aboutsummaryrefslogtreecommitdiff
path: root/gcc/gimple-array-bounds.cc
blob: 972e25fdb3154ca25e319346c1475a14d9732e41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
/* Array bounds checking.
   Copyright (C) 2005-2022 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "pointer-query.h"
#include "gimple-array-bounds.h"
#include "gimple-iterator.h"
#include "gimple-walk.h"
#include "tree-dfa.h"
#include "fold-const.h"
#include "diagnostic-core.h"
#include "intl.h"
#include "tree-vrp.h"
#include "alloc-pool.h"
#include "vr-values.h"
#include "domwalk.h"
#include "tree-cfg.h"
#include "attribs.h"

array_bounds_checker::array_bounds_checker (struct function *func,
					    range_query *qry)
  : fun (func), m_ptr_qry (qry)
{
  /* No-op.  */
}

const value_range *
array_bounds_checker::get_value_range (const_tree op, gimple *stmt)
{
  return m_ptr_qry.rvals->get_value_range (op, stmt);
}

/* Try to determine the DECL that REF refers to.  Return the DECL or
   the expression closest to it.  Used in informational notes pointing
   to referenced objects or function parameters.  */

static tree
get_base_decl (tree ref)
{
  tree base = get_base_address (ref);
  if (DECL_P (base))
    return base;

  if (TREE_CODE (base) == MEM_REF)
    base = TREE_OPERAND (base, 0);

  if (TREE_CODE (base) != SSA_NAME)
    return base;

  do
    {
      gimple *def = SSA_NAME_DEF_STMT (base);
      if (gimple_assign_single_p (def))
	{
	  base = gimple_assign_rhs1 (def);
	  return base;
	}

      if (!gimple_nop_p (def))
	return base;

      break;
    } while (true);

  tree var = SSA_NAME_VAR (base);
  if (TREE_CODE (var) != PARM_DECL)
    return base;

  return var;
}

/* Return the constant byte size of the object or type referenced by
   the MEM_REF ARG.  On success, set *PREF to the DECL or expression
   ARG refers to.  Otherwise return null.  */

static tree
get_ref_size (tree arg, tree *pref)
{
  if (TREE_CODE (arg) != MEM_REF)
    return NULL_TREE;

  arg = TREE_OPERAND (arg, 0);
  tree type = TREE_TYPE (arg);
  if (!POINTER_TYPE_P (type))
    return NULL_TREE;

  type = TREE_TYPE (type);
  if (TREE_CODE (type) != ARRAY_TYPE)
    return NULL_TREE;

  tree nbytes = TYPE_SIZE_UNIT (type);
  if (!nbytes || TREE_CODE (nbytes) != INTEGER_CST)
    return NULL_TREE;

  *pref = get_base_decl (arg);
  return nbytes;
}

/* Return true if REF is (likely) an ARRAY_REF to a trailing array member
   of a struct.  It refines array_ref_flexible_size_p by detecting a pointer
   to an array and an array parameter declared using the [N] syntax (as
   opposed to a pointer) and returning false.  Set *PREF to the decl or
   expression REF refers to.  */

static bool
trailing_array (tree arg, tree *pref)
{
  tree ref = arg;
  tree base = get_base_decl (arg);
  while (TREE_CODE (ref) == ARRAY_REF || TREE_CODE (ref) == MEM_REF)
    ref = TREE_OPERAND (ref, 0);

  if (TREE_CODE (ref) == COMPONENT_REF)
    {
      *pref = TREE_OPERAND (ref, 1);
      tree type = TREE_TYPE (*pref);
      if (TREE_CODE (type) == ARRAY_TYPE)
	{
	  /* A multidimensional trailing array is not considered special
	     no matter what its major bound is.  */
	  type = TREE_TYPE (type);
	  if (TREE_CODE (type) == ARRAY_TYPE)
	    return false;
	}
    }
  else
    *pref = base;

  tree basetype = TREE_TYPE (base);
  if (TREE_CODE (base) == PARM_DECL
      && POINTER_TYPE_P (basetype))
    {
      tree ptype = TREE_TYPE (basetype);
      if (TREE_CODE (ptype) == ARRAY_TYPE)
	return false;
    }

  return array_ref_flexible_size_p (arg);
}

/* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible
   arrays and "struct" hacks. If VRP can determine that the array
   subscript is a constant, check if it is outside valid range.  If
   the array subscript is a RANGE, warn if it is non-overlapping with
   valid range.  IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside
   a ADDR_EXPR.  Return  true if a warning has been issued or if
   no-warning is set.  */

bool
array_bounds_checker::check_array_ref (location_t location, tree ref,
				       gimple *stmt, bool ignore_off_by_one)
{
  if (warning_suppressed_p (ref, OPT_Warray_bounds_))
    /* Return true to have the caller prevent warnings for enclosing
       refs.  */
    return true;

  tree low_sub = TREE_OPERAND (ref, 1);
  tree up_sub = low_sub;
  tree up_bound = array_ref_up_bound (ref);

  /* Referenced decl if one can be determined.  */
  tree decl = NULL_TREE;

  /* Set for accesses to interior zero-length arrays.  */
  special_array_member sam{ };

  tree up_bound_p1;

  if (!up_bound
      || TREE_CODE (up_bound) != INTEGER_CST
      || (warn_array_bounds < 2 && trailing_array (ref, &decl)))
    {
      /* Accesses to trailing arrays via pointers may access storage
	 beyond the types array bounds.  For such arrays, or for flexible
	 array members, as well as for other arrays of an unknown size,
	 replace the upper bound with a more permissive one that assumes
	 the size of the largest object is PTRDIFF_MAX.  */
      tree eltsize = array_ref_element_size (ref);

      if (TREE_CODE (eltsize) != INTEGER_CST
	  || integer_zerop (eltsize))
	{
	  up_bound = NULL_TREE;
	  up_bound_p1 = NULL_TREE;
	}
      else
	{
	  tree ptrdiff_max = TYPE_MAX_VALUE (ptrdiff_type_node);
	  tree maxbound = ptrdiff_max;
	  tree arg = TREE_OPERAND (ref, 0);

	  const bool compref = TREE_CODE (arg) == COMPONENT_REF;
	  if (compref)
	    {
	      /* Try to determine the size of the trailing array from
		 its initializer (if it has one).  */
	      if (tree refsize = component_ref_size (arg, &sam))
		if (TREE_CODE (refsize) == INTEGER_CST)
		  maxbound = refsize;
	    }

	  if (maxbound == ptrdiff_max)
	    {
	      /* Try to determine the size of the base object.  Avoid
		 COMPONENT_REF already tried above.  Using its DECL_SIZE
		 size wouldn't necessarily be correct if the reference is
		 to its flexible array member initialized in a different
		 translation unit.  */
	      poly_int64 off;
	      if (tree base = get_addr_base_and_unit_offset (arg, &off))
		{
		  if (TREE_CODE (base) == MEM_REF)
		    {
		      /* Try to determine the size from a pointer to
			 an array if BASE is one.  */
		      if (tree size = get_ref_size (base, &decl))
			maxbound = size;
		    }
		  else if (!compref && DECL_P (base))
		    if (tree basesize = DECL_SIZE_UNIT (base))
		      if (TREE_CODE (basesize) == INTEGER_CST)
			{
			  maxbound = basesize;
			  decl = base;
			}

		  if (known_gt (off, 0))
		    maxbound = wide_int_to_tree (sizetype,
						 wi::sub (wi::to_wide (maxbound),
							  off));
		}
	    }
	  else
	    maxbound = fold_convert (sizetype, maxbound);

	  up_bound_p1 = int_const_binop (TRUNC_DIV_EXPR, maxbound, eltsize);

	  if (up_bound_p1 != NULL_TREE)
	    up_bound = int_const_binop (MINUS_EXPR, up_bound_p1,
					build_int_cst (ptrdiff_type_node, 1));
	  else
	    up_bound = NULL_TREE;
	}
    }
  else
    up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound,
				   build_int_cst (TREE_TYPE (up_bound), 1));

  tree low_bound = array_ref_low_bound (ref);

  tree artype = TREE_TYPE (TREE_OPERAND (ref, 0));

  bool warned = false;

  /* Empty array.  */
  if (up_bound && tree_int_cst_equal (low_bound, up_bound_p1))
    warned = warning_at (location, OPT_Warray_bounds_,
			 "array subscript %E is outside array bounds of %qT",
			 low_sub, artype);

  const value_range *vr = NULL;
  if (TREE_CODE (low_sub) == SSA_NAME)
    {
      vr = get_value_range (low_sub, stmt);
      if (!vr->undefined_p () && !vr->varying_p ())
	{
	  low_sub = vr->kind () == VR_RANGE ? vr->max () : vr->min ();
	  up_sub = vr->kind () == VR_RANGE ? vr->min () : vr->max ();
	}
    }

  if (warned)
    ; /* Do nothing.  */
  else if (vr && vr->kind () == VR_ANTI_RANGE)
    {
      if (up_bound
	  && TREE_CODE (up_sub) == INTEGER_CST
	  && (ignore_off_by_one
	      ? tree_int_cst_lt (up_bound, up_sub)
	      : tree_int_cst_le (up_bound, up_sub))
	  && TREE_CODE (low_sub) == INTEGER_CST
	  && tree_int_cst_le (low_sub, low_bound))
	warned = warning_at (location, OPT_Warray_bounds_,
			     "array subscript [%E, %E] is outside "
			     "array bounds of %qT",
			     low_sub, up_sub, artype);
    }
  else if (up_bound
	   && TREE_CODE (up_sub) == INTEGER_CST
	   && (ignore_off_by_one
	       ? !tree_int_cst_le (up_sub, up_bound_p1)
	       : !tree_int_cst_le (up_sub, up_bound)))
    warned = warning_at (location, OPT_Warray_bounds_,
			 "array subscript %E is above array bounds of %qT",
			 up_sub, artype);
  else if (TREE_CODE (low_sub) == INTEGER_CST
	   && tree_int_cst_lt (low_sub, low_bound))
    warned = warning_at (location, OPT_Warray_bounds_,
			 "array subscript %E is below array bounds of %qT",
			 low_sub, artype);

  if (!warned && sam == special_array_member::int_0)
    warned = warning_at (location, OPT_Wzero_length_bounds,
			 (TREE_CODE (low_sub) == INTEGER_CST
			  ? G_("array subscript %E is outside the bounds "
			       "of an interior zero-length array %qT")
			  : G_("array subscript %qE is outside the bounds "
			       "of an interior zero-length array %qT")),
			 low_sub, artype);

  if (warned)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Array bound warning for ");
	  dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
	  fprintf (dump_file, "\n");
	}

      /* Avoid more warnings when checking more significant subscripts
	 of the same expression.  */
      ref = TREE_OPERAND (ref, 0);
      suppress_warning (ref, OPT_Warray_bounds_);

      if (decl)
	ref = decl;

      tree rec = NULL_TREE;
      if (TREE_CODE (ref) == COMPONENT_REF)
	{
	  /* For a reference to a member of a struct object also mention
	     the object if it's known.  It may be defined in a different
	     function than the out-of-bounds access.  */
	  rec = TREE_OPERAND (ref, 0);
	  if (!VAR_P (rec))
	    rec = NULL_TREE;
	  ref = TREE_OPERAND (ref, 1);
	}

      if (DECL_P (ref))
	inform (DECL_SOURCE_LOCATION (ref), "while referencing %qD", ref);
      if (rec && DECL_P (rec))
	inform (DECL_SOURCE_LOCATION (rec), "defined here %qD", rec);
    }

  return warned;
}

/* Checks one MEM_REF in REF, located at LOCATION, for out-of-bounds
   references to string constants.  If VRP can determine that the array
   subscript is a constant, check if it is outside valid range.
   If the array subscript is a RANGE, warn if it is non-overlapping
   with valid range.
   IGNORE_OFF_BY_ONE is true if the MEM_REF is inside an ADDR_EXPR
   (used to allow one-past-the-end indices for code that takes
   the address of the just-past-the-end element of an array).
   Returns true if a warning has been issued.  */

bool
array_bounds_checker::check_mem_ref (location_t location, tree ref,
				     bool ignore_off_by_one)
{
  if (warning_suppressed_p (ref, OPT_Warray_bounds_))
    return false;

  /* The statement used to allocate the array or null.  */
  gimple *alloc_stmt = NULL;
  /* For an allocation statement, the low bound of the size range.  */
  offset_int minbound = 0;
  /* The type and size of the access.  */
  tree axstype = TREE_TYPE (ref);
  offset_int axssize = 0;
  if (tree access_size = TYPE_SIZE_UNIT (axstype))
    if (TREE_CODE (access_size) == INTEGER_CST)
      axssize = wi::to_offset (access_size);

  access_ref aref;
  if (!m_ptr_qry.get_ref (ref, m_stmt, &aref, 0))
    return false;

  if (aref.offset_in_range (axssize))
    return false;

  if (TREE_CODE (aref.ref) == SSA_NAME)
    {
      gimple *def = SSA_NAME_DEF_STMT (aref.ref);
      if (is_gimple_call (def))
	{
	  /* Save the allocation call and the low bound on the size.  */
	  alloc_stmt = def;
	  minbound = aref.sizrng[0];
	}
    }
			
  /* The range of the byte offset into the reference.  Adjusted below.  */
  offset_int offrange[2] = { aref.offrng[0], aref.offrng[1] };

  /* The type of the referenced object.  */
  tree reftype = TREE_TYPE (aref.ref);
  /* The size of the referenced array element.  */
  offset_int eltsize = 1;
  if (POINTER_TYPE_P (reftype))
    reftype = TREE_TYPE (reftype);

  if (TREE_CODE (reftype) == FUNCTION_TYPE)
    /* Restore the original (pointer) type and avoid trying to create
       an array of functions (done below).  */
    reftype = TREE_TYPE (aref.ref);
  else
    {
      /* The byte size of the array has already been determined above
	 based on a pointer ARG.  Set ELTSIZE to the size of the type
	 it points to and REFTYPE to the array with the size, rounded
	 down as necessary.  */
      if (TREE_CODE (reftype) == ARRAY_TYPE)
	reftype = TREE_TYPE (reftype);
      if (tree refsize = TYPE_SIZE_UNIT (reftype))
	if (TREE_CODE (refsize) == INTEGER_CST)
	  eltsize = wi::to_offset (refsize);

      const offset_int nelts = aref.sizrng[1] / eltsize;
      reftype = build_printable_array_type (reftype, nelts.to_uhwi ());
    }

  /* Compute the more permissive upper bound when IGNORE_OFF_BY_ONE
     is set (when taking the address of the one-past-last element
     of an array) but always use the stricter bound in diagnostics. */
  offset_int ubound = aref.sizrng[1];
  if (ignore_off_by_one)
    ubound += eltsize;

  /* Set if the lower bound of the subscript is out of bounds.  */
  const bool lboob = (aref.sizrng[1] == 0
		      || offrange[0] >= ubound
		      || offrange[1] < 0);
  /* Set if only the upper bound of the subscript is out of bounds.
     This can happen when using a bigger type to index into an array
     of a smaller type, as is common with unsigned char.  */
  const bool uboob = !lboob && offrange[0] + axssize > ubound;
  if (lboob || uboob)
    {
      /* Treat a reference to a non-array object as one to an array
	 of a single element.  */
      if (TREE_CODE (reftype) != ARRAY_TYPE)
	reftype = build_printable_array_type (reftype, 1);

      /* Extract the element type out of MEM_REF and use its size
	 to compute the index to print in the diagnostic; arrays
	 in MEM_REF don't mean anything.  A type with no size like
	 void is as good as having a size of 1.  */
      tree type = strip_array_types (TREE_TYPE (ref));
      if (tree size = TYPE_SIZE_UNIT (type))
	{
	  offrange[0] = offrange[0] / wi::to_offset (size);
	  offrange[1] = offrange[1] / wi::to_offset (size);
	}
    }

  bool warned = false;
  if (lboob)
    {
      if (offrange[0] == offrange[1])
	warned = warning_at (location, OPT_Warray_bounds_,
			     "array subscript %wi is outside array bounds "
			     "of %qT",
			     offrange[0].to_shwi (), reftype);
      else
	warned = warning_at (location, OPT_Warray_bounds_,
			     "array subscript [%wi, %wi] is outside "
			     "array bounds of %qT",
			     offrange[0].to_shwi (),
			     offrange[1].to_shwi (), reftype);
    }
  else if (uboob && !ignore_off_by_one)
    {
      tree backtype = reftype;
      if (alloc_stmt)
	/* If the memory was dynamically allocated refer to it as if
	   it were an untyped array of bytes.  */
	backtype = build_array_type_nelts (unsigned_char_type_node,
					   aref.sizrng[1].to_uhwi ());

      warned = warning_at (location, OPT_Warray_bounds_,
			   "array subscript %<%T[%wi]%> is partly "
			   "outside array bounds of %qT",
			   axstype, offrange[0].to_shwi (), backtype);
    }

  if (warned)
    {
      /* TODO: Determine the access from the statement and use it.  */
      aref.inform_access (access_none);
      suppress_warning (ref, OPT_Warray_bounds_);
      return true;
    }

  if (warn_array_bounds < 2)
    return false;

  /* At level 2 check also intermediate offsets.  */
  int i = 0;
  if (aref.offmax[i] < -aref.sizrng[1] || aref.offmax[i = 1] > ubound)
    {
      HOST_WIDE_INT tmpidx = (aref.offmax[i] / eltsize).to_shwi ();

      if (warning_at (location, OPT_Warray_bounds_,
		      "intermediate array offset %wi is outside array bounds "
		      "of %qT", tmpidx, reftype))
	{
	  suppress_warning (ref, OPT_Warray_bounds_);
	  return true;
	}
    }

  return false;
}

/* Searches if the expr T, located at LOCATION computes
   address of an ARRAY_REF, and call check_array_ref on it.  */

void
array_bounds_checker::check_addr_expr (location_t location, tree t,
				       gimple *stmt)
{
  /* For the most significant subscript only, accept taking the address
     of the just-past-the-end element.  */
  bool ignore_off_by_one = true;

  /* Check each ARRAY_REF and MEM_REF in the reference chain. */
  do
    {
      bool warned = false;
      if (TREE_CODE (t) == ARRAY_REF)
	{
	  warned = check_array_ref (location, t, stmt, ignore_off_by_one);
	  ignore_off_by_one = false;
	}
      else if (TREE_CODE (t) == MEM_REF)
	warned = check_mem_ref (location, t, ignore_off_by_one);

      if (warned)
	suppress_warning (t, OPT_Warray_bounds_);

      t = TREE_OPERAND (t, 0);
    }
  while (handled_component_p (t) || TREE_CODE (t) == MEM_REF);

  if (TREE_CODE (t) != MEM_REF
      || TREE_CODE (TREE_OPERAND (t, 0)) != ADDR_EXPR
      || warning_suppressed_p (t, OPT_Warray_bounds_))
    return;

  tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
  tree low_bound, up_bound, el_sz;
  if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
      || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
      || !TYPE_DOMAIN (TREE_TYPE (tem)))
    return;

  low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
  up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
  el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
  if (!low_bound
      || TREE_CODE (low_bound) != INTEGER_CST
      || !up_bound
      || TREE_CODE (up_bound) != INTEGER_CST
      || !el_sz
      || TREE_CODE (el_sz) != INTEGER_CST)
    return;

  offset_int idx;
  if (!mem_ref_offset (t).is_constant (&idx))
    return;

  bool warned = false;
  idx = wi::sdiv_trunc (idx, wi::to_offset (el_sz));
  if (idx < 0)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Array bound warning for ");
	  dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
	  fprintf (dump_file, "\n");
	}
      warned = warning_at (location, OPT_Warray_bounds_,
			   "array subscript %wi is below "
			   "array bounds of %qT",
			   idx.to_shwi (), TREE_TYPE (tem));
    }
  else if (idx > (wi::to_offset (up_bound)
		  - wi::to_offset (low_bound) + 1))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Array bound warning for ");
	  dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
	  fprintf (dump_file, "\n");
	}
      warned = warning_at (location, OPT_Warray_bounds_,
			   "array subscript %wu is above "
			   "array bounds of %qT",
			   idx.to_uhwi (), TREE_TYPE (tem));
    }

  if (warned)
    {
      if (DECL_P (t))
	inform (DECL_SOURCE_LOCATION (t), "while referencing %qD", t);

      suppress_warning (t, OPT_Warray_bounds_);
    }
}

/* Return true if T is a reference to a member of a base class that's within
   the bounds of the enclosing complete object.  The function "hacks" around
   problems discussed in pr98266 and pr97595.  */

static bool
inbounds_memaccess_p (tree t, gimple *stmt)
{
  if (TREE_CODE (t) != COMPONENT_REF)
    return false;

  tree mref = TREE_OPERAND (t, 0);
  if (TREE_CODE (mref) != MEM_REF)
    return false;

  /* Consider the access if its type is a derived class.  */
  tree mreftype = TREE_TYPE (mref);
  if (!RECORD_OR_UNION_TYPE_P (mreftype)
      || !TYPE_BINFO (mreftype))
    return false;

  /* Compute the size of the referenced object (it could be dynamically
     allocated).  */
  access_ref aref;   // unused
  tree refop = TREE_OPERAND (mref, 0);
  tree refsize = compute_objsize (refop, stmt, 1, &aref);
  if (!refsize || TREE_CODE (refsize) != INTEGER_CST)
    return false;

  /* Compute the byte offset of the member within its enclosing class.  */
  tree fld = TREE_OPERAND (t, 1);
  tree fldpos = byte_position (fld);
  if (TREE_CODE (fldpos) != INTEGER_CST)
    return false;

  /* Compute the byte offset of the member with the outermost complete
     object by adding its offset computed above to the MEM_REF offset.  */
  tree refoff = TREE_OPERAND (mref, 1);
  tree fldoff = int_const_binop (PLUS_EXPR, fldpos, refoff);
  /* Return false if the member offset is greater or equal to the size
     of the complete object.  */
  if (!tree_int_cst_lt (fldoff, refsize))
    return false;

  tree fldsiz = DECL_SIZE_UNIT (fld);
  if (!fldsiz || TREE_CODE (fldsiz) != INTEGER_CST)
    return false;

  /* Return true if the offset just past the end of the member is less
     than or equal to the size of the complete object.  */
  tree fldend = int_const_binop (PLUS_EXPR, fldoff, fldsiz);
  return tree_int_cst_le (fldend, refsize);
}

/* Callback for walk_tree to check a tree for out of bounds array
   accesses.  The array_bounds_checker class is passed in DATA.  */

tree
array_bounds_checker::check_array_bounds (tree *tp, int *walk_subtree,
					  void *data)
{
  tree t = *tp;
  struct walk_stmt_info *wi = (struct walk_stmt_info *) data;

  location_t location;

  if (EXPR_HAS_LOCATION (t))
    location = EXPR_LOCATION (t);
  else
    location = gimple_location (wi->stmt);

  *walk_subtree = TRUE;

  bool warned = false;
  array_bounds_checker *checker = (array_bounds_checker *) wi->info;
  gcc_assert (checker->m_stmt == wi->stmt);

  if (TREE_CODE (t) == ARRAY_REF)
    warned = checker->check_array_ref (location, t, wi->stmt,
				       false/*ignore_off_by_one*/);
  else if (TREE_CODE (t) == MEM_REF)
    warned = checker->check_mem_ref (location, t,
				     false /*ignore_off_by_one*/);
  else if (TREE_CODE (t) == ADDR_EXPR)
    {
      checker->check_addr_expr (location, t, wi->stmt);
      *walk_subtree = false;
    }
  else if (inbounds_memaccess_p (t, wi->stmt))
    /* Hack: Skip MEM_REF checks in accesses to a member of a base class
       at an offset that's within the bounds of the enclosing object.
       See pr98266 and pr97595.  */
    *walk_subtree = false;

  /* Propagate the no-warning bit to the outer statement to avoid also
     issuing -Wstringop-overflow/-overread for the out-of-bounds accesses.  */
  if (warned)
    suppress_warning (wi->stmt, OPT_Warray_bounds_);

  return NULL_TREE;
}

/* A dom_walker subclass for use by check_all_array_refs, to walk over
   all statements of all reachable BBs and call check_array_bounds on
   them.  */

class check_array_bounds_dom_walker : public dom_walker
{
public:
  check_array_bounds_dom_walker (array_bounds_checker *checker)
    : dom_walker (CDI_DOMINATORS,
		  /* Discover non-executable edges, preserving EDGE_EXECUTABLE
		     flags, so that we can merge in information on
		     non-executable edges from vrp_folder .  */
		  REACHABLE_BLOCKS_PRESERVING_FLAGS),
    checker (checker) { }
  ~check_array_bounds_dom_walker () {}

  edge before_dom_children (basic_block) final override;

private:
  array_bounds_checker *checker;
};

/* Implementation of dom_walker::before_dom_children.

   Walk over all statements of BB and call check_array_bounds on them,
   and determine if there's a unique successor edge.  */

edge
check_array_bounds_dom_walker::before_dom_children (basic_block bb)
{
  gimple_stmt_iterator si;
  for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
    {
      gimple *stmt = gsi_stmt (si);
      if (!gimple_has_location (stmt)
	  || is_gimple_debug (stmt))
	continue;

      struct walk_stmt_info wi{ };
      wi.info = checker;
      checker->m_stmt = stmt;

      walk_gimple_op (stmt, array_bounds_checker::check_array_bounds, &wi);
    }

  /* Determine if there's a unique successor edge, and if so, return
     that back to dom_walker, ensuring that we don't visit blocks that
     became unreachable during the VRP propagation
     (PR tree-optimization/83312).  */
  return find_taken_edge (bb, NULL_TREE);
}

void
array_bounds_checker::check ()
{
  check_array_bounds_dom_walker w (this);
  w.walk (ENTRY_BLOCK_PTR_FOR_FN (fun));
}