aboutsummaryrefslogtreecommitdiff
path: root/gcc/ggc-common.c
blob: 4bbe9168ff6176deba11d921ecfa8dd524ac83e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
/* Simple garbage collection for the GNU compiler.
   Copyright (C) 1999-2015 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* Generic garbage collection (GC) functions and data, not specific to
   any particular GC implementation.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "timevar.h"
#include "diagnostic-core.h"
#include "ggc-internal.h"
#include "params.h"
#include "hosthooks.h"
#include "plugin.h"

/* When set, ggc_collect will do collection.  */
bool ggc_force_collect;

/* When true, protect the contents of the identifier hash table.  */
bool ggc_protect_identifiers = true;

/* Statistics about the allocation.  */
static ggc_statistics *ggc_stats;

struct traversal_state;

static int compare_ptr_data (const void *, const void *);
static void relocate_ptrs (void *, void *);
static void write_pch_globals (const struct ggc_root_tab * const *tab,
			       struct traversal_state *state);

/* Maintain global roots that are preserved during GC.  */

/* This extra vector of dynamically registered root_tab-s is used by
   ggc_mark_roots and gives the ability to dynamically add new GGC root
   tables, for instance from some plugins; this vector is on the heap
   since it is used by GGC internally.  */
typedef const struct ggc_root_tab *const_ggc_root_tab_t;
static vec<const_ggc_root_tab_t> extra_root_vec;

/* Dynamically register a new GGC root table RT. This is useful for
   plugins. */

void
ggc_register_root_tab (const struct ggc_root_tab* rt)
{
  if (rt)
    extra_root_vec.safe_push (rt);
}

/* Mark all the roots in the table RT.  */

static void
ggc_mark_root_tab (const_ggc_root_tab_t rt)
{
  size_t i;

  for ( ; rt->base != NULL; rt++)
    for (i = 0; i < rt->nelt; i++)
      (*rt->cb) (*(void **) ((char *)rt->base + rt->stride * i));
}

/* Iterate through all registered roots and mark each element.  */

void
ggc_mark_roots (void)
{
  const struct ggc_root_tab *const *rt;
  const_ggc_root_tab_t rtp, rti;
  size_t i;

  for (rt = gt_ggc_deletable_rtab; *rt; rt++)
    for (rti = *rt; rti->base != NULL; rti++)
      memset (rti->base, 0, rti->stride);

  for (rt = gt_ggc_rtab; *rt; rt++)
    ggc_mark_root_tab (*rt);

  FOR_EACH_VEC_ELT (extra_root_vec, i, rtp)
    ggc_mark_root_tab (rtp);

  if (ggc_protect_identifiers)
    ggc_mark_stringpool ();

  gt_clear_caches ();

  if (! ggc_protect_identifiers)
    ggc_purge_stringpool ();

  /* Some plugins may call ggc_set_mark from here.  */
  invoke_plugin_callbacks (PLUGIN_GGC_MARKING, NULL);
}

/* Allocate a block of memory, then clear it.  */
void *
ggc_internal_cleared_alloc (size_t size, void (*f)(void *), size_t s, size_t n
			    MEM_STAT_DECL)
{
  void *buf = ggc_internal_alloc (size, f, s, n PASS_MEM_STAT);
  memset (buf, 0, size);
  return buf;
}

/* Resize a block of memory, possibly re-allocating it.  */
void *
ggc_realloc (void *x, size_t size MEM_STAT_DECL)
{
  void *r;
  size_t old_size;

  if (x == NULL)
    return ggc_internal_alloc (size PASS_MEM_STAT);

  old_size = ggc_get_size (x);

  if (size <= old_size)
    {
      /* Mark the unwanted memory as unaccessible.  We also need to make
	 the "new" size accessible, since ggc_get_size returns the size of
	 the pool, not the size of the individually allocated object, the
	 size which was previously made accessible.  Unfortunately, we
	 don't know that previously allocated size.  Without that
	 knowledge we have to lose some initialization-tracking for the
	 old parts of the object.  An alternative is to mark the whole
	 old_size as reachable, but that would lose tracking of writes
	 after the end of the object (by small offsets).  Discard the
	 handle to avoid handle leak.  */
      VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) x + size,
						    old_size - size));
      VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (x, size));
      return x;
    }

  r = ggc_internal_alloc (size PASS_MEM_STAT);

  /* Since ggc_get_size returns the size of the pool, not the size of the
     individually allocated object, we'd access parts of the old object
     that were marked invalid with the memcpy below.  We lose a bit of the
     initialization-tracking since some of it may be uninitialized.  */
  VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (x, old_size));

  memcpy (r, x, old_size);

  /* The old object is not supposed to be used anymore.  */
  ggc_free (x);

  return r;
}

void *
ggc_cleared_alloc_htab_ignore_args (size_t c ATTRIBUTE_UNUSED,
				    size_t n ATTRIBUTE_UNUSED)
{
  gcc_assert (c * n == sizeof (struct htab));
  return ggc_cleared_alloc<htab> ();
}

/* TODO: once we actually use type information in GGC, create a new tag
   gt_gcc_ptr_array and use it for pointer arrays.  */
void *
ggc_cleared_alloc_ptr_array_two_args (size_t c, size_t n)
{
  gcc_assert (sizeof (PTR *) == n);
  return ggc_cleared_vec_alloc<PTR *> (c);
}

/* These are for splay_tree_new_ggc.  */
void *
ggc_splay_alloc (int sz, void *nl)
{
  gcc_assert (!nl);
  return ggc_internal_alloc (sz);
}

void
ggc_splay_dont_free (void * x ATTRIBUTE_UNUSED, void *nl)
{
  gcc_assert (!nl);
}

/* Print statistics that are independent of the collector in use.  */
#define SCALE(x) ((unsigned long) ((x) < 1024*10 \
		  ? (x) \
		  : ((x) < 1024*1024*10 \
		     ? (x) / 1024 \
		     : (x) / (1024*1024))))
#define LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))

void
ggc_print_common_statistics (FILE *stream ATTRIBUTE_UNUSED,
			     ggc_statistics *stats)
{
  /* Set the pointer so that during collection we will actually gather
     the statistics.  */
  ggc_stats = stats;

  /* Then do one collection to fill in the statistics.  */
  ggc_collect ();

  /* At present, we don't really gather any interesting statistics.  */

  /* Don't gather statistics any more.  */
  ggc_stats = NULL;
}

/* Functions for saving and restoring GCable memory to disk.  */

struct ptr_data
{
  void *obj;
  void *note_ptr_cookie;
  gt_note_pointers note_ptr_fn;
  gt_handle_reorder reorder_fn;
  size_t size;
  void *new_addr;
};

#define POINTER_HASH(x) (hashval_t)((intptr_t)x >> 3)

/* Helper for hashing saving_htab.  */

struct saving_hasher : free_ptr_hash <ptr_data>
{
  typedef void *compare_type;
  static inline hashval_t hash (const ptr_data *);
  static inline bool equal (const ptr_data *, const void *);
};

inline hashval_t
saving_hasher::hash (const ptr_data *p)
{
  return POINTER_HASH (p->obj);
}

inline bool
saving_hasher::equal (const ptr_data *p1, const void *p2)
{
  return p1->obj == p2;
}

static hash_table<saving_hasher> *saving_htab;

/* Register an object in the hash table.  */

int
gt_pch_note_object (void *obj, void *note_ptr_cookie,
		    gt_note_pointers note_ptr_fn)
{
  struct ptr_data **slot;

  if (obj == NULL || obj == (void *) 1)
    return 0;

  slot = (struct ptr_data **)
    saving_htab->find_slot_with_hash (obj, POINTER_HASH (obj), INSERT);
  if (*slot != NULL)
    {
      gcc_assert ((*slot)->note_ptr_fn == note_ptr_fn
		  && (*slot)->note_ptr_cookie == note_ptr_cookie);
      return 0;
    }

  *slot = XCNEW (struct ptr_data);
  (*slot)->obj = obj;
  (*slot)->note_ptr_fn = note_ptr_fn;
  (*slot)->note_ptr_cookie = note_ptr_cookie;
  if (note_ptr_fn == gt_pch_p_S)
    (*slot)->size = strlen ((const char *)obj) + 1;
  else
    (*slot)->size = ggc_get_size (obj);
  return 1;
}

/* Register an object in the hash table.  */

void
gt_pch_note_reorder (void *obj, void *note_ptr_cookie,
		     gt_handle_reorder reorder_fn)
{
  struct ptr_data *data;

  if (obj == NULL || obj == (void *) 1)
    return;

  data = (struct ptr_data *)
    saving_htab->find_with_hash (obj, POINTER_HASH (obj));
  gcc_assert (data && data->note_ptr_cookie == note_ptr_cookie);

  data->reorder_fn = reorder_fn;
}

/* Handy state for the traversal functions.  */

struct traversal_state
{
  FILE *f;
  struct ggc_pch_data *d;
  size_t count;
  struct ptr_data **ptrs;
  size_t ptrs_i;
};

/* Callbacks for htab_traverse.  */

int
ggc_call_count (ptr_data **slot, traversal_state *state)
{
  struct ptr_data *d = *slot;

  ggc_pch_count_object (state->d, d->obj, d->size,
			d->note_ptr_fn == gt_pch_p_S);
  state->count++;
  return 1;
}

int
ggc_call_alloc (ptr_data **slot, traversal_state *state)
{
  struct ptr_data *d = *slot;

  d->new_addr = ggc_pch_alloc_object (state->d, d->obj, d->size,
				      d->note_ptr_fn == gt_pch_p_S);
  state->ptrs[state->ptrs_i++] = d;
  return 1;
}

/* Callback for qsort.  */

static int
compare_ptr_data (const void *p1_p, const void *p2_p)
{
  const struct ptr_data *const p1 = *(const struct ptr_data *const *)p1_p;
  const struct ptr_data *const p2 = *(const struct ptr_data *const *)p2_p;
  return (((size_t)p1->new_addr > (size_t)p2->new_addr)
	  - ((size_t)p1->new_addr < (size_t)p2->new_addr));
}

/* Callbacks for note_ptr_fn.  */

static void
relocate_ptrs (void *ptr_p, void *state_p)
{
  void **ptr = (void **)ptr_p;
  struct traversal_state *state ATTRIBUTE_UNUSED
    = (struct traversal_state *)state_p;
  struct ptr_data *result;

  if (*ptr == NULL || *ptr == (void *)1)
    return;

  result = (struct ptr_data *)
    saving_htab->find_with_hash (*ptr, POINTER_HASH (*ptr));
  gcc_assert (result);
  *ptr = result->new_addr;
}

/* Write out, after relocation, the pointers in TAB.  */
static void
write_pch_globals (const struct ggc_root_tab * const *tab,
		   struct traversal_state *state)
{
  const struct ggc_root_tab *const *rt;
  const struct ggc_root_tab *rti;
  size_t i;

  for (rt = tab; *rt; rt++)
    for (rti = *rt; rti->base != NULL; rti++)
      for (i = 0; i < rti->nelt; i++)
	{
	  void *ptr = *(void **)((char *)rti->base + rti->stride * i);
	  struct ptr_data *new_ptr;
	  if (ptr == NULL || ptr == (void *)1)
	    {
	      if (fwrite (&ptr, sizeof (void *), 1, state->f)
		  != 1)
		fatal_error (input_location, "can%'t write PCH file: %m");
	    }
	  else
	    {
	      new_ptr = (struct ptr_data *)
		saving_htab->find_with_hash (ptr, POINTER_HASH (ptr));
	      if (fwrite (&new_ptr->new_addr, sizeof (void *), 1, state->f)
		  != 1)
		fatal_error (input_location, "can%'t write PCH file: %m");
	    }
	}
}

/* Hold the information we need to mmap the file back in.  */

struct mmap_info
{
  size_t offset;
  size_t size;
  void *preferred_base;
};

/* Write out the state of the compiler to F.  */

void
gt_pch_save (FILE *f)
{
  const struct ggc_root_tab *const *rt;
  const struct ggc_root_tab *rti;
  size_t i;
  struct traversal_state state;
  char *this_object = NULL;
  size_t this_object_size = 0;
  struct mmap_info mmi;
  const size_t mmap_offset_alignment = host_hooks.gt_pch_alloc_granularity ();

  gt_pch_save_stringpool ();

  timevar_push (TV_PCH_PTR_REALLOC);
  saving_htab = new hash_table<saving_hasher> (50000);

  for (rt = gt_ggc_rtab; *rt; rt++)
    for (rti = *rt; rti->base != NULL; rti++)
      for (i = 0; i < rti->nelt; i++)
	(*rti->pchw)(*(void **)((char *)rti->base + rti->stride * i));

  /* Prepare the objects for writing, determine addresses and such.  */
  state.f = f;
  state.d = init_ggc_pch ();
  state.count = 0;
  saving_htab->traverse <traversal_state *, ggc_call_count> (&state);

  mmi.size = ggc_pch_total_size (state.d);

  /* Try to arrange things so that no relocation is necessary, but
     don't try very hard.  On most platforms, this will always work,
     and on the rest it's a lot of work to do better.
     (The extra work goes in HOST_HOOKS_GT_PCH_GET_ADDRESS and
     HOST_HOOKS_GT_PCH_USE_ADDRESS.)  */
  mmi.preferred_base = host_hooks.gt_pch_get_address (mmi.size, fileno (f));

  ggc_pch_this_base (state.d, mmi.preferred_base);

  state.ptrs = XNEWVEC (struct ptr_data *, state.count);
  state.ptrs_i = 0;

  saving_htab->traverse <traversal_state *, ggc_call_alloc> (&state);
  timevar_pop (TV_PCH_PTR_REALLOC);

  timevar_push (TV_PCH_PTR_SORT);
  qsort (state.ptrs, state.count, sizeof (*state.ptrs), compare_ptr_data);
  timevar_pop (TV_PCH_PTR_SORT);

  /* Write out all the scalar variables.  */
  for (rt = gt_pch_scalar_rtab; *rt; rt++)
    for (rti = *rt; rti->base != NULL; rti++)
      if (fwrite (rti->base, rti->stride, 1, f) != 1)
	fatal_error (input_location, "can%'t write PCH file: %m");

  /* Write out all the global pointers, after translation.  */
  write_pch_globals (gt_ggc_rtab, &state);

  /* Pad the PCH file so that the mmapped area starts on an allocation
     granularity (usually page) boundary.  */
  {
    long o;
    o = ftell (state.f) + sizeof (mmi);
    if (o == -1)
      fatal_error (input_location, "can%'t get position in PCH file: %m");
    mmi.offset = mmap_offset_alignment - o % mmap_offset_alignment;
    if (mmi.offset == mmap_offset_alignment)
      mmi.offset = 0;
    mmi.offset += o;
  }
  if (fwrite (&mmi, sizeof (mmi), 1, state.f) != 1)
    fatal_error (input_location, "can%'t write PCH file: %m");
  if (mmi.offset != 0
      && fseek (state.f, mmi.offset, SEEK_SET) != 0)
    fatal_error (input_location, "can%'t write padding to PCH file: %m");

  ggc_pch_prepare_write (state.d, state.f);

#if defined ENABLE_VALGRIND_CHECKING && defined VALGRIND_GET_VBITS
  vec<char> vbits = vNULL;
#endif

  /* Actually write out the objects.  */
  for (i = 0; i < state.count; i++)
    {
      if (this_object_size < state.ptrs[i]->size)
	{
	  this_object_size = state.ptrs[i]->size;
	  this_object = XRESIZEVAR (char, this_object, this_object_size);
	}
#if defined ENABLE_VALGRIND_CHECKING && defined VALGRIND_GET_VBITS
      /* obj might contain uninitialized bytes, e.g. in the trailing
	 padding of the object.  Avoid warnings by making the memory
	 temporarily defined and then restoring previous state.  */
      int get_vbits = 0;
      size_t valid_size = state.ptrs[i]->size;
      if (__builtin_expect (RUNNING_ON_VALGRIND, 0))
	{
	  if (vbits.length () < valid_size)
	    vbits.safe_grow (valid_size);
	  get_vbits = VALGRIND_GET_VBITS (state.ptrs[i]->obj,
					  vbits.address (), valid_size);
	  if (get_vbits == 3)
	    {
	      /* We assume that first part of obj is addressable, and
		 the rest is unaddressable.  Find out where the boundary is
		 using binary search.  */
	      size_t lo = 0, hi = valid_size;
	      while (hi > lo)
		{
		  size_t mid = (lo + hi) / 2;
		  get_vbits = VALGRIND_GET_VBITS ((char *) state.ptrs[i]->obj
						  + mid, vbits.address (),
						  1);
		  if (get_vbits == 3)
		    hi = mid;
		  else if (get_vbits == 1)
		    lo = mid + 1;
		  else
		    break;
		}
	      if (get_vbits == 1 || get_vbits == 3)
		{
		  valid_size = lo;
		  get_vbits = VALGRIND_GET_VBITS (state.ptrs[i]->obj,
						  vbits.address (),
						  valid_size);
		}
	    }
	  if (get_vbits == 1)
	    VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (state.ptrs[i]->obj,
							 state.ptrs[i]->size));
	}
#endif
      memcpy (this_object, state.ptrs[i]->obj, state.ptrs[i]->size);
      if (state.ptrs[i]->reorder_fn != NULL)
	state.ptrs[i]->reorder_fn (state.ptrs[i]->obj,
				   state.ptrs[i]->note_ptr_cookie,
				   relocate_ptrs, &state);
      state.ptrs[i]->note_ptr_fn (state.ptrs[i]->obj,
				  state.ptrs[i]->note_ptr_cookie,
				  relocate_ptrs, &state);
      ggc_pch_write_object (state.d, state.f, state.ptrs[i]->obj,
			    state.ptrs[i]->new_addr, state.ptrs[i]->size,
			    state.ptrs[i]->note_ptr_fn == gt_pch_p_S);
      if (state.ptrs[i]->note_ptr_fn != gt_pch_p_S)
	memcpy (state.ptrs[i]->obj, this_object, state.ptrs[i]->size);
#if defined ENABLE_VALGRIND_CHECKING && defined VALGRIND_GET_VBITS
      if (__builtin_expect (get_vbits == 1, 0))
	{
	  (void) VALGRIND_SET_VBITS (state.ptrs[i]->obj, vbits.address (),
				     valid_size);
	  if (valid_size != state.ptrs[i]->size)
	    VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *)
							  state.ptrs[i]->obj
							  + valid_size,
							  state.ptrs[i]->size
							  - valid_size));
	}
#endif
    }
#if defined ENABLE_VALGRIND_CHECKING && defined VALGRIND_GET_VBITS
  vbits.release ();
#endif

  ggc_pch_finish (state.d, state.f);
  gt_pch_fixup_stringpool ();

  XDELETE (state.ptrs);
  XDELETE (this_object);
  delete saving_htab;
  saving_htab = NULL;
}

/* Read the state of the compiler back in from F.  */

void
gt_pch_restore (FILE *f)
{
  const struct ggc_root_tab *const *rt;
  const struct ggc_root_tab *rti;
  size_t i;
  struct mmap_info mmi;
  int result;

  /* Delete any deletable objects.  This makes ggc_pch_read much
     faster, as it can be sure that no GCable objects remain other
     than the ones just read in.  */
  for (rt = gt_ggc_deletable_rtab; *rt; rt++)
    for (rti = *rt; rti->base != NULL; rti++)
      memset (rti->base, 0, rti->stride);

  /* Read in all the scalar variables.  */
  for (rt = gt_pch_scalar_rtab; *rt; rt++)
    for (rti = *rt; rti->base != NULL; rti++)
      if (fread (rti->base, rti->stride, 1, f) != 1)
	fatal_error (input_location, "can%'t read PCH file: %m");

  /* Read in all the global pointers, in 6 easy loops.  */
  for (rt = gt_ggc_rtab; *rt; rt++)
    for (rti = *rt; rti->base != NULL; rti++)
      for (i = 0; i < rti->nelt; i++)
	if (fread ((char *)rti->base + rti->stride * i,
		   sizeof (void *), 1, f) != 1)
	  fatal_error (input_location, "can%'t read PCH file: %m");

  if (fread (&mmi, sizeof (mmi), 1, f) != 1)
    fatal_error (input_location, "can%'t read PCH file: %m");

  result = host_hooks.gt_pch_use_address (mmi.preferred_base, mmi.size,
					  fileno (f), mmi.offset);
  if (result < 0)
    fatal_error (input_location, "had to relocate PCH");
  if (result == 0)
    {
      if (fseek (f, mmi.offset, SEEK_SET) != 0
	  || fread (mmi.preferred_base, mmi.size, 1, f) != 1)
	fatal_error (input_location, "can%'t read PCH file: %m");
    }
  else if (fseek (f, mmi.offset + mmi.size, SEEK_SET) != 0)
    fatal_error (input_location, "can%'t read PCH file: %m");

  ggc_pch_read (f, mmi.preferred_base);

  gt_pch_restore_stringpool ();
}

/* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is not present.
   Select no address whatsoever, and let gt_pch_save choose what it will with
   malloc, presumably.  */

void *
default_gt_pch_get_address (size_t size ATTRIBUTE_UNUSED,
			    int fd ATTRIBUTE_UNUSED)
{
  return NULL;
}

/* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is not present.
   Allocate SIZE bytes with malloc.  Return 0 if the address we got is the
   same as base, indicating that the memory has been allocated but needs to
   be read in from the file.  Return -1 if the address differs, to relocation
   of the PCH file would be required.  */

int
default_gt_pch_use_address (void *base, size_t size, int fd ATTRIBUTE_UNUSED,
			    size_t offset ATTRIBUTE_UNUSED)
{
  void *addr = xmalloc (size);
  return (addr == base) - 1;
}

/* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS.   Return the
   alignment required for allocating virtual memory. Usually this is the
   same as pagesize.  */

size_t
default_gt_pch_alloc_granularity (void)
{
  return getpagesize ();
}

#if HAVE_MMAP_FILE
/* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is present.
   We temporarily allocate SIZE bytes, and let the kernel place the data
   wherever it will.  If it worked, that's our spot, if not we're likely
   to be in trouble.  */

void *
mmap_gt_pch_get_address (size_t size, int fd)
{
  void *ret;

  ret = mmap (NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
  if (ret == (void *) MAP_FAILED)
    ret = NULL;
  else
    munmap ((caddr_t) ret, size);

  return ret;
}

/* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is present.
   Map SIZE bytes of FD+OFFSET at BASE.  Return 1 if we succeeded at
   mapping the data at BASE, -1 if we couldn't.

   This version assumes that the kernel honors the START operand of mmap
   even without MAP_FIXED if START through START+SIZE are not currently
   mapped with something.  */

int
mmap_gt_pch_use_address (void *base, size_t size, int fd, size_t offset)
{
  void *addr;

  /* We're called with size == 0 if we're not planning to load a PCH
     file at all.  This allows the hook to free any static space that
     we might have allocated at link time.  */
  if (size == 0)
    return -1;

  addr = mmap ((caddr_t) base, size, PROT_READ | PROT_WRITE, MAP_PRIVATE,
	       fd, offset);

  return addr == base ? 1 : -1;
}
#endif /* HAVE_MMAP_FILE */

#if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT

/* Modify the bound based on rlimits.  */
static double
ggc_rlimit_bound (double limit)
{
#if defined(HAVE_GETRLIMIT)
  struct rlimit rlim;
# if defined (RLIMIT_AS)
  /* RLIMIT_AS is what POSIX says is the limit on mmap.  Presumably
     any OS which has RLIMIT_AS also has a working mmap that GCC will use.  */
  if (getrlimit (RLIMIT_AS, &rlim) == 0
      && rlim.rlim_cur != (rlim_t) RLIM_INFINITY
      && rlim.rlim_cur < limit)
    limit = rlim.rlim_cur;
# elif defined (RLIMIT_DATA)
  /* ... but some older OSs bound mmap based on RLIMIT_DATA, or we
     might be on an OS that has a broken mmap.  (Others don't bound
     mmap at all, apparently.)  */
  if (getrlimit (RLIMIT_DATA, &rlim) == 0
      && rlim.rlim_cur != (rlim_t) RLIM_INFINITY
      && rlim.rlim_cur < limit
      /* Darwin has this horribly bogus default setting of
	 RLIMIT_DATA, to 6144Kb.  No-one notices because RLIMIT_DATA
	 appears to be ignored.  Ignore such silliness.  If a limit
	 this small was actually effective for mmap, GCC wouldn't even
	 start up.  */
      && rlim.rlim_cur >= 8 * 1024 * 1024)
    limit = rlim.rlim_cur;
# endif /* RLIMIT_AS or RLIMIT_DATA */
#endif /* HAVE_GETRLIMIT */

  return limit;
}

/* Heuristic to set a default for GGC_MIN_EXPAND.  */
static int
ggc_min_expand_heuristic (void)
{
  double min_expand = physmem_total ();

  /* Adjust for rlimits.  */
  min_expand = ggc_rlimit_bound (min_expand);

  /* The heuristic is a percentage equal to 30% + 70%*(RAM/1GB), yielding
     a lower bound of 30% and an upper bound of 100% (when RAM >= 1GB).  */
  min_expand /= 1024*1024*1024;
  min_expand *= 70;
  min_expand = MIN (min_expand, 70);
  min_expand += 30;

  return min_expand;
}

/* Heuristic to set a default for GGC_MIN_HEAPSIZE.  */
static int
ggc_min_heapsize_heuristic (void)
{
  double phys_kbytes = physmem_total ();
  double limit_kbytes = ggc_rlimit_bound (phys_kbytes * 2);

  phys_kbytes /= 1024; /* Convert to Kbytes.  */
  limit_kbytes /= 1024;

  /* The heuristic is RAM/8, with a lower bound of 4M and an upper
     bound of 128M (when RAM >= 1GB).  */
  phys_kbytes /= 8;

#if defined(HAVE_GETRLIMIT) && defined (RLIMIT_RSS)
  /* Try not to overrun the RSS limit while doing garbage collection.
     The RSS limit is only advisory, so no margin is subtracted.  */
 {
   struct rlimit rlim;
   if (getrlimit (RLIMIT_RSS, &rlim) == 0
       && rlim.rlim_cur != (rlim_t) RLIM_INFINITY)
     phys_kbytes = MIN (phys_kbytes, rlim.rlim_cur / 1024);
 }
# endif

  /* Don't blindly run over our data limit; do GC at least when the
     *next* GC would be within 20Mb of the limit or within a quarter of
     the limit, whichever is larger.  If GCC does hit the data limit,
     compilation will fail, so this tries to be conservative.  */
  limit_kbytes = MAX (0, limit_kbytes - MAX (limit_kbytes / 4, 20 * 1024));
  limit_kbytes = (limit_kbytes * 100) / (110 + ggc_min_expand_heuristic ());
  phys_kbytes = MIN (phys_kbytes, limit_kbytes);

  phys_kbytes = MAX (phys_kbytes, 4 * 1024);
  phys_kbytes = MIN (phys_kbytes, 128 * 1024);

  return phys_kbytes;
}
#endif

void
init_ggc_heuristics (void)
{
#if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT
  set_default_param_value (GGC_MIN_EXPAND, ggc_min_expand_heuristic ());
  set_default_param_value (GGC_MIN_HEAPSIZE, ggc_min_heapsize_heuristic ());
#endif
}

/* GGC memory usage.  */
struct ggc_usage: public mem_usage
{
  /* Default constructor.  */
  ggc_usage (): m_freed (0), m_collected (0), m_overhead (0) {}
  /* Constructor.  */
  ggc_usage (size_t allocated, size_t times, size_t peak,
	     size_t freed, size_t collected, size_t overhead)
    : mem_usage (allocated, times, peak),
    m_freed (freed), m_collected (collected), m_overhead (overhead) {}

  /* Comparison operator.  */
  inline bool
  operator< (const ggc_usage &second) const
  {
    return (get_balance () == second.get_balance () ?
	    (m_peak == second.m_peak ? m_times < second.m_times
	     : m_peak < second.m_peak)
	      : get_balance () < second.get_balance ());
  }

  /* Register overhead of ALLOCATED and OVERHEAD bytes.  */
  inline void
  register_overhead (size_t allocated, size_t overhead)
  {
    m_allocated += allocated;
    m_overhead += overhead;
    m_times++;
  }

  /* Release overhead of SIZE bytes.  */
  inline void
  release_overhead (size_t size)
  {
    m_freed += size;
  }

  /* Sum the usage with SECOND usage.  */
  ggc_usage
  operator+ (const ggc_usage &second)
  {
    return ggc_usage (m_allocated + second.m_allocated,
		      m_times + second.m_times,
		      m_peak + second.m_peak,
		      m_freed + second.m_freed,
		      m_collected + second.m_collected,
		      m_overhead + second.m_overhead);
  }

  /* Dump usage with PREFIX, where TOTAL is sum of all rows.  */
  inline void
  dump (const char *prefix, ggc_usage &total) const
  {
    long balance = get_balance ();
    fprintf (stderr,
	     "%-48s %10li:%5.1f%%%10li:%5.1f%%"
	     "%10li:%5.1f%%%10li:%5.1f%%%10li\n",
	     prefix, (long)m_collected,
	     get_percent (m_collected, total.m_collected),
	     (long)m_freed, get_percent (m_freed, total.m_freed),
	     (long)balance, get_percent (balance, total.get_balance ()),
	     (long)m_overhead, get_percent (m_overhead, total.m_overhead),
	     (long)m_times);
  }

  /* Dump usage coupled to LOC location, where TOTAL is sum of all rows.  */
  inline void
  dump (mem_location *loc, ggc_usage &total) const
  {
    char *location_string = loc->to_string ();

    dump (location_string, total);

    free (location_string);
  }

  /* Dump footer.  */
  inline void
  dump_footer ()
  {
    print_dash_line ();
    dump ("Total", *this);
    print_dash_line ();
  }

  /* Get balance which is GGC allocation leak.  */
  inline long
  get_balance () const
  {
    return m_allocated + m_overhead - m_collected - m_freed;
  }

  typedef std::pair<mem_location *, ggc_usage *> mem_pair_t;

  /* Compare wrapper used by qsort method.  */
  static int
  compare (const void *first, const void *second)
  {
    const mem_pair_t f = *(const mem_pair_t *)first;
    const mem_pair_t s = *(const mem_pair_t *)second;

    return (*f.second) < (*s.second);
  }

  /* Compare rows in final GGC summary dump.  */
  static int
  compare_final (const void *first, const void *second)
  {
    typedef std::pair<mem_location *, ggc_usage *> mem_pair_t;

    const ggc_usage *f = ((const mem_pair_t *)first)->second;
    const ggc_usage *s = ((const mem_pair_t *)second)->second;

    size_t a = f->m_allocated + f->m_overhead - f->m_freed;
    size_t b = s->m_allocated + s->m_overhead - s->m_freed;

    return a == b ? 0 : (a < b ? 1 : -1);
  }

  /* Dump header with NAME.  */
  static inline void
  dump_header (const char *name)
  {
    fprintf (stderr, "%-48s %11s%17s%17s%16s%17s\n", name, "Garbage", "Freed",
	     "Leak", "Overhead", "Times");
    print_dash_line ();
  }

  /* Freed memory in bytes.  */
  size_t m_freed;
  /* Collected memory in bytes.  */
  size_t m_collected;
  /* Overhead memory in bytes.  */
  size_t m_overhead;
};

/* GCC memory description.  */
static mem_alloc_description<ggc_usage> ggc_mem_desc;

/* Dump per-site memory statistics.  */

void
dump_ggc_loc_statistics (bool final)
{
  if (! GATHER_STATISTICS)
    return;

  ggc_force_collect = true;
  ggc_collect ();

  ggc_mem_desc.dump (GGC_ORIGIN, final ? ggc_usage::compare_final : NULL);

  ggc_force_collect = false;
}

/* Record ALLOCATED and OVERHEAD bytes to descriptor NAME:LINE (FUNCTION).  */
void
ggc_record_overhead (size_t allocated, size_t overhead, void *ptr MEM_STAT_DECL)
{
  ggc_usage *usage = ggc_mem_desc.register_descriptor (ptr, GGC_ORIGIN, false
						       FINAL_PASS_MEM_STAT);

  ggc_mem_desc.register_object_overhead (usage, allocated + overhead, ptr);
  usage->register_overhead (allocated, overhead);
}

/* Notice that the pointer has been freed.  */
void
ggc_free_overhead (void *ptr)
{
  ggc_mem_desc.release_object_overhead (ptr);
}

/* After live values has been marked, walk all recorded pointers and see if
   they are still live.  */
void
ggc_prune_overhead_list (void)
{
  typedef hash_map<const void *, std::pair<ggc_usage *, size_t > > map_t;

  map_t::iterator it = ggc_mem_desc.m_reverse_object_map->begin ();

  for (; it != ggc_mem_desc.m_reverse_object_map->end (); ++it)
    if (!ggc_marked_p ((*it).first))
      (*it).second.first->m_collected += (*it).second.second;

  delete ggc_mem_desc.m_reverse_object_map;
  ggc_mem_desc.m_reverse_object_map = new map_t (13, false, false);
}