aboutsummaryrefslogtreecommitdiff
path: root/gcc/gcse.c
blob: 6a248bc51e1018167bd0d09208a5ecd7ecfe8e97 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
/* Global common subexpression elimination/Partial redundancy elimination
   and global constant/copy propagation for GNU compiler.
   Copyright (C) 1997, 1998, 1999 Free Software Foundation, Inc.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* TODO
   - reordering of memory allocation and freeing to be more space efficient
   - do rough calc of how many regs are needed in each block, and a rough
     calc of how many regs are available in each class and use that to
     throttle back the code in cases where RTX_COST is minimal.
   - dead store elimination
   - a store to the same address as a load does not kill the load if the
     source of the store is also the destination of the load.  Handling this
     allows more load motion, particularly out of loops.
   - ability to realloc sbitmap vectors would allow one initial computation
     of reg_set_in_block with only subsequent additions, rather than
     recomputing it for each pass

*/

/* References searched while implementing this.

   Compilers Principles, Techniques and Tools
   Aho, Sethi, Ullman
   Addison-Wesley, 1988

   Global Optimization by Suppression of Partial Redundancies
   E. Morel, C. Renvoise
   communications of the acm, Vol. 22, Num. 2, Feb. 1979

   A Portable Machine-Independent Global Optimizer - Design and Measurements
   Frederick Chow
   Stanford Ph.D. thesis, Dec. 1983

   A Fast Algorithm for Code Movement Optimization
   D.M. Dhamdhere
   SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988

   A Solution to a Problem with Morel and Renvoise's
   Global Optimization by Suppression of Partial Redundancies
   K-H Drechsler, M.P. Stadel
   ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988

   Practical Adaptation of the Global Optimization
   Algorithm of Morel and Renvoise
   D.M. Dhamdhere
   ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991

   Efficiently Computing Static Single Assignment Form and the Control
   Dependence Graph
   R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
   ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991

   Lazy Code Motion
   J. Knoop, O. Ruthing, B. Steffen
   ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI

   What's In a Region?  Or Computing Control Dependence Regions in Near-Linear
   Time for Reducible Flow Control
   Thomas Ball
   ACM Letters on Programming Languages and Systems,
   Vol. 2, Num. 1-4, Mar-Dec 1993

   An Efficient Representation for Sparse Sets
   Preston Briggs, Linda Torczon
   ACM Letters on Programming Languages and Systems,
   Vol. 2, Num. 1-4, Mar-Dec 1993

   A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
   K-H Drechsler, M.P. Stadel
   ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993

   Partial Dead Code Elimination
   J. Knoop, O. Ruthing, B. Steffen
   ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994

   Effective Partial Redundancy Elimination
   P. Briggs, K.D. Cooper
   ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994

   The Program Structure Tree: Computing Control Regions in Linear Time
   R. Johnson, D. Pearson, K. Pingali
   ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994

   Optimal Code Motion: Theory and Practice
   J. Knoop, O. Ruthing, B. Steffen
   ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994

   The power of assignment motion
   J. Knoop, O. Ruthing, B. Steffen
   ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI

   Global code motion / global value numbering
   C. Click
   ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI

   Value Driven Redundancy Elimination
   L.T. Simpson
   Rice University Ph.D. thesis, Apr. 1996

   Value Numbering
   L.T. Simpson
   Massively Scalar Compiler Project, Rice University, Sep. 1996

   High Performance Compilers for Parallel Computing
   Michael Wolfe
   Addison-Wesley, 1996

   Advanced Compiler Design and Implementation
   Steven Muchnick
   Morgan Kaufmann, 1997

   People wishing to speed up the code here should read:
     Elimination Algorithms for Data Flow Analysis
     B.G. Ryder, M.C. Paull
     ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986

     How to Analyze Large Programs Efficiently and Informatively
     D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
     ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI

   People wishing to do something different can find various possibilities
   in the above papers and elsewhere.
*/

#include "config.h"
#include "system.h"
#include "toplev.h"

#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "real.h"
#include "insn-config.h"
#include "recog.h"
#include "basic-block.h"
#include "output.h"
#include "function.h"
#include "expr.h" 

#include "obstack.h"
#define obstack_chunk_alloc gmalloc
#define obstack_chunk_free free

/* Maximum number of passes to perform.  */
#define MAX_PASSES 1

/* Propagate flow information through back edges and thus enable PRE's
   moving loop invariant calculations out of loops.

   Originally this tended to create worse overall code, but several
   improvements during the development of PRE seem to have made following
   back edges generally a win.

   Note much of the loop invariant code motion done here would normally
   be done by loop.c, which has more heuristics for when to move invariants
   out of loops.  At some point we might need to move some of those
   heuristics into gcse.c.  */
#define FOLLOW_BACK_EDGES 1

/* We support GCSE via Partial Redundancy Elimination.  PRE optimizations
   are a superset of those done by GCSE.

   We perform the following steps:

   1) Compute basic block information.

   2) Compute table of places where registers are set.

   3) Perform copy/constant propagation.

   4) Perform global cse.

   5) Perform another pass of copy/constant propagation.

   Two passes of copy/constant propagation are done because the first one
   enables more GCSE and the second one helps to clean up the copies that
   GCSE creates.  This is needed more for PRE than for Classic because Classic
   GCSE will try to use an existing register containing the common
   subexpression rather than create a new one.  This is harder to do for PRE
   because of the code motion (which Classic GCSE doesn't do).

   Expressions we are interested in GCSE-ing are of the form
   (set (pseudo-reg) (expression)).
   Function want_to_gcse_p says what these are.

   PRE handles moving invariant expressions out of loops (by treating them as
   partially redundant).

   Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
   assignment) based GVN (global value numbering).  L. T. Simpson's paper
   (Rice University) on value numbering is a useful reference for this.

   **********************

   We used to support multiple passes but there are diminishing returns in
   doing so.  The first pass usually makes 90% of the changes that are doable.
   A second pass can make a few more changes made possible by the first pass.
   Experiments show any further passes don't make enough changes to justify
   the expense.

   A study of spec92 using an unlimited number of passes:
   [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
   [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
   [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1

   It was found doing copy propagation between each pass enables further
   substitutions.

   PRE is quite expensive in complicated functions because the DFA can take
   awhile to converge.  Hence we only perform one pass.  Macro MAX_PASSES can
   be modified if one wants to experiment.

   **********************

   The steps for PRE are:

   1) Build the hash table of expressions we wish to GCSE (expr_hash_table).

   2) Perform the data flow analysis for PRE.

   3) Delete the redundant instructions

   4) Insert the required copies [if any] that make the partially
      redundant instructions fully redundant.

   5) For other reaching expressions, insert an instruction to copy the value
      to a newly created pseudo that will reach the redundant instruction.

   The deletion is done first so that when we do insertions we
   know which pseudo reg to use.

   Various papers have argued that PRE DFA is expensive (O(n^2)) and others
   argue it is not.  The number of iterations for the algorithm to converge
   is typically 2-4 so I don't view it as that expensive (relatively speaking).

   PRE GCSE depends heavily on the second CSE pass to clean up the copies
   we create.  To make an expression reach the place where it's redundant,
   the result of the expression is copied to a new register, and the redundant
   expression is deleted by replacing it with this new register.  Classic GCSE
   doesn't have this problem as much as it computes the reaching defs of
   each register in each block and thus can try to use an existing register.

   **********************

   A fair bit of simplicity is created by creating small functions for simple
   tasks, even when the function is only called in one place.  This may
   measurably slow things down [or may not] by creating more function call
   overhead than is necessary.  The source is laid out so that it's trivial
   to make the affected functions inline so that one can measure what speed
   up, if any, can be achieved, and maybe later when things settle things can
   be rearranged.

   Help stamp out big monolithic functions!  */

/* GCSE global vars.  */

/* -dG dump file.  */
static FILE *gcse_file;

/* Note whether or not we should run jump optimization after gcse.  We
   want to do this for two cases.

    * If we changed any jumps via cprop.

    * If we added any labels via edge splitting.  */

static int run_jump_opt_after_gcse;

/* Element I is a list of I's predecessors/successors.  */
static int_list_ptr *s_preds;
static int_list_ptr *s_succs;

/* Element I is the number of predecessors/successors of basic block I.  */
static int *num_preds;
static int *num_succs;

/* Bitmaps are normally not included in debugging dumps.
   However it's useful to be able to print them from GDB.
   We could create special functions for this, but it's simpler to
   just allow passing stderr to the dump_foo fns.  Since stderr can
   be a macro, we store a copy here.  */
static FILE *debug_stderr;

/* An obstack for our working variables.  */
static struct obstack gcse_obstack;

/* Non-zero for each mode that supports (set (reg) (reg)).
   This is trivially true for integer and floating point values.
   It may or may not be true for condition codes.  */
static char can_copy_p[(int) NUM_MACHINE_MODES];

/* Non-zero if can_copy_p has been initialized.  */
static int can_copy_init_p;

/* Hash table of expressions.  */

struct expr
{
  /* The expression (SET_SRC for expressions, PATTERN for assignments).  */
  rtx expr;
  /* Index in the available expression bitmaps.  */
  int bitmap_index;
  /* Next entry with the same hash.  */
  struct expr *next_same_hash;
  /* List of anticipatable occurrences in basic blocks in the function.
     An "anticipatable occurrence" is one that is the first occurrence in the
     basic block, the operands are not modified in the basic block prior
     to the occurrence and the output is not used between the start of
     the block and the occurrence.  */
  struct occr *antic_occr;
  /* List of available occurrence in basic blocks in the function.
     An "available occurrence" is one that is the last occurrence in the
     basic block and the operands are not modified by following statements in
     the basic block [including this insn].  */
  struct occr *avail_occr;
  /* Non-null if the computation is PRE redundant.
     The value is the newly created pseudo-reg to record a copy of the
     expression in all the places that reach the redundant copy.  */
  rtx reaching_reg;
};

/* Occurrence of an expression.
   There is one per basic block.  If a pattern appears more than once the
   last appearance is used [or first for anticipatable expressions].  */

struct occr
{
  /* Next occurrence of this expression.  */
  struct occr *next;
  /* The insn that computes the expression.  */
  rtx insn;
  /* Non-zero if this [anticipatable] occurrence has been deleted.  */
  char deleted_p;
  /* Non-zero if this [available] occurrence has been copied to
     reaching_reg.  */
  /* ??? This is mutually exclusive with deleted_p, so they could share
     the same byte.  */
  char copied_p;
};

/* Expression and copy propagation hash tables.
   Each hash table is an array of buckets.
   ??? It is known that if it were an array of entries, structure elements
   `next_same_hash' and `bitmap_index' wouldn't be necessary.  However, it is
   not clear whether in the final analysis a sufficient amount of memory would
   be saved as the size of the available expression bitmaps would be larger
   [one could build a mapping table without holes afterwards though].
   Someday I'll perform the computation and figure it out.
*/

/* Total size of the expression hash table, in elements.  */
static int expr_hash_table_size;
/* The table itself.
   This is an array of `expr_hash_table_size' elements.  */
static struct expr **expr_hash_table;

/* Total size of the copy propagation hash table, in elements.  */
static int set_hash_table_size;
/* The table itself.
   This is an array of `set_hash_table_size' elements.  */
static struct expr **set_hash_table;

/* Mapping of uids to cuids.
   Only real insns get cuids.  */
static int *uid_cuid;

/* Highest UID in UID_CUID.  */
static int max_uid;

/* Get the cuid of an insn.  */
#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])

/* Number of cuids.  */
static int max_cuid;

/* Mapping of cuids to insns.  */
static rtx *cuid_insn;

/* Get insn from cuid.  */
#define CUID_INSN(CUID) (cuid_insn[CUID])

/* Maximum register number in function prior to doing gcse + 1.
   Registers created during this pass have regno >= max_gcse_regno.
   This is named with "gcse" to not collide with global of same name.  */
static int max_gcse_regno;

/* Maximum number of cse-able expressions found.  */
static int n_exprs;
/* Maximum number of assignments for copy propagation found.  */
static int n_sets;

/* Table of registers that are modified.
   For each register, each element is a list of places where the pseudo-reg
   is set.

   For simplicity, GCSE is done on sets of pseudo-regs only.  PRE GCSE only
   requires knowledge of which blocks kill which regs [and thus could use
   a bitmap instead of the lists `reg_set_table' uses].

   `reg_set_table' and could be turned into an array of bitmaps
   (num-bbs x num-regs)
   [however perhaps it may be useful to keep the data as is].
   One advantage of recording things this way is that `reg_set_table' is
   fairly sparse with respect to pseudo regs but for hard regs could be
   fairly dense [relatively speaking].
   And recording sets of pseudo-regs in lists speeds
   up functions like compute_transp since in the case of pseudo-regs we only
   need to iterate over the number of times a pseudo-reg is set, not over the
   number of basic blocks [clearly there is a bit of a slow down in the cases
   where a pseudo is set more than once in a block, however it is believed
   that the net effect is to speed things up].  This isn't done for hard-regs
   because recording call-clobbered hard-regs in `reg_set_table' at each
   function call can consume a fair bit of memory, and iterating over hard-regs
   stored this way in compute_transp will be more expensive.  */

typedef struct reg_set {
  /* The next setting of this register.  */
  struct reg_set *next;
  /* The insn where it was set.  */
  rtx insn;
} reg_set;
static reg_set **reg_set_table;
/* Size of `reg_set_table'.
   The table starts out at max_gcse_regno + slop, and is enlarged as
   necessary.  */
static int reg_set_table_size;
/* Amount to grow `reg_set_table' by when it's full.  */
#define REG_SET_TABLE_SLOP 100

/* Bitmap containing one bit for each register in the program.
   Used when performing GCSE to track which registers have been set since
   the start of the basic block.  */
static sbitmap reg_set_bitmap;

/* For each block, a bitmap of registers set in the block.
   This is used by expr_killed_p and compute_transp.
   It is computed during hash table computation and not by compute_sets
   as it includes registers added since the last pass (or between cprop and
   gcse) and it's currently not easy to realloc sbitmap vectors.  */
static sbitmap *reg_set_in_block;

/* For each block, non-zero if memory is set in that block.
   This is computed during hash table computation and is used by
   expr_killed_p and compute_transp.
   ??? Handling of memory is very simple, we don't make any attempt
   to optimize things (later).
   ??? This can be computed by compute_sets since the information
   doesn't change.  */
static char *mem_set_in_block;

/* Various variables for statistics gathering.  */

/* Memory used in a pass.
   This isn't intended to be absolutely precise.  Its intent is only
   to keep an eye on memory usage.  */
static int bytes_used;
/* GCSE substitutions made.  */
static int gcse_subst_count;
/* Number of copy instructions created.  */
static int gcse_create_count;
/* Number of constants propagated.  */
static int const_prop_count;
/* Number of copys propagated.  */
static int copy_prop_count;

/* These variables are used by classic GCSE.
   Normally they'd be defined a bit later, but `rd_gen' needs to
   be declared sooner.  */

/* A bitmap of all ones for implementing the algorithm for available
   expressions and reaching definitions.  */
/* ??? Available expression bitmaps have a different size than reaching
   definition bitmaps.  This should be the larger of the two, however, it
   is not currently used for reaching definitions.  */
static sbitmap u_bitmap;

/* Each block has a bitmap of each type.
   The length of each blocks bitmap is:

       max_cuid  - for reaching definitions
       n_exprs - for available expressions

   Thus we view the bitmaps as 2 dimensional arrays.  i.e.
   rd_kill[block_num][cuid_num]
   ae_kill[block_num][expr_num]
*/

/* For reaching defs */
static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out;

/* for available exprs */
static sbitmap *ae_kill, *ae_gen, *ae_in, *ae_out;


static void compute_can_copy	  PROTO ((void));

static char *gmalloc		  PROTO ((unsigned int));
static char *grealloc		 PROTO ((char *, unsigned int));
static char *gcse_alloc	       PROTO ((unsigned long));
static void alloc_gcse_mem	    PROTO ((rtx));
static void free_gcse_mem	     PROTO ((void));
static void alloc_reg_set_mem	 PROTO ((int));
static void free_reg_set_mem	  PROTO ((void));
static void record_one_set	    PROTO ((int, rtx));
static void record_set_info	   PROTO ((rtx, rtx));
static void compute_sets	      PROTO ((rtx));

static void hash_scan_insn	    PROTO ((rtx, int, int));
static void hash_scan_set	     PROTO ((rtx, rtx, int));
static void hash_scan_clobber	 PROTO ((rtx, rtx));
static void hash_scan_call	    PROTO ((rtx, rtx));
static int want_to_gcse_p	     PROTO ((rtx));
static int oprs_unchanged_p	   PROTO ((rtx, rtx, int));
static int oprs_anticipatable_p       PROTO ((rtx, rtx));
static int oprs_available_p	   PROTO ((rtx, rtx));
static void insert_expr_in_table      PROTO ((rtx, enum machine_mode,
					      rtx, int, int));
static void insert_set_in_table       PROTO ((rtx, rtx));
static unsigned int hash_expr	 PROTO ((rtx, enum machine_mode,
					 int *, int));
static unsigned int hash_expr_1       PROTO ((rtx, enum machine_mode, int *));
static unsigned int hash_set	  PROTO ((int, int));
static int expr_equiv_p	       PROTO ((rtx, rtx));
static void record_last_reg_set_info  PROTO ((rtx, int));
static void record_last_mem_set_info  PROTO ((rtx));
static void record_last_set_info      PROTO ((rtx, rtx));
static void compute_hash_table	PROTO ((int));
static void alloc_set_hash_table      PROTO ((int));
static void free_set_hash_table       PROTO ((void));
static void compute_set_hash_table    PROTO ((void));
static void alloc_expr_hash_table     PROTO ((int));
static void free_expr_hash_table      PROTO ((void));
static void compute_expr_hash_table   PROTO ((void));
static void dump_hash_table	   PROTO ((FILE *, const char *, struct expr **,
					   int, int));
static struct expr *lookup_expr       PROTO ((rtx));
static struct expr *lookup_set	PROTO ((int, rtx));
static struct expr *next_set	  PROTO ((int, struct expr *));
static void reset_opr_set_tables      PROTO ((void));
static int oprs_not_set_p	     PROTO ((rtx, rtx));
static void mark_call		 PROTO ((rtx));
static void mark_set		  PROTO ((rtx, rtx));
static void mark_clobber	      PROTO ((rtx, rtx));
static void mark_oprs_set	     PROTO ((rtx));

static void alloc_cprop_mem	   PROTO ((int, int));
static void free_cprop_mem	    PROTO ((void));
static void compute_transp	    PROTO ((rtx, int, sbitmap *, int));
static void compute_transpout	    PROTO ((void));
static void compute_local_properties  PROTO ((sbitmap *, sbitmap *,
					      sbitmap *, int));
static void compute_cprop_avinout     PROTO ((void));
static void compute_cprop_data	PROTO ((void));
static void find_used_regs	    PROTO ((rtx));
static int try_replace_reg	    PROTO ((rtx, rtx, rtx));
static struct expr *find_avail_set    PROTO ((int, rtx));
static int cprop_insn		 PROTO ((rtx, int));
static int cprop		      PROTO ((int));
static int one_cprop_pass	     PROTO ((int, int));

static void alloc_pre_mem	     PROTO ((int, int));
static void free_pre_mem	      PROTO ((void));
static void compute_pre_data	  PROTO ((void));
static int pre_expr_reaches_here_p    PROTO ((int, struct expr *,
					      int, int, char *));
static void insert_insn_end_bb	PROTO ((struct expr *, int, int));
static void pre_insert		PROTO ((struct expr **));
static void pre_insert_copy_insn      PROTO ((struct expr *, rtx));
static void pre_insert_copies	 PROTO ((void));
static int pre_delete		 PROTO ((void));
static int pre_gcse		   PROTO ((void));
static int one_pre_gcse_pass	  PROTO ((int));

static void add_label_notes	      PROTO ((rtx, rtx));

static void alloc_rd_mem	      PROTO ((int, int));
static void free_rd_mem	       PROTO ((void));
static void handle_rd_kill_set	PROTO ((rtx, int, int));
static void compute_kill_rd	   PROTO ((void));
static void compute_rd		PROTO ((void));
static void alloc_avail_expr_mem      PROTO ((int, int));
static void free_avail_expr_mem       PROTO ((void));
static void compute_ae_gen	    PROTO ((void));
static int expr_killed_p	      PROTO ((rtx, int));
static void compute_ae_kill	   PROTO ((void));
static void compute_available	 PROTO ((void));
static int expr_reaches_here_p	PROTO ((struct occr *, struct expr *,
					      int, int, char *));
static rtx computing_insn	     PROTO ((struct expr *, rtx));
static int def_reaches_here_p	 PROTO ((rtx, rtx));
static int can_disregard_other_sets   PROTO ((struct reg_set **, rtx, int));
static int handle_avail_expr	  PROTO ((rtx, struct expr *));
static int classic_gcse	       PROTO ((void));
static int one_classic_gcse_pass      PROTO ((int));


/* Entry point for global common subexpression elimination.
   F is the first instruction in the function.  */

int
gcse_main (f, file)
     rtx f;
     FILE *file;
{
  int changed, pass;
  /* Bytes used at start of pass.  */
  int initial_bytes_used;
  /* Maximum number of bytes used by a pass.  */
  int max_pass_bytes;
  /* Point to release obstack data from for each pass.  */
  char *gcse_obstack_bottom;

  /* We do not construct an accurate cfg in functions which call
     setjmp, so just punt to be safe.  */
  if (current_function_calls_setjmp)
    return 0;
   
  /* Assume that we do not need to run jump optimizations after gcse.  */
  run_jump_opt_after_gcse = 0;

  /* For calling dump_foo fns from gdb.  */
  debug_stderr = stderr;
  gcse_file = file;

  /* Identify the basic block information for this function, including
     successors and predecessors.  */
  max_gcse_regno = max_reg_num ();
  find_basic_blocks (f, max_gcse_regno, file, 1);

  /* Return if there's nothing to do.  */
  if (n_basic_blocks <= 1)
    {
      /* Free storage allocated by find_basic_blocks.  */
      free_basic_block_vars (0);
      return 0;
    }

  /* See what modes support reg/reg copy operations.  */
  if (! can_copy_init_p)
    {
      compute_can_copy ();
      can_copy_init_p = 1;
    }

  gcc_obstack_init (&gcse_obstack);

  /* Allocate and compute predecessors/successors.  */

  s_preds = (int_list_ptr *) alloca (n_basic_blocks * sizeof (int_list_ptr));
  s_succs = (int_list_ptr *) alloca (n_basic_blocks * sizeof (int_list_ptr));
  num_preds = (int *) alloca (n_basic_blocks * sizeof (int));
  num_succs = (int *) alloca (n_basic_blocks * sizeof (int));
  bytes_used = 4 * n_basic_blocks * sizeof (int_list_ptr);
  compute_preds_succs (s_preds, s_succs, num_preds, num_succs);

  if (file)
    dump_bb_data (file, s_preds, s_succs, 0);

  /* Record where pseudo-registers are set.
     This data is kept accurate during each pass.
     ??? We could also record hard-reg information here
     [since it's unchanging], however it is currently done during
     hash table computation.

     It may be tempting to compute MEM set information here too, but MEM
     sets will be subject to code motion one day and thus we need to compute
     information about memory sets when we build the hash tables.  */

  alloc_reg_set_mem (max_gcse_regno);
  compute_sets (f);

  pass = 0;
  initial_bytes_used = bytes_used;
  max_pass_bytes = 0;
  gcse_obstack_bottom = gcse_alloc (1);
  changed = 1;
  while (changed && pass < MAX_PASSES)
    {
      changed = 0;
      if (file)
	fprintf (file, "GCSE pass %d\n\n", pass + 1);

      /* Initialize bytes_used to the space for the pred/succ lists,
	 and the reg_set_table data.  */
      bytes_used = initial_bytes_used;

      /* Each pass may create new registers, so recalculate each time.  */
      max_gcse_regno = max_reg_num ();

      alloc_gcse_mem (f);

      /* Don't allow constant propagation to modify jumps
	 during this pass.  */
      changed = one_cprop_pass (pass + 1, 0);

      if (optimize_size)
	changed |= one_classic_gcse_pass (pass + 1);
      else
	changed |= one_pre_gcse_pass (pass + 1);

      if (max_pass_bytes < bytes_used)
	max_pass_bytes = bytes_used;

      free_gcse_mem ();

      if (file)
	{
	  fprintf (file, "\n");
	  fflush (file);
	}
      obstack_free (&gcse_obstack, gcse_obstack_bottom);
      pass++;
    }

  /* Do one last pass of copy propagation, including cprop into
     conditional jumps.  */

  max_gcse_regno = max_reg_num ();
  alloc_gcse_mem (f);
  /* This time, go ahead and allow cprop to alter jumps.  */
  one_cprop_pass (pass + 1, 1);
  free_gcse_mem ();

  if (file)
    {
      fprintf (file, "GCSE of %s: %d basic blocks, ",
	       current_function_name, n_basic_blocks);
      fprintf (file, "%d pass%s, %d bytes\n\n",
	       pass, pass > 1 ? "es" : "", max_pass_bytes);
    }

  /* Free our obstack.  */
  obstack_free (&gcse_obstack, NULL_PTR);
  /* Free reg_set_table.  */
  free_reg_set_mem ();
  /* Free storage used to record predecessor/successor data.  */
  free_bb_mem ();
  /* Free storage allocated by find_basic_blocks.  */
  free_basic_block_vars (0);
  return run_jump_opt_after_gcse;
}

/* Misc. utilities.  */

/* Compute which modes support reg/reg copy operations.  */

static void
compute_can_copy ()
{
  int i;
#ifndef AVOID_CCMODE_COPIES
  rtx reg,insn;
#endif
  char *free_point = (char *) oballoc (1);

  bzero (can_copy_p, NUM_MACHINE_MODES);

  start_sequence ();
  for (i = 0; i < NUM_MACHINE_MODES; i++)
    {
      switch (GET_MODE_CLASS (i))
	{
	case MODE_CC :
#ifdef AVOID_CCMODE_COPIES
	  can_copy_p[i] = 0;
#else
	  reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
	  insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
	  if (recog (PATTERN (insn), insn, NULL_PTR) >= 0)
	    can_copy_p[i] = 1;
#endif
	  break;
	default :
	  can_copy_p[i] = 1;
	  break;
	}
    }
  end_sequence ();

  /* Free the objects we just allocated.  */
  obfree (free_point);
}

/* Cover function to xmalloc to record bytes allocated.  */

static char *
gmalloc (size)
     unsigned int size;
{
  bytes_used += size;
  return xmalloc (size);
}

/* Cover function to xrealloc.
   We don't record the additional size since we don't know it.
   It won't affect memory usage stats much anyway.  */

static char *
grealloc (ptr, size)
     char *ptr;
     unsigned int size;
{
  return xrealloc (ptr, size);
}

/* Cover function to obstack_alloc.
   We don't need to record the bytes allocated here since
   obstack_chunk_alloc is set to gmalloc.  */

static char *
gcse_alloc (size)
     unsigned long size;
{
  return (char *) obstack_alloc (&gcse_obstack, size);
}

/* Allocate memory for the cuid mapping array,
   and reg/memory set tracking tables.

   This is called at the start of each pass.  */

static void
alloc_gcse_mem (f)
     rtx f;
{
  int i,n;
  rtx insn;

  /* Find the largest UID and create a mapping from UIDs to CUIDs.
     CUIDs are like UIDs except they increase monotonically, have no gaps,
     and only apply to real insns.  */

  max_uid = get_max_uid ();
  n = (max_uid + 1) * sizeof (int);
  uid_cuid = (int *) gmalloc (n);
  bzero ((char *) uid_cuid, n);
  for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
    {
      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
	INSN_CUID (insn) = i++;
      else
	INSN_CUID (insn) = i;
    }

  /* Create a table mapping cuids to insns.  */

  max_cuid = i;
  n = (max_cuid + 1) * sizeof (rtx);
  cuid_insn = (rtx *) gmalloc (n);
  bzero ((char *) cuid_insn, n);
  for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
    {
      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
	{
	  CUID_INSN (i) = insn;
	  i++;
	}
    }

  /* Allocate vars to track sets of regs.  */

  reg_set_bitmap = (sbitmap) sbitmap_alloc (max_gcse_regno);

  /* Allocate vars to track sets of regs, memory per block.  */

  reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks,
						       max_gcse_regno);
  mem_set_in_block = (char *) gmalloc (n_basic_blocks);
}

/* Free memory allocated by alloc_gcse_mem.  */

static void
free_gcse_mem ()
{
  free (uid_cuid);
  free (cuid_insn);

  free (reg_set_bitmap);

  free (reg_set_in_block);
  free (mem_set_in_block);
}


/* Compute the local properties of each recorded expression.
   Local properties are those that are defined by the block, irrespective
   of other blocks.

   An expression is transparent in a block if its operands are not modified
   in the block.

   An expression is computed (locally available) in a block if it is computed
   at least once and expression would contain the same value if the
   computation was moved to the end of the block.

   An expression is locally anticipatable in a block if it is computed at
   least once and expression would contain the same value if the computation
   was moved to the beginning of the block.

   We call this routine for cprop, pre and code hoisting.  They all
   compute basically the same information and thus can easily share
   this code.

   TRANSP, COMP, and ANTLOC are destination sbitmaps for recording
   local properties.  If NULL, then it is not necessary to compute
   or record that particular property.

   SETP controls which hash table to look at.  If zero, this routine
   looks at the expr hash table; if nonzero this routine looks at
   the set hash table.  Additionally, TRANSP is computed as ~TRANSP,
   since this is really cprop's ABSALTERED.  */
 
static void
compute_local_properties (transp, comp, antloc, setp)
     sbitmap *transp;
     sbitmap *comp;
     sbitmap *antloc;
     int setp;
{
  int i, hash_table_size;
  struct expr **hash_table;
  
  /* Initialize any bitmaps that were passed in.  */
  if (transp)
    {
      if (setp)
	sbitmap_vector_zero (transp, n_basic_blocks);
      else
	sbitmap_vector_ones (transp, n_basic_blocks);
    }
  if (comp)
    sbitmap_vector_zero (comp, n_basic_blocks);
  if (antloc)
    sbitmap_vector_zero (antloc, n_basic_blocks);

  /* We use the same code for cprop, pre and hoisting.  For cprop
     we care about the set hash table, for pre and hoisting we
     care about the expr hash table.  */
  hash_table_size = setp ? set_hash_table_size : expr_hash_table_size;
  hash_table = setp ? set_hash_table : expr_hash_table;

  for (i = 0; i < hash_table_size; i++)
    {
      struct expr *expr;

      for (expr = hash_table[i]; expr != NULL; expr = expr->next_same_hash)
	{
	  struct occr *occr;
	  int indx = expr->bitmap_index;

	  /* The expression is transparent in this block if it is not killed.
	     We start by assuming all are transparent [none are killed], and
	     then reset the bits for those that are.  */

	  if (transp)
	    compute_transp (expr->expr, indx, transp, setp);

	  /* The occurrences recorded in antic_occr are exactly those that
	     we want to set to non-zero in ANTLOC.  */

	  if (antloc)
	    {
	      for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
		{
		  int bb = BLOCK_NUM (occr->insn);
		  SET_BIT (antloc[bb], indx);

		  /* While we're scanning the table, this is a good place to
		     initialize this.  */
		  occr->deleted_p = 0;
		}
	    }

	  /* The occurrences recorded in avail_occr are exactly those that
	     we want to set to non-zero in COMP.  */
	  if (comp)
	    {
	
	      for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
		{
		  int bb = BLOCK_NUM (occr->insn);
		  SET_BIT (comp[bb], indx);

		  /* While we're scanning the table, this is a good place to
		     initialize this.  */
		  occr->copied_p = 0;
		}
	    }

	  /* While we're scanning the table, this is a good place to
	     initialize this.  */
	  expr->reaching_reg = 0;
	}
    }
}


/* Register set information.

   `reg_set_table' records where each register is set or otherwise
   modified.  */

static struct obstack reg_set_obstack;

static void
alloc_reg_set_mem (n_regs)
     int n_regs;
{
  int n;

  reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
  n = reg_set_table_size * sizeof (struct reg_set *);
  reg_set_table = (struct reg_set **) gmalloc (n);
  bzero ((char *) reg_set_table, n);

  gcc_obstack_init (&reg_set_obstack);
}

static void
free_reg_set_mem ()
{
  free (reg_set_table);
  obstack_free (&reg_set_obstack, NULL_PTR);
}

/* Record REGNO in the reg_set table.  */

static void
record_one_set (regno, insn)
     int regno;
     rtx insn;
{
  /* allocate a new reg_set element and link it onto the list */
  struct reg_set *new_reg_info, *reg_info_ptr1, *reg_info_ptr2;

  /* If the table isn't big enough, enlarge it.  */
  if (regno >= reg_set_table_size)
    {
      int new_size = regno + REG_SET_TABLE_SLOP;
      reg_set_table = (struct reg_set **)
	grealloc ((char *) reg_set_table,
		  new_size * sizeof (struct reg_set *));
      bzero ((char *) (reg_set_table + reg_set_table_size),
	     (new_size - reg_set_table_size) * sizeof (struct reg_set *));
      reg_set_table_size = new_size;
    }

  new_reg_info = (struct reg_set *) obstack_alloc (&reg_set_obstack,
						   sizeof (struct reg_set));
  bytes_used += sizeof (struct reg_set);
  new_reg_info->insn = insn;
  new_reg_info->next = NULL;
  if (reg_set_table[regno] == NULL)
    reg_set_table[regno] = new_reg_info;
  else
    {
      reg_info_ptr1 = reg_info_ptr2 = reg_set_table[regno];
      /* ??? One could keep a "last" pointer to speed this up.  */
      while (reg_info_ptr1 != NULL)
	{
	  reg_info_ptr2 = reg_info_ptr1;
	  reg_info_ptr1 = reg_info_ptr1->next;
	}
      reg_info_ptr2->next = new_reg_info;
    }
}

/* For communication between next two functions (via note_stores).  */
static rtx record_set_insn;

/* Called from compute_sets via note_stores to handle one
   SET or CLOBBER in an insn.  */

static void
record_set_info (dest, setter)
     rtx dest, setter ATTRIBUTE_UNUSED;
{
  if (GET_CODE (dest) == SUBREG)
    dest = SUBREG_REG (dest);

  if (GET_CODE (dest) == REG)
    {
      if (REGNO (dest) >= FIRST_PSEUDO_REGISTER)
	record_one_set (REGNO (dest), record_set_insn);
    }
}

/* Scan the function and record each set of each pseudo-register.

   This is called once, at the start of the gcse pass.
   See the comments for `reg_set_table' for further docs.  */

static void
compute_sets (f)
     rtx f;
{
  rtx insn = f;

  while (insn)
    {
      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
	{
	  record_set_insn = insn;
	  note_stores (PATTERN (insn), record_set_info);
	}
      insn = NEXT_INSN (insn);
    }
}

/* Hash table support.  */

#define NEVER_SET -1

/* For each register, the cuid of the first/last insn in the block to set it,
   or -1 if not set.  */
static int *reg_first_set;
static int *reg_last_set;

/* While computing "first/last set" info, this is the CUID of first/last insn
   to set memory or -1 if not set.  `mem_last_set' is also used when
   performing GCSE to record whether memory has been set since the beginning
   of the block.
   Note that handling of memory is very simple, we don't make any attempt
   to optimize things (later).  */
static int mem_first_set;
static int mem_last_set;

/* Perform a quick check whether X, the source of a set, is something
   we want to consider for GCSE.  */

static int
want_to_gcse_p (x)
     rtx x;
{
  enum rtx_code code = GET_CODE (x);

  switch (code)
    {
    case REG:
    case SUBREG:
    case CONST_INT:
    case CONST_DOUBLE:
    case CALL:
      return 0;

    default:
      break;
    }

  return 1;
}

/* Return non-zero if the operands of expression X are unchanged from the
   start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
   or from INSN to the end of INSN's basic block (if AVAIL_P != 0).  */

static int
oprs_unchanged_p (x, insn, avail_p)
     rtx x, insn;
     int avail_p;
{
  int i;
  enum rtx_code code;
  const char *fmt;

  /* repeat is used to turn tail-recursion into iteration.  */
 repeat:

  if (x == 0)
    return 1;

  code = GET_CODE (x);
  switch (code)
    {
    case REG:
      if (avail_p)
	return (reg_last_set[REGNO (x)] == NEVER_SET
		|| reg_last_set[REGNO (x)] < INSN_CUID (insn));
      else
	return (reg_first_set[REGNO (x)] == NEVER_SET
		|| reg_first_set[REGNO (x)] >= INSN_CUID (insn));

    case MEM:
      if (avail_p)
	{
	  if (mem_last_set != NEVER_SET
	      && mem_last_set >= INSN_CUID (insn))
	    return 0;
	}
      else
	{
	  if (mem_first_set != NEVER_SET
	      && mem_first_set < INSN_CUID (insn))
	    return 0;
	}
      x = XEXP (x, 0);
      goto repeat;

    case PRE_DEC:
    case PRE_INC:
    case POST_DEC:
    case POST_INC:
      return 0;

    case PC:
    case CC0: /*FIXME*/
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case SYMBOL_REF:
    case LABEL_REF:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return 1;

    default:
      break;
    }

  i = GET_RTX_LENGTH (code) - 1;
  fmt = GET_RTX_FORMAT (code);
  for (; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  rtx tem = XEXP (x, i);

	  /* If we are about to do the last recursive call
	     needed at this level, change it into iteration.
	     This function is called enough to be worth it.  */
	  if (i == 0)
	    {
	      x = tem;
	      goto repeat;
	    }
	  if (! oprs_unchanged_p (tem, insn, avail_p))
	    return 0;
	}
      else if (fmt[i] == 'E')
	{
	  int j;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    {
	      if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
		return 0;
	    }
	}
    }

  return 1;
}

/* Return non-zero if the operands of expression X are unchanged from
   the start of INSN's basic block up to but not including INSN.  */

static int
oprs_anticipatable_p (x, insn)
     rtx x, insn;
{
  return oprs_unchanged_p (x, insn, 0);
}

/* Return non-zero if the operands of expression X are unchanged from
   INSN to the end of INSN's basic block.  */

static int
oprs_available_p (x, insn)
     rtx x, insn;
{
  return oprs_unchanged_p (x, insn, 1);
}

/* Hash expression X.
   MODE is only used if X is a CONST_INT.
   A boolean indicating if a volatile operand is found or if the expression
   contains something we don't want to insert in the table is stored in
   DO_NOT_RECORD_P.

   ??? One might want to merge this with canon_hash.  Later.  */

static unsigned int
hash_expr (x, mode, do_not_record_p, hash_table_size)
     rtx x;
     enum machine_mode mode;
     int *do_not_record_p;
     int hash_table_size;
{
  unsigned int hash;

  *do_not_record_p = 0;

  hash = hash_expr_1 (x, mode, do_not_record_p);
  return hash % hash_table_size;
}

/* Subroutine of hash_expr to do the actual work.  */

static unsigned int
hash_expr_1 (x, mode, do_not_record_p)
     rtx x;
     enum machine_mode mode;
     int *do_not_record_p;
{
  int i, j;
  unsigned hash = 0;
  enum rtx_code code;
  const char *fmt;

  /* repeat is used to turn tail-recursion into iteration.  */
 repeat:

  if (x == 0)
    return hash;

  code = GET_CODE (x);
  switch (code)
    {
    case REG:
      {
	register int regno = REGNO (x);
	hash += ((unsigned) REG << 7) + regno;
	return hash;
      }

    case CONST_INT:
      {
	unsigned HOST_WIDE_INT tem = INTVAL (x);
	hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + tem;
	return hash;
      }

    case CONST_DOUBLE:
      /* This is like the general case, except that it only counts
	 the integers representing the constant.  */
      hash += (unsigned) code + (unsigned) GET_MODE (x);
      if (GET_MODE (x) != VOIDmode)
	for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
	  {
	    unsigned tem = XINT (x, i);
	    hash += tem;
	  }
      else
	hash += ((unsigned) CONST_DOUBLE_LOW (x)
		 + (unsigned) CONST_DOUBLE_HIGH (x));
      return hash;

      /* Assume there is only one rtx object for any given label.  */
    case LABEL_REF:
      /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
	 differences and differences between each stage's debugging dumps.  */
      hash += ((unsigned) LABEL_REF << 7) + CODE_LABEL_NUMBER (XEXP (x, 0));
      return hash;

    case SYMBOL_REF:
      {
	/* Don't hash on the symbol's address to avoid bootstrap differences.
	   Different hash values may cause expressions to be recorded in
	   different orders and thus different registers to be used in the
	   final assembler.  This also avoids differences in the dump files
	   between various stages.  */
	unsigned int h = 0;
	unsigned char *p = (unsigned char *) XSTR (x, 0);
	while (*p)
	  h += (h << 7) + *p++; /* ??? revisit */
	hash += ((unsigned) SYMBOL_REF << 7) + h;
	return hash;
      }

    case MEM:
      if (MEM_VOLATILE_P (x))
	{
	  *do_not_record_p = 1;
	  return 0;
	}
      hash += (unsigned) MEM;
      x = XEXP (x, 0);
      goto repeat;

    case PRE_DEC:
    case PRE_INC:
    case POST_DEC:
    case POST_INC:
    case PC:
    case CC0:
    case CALL:
    case UNSPEC_VOLATILE:
      *do_not_record_p = 1;
      return 0;

    case ASM_OPERANDS:
      if (MEM_VOLATILE_P (x))
	{
	  *do_not_record_p = 1;
	  return 0;
	}

    default:
      break;
    }

  i = GET_RTX_LENGTH (code) - 1;
  hash += (unsigned) code + (unsigned) GET_MODE (x);
  fmt = GET_RTX_FORMAT (code);
  for (; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  rtx tem = XEXP (x, i);

	  /* If we are about to do the last recursive call
	     needed at this level, change it into iteration.
	     This function is called enough to be worth it.  */
	  if (i == 0)
	    {
	      x = tem;
	      goto repeat;
	    }
	  hash += hash_expr_1 (tem, 0, do_not_record_p);
	  if (*do_not_record_p)
	    return 0;
	}
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  {
	    hash += hash_expr_1 (XVECEXP (x, i, j), 0, do_not_record_p);
	    if (*do_not_record_p)
	      return 0;
	  }
      else if (fmt[i] == 's')
	{
	  register unsigned char *p = (unsigned char *) XSTR (x, i);
	  if (p)
	    while (*p)
	      hash += *p++;
	}
      else if (fmt[i] == 'i')
	{
	  register unsigned tem = XINT (x, i);
	  hash += tem;
	}
      else
	abort ();
    }

  return hash;
}

/* Hash a set of register REGNO.

   Sets are hashed on the register that is set.
   This simplifies the PRE copy propagation code.

   ??? May need to make things more elaborate.  Later, as necessary.  */

static unsigned int
hash_set (regno, hash_table_size)
     int regno;
     int hash_table_size;
{
  unsigned int hash;

  hash = regno;
  return hash % hash_table_size;
}

/* Return non-zero if exp1 is equivalent to exp2.
   ??? Borrowed from cse.c.  Might want to remerge with cse.c.  Later.  */

static int
expr_equiv_p (x, y)
     rtx x, y;
{
  register int i, j;
  register enum rtx_code code;
  register const char *fmt;

  if (x == y)
    return 1;
  if (x == 0 || y == 0)
    return x == y;

  code = GET_CODE (x);
  if (code != GET_CODE (y))
    return 0;

  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
  if (GET_MODE (x) != GET_MODE (y))
    return 0;

  switch (code)
    {
    case PC:
    case CC0:
      return x == y;

    case CONST_INT:
      return INTVAL (x) == INTVAL (y);

    case LABEL_REF:
      return XEXP (x, 0) == XEXP (y, 0);

    case SYMBOL_REF:
      return XSTR (x, 0) == XSTR (y, 0);

    case REG:
      return REGNO (x) == REGNO (y);

    /*  For commutative operations, check both orders.  */
    case PLUS:
    case MULT:
    case AND:
    case IOR:
    case XOR:
    case NE:
    case EQ:
      return ((expr_equiv_p (XEXP (x, 0), XEXP (y, 0))
	       && expr_equiv_p (XEXP (x, 1), XEXP (y, 1)))
	      || (expr_equiv_p (XEXP (x, 0), XEXP (y, 1))
		  && expr_equiv_p (XEXP (x, 1), XEXP (y, 0))));

    default:
      break;
    }

  /* Compare the elements.  If any pair of corresponding elements
     fail to match, return 0 for the whole thing.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      switch (fmt[i])
	{
	case 'e':
	  if (! expr_equiv_p (XEXP (x, i), XEXP (y, i)))
	    return 0;
	  break;

	case 'E':
	  if (XVECLEN (x, i) != XVECLEN (y, i))
	    return 0;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    if (! expr_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
	      return 0;
	  break;

	case 's':
	  if (strcmp (XSTR (x, i), XSTR (y, i)))
	    return 0;
	  break;

	case 'i':
	  if (XINT (x, i) != XINT (y, i))
	    return 0;
	  break;

	case 'w':
	  if (XWINT (x, i) != XWINT (y, i))
	    return 0;
	break;

	case '0':
	  break;

	default:
	  abort ();
	}
      }

  return 1;
}

/* Insert expression X in INSN in the hash table.
   If it is already present, record it as the last occurrence in INSN's
   basic block.

   MODE is the mode of the value X is being stored into.
   It is only used if X is a CONST_INT.

   ANTIC_P is non-zero if X is an anticipatable expression.
   AVAIL_P is non-zero if X is an available expression.  */

static void
insert_expr_in_table (x, mode, insn, antic_p, avail_p)
     rtx x;
     enum machine_mode mode;
     rtx insn;
     int antic_p, avail_p;
{
  int found, do_not_record_p;
  unsigned int hash;
  struct expr *cur_expr, *last_expr = NULL;
  struct occr *antic_occr, *avail_occr;
  struct occr *last_occr = NULL;

  hash = hash_expr (x, mode, &do_not_record_p, expr_hash_table_size);

  /* Do not insert expression in table if it contains volatile operands,
     or if hash_expr determines the expression is something we don't want
     to or can't handle.  */
  if (do_not_record_p)
    return;

  cur_expr = expr_hash_table[hash];
  found = 0;

  while (cur_expr && ! (found = expr_equiv_p (cur_expr->expr, x)))
    {
      /* If the expression isn't found, save a pointer to the end of
	 the list.  */
      last_expr = cur_expr;
      cur_expr = cur_expr->next_same_hash;
    }

  if (! found)
    {
      cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
      bytes_used += sizeof (struct expr);
      if (expr_hash_table[hash] == NULL)
	{
	  /* This is the first pattern that hashed to this index.  */
	  expr_hash_table[hash] = cur_expr;
	}
      else
	{
	  /* Add EXPR to end of this hash chain.  */
	  last_expr->next_same_hash = cur_expr;
	}
      /* Set the fields of the expr element.  */ 
      cur_expr->expr = x;
      cur_expr->bitmap_index = n_exprs++;
      cur_expr->next_same_hash = NULL;
      cur_expr->antic_occr = NULL;
      cur_expr->avail_occr = NULL;
    }

  /* Now record the occurrence(s).  */

  if (antic_p)
    {
      antic_occr = cur_expr->antic_occr;

      /* Search for another occurrence in the same basic block.  */
      while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
	{
	  /* If an occurrence isn't found, save a pointer to the end of
	     the list.  */
	  last_occr = antic_occr;
	  antic_occr = antic_occr->next;
	}

      if (antic_occr)
	{
	  /* Found another instance of the expression in the same basic block.
	     Prefer the currently recorded one.  We want the first one in the
	     block and the block is scanned from start to end.  */
	  ; /* nothing to do */
	}
      else
	{
	  /* First occurrence of this expression in this basic block.  */
	  antic_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
	  bytes_used += sizeof (struct occr);
	  /* First occurrence of this expression in any block?  */
	  if (cur_expr->antic_occr == NULL)
	    cur_expr->antic_occr = antic_occr;
	  else
	    last_occr->next = antic_occr;
	  antic_occr->insn = insn;
	  antic_occr->next = NULL;
	}
    }

  if (avail_p)
    {
      avail_occr = cur_expr->avail_occr;

      /* Search for another occurrence in the same basic block.  */
      while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
	{
	  /* If an occurrence isn't found, save a pointer to the end of
	     the list.  */
	  last_occr = avail_occr;
	  avail_occr = avail_occr->next;
	}

      if (avail_occr)
	{
	  /* Found another instance of the expression in the same basic block.
	     Prefer this occurrence to the currently recorded one.  We want
	     the last one in the block and the block is scanned from start
	     to end.  */
	  avail_occr->insn = insn;
	}
      else
	{
	  /* First occurrence of this expression in this basic block.  */
	  avail_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
	  bytes_used += sizeof (struct occr);
	  /* First occurrence of this expression in any block?  */
	  if (cur_expr->avail_occr == NULL)
	    cur_expr->avail_occr = avail_occr;
	  else
	    last_occr->next = avail_occr;
	  avail_occr->insn = insn;
	  avail_occr->next = NULL;
	}
    }
}

/* Insert pattern X in INSN in the hash table.
   X is a SET of a reg to either another reg or a constant.
   If it is already present, record it as the last occurrence in INSN's
   basic block.  */

static void
insert_set_in_table (x, insn)
     rtx x;
     rtx insn;
{
  int found;
  unsigned int hash;
  struct expr *cur_expr, *last_expr = NULL;
  struct occr *cur_occr, *last_occr = NULL;

  if (GET_CODE (x) != SET
      || GET_CODE (SET_DEST (x)) != REG)
    abort ();

  hash = hash_set (REGNO (SET_DEST (x)), set_hash_table_size);

  cur_expr = set_hash_table[hash];
  found = 0;

  while (cur_expr && ! (found = expr_equiv_p (cur_expr->expr, x)))
    {
      /* If the expression isn't found, save a pointer to the end of
	 the list.  */
      last_expr = cur_expr;
      cur_expr = cur_expr->next_same_hash;
    }

  if (! found)
    {
      cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
      bytes_used += sizeof (struct expr);
      if (set_hash_table[hash] == NULL)
	{
	  /* This is the first pattern that hashed to this index.  */
	  set_hash_table[hash] = cur_expr;
	}
      else
	{
	  /* Add EXPR to end of this hash chain.  */
	  last_expr->next_same_hash = cur_expr;
	}
      /* Set the fields of the expr element.
	 We must copy X because it can be modified when copy propagation is
	 performed on its operands.  */
      /* ??? Should this go in a different obstack?  */
      cur_expr->expr = copy_rtx (x);
      cur_expr->bitmap_index = n_sets++;
      cur_expr->next_same_hash = NULL;
      cur_expr->antic_occr = NULL;
      cur_expr->avail_occr = NULL;
    }

  /* Now record the occurrence.  */

  cur_occr = cur_expr->avail_occr;

  /* Search for another occurrence in the same basic block.  */
  while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
    {
      /* If an occurrence isn't found, save a pointer to the end of
	 the list.  */
      last_occr = cur_occr;
      cur_occr = cur_occr->next;
    }

  if (cur_occr)
    {
      /* Found another instance of the expression in the same basic block.
	 Prefer this occurrence to the currently recorded one.  We want
	 the last one in the block and the block is scanned from start
	 to end.  */
      cur_occr->insn = insn;
    }
  else
    {
      /* First occurrence of this expression in this basic block.  */
      cur_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
      bytes_used += sizeof (struct occr);
      /* First occurrence of this expression in any block?  */
      if (cur_expr->avail_occr == NULL)
	cur_expr->avail_occr = cur_occr;
      else
	last_occr->next = cur_occr;
      cur_occr->insn = insn;
      cur_occr->next = NULL;
    }
}

/* Scan pattern PAT of INSN and add an entry to the hash table.
   If SET_P is non-zero, this is for the assignment hash table,
   otherwise it is for the expression hash table.  */

static void
hash_scan_set (pat, insn, set_p)
     rtx pat, insn;
     int set_p;
{
  rtx src = SET_SRC (pat);
  rtx dest = SET_DEST (pat);

  if (GET_CODE (src) == CALL)
    hash_scan_call (src, insn);

  if (GET_CODE (dest) == REG)
    {
      int regno = REGNO (dest);
      rtx tmp;

      /* Only record sets of pseudo-regs in the hash table.  */
      if (! set_p
	  && regno >= FIRST_PSEUDO_REGISTER
	  /* Don't GCSE something if we can't do a reg/reg copy.  */
	  && can_copy_p [GET_MODE (dest)]
	  /* Is SET_SRC something we want to gcse?  */
	  && want_to_gcse_p (src))
	{
	  /* An expression is not anticipatable if its operands are
	     modified before this insn.  */
	  int antic_p = ! optimize_size && oprs_anticipatable_p (src, insn);
	  /* An expression is not available if its operands are
	     subsequently modified, including this insn.  */
	  int avail_p = oprs_available_p (src, insn);
	  insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p);
	}
      /* Record sets for constant/copy propagation.  */
      else if (set_p
	       && regno >= FIRST_PSEUDO_REGISTER
	       && ((GET_CODE (src) == REG
		    && REGNO (src) >= FIRST_PSEUDO_REGISTER
		    && can_copy_p [GET_MODE (dest)])
		   || GET_CODE (src) == CONST_INT
		   || GET_CODE (src) == SYMBOL_REF
		   || GET_CODE (src) == CONST_DOUBLE)
	       /* A copy is not available if its src or dest is subsequently
		  modified.  Here we want to search from INSN+1 on, but
		  oprs_available_p searches from INSN on.  */
	       && (insn == BLOCK_END (BLOCK_NUM (insn))
		   || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
		       && oprs_available_p (pat, tmp))))
	insert_set_in_table (pat, insn);
    }
}

static void
hash_scan_clobber (x, insn)
     rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
{
  /* Currently nothing to do.  */
}

static void
hash_scan_call (x, insn)
     rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
{
  /* Currently nothing to do.  */
}

/* Process INSN and add hash table entries as appropriate.

   Only available expressions that set a single pseudo-reg are recorded.

   Single sets in a PARALLEL could be handled, but it's an extra complication
   that isn't dealt with right now.  The trick is handling the CLOBBERs that
   are also in the PARALLEL.  Later.

   If SET_P is non-zero, this is for the assignment hash table,
   otherwise it is for the expression hash table.
   If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
   not record any expressions.  */

static void
hash_scan_insn (insn, set_p, in_libcall_block)
     rtx insn;
     int set_p;
     int in_libcall_block;
{
  rtx pat = PATTERN (insn);

  /* Pick out the sets of INSN and for other forms of instructions record
     what's been modified.  */

  if (GET_CODE (pat) == SET && ! in_libcall_block)
    hash_scan_set (pat, insn, set_p);
  else if (GET_CODE (pat) == PARALLEL)
    {
      int i;

      for (i = 0; i < XVECLEN (pat, 0); i++)
	{
	  rtx x = XVECEXP (pat, 0, i);

	  if (GET_CODE (x) == SET)
	    {
	      if (GET_CODE (SET_SRC (x)) == CALL)
		hash_scan_call (SET_SRC (x), insn);
	    }
	  else if (GET_CODE (x) == CLOBBER)
	    hash_scan_clobber (x, insn);
	  else if (GET_CODE (x) == CALL)
	    hash_scan_call (x, insn);
	}
    }
  else if (GET_CODE (pat) == CLOBBER)
    hash_scan_clobber (pat, insn);
  else if (GET_CODE (pat) == CALL)
    hash_scan_call (pat, insn);
}

static void
dump_hash_table (file, name, table, table_size, total_size)
     FILE *file;
     const char *name;
     struct expr **table;
     int table_size, total_size;
{
  int i;
  /* Flattened out table, so it's printed in proper order.  */
  struct expr **flat_table = (struct expr **) alloca (total_size * sizeof (struct expr *));
  unsigned int *hash_val = (unsigned int *) alloca (total_size * sizeof (unsigned int));

  bzero ((char *) flat_table, total_size * sizeof (struct expr *));
  for (i = 0; i < table_size; i++)
    {
      struct expr *expr;

      for (expr = table[i]; expr != NULL; expr = expr->next_same_hash)
	{
	  flat_table[expr->bitmap_index] = expr;
	  hash_val[expr->bitmap_index] = i;
	}
    }

  fprintf (file, "%s hash table (%d buckets, %d entries)\n",
	   name, table_size, total_size);

  for (i = 0; i < total_size; i++)
    {
      struct expr *expr = flat_table[i];

      fprintf (file, "Index %d (hash value %d)\n  ",
	       expr->bitmap_index, hash_val[i]);
      print_rtl (file, expr->expr);
      fprintf (file, "\n");
    }

  fprintf (file, "\n");
}

/* Record register first/last/block set information for REGNO in INSN.
   reg_first_set records the first place in the block where the register
   is set and is used to compute "anticipatability".
   reg_last_set records the last place in the block where the register
   is set and is used to compute "availability".
   reg_set_in_block records whether the register is set in the block
   and is used to compute "transparency".  */

static void
record_last_reg_set_info (insn, regno)
     rtx insn;
     int regno;
{
  if (reg_first_set[regno] == NEVER_SET)
    reg_first_set[regno] = INSN_CUID (insn);
  reg_last_set[regno] = INSN_CUID (insn);
  SET_BIT (reg_set_in_block[BLOCK_NUM (insn)], regno);
}

/* Record memory first/last/block set information for INSN.  */

static void
record_last_mem_set_info (insn)
     rtx insn;
{
  if (mem_first_set == NEVER_SET)
    mem_first_set = INSN_CUID (insn);
  mem_last_set = INSN_CUID (insn);
  mem_set_in_block[BLOCK_NUM (insn)] = 1;
}

/* Used for communicating between next two routines.  */
static rtx last_set_insn;

/* Called from compute_hash_table via note_stores to handle one
   SET or CLOBBER in an insn.  */

static void
record_last_set_info (dest, setter)
     rtx dest, setter ATTRIBUTE_UNUSED;
{
  if (GET_CODE (dest) == SUBREG)
    dest = SUBREG_REG (dest);

  if (GET_CODE (dest) == REG)
    record_last_reg_set_info (last_set_insn, REGNO (dest));
  else if (GET_CODE (dest) == MEM
	   /* Ignore pushes, they clobber nothing.  */
	   && ! push_operand (dest, GET_MODE (dest)))
    record_last_mem_set_info (last_set_insn);
}

/* Top level function to create an expression or assignment hash table.

   Expression entries are placed in the hash table if
   - they are of the form (set (pseudo-reg) src),
   - src is something we want to perform GCSE on,
   - none of the operands are subsequently modified in the block

   Assignment entries are placed in the hash table if
   - they are of the form (set (pseudo-reg) src),
   - src is something we want to perform const/copy propagation on,
   - none of the operands or target are subsequently modified in the block
   Currently src must be a pseudo-reg or a const_int.

   F is the first insn.
   SET_P is non-zero for computing the assignment hash table.  */

static void
compute_hash_table (set_p)
     int set_p;
{
  int bb;

  /* While we compute the hash table we also compute a bit array of which
     registers are set in which blocks.
     We also compute which blocks set memory, in the absence of aliasing
     support [which is TODO].
     ??? This isn't needed during const/copy propagation, but it's cheap to
     compute.  Later.  */
  sbitmap_vector_zero (reg_set_in_block, n_basic_blocks);
  bzero ((char *) mem_set_in_block, n_basic_blocks);

  /* Some working arrays used to track first and last set in each block.  */
  /* ??? One could use alloca here, but at some size a threshold is crossed
     beyond which one should use malloc.  Are we at that threshold here?  */
  reg_first_set = (int *) gmalloc (max_gcse_regno * sizeof (int));
  reg_last_set = (int *) gmalloc (max_gcse_regno * sizeof (int));

  for (bb = 0; bb < n_basic_blocks; bb++)
    {
      rtx insn;
      int regno;
      int in_libcall_block;
      int i;

      /* First pass over the instructions records information used to
	 determine when registers and memory are first and last set.
	 ??? The mem_set_in_block and hard-reg reg_set_in_block computation
	 could be moved to compute_sets since they currently don't change.  */

      for (i = 0; i < max_gcse_regno; i++)
	reg_first_set[i] = reg_last_set[i] = NEVER_SET;
      mem_first_set = NEVER_SET;
      mem_last_set = NEVER_SET;

      for (insn = BLOCK_HEAD (bb);
	   insn && insn != NEXT_INSN (BLOCK_END (bb));
	   insn = NEXT_INSN (insn))
	{
#ifdef NON_SAVING_SETJMP 
	  if (NON_SAVING_SETJMP && GET_CODE (insn) == NOTE
	      && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
	    {
	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
		record_last_reg_set_info (insn, regno);
	      continue;
	    }
#endif

	  if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
	    continue;

	  if (GET_CODE (insn) == CALL_INSN)
	    {
	      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
		if ((call_used_regs[regno]
		     && regno != STACK_POINTER_REGNUM
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
		     && regno != HARD_FRAME_POINTER_REGNUM
#endif
#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
		     && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
#endif
#if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
		     && ! (regno == PIC_OFFSET_TABLE_REGNUM && flag_pic)
#endif

		     && regno != FRAME_POINTER_REGNUM)
		    || global_regs[regno])
		  record_last_reg_set_info (insn, regno);
	      if (! CONST_CALL_P (insn))
		record_last_mem_set_info (insn);
	    }

	  last_set_insn = insn;
	  note_stores (PATTERN (insn), record_last_set_info);
	}

      /* The next pass builds the hash table.  */

      for (insn = BLOCK_HEAD (bb), in_libcall_block = 0;
	   insn && insn != NEXT_INSN (BLOCK_END (bb));
	   insn = NEXT_INSN (insn))
	{
	  if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
	    {
	      if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
		in_libcall_block = 1;
	      else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
		in_libcall_block = 0;
	      hash_scan_insn (insn, set_p, in_libcall_block);
	    }
	}
    }

  free (reg_first_set);
  free (reg_last_set);
  /* Catch bugs early.  */
  reg_first_set = reg_last_set = 0;
}

/* Allocate space for the set hash table.
   N_INSNS is the number of instructions in the function.
   It is used to determine the number of buckets to use.  */

static void
alloc_set_hash_table (n_insns)
     int n_insns;
{
  int n;

  set_hash_table_size = n_insns / 4;
  if (set_hash_table_size < 11)
    set_hash_table_size = 11;
  /* Attempt to maintain efficient use of hash table.
     Making it an odd number is simplest for now.
     ??? Later take some measurements.  */
  set_hash_table_size |= 1;
  n = set_hash_table_size * sizeof (struct expr *);
  set_hash_table = (struct expr **) gmalloc (n);
}

/* Free things allocated by alloc_set_hash_table.  */

static void
free_set_hash_table ()
{
  free (set_hash_table);
}

/* Compute the hash table for doing copy/const propagation.  */

static void
compute_set_hash_table ()
{
  /* Initialize count of number of entries in hash table.  */
  n_sets = 0;
  bzero ((char *) set_hash_table, set_hash_table_size * sizeof (struct expr *));

  compute_hash_table (1);
}

/* Allocate space for the expression hash table.
   N_INSNS is the number of instructions in the function.
   It is used to determine the number of buckets to use.  */

static void
alloc_expr_hash_table (n_insns)
     int n_insns;
{
  int n;

  expr_hash_table_size = n_insns / 2;
  /* Make sure the amount is usable.  */
  if (expr_hash_table_size < 11)
    expr_hash_table_size = 11;
  /* Attempt to maintain efficient use of hash table.
     Making it an odd number is simplest for now.
     ??? Later take some measurements.  */
  expr_hash_table_size |= 1;
  n = expr_hash_table_size * sizeof (struct expr *);
  expr_hash_table = (struct expr **) gmalloc (n);
}

/* Free things allocated by alloc_expr_hash_table.  */

static void
free_expr_hash_table ()
{
  free (expr_hash_table);
}

/* Compute the hash table for doing GCSE.  */

static void
compute_expr_hash_table ()
{
  /* Initialize count of number of entries in hash table.  */
  n_exprs = 0;
  bzero ((char *) expr_hash_table, expr_hash_table_size * sizeof (struct expr *));

  compute_hash_table (0);
}

/* Expression tracking support.  */

/* Lookup pattern PAT in the expression table.
   The result is a pointer to the table entry, or NULL if not found.  */

static struct expr *
lookup_expr (pat)
     rtx pat;
{
  int do_not_record_p;
  unsigned int hash = hash_expr (pat, GET_MODE (pat), &do_not_record_p,
				 expr_hash_table_size);
  struct expr *expr;

  if (do_not_record_p)
    return NULL;

  expr = expr_hash_table[hash];

  while (expr && ! expr_equiv_p (expr->expr, pat))
    expr = expr->next_same_hash;

  return expr;
}

/* Lookup REGNO in the set table.
   If PAT is non-NULL look for the entry that matches it, otherwise return
   the first entry for REGNO.
   The result is a pointer to the table entry, or NULL if not found.  */

static struct expr *
lookup_set (regno, pat)
     int regno;
     rtx pat;
{
  unsigned int hash = hash_set (regno, set_hash_table_size);
  struct expr *expr;

  expr = set_hash_table[hash];

  if (pat)
    {
      while (expr && ! expr_equiv_p (expr->expr, pat))
	expr = expr->next_same_hash;
    }
  else
    {
      while (expr && REGNO (SET_DEST (expr->expr)) != regno)
	expr = expr->next_same_hash;
    }

  return expr;
}

/* Return the next entry for REGNO in list EXPR.  */

static struct expr *
next_set (regno, expr)
     int regno;
     struct expr *expr;
{
  do
    expr = expr->next_same_hash;
  while (expr && REGNO (SET_DEST (expr->expr)) != regno);
  return expr;
}

/* Reset tables used to keep track of what's still available [since the
   start of the block].  */

static void
reset_opr_set_tables ()
{
  /* Maintain a bitmap of which regs have been set since beginning of
     the block.  */
  sbitmap_zero (reg_set_bitmap);
  /* Also keep a record of the last instruction to modify memory.
     For now this is very trivial, we only record whether any memory
     location has been modified.  */
  mem_last_set = 0;
}

/* Return non-zero if the operands of X are not set before INSN in
   INSN's basic block.  */

static int
oprs_not_set_p (x, insn)
     rtx x, insn;
{
  int i;
  enum rtx_code code;
  const char *fmt;

  /* repeat is used to turn tail-recursion into iteration.  */
repeat:

  if (x == 0)
    return 1;

  code = GET_CODE (x);
  switch (code)
    {
    case PC:
    case CC0:
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case SYMBOL_REF:
    case LABEL_REF:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return 1;

    case MEM:
      if (mem_last_set != 0)
	return 0;
      x = XEXP (x, 0);
      goto repeat;

    case REG:
      return ! TEST_BIT (reg_set_bitmap, REGNO (x));

    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  int not_set_p;
	  /* If we are about to do the last recursive call
	     needed at this level, change it into iteration.
	     This function is called enough to be worth it.  */
	  if (i == 0)
	    {
	      x = XEXP (x, 0);
	      goto repeat;
	    }
	  not_set_p = oprs_not_set_p (XEXP (x, i), insn);
	  if (! not_set_p)
	    return 0;
	}
      else if (fmt[i] == 'E')
	{
	  int j;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    {
	      int not_set_p = oprs_not_set_p (XVECEXP (x, i, j), insn);
	      if (! not_set_p)
		return 0;
	    }
	}
    }

  return 1;
}

/* Mark things set by a CALL.  */

static void
mark_call (insn)
     rtx insn;
{
  mem_last_set = INSN_CUID (insn);
}

/* Mark things set by a SET.  */

static void
mark_set (pat, insn)
     rtx pat, insn;
{
  rtx dest = SET_DEST (pat);

  while (GET_CODE (dest) == SUBREG
	 || GET_CODE (dest) == ZERO_EXTRACT
	 || GET_CODE (dest) == SIGN_EXTRACT
	 || GET_CODE (dest) == STRICT_LOW_PART)
    dest = XEXP (dest, 0);

  if (GET_CODE (dest) == REG)
    SET_BIT (reg_set_bitmap, REGNO (dest));
  else if (GET_CODE (dest) == MEM)
    mem_last_set = INSN_CUID (insn);

  if (GET_CODE (SET_SRC (pat)) == CALL)
    mark_call (insn);
}

/* Record things set by a CLOBBER.  */

static void
mark_clobber (pat, insn)
     rtx pat, insn;
{
  rtx clob = XEXP (pat, 0);

  while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
    clob = XEXP (clob, 0);

  if (GET_CODE (clob) == REG)
    SET_BIT (reg_set_bitmap, REGNO (clob));
  else
    mem_last_set = INSN_CUID (insn);
}

/* Record things set by INSN.
   This data is used by oprs_not_set_p.  */

static void
mark_oprs_set (insn)
     rtx insn;
{
  rtx pat = PATTERN (insn);

  if (GET_CODE (pat) == SET)
    mark_set (pat, insn);
  else if (GET_CODE (pat) == PARALLEL)
    {
      int i;

      for (i = 0; i < XVECLEN (pat, 0); i++)
	{
	  rtx x = XVECEXP (pat, 0, i);

	  if (GET_CODE (x) == SET)
	    mark_set (x, insn);
	  else if (GET_CODE (x) == CLOBBER)
	    mark_clobber (x, insn);
	  else if (GET_CODE (x) == CALL)
	    mark_call (insn);
	}
    }
  else if (GET_CODE (pat) == CLOBBER)
    mark_clobber (pat, insn);
  else if (GET_CODE (pat) == CALL)
    mark_call (insn);
}


/* Classic GCSE reaching definition support.  */

/* Allocate reaching def variables.  */

static void
alloc_rd_mem (n_blocks, n_insns)
     int n_blocks, n_insns;
{
  rd_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
  sbitmap_vector_zero (rd_kill, n_basic_blocks);

  rd_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
  sbitmap_vector_zero (rd_gen, n_basic_blocks);

  reaching_defs = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
  sbitmap_vector_zero (reaching_defs, n_basic_blocks);

  rd_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
  sbitmap_vector_zero (rd_out, n_basic_blocks);
}

/* Free reaching def variables.  */

static void
free_rd_mem ()
{
  free (rd_kill);
  free (rd_gen);
  free (reaching_defs);
  free (rd_out);
}

/* Add INSN to the kills of BB.
   REGNO, set in BB, is killed by INSN.  */

static void
handle_rd_kill_set (insn, regno, bb)
     rtx insn;
     int regno, bb;
{
  struct reg_set *this_reg = reg_set_table[regno];

  while (this_reg)
    {
      if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn))
	SET_BIT (rd_kill[bb], INSN_CUID (this_reg->insn));
      this_reg = this_reg->next;
    }
}

/* Compute the set of kill's for reaching definitions.  */

static void
compute_kill_rd ()
{
  int bb,cuid;

  /* For each block
       For each set bit in `gen' of the block (i.e each insn which
	   generates a definition in the block)
	 Call the reg set by the insn corresponding to that bit regx
	 Look at the linked list starting at reg_set_table[regx]
	 For each setting of regx in the linked list, which is not in
	     this block
	   Set the bit in `kill' corresponding to that insn
    */

  for (bb = 0; bb < n_basic_blocks; bb++)
    {
      for (cuid = 0; cuid < max_cuid; cuid++)
	{
	  if (TEST_BIT (rd_gen[bb], cuid))
	    {
	      rtx insn = CUID_INSN (cuid);
	      rtx pat = PATTERN (insn);

	      if (GET_CODE (insn) == CALL_INSN)
		{
		  int regno;

		  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
		    {
		      if ((call_used_regs[regno]
			   && regno != STACK_POINTER_REGNUM
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
			   && regno != HARD_FRAME_POINTER_REGNUM
#endif
#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
			   && ! (regno == ARG_POINTER_REGNUM
				 && fixed_regs[regno])
#endif
#if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
			   && ! (regno == PIC_OFFSET_TABLE_REGNUM && flag_pic)
#endif
			   && regno != FRAME_POINTER_REGNUM)
			  || global_regs[regno])
			handle_rd_kill_set (insn, regno, bb);
		    }
		}

	      if (GET_CODE (pat) == PARALLEL)
		{
		  int i;

		  /* We work backwards because ... */
		  for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
		    {
		      enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i));
		      if ((code == SET || code == CLOBBER)
			  && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG)
			handle_rd_kill_set (insn,
					    REGNO (XEXP (XVECEXP (pat, 0, i), 0)),
					    bb);
		    }
		}
	      else if (GET_CODE (pat) == SET)
		{
		  if (GET_CODE (SET_DEST (pat)) == REG)
		    {
		      /* Each setting of this register outside of this block
			 must be marked in the set of kills in this block.  */
		      handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), bb);
		    }
		}
	      /* FIXME: CLOBBER? */
	    }
	}
    }
}

/* Compute the reaching definitions as in 
   Compilers Principles, Techniques, and Tools. Aho, Sethi, Ullman,
   Chapter 10.  It is the same algorithm as used for computing available
   expressions but applied to the gens and kills of reaching definitions.  */

static void
compute_rd ()
{
  int bb, changed, passes;

  for (bb = 0; bb < n_basic_blocks; bb++)
    sbitmap_copy (rd_out[bb] /*dst*/, rd_gen[bb] /*src*/);

  passes = 0;
  changed = 1;
  while (changed)
    {
      changed = 0;
      for (bb = 0; bb < n_basic_blocks; bb++)
	{
	  sbitmap_union_of_predecessors (reaching_defs[bb], rd_out,
					 bb, s_preds);
	  changed |= sbitmap_union_of_diff (rd_out[bb], rd_gen[bb],
					    reaching_defs[bb], rd_kill[bb]);
	}
      passes++;
    }

  if (gcse_file)
    fprintf (gcse_file, "reaching def computation: %d passes\n", passes);
}

/* Classic GCSE available expression support.  */

/* Allocate memory for available expression computation.  */

static void
alloc_avail_expr_mem (n_blocks, n_exprs)
     int n_blocks, n_exprs;
{
  ae_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
  sbitmap_vector_zero (ae_kill, n_basic_blocks);

  ae_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
  sbitmap_vector_zero (ae_gen, n_basic_blocks);

  ae_in = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
  sbitmap_vector_zero (ae_in, n_basic_blocks);

  ae_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
  sbitmap_vector_zero (ae_out, n_basic_blocks);

  u_bitmap = (sbitmap) sbitmap_alloc (n_exprs);
  sbitmap_ones (u_bitmap);
}

static void
free_avail_expr_mem ()
{
  free (ae_kill);
  free (ae_gen);
  free (ae_in);
  free (ae_out);
  free (u_bitmap);
}

/* Compute the set of available expressions generated in each basic block.  */

static void
compute_ae_gen ()
{
  int i;

  /* For each recorded occurrence of each expression, set ae_gen[bb][expr].
     This is all we have to do because an expression is not recorded if it
     is not available, and the only expressions we want to work with are the
     ones that are recorded.  */

  for (i = 0; i < expr_hash_table_size; i++)
    {
      struct expr *expr = expr_hash_table[i];
      while (expr != NULL)
	{
	  struct occr *occr = expr->avail_occr;
	  while (occr != NULL)
	    {
	      SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index);
	      occr = occr->next;
	    }
	  expr = expr->next_same_hash;
	}
    }
}

/* Return non-zero if expression X is killed in BB.  */

static int
expr_killed_p (x, bb)
     rtx x;
     int bb;
{
  int i;
  enum rtx_code code;
  const char *fmt;

  /* repeat is used to turn tail-recursion into iteration.  */
 repeat:

  if (x == 0)
    return 1;

  code = GET_CODE (x);
  switch (code)
    {
    case REG:
      return TEST_BIT (reg_set_in_block[bb], REGNO (x));

    case MEM:
      if (mem_set_in_block[bb])
	return 1;
      x = XEXP (x, 0);
      goto repeat;

    case PC:
    case CC0: /*FIXME*/
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case SYMBOL_REF:
    case LABEL_REF:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return 0;

    default:
      break;
    }

  i = GET_RTX_LENGTH (code) - 1;
  fmt = GET_RTX_FORMAT (code);
  for (; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  rtx tem = XEXP (x, i);

	  /* If we are about to do the last recursive call
	     needed at this level, change it into iteration.
	     This function is called enough to be worth it.  */
	  if (i == 0)
	    {
	      x = tem;
	      goto repeat;
	    }
	  if (expr_killed_p (tem, bb))
	    return 1;
	}
      else if (fmt[i] == 'E')
	{
	  int j;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    {
	      if (expr_killed_p (XVECEXP (x, i, j), bb))
		return 1;
	    }
	}
    }

  return 0;
}

/* Compute the set of available expressions killed in each basic block.  */

static void
compute_ae_kill ()
{
  int bb,i;

  for (bb = 0; bb < n_basic_blocks; bb++)
    {
      for (i = 0; i < expr_hash_table_size; i++)
	{
	  struct expr *expr = expr_hash_table[i];

	  for ( ; expr != NULL; expr = expr->next_same_hash)
	    {
	      /* Skip EXPR if generated in this block.  */
	      if (TEST_BIT (ae_gen[bb], expr->bitmap_index))
		continue;

	      if (expr_killed_p (expr->expr, bb))
		SET_BIT (ae_kill[bb], expr->bitmap_index);
	    }
	}
    }
}

/* Compute available expressions.

   Implement the algorithm to find available expressions
   as given in the Aho Sethi Ullman book, pages 627-631.  */

static void
compute_available ()
{
  int bb, changed, passes;

  sbitmap_zero (ae_in[0]);

  sbitmap_copy (ae_out[0] /*dst*/, ae_gen[0] /*src*/);

  for (bb = 1; bb < n_basic_blocks; bb++)
    sbitmap_difference (ae_out[bb], u_bitmap, ae_kill[bb]);
    
  passes = 0;
  changed = 1;
  while (changed)
    {
      changed = 0;
      for (bb = 1; bb < n_basic_blocks; bb++)
	{
	  sbitmap_intersect_of_predecessors (ae_in[bb], ae_out, bb, s_preds);
	  changed |= sbitmap_union_of_diff (ae_out[bb], ae_gen[bb],
					    ae_in[bb], ae_kill[bb]);
	}
      passes++;
    }

  if (gcse_file)
    fprintf (gcse_file, "avail expr computation: %d passes\n", passes);
}

/* Actually perform the Classic GCSE optimizations.  */

/* Return non-zero if occurrence OCCR of expression EXPR reaches block BB.

   CHECK_SELF_LOOP is non-zero if we should consider a block reaching itself
   as a positive reach.  We want to do this when there are two computations
   of the expression in the block.

   VISITED is a pointer to a working buffer for tracking which BB's have
   been visited.  It is NULL for the top-level call.

   We treat reaching expressions that go through blocks containing the same
   reaching expression as "not reaching".  E.g. if EXPR is generated in blocks
   2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
   2 as not reaching.  The intent is to improve the probability of finding
   only one reaching expression and to reduce register lifetimes by picking
   the closest such expression.  */

static int
expr_reaches_here_p (occr, expr, bb, check_self_loop, visited)
     struct occr *occr;
     struct expr *expr;
     int bb;
     int check_self_loop;
     char *visited;
{
  int_list_ptr pred;

  if (visited == NULL)
    {
      visited = (char *) alloca (n_basic_blocks);
      bzero (visited, n_basic_blocks);
    }

  for (pred = s_preds[bb]; pred != NULL; pred = pred->next)
    {
      int pred_bb = INT_LIST_VAL (pred);

      if (visited[pred_bb])
	{
	  /* This predecessor has already been visited.
	     Nothing to do.  */
	  ;
	}
      else if (pred_bb == bb)
	{
	  /* BB loops on itself.  */
	  if (check_self_loop
	      && TEST_BIT (ae_gen[pred_bb], expr->bitmap_index)
	      && BLOCK_NUM (occr->insn) == pred_bb)
	    return 1;
	  visited[pred_bb] = 1;
	}
      /* Ignore this predecessor if it kills the expression.  */
      else if (TEST_BIT (ae_kill[pred_bb], expr->bitmap_index))
	visited[pred_bb] = 1;
      /* Does this predecessor generate this expression?  */
      else if (TEST_BIT (ae_gen[pred_bb], expr->bitmap_index))
	{
	  /* Is this the occurrence we're looking for?
	     Note that there's only one generating occurrence per block
	     so we just need to check the block number.  */
	  if (BLOCK_NUM (occr->insn) == pred_bb)
	    return 1;
	  visited[pred_bb] = 1;
	}
      /* Neither gen nor kill.  */
      else
	{
	  visited[pred_bb] = 1;
	  if (expr_reaches_here_p (occr, expr, pred_bb, check_self_loop, visited))
	    return 1;
	}
    }

  /* All paths have been checked.  */
  return 0;
}

/* Return the instruction that computes EXPR that reaches INSN's basic block.
   If there is more than one such instruction, return NULL.

   Called only by handle_avail_expr.  */

static rtx
computing_insn (expr, insn)
     struct expr *expr;
     rtx insn;
{
  int bb = BLOCK_NUM (insn);

  if (expr->avail_occr->next == NULL)
    {    
      if (BLOCK_NUM (expr->avail_occr->insn) == bb)
	{
	  /* The available expression is actually itself
	     (i.e. a loop in the flow graph) so do nothing.  */
	  return NULL;
	}
      /* (FIXME) Case that we found a pattern that was created by
	 a substitution that took place.  */
      return expr->avail_occr->insn;
    }
  else
    {
      /* Pattern is computed more than once.
	 Search backwards from this insn to see how many of these 
	 computations actually reach this insn.  */
      struct occr *occr;
      rtx insn_computes_expr = NULL;
      int can_reach = 0;

      for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
	{
	  if (BLOCK_NUM (occr->insn) == bb)
	    {
	      /* The expression is generated in this block.
		 The only time we care about this is when the expression
		 is generated later in the block [and thus there's a loop].
		 We let the normal cse pass handle the other cases.  */
	      if (INSN_CUID (insn) < INSN_CUID (occr->insn))
		{
		  if (expr_reaches_here_p (occr, expr, bb, 1, NULL))
		    {
		      can_reach++;
		      if (can_reach > 1)
			return NULL;
		      insn_computes_expr = occr->insn;
		    }
		}
	    }
	  else /* Computation of the pattern outside this block.  */
	    {
	      if (expr_reaches_here_p (occr, expr, bb, 0, NULL))
		{
		  can_reach++;
		  if (can_reach > 1)
		    return NULL;
		  insn_computes_expr = occr->insn;
		}
	    }
	}

      if (insn_computes_expr == NULL)
	abort ();
      return insn_computes_expr;
    }
}

/* Return non-zero if the definition in DEF_INSN can reach INSN.
   Only called by can_disregard_other_sets.  */

static int
def_reaches_here_p (insn, def_insn)
     rtx insn, def_insn;
{
  rtx reg;

  if (TEST_BIT (reaching_defs[BLOCK_NUM (insn)], INSN_CUID (def_insn)))
    return 1;

  if (BLOCK_NUM (insn) == BLOCK_NUM (def_insn))
    {
      if (INSN_CUID (def_insn) < INSN_CUID (insn))
	{
	  if (GET_CODE (PATTERN (def_insn)) == PARALLEL)
	    return 1;
	  if (GET_CODE (PATTERN (def_insn)) == CLOBBER)
	    reg = XEXP (PATTERN (def_insn), 0);
	  else if (GET_CODE (PATTERN (def_insn)) == SET)
	    reg = SET_DEST (PATTERN (def_insn));
	  else
	    abort ();
	  return ! reg_set_between_p (reg, NEXT_INSN (def_insn), insn);
	}
      else
	return 0;
    }

  return 0;
}

/* Return non-zero if *ADDR_THIS_REG can only have one value at INSN.
   The value returned is the number of definitions that reach INSN.
   Returning a value of zero means that [maybe] more than one definition
   reaches INSN and the caller can't perform whatever optimization it is
   trying.  i.e. it is always safe to return zero.  */

static int
can_disregard_other_sets (addr_this_reg, insn, for_combine)
     struct reg_set **addr_this_reg;
     rtx insn;
     int for_combine;
{
  int number_of_reaching_defs = 0;
  struct reg_set *this_reg = *addr_this_reg;

  while (this_reg)
    {
      if (def_reaches_here_p (insn, this_reg->insn))
	{
	  number_of_reaching_defs++;
	  /* Ignore parallels for now.  */
	  if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL)
	    return 0;
	  if (!for_combine
	      && (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER
		  || ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
				    SET_SRC (PATTERN (insn)))))
	    {
	      /* A setting of the reg to a different value reaches INSN.  */
	      return 0;
	    }
	  if (number_of_reaching_defs > 1)
	    {
	      /* If in this setting the value the register is being
		 set to is equal to the previous value the register 
		 was set to and this setting reaches the insn we are
		 trying to do the substitution on then we are ok.  */

	      if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER)
		return 0;
	      if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
				 SET_SRC (PATTERN (insn))))
		return 0;
	    }
	  *addr_this_reg = this_reg; 
	}

      /* prev_this_reg = this_reg; */
      this_reg = this_reg->next;
    }

  return number_of_reaching_defs;
}

/* Expression computed by insn is available and the substitution is legal,
   so try to perform the substitution.

   The result is non-zero if any changes were made.  */

static int
handle_avail_expr (insn, expr)
     rtx insn;
     struct expr *expr;
{
  rtx pat, insn_computes_expr;
  rtx to;
  struct reg_set *this_reg;
  int found_setting, use_src;
  int changed = 0;

  /* We only handle the case where one computation of the expression
     reaches this instruction.  */
  insn_computes_expr = computing_insn (expr, insn);
  if (insn_computes_expr == NULL)
    return 0;

  found_setting = 0;
  use_src = 0;

  /* At this point we know only one computation of EXPR outside of this
     block reaches this insn.  Now try to find a register that the
     expression is computed into.  */

  if (GET_CODE (SET_SRC (PATTERN (insn_computes_expr))) == REG)
    {
      /* This is the case when the available expression that reaches
	 here has already been handled as an available expression.  */
      int regnum_for_replacing = REGNO (SET_SRC (PATTERN (insn_computes_expr)));
      /* If the register was created by GCSE we can't use `reg_set_table',
	 however we know it's set only once.  */
      if (regnum_for_replacing >= max_gcse_regno
	  /* If the register the expression is computed into is set only once,
	     or only one set reaches this insn, we can use it.  */
	  || (((this_reg = reg_set_table[regnum_for_replacing]),
	       this_reg->next == NULL)
	      || can_disregard_other_sets (&this_reg, insn, 0)))
       {
	 use_src = 1;
	 found_setting = 1;
       }
    }

  if (!found_setting)
    {
      int regnum_for_replacing = REGNO (SET_DEST (PATTERN (insn_computes_expr)));
      /* This shouldn't happen.  */
      if (regnum_for_replacing >= max_gcse_regno)
	abort ();
      this_reg = reg_set_table[regnum_for_replacing];
      /* If the register the expression is computed into is set only once,
	 or only one set reaches this insn, use it.  */
      if (this_reg->next == NULL
	  || can_disregard_other_sets (&this_reg, insn, 0))
	found_setting = 1;
    }

  if (found_setting)
    {
      pat = PATTERN (insn);
      if (use_src)
	to = SET_SRC (PATTERN (insn_computes_expr));
      else
	to = SET_DEST (PATTERN (insn_computes_expr));
      changed = validate_change (insn, &SET_SRC (pat), to, 0);

      /* We should be able to ignore the return code from validate_change but
	 to play it safe we check.  */
      if (changed)
	{
	  gcse_subst_count++;
	  if (gcse_file != NULL)
	    {
	      fprintf (gcse_file, "GCSE: Replacing the source in insn %d with reg %d %s insn %d\n",
		       INSN_UID (insn), REGNO (to),
		       use_src ? "from" : "set in",
		       INSN_UID (insn_computes_expr));
	    }

	}
    }
  /* The register that the expr is computed into is set more than once.  */
  else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/)
    {
      /* Insert an insn after insnx that copies the reg set in insnx
	 into a new pseudo register call this new register REGN.
	 From insnb until end of basic block or until REGB is set
	 replace all uses of REGB with REGN.  */
      rtx new_insn;

      to = gen_reg_rtx (GET_MODE (SET_DEST (PATTERN (insn_computes_expr))));

      /* Generate the new insn.  */
      /* ??? If the change fails, we return 0, even though we created
	 an insn.  I think this is ok.  */
      new_insn
	= emit_insn_after (gen_rtx_SET (VOIDmode, to,
					SET_DEST (PATTERN (insn_computes_expr))),
				  insn_computes_expr);
      /* Keep block number table up to date.  */
      set_block_num (new_insn, BLOCK_NUM (insn_computes_expr));
      /* Keep register set table up to date.  */
      record_one_set (REGNO (to), new_insn);

      gcse_create_count++;
      if (gcse_file != NULL)
	{
	  fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d, computed in insn %d,\n",
		   INSN_UID (NEXT_INSN (insn_computes_expr)),
		   REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr)))),
		   INSN_UID (insn_computes_expr));
	  fprintf (gcse_file, "      into newly allocated reg %d\n", REGNO (to));
	}

      pat = PATTERN (insn);

      /* Do register replacement for INSN.  */
      changed = validate_change (insn, &SET_SRC (pat),
				 SET_DEST (PATTERN (NEXT_INSN (insn_computes_expr))),
				 0);

      /* We should be able to ignore the return code from validate_change but
	 to play it safe we check.  */
      if (changed)
	{
	  gcse_subst_count++;
	  if (gcse_file != NULL)
	    {
	      fprintf (gcse_file, "GCSE: Replacing the source in insn %d with reg %d set in insn %d\n",
		       INSN_UID (insn),
		       REGNO (SET_DEST (PATTERN (NEXT_INSN (insn_computes_expr)))),
		       INSN_UID (insn_computes_expr)); 
	    }

	}
    }

  return changed;
}

/* Perform classic GCSE.
   This is called by one_classic_gcse_pass after all the dataflow analysis
   has been done.

   The result is non-zero if a change was made.  */

static int
classic_gcse ()
{
  int bb, changed;
  rtx insn;

  /* Note we start at block 1.  */

  changed = 0;
  for (bb = 1; bb < n_basic_blocks; bb++)
    {
      /* Reset tables used to keep track of what's still valid [since the
	 start of the block].  */
      reset_opr_set_tables ();

      for (insn = BLOCK_HEAD (bb);
	   insn != NULL && insn != NEXT_INSN (BLOCK_END (bb));
	   insn = NEXT_INSN (insn))
	{
	  /* Is insn of form (set (pseudo-reg) ...)?  */

	  if (GET_CODE (insn) == INSN
	      && GET_CODE (PATTERN (insn)) == SET
	      && GET_CODE (SET_DEST (PATTERN (insn))) == REG
	      && REGNO (SET_DEST (PATTERN (insn))) >= FIRST_PSEUDO_REGISTER)
	    {
	      rtx pat = PATTERN (insn);
	      rtx src = SET_SRC (pat);
	      struct expr *expr;

	      if (want_to_gcse_p (src)
		  /* Is the expression recorded?  */
		  && ((expr = lookup_expr (src)) != NULL)
		  /* Is the expression available [at the start of the
		     block]?  */
		  && TEST_BIT (ae_in[bb], expr->bitmap_index)
		  /* Are the operands unchanged since the start of the
		     block?  */
		  && oprs_not_set_p (src, insn))
		changed |= handle_avail_expr (insn, expr);
	    }

	  /* Keep track of everything modified by this insn.  */
	  /* ??? Need to be careful w.r.t. mods done to INSN.  */
	  if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
	    mark_oprs_set (insn);
	}
    }

  return changed;
}

/* Top level routine to perform one classic GCSE pass.

   Return non-zero if a change was made.  */

static int
one_classic_gcse_pass (pass)
     int pass;
{
  int changed = 0;

  gcse_subst_count = 0;
  gcse_create_count = 0;

  alloc_expr_hash_table (max_cuid);
  alloc_rd_mem (n_basic_blocks, max_cuid);
  compute_expr_hash_table ();
  if (gcse_file)
    dump_hash_table (gcse_file, "Expression", expr_hash_table,
		     expr_hash_table_size, n_exprs);
  if (n_exprs > 0)
    {
      compute_kill_rd ();
      compute_rd ();
      alloc_avail_expr_mem (n_basic_blocks, n_exprs);
      compute_ae_gen ();
      compute_ae_kill ();
      compute_available ();
      changed = classic_gcse ();
      free_avail_expr_mem ();
    }
  free_rd_mem ();
  free_expr_hash_table ();

  if (gcse_file)
    {
      fprintf (gcse_file, "\n");
      fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs, %d insns created\n",
	       current_function_name, pass,
	       bytes_used, gcse_subst_count, gcse_create_count);
    }

  return changed;
}

/* Compute copy/constant propagation working variables.  */

/* Local properties of assignments.  */

static sbitmap *cprop_pavloc;
static sbitmap *cprop_absaltered;

/* Global properties of assignments (computed from the local properties).  */

static sbitmap *cprop_avin;
static sbitmap *cprop_avout;

/* Allocate vars used for copy/const propagation.
   N_BLOCKS is the number of basic blocks.
   N_SETS is the number of sets.  */

static void
alloc_cprop_mem (n_blocks, n_sets)
     int n_blocks, n_sets;
{
  cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
  cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);

  cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
  cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
}

/* Free vars used by copy/const propagation.  */

static void
free_cprop_mem ()
{
  free (cprop_pavloc);
  free (cprop_absaltered);
  free (cprop_avin);
  free (cprop_avout);
}

/* For each block, compute whether X is transparent.
   X is either an expression or an assignment [though we don't care which,
   for this context an assignment is treated as an expression].
   For each block where an element of X is modified, set (SET_P == 1) or reset
   (SET_P == 0) the INDX bit in BMAP.  */

static void
compute_transp (x, indx, bmap, set_p)
     rtx x;
     int indx;
     sbitmap *bmap;
     int set_p;
{
  int bb,i;
  enum rtx_code code;
  const char *fmt;

  /* repeat is used to turn tail-recursion into iteration.  */
 repeat:

  if (x == 0)
    return;

  code = GET_CODE (x);
  switch (code)
    {
    case REG:
      {
	reg_set *r;
	int regno = REGNO (x);

	if (set_p)
	  {
	    if (regno < FIRST_PSEUDO_REGISTER)
	      {
		for (bb = 0; bb < n_basic_blocks; bb++)
		  if (TEST_BIT (reg_set_in_block[bb], regno))
		    SET_BIT (bmap[bb], indx);
	      }
	    else
	      {
		for (r = reg_set_table[regno]; r != NULL; r = r->next)
		  {
		    bb = BLOCK_NUM (r->insn);
		    SET_BIT (bmap[bb], indx);
		  }
	      }
	  }
	else
	  {
	    if (regno < FIRST_PSEUDO_REGISTER)
	      {
		for (bb = 0; bb < n_basic_blocks; bb++)
		  if (TEST_BIT (reg_set_in_block[bb], regno))
		    RESET_BIT (bmap[bb], indx);
	      }
	    else
	      {
		for (r = reg_set_table[regno]; r != NULL; r = r->next)
		  {
		    bb = BLOCK_NUM (r->insn);
		    RESET_BIT (bmap[bb], indx);
		  }
	      }
	  }
	return;
      }

    case MEM:
      if (set_p)
	{
	  for (bb = 0; bb < n_basic_blocks; bb++)
	    if (mem_set_in_block[bb])
	      SET_BIT (bmap[bb], indx);
	}
      else
	{
	  for (bb = 0; bb < n_basic_blocks; bb++)
	    if (mem_set_in_block[bb])
	      RESET_BIT (bmap[bb], indx);
	}
      x = XEXP (x, 0);
      goto repeat;

    case PC:
    case CC0: /*FIXME*/
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case SYMBOL_REF:
    case LABEL_REF:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return;

    default:
      break;
    }

  i = GET_RTX_LENGTH (code) - 1;
  fmt = GET_RTX_FORMAT (code);
  for (; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  rtx tem = XEXP (x, i);

	  /* If we are about to do the last recursive call
	     needed at this level, change it into iteration.
	     This function is called enough to be worth it.  */
	  if (i == 0)
	    {
	      x = tem;
	      goto repeat;
	    }
	  compute_transp (tem, indx, bmap, set_p);
	}
      else if (fmt[i] == 'E')
	{
	  int j;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
	}
    }
}

/* Compute the available expressions at the start and end of each
   basic block for cprop.  This particular dataflow equation is
   used often enough that we might want to generalize it and make
   as a subroutine for other global optimizations that need available
   in/out information.  */
static void
compute_cprop_avinout ()
{
  int bb, changed, passes;

  sbitmap_zero (cprop_avin[0]);
  sbitmap_vector_ones (cprop_avout, n_basic_blocks);

  passes = 0;
  changed = 1;
  while (changed)
    {
      changed = 0;
      for (bb = 0; bb < n_basic_blocks; bb++)
	{
	  if (bb != 0)
	    sbitmap_intersect_of_predecessors (cprop_avin[bb],
					       cprop_avout, bb, s_preds);
	  changed |= sbitmap_union_of_diff (cprop_avout[bb],
					    cprop_pavloc[bb],
					    cprop_avin[bb],
					    cprop_absaltered[bb]);
	}
      passes++;
    }

  if (gcse_file)
    fprintf (gcse_file, "cprop avail expr computation: %d passes\n", passes);
}

/* Top level routine to do the dataflow analysis needed by copy/const
   propagation.  */

static void
compute_cprop_data ()
{
  compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, 1);
  compute_cprop_avinout ();
}

/* Copy/constant propagation.  */

struct reg_use {
  rtx reg_rtx;
};

/* Maximum number of register uses in an insn that we handle.  */
#define MAX_USES 8

/* Table of uses found in an insn.
   Allocated statically to avoid alloc/free complexity and overhead.  */
static struct reg_use reg_use_table[MAX_USES];

/* Index into `reg_use_table' while building it.  */
static int reg_use_count;

/* Set up a list of register numbers used in INSN.
   The found uses are stored in `reg_use_table'.
   `reg_use_count' is initialized to zero before entry, and
   contains the number of uses in the table upon exit.

   ??? If a register appears multiple times we will record it multiple
   times.  This doesn't hurt anything but it will slow things down.  */

static void
find_used_regs (x)
     rtx x;
{
  int i;
  enum rtx_code code;
  const char *fmt;

  /* repeat is used to turn tail-recursion into iteration.  */
 repeat:

  if (x == 0)
    return;

  code = GET_CODE (x);
  switch (code)
    {
    case REG:
      if (reg_use_count == MAX_USES)
	return;
      reg_use_table[reg_use_count].reg_rtx = x;
      reg_use_count++;
      return;

    case MEM:
      x = XEXP (x, 0);
      goto repeat;

    case PC:
    case CC0:
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case SYMBOL_REF:
    case LABEL_REF:
    case CLOBBER:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
    case ASM_INPUT: /*FIXME*/
      return;

    case SET:
      if (GET_CODE (SET_DEST (x)) == MEM)
	find_used_regs (SET_DEST (x));
      x = SET_SRC (x);
      goto repeat;

    default:
      break;
    }

  /* Recursively scan the operands of this expression.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  /* If we are about to do the last recursive call
	     needed at this level, change it into iteration.
	     This function is called enough to be worth it.  */
	  if (i == 0)
	    {
	      x = XEXP (x, 0);
	      goto repeat;
	    }
	  find_used_regs (XEXP (x, i));
	}
      else if (fmt[i] == 'E')
	{
	  int j;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    find_used_regs (XVECEXP (x, i, j));
	}
    }
}

/* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
   Returns non-zero is successful.  */

static int
try_replace_reg (from, to, insn)
     rtx from, to, insn;
{
  /* If this fails we could try to simplify the result of the
     replacement and attempt to recognize the simplified insn.

     But we need a general simplify_rtx that doesn't have pass
     specific state variables.  I'm not aware of one at the moment.  */
  return validate_replace_src (from, to, insn);
}

/* Find a set of REGNO that is available on entry to INSN's block.
   Returns NULL if not found.  */

static struct expr *
find_avail_set (regno, insn)
     int regno;
     rtx insn;
{
  struct expr *set = lookup_set (regno, NULL_RTX);

  while (set)
    {
      if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
	break;
      set = next_set (regno, set);
    }

  return set;
}

/* Perform constant and copy propagation on INSN.
   The result is non-zero if a change was made.  */

static int
cprop_insn (insn, alter_jumps)
     rtx insn;
     int alter_jumps;
{
  struct reg_use *reg_used;
  int changed = 0;

  /* Only propagate into SETs.  Note that a conditional jump is a
     SET with pc_rtx as the destination.  */
  if ((GET_CODE (insn) != INSN
       && GET_CODE (insn) != JUMP_INSN)
      || GET_CODE (PATTERN (insn)) != SET)
    return 0;

  reg_use_count = 0;
  find_used_regs (PATTERN (insn));

  reg_used = &reg_use_table[0];
  for ( ; reg_use_count > 0; reg_used++, reg_use_count--)
    {
      rtx pat, src;
      struct expr *set;
      int regno = REGNO (reg_used->reg_rtx);

      /* Ignore registers created by GCSE.
	 We do this because ... */
      if (regno >= max_gcse_regno)
	continue;

      /* If the register has already been set in this block, there's
	 nothing we can do.  */
      if (! oprs_not_set_p (reg_used->reg_rtx, insn))
	continue;

      /* Find an assignment that sets reg_used and is available
	 at the start of the block.  */
      set = find_avail_set (regno, insn);
      if (! set)
	continue;
  
      pat = set->expr;
      /* ??? We might be able to handle PARALLELs.  Later.  */
      if (GET_CODE (pat) != SET)
	abort ();
      src = SET_SRC (pat);

      /* Constant propagation.  */
      if (GET_CODE (src) == CONST_INT || GET_CODE (src) == CONST_DOUBLE
	  || GET_CODE (src) == SYMBOL_REF)
	{
	  /* Handle normal insns first.  */
	  if (GET_CODE (insn) == INSN
	      && try_replace_reg (reg_used->reg_rtx, src, insn))
	    {
	      changed = 1;
	      const_prop_count++;
	      if (gcse_file != NULL)
		{
		  fprintf (gcse_file, "CONST-PROP: Replacing reg %d in insn %d with constant ",
			   regno, INSN_UID (insn));
		  print_rtl (gcse_file, src);
		  fprintf (gcse_file, "\n");
		}

	      /* The original insn setting reg_used may or may not now be
		 deletable.  We leave the deletion to flow.  */
	    }

	  /* Try to propagate a CONST_INT into a conditional jump.
	     We're pretty specific about what we will handle in this
	     code, we can extend this as necessary over time.

	     Right now the insn in question must look like

	     (set (pc) (if_then_else ...))

	     Note this does not currently handle machines which use cc0.  */
	  else if (alter_jumps
		   && GET_CODE (insn) == JUMP_INSN
		   && condjump_p (insn)
		   && ! simplejump_p (insn))
	    {
	      /* We want a copy of the JUMP_INSN so we can modify it
		 in-place as needed without effecting the original.  */
	      rtx copy = copy_rtx (insn);
	      rtx set = PATTERN (copy);
	      rtx temp;

	      /* Replace the register with the appropriate constant.  */
	      replace_rtx (SET_SRC (set), reg_used->reg_rtx, src);

	      temp = simplify_ternary_operation (GET_CODE (SET_SRC (set)),
						 GET_MODE (SET_SRC (set)),
						 GET_MODE (XEXP (SET_SRC (set), 0)),
						 XEXP (SET_SRC (set), 0),
						 XEXP (SET_SRC (set), 1),
						 XEXP (SET_SRC (set), 2));

	      /* If no simplification can be made, then try the next
		 register.  */
	      if (temp)
		SET_SRC (set) = temp;
	      else
		continue;

	      /* That may have changed the structure of TEMP, so
		 force it to be rerecognized if it has not turned
		 into a nop or unconditional jump.  */
		
	      INSN_CODE (copy) = -1;
	      if ((SET_DEST (set) == pc_rtx
		   && (SET_SRC (set) == pc_rtx
		       || GET_CODE (SET_SRC (set)) == LABEL_REF))
		  || recog (PATTERN (copy), copy, NULL) >= 0)
		{
		  /* This has either become an unconditional jump
		     or a nop-jump.  We'd like to delete nop jumps
		     here, but doing so confuses gcse.  So we just
		     make the replacement and let later passes
		     sort things out.  */
		  PATTERN (insn) = set;
		  INSN_CODE (insn) = -1;

		  /* One less use of the label this insn used to jump to
		     if we turned this into a NOP jump.  */
		  if (SET_SRC (set) == pc_rtx && JUMP_LABEL (insn) != 0)
		    --LABEL_NUSES (JUMP_LABEL (insn));

		  /* If this has turned into an unconditional jump,
		     then put a barrier after it so that the unreachable
		     code will be deleted.  */
		  if (GET_CODE (SET_SRC (set)) == LABEL_REF)
		    emit_barrier_after (insn);

		  run_jump_opt_after_gcse = 1;

		  changed = 1;
		  const_prop_count++;
		  if (gcse_file != NULL)
		    {
		      fprintf (gcse_file, "CONST-PROP: Replacing reg %d in insn %d with constant ",
			       regno, INSN_UID (insn));
		      print_rtl (gcse_file, src);
		      fprintf (gcse_file, "\n");
		    }
		}
	    }
	}
      else if (GET_CODE (src) == REG
	       && REGNO (src) >= FIRST_PSEUDO_REGISTER
	       && REGNO (src) != regno)
	{
	  /* We know the set is available.
	     Now check that SET_SRC is ANTLOC (i.e. none of the source operands
	     have changed since the start of the block).  */
	  if (oprs_not_set_p (src, insn))
	    {
	      if (try_replace_reg (reg_used->reg_rtx, src, insn))
		{
		  changed = 1;
		  copy_prop_count++;
		  if (gcse_file != NULL)
		    {
		      fprintf (gcse_file, "COPY-PROP: Replacing reg %d in insn %d with reg %d\n",
			       regno, INSN_UID (insn), REGNO (src));
		    }

		  /* The original insn setting reg_used may or may not now be
		     deletable.  We leave the deletion to flow.  */
		  /* FIXME: If it turns out that the insn isn't deletable,
		     then we may have unnecessarily extended register lifetimes
		     and made things worse.  */
		}
	    }
	}
    }

  return changed;
}

/* Forward propagate copies.
   This includes copies and constants.
   Return non-zero if a change was made.  */

static int
cprop (alter_jumps)
     int alter_jumps;
{
  int bb, changed;
  rtx insn;

  /* Note we start at block 1.  */

  changed = 0;
  for (bb = 1; bb < n_basic_blocks; bb++)
    {
      /* Reset tables used to keep track of what's still valid [since the
	 start of the block].  */
      reset_opr_set_tables ();

      for (insn = BLOCK_HEAD (bb);
	   insn != NULL && insn != NEXT_INSN (BLOCK_END (bb));
	   insn = NEXT_INSN (insn))
	{
	  if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
	    {
	      changed |= cprop_insn (insn, alter_jumps);

	      /* Keep track of everything modified by this insn.  */
	      /* ??? Need to be careful w.r.t. mods done to INSN.  */
	      mark_oprs_set (insn);
	    }
	}
    }

  if (gcse_file != NULL)
    fprintf (gcse_file, "\n");

  return changed;
}

/* Perform one copy/constant propagation pass.
   F is the first insn in the function.
   PASS is the pass count.  */

static int
one_cprop_pass (pass, alter_jumps)
     int pass;
     int alter_jumps;
{
  int changed = 0;

  const_prop_count = 0;
  copy_prop_count = 0;

  alloc_set_hash_table (max_cuid);
  compute_set_hash_table ();
  if (gcse_file)
    dump_hash_table (gcse_file, "SET", set_hash_table, set_hash_table_size,
		     n_sets);
  if (n_sets > 0)
    {
      alloc_cprop_mem (n_basic_blocks, n_sets);
      compute_cprop_data ();
      changed = cprop (alter_jumps);
      free_cprop_mem ();
    }
  free_set_hash_table ();

  if (gcse_file)
    {
      fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, %d const props, %d copy props\n",
	       current_function_name, pass,
	       bytes_used, const_prop_count, copy_prop_count);
      fprintf (gcse_file, "\n");
    }

  return changed;
}

/* Compute PRE+LCM working variables.  */

/* Local properties of expressions.  */
/* Nonzero for expressions that are transparent in the block.  */
static sbitmap *transp;

/* Nonzero for expressions that are transparent at the end of the block.
   This is only zero for expressions killed by abnormal critical edge
   created by a calls.  */
static sbitmap *transpout;

/* Nonzero for expressions that are computed (available) in the block.  */
static sbitmap *comp;

/* Nonzero for expressions that are locally anticipatable in the block.  */
static sbitmap *antloc;

/* Nonzero for expressions where this block is an optimal computation
   point.  */
static sbitmap *pre_optimal;

/* Nonzero for expressions which are redundant in a particular block.  */
static sbitmap *pre_redundant;

static sbitmap *temp_bitmap;

/* Redundant insns.  */
static sbitmap pre_redundant_insns;

/* Allocate vars used for PRE analysis.  */

static void
alloc_pre_mem (n_blocks, n_exprs)
     int n_blocks, n_exprs;
{
  transp = sbitmap_vector_alloc (n_blocks, n_exprs);
  comp = sbitmap_vector_alloc (n_blocks, n_exprs);
  antloc = sbitmap_vector_alloc (n_blocks, n_exprs);

  temp_bitmap = sbitmap_vector_alloc (n_blocks, n_exprs);
  pre_optimal = sbitmap_vector_alloc (n_blocks, n_exprs);
  pre_redundant = sbitmap_vector_alloc (n_blocks, n_exprs);
  transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
}

/* Free vars used for PRE analysis.  */

static void
free_pre_mem ()
{
  free (transp);
  free (comp);
  free (antloc);

  free (pre_optimal);
  free (pre_redundant);
  free (transpout);
}

/* Top level routine to do the dataflow analysis needed by PRE.  */

static void
compute_pre_data ()
{
  compute_local_properties (transp, comp, antloc, 0);
  compute_transpout ();
  pre_lcm (n_basic_blocks, n_exprs, s_preds, s_succs, transp,
	   antloc, pre_redundant, pre_optimal);
}


/* PRE utilities */

/* Return non-zero if an occurrence of expression EXPR in OCCR_BB would reach
   block BB.

   VISITED is a pointer to a working buffer for tracking which BB's have
   been visited.  It is NULL for the top-level call.

   CHECK_PRE_COMP controls whether or not we check for a computation of
   EXPR in OCCR_BB.

   We treat reaching expressions that go through blocks containing the same
   reaching expression as "not reaching".  E.g. if EXPR is generated in blocks
   2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
   2 as not reaching.  The intent is to improve the probability of finding
   only one reaching expression and to reduce register lifetimes by picking
   the closest such expression.  */

static int
pre_expr_reaches_here_p (occr_bb, expr, bb, check_pre_comp, visited)
     int occr_bb;
     struct expr *expr;
     int bb;
     int check_pre_comp;
     char *visited;
{
  int_list_ptr pred;

  if (visited == NULL)
    {
      visited = (char *) alloca (n_basic_blocks);
      bzero (visited, n_basic_blocks);
    }

  for (pred = s_preds[bb]; pred != NULL; pred = pred->next)
    {
      int pred_bb = INT_LIST_VAL (pred);

      if (pred_bb == ENTRY_BLOCK
	  /* Has predecessor has already been visited?  */
	  || visited[pred_bb])
	{
	  /* Nothing to do.  */
	}
      /* Does this predecessor generate this expression?  */
      else if ((!check_pre_comp && occr_bb == pred_bb)
	       || TEST_BIT (comp[pred_bb], expr->bitmap_index))
	{
	  /* Is this the occurrence we're looking for?
	     Note that there's only one generating occurrence per block
	     so we just need to check the block number.  */
	  if (occr_bb == pred_bb)
	    return 1;
	  visited[pred_bb] = 1;
	}
      /* Ignore this predecessor if it kills the expression.  */
      else if (! TEST_BIT (transp[pred_bb], expr->bitmap_index))
	visited[pred_bb] = 1;
      /* Neither gen nor kill.  */
      else
	{
	  visited[pred_bb] = 1;
	  if (pre_expr_reaches_here_p (occr_bb, expr, pred_bb,
				       check_pre_comp, visited))
	    return 1;
	}
    }

  /* All paths have been checked.  */
  return 0;
}

/* Add EXPR to the end of basic block BB.

   This is used by both the PRE and code hoisting.

   For PRE, we want to verify that the expr is either transparent
   or locally anticipatable in the target block.  This check makes
   no sense for code hoisting.  */

static void
insert_insn_end_bb (expr, bb, pre)
     struct expr *expr;
     int bb;
     int pre;
{
  rtx insn = BLOCK_END (bb);
  rtx new_insn;
  rtx reg = expr->reaching_reg;
  int regno = REGNO (reg);
  rtx pat, copied_expr;
  rtx first_new_insn;

  start_sequence ();
  copied_expr = copy_rtx (expr->expr);
  emit_move_insn (reg, copied_expr);
  first_new_insn = get_insns ();
  pat = gen_sequence ();
  end_sequence ();

  /* If the last insn is a jump, insert EXPR in front [taking care to
     handle cc0, etc. properly].  */

  if (GET_CODE (insn) == JUMP_INSN)
    {
#ifdef HAVE_cc0
      rtx note;
#endif

      /* If this is a jump table, then we can't insert stuff here.  Since
	 we know the previous real insn must be the tablejump, we insert
	 the new instruction just before the tablejump.  */
      if (GET_CODE (PATTERN (insn)) == ADDR_VEC
	  || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
	insn = prev_real_insn (insn);

#ifdef HAVE_cc0
      /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
	 if cc0 isn't set.  */
      note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
      if (note)
	insn = XEXP (note, 0);
      else
	{
	  rtx maybe_cc0_setter = prev_nonnote_insn (insn);
	  if (maybe_cc0_setter
	      && GET_RTX_CLASS (GET_CODE (maybe_cc0_setter)) == 'i'
	      && sets_cc0_p (PATTERN (maybe_cc0_setter)))
	    insn = maybe_cc0_setter;
	}
#endif
      /* FIXME: What if something in cc0/jump uses value set in new insn?  */
      new_insn = emit_insn_before (pat, insn);
      if (BLOCK_HEAD (bb) == insn)
	BLOCK_HEAD (bb) = new_insn;
    }
  /* Likewise if the last insn is a call, as will happen in the presence
     of exception handling.  */
  else if (GET_CODE (insn) == CALL_INSN)
    {
      HARD_REG_SET parm_regs;
      int nparm_regs;
      rtx p;

      /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
	 we search backward and place the instructions before the first
	 parameter is loaded.  Do this for everyone for consistency and a
	 presumtion that we'll get better code elsewhere as well.  */

      /* It should always be the case that we can put these instructions
	 anywhere in the basic block with performing PRE optimizations.
	 Check this.  */
      if (pre
	  && !TEST_BIT (antloc[bb], expr->bitmap_index)
          && !TEST_BIT (transp[bb], expr->bitmap_index))
	abort ();

      /* Since different machines initialize their parameter registers
	 in different orders, assume nothing.  Collect the set of all
	 parameter registers.  */
      CLEAR_HARD_REG_SET (parm_regs);
      nparm_regs = 0;
      for (p = CALL_INSN_FUNCTION_USAGE (insn); p ; p = XEXP (p, 1))
	if (GET_CODE (XEXP (p, 0)) == USE
	    && GET_CODE (XEXP (XEXP (p, 0), 0)) == REG)
	  {
	    int regno = REGNO (XEXP (XEXP (p, 0), 0));
	    if (regno >= FIRST_PSEUDO_REGISTER)
	      abort ();
	    SET_HARD_REG_BIT (parm_regs, regno);
	    nparm_regs++;
	  }

      /* Search backward for the first set of a register in this set.  */
      while (nparm_regs && BLOCK_HEAD (bb) != insn)
	{
	  insn = PREV_INSN (insn);
	  p = single_set (insn);
	  if (p && GET_CODE (SET_DEST (p)) == REG
	      && REGNO (SET_DEST (p)) < FIRST_PSEUDO_REGISTER
	      && TEST_HARD_REG_BIT (parm_regs, REGNO (SET_DEST (p))))
	    {
	      CLEAR_HARD_REG_BIT (parm_regs, REGNO (SET_DEST (p)));
	      nparm_regs--;
	    }
	}
      
      /* If we found all the parameter loads, then we want to insert
	 before the first parameter load.

	 If we did not find all the parameter loads, then we might have
	 stopped on the head of the block, which could be a CODE_LABEL.
	 If we inserted before the CODE_LABEL, then we would be putting
	 the insn in the wrong basic block.  In that case, put the insn
	 after the CODE_LABEL.

	 ?!? Do we need to account for NOTE_INSN_BASIC_BLOCK here?  */
      if (GET_CODE (insn) != CODE_LABEL)
	{
	  new_insn = emit_insn_before (pat, insn);
	  if (BLOCK_HEAD (bb) == insn)
	    BLOCK_HEAD (bb) = new_insn;
	}
      else
	{
	  new_insn = emit_insn_after (pat, insn);
	}
    }
  else
    {
      new_insn = emit_insn_after (pat, insn);
      BLOCK_END (bb) = new_insn;
    }

  /* Keep block number table up to date.
     Note, PAT could be a multiple insn sequence, we have to make
     sure that each insn in the sequence is handled.  */
  if (GET_CODE (pat) == SEQUENCE)
    {
      int i;

      for (i = 0; i < XVECLEN (pat, 0); i++)
	{
	  rtx insn = XVECEXP (pat, 0, i);
	  set_block_num (insn, bb);
	  if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
	    add_label_notes (PATTERN (insn), new_insn);
	  record_set_insn = insn;
	  note_stores (PATTERN (insn), record_set_info);
	}
    }
  else
    {
      add_label_notes (SET_SRC (pat), new_insn);
      set_block_num (new_insn, bb);
      /* Keep register set table up to date.  */
      record_one_set (regno, new_insn);
    }

  gcse_create_count++;

  if (gcse_file)
    {
      fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, copying expression %d to reg %d\n",
	       bb, INSN_UID (new_insn), expr->bitmap_index, regno);
    }
}

/* Insert partially redundant expressions at the ends of appropriate basic
   blocks making them fully redundant.  */

static void
pre_insert (index_map)
     struct expr **index_map;
{
  int bb, i, set_size;
  sbitmap *inserted;

  /* Compute INSERT = PRE_OPTIMAL & ~PRE_REDUNDANT. 
     Where INSERT is nonzero, we add the expression at the end of the basic
     block if it reaches any of the deleted expressions.  */

  set_size = pre_optimal[0]->size;
  inserted = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
  sbitmap_vector_zero (inserted, n_basic_blocks);

  for (bb = 0; bb < n_basic_blocks; bb++)
    {
      int indx;

      /* This computes the number of potential insertions we need.  */
      sbitmap_not (temp_bitmap[bb], pre_redundant[bb]);
      sbitmap_a_and_b (temp_bitmap[bb], temp_bitmap[bb], pre_optimal[bb]);

      /* TEMP_BITMAP[bb] now contains a bitmap of the expressions that we need
	 to insert at the end of this basic block.  */
      for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
	{
	  SBITMAP_ELT_TYPE insert = temp_bitmap[bb]->elms[i];
	  int j;

	  for (j = indx; insert && j < n_exprs; j++, insert >>= 1)
	    {
	      if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
		{
		  struct expr *expr = index_map[j];
		  struct occr *occr;

		  /* Now look at each deleted occurence of this expression.  */
		  for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
		    {
		      if (! occr->deleted_p)
			continue;

		      /* Insert this expression at the end of BB if it would
			 reach the deleted occurence.  */
		      if (!TEST_BIT (inserted[bb], j)
			  && pre_expr_reaches_here_p (bb, expr,
						   BLOCK_NUM (occr->insn), 0,
						   NULL))
			{
			  SET_BIT (inserted[bb], j);
			  insert_insn_end_bb (index_map[j], bb, 1);
			}
		    }
		}
	    }
	}
    }
}

/* Copy the result of INSN to REG.
   INDX is the expression number.  */

static void
pre_insert_copy_insn (expr, insn)
     struct expr *expr;
     rtx insn;
{
  rtx reg = expr->reaching_reg;
  int regno = REGNO (reg);
  int indx = expr->bitmap_index;
  rtx set = single_set (insn);
  rtx new_insn;

  if (!set)
    abort ();
  new_insn = emit_insn_after (gen_rtx_SET (VOIDmode, reg, SET_DEST (set)),
			      insn);
  /* Keep block number table up to date.  */
  set_block_num (new_insn, BLOCK_NUM (insn));
  /* Keep register set table up to date.  */
  record_one_set (regno, new_insn);

  gcse_create_count++;

  if (gcse_file)
    {
      fprintf (gcse_file, "PRE: bb %d, insn %d, copying expression %d in insn %d to reg %d\n",
	       BLOCK_NUM (insn), INSN_UID (new_insn), indx, INSN_UID (insn), regno);
    }
}

/* Copy available expressions that reach the redundant expression
   to `reaching_reg'.  */

static void
pre_insert_copies ()
{
  int i, bb;

  for (bb = 0; bb < n_basic_blocks; bb++)
    {
      sbitmap_a_and_b (temp_bitmap[bb], pre_optimal[bb], pre_redundant[bb]);
    }

  /* For each available expression in the table, copy the result to
     `reaching_reg' if the expression reaches a deleted one.

     ??? The current algorithm is rather brute force.
     Need to do some profiling.  */

  for (i = 0; i < expr_hash_table_size; i++)
    {
      struct expr *expr;

      for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
	{
	  struct occr *occr;

	  /* If the basic block isn't reachable, PPOUT will be TRUE.
	     However, we don't want to insert a copy here because the
	     expression may not really be redundant.  So only insert
	     an insn if the expression was deleted.
	     This test also avoids further processing if the expression
	     wasn't deleted anywhere.  */
	  if (expr->reaching_reg == NULL)
	    continue;

	  for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
	    {
	      struct occr *avail;

	      if (! occr->deleted_p)
		continue;

	      for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
		{
		  rtx insn = avail->insn;
		  int bb = BLOCK_NUM (insn);

		  if (!TEST_BIT (temp_bitmap[bb], expr->bitmap_index))
		    continue;

		  /* No need to handle this one if handled already.  */
		  if (avail->copied_p)
		    continue;
		  /* Don't handle this one if it's a redundant one.  */
		  if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
		    continue;
		  /* Or if the expression doesn't reach the deleted one.  */
		  if (! pre_expr_reaches_here_p (BLOCK_NUM (avail->insn), expr,
						 BLOCK_NUM (occr->insn),
						 1, NULL))
		    continue;

		  /* Copy the result of avail to reaching_reg.  */
		  pre_insert_copy_insn (expr, insn);
		  avail->copied_p = 1;
		}
	    }
	}
    }
}

/* Delete redundant computations.
   Deletion is done by changing the insn to copy the `reaching_reg' of
   the expression into the result of the SET.  It is left to later passes
   (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.

   Returns non-zero if a change is made.  */

static int
pre_delete ()
{
  int i, bb, changed;

  /* Compute the expressions which are redundant and need to be replaced by
     copies from the reaching reg to the target reg.  */
  for (bb = 0; bb < n_basic_blocks; bb++)
    {
      sbitmap_not (temp_bitmap[bb], pre_optimal[bb]);
      sbitmap_a_and_b (temp_bitmap[bb], temp_bitmap[bb], pre_redundant[bb]);
    }

  changed = 0;
  for (i = 0; i < expr_hash_table_size; i++)
    {
      struct expr *expr;

      for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
	{
	  struct occr *occr;
	  int indx = expr->bitmap_index;

	  /* We only need to search antic_occr since we require
	     ANTLOC != 0.  */

	  for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
	    {
	      rtx insn = occr->insn;
	      rtx set;
	      int bb = BLOCK_NUM (insn);

	      if (TEST_BIT (temp_bitmap[bb], indx))
		{
		  set = single_set (insn);
		  if (! set)
		    abort ();

		  /* Create a pseudo-reg to store the result of reaching
		     expressions into.  Get the mode for the new pseudo
		     from the mode of the original destination pseudo.  */
		  if (expr->reaching_reg == NULL)
		    expr->reaching_reg
		      = gen_reg_rtx (GET_MODE (SET_DEST (set)));

		  /* In theory this should never fail since we're creating
		     a reg->reg copy.

		     However, on the x86 some of the movXX patterns actually
		     contain clobbers of scratch regs.  This may cause the
		     insn created by validate_change to not match any pattern
		     and thus cause validate_change to fail.   */
		  if (validate_change (insn, &SET_SRC (set),
				       expr->reaching_reg, 0))
		    {
		      occr->deleted_p = 1;
		      SET_BIT (pre_redundant_insns, INSN_CUID (insn));
		      changed = 1;
		      gcse_subst_count++;
		    }

		  if (gcse_file)
		    {
		      fprintf (gcse_file,
			       "PRE: redundant insn %d (expression %d) in bb %d, reaching reg is %d\n",
			       INSN_UID (insn), indx, bb, REGNO (expr->reaching_reg));
		    }
		}
	    }
	}
    }

  return changed;
}

/* Perform GCSE optimizations using PRE.
   This is called by one_pre_gcse_pass after all the dataflow analysis
   has been done.

   This is based on the original Morel-Renvoise paper Fred Chow's thesis,
   and lazy code motion from Knoop, Ruthing and Steffen as described in
   Advanced Compiler Design and Implementation.

   ??? A new pseudo reg is created to hold the reaching expression.
   The nice thing about the classical approach is that it would try to
   use an existing reg.  If the register can't be adequately optimized
   [i.e. we introduce reload problems], one could add a pass here to
   propagate the new register through the block.

   ??? We don't handle single sets in PARALLELs because we're [currently]
   not able to copy the rest of the parallel when we insert copies to create
   full redundancies from partial redundancies.  However, there's no reason
   why we can't handle PARALLELs in the cases where there are no partial
   redundancies.  */

static int
pre_gcse ()
{
  int i;
  int changed;
  struct expr **index_map;

  /* Compute a mapping from expression number (`bitmap_index') to
     hash table entry.  */

  index_map = (struct expr **) alloca (n_exprs * sizeof (struct expr *));
  bzero ((char *) index_map, n_exprs * sizeof (struct expr *));
  for (i = 0; i < expr_hash_table_size; i++)
    {
      struct expr *expr;

      for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
	index_map[expr->bitmap_index] = expr;
    }

  /* Reset bitmap used to track which insns are redundant.  */
  pre_redundant_insns = sbitmap_alloc (max_cuid);
  sbitmap_zero (pre_redundant_insns);

  /* Delete the redundant insns first so that
     - we know what register to use for the new insns and for the other
       ones with reaching expressions
     - we know which insns are redundant when we go to create copies  */
  changed = pre_delete ();

  /* Insert insns in places that make partially redundant expressions
     fully redundant.  */
  pre_insert (index_map);

  /* In other places with reaching expressions, copy the expression to the
     specially allocated pseudo-reg that reaches the redundant expression.  */
  pre_insert_copies ();

  free (pre_redundant_insns);

  return changed;
}

/* Top level routine to perform one PRE GCSE pass.

   Return non-zero if a change was made.  */

static int
one_pre_gcse_pass (pass)
     int pass;
{
  int changed = 0;

  gcse_subst_count = 0;
  gcse_create_count = 0;

  alloc_expr_hash_table (max_cuid);
  compute_expr_hash_table ();
  if (gcse_file)
    dump_hash_table (gcse_file, "Expression", expr_hash_table,
		     expr_hash_table_size, n_exprs);
  if (n_exprs > 0)
    {
      alloc_pre_mem (n_basic_blocks, n_exprs);
      compute_pre_data ();
      changed |= pre_gcse ();
      free_pre_mem ();
    }
  free_expr_hash_table ();

  if (gcse_file)
    {
      fprintf (gcse_file, "\n");
      fprintf (gcse_file, "PRE GCSE of %s, pass %d: %d bytes needed, %d substs, %d insns created\n",
	       current_function_name, pass,
	       bytes_used, gcse_subst_count, gcse_create_count);
    }

  return changed;
}

/* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
   We have to add REG_LABEL notes, because the following loop optimization
   pass requires them.  */

/* ??? This is very similar to the loop.c add_label_notes function.  We
   could probably share code here.  */

/* ??? If there was a jump optimization pass after gcse and before loop,
   then we would not need to do this here, because jump would add the
   necessary REG_LABEL notes.  */

static void
add_label_notes (x, insn)
     rtx x;
     rtx insn;
{
  enum rtx_code code = GET_CODE (x);
  int i, j;
  const char *fmt;

  if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
    {
      /* This code used to ignore labels that referred to dispatch tables to
	 avoid flow generating (slighly) worse code.

	 We no longer ignore such label references (see LABEL_REF handling in
	 mark_jump_label for additional information).  */
      REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, XEXP (x, 0),
					    REG_NOTES (insn));
      return;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	add_label_notes (XEXP (x, i), insn);
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  add_label_notes (XVECEXP (x, i, j), insn);
    }
}

/* Compute transparent outgoing information for each block.

   An expression is transparent to an edge unless it is killed by
   the edge itself.  This can only happen with abnormal control flow,
   when the edge is traversed through a call.  This happens with
   non-local labels and exceptions.

   This would not be necessary if we split the edge.  While this is
   normally impossible for abnormal critical edges, with some effort
   it should be possible with exception handling, since we still have
   control over which handler should be invoked.  But due to increased
   EH table sizes, this may not be worthwhile.  */

static void
compute_transpout ()
{
  int bb;

  sbitmap_vector_ones (transpout, n_basic_blocks);

  for (bb = 0; bb < n_basic_blocks; ++bb)
    {
      int i;

      /* Note that flow inserted a nop a the end of basic blocks that
	 end in call instructions for reasons other than abnormal
	 control flow.  */
      if (GET_CODE (BLOCK_END (bb)) != CALL_INSN)
	continue;

      for (i = 0; i < expr_hash_table_size; i++)
	{
	  struct expr *expr;
	  for (expr = expr_hash_table[i]; expr ; expr = expr->next_same_hash)
	    if (GET_CODE (expr->expr) == MEM)
	      {
		rtx addr = XEXP (expr->expr, 0);

		if (GET_CODE (addr) == SYMBOL_REF
		    && CONSTANT_POOL_ADDRESS_P (addr))
		  continue;
		
		/* ??? Optimally, we would use interprocedural alias
		   analysis to determine if this mem is actually killed
		   by this call.  */
		RESET_BIT (transpout[bb], expr->bitmap_index);
	      }
	}
    }
}