aboutsummaryrefslogtreecommitdiff
path: root/gcc/frame-dwarf2.c
blob: 459af6d918a0b58ac96b0c9772019ee9801424a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
/* Subroutines needed for unwinding DWARF 2 format stack frame info
   for exception handling.  */
/* Compile this one with gcc.  */
/* Copyright (C) 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
   Contributed by Jason Merrill <jason@cygnus.com>.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file.  (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* It is incorrect to include config.h here, because this file is being
   compiled for the target, and hence definitions concerning only the host
   do not apply.  */

#include "tconfig.h"
#include "tsystem.h"

#include "defaults.h"

#ifdef DWARF2_UNWIND_INFO
#include "dwarf2.h"
#include "frame.h"
#include "gthr.h"

#ifdef __GTHREAD_MUTEX_INIT
static __gthread_mutex_t object_mutex = __GTHREAD_MUTEX_INIT;
#else
static __gthread_mutex_t object_mutex;
#endif

/* Don't use `fancy_abort' here even if config.h says to use it.  */
#ifdef abort
#undef abort
#endif

/* Some types used by the DWARF 2 spec.  */

typedef          int  sword __attribute__ ((mode (SI)));
typedef unsigned int  uword __attribute__ ((mode (SI)));
typedef unsigned int  uaddr __attribute__ ((mode (pointer)));
typedef          int  saddr __attribute__ ((mode (pointer)));
typedef unsigned char ubyte;

/* Terminology:
   CIE - Common Information Element
   FDE - Frame Descriptor Element

   There is one per function, and it describes where the function code
   is located, and what the register lifetimes and stack layout are
   within the function.

   The data structures are defined in the DWARF specfication, although
   not in a very readable way (see LITERATURE).

   Every time an exception is thrown, the code needs to locate the FDE
   for the current function, and starts to look for exception regions
   from that FDE. This works in a two-level search:
   a) in a linear search, find the shared image (i.e. DLL) containing
      the PC
   b) using the FDE table for that shared object, locate the FDE using
      binary search (which requires the sorting).  */   

/* The first few fields of a CIE.  The CIE_id field is 0 for a CIE,
   to distinguish it from a valid FDE.  FDEs are aligned to an addressing
   unit boundary, but the fields within are unaligned.  */

struct dwarf_cie {
  uword length;
  sword CIE_id;
  ubyte version;
  char augmentation[0];
} __attribute__ ((packed, aligned (__alignof__ (void *))));

/* The first few fields of an FDE.  */

struct dwarf_fde {
  uword length;
  sword CIE_delta;
  void* pc_begin;
  uaddr pc_range;
} __attribute__ ((packed, aligned (__alignof__ (void *))));

typedef struct dwarf_fde fde;

/* Objects to be searched for frame unwind info.  */

static struct object *objects;

/* The information we care about from a CIE.  */

struct cie_info {
  char *augmentation;
  void *eh_ptr;
  int code_align;
  int data_align;
  unsigned ra_regno;
};

/* The current unwind state, plus a saved copy for DW_CFA_remember_state.  */

struct frame_state_internal
{
  struct frame_state s;
  struct frame_state_internal *saved_state;
};

/* This is undefined below if we need it to be an actual function.  */
#define init_object_mutex_once()

#if __GTHREADS
#ifdef __GTHREAD_MUTEX_INIT_FUNCTION

/* Helper for init_object_mutex_once.  */

static void
init_object_mutex (void)
{
  __GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex);
}

/* Call this to arrange to initialize the object mutex.  */

#undef init_object_mutex_once
static void
init_object_mutex_once (void)
{
  static __gthread_once_t once = __GTHREAD_ONCE_INIT;
  __gthread_once (&once, init_object_mutex);
}

#endif /* __GTHREAD_MUTEX_INIT_FUNCTION */
#endif /* __GTHREADS */
  
/* Decode the unsigned LEB128 constant at BUF into the variable pointed to
   by R, and return the new value of BUF.  */

static void *
decode_uleb128 (unsigned char *buf, unsigned *r)
{
  unsigned shift = 0;
  unsigned result = 0;

  while (1)
    {
      unsigned byte = *buf++;
      result |= (byte & 0x7f) << shift;
      if ((byte & 0x80) == 0)
	break;
      shift += 7;
    }
  *r = result;
  return buf;
}

/* Decode the signed LEB128 constant at BUF into the variable pointed to
   by R, and return the new value of BUF.  */

static void *
decode_sleb128 (unsigned char *buf, int *r)
{
  unsigned shift = 0;
  unsigned result = 0;
  unsigned byte;

  while (1)
    {
      byte = *buf++;
      result |= (byte & 0x7f) << shift;
      shift += 7;
      if ((byte & 0x80) == 0)
	break;
    }
  if (shift < (sizeof (*r) * 8) && (byte & 0x40) != 0)
    result |= - (1 << shift);

  *r = result;
  return buf;
}

/* Read unaligned data from the instruction buffer.  */

union unaligned {
  void *p;
  unsigned b2 __attribute__ ((mode (HI)));
  unsigned b4 __attribute__ ((mode (SI)));
  unsigned b8 __attribute__ ((mode (DI)));
} __attribute__ ((packed));
static inline void *
read_pointer (void *p)
{ union unaligned *up = p; return up->p; }
static inline unsigned
read_1byte (void *p)
{ return *(unsigned char *)p; }
static inline unsigned
read_2byte (void *p)
{ union unaligned *up = p; return up->b2; }
static inline unsigned
read_4byte (void *p)
{ union unaligned *up = p; return up->b4; }
static inline unsigned long
read_8byte (void *p)
{ union unaligned *up = p; return up->b8; }

/* Ordering function for FDEs.  Functions can't overlap, so we just compare
   their starting addresses.  */

static inline saddr
fde_compare (fde *x, fde *y)
{
  return (saddr)x->pc_begin - (saddr)y->pc_begin;
}

/* Return the address of the FDE after P.  */

static inline fde *
next_fde (fde *p)
{
  return (fde *)(((char *)p) + p->length + sizeof (p->length));
}

#include "frame.c"

static size_t
count_fdes (fde *this_fde)
{
  size_t count;

  for (count = 0; this_fde->length != 0; this_fde = next_fde (this_fde))
    {
      /* Skip CIEs and linked once FDE entries.  */
      if (this_fde->CIE_delta == 0 || this_fde->pc_begin == 0)
	continue;

      ++count;
    }

  return count;
}

static void
add_fdes (fde *this_fde, fde_accumulator *accu, void **beg_ptr, void **end_ptr)
{
  void *pc_begin = *beg_ptr;
  void *pc_end = *end_ptr;

  for (; this_fde->length != 0; this_fde = next_fde (this_fde))
    {
      /* Skip CIEs and linked once FDE entries.  */
      if (this_fde->CIE_delta == 0 || this_fde->pc_begin == 0)
	continue;

      fde_insert (accu, this_fde);

      if (this_fde->pc_begin < pc_begin)
	pc_begin = this_fde->pc_begin;
      if (this_fde->pc_begin + this_fde->pc_range > pc_end)
	pc_end = this_fde->pc_begin + this_fde->pc_range;
    }

  *beg_ptr = pc_begin;
  *end_ptr = pc_end;
}

/* search this fde table for the one containing the pc */
static fde *
search_fdes (fde *this_fde, void *pc)
{
  for (; this_fde->length != 0; this_fde = next_fde (this_fde))
    {
      /* Skip CIEs and linked once FDE entries.  */
      if (this_fde->CIE_delta == 0 || this_fde->pc_begin == 0)
	continue;

      if ((uaddr)((char *)pc - (char *)this_fde->pc_begin) < this_fde->pc_range)
	return this_fde;
    }
  return NULL;
}

/* Set up a sorted array of pointers to FDEs for a loaded object.  We
   count up the entries before allocating the array because it's likely to
   be faster.  We can be called multiple times, should we have failed to
   allocate a sorted fde array on a previous occasion.  */

static void
frame_init (struct object* ob)
{
  size_t count;
  fde_accumulator accu;
  void *pc_begin, *pc_end;
  fde **array;

  if (ob->pc_begin)
    count = ob->count;
  else if (ob->fde_array)
    {
      fde **p = ob->fde_array;
      for (count = 0; *p; ++p)
	count += count_fdes (*p);
    }
  else
    count = count_fdes (ob->fde_begin);
  ob->count = count;

  if (!start_fde_sort (&accu, count) && ob->pc_begin)
    return;

  pc_begin = (void*)(uaddr)-1;
  pc_end = 0;

  if (ob->fde_array)
    {
      fde **p = ob->fde_array;
      for (; *p; ++p)
	add_fdes (*p, &accu, &pc_begin, &pc_end);
    }
  else
    add_fdes (ob->fde_begin, &accu, &pc_begin, &pc_end);

  array = end_fde_sort (&accu, count);
  if (array)
    ob->fde_array = array;
  ob->pc_begin = pc_begin;
  ob->pc_end = pc_end;
}

/* Return a pointer to the FDE for the function containing PC.  */

static fde *
find_fde (void *pc)
{
  struct object *ob;
  size_t lo, hi;

  init_object_mutex_once ();
  __gthread_mutex_lock (&object_mutex);

  /* Linear search through the objects, to find the one containing the pc. */
  for (ob = objects; ob; ob = ob->next)
    {
      if (ob->pc_begin == 0)
	frame_init (ob);
      if (pc >= ob->pc_begin && pc < ob->pc_end)
	break;
    }

  if (ob == 0)
    {
      __gthread_mutex_unlock (&object_mutex);
      return 0;
    }

  if (!ob->fde_array || (void *)ob->fde_array == (void *)ob->fde_begin)
    frame_init (ob);

  if (ob->fde_array && (void *)ob->fde_array != (void *)ob->fde_begin)
    {
      __gthread_mutex_unlock (&object_mutex);
      
      /* Standard binary search algorithm.  */
      for (lo = 0, hi = ob->count; lo < hi; )
	{
	  size_t i = (lo + hi) / 2;
	  fde *f = ob->fde_array[i];

	  if (pc < f->pc_begin)
	    hi = i;
	  else if (pc >= f->pc_begin + f->pc_range)
	    lo = i + 1;
	  else
	    return f;
	}
    }
  else
    {
      /* Long slow labourious linear search, cos we've no memory. */
      fde *f;
      
      if (ob->fde_array)
	{
	  fde **p = ob->fde_array;
	  
	  do
	    {
	      f = search_fdes (*p, pc);
	      if (f)
		break;
	      p++;
	    }
	  while (*p);
	}
      else
	f = search_fdes (ob->fde_begin, pc);
      __gthread_mutex_unlock (&object_mutex);
      return f;
    }
  return 0;
}

static inline struct dwarf_cie *
get_cie (fde *f)
{
  return ((void *)&f->CIE_delta) - f->CIE_delta;
}

/* Extract any interesting information from the CIE for the translation
   unit F belongs to.  */

static void *
extract_cie_info (fde *f, struct cie_info *c)
{
  void *p;
  int i;

  c->augmentation = get_cie (f)->augmentation;

  if (strcmp (c->augmentation, "") != 0
      && strcmp (c->augmentation, "eh") != 0
      && c->augmentation[0] != 'z')
    return 0;

  p = c->augmentation + strlen (c->augmentation) + 1;

  if (strcmp (c->augmentation, "eh") == 0)
    {
      c->eh_ptr = read_pointer (p);
      p += sizeof (void *);
    }
  else
    c->eh_ptr = 0;

  p = decode_uleb128 (p, &c->code_align);
  p = decode_sleb128 (p, &c->data_align);
  c->ra_regno = *(unsigned char *)p++;

  /* If the augmentation starts with 'z', we now see the length of the
     augmentation fields.  */
  if (c->augmentation[0] == 'z')
    {
      p = decode_uleb128 (p, &i);
      p += i;
    }

  return p;
}

/* Decode a DW_OP stack operation.  */

static void *
decode_stack_op (unsigned char *buf, struct frame_state *state)
{
  enum dwarf_location_atom op;
  int offset;

  op = *buf++;
  switch (op)
    {
    case DW_OP_reg0:
    case DW_OP_reg1:
    case DW_OP_reg2:
    case DW_OP_reg3:
    case DW_OP_reg4:
    case DW_OP_reg5:
    case DW_OP_reg6:
    case DW_OP_reg7:
    case DW_OP_reg8:
    case DW_OP_reg9:
    case DW_OP_reg10:
    case DW_OP_reg11:
    case DW_OP_reg12:
    case DW_OP_reg13:
    case DW_OP_reg14:
    case DW_OP_reg15:
    case DW_OP_reg16:
    case DW_OP_reg17:
    case DW_OP_reg18:
    case DW_OP_reg19:
    case DW_OP_reg20:
    case DW_OP_reg21:
    case DW_OP_reg22:
    case DW_OP_reg23:
    case DW_OP_reg24:
    case DW_OP_reg25:
    case DW_OP_reg26:
    case DW_OP_reg27:
    case DW_OP_reg28:
    case DW_OP_reg29:
    case DW_OP_reg30:
    case DW_OP_reg31:
      state->cfa_reg = op - DW_OP_reg0;
      break;
    case DW_OP_regx:
      buf = decode_sleb128 (buf, &offset);
      state->cfa_reg = offset;
      break;
    case DW_OP_breg0:
    case DW_OP_breg1:
    case DW_OP_breg2:
    case DW_OP_breg3:
    case DW_OP_breg4:
    case DW_OP_breg5:
    case DW_OP_breg6:
    case DW_OP_breg7:
    case DW_OP_breg8:
    case DW_OP_breg9:
    case DW_OP_breg10:
    case DW_OP_breg11:
    case DW_OP_breg12:
    case DW_OP_breg13:
    case DW_OP_breg14:
    case DW_OP_breg15:
    case DW_OP_breg16:
    case DW_OP_breg17:
    case DW_OP_breg18:
    case DW_OP_breg19:
    case DW_OP_breg20:
    case DW_OP_breg21:
    case DW_OP_breg22:
    case DW_OP_breg23:
    case DW_OP_breg24:
    case DW_OP_breg25:
    case DW_OP_breg26:
    case DW_OP_breg27:
    case DW_OP_breg28:
    case DW_OP_breg29:
    case DW_OP_breg30:
    case DW_OP_breg31:
      state->cfa_reg = op - DW_OP_breg0;
      buf = decode_sleb128 (buf, &offset);
      state->base_offset = offset;
      break;
    case DW_OP_bregx:
      buf = decode_sleb128 (buf, &offset);
      state->cfa_reg = offset;
      buf = decode_sleb128 (buf, &offset);
      state->base_offset = offset;
      break;
    case DW_OP_deref:
      state->indirect = 1;
      break;
    case DW_OP_plus_uconst:
      buf = decode_uleb128 (buf, &offset);
      state->cfa_offset = offset;
      break;
    default:
      abort ();
    }
  return buf;
}
/* Decode one instruction's worth of DWARF 2 call frame information.
   Used by __frame_state_for.  Takes pointers P to the instruction to
   decode, STATE to the current register unwind information, INFO to the
   current CIE information, and PC to the current PC value.  Returns a
   pointer to the next instruction.  */

static void *
execute_cfa_insn (void *p, struct frame_state_internal *state,
		  struct cie_info *info, void **pc)
{
  unsigned insn = *(unsigned char *)p++;
  unsigned reg;
  int offset;

  if (insn & DW_CFA_advance_loc)
    *pc += ((insn & 0x3f) * info->code_align);
  else if (insn & DW_CFA_offset)
    {
      reg = (insn & 0x3f);
      p = decode_uleb128 (p, &offset);
      if (reg == state->s.cfa_reg)
	/* Don't record anything about this register; it's only used to
	   reload SP in the epilogue.  We don't want to copy in SP
	   values for outer frames; we handle restoring SP specially.  */;
      else
	{
	  offset *= info->data_align;
	  state->s.saved[reg] = REG_SAVED_OFFSET;
	  state->s.reg_or_offset[reg] = offset;
	}
    }
  else if (insn & DW_CFA_restore)
    {
      reg = (insn & 0x3f);
      state->s.saved[reg] = REG_UNSAVED;
    }
  else switch (insn)
    {
    case DW_CFA_set_loc:
      *pc = read_pointer (p);
      p += sizeof (void *);
      break;
    case DW_CFA_advance_loc1:
      *pc += read_1byte (p);
      p += 1;
      break;
    case DW_CFA_advance_loc2:
      *pc += read_2byte (p);
      p += 2;
      break;
    case DW_CFA_advance_loc4:
      *pc += read_4byte (p);
      p += 4;
      break;

    case DW_CFA_offset_extended:
      p = decode_uleb128 (p, &reg);
      p = decode_uleb128 (p, &offset);
      if (reg == state->s.cfa_reg)
	/* Don't record anything; see above.  */;
      else
	{
	  offset *= info->data_align;
	  state->s.saved[reg] = REG_SAVED_OFFSET;
	  state->s.reg_or_offset[reg] = offset;
	}
      break;
    case DW_CFA_restore_extended:
      p = decode_uleb128 (p, &reg);
      state->s.saved[reg] = REG_UNSAVED;
      break;

    case DW_CFA_undefined:
    case DW_CFA_same_value:
    case DW_CFA_nop:
      break;

    case DW_CFA_register:
      {
	unsigned reg2;
	p = decode_uleb128 (p, &reg);
	p = decode_uleb128 (p, &reg2);
	state->s.saved[reg] = REG_SAVED_REG;
	state->s.reg_or_offset[reg] = reg2;
      }
      break;

    case DW_CFA_def_cfa:
      p = decode_uleb128 (p, &reg);
      p = decode_uleb128 (p, &offset);
      state->s.cfa_reg = reg;
      state->s.cfa_offset = offset;
      break;
    case DW_CFA_def_cfa_register:
      p = decode_uleb128 (p, &reg);
      state->s.cfa_reg = reg;
      break;
    case DW_CFA_def_cfa_offset:
      p = decode_uleb128 (p, &offset);
      state->s.cfa_offset = offset;
      break;
    case DW_CFA_def_cfa_expression:
      {
	void *end;
	state->s.cfa_reg = 0;
	state->s.cfa_offset = 0;
	state->s.base_offset = 0;
	state->s.indirect = 0;

	p = decode_uleb128 (p, &offset);
	end = p + offset;
	while (p < end)
	  p = decode_stack_op (p, &(state->s));
	break;
      }
      
    case DW_CFA_remember_state:
      {
	struct frame_state_internal *save =
	  (struct frame_state_internal *)
	  malloc (sizeof (struct frame_state_internal));
	memcpy (save, state, sizeof (struct frame_state_internal));
	state->saved_state = save;
      }
      break;
    case DW_CFA_restore_state:
      {
	struct frame_state_internal *save = state->saved_state;
	memcpy (state, save, sizeof (struct frame_state_internal));
	free (save);
      }
      break;

      /* FIXME: Hardcoded for SPARC register window configuration.  */
    case DW_CFA_GNU_window_save:
      for (reg = 16; reg < 32; ++reg)
	{
	  state->s.saved[reg] = REG_SAVED_OFFSET;
	  state->s.reg_or_offset[reg] = (reg - 16) * sizeof (void *);
	}
      break;

    case DW_CFA_GNU_args_size:
      p = decode_uleb128 (p, &offset);
      state->s.args_size = offset;
      break;

    case DW_CFA_GNU_negative_offset_extended:
      p = decode_uleb128 (p, &reg);
      p = decode_uleb128 (p, &offset);
      offset *= info->data_align;
      state->s.saved[reg] = REG_SAVED_OFFSET;
      state->s.reg_or_offset[reg] = -offset;
      break;

    default:
      abort ();
    }
  return p;
}

/* Called from __throw to find the registers to restore for a given
   PC_TARGET.  The caller should allocate a local variable of `struct
   frame_state' (declared in frame.h) and pass its address to STATE_IN.  */

struct frame_state *
__frame_state_for (void *pc_target, struct frame_state *state_in)
{
  fde *f;
  void *insn, *end, *pc;
  struct cie_info info;
  struct frame_state_internal state;

  f = find_fde (pc_target);
  if (f == 0)
    return 0;

  insn = extract_cie_info (f, &info);
  if (insn == 0)
    return 0;

  memset (&state, 0, sizeof (state));
  state.s.retaddr_column = info.ra_regno;
  state.s.eh_ptr = info.eh_ptr;

  /* First decode all the insns in the CIE.  */
  end = next_fde ((fde*) get_cie (f));
  while (insn < end)
    insn = execute_cfa_insn (insn, &state, &info, 0);

  insn = ((fde *)f) + 1;

  if (info.augmentation[0] == 'z')
    {
      int i;
      insn = decode_uleb128 (insn, &i);
      insn += i;
    }

  /* Then the insns in the FDE up to our target PC.  */
  end = next_fde (f);
  pc = f->pc_begin;
  while (insn < end && pc <= pc_target)
    insn = execute_cfa_insn (insn, &state, &info, &pc);

  memcpy (state_in, &state.s, sizeof (state.s));
  return state_in;
}
#endif /* DWARF2_UNWIND_INFO */