is_and
? boolean_false_node
: and_var_with_comparison (type, inner1, false, code2, op2a,
op2b, outer_cond_bb));
/* Next, redistribute/reassociate the AND across the inner tests.
Compute the first partial result, (inner1 AND (op2a code op2b)) */
if (TREE_CODE (inner1) == SSA_NAME
&& is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1))
&& TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
&& (t = maybe_fold_and_comparisons (type, gimple_assign_rhs_code (s),
gimple_assign_rhs1 (s),
gimple_assign_rhs2 (s),
code2, op2a, op2b,
outer_cond_bb)))
{
/* Handle the AND case, where we are reassociating:
(inner1 AND inner2) AND (op2a code2 op2b)
=> (t AND inner2)
If the partial result t is a constant, we win. Otherwise
continue on to try reassociating with the other inner test. */
if (is_and)
{
if (integer_onep (t))
return inner2;
else if (integer_zerop (t))
return boolean_false_node;
}
/* Handle the OR case, where we are redistributing:
(inner1 OR inner2) AND (op2a code2 op2b)
=> (t OR (inner2 AND (op2a code2 op2b))) */
else if (integer_onep (t))
return boolean_true_node;
/* Save partial result for later. */
partial = t;
}
/* Compute the second partial result, (inner2 AND (op2a code op2b)) */
if (TREE_CODE (inner2) == SSA_NAME
&& is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2))
&& TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
&& (t = maybe_fold_and_comparisons (type, gimple_assign_rhs_code (s),
gimple_assign_rhs1 (s),
gimple_assign_rhs2 (s),
code2, op2a, op2b,
outer_cond_bb)))
{
/* Handle the AND case, where we are reassociating:
(inner1 AND inner2) AND (op2a code2 op2b)
=> (inner1 AND t) */
if (is_and)
{
if (integer_onep (t))
return inner1;
else if (integer_zerop (t))
return boolean_false_node;
/* If both are the same, we can apply the identity
(x AND x) == x. */
else if (partial && same_bool_result_p (t, partial))
return t;
}
/* Handle the OR case. where we are redistributing:
(inner1 OR inner2) AND (op2a code2 op2b)
=> (t OR (inner1 AND (op2a code2 op2b)))
=> (t OR partial) */
else
{
if (integer_onep (t))
return boolean_true_node;
else if (partial)
{
/* We already got a simplification for the other
operand to the redistributed OR expression. The
interesting case is when at least one is false.
Or, if both are the same, we can apply the identity
(x OR x) == x. */
if (integer_zerop (partial))
return t;
else if (integer_zerop (t))
return partial;
else if (same_bool_result_p (t, partial))
return t;
}
}
}
}
return NULL_TREE;
}
/* Try to simplify the AND of two comparisons defined by
(OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively.
If this can be done without constructing an intermediate value,
return the resulting tree; otherwise NULL_TREE is returned.
This function is deliberately asymmetric as it recurses on SSA_DEFs
in the first comparison but not the second. */
static tree
and_comparisons_1 (tree type, enum tree_code code1, tree op1a, tree op1b,
enum tree_code code2, tree op2a, tree op2b,
basic_block outer_cond_bb)
{
tree truth_type = truth_type_for (TREE_TYPE (op1a));
/* First check for ((x CODE1 y) AND (x CODE2 y)). */
if (operand_equal_p (op1a, op2a, 0)
&& operand_equal_p (op1b, op2b, 0))
{
/* Result will be either NULL_TREE, or a combined comparison. */
tree t = combine_comparisons (UNKNOWN_LOCATION,
TRUTH_ANDIF_EXPR, code1, code2,
truth_type, op1a, op1b);
if (t)
return t;
}
/* Likewise the swapped case of the above. */
if (operand_equal_p (op1a, op2b, 0)
&& operand_equal_p (op1b, op2a, 0))
{
/* Result will be either NULL_TREE, or a combined comparison. */
tree t = combine_comparisons (UNKNOWN_LOCATION,
TRUTH_ANDIF_EXPR, code1,
swap_tree_comparison (code2),
truth_type, op1a, op1b);
if (t)
return t;
}
/* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where
NAME's definition is a truth value. See if there are any simplifications
that can be done against the NAME's definition. */
if (TREE_CODE (op1a) == SSA_NAME
&& (code1 == NE_EXPR || code1 == EQ_EXPR)
&& (integer_zerop (op1b) || integer_onep (op1b)))
{
bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b))
|| (code1 == NE_EXPR && integer_onep (op1b)));
gimple *stmt = SSA_NAME_DEF_STMT (op1a);
switch (gimple_code (stmt))
{
case GIMPLE_ASSIGN:
/* Try to simplify by copy-propagating the definition. */
return and_var_with_comparison (type, op1a, invert, code2, op2a,
op2b, outer_cond_bb);
case GIMPLE_PHI:
/* If every argument to the PHI produces the same result when
ANDed with the second comparison, we win.
Do not do this unless the type is bool since we need a bool
result here anyway. */
if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE)
{
tree result = NULL_TREE;
unsigned i;
for (i = 0; i < gimple_phi_num_args (stmt); i++)
{
tree arg = gimple_phi_arg_def (stmt, i);
/* If this PHI has itself as an argument, ignore it.
If all the other args produce the same result,
we're still OK. */
if (arg == gimple_phi_result (stmt))
continue;
else if (TREE_CODE (arg) == INTEGER_CST)
{
if (invert ? integer_nonzerop (arg) : integer_zerop (arg))
{
if (!result)
result = boolean_false_node;
else if (!integer_zerop (result))
return NULL_TREE;
}
else if (!result)
result = fold_build2 (code2, boolean_type_node,
op2a, op2b);
else if (!same_bool_comparison_p (result,
code2, op2a, op2b))
return NULL_TREE;
}
else if (TREE_CODE (arg) == SSA_NAME
&& !SSA_NAME_IS_DEFAULT_DEF (arg))
{
tree temp;
gimple *def_stmt = SSA_NAME_DEF_STMT (arg);
/* In simple cases we can look through PHI nodes,
but we have to be careful with loops.
See PR49073. */
if (! dom_info_available_p (CDI_DOMINATORS)
|| gimple_bb (def_stmt) == gimple_bb (stmt)
|| dominated_by_p (CDI_DOMINATORS,
gimple_bb (def_stmt),
gimple_bb (stmt)))
return NULL_TREE;
temp = and_var_with_comparison (type, arg, invert, code2,
op2a, op2b,
outer_cond_bb);
if (!temp)
return NULL_TREE;
else if (!result)
result = temp;
else if (!same_bool_result_p (result, temp))
return NULL_TREE;
}
else
return NULL_TREE;
}
return result;
}
default:
break;
}
}
return NULL_TREE;
}
static basic_block fosa_bb;
static vec<std::pair<tree, flow_sensitive_info_storage> > *fosa_unwind;
static tree
follow_outer_ssa_edges (tree val)
{
if (TREE_CODE (val) == SSA_NAME
&& !SSA_NAME_IS_DEFAULT_DEF (val))
{
basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (val));
if (!def_bb
|| def_bb == fosa_bb
|| (dom_info_available_p (CDI_DOMINATORS)
&& (def_bb == fosa_bb
|| dominated_by_p (CDI_DOMINATORS, fosa_bb, def_bb))))
return val;
/* We cannot temporarily rewrite stmts with undefined overflow
behavior, so avoid expanding them. */
if ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (val))
|| POINTER_TYPE_P (TREE_TYPE (val)))
&& !TYPE_OVERFLOW_WRAPS (TREE_TYPE (val)))
return NULL_TREE;
flow_sensitive_info_storage storage;
storage.save_and_clear (val);
/* If the definition does not dominate fosa_bb temporarily reset
flow-sensitive info. */
fosa_unwind->safe_push (std::make_pair (val, storage));
return val;
}
return val;
}
/* Helper function for maybe_fold_and_comparisons and maybe_fold_or_comparisons
: try to simplify the AND/OR of the ssa variable VAR with the comparison
specified by (OP2A CODE2 OP2B) from match.pd. Return NULL_EXPR if we can't
simplify this to a single expression. As we are going to lower the cost
of building SSA names / gimple stmts significantly, we need to allocate
them ont the stack. This will cause the code to be a bit ugly. */
static tree
maybe_fold_comparisons_from_match_pd (tree type, enum tree_code code,
enum tree_code code1,
tree op1a, tree op1b,
enum tree_code code2, tree op2a,
tree op2b,
basic_block outer_cond_bb)
{
/* Allocate gimple stmt1 on the stack. */
gassign *stmt1
= (gassign *) XALLOCAVEC (char, gimple_size (GIMPLE_ASSIGN, 3));
gimple_init (stmt1, GIMPLE_ASSIGN, 3);
gimple_assign_set_rhs_code (stmt1, code1);
gimple_assign_set_rhs1 (stmt1, op1a);
gimple_assign_set_rhs2 (stmt1, op1b);
gimple_set_bb (stmt1, NULL);
/* Allocate gimple stmt2 on the stack. */
gassign *stmt2
= (gassign *) XALLOCAVEC (char, gimple_size (GIMPLE_ASSIGN, 3));
gimple_init (stmt2, GIMPLE_ASSIGN, 3);
gimple_assign_set_rhs_code (stmt2, code2);
gimple_assign_set_rhs1 (stmt2, op2a);
gimple_assign_set_rhs2 (stmt2, op2b);
gimple_set_bb (stmt2, NULL);
/* Allocate SSA names(lhs1) on the stack. */
alignas (tree_node) unsigned char lhs1buf[sizeof (tree_ssa_name)];
tree lhs1 = (tree) &lhs1buf[0];
memset (lhs1, 0, sizeof (tree_ssa_name));
TREE_SET_CODE (lhs1, SSA_NAME);
TREE_TYPE (lhs1) = type;
init_ssa_name_imm_use (lhs1);
/* Allocate SSA names(lhs2) on the stack. */
alignas (tree_node) unsigned char lhs2buf[sizeof (tree_ssa_name)];
tree lhs2 = (tree) &lhs2buf[0];
memset (lhs2, 0, sizeof (tree_ssa_name));
TREE_SET_CODE (lhs2, SSA_NAME);
TREE_TYPE (lhs2) = type;
init_ssa_name_imm_use (lhs2);
gimple_assign_set_lhs (stmt1, lhs1);
gimple_assign_set_lhs (stmt2, lhs2);
gimple_match_op op (gimple_match_cond::UNCOND, code,
type, gimple_assign_lhs (stmt1),
gimple_assign_lhs (stmt2));
fosa_bb = outer_cond_bb;
auto_vec<std::pair<tree, flow_sensitive_info_storage>, 8> unwind_stack;
fosa_unwind = &unwind_stack;
if (op.resimplify (NULL, (!outer_cond_bb
? follow_all_ssa_edges : follow_outer_ssa_edges)))
{
fosa_unwind = NULL;
for (auto p : unwind_stack)
p.second.restore (p.first);
if (gimple_simplified_result_is_gimple_val (&op))
{
tree res = op.ops[0];
if (res == lhs1)
return build2 (code1, type, op1a, op1b);
else if (res == lhs2)
return build2 (code2, type, op2a, op2b);
else
return res;
}
else if (op.code.is_tree_code ()
&& TREE_CODE_CLASS ((tree_code)op.code) == tcc_comparison)
{
tree op0 = op.ops[0];
tree op1 = op.ops[1];
if (op0 == lhs1 || op0 == lhs2 || op1 == lhs1 || op1 == lhs2)
return NULL_TREE; /* not simple */
return build2 ((enum tree_code)op.code, op.type, op0, op1);
}
}
fosa_unwind = NULL;
for (auto p : unwind_stack)
p.second.restore (p.first);
return NULL_TREE;
}
/* Try to simplify the AND of two comparisons, specified by
(OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively.
If this can be simplified to a single expression (without requiring
introducing more SSA variables to hold intermediate values),
return the resulting tree. Otherwise return NULL_TREE.
If the result expression is non-null, it has boolean type. */
tree
maybe_fold_and_comparisons (tree type,
enum tree_code code1, tree op1a, tree op1b,
enum tree_code code2, tree op2a, tree op2b,
basic_block outer_cond_bb)
{
if (tree t = and_comparisons_1 (type, code1, op1a, op1b, code2, op2a, op2b,
outer_cond_bb))
return t;
if (tree t = and_comparisons_1 (type, code2, op2a, op2b, code1, op1a, op1b,
outer_cond_bb))
return t;
if (tree t = maybe_fold_comparisons_from_match_pd (type, BIT_AND_EXPR, code1,
op1a, op1b, code2, op2a,
op2b, outer_cond_bb))
return t;
return NULL_TREE;
}
/* Helper function for or_comparisons_1: try to simplify the OR of the
ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B).
If INVERT is true, invert the value of VAR before doing the OR.
Return NULL_EXPR if we can't simplify this to a single expression. */
static tree
or_var_with_comparison (tree type, tree var, bool invert,
enum tree_code code2, tree op2a, tree op2b,
basic_block outer_cond_bb)
{
tree t;
gimple *stmt = SSA_NAME_DEF_STMT (var);
/* We can only deal with variables whose definitions are assignments. */
if (!is_gimple_assign (stmt))
return NULL_TREE;
/* If we have an inverted comparison, apply DeMorgan's law and rewrite
!var OR (op2a code2 op2b) => !(var AND !(op2a code2 op2b))
Then we only have to consider the simpler non-inverted cases. */
if (invert)
t = and_var_with_comparison_1 (type, stmt,
invert_tree_comparison (code2, false),
op2a, op2b, outer_cond_bb);
else
t = or_var_with_comparison_1 (type, stmt, code2, op2a, op2b,
outer_cond_bb);
return canonicalize_bool (t, invert);
}
/* Try to simplify the OR of the ssa variable defined by the assignment
STMT with the comparison specified by (OP2A CODE2 OP2B).
Return NULL_EXPR if we can't simplify this to a single expression. */
static tree
or_var_with_comparison_1 (tree type, gimple *stmt,
enum tree_code code2, tree op2a, tree op2b,
basic_block outer_cond_bb)
{
tree var = gimple_assign_lhs (stmt);
tree true_test_var = NULL_TREE;
tree false_test_var = NULL_TREE;
enum tree_code innercode = gimple_assign_rhs_code (stmt);
/* Check for identities like (var OR (var != 0)) => true . */
if (TREE_CODE (op2a) == SSA_NAME
&& TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE)
{
if ((code2 == NE_EXPR && integer_zerop (op2b))
|| (code2 == EQ_EXPR && integer_nonzerop (op2b)))
{
true_test_var = op2a;
if (var == true_test_var)
return var;
}
else if ((code2 == EQ_EXPR && integer_zerop (op2b))
|| (code2 == NE_EXPR && integer_nonzerop (op2b)))
{
false_test_var = op2a;
if (var == false_test_var)
return boolean_true_node;
}
}
/* If the definition is a comparison, recurse on it. */
if (TREE_CODE_CLASS (innercode) == tcc_comparison)
{
tree t = or_comparisons_1 (type, innercode,
gimple_assign_rhs1 (stmt),
gimple_assign_rhs2 (stmt),
code2, op2a, op2b, outer_cond_bb);
if (t)
return t;
}
/* If the definition is an AND or OR expression, we may be able to
simplify by reassociating. */
if (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE
&& (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR))
{
tree inner1 = gimple_assign_rhs1 (stmt);
tree inner2 = gimple_assign_rhs2 (stmt);
gimple *s;
tree t;
tree partial = NULL_TREE;
bool is_or = (innercode == BIT_IOR_EXPR);
/* Check for boolean identities that don't require recursive examination
of inner1/inner2:
inner1 OR (inner1 OR inner2) => inner1 OR inner2 => var
inner1 OR (inner1 AND inner2) => inner1
!inner1 OR (inner1 OR inner2) => true
!inner1 OR (inner1 AND inner2) => !inner1 OR inner2
*/
if (inner1 == true_test_var)
return (is_or ? var : inner1);
else if (inner2 == true_test_var)
return (is_or ? var : inner2);
else if (inner1 == false_test_var)
return (is_or
? boolean_true_node
: or_var_with_comparison (type, inner2, false, code2, op2a,
op2b, outer_cond_bb));
else if (inner2 == false_test_var)
return (is_or
? boolean_true_node
: or_var_with_comparison (type, inner1, false, code2, op2a,
op2b, outer_cond_bb));
/* Next, redistribute/reassociate the OR across the inner tests.
Compute the first partial result, (inner1 OR (op2a code op2b)) */
if (TREE_CODE (inner1) == SSA_NAME
&& is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1))
&& TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
&& (t = maybe_fold_or_comparisons (type, gimple_assign_rhs_code (s),
gimple_assign_rhs1 (s),
gimple_assign_rhs2 (s),
code2, op2a, op2b,
outer_cond_bb)))
{
/* Handle the OR case, where we are reassociating:
(inner1 OR inner2) OR (op2a code2 op2b)
=> (t OR inner2)
If the partial result t is a constant, we win. Otherwise
continue on to try reassociating with the other inner test. */
if (is_or)
{
if (integer_onep (t))
return boolean_true_node;
else if (integer_zerop (t))
return inner2;
}
/* Handle the AND case, where we are redistributing:
(inner1 AND inner2) OR (op2a code2 op2b)
=> (t AND (inner2 OR (op2a code op2b))) */
else if (integer_zerop (t))
return boolean_false_node;
/* Save partial result for later. */
partial = t;
}
/* Compute the second partial result, (inner2 OR (op2a code op2b)) */
if (TREE_CODE (inner2) == SSA_NAME
&& is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2))
&& TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
&& (t = maybe_fold_or_comparisons (type, gimple_assign_rhs_code (s),
gimple_assign_rhs1 (s),
gimple_assign_rhs2 (s),
code2, op2a, op2b,
outer_cond_bb)))
{
/* Handle the OR case, where we are reassociating:
(inner1 OR inner2) OR (op2a code2 op2b)
=> (inner1 OR t)
=> (t OR partial) */
if (is_or)
{
if (integer_zerop (t))
return inner1;
else if (integer_onep (t))
return boolean_true_node;
/* If both are the same, we can apply the identity
(x OR x) == x. */
else if (partial && same_bool_result_p (t, partial))
return t;
}
/* Handle the AND case, where we are redistributing:
(inner1 AND inner2) OR (op2a code2 op2b)
=> (t AND (inner1 OR (op2a code2 op2b)))
=> (t AND partial) */
else
{
if (integer_zerop (t))
return boolean_false_node;
else if (partial)
{
/* We already got a simplification for the other
operand to the redistributed AND expression. The
interesting case is when at least one is true.
Or, if both are the same, we can apply the identity
(x AND x) == x. */
if (integer_onep (partial))
return t;
else if (integer_onep (t))
return partial;
else if (same_bool_result_p (t, partial))
return t;
}
}
}
}
return NULL_TREE;
}
/* Try to simplify the OR of two comparisons defined by
(OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively.
If this can be done without constructing an intermediate value,
return the resulting tree; otherwise NULL_TREE is returned.
This function is deliberately asymmetric as it recurses on SSA_DEFs
in the first comparison but not the second. */
static tree
or_comparisons_1 (tree type, enum tree_code code1, tree op1a, tree op1b,
enum tree_code code2, tree op2a, tree op2b,
basic_block outer_cond_bb)
{
tree truth_type = truth_type_for (TREE_TYPE (op1a));
/* First check for ((x CODE1 y) OR (x CODE2 y)). */
if (operand_equal_p (op1a, op2a, 0)
&& operand_equal_p (op1b, op2b, 0))
{
/* Result will be either NULL_TREE, or a combined comparison. */
tree t = combine_comparisons (UNKNOWN_LOCATION,
TRUTH_ORIF_EXPR, code1, code2,
truth_type, op1a, op1b);
if (t)
return t;
}
/* Likewise the swapped case of the above. */
if (operand_equal_p (op1a, op2b, 0)
&& operand_equal_p (op1b, op2a, 0))
{
/* Result will be either NULL_TREE, or a combined comparison. */
tree t = combine_comparisons (UNKNOWN_LOCATION,
TRUTH_ORIF_EXPR, code1,
swap_tree_comparison (code2),
truth_type, op1a, op1b);
if (t)
return t;
}
/* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where
NAME's definition is a truth value. See if there are any simplifications
that can be done against the NAME's definition. */
if (TREE_CODE (op1a) == SSA_NAME
&& (code1 == NE_EXPR || code1 == EQ_EXPR)
&& (integer_zerop (op1b) || integer_onep (op1b)))
{
bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b))
|| (code1 == NE_EXPR && integer_onep (op1b)));
gimple *stmt = SSA_NAME_DEF_STMT (op1a);
switch (gimple_code (stmt))
{
case GIMPLE_ASSIGN:
/* Try to simplify by copy-propagating the definition. */
return or_var_with_comparison (type, op1a, invert, code2, op2a,
op2b, outer_cond_bb);
case GIMPLE_PHI:
/* If every argument to the PHI produces the same result when
ORed with the second comparison, we win.
Do not do this unless the type is bool since we need a bool
result here anyway. */
if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE)
{
tree result = NULL_TREE;
unsigned i;
for (i = 0; i < gimple_phi_num_args (stmt); i++)
{
tree arg = gimple_phi_arg_def (stmt, i);
/* If this PHI has itself as an argument, ignore it.
If all the other args produce the same result,
we're still OK. */
if (arg == gimple_phi_result (stmt))
continue;
else if (TREE_CODE (arg) == INTEGER_CST)
{
if (invert ? integer_zerop (arg) : integer_nonzerop (arg))
{
if (!result)
result = boolean_true_node;
else if (!integer_onep (result))
return NULL_TREE;
}
else if (!result)
result = fold_build2 (code2, boolean_type_node,
op2a, op2b);
else if (!same_bool_comparison_p (result,
code2, op2a, op2b))
return NULL_TREE;
}
else if (TREE_CODE (arg) == SSA_NAME
&& !SSA_NAME_IS_DEFAULT_DEF (arg))
{
tree temp;
gimple *def_stmt = SSA_NAME_DEF_STMT (arg);
/* In simple cases we can look through PHI nodes,
but we have to be careful with loops.
See PR49073. */
if (! dom_info_available_p (CDI_DOMINATORS)
|| gimple_bb (def_stmt) == gimple_bb (stmt)
|| dominated_by_p (CDI_DOMINATORS,
gimple_bb (def_stmt),
gimple_bb (stmt)))
return NULL_TREE;
temp = or_var_with_comparison (type, arg, invert, code2,
op2a, op2b, outer_cond_bb);
if (!temp)
return NULL_TREE;
else if (!result)
result = temp;
else if (!same_bool_result_p (result, temp))
return NULL_TREE;
}
else
return NULL_TREE;
}
return result;
}
default:
break;
}
}
return NULL_TREE;
}
/* Try to simplify the OR of two comparisons, specified by
(OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively.
If this can be simplified to a single expression (without requiring
introducing more SSA variables to hold intermediate values),
return the resulting tree. Otherwise return NULL_TREE.
If the result expression is non-null, it has boolean type. */
tree
maybe_fold_or_comparisons (tree type,
enum tree_code code1, tree op1a, tree op1b,
enum tree_code code2, tree op2a, tree op2b,
basic_block outer_cond_bb)
{
if (tree t = or_comparisons_1 (type, code1, op1a, op1b, code2, op2a, op2b,
outer_cond_bb))
return t;
if (tree t = or_comparisons_1 (type, code2, op2a, op2b, code1, op1a, op1b,
outer_cond_bb))
return t;
if (tree t = maybe_fold_comparisons_from_match_pd (type, BIT_IOR_EXPR, code1,
op1a, op1b, code2, op2a,
op2b, outer_cond_bb))
return t;
return NULL_TREE;
}
/* Fold STMT to a constant using VALUEIZE to valueize SSA names.
Either NULL_TREE, a simplified but non-constant or a constant
is returned.
??? This should go into a gimple-fold-inline.h file to be eventually
privatized with the single valueize function used in the various TUs
to avoid the indirect function call overhead. */
tree
gimple_fold_stmt_to_constant_1 (gimple *stmt, tree (*valueize) (tree),
tree (*gvalueize) (tree))
{
gimple_match_op res_op;
/* ??? The SSA propagators do not correctly deal with following SSA use-def
edges if there are intermediate VARYING defs. For this reason
do not follow SSA edges here even though SCCVN can technically
just deal fine with that. */
if (gimple_simplify (stmt, &res_op, NULL, gvalueize, valueize))
{
tree res = NULL_TREE;
if (gimple_simplified_result_is_gimple_val (&res_op))
res = res_op.ops[0];
else if (mprts_hook)
res = mprts_hook (&res_op);
if (res)
{
if (dump_file && dump_flags & TDF_DETAILS)
{
fprintf (dump_file, "Match-and-simplified ");
print_gimple_expr (dump_file, stmt, 0, TDF_SLIM);
fprintf (dump_file, " to ");
print_generic_expr (dump_file, res);
fprintf (dump_file, "\n");
}
return res;
}
}
location_t loc = gimple_location (stmt);
switch (gimple_code (stmt))
{
case GIMPLE_ASSIGN:
{
enum tree_code subcode = gimple_assign_rhs_code (stmt);
switch (get_gimple_rhs_class (subcode))
{
case GIMPLE_SINGLE_RHS:
{
tree rhs = gimple_assign_rhs1 (stmt);
enum tree_code_class kind = TREE_CODE_CLASS (subcode);
if (TREE_CODE (rhs) == SSA_NAME)
{
/* If the RHS is an SSA_NAME, return its known constant value,
if any. */
return (*valueize) (rhs);
}
/* Handle propagating invariant addresses into address
operations. */
else if (TREE_CODE (rhs) == ADDR_EXPR
&& !is_gimple_min_invariant (rhs))
{
poly_int64 offset = 0;
tree base;
base = get_addr_base_and_unit_offset_1 (TREE_OPERAND (rhs, 0),
&offset,
valueize);
if (base
&& (CONSTANT_CLASS_P (base)
|| decl_address_invariant_p (base)))
return build_invariant_address (TREE_TYPE (rhs),
base, offset);
}
else if (TREE_CODE (rhs) == CONSTRUCTOR
&& TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE
&& known_eq (CONSTRUCTOR_NELTS (rhs),
TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs))))
{
unsigned i, nelts;
tree val;
nelts = CONSTRUCTOR_NELTS (rhs);
tree_vector_builder vec (TREE_TYPE (rhs), nelts, 1);
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val)
{
val = (*valueize) (val);
if (TREE_CODE (val) == INTEGER_CST
|| TREE_CODE (val) == REAL_CST
|| TREE_CODE (val) == FIXED_CST)
vec.quick_push (val);
else
return NULL_TREE;
}
return vec.build ();
}
if (subcode == OBJ_TYPE_REF)
{
tree val = (*valueize) (OBJ_TYPE_REF_EXPR (rhs));
/* If callee is constant, we can fold away the wrapper. */
if (is_gimple_min_invariant (val))
return val;
}
if (kind == tcc_reference)
{
if ((TREE_CODE (rhs) == VIEW_CONVERT_EXPR
|| TREE_CODE (rhs) == REALPART_EXPR
|| TREE_CODE (rhs) == IMAGPART_EXPR)
&& TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
{
tree val = (*valueize) (TREE_OPERAND (rhs, 0));
return fold_unary_loc (EXPR_LOCATION (rhs),
TREE_CODE (rhs),
TREE_TYPE (rhs), val);
}
else if (TREE_CODE (rhs) == BIT_FIELD_REF
&& TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
{
tree val = (*valueize) (TREE_OPERAND (rhs, 0));
return fold_ternary_loc (EXPR_LOCATION (rhs),
TREE_CODE (rhs),
TREE_TYPE (rhs), val,
TREE_OPERAND (rhs, 1),
TREE_OPERAND (rhs, 2));
}
else if (TREE_CODE (rhs) == MEM_REF
&& TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
{
tree val = (*valueize) (TREE_OPERAND (rhs, 0));
if (TREE_CODE (val) == ADDR_EXPR
&& is_gimple_min_invariant (val))
{
tree tem = fold_build2 (MEM_REF, TREE_TYPE (rhs),
unshare_expr (val),
TREE_OPERAND (rhs, 1));
if (tem)
rhs = tem;
}
}
return fold_const_aggregate_ref_1 (rhs, valueize);
}
else if (kind == tcc_declaration)
return get_symbol_constant_value (rhs);
return rhs;
}
case GIMPLE_UNARY_RHS:
return NULL_TREE;
case GIMPLE_BINARY_RHS:
/* Translate &x + CST into an invariant form suitable for
further propagation. */
if (subcode == POINTER_PLUS_EXPR)
{
tree op0 = (*valueize) (gimple_assign_rhs1 (stmt));
tree op1 = (*valueize) (gimple_assign_rhs2 (stmt));
if (TREE_CODE (op0) == ADDR_EXPR
&& TREE_CODE (op1) == INTEGER_CST)
{
tree off = fold_convert (ptr_type_node, op1);
return build1_loc
(loc, ADDR_EXPR, TREE_TYPE (op0),
fold_build2 (MEM_REF,
TREE_TYPE (TREE_TYPE (op0)),
unshare_expr (op0), off));
}
}
/* Canonicalize bool != 0 and bool == 0 appearing after
valueization. While gimple_simplify handles this
it can get confused by the ~X == 1 -> X == 0 transform
which we cant reduce to a SSA name or a constant
(and we have no way to tell gimple_simplify to not
consider those transforms in the first place). */
else if (subcode == EQ_EXPR
|| subcode == NE_EXPR)
{
tree lhs = gimple_assign_lhs (stmt);
tree op0 = gimple_assign_rhs1 (stmt);
if (useless_type_conversion_p (TREE_TYPE (lhs),
TREE_TYPE (op0)))
{
tree op1 = (*valueize) (gimple_assign_rhs2 (stmt));
op0 = (*valueize) (op0);
if (TREE_CODE (op0) == INTEGER_CST)
std::swap (op0, op1);
if (TREE_CODE (op1) == INTEGER_CST
&& ((subcode == NE_EXPR && integer_zerop (op1))
|| (subcode == EQ_EXPR && integer_onep (op1))))
return op0;
}
}
return NULL_TREE;
case GIMPLE_TERNARY_RHS:
{
/* Handle ternary operators that can appear in GIMPLE form. */
tree op0 = (*valueize) (gimple_assign_rhs1 (stmt));
tree op1 = (*valueize) (gimple_assign_rhs2 (stmt));
tree op2 = (*valueize) (gimple_assign_rhs3 (stmt));
return fold_ternary_loc (loc, subcode,
TREE_TYPE (gimple_assign_lhs (stmt)),
op0, op1, op2);
}
default:
gcc_unreachable ();
}
}
case GIMPLE_CALL:
{
tree fn;
gcall *call_stmt = as_a <gcall *> (stmt);
if (gimple_call_internal_p (stmt))
{
enum tree_code subcode = ERROR_MARK;
switch (gimple_call_internal_fn (stmt))
{
case IFN_UBSAN_CHECK_ADD:
subcode = PLUS_EXPR;
break;
case IFN_UBSAN_CHECK_SUB:
subcode = MINUS_EXPR;
break;
case IFN_UBSAN_CHECK_MUL:
subcode = MULT_EXPR;
break;
case IFN_BUILTIN_EXPECT:
{
tree arg0 = gimple_call_arg (stmt, 0);
tree op0 = (*valueize) (arg0);
if (TREE_CODE (op0) == INTEGER_CST)
return op0;
return NULL_TREE;
}
default:
return NULL_TREE;
}
tree arg0 = gimple_call_arg (stmt, 0);
tree arg1 = gimple_call_arg (stmt, 1);
tree op0 = (*valueize) (arg0);
tree op1 = (*valueize) (arg1);
if (TREE_CODE (op0) != INTEGER_CST
|| TREE_CODE (op1) != INTEGER_CST)
{
switch (subcode)
{
case MULT_EXPR:
/* x * 0 = 0 * x = 0 without overflow. */
if (integer_zerop (op0) || integer_zerop (op1))
return build_zero_cst (TREE_TYPE (arg0));
break;
case MINUS_EXPR:
/* y - y = 0 without overflow. */
if (operand_equal_p (op0, op1, 0))
return build_zero_cst (TREE_TYPE (arg0));
break;
default:
break;
}
}
tree res
= fold_binary_loc (loc, subcode, TREE_TYPE (arg0), op0, op1);
if (res
&& TREE_CODE (res) == INTEGER_CST
&& !TREE_OVERFLOW (res))
return res;
return NULL_TREE;
}
fn = (*valueize) (gimple_call_fn (stmt));
if (TREE_CODE (fn) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
&& fndecl_built_in_p (TREE_OPERAND (fn, 0))
&& gimple_builtin_call_types_compatible_p (stmt,
TREE_OPERAND (fn, 0)))
{
tree *args = XALLOCAVEC (tree, gimple_call_num_args (stmt));
tree retval;
unsigned i;
for (i = 0; i < gimple_call_num_args (stmt); ++i)
args[i] = (*valueize) (gimple_call_arg (stmt, i));
retval = fold_builtin_call_array (loc,
gimple_call_return_type (call_stmt),
fn, gimple_call_num_args (stmt), args);
if (retval)
{
/* fold_call_expr wraps the result inside a NOP_EXPR. */
STRIP_NOPS (retval);
retval = fold_convert (gimple_call_return_type (call_stmt),
retval);
}
return retval;
}
return NULL_TREE;
}
default:
return NULL_TREE;
}
}
/* Fold STMT to a constant using VALUEIZE to valueize SSA names.
Returns NULL_TREE if folding to a constant is not possible, otherwise
returns a constant according to is_gimple_min_invariant. */
tree
gimple_fold_stmt_to_constant (gimple *stmt, tree (*valueize) (tree))
{
tree res = gimple_fold_stmt_to_constant_1 (stmt, valueize);
if (res && is_gimple_min_invariant (res))
return res;
return NULL_TREE;
}
/* The following set of functions are supposed to fold references using
their constant initializers. */
/* See if we can find constructor defining value of BASE.
When we know the consructor with constant offset (such as
base is array[40] and we do know constructor of array), then
BIT_OFFSET is adjusted accordingly.
As a special case, return error_mark_node when constructor
is not explicitly available, but it is known to be zero
such as 'static const int a;'. */
static tree
get_base_constructor (tree base, poly_int64 *bit_offset,
tree (*valueize)(tree))
{
poly_int64 bit_offset2, size, max_size;
bool reverse;
if (TREE_CODE (base) == MEM_REF)
{
poly_offset_int boff = *bit_offset + mem_ref_offset (base) * BITS_PER_UNIT;
if (!boff.to_shwi (bit_offset))
return NULL_TREE;
if (valueize
&& TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
base = valueize (TREE_OPERAND (base, 0));
if (!base || TREE_CODE (base) != ADDR_EXPR)
return NULL_TREE;
base = TREE_OPERAND (base, 0);
}
else if (valueize
&& TREE_CODE (base) == SSA_NAME)
base = valueize (base);
/* Get a CONSTRUCTOR. If BASE is a VAR_DECL, get its
DECL_INITIAL. If BASE is a nested reference into another
ARRAY_REF or COMPONENT_REF, make a recursive call to resolve
the inner reference. */
switch (TREE_CODE (base))
{
case VAR_DECL:
case CONST_DECL:
{
tree init = ctor_for_folding (base);
/* Our semantic is exact opposite of ctor_for_folding;
NULL means unknown, while error_mark_node is 0. */
if (init == error_mark_node)
return NULL_TREE;
if (!init)
return error_mark_node;
return init;
}
case VIEW_CONVERT_EXPR:
return get_base_constructor (TREE_OPERAND (base, 0),
bit_offset, valueize);
case ARRAY_REF:
case COMPONENT_REF:
base = get_ref_base_and_extent (base, &bit_offset2, &size, &max_size,
&reverse);
if (!known_size_p (max_size) || maybe_ne (size, max_size))
return NULL_TREE;
*bit_offset += bit_offset2;
return get_base_constructor (base, bit_offset, valueize);
case CONSTRUCTOR:
return base;
default:
if (CONSTANT_CLASS_P (base))
return base;
return NULL_TREE;
}
}
/* CTOR is a CONSTRUCTOR of an array or vector type. Fold a reference of SIZE
bits to the memory at bit OFFSET. If non-null, TYPE is the expected type of
the reference; otherwise the type of the referenced element is used instead.
When SIZE is zero, attempt to fold a reference to the entire element OFFSET
refers to. Increment *SUBOFF by the bit offset of the accessed element. */
static tree
fold_array_ctor_reference (tree type, tree ctor,
unsigned HOST_WIDE_INT offset,
unsigned HOST_WIDE_INT size,
tree from_decl,
unsigned HOST_WIDE_INT *suboff)
{
offset_int low_bound;
offset_int elt_size;
offset_int access_index;
tree domain_type = NULL_TREE;
HOST_WIDE_INT inner_offset;
/* Compute low bound and elt size. */
if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
if (domain_type && TYPE_MIN_VALUE (domain_type))
{
/* Static constructors for variably sized objects make no sense. */
if (TREE_CODE (TYPE_MIN_VALUE (domain_type)) != INTEGER_CST)
return NULL_TREE;
low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type));
}
else
low_bound = 0;
/* Static constructors for variably sized objects make no sense. */
if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor)))) != INTEGER_CST)
return NULL_TREE;
elt_size = wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor))));
/* When TYPE is non-null, verify that it specifies a constant-sized
access of a multiple of the array element size. Avoid division
by zero below when ELT_SIZE is zero, such as with the result of
an initializer for a zero-length array or an empty struct. */
if (elt_size == 0
|| (type
&& (!TYPE_SIZE_UNIT (type)
|| TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)))
return NULL_TREE;
/* Compute the array index we look for. */
access_index = wi::udiv_trunc (offset_int (offset / BITS_PER_UNIT),
elt_size);
access_index += low_bound;
/* And offset within the access. */
inner_offset = offset % (elt_size.to_uhwi () * BITS_PER_UNIT);
unsigned HOST_WIDE_INT elt_sz = elt_size.to_uhwi ();
if (size > elt_sz * BITS_PER_UNIT)
{
/* native_encode_expr constraints. */
if (size > MAX_BITSIZE_MODE_ANY_MODE
|| size % BITS_PER_UNIT != 0
|| inner_offset % BITS_PER_UNIT != 0
|| elt_sz > MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT)
return NULL_TREE;
unsigned ctor_idx;
tree val = get_array_ctor_element_at_index (ctor, access_index,
&ctor_idx);
if (!val && ctor_idx >= CONSTRUCTOR_NELTS (ctor))
return build_zero_cst (type);
/* native-encode adjacent ctor elements. */
unsigned char buf[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
unsigned bufoff = 0;
offset_int index = 0;
offset_int max_index = access_index;
constructor_elt *elt = CONSTRUCTOR_ELT (ctor, ctor_idx);
if (!val)
val = build_zero_cst (TREE_TYPE (TREE_TYPE (ctor)));
else if (!CONSTANT_CLASS_P (val))
return NULL_TREE;
if (!elt->index)
;
else if (TREE_CODE (elt->index) == RANGE_EXPR)
{
index = wi::to_offset (TREE_OPERAND (elt->index, 0));
max_index = wi::to_offset (TREE_OPERAND (elt->index, 1));
}
else
index = max_index = wi::to_offset (elt->index);
index = wi::umax (index, access_index);
do
{
if (bufoff + elt_sz > sizeof (buf))
elt_sz = sizeof (buf) - bufoff;
int len = native_encode_expr (val, buf + bufoff, elt_sz,
inner_offset / BITS_PER_UNIT);
if (len != (int) elt_sz - inner_offset / BITS_PER_UNIT)
return NULL_TREE;
inner_offset = 0;
bufoff += len;
access_index += 1;
if (wi::cmpu (access_index, index) == 0)
val = elt->value;
else if (wi::cmpu (access_index, max_index) > 0)
{
ctor_idx++;
if (ctor_idx >= CONSTRUCTOR_NELTS (ctor))
{
val = build_zero_cst (TREE_TYPE (TREE_TYPE (ctor)));
++max_index;
}
else
{
elt = CONSTRUCTOR_ELT (ctor, ctor_idx);
index = 0;
max_index = access_index;
if (!elt->index)
;
else if (TREE_CODE (elt->index) == RANGE_EXPR)
{
index = wi::to_offset (TREE_OPERAND (elt->index, 0));
max_index = wi::to_offset (TREE_OPERAND (elt->index, 1));
}
else
index = max_index = wi::to_offset (elt->index);
index = wi::umax (index, access_index);
if (wi::cmpu (access_index, index) == 0)
val = elt->value;
else
val = build_zero_cst (TREE_TYPE (TREE_TYPE (ctor)));
}
}
}
while (bufoff < size / BITS_PER_UNIT);
*suboff += size;
return native_interpret_expr (type, buf, size / BITS_PER_UNIT);
}
if (tree val = get_array_ctor_element_at_index (ctor, access_index))
{
if (!size && TREE_CODE (val) != CONSTRUCTOR)
{
/* For the final reference to the entire accessed element
(SIZE is zero), reset INNER_OFFSET, disegard TYPE (which
may be null) in favor of the type of the element, and set
SIZE to the size of the accessed element. */
inner_offset = 0;
type = TREE_TYPE (val);
size = elt_sz * BITS_PER_UNIT;
}
else if (size && access_index < CONSTRUCTOR_NELTS (ctor) - 1
&& TREE_CODE (val) == CONSTRUCTOR
&& (elt_sz * BITS_PER_UNIT - inner_offset) < size)
/* If this isn't the last element in the CTOR and a CTOR itself
and it does not cover the whole object we are requesting give up
since we're not set up for combining from multiple CTORs. */
return NULL_TREE;
*suboff += access_index.to_uhwi () * elt_sz * BITS_PER_UNIT;
return fold_ctor_reference (type, val, inner_offset, size, from_decl,
suboff);
}
/* Memory not explicitly mentioned in constructor is 0 (or
the reference is out of range). */
return type ? build_zero_cst (type) : NULL_TREE;
}
/* CTOR is a CONSTRUCTOR of a record or union type. Fold a reference of SIZE
bits to the memory at bit OFFSET. If non-null, TYPE is the expected type of
the reference; otherwise the type of the referenced member is used instead.
When SIZE is zero, attempt to fold a reference to the entire member OFFSET
refers to. Increment *SUBOFF by the bit offset of the accessed member. */
static tree
fold_nonarray_ctor_reference (tree type, tree ctor,
unsigned HOST_WIDE_INT offset,
unsigned HOST_WIDE_INT size,
tree from_decl,
unsigned HOST_WIDE_INT *suboff)
{
unsigned HOST_WIDE_INT cnt;
tree cfield, cval;
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
{
tree byte_offset = DECL_FIELD_OFFSET (cfield);
tree field_offset = DECL_FIELD_BIT_OFFSET (cfield);
tree field_size = DECL_SIZE (cfield);
if (!field_size)
{
/* Determine the size of the flexible array member from
the size of the initializer provided for it. */
field_size = TYPE_SIZE (TREE_TYPE (cval));
}
/* Variable sized objects in static constructors makes no sense,
but field_size can be NULL for flexible array members. */
gcc_assert (TREE_CODE (field_offset) == INTEGER_CST
&& TREE_CODE (byte_offset) == INTEGER_CST
&& (field_size != NULL_TREE
? TREE_CODE (field_size) == INTEGER_CST
: TREE_CODE (TREE_TYPE (cfield)) == ARRAY_TYPE));
/* Compute bit offset of the field. */
offset_int bitoffset
= (wi::to_offset (field_offset)
+ (wi::to_offset (byte_offset) << LOG2_BITS_PER_UNIT));
/* Compute bit offset where the field ends. */
offset_int bitoffset_end;
if (field_size != NULL_TREE)
bitoffset_end = bitoffset + wi::to_offset (field_size);
else
bitoffset_end = 0;
/* Compute the bit offset of the end of the desired access.
As a special case, if the size of the desired access is
zero, assume the access is to the entire field (and let
the caller make any necessary adjustments by storing
the actual bounds of the field in FIELDBOUNDS). */
offset_int access_end = offset_int (offset);
if (size)
access_end += size;
else
access_end = bitoffset_end;
/* Is there any overlap between the desired access at
[OFFSET, OFFSET+SIZE) and the offset of the field within
the object at [BITOFFSET, BITOFFSET_END)? */
if (wi::cmps (access_end, bitoffset) > 0
&& (field_size == NULL_TREE
|| wi::lts_p (offset, bitoffset_end)))
{
*suboff += bitoffset.to_uhwi ();
if (!size && TREE_CODE (cval) != CONSTRUCTOR)
{
/* For the final reference to the entire accessed member
(SIZE is zero), reset OFFSET, disegard TYPE (which may
be null) in favor of the type of the member, and set
SIZE to the size of the accessed member. */
offset = bitoffset.to_uhwi ();
type = TREE_TYPE (cval);
size = (bitoffset_end - bitoffset).to_uhwi ();
}
/* We do have overlap. Now see if the field is large enough
to cover the access. Give up for accesses that extend
beyond the end of the object or that span multiple fields. */
if (wi::cmps (access_end, bitoffset_end) > 0)
return NULL_TREE;
if (offset < bitoffset)
return NULL_TREE;
offset_int inner_offset = offset_int (offset) - bitoffset;
/* Integral bit-fields are left-justified on big-endian targets, so
we must arrange for native_encode_int to start at their MSB. */
if (DECL_BIT_FIELD (cfield) && INTEGRAL_TYPE_P (TREE_TYPE (cfield)))
{
if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
return NULL_TREE;
const unsigned int encoding_size
= GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (TREE_TYPE (cfield)));
if (BYTES_BIG_ENDIAN)
inner_offset += encoding_size - wi::to_offset (field_size);
}
return fold_ctor_reference (type, cval,
inner_offset.to_uhwi (), size,
from_decl, suboff);
}
}
if (!type)
return NULL_TREE;
return build_zero_cst (type);
}
/* CTOR is a value initializing memory. Fold a reference of TYPE and
bit size POLY_SIZE to the memory at bit POLY_OFFSET. When POLY_SIZE
is zero, attempt to fold a reference to the entire subobject
which OFFSET refers to. This is used when folding accesses to
string members of aggregates. When non-null, set *SUBOFF to
the bit offset of the accessed subobject. */
tree
fold_ctor_reference (tree type, tree ctor, const poly_uint64 &poly_offset,
const poly_uint64 &poly_size, tree from_decl,
unsigned HOST_WIDE_INT *suboff /* = NULL */)
{
tree ret;
/* We found the field with exact match. */
if (type
&& useless_type_conversion_p (type, TREE_TYPE (ctor))
&& known_eq (poly_offset, 0U))
return canonicalize_constructor_val (unshare_expr (ctor), from_decl);
/* The remaining optimizations need a constant size and offset. */
unsigned HOST_WIDE_INT size, offset;
if (!poly_size.is_constant (&size) || !poly_offset.is_constant (&offset))
return NULL_TREE;
/* We are at the end of walk, see if we can view convert the
result. */
if (!AGGREGATE_TYPE_P (TREE_TYPE (ctor)) && !offset
/* VIEW_CONVERT_EXPR is defined only for matching sizes. */
&& known_eq (wi::to_poly_widest (TYPE_SIZE (type)), size)
&& known_eq (wi::to_poly_widest (TYPE_SIZE (TREE_TYPE (ctor))), size))
{
ret = canonicalize_constructor_val (unshare_expr (ctor), from_decl);
if (ret)
{
ret = fold_unary (VIEW_CONVERT_EXPR, type, ret);
if (ret)
STRIP_USELESS_TYPE_CONVERSION (ret);
}
return ret;
}
/* For constants and byte-aligned/sized reads, try to go through
native_encode/interpret. */
if (CONSTANT_CLASS_P (ctor)
&& BITS_PER_UNIT == 8
&& offset % BITS_PER_UNIT == 0
&& offset / BITS_PER_UNIT <= INT_MAX
&& size % BITS_PER_UNIT == 0
&& size <= MAX_BITSIZE_MODE_ANY_MODE
&& can_native_interpret_type_p (type))
{
unsigned char buf[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
int len = native_encode_expr (ctor, buf, size / BITS_PER_UNIT,
offset / BITS_PER_UNIT);
if (len > 0)
return native_interpret_expr (type, buf, len);
}
/* For constructors, try first a recursive local processing, but in any case
this requires the native storage order. */
if (TREE_CODE (ctor) == CONSTRUCTOR
&& !(AGGREGATE_TYPE_P (TREE_TYPE (ctor))
&& TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (ctor))))
{
unsigned HOST_WIDE_INT dummy = 0;
if (!suboff)
suboff = &dummy;
tree ret;
if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE
|| TREE_CODE (TREE_TYPE (ctor)) == VECTOR_TYPE)
ret = fold_array_ctor_reference (type, ctor, offset, size,
from_decl, suboff);
else
ret = fold_nonarray_ctor_reference (type, ctor, offset, size,
from_decl, suboff);
/* Otherwise fall back to native_encode_initializer. This may be done
only from the outermost fold_ctor_reference call (because it itself
recurses into CONSTRUCTORs and doesn't update suboff). */
if (ret == NULL_TREE
&& suboff == &dummy
&& BITS_PER_UNIT == 8
&& offset % BITS_PER_UNIT == 0
&& offset / BITS_PER_UNIT <= INT_MAX
&& size % BITS_PER_UNIT == 0
&& size <= MAX_BITSIZE_MODE_ANY_MODE
&& can_native_interpret_type_p (type))
{
unsigned char buf[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
int len = native_encode_initializer (ctor, buf, size / BITS_PER_UNIT,
offset / BITS_PER_UNIT);
if (len > 0)
return native_interpret_expr (type, buf, len);
}
return ret;
}
return NULL_TREE;
}
/* Return the tree representing the element referenced by T if T is an
ARRAY_REF or COMPONENT_REF into constant aggregates valuezing SSA
names using VALUEIZE. Return NULL_TREE otherwise. */
tree
fold_const_aggregate_ref_1 (tree t, tree (*valueize) (tree))
{
tree ctor, idx, base;
poly_int64 offset, size, max_size;
tree tem;
bool reverse;
if (TREE_THIS_VOLATILE (t))
return NULL_TREE;
if (DECL_P (t))
return get_symbol_constant_value (t);
tem = fold_read_from_constant_string (t);
if (tem)
return tem;
switch (TREE_CODE (t))
{
case ARRAY_REF:
case ARRAY_RANGE_REF:
/* Constant indexes are handled well by get_base_constructor.
Only special case variable offsets.
FIXME: This code can't handle nested references with variable indexes
(they will be handled only by iteration of ccp). Perhaps we can bring
get_ref_base_and_extent here and make it use a valueize callback. */
if (TREE_CODE (TREE_OPERAND (t, 1)) == SSA_NAME
&& valueize
&& (idx = (*valueize) (TREE_OPERAND (t, 1)))
&& poly_int_tree_p (idx))
{
tree low_bound, unit_size;
/* If the resulting bit-offset is constant, track it. */
if ((low_bound = array_ref_low_bound (t),
poly_int_tree_p (low_bound))
&& (unit_size = array_ref_element_size (t),
tree_fits_uhwi_p (unit_size)))
{
poly_offset_int woffset
= wi::sext (wi::to_poly_offset (idx)
- wi::to_poly_offset (low_bound),
TYPE_PRECISION (sizetype));
woffset *= tree_to_uhwi (unit_size);
woffset *= BITS_PER_UNIT;
if (woffset.to_shwi (&offset))
{
base = TREE_OPERAND (t, 0);
ctor = get_base_constructor (base, &offset, valueize);
/* Empty constructor. Always fold to 0. */
if (ctor == error_mark_node)
return build_zero_cst (TREE_TYPE (t));
/* Out of bound array access. Value is undefined,
but don't fold. */
if (maybe_lt (offset, 0))
return NULL_TREE;
/* We cannot determine ctor. */
if (!ctor)
return NULL_TREE;
return fold_ctor_reference (TREE_TYPE (t), ctor, offset,
tree_to_uhwi (unit_size)
* BITS_PER_UNIT,
base);
}
}
}
/* Fallthru. */
case COMPONENT_REF:
case BIT_FIELD_REF:
case TARGET_MEM_REF:
case MEM_REF:
base = get_ref_base_and_extent (t, &offset, &size, &max_size, &reverse);
ctor = get_base_constructor (base, &offset, valueize);
/* Empty constructor. Always fold to 0. */
if (ctor == error_mark_node)
return build_zero_cst (TREE_TYPE (t));
/* We do not know precise address. */
if (!known_size_p (max_size) || maybe_ne (max_size, size))
return NULL_TREE;
/* We cannot determine ctor. */
if (!ctor)
return NULL_TREE;
/* Out of bound array access. Value is undefined, but don't fold. */
if (maybe_lt (offset, 0))
return NULL_TREE;
tem = fold_ctor_reference (TREE_TYPE (t), ctor, offset, size, base);
if (tem)
return tem;
/* For bit field reads try to read the representative and
adjust. */
if (TREE_CODE (t) == COMPONENT_REF
&& DECL_BIT_FIELD (TREE_OPERAND (t, 1))
&& DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)))
{
HOST_WIDE_INT csize, coffset;
tree field = TREE_OPERAND (t, 1);
tree repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
if (INTEGRAL_TYPE_P (TREE_TYPE (repr))
&& size.is_constant (&csize)
&& offset.is_constant (&coffset)
&& (coffset % BITS_PER_UNIT != 0
|| csize % BITS_PER_UNIT != 0)
&& !reverse
&& BYTES_BIG_ENDIAN == WORDS_BIG_ENDIAN)
{
poly_int64 bitoffset;
poly_uint64 field_offset, repr_offset;
if (poly_int_tree_p (DECL_FIELD_OFFSET (field), &field_offset)
&& poly_int_tree_p (DECL_FIELD_OFFSET (repr), &repr_offset))
bitoffset = (field_offset - repr_offset) * BITS_PER_UNIT;
else
bitoffset = 0;
bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
- tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
HOST_WIDE_INT bitoff;
int diff = (TYPE_PRECISION (TREE_TYPE (repr))
- TYPE_PRECISION (TREE_TYPE (field)));
if (bitoffset.is_constant (&bitoff)
&& bitoff >= 0
&& bitoff <= diff)
{
offset -= bitoff;
size = tree_to_uhwi (DECL_SIZE (repr));
tem = fold_ctor_reference (TREE_TYPE (repr), ctor, offset,
size, base);
if (tem && TREE_CODE (tem) == INTEGER_CST)
{
if (!BYTES_BIG_ENDIAN)
tem = wide_int_to_tree (TREE_TYPE (field),
wi::lrshift (wi::to_wide (tem),
bitoff));
else
tem = wide_int_to_tree (TREE_TYPE (field),
wi::lrshift (wi::to_wide (tem),
diff - bitoff));
return tem;
}
}
}
}
break;
case REALPART_EXPR:
case IMAGPART_EXPR:
{
tree c = fold_const_aggregate_ref_1 (TREE_OPERAND (t, 0), valueize);
if (c && TREE_CODE (c) == COMPLEX_CST)
return fold_build1_loc (EXPR_LOCATION (t),
TREE_CODE (t), TREE_TYPE (t), c);
break;
}
default:
break;
}
return NULL_TREE;
}
tree
fold_const_aggregate_ref (tree t)
{
return fold_const_aggregate_ref_1 (t, NULL);
}
/* Lookup virtual method with index TOKEN in a virtual table V
at OFFSET.
Set CAN_REFER if non-NULL to false if method
is not referable or if the virtual table is ill-formed (such as rewriten
by non-C++ produced symbol). Otherwise just return NULL in that calse. */
tree
gimple_get_virt_method_for_vtable (HOST_WIDE_INT token,
tree v,
unsigned HOST_WIDE_INT offset,
bool *can_refer)
{
tree vtable = v, init, fn;
unsigned HOST_WIDE_INT size;
unsigned HOST_WIDE_INT elt_size, access_index;
tree domain_type;
if (can_refer)
*can_refer = true;
/* First of all double check we have virtual table. */
if (!VAR_P (v) || !DECL_VIRTUAL_P (v))
{
/* Pass down that we lost track of the target. */
if (can_refer)
*can_refer = false;
return NULL_TREE;
}
init = ctor_for_folding (v);
/* The virtual tables should always be born with constructors
and we always should assume that they are avaialble for
folding. At the moment we do not stream them in all cases,
but it should never happen that ctor seem unreachable. */
gcc_assert (init);
if (init == error_mark_node)
{
/* Pass down that we lost track of the target. */
if (can_refer)
*can_refer = false;
return NULL_TREE;
}
gcc_checking_assert (TREE_CODE (TREE_TYPE (v)) == ARRAY_TYPE);
size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (v))));
offset *= BITS_PER_UNIT;
offset += token * size;
/* Lookup the value in the constructor that is assumed to be array.
This is equivalent to
fn = fold_ctor_reference (TREE_TYPE (TREE_TYPE (v)), init,
offset, size, NULL);
but in a constant time. We expect that frontend produced a simple
array without indexed initializers. */
gcc_checking_assert (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE);
domain_type = TYPE_DOMAIN (TREE_TYPE (init));
gcc_checking_assert (integer_zerop (TYPE_MIN_VALUE (domain_type)));
elt_size = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (init))));
access_index = offset / BITS_PER_UNIT / elt_size;
gcc_checking_assert (offset % (elt_size * BITS_PER_UNIT) == 0);
/* The C++ FE can now produce indexed fields, and we check if the indexes
match. */
if (access_index < CONSTRUCTOR_NELTS (init))
{
fn = CONSTRUCTOR_ELT (init, access_index)->value;
tree idx = CONSTRUCTOR_ELT (init, access_index)->index;
gcc_checking_assert (!idx || tree_to_uhwi (idx) == access_index);
STRIP_NOPS (fn);
}
else
fn = NULL;
/* For type inconsistent program we may end up looking up virtual method
in virtual table that does not contain TOKEN entries. We may overrun
the virtual table and pick up a constant or RTTI info pointer.
In any case the call is undefined. */
if (!fn
|| (TREE_CODE (fn) != ADDR_EXPR && TREE_CODE (fn) != FDESC_EXPR)
|| TREE_CODE (TREE_OPERAND (fn, 0)) != FUNCTION_DECL)
fn = builtin_decl_unreachable ();
else
{
fn = TREE_OPERAND (fn, 0);
/* When cgraph node is missing and function is not public, we cannot
devirtualize. This can happen in WHOPR when the actual method
ends up in other partition, because we found devirtualization
possibility too late. */
if (!can_refer_decl_in_current_unit_p (fn, vtable))
{
if (can_refer)
{
*can_refer = false;
return fn;
}
return NULL_TREE;
}
}
/* Make sure we create a cgraph node for functions we'll reference.
They can be non-existent if the reference comes from an entry
of an external vtable for example. */
cgraph_node::get_create (fn);
return fn;
}
/* Return a declaration of a function which an OBJ_TYPE_REF references. TOKEN
is integer form of OBJ_TYPE_REF_TOKEN of the reference expression.
KNOWN_BINFO carries the binfo describing the true type of
OBJ_TYPE_REF_OBJECT(REF).
Set CAN_REFER if non-NULL to false if method
is not referable or if the virtual table is ill-formed (such as rewriten
by non-C++ produced symbol). Otherwise just return NULL in that calse. */
tree
gimple_get_virt_method_for_binfo (HOST_WIDE_INT token, tree known_binfo,
bool *can_refer)
{
unsigned HOST_WIDE_INT offset;
tree v;
v = BINFO_VTABLE (known_binfo);
/* If there is no virtual methods table, leave the OBJ_TYPE_REF alone. */
if (!v)
return NULL_TREE;
if (!vtable_pointer_value_to_vtable (v, &v, &offset))
{
if (can_refer)
*can_refer = false;
return NULL_TREE;
}
return gimple_get_virt_method_for_vtable (token, v, offset, can_refer);
}
/* Given a pointer value T, return a simplified version of an
indirection through T, or NULL_TREE if no simplification is
possible. Note that the resulting type may be different from
the type pointed to in the sense that it is still compatible
from the langhooks point of view. */
tree
gimple_fold_indirect_ref (tree t)
{
tree ptype = TREE_TYPE (t), type = TREE_TYPE (ptype);
tree sub = t;
tree subtype;
STRIP_NOPS (sub);
subtype = TREE_TYPE (sub);
if (!POINTER_TYPE_P (subtype)
|| TYPE_REF_CAN_ALIAS_ALL (ptype))
return NULL_TREE;
if (TREE_CODE (sub) == ADDR_EXPR)
{
tree op = TREE_OPERAND (sub, 0);
tree optype = TREE_TYPE (op);
/* *&p => p */
if (useless_type_conversion_p (type, optype))
return op;
/* *(foo *)&fooarray => fooarray[0] */
if (TREE_CODE (optype) == ARRAY_TYPE
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (optype))) == INTEGER_CST
&& useless_type_conversion_p (type, TREE_TYPE (optype)))
{
tree type_domain = TYPE_DOMAIN (optype);
tree min_val = size_zero_node;
if (type_domain && TYPE_MIN_VALUE (type_domain))
min_val = TYPE_MIN_VALUE (type_domain);
if (TREE_CODE (min_val) == INTEGER_CST)
return build4 (ARRAY_REF, type, op, min_val, NULL_TREE, NULL_TREE);
}
/* *(foo *)&complexfoo => __real__ complexfoo */
else if (TREE_CODE (optype) == COMPLEX_TYPE
&& useless_type_conversion_p (type, TREE_TYPE (optype)))
return fold_build1 (REALPART_EXPR, type, op);
/* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
else if (TREE_CODE (optype) == VECTOR_TYPE
&& useless_type_conversion_p (type, TREE_TYPE (optype)))
{
tree part_width = TYPE_SIZE (type);
tree index = bitsize_int (0);
return fold_build3 (BIT_FIELD_REF, type, op, part_width, index);
}
}
/* *(p + CST) -> ... */
if (TREE_CODE (sub) == POINTER_PLUS_EXPR
&& TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
{
tree addr = TREE_OPERAND (sub, 0);
tree off = TREE_OPERAND (sub, 1);
tree addrtype;
STRIP_NOPS (addr);
addrtype = TREE_TYPE (addr);
/* ((foo*)&vectorfoo)[1] -> BIT_FIELD_REF<vectorfoo,...> */
if (TREE_CODE (addr) == ADDR_EXPR
&& TREE_CODE (TREE_TYPE (addrtype)) == VECTOR_TYPE
&& useless_type_conversion_p (type, TREE_TYPE (TREE_TYPE (addrtype)))
&& tree_fits_uhwi_p (off))
{
unsigned HOST_WIDE_INT offset = tree_to_uhwi (off);
tree part_width = TYPE_SIZE (type);
unsigned HOST_WIDE_INT part_widthi
= tree_to_shwi (part_width) / BITS_PER_UNIT;
unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
tree index = bitsize_int (indexi);
if (known_lt (offset / part_widthi,
TYPE_VECTOR_SUBPARTS (TREE_TYPE (addrtype))))
return fold_build3 (BIT_FIELD_REF, type, TREE_OPERAND (addr, 0),
part_width, index);
}
/* ((foo*)&complexfoo)[1] -> __imag__ complexfoo */
if (TREE_CODE (addr) == ADDR_EXPR
&& TREE_CODE (TREE_TYPE (addrtype)) == COMPLEX_TYPE
&& useless_type_conversion_p (type, TREE_TYPE (TREE_TYPE (addrtype))))
{
tree size = TYPE_SIZE_UNIT (type);
if (tree_int_cst_equal (size, off))
return fold_build1 (IMAGPART_EXPR, type, TREE_OPERAND (addr, 0));
}
/* *(p + CST) -> MEM_REF <p, CST>. */
if (TREE_CODE (addr) != ADDR_EXPR
|| DECL_P (TREE_OPERAND (addr, 0)))
return fold_build2 (MEM_REF, type,
addr,
wide_int_to_tree (ptype, wi::to_wide (off)));
}
/* *(foo *)fooarrptr => (*fooarrptr)[0] */
if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (subtype)))) == INTEGER_CST
&& useless_type_conversion_p (type, TREE_TYPE (TREE_TYPE (subtype))))
{
tree type_domain;
tree min_val = size_zero_node;
tree osub = sub;
sub = gimple_fold_indirect_ref (sub);
if (! sub)
sub = build1 (INDIRECT_REF, TREE_TYPE (subtype), osub);
type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
if (type_domain && TYPE_MIN_VALUE (type_domain))
min_val = TYPE_MIN_VALUE (type_domain);
if (TREE_CODE (min_val) == INTEGER_CST)
return build4 (ARRAY_REF, type, sub, min_val, NULL_TREE, NULL_TREE);
}
return NULL_TREE;
}
/* Return true if CODE is an operation that when operating on signed
integer types involves undefined behavior on overflow and the
operation can be expressed with unsigned arithmetic. */
bool
arith_code_with_undefined_signed_overflow (tree_code code)
{
switch (code)
{
case ABS_EXPR:
case PLUS_EXPR:
case MINUS_EXPR:
case MULT_EXPR:
case NEGATE_EXPR:
case POINTER_PLUS_EXPR:
return true;
default:
return false;
}
}
/* Rewrite STMT, an assignment with a signed integer or pointer arithmetic
operation that can be transformed to unsigned arithmetic by converting
its operand, carrying out the operation in the corresponding unsigned
type and converting the result back to the original type.
If IN_PLACE is true, *GSI points to STMT, adjust the stmt in place and
return NULL.
Otherwise returns a sequence of statements that replace STMT and also
contain a modified form of STMT itself. */
static gimple_seq
rewrite_to_defined_overflow (gimple_stmt_iterator *gsi, gimple *stmt,
bool in_place)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "rewriting stmt with undefined signed "
"overflow ");
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
}
tree lhs = gimple_assign_lhs (stmt);
tree type = unsigned_type_for (TREE_TYPE (lhs));
gimple_seq stmts = NULL;
if (gimple_assign_rhs_code (stmt) == ABS_EXPR)
gimple_assign_set_rhs_code (stmt, ABSU_EXPR);
else
for (unsigned i = 1; i < gimple_num_ops (stmt); ++i)
{
tree op = gimple_op (stmt, i);
op = gimple_convert (&stmts, type, op);
gimple_set_op (stmt, i, op);
}
gimple_assign_set_lhs (stmt, make_ssa_name (type, stmt));
if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR)
gimple_assign_set_rhs_code (stmt, PLUS_EXPR);
gimple_set_modified (stmt, true);
if (in_place)
{
if (stmts)
gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
stmts = NULL;
}
else
gimple_seq_add_stmt (&stmts, stmt);
gimple *cvt = gimple_build_assign (lhs, NOP_EXPR, gimple_assign_lhs (stmt));
if (in_place)
{
gsi_insert_after (gsi, cvt, GSI_SAME_STMT);
update_stmt (stmt);
}
else
gimple_seq_add_stmt (&stmts, cvt);
return stmts;
}
void
rewrite_to_defined_overflow (gimple_stmt_iterator *gsi)
{
rewrite_to_defined_overflow (gsi, gsi_stmt (*gsi), true);
}
gimple_seq
rewrite_to_defined_overflow (gimple *stmt)
{
return rewrite_to_defined_overflow (nullptr, stmt, false);
}
/* The valueization hook we use for the gimple_build API simplification.
This makes us match fold_buildN behavior by only combining with
statements in the sequence(s) we are currently building. */
static tree
gimple_build_valueize (tree op)
{
if (gimple_bb (SSA_NAME_DEF_STMT (op)) == NULL)
return op;
return NULL_TREE;
}
/* Helper for gimple_build to perform the final insertion of stmts on SEQ. */
static inline void
gimple_build_insert_seq (gimple_stmt_iterator *gsi,
bool before, gsi_iterator_update update,
gimple_seq seq)
{
if (before)
{
if (gsi->bb)
gsi_insert_seq_before (gsi, seq, update);
else
gsi_insert_seq_before_without_update (gsi, seq, update);
}
else
{
if (gsi->bb)
gsi_insert_seq_after (gsi, seq, update);
else
gsi_insert_seq_after_without_update (gsi, seq, update);
}
}
/* Build the expression CODE OP0 of type TYPE with location LOC,
simplifying it first if possible. Returns the built
expression value and inserts statements possibly defining it
before GSI if BEFORE is true or after GSI if false and advance
the iterator accordingly.
If gsi refers to a basic block simplifying is allowed to look
at all SSA defs while when it does not it is restricted to
SSA defs that are not associated with a basic block yet,
indicating they belong to the currently building sequence. */
tree
gimple_build (gimple_stmt_iterator *gsi,
bool before, gsi_iterator_update update,
location_t loc, enum tree_code code, tree type, tree op0)
{
gimple_seq seq = NULL;
tree res
= gimple_simplify (code, type, op0, &seq,
gsi->bb ? follow_all_ssa_edges : gimple_build_valueize);
if (!res)
{
res = create_tmp_reg_or_ssa_name (type);
gimple *stmt;
if (code == REALPART_EXPR
|| code == IMAGPART_EXPR
|| code == VIEW_CONVERT_EXPR)
stmt = gimple_build_assign (res, code, build1 (code, type, op0));
else
stmt = gimple_build_assign (res, code, op0);
gimple_set_location (stmt, loc);
gimple_seq_add_stmt_without_update (&seq, stmt);
}
gimple_build_insert_seq (gsi, before, update, seq);
return res;
}
/* Build the expression OP0 CODE OP1 of type TYPE with location LOC,
simplifying it first if possible. Returns the built
expression value inserting any new statements at GSI honoring BEFORE
and UPDATE. */
tree
gimple_build (gimple_stmt_iterator *gsi,
bool before, gsi_iterator_update update,
location_t loc, enum tree_code code, tree type,
tree op0, tree op1)
{
gimple_seq seq = NULL;
tree res
= gimple_simplify (code, type, op0, op1, &seq,
gsi->bb ? follow_all_ssa_edges : gimple_build_valueize);
if (!res)
{
res = create_tmp_reg_or_ssa_name (type);
gimple *stmt = gimple_build_assign (res, code, op0, op1);
gimple_set_location (stmt, loc);
gimple_seq_add_stmt_without_update (&seq, stmt);
}
gimple_build_insert_seq (gsi, before, update, seq);
return res;
}
/* Build the expression (CODE OP0 OP1 OP2) of type TYPE with location LOC,
simplifying it first if possible. Returns the built
expression value inserting any new statements at GSI honoring BEFORE
and UPDATE. */
tree
gimple_build (gimple_stmt_iterator *gsi,
bool before, gsi_iterator_update update,
location_t loc, enum tree_code code, tree type,
tree op0, tree op1, tree op2)
{
gimple_seq seq = NULL;
tree res
= gimple_simplify (code, type, op0, op1, op2, &seq,
gsi->bb ? follow_all_ssa_edges : gimple_build_valueize);
if (!res)
{
res = create_tmp_reg_or_ssa_name (type);
gimple *stmt;
if (code == BIT_FIELD_REF)
stmt = gimple_build_assign (res, code,
build3 (code, type, op0, op1, op2));
else
stmt = gimple_build_assign (res, code, op0, op1, op2);
gimple_set_location (stmt, loc);
gimple_seq_add_stmt_without_update (&seq, stmt);
}
gimple_build_insert_seq (gsi, before, update, seq);
return res;
}
/* Build the call FN () with a result of type TYPE (or no result if TYPE is
void) with a location LOC. Returns the built expression value (or NULL_TREE
if TYPE is void) inserting any new statements at GSI honoring BEFORE
and UPDATE. */
tree
gimple_build (gimple_stmt_iterator *gsi,
bool before, gsi_iterator_update update,
location_t loc, combined_fn fn, tree type)
{
tree res = NULL_TREE;
gimple_seq seq = NULL;
gcall *stmt;
if (internal_fn_p (fn))
stmt = gimple_build_call_internal (as_internal_fn (fn), 0);
else
{
tree decl = builtin_decl_implicit (as_builtin_fn (fn));
stmt = gimple_build_call (decl, 0);
}
if (!VOID_TYPE_P (type))
{
res = create_tmp_reg_or_ssa_name (type);
gimple_call_set_lhs (stmt, res);
}
gimple_set_location (stmt, loc);
gimple_seq_add_stmt_without_update (&seq, stmt);
gimple_build_insert_seq (gsi, before, update, seq);
return res;
}
/* Build the call FN (ARG0) with a result of type TYPE
(or no result if TYPE is void) with location LOC,
simplifying it first if possible. Returns the built
expression value (or NULL_TREE if TYPE is void) inserting any new
statements at GSI honoring BEFORE and UPDATE. */
tree
gimple_build (gimple_stmt_iterator *gsi,
bool before, gsi_iterator_update update,
location_t loc, combined_fn fn,
tree type, tree arg0)
{
gimple_seq seq = NULL;
tree res = gimple_simplify (fn, type, arg0, &seq, gimple_build_valueize);
if (!res)
{
gcall *stmt;
if (internal_fn_p (fn))
stmt = gimple_build_call_internal (as_internal_fn (fn), 1, arg0);
else
{
tree decl = builtin_decl_implicit (as_builtin_fn (fn));
stmt = gimple_build_call (decl, 1, arg0);
}
if (!VOID_TYPE_P (type))
{
res = create_tmp_reg_or_ssa_name (type);
gimple_call_set_lhs (stmt, res);
}
gimple_set_location (stmt, loc);
gimple_seq_add_stmt_without_update (&seq, stmt);
}
gimple_build_insert_seq (gsi, before, update, seq);
return res;
}
/* Build the call FN (ARG0, ARG1) with a result of type TYPE
(or no result if TYPE is void) with location LOC,
simplifying it first if possible. Returns the built
expression value (or NULL_TREE if TYPE is void) inserting any new
statements at GSI honoring BEFORE and UPDATE. */
tree
gimple_build (gimple_stmt_iterator *gsi,
bool before, gsi_iterator_update update,
location_t loc, combined_fn fn,
tree type, tree arg0, tree arg1)
{
gimple_seq seq = NULL;
tree res = gimple_simplify (fn, type, arg0, arg1, &seq,
gimple_build_valueize);
if (!res)
{
gcall *stmt;
if (internal_fn_p (fn))
stmt = gimple_build_call_internal (as_internal_fn (fn), 2, arg0, arg1);
else
{
tree decl = builtin_decl_implicit (as_builtin_fn (fn));
stmt = gimple_build_call (decl, 2, arg0, arg1);
}
if (!VOID_TYPE_P (type))
{
res = create_tmp_reg_or_ssa_name (type);
gimple_call_set_lhs (stmt, res);
}
gimple_set_location (stmt, loc);
gimple_seq_add_stmt_without_update (&seq, stmt);
}
gimple_build_insert_seq (gsi, before, update, seq);
return res;
}
/* Build the call FN (ARG0, ARG1, ARG2) with a result of type TYPE
(or no result if TYPE is void) with location LOC,
simplifying it first if possible. Returns the built
expression value (or NULL_TREE if TYPE is void) inserting any new
statements at GSI honoring BEFORE and UPDATE. */
tree
gimple_build (gimple_stmt_iterator *gsi,
bool before, gsi_iterator_update update,
location_t loc, combined_fn fn,
tree type, tree arg0, tree arg1, tree arg2)
{
gimple_seq seq = NULL;
tree res = gimple_simplify (fn, type, arg0, arg1, arg2,
&seq, gimple_build_valueize);
if (!res)
{
gcall *stmt;
if (internal_fn_p (fn))
stmt = gimple_build_call_internal (as_internal_fn (fn),
3, arg0, arg1, arg2);
else
{
tree decl = builtin_decl_implicit (as_builtin_fn (fn));
stmt = gimple_build_call (decl, 3, arg0, arg1, arg2);
}
if (!VOID_TYPE_P (type))
{
res = create_tmp_reg_or_ssa_name (type);
gimple_call_set_lhs (stmt, res);
}
gimple_set_location (stmt, loc);
gimple_seq_add_stmt_without_update (&seq, stmt);
}
gimple_build_insert_seq (gsi, before, update, seq);
return res;
}
/* Build CODE (OP0) with a result of type TYPE (or no result if TYPE is
void) with location LOC, simplifying it first if possible. Returns the
built expression value (or NULL_TREE if TYPE is void) inserting any new
statements at GSI honoring BEFORE and UPDATE. */
tree
gimple_build (gimple_stmt_iterator *gsi,
bool before, gsi_iterator_update update,
location_t loc, code_helper code, tree type, tree op0)
{
if (code.is_tree_code ())
return gimple_build (gsi, before, update, loc, tree_code (code), type, op0);
return gimple_build (gsi, before, update, loc, combined_fn (code), type, op0);
}
/* Build CODE (OP0, OP1) with a result of type TYPE (or no result if TYPE is
void) with location LOC, simplifying it first if possible. Returns the
built expression value (or NULL_TREE if TYPE is void) inserting any new
statements at GSI honoring BEFORE and UPDATE. */
tree
gimple_build (gimple_stmt_iterator *gsi,
bool before, gsi_iterator_update update,
location_t loc, code_helper code, tree type, tree op0, tree op1)
{
if (code.is_tree_code ())
return gimple_build (gsi, before, update,
loc, tree_code (code), type, op0, op1);
return gimple_build (gsi, before, update,
loc, combined_fn (code), type, op0, op1);
}
/* Build CODE (OP0, OP1, OP2) with a result of type TYPE (or no result if TYPE
is void) with location LOC, simplifying it first if possible. Returns the
built expression value (or NULL_TREE if TYPE is void) inserting any new
statements at GSI honoring BEFORE and UPDATE. */
tree
gimple_build (gimple_stmt_iterator *gsi,
bool before, gsi_iterator_update update,
location_t loc, code_helper code,
tree type, tree op0, tree op1, tree op2)
{
if (code.is_tree_code ())
return gimple_build (gsi, before, update,
loc, tree_code (code), type, op0, op1, op2);
return gimple_build (gsi, before, update,
loc, combined_fn (code), type, op0, op1, op2);
}
/* Build the conversion (TYPE) OP with a result of type TYPE
with location LOC if such conversion is neccesary in GIMPLE,
simplifying it first.
Returns the built expression inserting any new statements
at GSI honoring BEFORE and UPDATE. */
tree
gimple_convert (gimple_stmt_iterator *gsi,
bool before, gsi_iterator_update update,
location_t loc, tree type, tree op)
{
if (useless_type_conversion_p (type, TREE_TYPE (op)))
return op;
return gimple_build (gsi, before, update, loc, NOP_EXPR, type, op);
}
/* Build the conversion (ptrofftype) OP with a result of a type
compatible with ptrofftype with location LOC if such conversion
is neccesary in GIMPLE, simplifying it first.
Returns the built expression value inserting any new statements
at GSI honoring BEFORE and UPDATE. */
tree
gimple_convert_to_ptrofftype (gimple_stmt_iterator *gsi,
bool before, gsi_iterator_update update,
location_t loc, tree op)
{
if (ptrofftype_p (TREE_TYPE (op)))
return op;
return gimple_convert (gsi, before, update, loc, sizetype, op);
}
/* Build a vector of type TYPE in which each element has the value OP.
Return a gimple value for the result, inserting any new statements
at GSI honoring BEFORE and UPDATE. */
tree
gimple_build_vector_from_val (gimple_stmt_iterator *gsi,
bool before, gsi_iterator_update update,
location_t loc, tree type, tree op)
{
if (!TYPE_VECTOR_SUBPARTS (type).is_constant ()
&& !CONSTANT_CLASS_P (op))
return gimple_build (gsi, before, update,
loc, VEC_DUPLICATE_EXPR, type, op);
tree res, vec = build_vector_from_val (type, op);
if (is_gimple_val (vec))
return vec;
if (gimple_in_ssa_p (cfun))
res = make_ssa_name (type);
else
res = create_tmp_reg (type);
gimple_seq seq = NULL;
gimple *stmt = gimple_build_assign (res, vec);
gimple_set_location (stmt, loc);
gimple_seq_add_stmt_without_update (&seq, stmt);
gimple_build_insert_seq (gsi, before, update, seq);
return res;
}
/* Build a vector from BUILDER, handling the case in which some elements
are non-constant. Return a gimple value for the result, inserting
any new instructions to GSI honoring BEFORE and UPDATE.
BUILDER must not have a stepped encoding on entry. This is because
the function is not geared up to handle the arithmetic that would
be needed in the variable case, and any code building a vector that
is known to be constant should use BUILDER->build () directly. */
tree
gimple_build_vector (gimple_stmt_iterator *gsi,
bool before, gsi_iterator_update update,
location_t loc, tree_vector_builder *builder)
{
gcc_assert (builder->nelts_per_pattern () <= 2);
unsigned int encoded_nelts = builder->encoded_nelts ();
for (unsigned int i = 0; i < encoded_nelts; ++i)
if (!CONSTANT_CLASS_P ((*builder)[i]))
{
gimple_seq seq = NULL;
tree type = builder->type ();
unsigned int nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
vec<constructor_elt, va_gc> *v;
vec_alloc (v, nelts);
for (i = 0; i < nelts; ++i)
CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, builder->elt (i));
tree res;
if (gimple_in_ssa_p (cfun))
res = make_ssa_name (type);
else
res = create_tmp_reg (type);
gimple *stmt = gimple_build_assign (res, build_constructor (type, v));
gimple_set_location (stmt, loc);
gimple_seq_add_stmt_without_update (&seq, stmt);
gimple_build_insert_seq (gsi, before, update, seq);
return res;
}
return builder->build ();
}
/* Emit gimple statements into &stmts that take a value given in OLD_SIZE
and generate a value guaranteed to be rounded upwards to ALIGN.
Return the tree node representing this size, it is of TREE_TYPE TYPE. */
tree
gimple_build_round_up (gimple_stmt_iterator *gsi,
bool before, gsi_iterator_update update,
location_t loc, tree type,
tree old_size, unsigned HOST_WIDE_INT align)
{
unsigned HOST_WIDE_INT tg_mask = align - 1;
/* tree new_size = (old_size + tg_mask) & ~tg_mask; */
gcc_assert (INTEGRAL_TYPE_P (type));
tree tree_mask = build_int_cst (type, tg_mask);
tree oversize = gimple_build (gsi, before, update,
loc, PLUS_EXPR, type, old_size, tree_mask);
tree mask = build_int_cst (type, -align);
return gimple_build (gsi, before, update,
loc, BIT_AND_EXPR, type, oversize, mask);
}
/* Return true if the result of assignment STMT is known to be non-negative.
If the return value is based on the assumption that signed overflow is
undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
*STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
static bool
gimple_assign_nonnegative_warnv_p (gimple *stmt, bool *strict_overflow_p,
int depth)
{
enum tree_code code = gimple_assign_rhs_code (stmt);
tree type = TREE_TYPE (gimple_assign_lhs (stmt));
switch (get_gimple_rhs_class (code))
{
case GIMPLE_UNARY_RHS:
return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
type,
gimple_assign_rhs1 (stmt),
strict_overflow_p, depth);
case GIMPLE_BINARY_RHS:
return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
type,
gimple_assign_rhs1 (stmt),
gimple_assign_rhs2 (stmt),
strict_overflow_p, depth);
case GIMPLE_TERNARY_RHS:
return false;
case GIMPLE_SINGLE_RHS:
return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
strict_overflow_p, depth);
case GIMPLE_INVALID_RHS:
break;
}
gcc_unreachable ();
}
/* Return true if return value of call STMT is known to be non-negative.
If the return value is based on the assumption that signed overflow is
undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
*STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
static bool
gimple_call_nonnegative_warnv_p (gimple *stmt, bool *strict_overflow_p,
int depth)
{
tree arg0
= gimple_call_num_args (stmt) > 0 ? gimple_call_arg (stmt, 0) : NULL_TREE;
tree arg1
= gimple_call_num_args (stmt) > 1 ? gimple_call_arg (stmt, 1) : NULL_TREE;
tree lhs = gimple_call_lhs (stmt);
return (lhs
&& tree_call_nonnegative_warnv_p (TREE_TYPE (lhs),
gimple_call_combined_fn (stmt),
arg0, arg1,
strict_overflow_p, depth));
}
/* Return true if return value of call STMT is known to be non-negative.
If the return value is based on the assumption that signed overflow is
undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
*STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
static bool
gimple_phi_nonnegative_warnv_p (gimple *stmt, bool *strict_overflow_p,
int depth)
{
for (unsigned i = 0; i < gimple_phi_num_args (stmt); ++i)
{
tree arg = gimple_phi_arg_def (stmt, i);
if (!tree_single_nonnegative_warnv_p (arg, strict_overflow_p, depth + 1))
return false;
}
return true;
}
/* Return true if STMT is known to compute a non-negative value.
If the return value is based on the assumption that signed overflow is
undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
*STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
bool
gimple_stmt_nonnegative_warnv_p (gimple *stmt, bool *strict_overflow_p,
int depth)
{
tree type = gimple_range_type (stmt);
if (type && frange::supports_p (type))
{
frange r;
bool sign;
if (get_global_range_query ()->range_of_stmt (r, stmt)
&& r.signbit_p (sign))
return !sign;
}
switch (gimple_code (stmt))
{
case GIMPLE_ASSIGN:
return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p,
depth);
case GIMPLE_CALL:
return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p,
depth);
case GIMPLE_PHI:
return gimple_phi_nonnegative_warnv_p (stmt, strict_overflow_p,
depth);
default:
return false;
}
}
/* Return true if the floating-point value computed by assignment STMT
is known to have an integer value. We also allow +Inf, -Inf and NaN
to be considered integer values. Return false for signaling NaN.
DEPTH is the current nesting depth of the query. */
static bool
gimple_assign_integer_valued_real_p (gimple *stmt, int depth)
{
enum tree_code code = gimple_assign_rhs_code (stmt);
switch (get_gimple_rhs_class (code))
{
case GIMPLE_UNARY_RHS:
return integer_valued_real_unary_p (gimple_assign_rhs_code (stmt),
gimple_assign_rhs1 (stmt), depth);
case GIMPLE_BINARY_RHS:
return integer_valued_real_binary_p (gimple_assign_rhs_code (stmt),
gimple_assign_rhs1 (stmt),
gimple_assign_rhs2 (stmt), depth);
case GIMPLE_TERNARY_RHS:
return false;
case GIMPLE_SINGLE_RHS:
return integer_valued_real_single_p (gimple_assign_rhs1 (stmt), depth);
case GIMPLE_INVALID_RHS:
break;
}
gcc_unreachable ();
}
/* Return true if the floating-point value computed by call STMT is known
to have an integer value. We also allow +Inf, -Inf and NaN to be
considered integer values. Return false for signaling NaN.
DEPTH is the current nesting depth of the query. */
static bool
gimple_call_integer_valued_real_p (gimple *stmt, int depth)
{
tree arg0 = (gimple_call_num_args (stmt) > 0
? gimple_call_arg (stmt, 0)
: NULL_TREE);
tree arg1 = (gimple_call_num_args (stmt) > 1
? gimple_call_arg (stmt, 1)
: NULL_TREE);
return integer_valued_real_call_p (gimple_call_combined_fn (stmt),
arg0, arg1, depth);
}
/* Return true if the floating-point result of phi STMT is known to have
an integer value. We also allow +Inf, -Inf and NaN to be considered
integer values. Return false for signaling NaN.
DEPTH is the current nesting depth of the query. */
static bool
gimple_phi_integer_valued_real_p (gimple *stmt, int depth)
{
for (unsigned i = 0; i < gimple_phi_num_args (stmt); ++i)
{
tree arg = gimple_phi_arg_def (stmt, i);
if (!integer_valued_real_single_p (arg, depth + 1))
return false;
}
return true;
}
/* Return true if the floating-point value computed by STMT is known
to have an integer value. We also allow +Inf, -Inf and NaN to be
considered integer values. Return false for signaling NaN.
DEPTH is the current nesting depth of the query. */
bool
gimple_stmt_integer_valued_real_p (gimple *stmt, int depth)
{
switch (gimple_code (stmt))
{
case GIMPLE_ASSIGN:
return gimple_assign_integer_valued_real_p (stmt, depth);
case GIMPLE_CALL:
return gimple_call_integer_valued_real_p (stmt, depth);
case GIMPLE_PHI:
return gimple_phi_integer_valued_real_p (stmt, depth);
default:
return false;
}
}
|