aboutsummaryrefslogtreecommitdiff
path: root/gcc/fortran/interface.cc
blob: dbcbed8bf30cc833d461f585dedf615b0276c43f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
/* Deal with interfaces.
   Copyright (C) 2000-2024 Free Software Foundation, Inc.
   Contributed by Andy Vaught

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */


/* Deal with interfaces.  An explicit interface is represented as a
   singly linked list of formal argument structures attached to the
   relevant symbols.  For an implicit interface, the arguments don't
   point to symbols.  Explicit interfaces point to namespaces that
   contain the symbols within that interface.

   Implicit interfaces are linked together in a singly linked list
   along the next_if member of symbol nodes.  Since a particular
   symbol can only have a single explicit interface, the symbol cannot
   be part of multiple lists and a single next-member suffices.

   This is not the case for general classes, though.  An operator
   definition is independent of just about all other uses and has it's
   own head pointer.

   Nameless interfaces:
     Nameless interfaces create symbols with explicit interfaces within
     the current namespace.  They are otherwise unlinked.

   Generic interfaces:
     The generic name points to a linked list of symbols.  Each symbol
     has an explicit interface.  Each explicit interface has its own
     namespace containing the arguments.  Module procedures are symbols in
     which the interface is added later when the module procedure is parsed.

   User operators:
     User-defined operators are stored in a their own set of symtrees
     separate from regular symbols.  The symtrees point to gfc_user_op
     structures which in turn head up a list of relevant interfaces.

   Extended intrinsics and assignment:
     The head of these interface lists are stored in the containing namespace.

   Implicit interfaces:
     An implicit interface is represented as a singly linked list of
     formal argument list structures that don't point to any symbol
     nodes -- they just contain types.


   When a subprogram is defined, the program unit's name points to an
   interface as usual, but the link to the namespace is NULL and the
   formal argument list points to symbols within the same namespace as
   the program unit name.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "options.h"
#include "gfortran.h"
#include "match.h"
#include "arith.h"

/* The current_interface structure holds information about the
   interface currently being parsed.  This structure is saved and
   restored during recursive interfaces.  */

gfc_interface_info current_interface;


/* Free the leading members of the gfc_interface linked list given in INTR
   up to the END element (exclusive: the END element is not freed).
   If END is not nullptr, it is assumed that END is in the linked list starting
   with INTR.  */

static void
free_interface_elements_until (gfc_interface *intr, gfc_interface *end)
{
  gfc_interface *next;

  for (; intr != end; intr = next)
    {
      next = intr->next;
      free (intr);
    }
}


/* Free a singly linked list of gfc_interface structures.  */

void
gfc_free_interface (gfc_interface *intr)
{
  free_interface_elements_until (intr, nullptr);
}


/* Update the interface pointer given by IFC_PTR to make it point to TAIL.
   It is expected that TAIL (if non-null) is in the list pointed to by
   IFC_PTR, hence the tail of it.  The members of the list before TAIL are
   freed before the pointer reassignment.  */

void
gfc_drop_interface_elements_before (gfc_interface **ifc_ptr,
				    gfc_interface *tail)
{
  if (ifc_ptr == nullptr)
    return;

  free_interface_elements_until (*ifc_ptr, tail);
  *ifc_ptr = tail;
}


/* Change the operators unary plus and minus into binary plus and
   minus respectively, leaving the rest unchanged.  */

static gfc_intrinsic_op
fold_unary_intrinsic (gfc_intrinsic_op op)
{
  switch (op)
    {
    case INTRINSIC_UPLUS:
      op = INTRINSIC_PLUS;
      break;
    case INTRINSIC_UMINUS:
      op = INTRINSIC_MINUS;
      break;
    default:
      break;
    }

  return op;
}


/* Return the operator depending on the DTIO moded string.  Note that
   these are not operators in the normal sense and so have been placed
   beyond GFC_INTRINSIC_END in gfortran.h:enum gfc_intrinsic_op.  */

static gfc_intrinsic_op
dtio_op (char* mode)
{
  if (strcmp (mode, "formatted") == 0)
    return INTRINSIC_FORMATTED;
  if (strcmp (mode, "unformatted") == 0)
    return INTRINSIC_UNFORMATTED;
  return INTRINSIC_NONE;
}


/* Match a generic specification.  Depending on which type of
   interface is found, the 'name' or 'op' pointers may be set.
   This subroutine doesn't return MATCH_NO.  */

match
gfc_match_generic_spec (interface_type *type,
			char *name,
			gfc_intrinsic_op *op)
{
  char buffer[GFC_MAX_SYMBOL_LEN + 1];
  match m;
  gfc_intrinsic_op i;

  if (gfc_match (" assignment ( = )") == MATCH_YES)
    {
      *type = INTERFACE_INTRINSIC_OP;
      *op = INTRINSIC_ASSIGN;
      return MATCH_YES;
    }

  if (gfc_match (" operator ( %o )", &i) == MATCH_YES)
    {				/* Operator i/f */
      *type = INTERFACE_INTRINSIC_OP;
      *op = fold_unary_intrinsic (i);
      return MATCH_YES;
    }

  *op = INTRINSIC_NONE;
  if (gfc_match (" operator ( ") == MATCH_YES)
    {
      m = gfc_match_defined_op_name (buffer, 1);
      if (m == MATCH_NO)
	goto syntax;
      if (m != MATCH_YES)
	return MATCH_ERROR;

      m = gfc_match_char (')');
      if (m == MATCH_NO)
	goto syntax;
      if (m != MATCH_YES)
	return MATCH_ERROR;

      strcpy (name, buffer);
      *type = INTERFACE_USER_OP;
      return MATCH_YES;
    }

  if (gfc_match (" read ( %n )", buffer) == MATCH_YES)
    {
      *op = dtio_op (buffer);
      if (*op == INTRINSIC_FORMATTED)
	{
	  strcpy (name, gfc_code2string (dtio_procs, DTIO_RF));
	  *type = INTERFACE_DTIO;
	}
      if (*op == INTRINSIC_UNFORMATTED)
	{
	  strcpy (name, gfc_code2string (dtio_procs, DTIO_RUF));
	  *type = INTERFACE_DTIO;
	}
      if (*op != INTRINSIC_NONE)
	return MATCH_YES;
    }

  if (gfc_match (" write ( %n )", buffer) == MATCH_YES)
    {
      *op = dtio_op (buffer);
      if (*op == INTRINSIC_FORMATTED)
	{
	  strcpy (name, gfc_code2string (dtio_procs, DTIO_WF));
	  *type = INTERFACE_DTIO;
	}
      if (*op == INTRINSIC_UNFORMATTED)
	{
	  strcpy (name, gfc_code2string (dtio_procs, DTIO_WUF));
	  *type = INTERFACE_DTIO;
	}
      if (*op != INTRINSIC_NONE)
	return MATCH_YES;
    }

  if (gfc_match_name (buffer) == MATCH_YES)
    {
      strcpy (name, buffer);
      *type = INTERFACE_GENERIC;
      return MATCH_YES;
    }

  *type = INTERFACE_NAMELESS;
  return MATCH_YES;

syntax:
  gfc_error ("Syntax error in generic specification at %C");
  return MATCH_ERROR;
}


/* Match one of the five F95 forms of an interface statement.  The
   matcher for the abstract interface follows.  */

match
gfc_match_interface (void)
{
  char name[GFC_MAX_SYMBOL_LEN + 1];
  interface_type type;
  gfc_symbol *sym;
  gfc_intrinsic_op op;
  match m;

  m = gfc_match_space ();

  if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
    return MATCH_ERROR;

  /* If we're not looking at the end of the statement now, or if this
     is not a nameless interface but we did not see a space, punt.  */
  if (gfc_match_eos () != MATCH_YES
      || (type != INTERFACE_NAMELESS && m != MATCH_YES))
    {
      gfc_error ("Syntax error: Trailing garbage in INTERFACE statement "
		 "at %C");
      return MATCH_ERROR;
    }

  current_interface.type = type;

  switch (type)
    {
    case INTERFACE_DTIO:
    case INTERFACE_GENERIC:
      if (gfc_get_symbol (name, NULL, &sym))
	return MATCH_ERROR;

      if (!sym->attr.generic
	  && !gfc_add_generic (&sym->attr, sym->name, NULL))
	return MATCH_ERROR;

      if (sym->attr.dummy)
	{
	  gfc_error ("Dummy procedure %qs at %C cannot have a "
		     "generic interface", sym->name);
	  return MATCH_ERROR;
	}

      current_interface.sym = gfc_new_block = sym;
      break;

    case INTERFACE_USER_OP:
      current_interface.uop = gfc_get_uop (name);
      break;

    case INTERFACE_INTRINSIC_OP:
      current_interface.op = op;
      break;

    case INTERFACE_NAMELESS:
    case INTERFACE_ABSTRACT:
      break;
    }

  return MATCH_YES;
}



/* Match a F2003 abstract interface.  */

match
gfc_match_abstract_interface (void)
{
  match m;

  if (!gfc_notify_std (GFC_STD_F2003, "ABSTRACT INTERFACE at %C"))
    return MATCH_ERROR;

  m = gfc_match_eos ();

  if (m != MATCH_YES)
    {
      gfc_error ("Syntax error in ABSTRACT INTERFACE statement at %C");
      return MATCH_ERROR;
    }

  current_interface.type = INTERFACE_ABSTRACT;

  return m;
}


/* Match the different sort of generic-specs that can be present after
   the END INTERFACE itself.  */

match
gfc_match_end_interface (void)
{
  char name[GFC_MAX_SYMBOL_LEN + 1];
  interface_type type;
  gfc_intrinsic_op op;
  match m;

  m = gfc_match_space ();

  if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
    return MATCH_ERROR;

  /* If we're not looking at the end of the statement now, or if this
     is not a nameless interface but we did not see a space, punt.  */
  if (gfc_match_eos () != MATCH_YES
      || (type != INTERFACE_NAMELESS && m != MATCH_YES))
    {
      gfc_error ("Syntax error: Trailing garbage in END INTERFACE "
		 "statement at %C");
      return MATCH_ERROR;
    }

  m = MATCH_YES;

  switch (current_interface.type)
    {
    case INTERFACE_NAMELESS:
    case INTERFACE_ABSTRACT:
      if (type != INTERFACE_NAMELESS)
	{
	  gfc_error ("Expected a nameless interface at %C");
	  m = MATCH_ERROR;
	}

      break;

    case INTERFACE_INTRINSIC_OP:
      if (type != current_interface.type || op != current_interface.op)
	{

	  if (current_interface.op == INTRINSIC_ASSIGN)
	    {
	      m = MATCH_ERROR;
	      gfc_error ("Expected %<END INTERFACE ASSIGNMENT (=)%> at %C");
	    }
	  else
	    {
	      const char *s1, *s2;
	      s1 = gfc_op2string (current_interface.op);
	      s2 = gfc_op2string (op);

	      /* The following if-statements are used to enforce C1202
		 from F2003.  */
	      if ((strcmp(s1, "==") == 0 && strcmp (s2, ".eq.") == 0)
		  || (strcmp(s1, ".eq.") == 0 && strcmp (s2, "==") == 0))
		break;
	      if ((strcmp(s1, "/=") == 0 && strcmp (s2, ".ne.") == 0)
		  || (strcmp(s1, ".ne.") == 0 && strcmp (s2, "/=") == 0))
		break;
	      if ((strcmp(s1, "<=") == 0 && strcmp (s2, ".le.") == 0)
		  || (strcmp(s1, ".le.") == 0 && strcmp (s2, "<=") == 0))
		break;
	      if ((strcmp(s1, "<") == 0 && strcmp (s2, ".lt.") == 0)
		  || (strcmp(s1, ".lt.") == 0 && strcmp (s2, "<") == 0))
		break;
	      if ((strcmp(s1, ">=") == 0 && strcmp (s2, ".ge.") == 0)
		  || (strcmp(s1, ".ge.") == 0 && strcmp (s2, ">=") == 0))
		break;
	      if ((strcmp(s1, ">") == 0 && strcmp (s2, ".gt.") == 0)
		  || (strcmp(s1, ".gt.") == 0 && strcmp (s2, ">") == 0))
		break;

	      m = MATCH_ERROR;
	      if (strcmp(s2, "none") == 0)
		gfc_error ("Expecting %<END INTERFACE OPERATOR (%s)%> "
			   "at %C", s1);
	      else
		gfc_error ("Expecting %<END INTERFACE OPERATOR (%s)%> at %C, "
			   "but got %qs", s1, s2);
	    }

	}

      break;

    case INTERFACE_USER_OP:
      /* Comparing the symbol node names is OK because only use-associated
	 symbols can be renamed.  */
      if (type != current_interface.type
	  || strcmp (current_interface.uop->name, name) != 0)
	{
	  gfc_error ("Expecting %<END INTERFACE OPERATOR (.%s.)%> at %C",
		     current_interface.uop->name);
	  m = MATCH_ERROR;
	}

      break;

    case INTERFACE_DTIO:
    case INTERFACE_GENERIC:
      if (type != current_interface.type
	  || strcmp (current_interface.sym->name, name) != 0)
	{
	  gfc_error ("Expecting %<END INTERFACE %s%> at %C",
		     current_interface.sym->name);
	  m = MATCH_ERROR;
	}

      break;
    }

  return m;
}


/* Return whether the component was defined anonymously.  */

static bool
is_anonymous_component (gfc_component *cmp)
{
  /* Only UNION and MAP components are anonymous.  In the case of a MAP,
     the derived type symbol is FL_STRUCT and the component name looks like mM*.
     This is the only case in which the second character of a component name is
     uppercase.  */
  return cmp->ts.type == BT_UNION
    || (cmp->ts.type == BT_DERIVED
        && cmp->ts.u.derived->attr.flavor == FL_STRUCT
        && cmp->name[0] && cmp->name[1] && ISUPPER (cmp->name[1]));
}


/* Return whether the derived type was defined anonymously.  */

static bool
is_anonymous_dt (gfc_symbol *derived)
{
  /* UNION and MAP types are always anonymous. Otherwise, only nested STRUCTURE
     types can be anonymous.  For anonymous MAP/STRUCTURE, we have FL_STRUCT
     and the type name looks like XX*.  This is the only case in which the
     second character of a type name is uppercase.  */
  return derived->attr.flavor == FL_UNION
    || (derived->attr.flavor == FL_STRUCT
        && derived->name[0] && derived->name[1] && ISUPPER (derived->name[1]));
}


/* Compare components according to 4.4.2 of the Fortran standard.  */

static bool
compare_components (gfc_component *cmp1, gfc_component *cmp2,
    gfc_symbol *derived1, gfc_symbol *derived2)
{
  /* Compare names, but not for anonymous components such as UNION or MAP.  */
  if (!is_anonymous_component (cmp1) && !is_anonymous_component (cmp2)
      && strcmp (cmp1->name, cmp2->name) != 0)
    return false;

  if (cmp1->attr.access != cmp2->attr.access)
    return false;

  if (cmp1->attr.pointer != cmp2->attr.pointer)
    return false;

  if (cmp1->attr.dimension != cmp2->attr.dimension)
    return false;

  if (cmp1->attr.codimension != cmp2->attr.codimension)
    return false;

  if (cmp1->attr.allocatable != cmp2->attr.allocatable)
    return false;

  if (cmp1->attr.dimension && gfc_compare_array_spec (cmp1->as, cmp2->as) == 0)
    return false;

  if (cmp1->attr.codimension
      && gfc_compare_array_spec (cmp1->as, cmp2->as) == 0)
    return false;

  if (cmp1->ts.type == BT_CHARACTER && cmp2->ts.type == BT_CHARACTER)
    {
      gfc_charlen *l1 = cmp1->ts.u.cl;
      gfc_charlen *l2 = cmp2->ts.u.cl;
      if (l1 && l2 && l1->length && l2->length
          && l1->length->expr_type == EXPR_CONSTANT
          && l2->length->expr_type == EXPR_CONSTANT
          && gfc_dep_compare_expr (l1->length, l2->length) != 0)
        return false;
    }

  /* Make sure that link lists do not put this function into an
     endless recursive loop!  */
  if (!(cmp1->ts.type == BT_DERIVED && derived1 == cmp1->ts.u.derived)
      && !(cmp2->ts.type == BT_DERIVED && derived2 == cmp2->ts.u.derived)
      && !gfc_compare_types (&cmp1->ts, &cmp2->ts))
    return false;

  else if ( (cmp1->ts.type == BT_DERIVED && derived1 == cmp1->ts.u.derived)
        && !(cmp2->ts.type == BT_DERIVED && derived2 == cmp2->ts.u.derived))
    return false;

  else if (!(cmp1->ts.type == BT_DERIVED && derived1 == cmp1->ts.u.derived)
        &&  (cmp2->ts.type == BT_DERIVED && derived2 == cmp2->ts.u.derived))
    return false;

  return true;
}


/* Compare two union types by comparing the components of their maps.
   Because unions and maps are anonymous their types get special internal
   names; therefore the usual derived type comparison will fail on them.

   Returns nonzero if equal, as with gfc_compare_derived_types. Also as with
   gfc_compare_derived_types, 'equal' is closer to meaning 'duplicate
   definitions' than 'equivalent structure'. */

static bool
compare_union_types (gfc_symbol *un1, gfc_symbol *un2)
{
  gfc_component *map1, *map2, *cmp1, *cmp2;
  gfc_symbol *map1_t, *map2_t;

  if (un1->attr.flavor != FL_UNION || un2->attr.flavor != FL_UNION)
    return false;

  if (un1->attr.zero_comp != un2->attr.zero_comp)
    return false;

  if (un1->attr.zero_comp)
    return true;

  map1 = un1->components;
  map2 = un2->components;

  /* In terms of 'equality' here we are worried about types which are
     declared the same in two places, not types that represent equivalent
     structures. (This is common because of FORTRAN's weird scoping rules.)
     Though two unions with their maps in different orders could be equivalent,
     we will say they are not equal for the purposes of this test; therefore
     we compare the maps sequentially. */
  for (;;)
    {
      map1_t = map1->ts.u.derived;
      map2_t = map2->ts.u.derived;

      cmp1 = map1_t->components;
      cmp2 = map2_t->components;

      /* Protect against null components.  */
      if (map1_t->attr.zero_comp != map2_t->attr.zero_comp)
	return false;

      if (map1_t->attr.zero_comp)
	return true;

      for (;;)
	{
	  /* No two fields will ever point to the same map type unless they are
	     the same component, because one map field is created with its type
	     declaration. Therefore don't worry about recursion here. */
	  /* TODO: worry about recursion into parent types of the unions? */
	  if (!compare_components (cmp1, cmp2, map1_t, map2_t))
	    return false;

	  cmp1 = cmp1->next;
	  cmp2 = cmp2->next;

	  if (cmp1 == NULL && cmp2 == NULL)
	    break;
	  if (cmp1 == NULL || cmp2 == NULL)
	    return false;
	}

      map1 = map1->next;
      map2 = map2->next;

      if (map1 == NULL && map2 == NULL)
	break;
      if (map1 == NULL || map2 == NULL)
	return false;
    }

  return true;
}



/* Compare two derived types using the criteria in 4.4.2 of the standard,
   recursing through gfc_compare_types for the components.  */

bool
gfc_compare_derived_types (gfc_symbol *derived1, gfc_symbol *derived2)
{
  gfc_component *cmp1, *cmp2;

  if (derived1 == derived2)
    return true;

  if (!derived1 || !derived2)
    gfc_internal_error ("gfc_compare_derived_types: invalid derived type");

  if (derived1->attr.unlimited_polymorphic
      && derived2->attr.unlimited_polymorphic)
    return true;

  if (derived1->attr.unlimited_polymorphic
      != derived2->attr.unlimited_polymorphic)
    return false;

  /* Compare UNION types specially.  */
  if (derived1->attr.flavor == FL_UNION || derived2->attr.flavor == FL_UNION)
    return compare_union_types (derived1, derived2);

  /* Special case for comparing derived types across namespaces.  If the
     true names and module names are the same and the module name is
     nonnull, then they are equal.  */
  if (strcmp (derived1->name, derived2->name) == 0
      && derived1->module != NULL && derived2->module != NULL
      && strcmp (derived1->module, derived2->module) == 0)
    return true;

  /* Compare type via the rules of the standard.  Both types must have the
     SEQUENCE or BIND(C) attribute to be equal.  We also compare types
     recursively if they are class descriptors types or virtual tables types.
     STRUCTUREs are special because they can be anonymous; therefore two
     structures with different names may be equal.  */

  /* Compare names, but not for anonymous types such as UNION or MAP.  */
  if (!is_anonymous_dt (derived1) && !is_anonymous_dt (derived2)
      && strcmp (derived1->name, derived2->name) != 0)
    return false;

  if (derived1->component_access == ACCESS_PRIVATE
      || derived2->component_access == ACCESS_PRIVATE)
    return false;

  if (!(derived1->attr.sequence && derived2->attr.sequence)
      && !(derived1->attr.is_bind_c && derived2->attr.is_bind_c)
      && !(derived1->attr.is_class && derived2->attr.is_class)
      && !(derived1->attr.vtype && derived2->attr.vtype)
      && !(derived1->attr.pdt_type && derived2->attr.pdt_type))
    return false;

  /* Protect against null components.  */
  if (derived1->attr.zero_comp != derived2->attr.zero_comp)
    return false;

  if (derived1->attr.zero_comp)
    return true;

  cmp1 = derived1->components;
  cmp2 = derived2->components;

  /* Since subtypes of SEQUENCE types must be SEQUENCE types as well, a
     simple test can speed things up.  Otherwise, lots of things have to
     match.  */
  for (;;)
    {
      if (!compare_components (cmp1, cmp2, derived1, derived2))
        return false;

      cmp1 = cmp1->next;
      cmp2 = cmp2->next;

      if (cmp1 == NULL && cmp2 == NULL)
	break;
      if (cmp1 == NULL || cmp2 == NULL)
	return false;
    }

  return true;
}


/* Compare two typespecs, recursively if necessary.  */

bool
gfc_compare_types (gfc_typespec *ts1, gfc_typespec *ts2)
{
  /* See if one of the typespecs is a BT_VOID, which is what is being used
     to allow the funcs like c_f_pointer to accept any pointer type.
     TODO: Possibly should narrow this to just the one typespec coming in
     that is for the formal arg, but oh well.  */
  if (ts1->type == BT_VOID || ts2->type == BT_VOID)
    return true;

  /* Special case for our C interop types.  FIXME: There should be a
     better way of doing this.  When ISO C binding is cleared up,
     this can probably be removed.  See PR 57048.  */

  if ((ts1->type == BT_INTEGER
       && ts2->type == BT_DERIVED
       && ts1->f90_type == BT_VOID
       && ts2->u.derived->from_intmod == INTMOD_ISO_C_BINDING
       && ts1->u.derived
       && strcmp (ts1->u.derived->name, ts2->u.derived->name) == 0)
      || (ts2->type == BT_INTEGER
	  && ts1->type == BT_DERIVED
	  && ts2->f90_type == BT_VOID
	  && ts1->u.derived->from_intmod == INTMOD_ISO_C_BINDING
	  && ts2->u.derived
	  && strcmp (ts1->u.derived->name, ts2->u.derived->name) == 0))
    return true;

  /* The _data component is not always present, therefore check for its
     presence before assuming, that its derived->attr is available.
     When the _data component is not present, then nevertheless the
     unlimited_polymorphic flag may be set in the derived type's attr.  */
  if (ts1->type == BT_CLASS && ts1->u.derived->components
      && ((ts1->u.derived->attr.is_class
	   && ts1->u.derived->components->ts.u.derived->attr
						  .unlimited_polymorphic)
	  || ts1->u.derived->attr.unlimited_polymorphic))
    return true;

  /* F2003: C717  */
  if (ts2->type == BT_CLASS && ts1->type == BT_DERIVED
      && ts2->u.derived->components
      && ((ts2->u.derived->attr.is_class
	   && ts2->u.derived->components->ts.u.derived->attr
						  .unlimited_polymorphic)
	  || ts2->u.derived->attr.unlimited_polymorphic)
      && (ts1->u.derived->attr.sequence || ts1->u.derived->attr.is_bind_c))
    return true;

  if (ts1->type != ts2->type
      && ((ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
	  || (ts2->type != BT_DERIVED && ts2->type != BT_CLASS)))
    return false;

  if (ts1->type == BT_UNION)
    return compare_union_types (ts1->u.derived, ts2->u.derived);

  if (ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
    return (ts1->kind == ts2->kind);

  /* Compare derived types.  */
  return gfc_type_compatible (ts1, ts2);
}


static bool
compare_type (gfc_symbol *s1, gfc_symbol *s2)
{
  if (s2->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
    return true;

  return gfc_compare_types (&s1->ts, &s2->ts) || s2->ts.type == BT_ASSUMED;
}


static bool
compare_type_characteristics (gfc_symbol *s1, gfc_symbol *s2)
{
  /* TYPE and CLASS of the same declared type are type compatible,
     but have different characteristics.  */
  if ((s1->ts.type == BT_CLASS && s2->ts.type == BT_DERIVED)
      || (s1->ts.type == BT_DERIVED && s2->ts.type == BT_CLASS))
    return false;

  return compare_type (s1, s2);
}


static bool
compare_rank (gfc_symbol *s1, gfc_symbol *s2)
{
  gfc_array_spec *as1, *as2;
  int r1, r2;

  if (s2->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
    return true;

  as1 = (s1->ts.type == BT_CLASS
	 && !s1->ts.u.derived->attr.unlimited_polymorphic)
	? CLASS_DATA (s1)->as : s1->as;
  as2 = (s2->ts.type == BT_CLASS
	 && !s2->ts.u.derived->attr.unlimited_polymorphic)
	? CLASS_DATA (s2)->as : s2->as;

  r1 = as1 ? as1->rank : 0;
  r2 = as2 ? as2->rank : 0;

  if (r1 != r2 && (!as2 || as2->type != AS_ASSUMED_RANK))
    return false;  /* Ranks differ.  */

  return true;
}


/* Given two symbols that are formal arguments, compare their ranks
   and types.  Returns true if they have the same rank and type,
   false otherwise.  */

static bool
compare_type_rank (gfc_symbol *s1, gfc_symbol *s2)
{
  return compare_type (s1, s2) && compare_rank (s1, s2);
}


/* Given two symbols that are formal arguments, compare their types
   and rank and their formal interfaces if they are both dummy
   procedures.  Returns true if the same, false if different.  */

static bool
compare_type_rank_if (gfc_symbol *s1, gfc_symbol *s2)
{
  if (s1 == NULL || s2 == NULL)
    return (s1 == s2);

  if (s1 == s2)
    return true;

  if (s1->attr.flavor != FL_PROCEDURE && s2->attr.flavor != FL_PROCEDURE)
    return compare_type_rank (s1, s2);

  if (s1->attr.flavor != FL_PROCEDURE || s2->attr.flavor != FL_PROCEDURE)
    return false;

  /* At this point, both symbols are procedures.  It can happen that
     external procedures are compared, where one is identified by usage
     to be a function or subroutine but the other is not.  Check TKR
     nonetheless for these cases.  */
  if (s1->attr.function == 0 && s1->attr.subroutine == 0)
    return s1->attr.external ? compare_type_rank (s1, s2) : false;

  if (s2->attr.function == 0 && s2->attr.subroutine == 0)
    return s2->attr.external ? compare_type_rank (s1, s2) : false;

  /* Now the type of procedure has been identified.  */
  if (s1->attr.function != s2->attr.function
      || s1->attr.subroutine != s2->attr.subroutine)
    return false;

  if (s1->attr.function && !compare_type_rank (s1, s2))
    return false;

  /* Originally, gfortran recursed here to check the interfaces of passed
     procedures.  This is explicitly not required by the standard.  */
  return true;
}


/* Given a formal argument list and a keyword name, search the list
   for that keyword.  Returns the correct symbol node if found, NULL
   if not found.  */

static gfc_symbol *
find_keyword_arg (const char *name, gfc_formal_arglist *f)
{
  for (; f; f = f->next)
    if (strcmp (f->sym->name, name) == 0)
      return f->sym;

  return NULL;
}


/******** Interface checking subroutines **********/


/* Given an operator interface and the operator, make sure that all
   interfaces for that operator are legal.  */

bool
gfc_check_operator_interface (gfc_symbol *sym, gfc_intrinsic_op op,
			      locus opwhere)
{
  gfc_formal_arglist *formal;
  sym_intent i1, i2;
  bt t1, t2;
  int args, r1, r2, k1, k2;

  gcc_assert (sym);

  args = 0;
  t1 = t2 = BT_UNKNOWN;
  i1 = i2 = INTENT_UNKNOWN;
  r1 = r2 = -1;
  k1 = k2 = -1;

  for (formal = gfc_sym_get_dummy_args (sym); formal; formal = formal->next)
    {
      gfc_symbol *fsym = formal->sym;
      if (fsym == NULL)
	{
	  gfc_error ("Alternate return cannot appear in operator "
		     "interface at %L", &sym->declared_at);
	  return false;
	}
      if (args == 0)
	{
	  t1 = fsym->ts.type;
	  i1 = fsym->attr.intent;
	  r1 = (fsym->as != NULL) ? fsym->as->rank : 0;
	  k1 = fsym->ts.kind;
	}
      if (args == 1)
	{
	  t2 = fsym->ts.type;
	  i2 = fsym->attr.intent;
	  r2 = (fsym->as != NULL) ? fsym->as->rank : 0;
	  k2 = fsym->ts.kind;
	}
      args++;
    }

  /* Only +, - and .not. can be unary operators.
     .not. cannot be a binary operator.  */
  if (args == 0 || args > 2 || (args == 1 && op != INTRINSIC_PLUS
				&& op != INTRINSIC_MINUS
				&& op != INTRINSIC_NOT)
      || (args == 2 && op == INTRINSIC_NOT))
    {
      if (op == INTRINSIC_ASSIGN)
	gfc_error ("Assignment operator interface at %L must have "
		   "two arguments", &sym->declared_at);
      else
	gfc_error ("Operator interface at %L has the wrong number of arguments",
		   &sym->declared_at);
      return false;
    }

  /* Check that intrinsics are mapped to functions, except
     INTRINSIC_ASSIGN which should map to a subroutine.  */
  if (op == INTRINSIC_ASSIGN)
    {
      gfc_formal_arglist *dummy_args;

      if (!sym->attr.subroutine)
	{
	  gfc_error ("Assignment operator interface at %L must be "
		     "a SUBROUTINE", &sym->declared_at);
	  return false;
	}

      /* Allowed are (per F2003, 12.3.2.1.2 Defined assignments):
	 - First argument an array with different rank than second,
	 - First argument is a scalar and second an array,
	 - Types and kinds do not conform, or
	 - First argument is of derived type.  */
      dummy_args = gfc_sym_get_dummy_args (sym);
      if (dummy_args->sym->ts.type != BT_DERIVED
	  && dummy_args->sym->ts.type != BT_CLASS
	  && (r2 == 0 || r1 == r2)
	  && (dummy_args->sym->ts.type == dummy_args->next->sym->ts.type
	      || (gfc_numeric_ts (&dummy_args->sym->ts)
		  && gfc_numeric_ts (&dummy_args->next->sym->ts))))
	{
	  gfc_error ("Assignment operator interface at %L must not redefine "
		     "an INTRINSIC type assignment", &sym->declared_at);
	  return false;
	}
    }
  else
    {
      if (!sym->attr.function)
	{
	  gfc_error ("Intrinsic operator interface at %L must be a FUNCTION",
		     &sym->declared_at);
	  return false;
	}
    }

  /* Check intents on operator interfaces.  */
  if (op == INTRINSIC_ASSIGN)
    {
      if (i1 != INTENT_OUT && i1 != INTENT_INOUT)
	{
	  gfc_error ("First argument of defined assignment at %L must be "
		     "INTENT(OUT) or INTENT(INOUT)", &sym->declared_at);
	  return false;
	}

      if (i2 != INTENT_IN)
	{
	  gfc_error ("Second argument of defined assignment at %L must be "
		     "INTENT(IN)", &sym->declared_at);
	  return false;
	}
    }
  else
    {
      if (i1 != INTENT_IN)
	{
	  gfc_error ("First argument of operator interface at %L must be "
		     "INTENT(IN)", &sym->declared_at);
	  return false;
	}

      if (args == 2 && i2 != INTENT_IN)
	{
	  gfc_error ("Second argument of operator interface at %L must be "
		     "INTENT(IN)", &sym->declared_at);
	  return false;
	}
    }

  /* From now on, all we have to do is check that the operator definition
     doesn't conflict with an intrinsic operator. The rules for this
     game are defined in 7.1.2 and 7.1.3 of both F95 and F2003 standards,
     as well as 12.3.2.1.1 of Fortran 2003:

     "If the operator is an intrinsic-operator (R310), the number of
     function arguments shall be consistent with the intrinsic uses of
     that operator, and the types, kind type parameters, or ranks of the
     dummy arguments shall differ from those required for the intrinsic
     operation (7.1.2)."  */

#define IS_NUMERIC_TYPE(t) \
  ((t) == BT_INTEGER || (t) == BT_REAL || (t) == BT_COMPLEX)

  /* Unary ops are easy, do them first.  */
  if (op == INTRINSIC_NOT)
    {
      if (t1 == BT_LOGICAL)
	goto bad_repl;
      else
	return true;
    }

  if (args == 1 && (op == INTRINSIC_PLUS || op == INTRINSIC_MINUS))
    {
      if (IS_NUMERIC_TYPE (t1))
	goto bad_repl;
      else
	return true;
    }

  /* Character intrinsic operators have same character kind, thus
     operator definitions with operands of different character kinds
     are always safe.  */
  if (t1 == BT_CHARACTER && t2 == BT_CHARACTER && k1 != k2)
    return true;

  /* Intrinsic operators always perform on arguments of same rank,
     so different ranks is also always safe.  (rank == 0) is an exception
     to that, because all intrinsic operators are elemental.  */
  if (r1 != r2 && r1 != 0 && r2 != 0)
    return true;

  switch (op)
  {
    case INTRINSIC_EQ:
    case INTRINSIC_EQ_OS:
    case INTRINSIC_NE:
    case INTRINSIC_NE_OS:
      if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
	goto bad_repl;
      /* Fall through.  */

    case INTRINSIC_PLUS:
    case INTRINSIC_MINUS:
    case INTRINSIC_TIMES:
    case INTRINSIC_DIVIDE:
    case INTRINSIC_POWER:
      if (IS_NUMERIC_TYPE (t1) && IS_NUMERIC_TYPE (t2))
	goto bad_repl;
      break;

    case INTRINSIC_GT:
    case INTRINSIC_GT_OS:
    case INTRINSIC_GE:
    case INTRINSIC_GE_OS:
    case INTRINSIC_LT:
    case INTRINSIC_LT_OS:
    case INTRINSIC_LE:
    case INTRINSIC_LE_OS:
      if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
	goto bad_repl;
      if ((t1 == BT_INTEGER || t1 == BT_REAL)
	  && (t2 == BT_INTEGER || t2 == BT_REAL))
	goto bad_repl;
      break;

    case INTRINSIC_CONCAT:
      if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
	goto bad_repl;
      break;

    case INTRINSIC_AND:
    case INTRINSIC_OR:
    case INTRINSIC_EQV:
    case INTRINSIC_NEQV:
      if (t1 == BT_LOGICAL && t2 == BT_LOGICAL)
	goto bad_repl;
      break;

    default:
      break;
  }

  return true;

#undef IS_NUMERIC_TYPE

bad_repl:
  gfc_error ("Operator interface at %L conflicts with intrinsic interface",
	     &opwhere);
  return false;
}


/* Given a pair of formal argument lists, we see if the two lists can
   be distinguished by counting the number of nonoptional arguments of
   a given type/rank in f1 and seeing if there are less then that
   number of those arguments in f2 (including optional arguments).
   Since this test is asymmetric, it has to be called twice to make it
   symmetric. Returns nonzero if the argument lists are incompatible
   by this test. This subroutine implements rule 1 of section F03:16.2.3.
   'p1' and 'p2' are the PASS arguments of both procedures (if applicable).  */

static bool
count_types_test (gfc_formal_arglist *f1, gfc_formal_arglist *f2,
		  const char *p1, const char *p2)
{
  int ac1, ac2, i, j, k, n1;
  gfc_formal_arglist *f;

  typedef struct
  {
    int flag;
    gfc_symbol *sym;
  }
  arginfo;

  arginfo *arg;

  n1 = 0;

  for (f = f1; f; f = f->next)
    n1++;

  /* Build an array of integers that gives the same integer to
     arguments of the same type/rank.  */
  arg = XCNEWVEC (arginfo, n1);

  f = f1;
  for (i = 0; i < n1; i++, f = f->next)
    {
      arg[i].flag = -1;
      arg[i].sym = f->sym;
    }

  k = 0;

  for (i = 0; i < n1; i++)
    {
      if (arg[i].flag != -1)
	continue;

      if (arg[i].sym && (arg[i].sym->attr.optional
			 || (p1 && strcmp (arg[i].sym->name, p1) == 0)))
	continue;		/* Skip OPTIONAL and PASS arguments.  */

      arg[i].flag = k;

      /* Find other non-optional, non-pass arguments of the same type/rank.  */
      for (j = i + 1; j < n1; j++)
	if ((arg[j].sym == NULL
	     || !(arg[j].sym->attr.optional
		  || (p1 && strcmp (arg[j].sym->name, p1) == 0)))
	    && (compare_type_rank_if (arg[i].sym, arg[j].sym)
	        || compare_type_rank_if (arg[j].sym, arg[i].sym)))
	  arg[j].flag = k;

      k++;
    }

  /* Now loop over each distinct type found in f1.  */
  k = 0;
  bool rc = false;

  for (i = 0; i < n1; i++)
    {
      if (arg[i].flag != k)
	continue;

      ac1 = 1;
      for (j = i + 1; j < n1; j++)
	if (arg[j].flag == k)
	  ac1++;

      /* Count the number of non-pass arguments in f2 with that type,
	 including those that are optional.  */
      ac2 = 0;

      for (f = f2; f; f = f->next)
	if ((!p2 || strcmp (f->sym->name, p2) != 0)
	    && (compare_type_rank_if (arg[i].sym, f->sym)
		|| compare_type_rank_if (f->sym, arg[i].sym)))
	  ac2++;

      if (ac1 > ac2)
	{
	  rc = true;
	  break;
	}

      k++;
    }

  free (arg);

  return rc;
}


/* Returns true if two dummy arguments are distinguishable due to their POINTER
   and ALLOCATABLE attributes according to F2018 section 15.4.3.4.5 (3).
   The function is asymmetric wrt to the arguments s1 and s2 and should always
   be called twice (with flipped arguments in the second call).  */

static bool
compare_ptr_alloc(gfc_symbol *s1, gfc_symbol *s2)
{
  /* Is s1 allocatable?  */
  const bool a1 = s1->ts.type == BT_CLASS ?
		  CLASS_DATA(s1)->attr.allocatable : s1->attr.allocatable;
  /* Is s2 a pointer?  */
  const bool p2 = s2->ts.type == BT_CLASS ?
		  CLASS_DATA(s2)->attr.class_pointer : s2->attr.pointer;
  return a1 && p2 && (s2->attr.intent != INTENT_IN);
}


/* Perform the correspondence test in rule (3) of F08:C1215.
   Returns zero if no argument is found that satisfies this rule,
   nonzero otherwise. 'p1' and 'p2' are the PASS arguments of both procedures
   (if applicable).

   This test is also not symmetric in f1 and f2 and must be called
   twice.  This test finds problems caused by sorting the actual
   argument list with keywords.  For example:

   INTERFACE FOO
     SUBROUTINE F1(A, B)
       INTEGER :: A ; REAL :: B
     END SUBROUTINE F1

     SUBROUTINE F2(B, A)
       INTEGER :: A ; REAL :: B
     END SUBROUTINE F1
   END INTERFACE FOO

   At this point, 'CALL FOO(A=1, B=1.0)' is ambiguous.  */

static bool
generic_correspondence (gfc_formal_arglist *f1, gfc_formal_arglist *f2,
			const char *p1, const char *p2)
{
  gfc_formal_arglist *f2_save, *g;
  gfc_symbol *sym;

  f2_save = f2;

  while (f1)
    {
      if (!f1->sym || f1->sym->attr.optional)
	goto next;

      if (p1 && strcmp (f1->sym->name, p1) == 0)
	f1 = f1->next;
      if (f2 && p2 && strcmp (f2->sym->name, p2) == 0)
	f2 = f2->next;

      if (f2 != NULL && (compare_type_rank (f1->sym, f2->sym)
			 || compare_type_rank (f2->sym, f1->sym))
	  && !((gfc_option.allow_std & GFC_STD_F2008)
	       && (compare_ptr_alloc(f1->sym, f2->sym)
		   || compare_ptr_alloc(f2->sym, f1->sym))))
	goto next;

      /* Now search for a disambiguating keyword argument starting at
	 the current non-match.  */
      for (g = f1; g; g = g->next)
	{
	  if (g->sym->attr.optional || (p1 && strcmp (g->sym->name, p1) == 0))
	    continue;

	  sym = find_keyword_arg (g->sym->name, f2_save);
	  if (sym == NULL || !compare_type_rank (g->sym, sym)
	      || ((gfc_option.allow_std & GFC_STD_F2008)
		  && (compare_ptr_alloc(sym, g->sym)
		      || compare_ptr_alloc(g->sym, sym))))
	    return true;
	}

    next:
      if (f1 != NULL)
	f1 = f1->next;
      if (f2 != NULL)
	f2 = f2->next;
    }

  return false;
}


static int
symbol_rank (gfc_symbol *sym)
{
  gfc_array_spec *as = NULL;

  if (sym->ts.type == BT_CLASS && CLASS_DATA (sym))
    as = CLASS_DATA (sym)->as;
  else
    as = sym->as;

  return as ? as->rank : 0;
}


/* Check if the characteristics of two dummy arguments match,
   cf. F08:12.3.2.  */

bool
gfc_check_dummy_characteristics (gfc_symbol *s1, gfc_symbol *s2,
				 bool type_must_agree, char *errmsg,
				 int err_len)
{
  if (s1 == NULL || s2 == NULL)
    return s1 == s2 ? true : false;

  if (s1->attr.proc == PROC_ST_FUNCTION || s2->attr.proc == PROC_ST_FUNCTION)
    {
      strncpy (errmsg, "Statement function", err_len);
      return false;
    }

  /* Check type and rank.  */
  if (type_must_agree)
    {
      if (!compare_type_characteristics (s1, s2)
	  || !compare_type_characteristics (s2, s1))
	{
	  snprintf (errmsg, err_len, "Type mismatch in argument '%s' (%s/%s)",
		    s1->name, gfc_dummy_typename (&s1->ts),
		    gfc_dummy_typename (&s2->ts));
	  return false;
	}
      if (!compare_rank (s1, s2))
	{
	  snprintf (errmsg, err_len, "Rank mismatch in argument '%s' (%i/%i)",
		    s1->name, symbol_rank (s1), symbol_rank (s2));
	  return false;
	}
    }

  /* Check INTENT.  */
  if (s1->attr.intent != s2->attr.intent && !s1->attr.artificial
      && !s2->attr.artificial)
    {
      snprintf (errmsg, err_len, "INTENT mismatch in argument '%s'",
		s1->name);
      return false;
    }

  /* Check OPTIONAL attribute.  */
  if (s1->attr.optional != s2->attr.optional)
    {
      snprintf (errmsg, err_len, "OPTIONAL mismatch in argument '%s'",
		s1->name);
      return false;
    }

  /* Check ALLOCATABLE attribute.  */
  if (s1->attr.allocatable != s2->attr.allocatable)
    {
      snprintf (errmsg, err_len, "ALLOCATABLE mismatch in argument '%s'",
		s1->name);
      return false;
    }

  /* Check POINTER attribute.  */
  if (s1->attr.pointer != s2->attr.pointer)
    {
      snprintf (errmsg, err_len, "POINTER mismatch in argument '%s'",
		s1->name);
      return false;
    }

  /* Check TARGET attribute.  */
  if (s1->attr.target != s2->attr.target)
    {
      snprintf (errmsg, err_len, "TARGET mismatch in argument '%s'",
		s1->name);
      return false;
    }

  /* Check ASYNCHRONOUS attribute.  */
  if (s1->attr.asynchronous != s2->attr.asynchronous)
    {
      snprintf (errmsg, err_len, "ASYNCHRONOUS mismatch in argument '%s'",
		s1->name);
      return false;
    }

  /* Check CONTIGUOUS attribute.  */
  if (s1->attr.contiguous != s2->attr.contiguous)
    {
      snprintf (errmsg, err_len, "CONTIGUOUS mismatch in argument '%s'",
		s1->name);
      return false;
    }

  /* Check VALUE attribute.  */
  if (s1->attr.value != s2->attr.value)
    {
      snprintf (errmsg, err_len, "VALUE mismatch in argument '%s'",
		s1->name);
      return false;
    }

  /* Check VOLATILE attribute.  */
  if (s1->attr.volatile_ != s2->attr.volatile_)
    {
      snprintf (errmsg, err_len, "VOLATILE mismatch in argument '%s'",
		s1->name);
      return false;
    }

  /* Check interface of dummy procedures.  */
  if (s1->attr.flavor == FL_PROCEDURE)
    {
      char err[200];
      if (!gfc_compare_interfaces (s1, s2, s2->name, 0, 1, err, sizeof(err),
				   NULL, NULL))
	{
	  snprintf (errmsg, err_len, "Interface mismatch in dummy procedure "
		    "'%s': %s", s1->name, err);
	  return false;
	}
    }

  /* Check string length.  */
  if (s1->ts.type == BT_CHARACTER
      && s1->ts.u.cl && s1->ts.u.cl->length
      && s2->ts.u.cl && s2->ts.u.cl->length)
    {
      int compval = gfc_dep_compare_expr (s1->ts.u.cl->length,
					  s2->ts.u.cl->length);
      switch (compval)
      {
	case -1:
	case  1:
	case -3:
	  snprintf (errmsg, err_len, "Character length mismatch "
		    "in argument '%s'", s1->name);
	  return false;

	case -2:
	  /* FIXME: Implement a warning for this case.
	  gfc_warning (0, "Possible character length mismatch in argument %qs",
		       s1->name);*/
	  break;

	case 0:
	  break;

	default:
	  gfc_internal_error ("check_dummy_characteristics: Unexpected result "
			      "%i of gfc_dep_compare_expr", compval);
	  break;
      }
    }

  /* Check array shape.  */
  if (s1->as && s2->as)
    {
      int i, compval;
      gfc_expr *shape1, *shape2;

      /* Sometimes the ambiguity between deferred shape and assumed shape
	 does not get resolved in module procedures, where the only explicit
	 declaration of the dummy is in the interface.  */
      if (s1->ns->proc_name && s1->ns->proc_name->attr.module_procedure
	  && s1->as->type == AS_ASSUMED_SHAPE
	  && s2->as->type == AS_DEFERRED)
	{
	  s2->as->type = AS_ASSUMED_SHAPE;
	  for (i = 0; i < s2->as->rank; i++)
	    if (s1->as->lower[i] != NULL)
	      s2->as->lower[i] = gfc_copy_expr (s1->as->lower[i]);
	}

      if (s1->as->type != s2->as->type)
	{
	  snprintf (errmsg, err_len, "Shape mismatch in argument '%s'",
		    s1->name);
	  return false;
	}

      if (s1->as->corank != s2->as->corank)
	{
	  snprintf (errmsg, err_len, "Corank mismatch in argument '%s' (%i/%i)",
		    s1->name, s1->as->corank, s2->as->corank);
	  return false;
	}

      if (s1->as->type == AS_EXPLICIT)
	for (i = 0; i < s1->as->rank + MAX (0, s1->as->corank-1); i++)
	  {
	    shape1 = gfc_subtract (gfc_copy_expr (s1->as->upper[i]),
				  gfc_copy_expr (s1->as->lower[i]));
	    shape2 = gfc_subtract (gfc_copy_expr (s2->as->upper[i]),
				  gfc_copy_expr (s2->as->lower[i]));
	    compval = gfc_dep_compare_expr (shape1, shape2);
	    gfc_free_expr (shape1);
	    gfc_free_expr (shape2);
	    switch (compval)
	    {
	      case -1:
	      case  1:
	      case -3:
		if (i < s1->as->rank)
		  snprintf (errmsg, err_len, "Shape mismatch in dimension %i of"
			    " argument '%s'", i + 1, s1->name);
		else
		  snprintf (errmsg, err_len, "Shape mismatch in codimension %i "
			    "of argument '%s'", i - s1->as->rank + 1, s1->name);
		return false;

	      case -2:
		/* FIXME: Implement a warning for this case.
		gfc_warning (0, "Possible shape mismatch in argument %qs",
			    s1->name);*/
		break;

	      case 0:
		break;

	      default:
		gfc_internal_error ("check_dummy_characteristics: Unexpected "
				    "result %i of gfc_dep_compare_expr",
				    compval);
		break;
	    }
	  }
    }

  return true;
}


/* Check if the characteristics of two function results match,
   cf. F08:12.3.3.  */

bool
gfc_check_result_characteristics (gfc_symbol *s1, gfc_symbol *s2,
				  char *errmsg, int err_len)
{
  gfc_symbol *r1, *r2;

  if (s1->ts.interface && s1->ts.interface->result)
    r1 = s1->ts.interface->result;
  else
    r1 = s1->result ? s1->result : s1;

  if (s2->ts.interface && s2->ts.interface->result)
    r2 = s2->ts.interface->result;
  else
    r2 = s2->result ? s2->result : s2;

  if (r1->ts.type == BT_UNKNOWN)
    return true;

  /* Check type and rank.  */
  if (!compare_type_characteristics (r1, r2))
    {
      snprintf (errmsg, err_len, "Type mismatch in function result (%s/%s)",
		gfc_typename (&r1->ts), gfc_typename (&r2->ts));
      return false;
    }
  if (!compare_rank (r1, r2))
    {
      snprintf (errmsg, err_len, "Rank mismatch in function result (%i/%i)",
		symbol_rank (r1), symbol_rank (r2));
      return false;
    }

  /* Check ALLOCATABLE attribute.  */
  if (r1->attr.allocatable != r2->attr.allocatable)
    {
      snprintf (errmsg, err_len, "ALLOCATABLE attribute mismatch in "
		"function result");
      return false;
    }

  /* Check POINTER attribute.  */
  if (r1->attr.pointer != r2->attr.pointer)
    {
      snprintf (errmsg, err_len, "POINTER attribute mismatch in "
		"function result");
      return false;
    }

  /* Check CONTIGUOUS attribute.  */
  if (r1->attr.contiguous != r2->attr.contiguous)
    {
      snprintf (errmsg, err_len, "CONTIGUOUS attribute mismatch in "
		"function result");
      return false;
    }

  /* Check PROCEDURE POINTER attribute.  */
  if (r1 != s1 && r1->attr.proc_pointer != r2->attr.proc_pointer)
    {
      snprintf (errmsg, err_len, "PROCEDURE POINTER mismatch in "
		"function result");
      return false;
    }

  /* Check string length.  */
  if (r1->ts.type == BT_CHARACTER && r1->ts.u.cl && r2->ts.u.cl)
    {
      if (r1->ts.deferred != r2->ts.deferred)
	{
	  snprintf (errmsg, err_len, "Character length mismatch "
		    "in function result");
	  return false;
	}

      if (r1->ts.u.cl->length && r2->ts.u.cl->length)
	{
	  int compval = gfc_dep_compare_expr (r1->ts.u.cl->length,
					      r2->ts.u.cl->length);
	  switch (compval)
	  {
	    case -1:
	    case  1:
	    case -3:
	      snprintf (errmsg, err_len, "Character length mismatch "
			"in function result");
	      return false;

	    case -2:
	      /* FIXME: Implement a warning for this case.
	      snprintf (errmsg, err_len, "Possible character length mismatch "
			"in function result");*/
	      break;

	    case 0:
	      break;

	    default:
	      gfc_internal_error ("check_result_characteristics (1): Unexpected "
				  "result %i of gfc_dep_compare_expr", compval);
	      break;
	  }
	}
    }

  /* Check array shape.  */
  if (!r1->attr.allocatable && !r1->attr.pointer && r1->as && r2->as)
    {
      int i, compval;
      gfc_expr *shape1, *shape2;

      if (r1->as->type != r2->as->type)
	{
	  snprintf (errmsg, err_len, "Shape mismatch in function result");
	  return false;
	}

      if (r1->as->type == AS_EXPLICIT)
	for (i = 0; i < r1->as->rank + r1->as->corank; i++)
	  {
	    shape1 = gfc_subtract (gfc_copy_expr (r1->as->upper[i]),
				   gfc_copy_expr (r1->as->lower[i]));
	    shape2 = gfc_subtract (gfc_copy_expr (r2->as->upper[i]),
				   gfc_copy_expr (r2->as->lower[i]));
	    compval = gfc_dep_compare_expr (shape1, shape2);
	    gfc_free_expr (shape1);
	    gfc_free_expr (shape2);
	    switch (compval)
	    {
	      case -1:
	      case  1:
	      case -3:
		snprintf (errmsg, err_len, "Shape mismatch in dimension %i of "
			  "function result", i + 1);
		return false;

	      case -2:
		/* FIXME: Implement a warning for this case.
		gfc_warning (0, "Possible shape mismatch in return value");*/
		break;

	      case 0:
		break;

	      default:
		gfc_internal_error ("check_result_characteristics (2): "
				    "Unexpected result %i of "
				    "gfc_dep_compare_expr", compval);
		break;
	    }
	  }
    }

  return true;
}


/* 'Compare' two formal interfaces associated with a pair of symbols.
   We return true if there exists an actual argument list that
   would be ambiguous between the two interfaces, zero otherwise.
   'strict_flag' specifies whether all the characteristics are
   required to match, which is not the case for ambiguity checks.
   'p1' and 'p2' are the PASS arguments of both procedures (if applicable).  */

bool
gfc_compare_interfaces (gfc_symbol *s1, gfc_symbol *s2, const char *name2,
			int generic_flag, int strict_flag,
			char *errmsg, int err_len,
			const char *p1, const char *p2,
			bool *bad_result_characteristics)
{
  gfc_formal_arglist *f1, *f2;

  gcc_assert (name2 != NULL);

  if (bad_result_characteristics)
    *bad_result_characteristics = false;

  if (s1->attr.function && (s2->attr.subroutine
      || (!s2->attr.function && s2->ts.type == BT_UNKNOWN
	  && gfc_get_default_type (name2, s2->ns)->type == BT_UNKNOWN)))
    {
      if (errmsg != NULL)
	snprintf (errmsg, err_len, "'%s' is not a function", name2);
      return false;
    }

  if (s1->attr.subroutine && s2->attr.function)
    {
      if (errmsg != NULL)
	snprintf (errmsg, err_len, "'%s' is not a subroutine", name2);
      return false;
    }

  if (s2->attr.subroutine && s1->attr.flavor == FL_VARIABLE)
    {
      if (errmsg != NULL)
	snprintf (errmsg, err_len, "subroutine proc pointer '%s' passed "
		  "to dummy variable '%s'", name2, s1->name);
      return false;
    }

  /* Do strict checks on all characteristics
     (for dummy procedures and procedure pointer assignments).  */
  if (!generic_flag && strict_flag)
    {
      if (s1->attr.function && s2->attr.function)
	{
	  /* If both are functions, check result characteristics.  */
	  if (!gfc_check_result_characteristics (s1, s2, errmsg, err_len)
	      || !gfc_check_result_characteristics (s2, s1, errmsg, err_len))
	    {
	      if (bad_result_characteristics)
		*bad_result_characteristics = true;
	      return false;
	    }
	}

      if (s1->attr.pure && !s2->attr.pure)
	{
	  snprintf (errmsg, err_len, "Mismatch in PURE attribute");
	  return false;
	}
      if (s1->attr.elemental && !s2->attr.elemental)
	{
	  snprintf (errmsg, err_len, "Mismatch in ELEMENTAL attribute");
	  return false;
	}
    }

  if (s1->attr.if_source == IFSRC_UNKNOWN
      || s2->attr.if_source == IFSRC_UNKNOWN)
    return true;

  f1 = gfc_sym_get_dummy_args (s1);
  f2 = gfc_sym_get_dummy_args (s2);

  /* Special case: No arguments.  */
  if (f1 == NULL && f2 == NULL)
    return true;

  if (generic_flag)
    {
      if (count_types_test (f1, f2, p1, p2)
	  || count_types_test (f2, f1, p2, p1))
	return false;

      /* Special case: alternate returns.  If both f1->sym and f2->sym are
	 NULL, then the leading formal arguments are alternate returns.
	 The previous conditional should catch argument lists with
	 different number of argument.  */
      if (f1 && f1->sym == NULL && f2 && f2->sym == NULL)
	return true;

      if (generic_correspondence (f1, f2, p1, p2)
	  || generic_correspondence (f2, f1, p2, p1))
	return false;
    }
  else
    /* Perform the abbreviated correspondence test for operators (the
       arguments cannot be optional and are always ordered correctly).
       This is also done when comparing interfaces for dummy procedures and in
       procedure pointer assignments.  */

    for (; f1 || f2; f1 = f1->next, f2 = f2->next)
      {
	/* Check existence.  */
	if (f1 == NULL || f2 == NULL)
	  {
	    if (errmsg != NULL)
	      snprintf (errmsg, err_len, "'%s' has the wrong number of "
			"arguments", name2);
	    return false;
	  }

	if (strict_flag)
	  {
	    /* Check all characteristics.  */
	    if (!gfc_check_dummy_characteristics (f1->sym, f2->sym, true,
					      errmsg, err_len))
	      return false;
	  }
	else
	  {
	    /* Operators: Only check type and rank of arguments.  */
	    if (!compare_type (f2->sym, f1->sym))
	      {
		if (errmsg != NULL)
		  snprintf (errmsg, err_len, "Type mismatch in argument '%s' "
			    "(%s/%s)", f1->sym->name,
			    gfc_typename (&f1->sym->ts),
			    gfc_typename (&f2->sym->ts));
		return false;
	      }
	    if (!compare_rank (f2->sym, f1->sym))
	      {
		if (errmsg != NULL)
		  snprintf (errmsg, err_len, "Rank mismatch in argument "
			    "'%s' (%i/%i)", f1->sym->name,
			    symbol_rank (f1->sym), symbol_rank (f2->sym));
		return false;
	      }
	    if ((gfc_option.allow_std & GFC_STD_F2008)
		&& (compare_ptr_alloc(f1->sym, f2->sym)
		    || compare_ptr_alloc(f2->sym, f1->sym)))
	      {
    		if (errmsg != NULL)
		  snprintf (errmsg, err_len, "Mismatching POINTER/ALLOCATABLE "
			    "attribute in argument '%s' ", f1->sym->name);
		return false;
	      }
	  }
      }

  return true;
}


/* Given a pointer to an interface pointer, remove duplicate
   interfaces and make sure that all symbols are either functions
   or subroutines, and all of the same kind.  Returns true if
   something goes wrong.  */

static bool
check_interface0 (gfc_interface *p, const char *interface_name)
{
  gfc_interface *psave, *q, *qlast;

  psave = p;
  for (; p; p = p->next)
    {
      /* Make sure all symbols in the interface have been defined as
	 functions or subroutines.  */
      if (((!p->sym->attr.function && !p->sym->attr.subroutine)
	   || !p->sym->attr.if_source)
	  && !gfc_fl_struct (p->sym->attr.flavor))
	{
	  const char *guessed
	    = gfc_lookup_function_fuzzy (p->sym->name, p->sym->ns->sym_root);

	  if (p->sym->attr.external)
	    if (guessed)
	      gfc_error ("Procedure %qs in %s at %L has no explicit interface"
			 "; did you mean %qs?",
			 p->sym->name, interface_name, &p->sym->declared_at,
			 guessed);
	    else
	      gfc_error ("Procedure %qs in %s at %L has no explicit interface",
			 p->sym->name, interface_name, &p->sym->declared_at);
	  else
	    if (guessed)
	      gfc_error ("Procedure %qs in %s at %L is neither function nor "
			 "subroutine; did you mean %qs?", p->sym->name,
			interface_name, &p->sym->declared_at, guessed);
	    else
	      gfc_error ("Procedure %qs in %s at %L is neither function nor "
			 "subroutine", p->sym->name, interface_name,
			&p->sym->declared_at);
	  return true;
	}

      /* Verify that procedures are either all SUBROUTINEs or all FUNCTIONs.  */
      if ((psave->sym->attr.function && !p->sym->attr.function
	   && !gfc_fl_struct (p->sym->attr.flavor))
	  || (psave->sym->attr.subroutine && !p->sym->attr.subroutine))
	{
	  if (!gfc_fl_struct (p->sym->attr.flavor))
	    gfc_error ("In %s at %L procedures must be either all SUBROUTINEs"
		       " or all FUNCTIONs", interface_name,
		       &p->sym->declared_at);
	  else if (p->sym->attr.flavor == FL_DERIVED)
	    gfc_error ("In %s at %L procedures must be all FUNCTIONs as the "
		       "generic name is also the name of a derived type",
		       interface_name, &p->sym->declared_at);
	  return true;
	}

      /* F2003, C1207. F2008, C1207.  */
      if (p->sym->attr.proc == PROC_INTERNAL
	  && !gfc_notify_std (GFC_STD_F2008, "Internal procedure "
			      "%qs in %s at %L", p->sym->name,
			      interface_name, &p->sym->declared_at))
	return true;
    }
  p = psave;

  /* Remove duplicate interfaces in this interface list.  */
  for (; p; p = p->next)
    {
      qlast = p;

      for (q = p->next; q;)
	{
	  if (p->sym != q->sym)
	    {
	      qlast = q;
	      q = q->next;
	    }
	  else
	    {
	      /* Duplicate interface.  */
	      qlast->next = q->next;
	      free (q);
	      q = qlast->next;
	    }
	}
    }

  return false;
}


/* Check lists of interfaces to make sure that no two interfaces are
   ambiguous.  Duplicate interfaces (from the same symbol) are OK here.  */

static bool
check_interface1 (gfc_interface *p, gfc_interface *q0,
		  int generic_flag, const char *interface_name,
		  bool referenced)
{
  gfc_interface *q;
  for (; p; p = p->next)
    for (q = q0; q; q = q->next)
      {
	if (p->sym == q->sym)
	  continue;		/* Duplicates OK here.  */

	if (p->sym->name == q->sym->name && p->sym->module == q->sym->module)
	  continue;

	if (!gfc_fl_struct (p->sym->attr.flavor)
	    && !gfc_fl_struct (q->sym->attr.flavor)
	    && gfc_compare_interfaces (p->sym, q->sym, q->sym->name,
				       generic_flag, 0, NULL, 0, NULL, NULL))
	  {
	    if (referenced)
	      gfc_error ("Ambiguous interfaces in %s for %qs at %L "
			 "and %qs at %L", interface_name,
			 q->sym->name, &q->sym->declared_at,
			 p->sym->name, &p->sym->declared_at);
	    else if (!p->sym->attr.use_assoc && q->sym->attr.use_assoc)
	      gfc_warning (0, "Ambiguous interfaces in %s for %qs at %L "
			 "and %qs at %L", interface_name,
			 q->sym->name, &q->sym->declared_at,
			 p->sym->name, &p->sym->declared_at);
	    else
	      gfc_warning (0, "Although not referenced, %qs has ambiguous "
			   "interfaces at %L", interface_name, &p->where);
	    return true;
	  }
      }
  return false;
}


/* Check the generic and operator interfaces of symbols to make sure
   that none of the interfaces conflict.  The check has to be done
   after all of the symbols are actually loaded.  */

static void
check_sym_interfaces (gfc_symbol *sym)
{
  /* Provide sufficient space to hold "generic interface 'symbol.symbol'".  */
  char interface_name[2*GFC_MAX_SYMBOL_LEN+2 + sizeof("generic interface ''")];
  gfc_interface *p;

  if (sym->ns != gfc_current_ns)
    return;

  if (sym->generic != NULL)
    {
      size_t len = strlen (sym->name) + sizeof("generic interface ''");
      gcc_assert (len < sizeof (interface_name));
      sprintf (interface_name, "generic interface '%s'", sym->name);
      if (check_interface0 (sym->generic, interface_name))
	return;

      for (p = sym->generic; p; p = p->next)
	{
	  if (p->sym->attr.mod_proc
	      && !p->sym->attr.module_procedure
	      && (p->sym->attr.if_source != IFSRC_DECL
		  || p->sym->attr.procedure))
	    {
	      gfc_error ("%qs at %L is not a module procedure",
			 p->sym->name, &p->where);
	      return;
	    }
	}

      /* Originally, this test was applied to host interfaces too;
	 this is incorrect since host associated symbols, from any
	 source, cannot be ambiguous with local symbols.  */
      check_interface1 (sym->generic, sym->generic, 1, interface_name,
			sym->attr.referenced || !sym->attr.use_assoc);
    }
}


static void
check_uop_interfaces (gfc_user_op *uop)
{
  char interface_name[GFC_MAX_SYMBOL_LEN + sizeof("operator interface ''")];
  gfc_user_op *uop2;
  gfc_namespace *ns;

  sprintf (interface_name, "operator interface '%s'", uop->name);
  if (check_interface0 (uop->op, interface_name))
    return;

  for (ns = gfc_current_ns; ns; ns = ns->parent)
    {
      uop2 = gfc_find_uop (uop->name, ns);
      if (uop2 == NULL)
	continue;

      check_interface1 (uop->op, uop2->op, 0,
			interface_name, true);
    }
}

/* Given an intrinsic op, return an equivalent op if one exists,
   or INTRINSIC_NONE otherwise.  */

gfc_intrinsic_op
gfc_equivalent_op (gfc_intrinsic_op op)
{
  switch(op)
    {
    case INTRINSIC_EQ:
      return INTRINSIC_EQ_OS;

    case INTRINSIC_EQ_OS:
      return INTRINSIC_EQ;

    case INTRINSIC_NE:
      return INTRINSIC_NE_OS;

    case INTRINSIC_NE_OS:
      return INTRINSIC_NE;

    case INTRINSIC_GT:
      return INTRINSIC_GT_OS;

    case INTRINSIC_GT_OS:
      return INTRINSIC_GT;

    case INTRINSIC_GE:
      return INTRINSIC_GE_OS;

    case INTRINSIC_GE_OS:
      return INTRINSIC_GE;

    case INTRINSIC_LT:
      return INTRINSIC_LT_OS;

    case INTRINSIC_LT_OS:
      return INTRINSIC_LT;

    case INTRINSIC_LE:
      return INTRINSIC_LE_OS;

    case INTRINSIC_LE_OS:
      return INTRINSIC_LE;

    default:
      return INTRINSIC_NONE;
    }
}

/* For the namespace, check generic, user operator and intrinsic
   operator interfaces for consistency and to remove duplicate
   interfaces.  We traverse the whole namespace, counting on the fact
   that most symbols will not have generic or operator interfaces.  */

void
gfc_check_interfaces (gfc_namespace *ns)
{
  gfc_namespace *old_ns, *ns2;
  char interface_name[GFC_MAX_SYMBOL_LEN + sizeof("intrinsic '' operator")];
  int i;

  old_ns = gfc_current_ns;
  gfc_current_ns = ns;

  gfc_traverse_ns (ns, check_sym_interfaces);

  gfc_traverse_user_op (ns, check_uop_interfaces);

  for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
    {
      if (i == INTRINSIC_USER)
	continue;

      if (i == INTRINSIC_ASSIGN)
	strcpy (interface_name, "intrinsic assignment operator");
      else
	sprintf (interface_name, "intrinsic '%s' operator",
		 gfc_op2string ((gfc_intrinsic_op) i));

      if (check_interface0 (ns->op[i], interface_name))
	continue;

      if (ns->op[i])
	gfc_check_operator_interface (ns->op[i]->sym, (gfc_intrinsic_op) i,
				      ns->op[i]->where);

      for (ns2 = ns; ns2; ns2 = ns2->parent)
	{
	  gfc_intrinsic_op other_op;

	  if (check_interface1 (ns->op[i], ns2->op[i], 0,
				interface_name, true))
	    goto done;

	  /* i should be gfc_intrinsic_op, but has to be int with this cast
	     here for stupid C++ compatibility rules.  */
	  other_op = gfc_equivalent_op ((gfc_intrinsic_op) i);
	  if (other_op != INTRINSIC_NONE
	    &&  check_interface1 (ns->op[i], ns2->op[other_op],
				  0, interface_name, true))
	    goto done;
	}
    }

done:
  gfc_current_ns = old_ns;
}


/* Given a symbol of a formal argument list and an expression, if the
   formal argument is allocatable, check that the actual argument is
   allocatable. Returns true if compatible, zero if not compatible.  */

static bool
compare_allocatable (gfc_symbol *formal, gfc_expr *actual)
{
  if (formal->attr.allocatable
      || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)->attr.allocatable))
    {
      symbol_attribute attr = gfc_expr_attr (actual);
      if (actual->ts.type == BT_CLASS && !attr.class_ok)
	return true;
      else if (!attr.allocatable)
	return false;
    }

  return true;
}


/* Given a symbol of a formal argument list and an expression, if the
   formal argument is a pointer, see if the actual argument is a
   pointer. Returns nonzero if compatible, zero if not compatible.  */

static int
compare_pointer (gfc_symbol *formal, gfc_expr *actual)
{
  symbol_attribute attr;

  if (formal->attr.pointer
      || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)
	  && CLASS_DATA (formal)->attr.class_pointer))
    {
      attr = gfc_expr_attr (actual);

      /* Fortran 2008 allows non-pointer actual arguments.  */
      if (!attr.pointer && attr.target && formal->attr.intent == INTENT_IN)
	return 2;

      if (!attr.pointer)
	return 0;
    }

  return 1;
}


/* Emit clear error messages for rank mismatch.  */

static void
argument_rank_mismatch (const char *name, locus *where,
			int rank1, int rank2, locus *where_formal)
{

  /* TS 29113, C407b.  */
  if (where_formal == NULL)
    {
      if (rank2 == -1)
	gfc_error ("The assumed-rank array at %L requires that the dummy "
		   "argument %qs has assumed-rank", where, name);
      else if (rank1 == 0)
	gfc_error_opt (0, "Rank mismatch in argument %qs "
		       "at %L (scalar and rank-%d)", name, where, rank2);
      else if (rank2 == 0)
	gfc_error_opt (0, "Rank mismatch in argument %qs "
		       "at %L (rank-%d and scalar)", name, where, rank1);
      else
	gfc_error_opt (0, "Rank mismatch in argument %qs "
		       "at %L (rank-%d and rank-%d)", name, where, rank1,
		       rank2);
    }
  else
    {
      if (rank2 == -1)
	/* This is an assumed rank-actual passed to a function without
	   an explicit interface, which is already diagnosed in
	   gfc_procedure_use.  */
	return;
      if (rank1 == 0)
	gfc_error_opt (0, "Rank mismatch between actual argument at %L "
		       "and actual argument at %L (scalar and rank-%d)",
		       where, where_formal, rank2);
      else if (rank2 == 0)
	gfc_error_opt (0, "Rank mismatch between actual argument at %L "
		       "and actual argument at %L (rank-%d and scalar)",
		       where, where_formal, rank1);
      else
	gfc_error_opt (0, "Rank mismatch between actual argument at %L "
		       "and actual argument at %L (rank-%d and rank-%d)", where,
		       where_formal, rank1, rank2);
    }
}


/* Under certain conditions, a scalar actual argument can be passed
   to an array dummy argument - see F2018, 15.5.2.4, paragraph 14.
   This function returns true for these conditions so that an error
   or warning for this can be suppressed later.  Always return false
   for expressions with rank > 0.  */

bool
maybe_dummy_array_arg (gfc_expr *e)
{
  gfc_symbol *s;
  gfc_ref *ref;
  bool array_pointer = false;
  bool assumed_shape = false;
  bool scalar_ref = true;

  if (e->rank > 0)
    return false;

  if (e->ts.type == BT_CHARACTER && e->ts.kind == 1)
    return true;

  /* If this comes from a constructor, it has been an array element
     originally.  */

  if (e->expr_type == EXPR_CONSTANT)
    return e->from_constructor;

  if (e->expr_type != EXPR_VARIABLE)
    return false;

  s = e->symtree->n.sym;

  if (s->attr.dimension)
    {
      scalar_ref = false;
      array_pointer = s->attr.pointer;
    }

  if (s->as && s->as->type == AS_ASSUMED_SHAPE)
    assumed_shape = true;

  for (ref=e->ref; ref; ref=ref->next)
    {
      if (ref->type == REF_COMPONENT)
	{
	  symbol_attribute *attr;
	  attr = &ref->u.c.component->attr;
	  if (attr->dimension)
	    {
	      array_pointer = attr->pointer;
	      assumed_shape = false;
	      scalar_ref = false;
	    }
	  else
	    scalar_ref = true;
	}
    }

  return !(scalar_ref || array_pointer || assumed_shape);
}

/* Given a symbol of a formal argument list and an expression, see if
   the two are compatible as arguments.  Returns true if
   compatible, false if not compatible.  */

static bool
compare_parameter (gfc_symbol *formal, gfc_expr *actual,
		   int ranks_must_agree, int is_elemental, locus *where)
{
  gfc_ref *ref;
  bool rank_check, is_pointer;
  char err[200];
  gfc_component *ppc;
  bool codimension = false;
  gfc_array_spec *formal_as;

  /* If the formal arg has type BT_VOID, it's to one of the iso_c_binding
     procs c_f_pointer or c_f_procpointer, and we need to accept most
     pointers the user could give us.  This should allow that.  */
  if (formal->ts.type == BT_VOID)
    return true;

  if (formal->ts.type == BT_DERIVED
      && formal->ts.u.derived && formal->ts.u.derived->ts.is_iso_c
      && actual->ts.type == BT_DERIVED
      && actual->ts.u.derived && actual->ts.u.derived->ts.is_iso_c)
    {
      if (formal->ts.u.derived->intmod_sym_id
	  != actual->ts.u.derived->intmod_sym_id)
	return false;

      if (ranks_must_agree
	  && symbol_rank (formal) != actual->rank
	  && symbol_rank (formal) != -1)
	{
	  if (where)
	    argument_rank_mismatch (formal->name, &actual->where,
				    symbol_rank (formal), actual->rank,
				    NULL);
	  return false;
	}
      return true;
    }

  if (formal->ts.type == BT_CLASS && actual->ts.type == BT_DERIVED)
    /* Make sure the vtab symbol is present when
       the module variables are generated.  */
    gfc_find_derived_vtab (actual->ts.u.derived);

  if (actual->ts.type == BT_PROCEDURE)
    {
      gfc_symbol *act_sym = actual->symtree->n.sym;

      if (formal->attr.flavor != FL_PROCEDURE && !act_sym->ts.interface)
	{
	  if (where)
	    gfc_error ("Invalid procedure argument at %L", &actual->where);
	  return false;
	}
      else if (act_sym->ts.interface
	       && !gfc_compare_interfaces (formal, act_sym->ts.interface,
					   act_sym->name, 0, 1, err,
					   sizeof(err),NULL, NULL))
	{
	  if (where)
	    gfc_error_opt (0, "Interface mismatch in dummy procedure %qs at %L:"
			   " %s", formal->name, &actual->where, err);
	  return false;
	}

      if (!gfc_compare_interfaces (formal, act_sym, act_sym->name, 0, 1, err,
				   sizeof(err), NULL, NULL))
	{
	  if (where)
	    gfc_error_opt (0, "Interface mismatch in dummy procedure %qs at %L:"
			   " %s", formal->name, &actual->where, err);
	  return false;
	}

      if (formal->attr.function && !act_sym->attr.function)
	{
	  gfc_add_function (&act_sym->attr, act_sym->name,
	  &act_sym->declared_at);
	  if (act_sym->ts.type == BT_UNKNOWN
	      && !gfc_set_default_type (act_sym, 1, act_sym->ns))
	    return false;
	}
      else if (formal->attr.subroutine && !act_sym->attr.subroutine)
	gfc_add_subroutine (&act_sym->attr, act_sym->name,
			    &act_sym->declared_at);

      return true;
    }

  ppc = gfc_get_proc_ptr_comp (actual);
  if (ppc && ppc->ts.interface)
    {
      if (!gfc_compare_interfaces (formal, ppc->ts.interface, ppc->name, 0, 1,
				   err, sizeof(err), NULL, NULL))
	{
	  if (where)
	    gfc_error_opt (0, "Interface mismatch in dummy procedure %qs at %L:"
			   " %s", formal->name, &actual->where, err);
	  return false;
	}
    }

  /* F2008, C1241.  */
  if (formal->attr.pointer && formal->attr.contiguous
      && !gfc_is_simply_contiguous (actual, true, false))
    {
      if (where)
	gfc_error ("Actual argument to contiguous pointer dummy %qs at %L "
		   "must be simply contiguous", formal->name, &actual->where);
      return false;
    }

  symbol_attribute actual_attr = gfc_expr_attr (actual);
  if (actual->ts.type == BT_CLASS && !actual_attr.class_ok)
    return true;

  if ((actual->expr_type != EXPR_NULL || actual->ts.type != BT_UNKNOWN)
      && actual->ts.type != BT_HOLLERITH
      && formal->ts.type != BT_ASSUMED
      && !(formal->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
      && !gfc_compare_types (&formal->ts, &actual->ts)
      && !(formal->ts.type == BT_DERIVED && actual->ts.type == BT_CLASS
	   && gfc_compare_derived_types (formal->ts.u.derived,
					 CLASS_DATA (actual)->ts.u.derived)))
    {
      if (where)
	{
	  if (formal->attr.artificial)
	    {
	      if (!flag_allow_argument_mismatch || !formal->error)
		gfc_error_opt (0, "Type mismatch between actual argument at %L "
			       "and actual argument at %L (%s/%s).",
			       &actual->where,
			       &formal->declared_at,
			       gfc_typename (actual),
			       gfc_dummy_typename (&formal->ts));

	      formal->error = 1;
	    }
	  else
	    gfc_error_opt (0, "Type mismatch in argument %qs at %L; passed %s "
			   "to %s", formal->name, where, gfc_typename (actual),
			   gfc_dummy_typename (&formal->ts));
	}
      return false;
    }

  if (actual->ts.type == BT_ASSUMED && formal->ts.type != BT_ASSUMED)
    {
      if (where)
	gfc_error ("Assumed-type actual argument at %L requires that dummy "
		   "argument %qs is of assumed type", &actual->where,
		   formal->name);
      return false;
    }

  /* TS29113 C407c; F2018 C711.  */
  if (actual->ts.type == BT_ASSUMED
      && symbol_rank (formal) == -1
      && actual->rank != -1
      && !(actual->symtree->n.sym->as
	   && actual->symtree->n.sym->as->type == AS_ASSUMED_SHAPE))
    {
      if (where)
	gfc_error ("Assumed-type actual argument at %L corresponding to "
		   "assumed-rank dummy argument %qs must be "
		   "assumed-shape or assumed-rank",
		   &actual->where, formal->name);
      return false;
    }

  /* F2008, 12.5.2.5; IR F08/0073.  */
  if (formal->ts.type == BT_CLASS && formal->attr.class_ok
      && actual->expr_type != EXPR_NULL
      && ((CLASS_DATA (formal)->attr.class_pointer
	   && formal->attr.intent != INTENT_IN)
          || CLASS_DATA (formal)->attr.allocatable))
    {
      if (actual->ts.type != BT_CLASS)
	{
	  if (where)
	    gfc_error ("Actual argument to %qs at %L must be polymorphic",
			formal->name, &actual->where);
	  return false;
	}

      if ((!UNLIMITED_POLY (formal) || !UNLIMITED_POLY(actual))
	  && !gfc_compare_derived_types (CLASS_DATA (actual)->ts.u.derived,
					 CLASS_DATA (formal)->ts.u.derived))
	{
	  if (where)
	    gfc_error ("Actual argument to %qs at %L must have the same "
		       "declared type", formal->name, &actual->where);
	  return false;
	}
    }

  /* F08: 12.5.2.5 Allocatable and pointer dummy variables.  However, this
     is necessary also for F03, so retain error for both.
     NOTE: Other type/kind errors pre-empt this error.  Since they are F03
     compatible, no attempt has been made to channel to this one.  */
  if (UNLIMITED_POLY (formal) && !UNLIMITED_POLY (actual)
      && (CLASS_DATA (formal)->attr.allocatable
	  ||CLASS_DATA (formal)->attr.class_pointer))
    {
      if (where)
	gfc_error ("Actual argument to %qs at %L must be unlimited "
		   "polymorphic since the formal argument is a "
		   "pointer or allocatable unlimited polymorphic "
		   "entity [F2008: 12.5.2.5]", formal->name,
		   &actual->where);
      return false;
    }

  if (formal->ts.type == BT_CLASS && formal->attr.class_ok)
    codimension = CLASS_DATA (formal)->attr.codimension;
  else
    codimension = formal->attr.codimension;

  if (codimension && !gfc_is_coarray (actual))
    {
      if (where)
	gfc_error ("Actual argument to %qs at %L must be a coarray",
		       formal->name, &actual->where);
      return false;
    }

  formal_as = (formal->ts.type == BT_CLASS
	       ? CLASS_DATA (formal)->as : formal->as);

  if (codimension && formal->attr.allocatable)
    {
      gfc_ref *last = NULL;

      for (ref = actual->ref; ref; ref = ref->next)
	if (ref->type == REF_COMPONENT)
	  last = ref;

      /* F2008, 12.5.2.6.  */
      if ((last && last->u.c.component->as->corank != formal->as->corank)
	  || (!last
	      && actual->symtree->n.sym->as->corank != formal->as->corank))
	{
	  if (where)
	    gfc_error ("Corank mismatch in argument %qs at %L (%d and %d)",
		   formal->name, &actual->where, formal->as->corank,
		   last ? last->u.c.component->as->corank
			: actual->symtree->n.sym->as->corank);
	  return false;
	}
    }

  if (codimension)
    {
      /* F2008, 12.5.2.8 + Corrig 2 (IR F08/0048).  */
      /* F2018, 12.5.2.8.  */
      if (formal->attr.dimension
	  && (formal->attr.contiguous || formal->as->type != AS_ASSUMED_SHAPE)
	  && actual_attr.dimension
	  && !gfc_is_simply_contiguous (actual, true, true))
	{
	  if (where)
	    gfc_error ("Actual argument to %qs at %L must be simply "
		       "contiguous or an element of such an array",
		       formal->name, &actual->where);
	  return false;
	}

      /* F2008, C1303 and C1304.  */
      if (formal->attr.intent != INTENT_INOUT
	  && (((formal->ts.type == BT_DERIVED || formal->ts.type == BT_CLASS)
	       && formal->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
	       && formal->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
	      || formal->attr.lock_comp))

    	{
	  if (where)
	    gfc_error ("Actual argument to non-INTENT(INOUT) dummy %qs at %L, "
		       "which is LOCK_TYPE or has a LOCK_TYPE component",
		       formal->name, &actual->where);
	  return false;
	}

      /* TS18508, C702/C703.  */
      if (formal->attr.intent != INTENT_INOUT
	  && (((formal->ts.type == BT_DERIVED || formal->ts.type == BT_CLASS)
	       && formal->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
	       && formal->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
	      || formal->attr.event_comp))

    	{
	  if (where)
	    gfc_error ("Actual argument to non-INTENT(INOUT) dummy %qs at %L, "
		       "which is EVENT_TYPE or has a EVENT_TYPE component",
		       formal->name, &actual->where);
	  return false;
	}
    }

  /* F2008, C1239/C1240.  */
  if (actual->expr_type == EXPR_VARIABLE
      && (actual->symtree->n.sym->attr.asynchronous
         || actual->symtree->n.sym->attr.volatile_)
      &&  (formal->attr.asynchronous || formal->attr.volatile_)
      && actual->rank && formal->as
      && !gfc_is_simply_contiguous (actual, true, false)
      && ((formal->as->type != AS_ASSUMED_SHAPE
	   && formal->as->type != AS_ASSUMED_RANK && !formal->attr.pointer)
	  || formal->attr.contiguous))
    {
      if (where)
	gfc_error ("Dummy argument %qs has to be a pointer, assumed-shape or "
		   "assumed-rank array without CONTIGUOUS attribute - as actual"
		   " argument at %L is not simply contiguous and both are "
		   "ASYNCHRONOUS or VOLATILE", formal->name, &actual->where);
      return false;
    }

  if (formal->attr.allocatable && !codimension
      && actual_attr.codimension)
    {
      if (formal->attr.intent == INTENT_OUT)
	{
	  if (where)
	    gfc_error ("Passing coarray at %L to allocatable, noncoarray, "
		       "INTENT(OUT) dummy argument %qs", &actual->where,
		       formal->name);
	  return false;
	}
      else if (warn_surprising && where && formal->attr.intent != INTENT_IN)
	gfc_warning (OPT_Wsurprising,
		     "Passing coarray at %L to allocatable, noncoarray dummy "
		     "argument %qs, which is invalid if the allocation status"
		     " is modified",  &actual->where, formal->name);
    }

  /* If the rank is the same or the formal argument has assumed-rank.  */
  if (symbol_rank (formal) == actual->rank || symbol_rank (formal) == -1)
    return true;

  rank_check = where != NULL && !is_elemental && formal_as
    && (formal_as->type == AS_ASSUMED_SHAPE
	|| formal_as->type == AS_DEFERRED)
    && actual->expr_type != EXPR_NULL;

  /* Skip rank checks for NO_ARG_CHECK.  */
  if (formal->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
    return true;

  /* Scalar & coindexed, see: F2008, Section 12.5.2.4.  */
  if (rank_check || ranks_must_agree
      || (formal->attr.pointer && actual->expr_type != EXPR_NULL)
      || (actual->rank != 0
	  && !(is_elemental || formal->attr.dimension
	       || (formal->ts.type == BT_CLASS
		   && CLASS_DATA (formal)->attr.dimension)))
      || (actual->rank == 0
	  && ((formal->ts.type == BT_CLASS
	       && CLASS_DATA (formal)->as->type == AS_ASSUMED_SHAPE)
	      || (formal->ts.type != BT_CLASS
		   && formal->as->type == AS_ASSUMED_SHAPE))
	  && actual->expr_type != EXPR_NULL)
      || (actual->rank == 0
	  && (formal->attr.dimension
	      || (formal->ts.type == BT_CLASS
		  && CLASS_DATA (formal)->attr.dimension))
	  && gfc_is_coindexed (actual))
      /* Assumed-rank actual argument; F2018 C838.  */
      || actual->rank == -1)
    {
      if (where
	  && (!formal->attr.artificial || (!formal->maybe_array
					   && !maybe_dummy_array_arg (actual))))
	{
	  locus *where_formal;
	  if (formal->attr.artificial)
	    where_formal = &formal->declared_at;
	  else
	    where_formal = NULL;

	  argument_rank_mismatch (formal->name, &actual->where,
				  symbol_rank (formal), actual->rank,
				  where_formal);
	}
      return false;
    }
  else if (actual->rank != 0
	   && (is_elemental || formal->attr.dimension
	       || (formal->ts.type == BT_CLASS
		   && CLASS_DATA (formal)->attr.dimension)))
    return true;

  /* At this point, we are considering a scalar passed to an array.   This
     is valid (cf. F95 12.4.1.1, F2003 12.4.1.2, and F2008 12.5.2.4),
     - if the actual argument is (a substring of) an element of a
       non-assumed-shape/non-pointer/non-polymorphic array; or
     - (F2003) if the actual argument is of type character of default/c_char
       kind.
     - (F2018) if the dummy argument is type(*).  */

  is_pointer = actual->expr_type == EXPR_VARIABLE
	       ? actual->symtree->n.sym->attr.pointer : false;

  for (ref = actual->ref; ref; ref = ref->next)
    {
      if (ref->type == REF_COMPONENT)
	is_pointer = ref->u.c.component->attr.pointer;
      else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
	       && ref->u.ar.dimen > 0
	       && (!ref->next
		   || (ref->next->type == REF_SUBSTRING && !ref->next->next)))
        break;
    }

  if (actual->ts.type == BT_CLASS && actual->expr_type != EXPR_NULL)
    {
      if (where)
	gfc_error ("Polymorphic scalar passed to array dummy argument %qs "
		   "at %L", formal->name, &actual->where);
      return false;
    }

  if (actual->expr_type != EXPR_NULL && ref && actual->ts.type != BT_CHARACTER
      && (is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE))
    {
      if (where)
	{
	  if (formal->attr.artificial)
	    gfc_error ("Element of assumed-shape or pointer array "
		       "as actual argument at %L cannot correspond to "
		       "actual argument at %L",
		       &actual->where, &formal->declared_at);
	  else
	    gfc_error ("Element of assumed-shape or pointer "
		       "array passed to array dummy argument %qs at %L",
		       formal->name, &actual->where);
	}
      return false;
    }

  if (actual->ts.type == BT_CHARACTER && actual->expr_type != EXPR_NULL
      && (!ref || is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE))
    {
      if (formal->ts.kind != 1 && (gfc_option.allow_std & GFC_STD_GNU) == 0)
	{
	  if (where)
	    gfc_error ("Extension: Scalar non-default-kind, non-C_CHAR-kind "
		       "CHARACTER actual argument with array dummy argument "
		       "%qs at %L", formal->name, &actual->where);
	  return false;
	}

      if (where && (gfc_option.allow_std & GFC_STD_F2003) == 0)
	{
	  gfc_error ("Fortran 2003: Scalar CHARACTER actual argument with "
		     "array dummy argument %qs at %L",
		     formal->name, &actual->where);
	  return false;
	}
      else
	return ((gfc_option.allow_std & GFC_STD_F2003) != 0);
    }

  if (ref == NULL && actual->expr_type != EXPR_NULL)
    {
      if (actual->rank == 0
	  && formal->ts.type == BT_ASSUMED
	  && formal->as
	  && formal->as->type == AS_ASSUMED_SIZE)
	/* This is new in F2018, type(*) is new in TS29113, but gfortran does
	   not differentiate.  Thus, if type(*) exists, it is valid;
	   otherwise, type(*) is already rejected.  */
	return true;
      if (where
	  && (!formal->attr.artificial || (!formal->maybe_array
					   && !maybe_dummy_array_arg (actual))))
	{
	  locus *where_formal;
	  if (formal->attr.artificial)
	    where_formal = &formal->declared_at;
	  else
	    where_formal = NULL;

	  argument_rank_mismatch (formal->name, &actual->where,
				  symbol_rank (formal), actual->rank,
				  where_formal);
	}
      return false;
    }

  return true;
}


/* Returns the storage size of a symbol (formal argument) or
   zero if it cannot be determined.  */

static unsigned long
get_sym_storage_size (gfc_symbol *sym)
{
  int i;
  unsigned long strlen, elements;

  if (sym->ts.type == BT_CHARACTER)
    {
      if (sym->ts.u.cl && sym->ts.u.cl->length
	  && sym->ts.u.cl->length->expr_type == EXPR_CONSTANT
	  && sym->ts.u.cl->length->ts.type == BT_INTEGER)
	strlen = mpz_get_ui (sym->ts.u.cl->length->value.integer);
      else
	return 0;
    }
  else
    strlen = 1;

  if (symbol_rank (sym) == 0)
    return strlen;

  elements = 1;
  if (sym->as->type != AS_EXPLICIT)
    return 0;
  for (i = 0; i < sym->as->rank; i++)
    {
      if (sym->as->upper[i]->expr_type != EXPR_CONSTANT
	  || sym->as->lower[i]->expr_type != EXPR_CONSTANT
	  || sym->as->upper[i]->ts.type != BT_INTEGER
	  || sym->as->lower[i]->ts.type != BT_INTEGER)
	return 0;

      elements *= mpz_get_si (sym->as->upper[i]->value.integer)
		  - mpz_get_si (sym->as->lower[i]->value.integer) + 1L;
    }

  return strlen*elements;
}


/* Returns the storage size of an expression (actual argument) or
   zero if it cannot be determined. For an array element, it returns
   the remaining size as the element sequence consists of all storage
   units of the actual argument up to the end of the array.  */

static unsigned long
get_expr_storage_size (gfc_expr *e)
{
  int i;
  long int strlen, elements;
  long int substrlen = 0;
  bool is_str_storage = false;
  gfc_ref *ref;

  if (e == NULL)
    return 0;

  if (e->ts.type == BT_CHARACTER)
    {
      if (e->ts.u.cl && e->ts.u.cl->length
	  && e->ts.u.cl->length->expr_type == EXPR_CONSTANT
	  && e->ts.u.cl->length->ts.type == BT_INTEGER)
	strlen = mpz_get_si (e->ts.u.cl->length->value.integer);
      else if (e->expr_type == EXPR_CONSTANT
	       && (e->ts.u.cl == NULL || e->ts.u.cl->length == NULL))
	strlen = e->value.character.length;
      else
	return 0;
    }
  else
    strlen = 1; /* Length per element.  */

  if (e->rank == 0 && !e->ref)
    return strlen;

  elements = 1;
  if (!e->ref)
    {
      if (!e->shape)
	return 0;
      for (i = 0; i < e->rank; i++)
	elements *= mpz_get_si (e->shape[i]);
      return elements*strlen;
    }

  for (ref = e->ref; ref; ref = ref->next)
    {
      if (ref->type == REF_SUBSTRING && ref->u.ss.start
	  && ref->u.ss.start->expr_type == EXPR_CONSTANT)
	{
	  if (is_str_storage)
	    {
	      /* The string length is the substring length.
		 Set now to full string length.  */
	      if (!ref->u.ss.length || !ref->u.ss.length->length
		  || ref->u.ss.length->length->expr_type != EXPR_CONSTANT)
		return 0;

	      strlen = mpz_get_ui (ref->u.ss.length->length->value.integer);
	    }
	  substrlen = strlen - mpz_get_ui (ref->u.ss.start->value.integer) + 1;
	  continue;
	}

      if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
	for (i = 0; i < ref->u.ar.dimen; i++)
	  {
	    long int start, end, stride;
	    stride = 1;

	    if (ref->u.ar.stride[i])
	      {
		if (ref->u.ar.stride[i]->expr_type == EXPR_CONSTANT
		    && ref->u.ar.stride[i]->ts.type == BT_INTEGER)
		  stride = mpz_get_si (ref->u.ar.stride[i]->value.integer);
		else
		  return 0;
	      }

	    if (ref->u.ar.start[i])
	      {
		if (ref->u.ar.start[i]->expr_type == EXPR_CONSTANT
		    && ref->u.ar.start[i]->ts.type == BT_INTEGER)
		  start = mpz_get_si (ref->u.ar.start[i]->value.integer);
		else
		  return 0;
	      }
	    else if (ref->u.ar.as->lower[i]
		     && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT
		     && ref->u.ar.as->lower[i]->ts.type == BT_INTEGER)
	      start = mpz_get_si (ref->u.ar.as->lower[i]->value.integer);
	    else
	      return 0;

	    if (ref->u.ar.end[i])
	      {
		if (ref->u.ar.end[i]->expr_type == EXPR_CONSTANT
		    && ref->u.ar.end[i]->ts.type == BT_INTEGER)
		  end = mpz_get_si (ref->u.ar.end[i]->value.integer);
		else
		  return 0;
	      }
	    else if (ref->u.ar.as->upper[i]
		     && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT
		     && ref->u.ar.as->upper[i]->ts.type == BT_INTEGER)
	      end = mpz_get_si (ref->u.ar.as->upper[i]->value.integer);
	    else
	      return 0;

	    elements *= (end - start)/stride + 1L;
	  }
      else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_FULL)
	for (i = 0; i < ref->u.ar.as->rank; i++)
	  {
	    if (ref->u.ar.as->lower[i] && ref->u.ar.as->upper[i]
		&& ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT
		&& ref->u.ar.as->lower[i]->ts.type == BT_INTEGER
		&& ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT
		&& ref->u.ar.as->upper[i]->ts.type == BT_INTEGER)
	      elements *= mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
			  - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
			  + 1L;
	    else
	      return 0;
	  }
      else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
	       && e->expr_type == EXPR_VARIABLE)
	{
	  if (ref->u.ar.as->type == AS_ASSUMED_SHAPE
	      || e->symtree->n.sym->attr.pointer)
	    {
	      elements = 1;
	      continue;
	    }

	  /* Determine the number of remaining elements in the element
	     sequence for array element designators.  */
	  is_str_storage = true;
	  for (i = ref->u.ar.dimen - 1; i >= 0; i--)
	    {
	      if (ref->u.ar.start[i] == NULL
		  || ref->u.ar.start[i]->expr_type != EXPR_CONSTANT
		  || ref->u.ar.as->upper[i] == NULL
		  || ref->u.ar.as->lower[i] == NULL
		  || ref->u.ar.as->upper[i]->expr_type != EXPR_CONSTANT
		  || ref->u.ar.as->lower[i]->expr_type != EXPR_CONSTANT
		  || ref->u.ar.as->upper[i]->ts.type != BT_INTEGER
		  || ref->u.ar.as->lower[i]->ts.type != BT_INTEGER)
		return 0;

	      elements
		   = elements
		     * (mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
			- mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
			+ 1L)
		     - (mpz_get_si (ref->u.ar.start[i]->value.integer)
			- mpz_get_si (ref->u.ar.as->lower[i]->value.integer));
	    }
        }
      else if (ref->type == REF_COMPONENT && ref->u.c.component->attr.function
	       && ref->u.c.component->attr.proc_pointer
	       && ref->u.c.component->attr.dimension)
	{
	  /* Array-valued procedure-pointer components.  */
	  gfc_array_spec *as = ref->u.c.component->as;
	  for (i = 0; i < as->rank; i++)
	    {
	      if (!as->upper[i] || !as->lower[i]
		  || as->upper[i]->expr_type != EXPR_CONSTANT
		  || as->lower[i]->expr_type != EXPR_CONSTANT
		  || as->upper[i]->ts.type != BT_INTEGER
		  || as->lower[i]->ts.type != BT_INTEGER)
		return 0;

	      elements = elements
			 * (mpz_get_si (as->upper[i]->value.integer)
			    - mpz_get_si (as->lower[i]->value.integer) + 1L);
	    }
	}
    }

  if (substrlen)
    return (is_str_storage) ? substrlen + (elements-1)*strlen
			    : elements*strlen;
  else
    return elements*strlen;
}


/* Given an expression, check whether it is an array section
   which has a vector subscript.  */

bool
gfc_has_vector_subscript (gfc_expr *e)
{
  int i;
  gfc_ref *ref;

  if (e == NULL || e->rank == 0 || e->expr_type != EXPR_VARIABLE)
    return false;

  for (ref = e->ref; ref; ref = ref->next)
    if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
      for (i = 0; i < ref->u.ar.dimen; i++)
	if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
	  return true;

  return false;
}


static bool
is_procptr_result (gfc_expr *expr)
{
  gfc_component *c = gfc_get_proc_ptr_comp (expr);
  if (c)
    return (c->ts.interface && (c->ts.interface->attr.proc_pointer == 1));
  else
    return ((expr->symtree->n.sym->result != expr->symtree->n.sym)
	    && (expr->symtree->n.sym->result->attr.proc_pointer == 1));
}


/* Recursively append candidate argument ARG to CANDIDATES.  Store the
   number of total candidates in CANDIDATES_LEN.  */

static void
lookup_arg_fuzzy_find_candidates (gfc_formal_arglist *arg,
				  char **&candidates,
				  size_t &candidates_len)
{
  for (gfc_formal_arglist *p = arg; p && p->sym; p = p->next)
    vec_push (candidates, candidates_len, p->sym->name);
}


/* Lookup argument ARG fuzzily, taking names in ARGUMENTS into account.  */

static const char*
lookup_arg_fuzzy (const char *arg, gfc_formal_arglist *arguments)
{
  char **candidates = NULL;
  size_t candidates_len = 0;
  lookup_arg_fuzzy_find_candidates (arguments, candidates, candidates_len);
  return gfc_closest_fuzzy_match (arg, candidates);
}


static gfc_dummy_arg *
get_nonintrinsic_dummy_arg (gfc_formal_arglist *formal)
{
  gfc_dummy_arg * const dummy_arg = gfc_get_dummy_arg ();

  dummy_arg->intrinsicness = GFC_NON_INTRINSIC_DUMMY_ARG;
  dummy_arg->u.non_intrinsic = formal;

  return dummy_arg;
}


/* Given formal and actual argument lists, see if they are compatible.
   If they are compatible, the actual argument list is sorted to
   correspond with the formal list, and elements for missing optional
   arguments are inserted. If WHERE pointer is nonnull, then we issue
   errors when things don't match instead of just returning the status
   code.  */

bool
gfc_compare_actual_formal (gfc_actual_arglist **ap, gfc_formal_arglist *formal,
			   int ranks_must_agree, int is_elemental,
			   bool in_statement_function, locus *where)
{
  gfc_actual_arglist **new_arg, *a, *actual;
  gfc_formal_arglist *f;
  int i, n, na;
  unsigned long actual_size, formal_size;
  bool full_array = false;
  gfc_array_ref *actual_arr_ref;
  gfc_array_spec *fas, *aas;
  bool pointer_dummy, pointer_arg, allocatable_arg;

  bool ok = true;

  actual = *ap;

  if (actual == NULL && formal == NULL)
    return true;

  n = 0;
  for (f = formal; f; f = f->next)
    n++;

  new_arg = XALLOCAVEC (gfc_actual_arglist *, n);

  for (i = 0; i < n; i++)
    new_arg[i] = NULL;

  na = 0;
  f = formal;
  i = 0;

  for (a = actual; a; a = a->next, f = f->next)
    {
      if (a->name != NULL && in_statement_function)
	{
	  gfc_error ("Keyword argument %qs at %L is invalid in "
		     "a statement function", a->name, &a->expr->where);
	  return false;
	}

      /* Look for keywords but ignore g77 extensions like %VAL.  */
      if (a->name != NULL && a->name[0] != '%')
	{
	  i = 0;
	  for (f = formal; f; f = f->next, i++)
	    {
	      if (f->sym == NULL)
		continue;
	      if (strcmp (f->sym->name, a->name) == 0)
		break;
	    }

	  if (f == NULL)
	    {
	      if (where)
		{
		  const char *guessed = lookup_arg_fuzzy (a->name, formal);
		  if (guessed)
		    gfc_error ("Keyword argument %qs at %L is not in "
			       "the procedure; did you mean %qs?",
			       a->name, &a->expr->where, guessed);
		  else
		    gfc_error ("Keyword argument %qs at %L is not in "
			       "the procedure", a->name, &a->expr->where);
		}
	      return false;
	    }

	  if (new_arg[i] != NULL)
	    {
	      if (where)
		gfc_error ("Keyword argument %qs at %L is already associated "
			   "with another actual argument", a->name,
			   &a->expr->where);
	      return false;
	    }
	}

      if (f == NULL)
	{
	  if (where)
	    gfc_error ("More actual than formal arguments in procedure "
		       "call at %L", where);
	  return false;
	}

      if (f->sym == NULL && a->expr == NULL)
	goto match;

      if (f->sym == NULL)
	{
	  /* These errors have to be issued, otherwise an ICE can occur.
	     See PR 78865.  */
	  if (where)
	    gfc_error_now ("Missing alternate return specifier in subroutine "
			   "call at %L", where);
	  return false;
	}
      else
	a->associated_dummy = get_nonintrinsic_dummy_arg (f);

      if (a->expr == NULL)
	{
	  if (f->sym->attr.optional)
	    continue;
	  else
	    {
	      if (where)
		gfc_error_now ("Unexpected alternate return specifier in "
			       "subroutine call at %L", where);
	      return false;
	    }
	}

      /* Make sure that intrinsic vtables exist for calls to unlimited
	 polymorphic formal arguments.  */
      if (UNLIMITED_POLY (f->sym)
	  && a->expr->ts.type != BT_DERIVED
	  && a->expr->ts.type != BT_CLASS
	  && a->expr->ts.type != BT_ASSUMED)
	gfc_find_vtab (&a->expr->ts);

      /* Interp J3/22-146:
	 "If the context of the reference to NULL is an <actual argument>
	 corresponding to an <assumed-rank> dummy argument, MOLD shall be
	 present."  */
      if (a->expr->expr_type == EXPR_NULL
	  && a->expr->ts.type == BT_UNKNOWN
	  && f->sym->as
	  && f->sym->as->type == AS_ASSUMED_RANK)
	{
	  gfc_error ("Intrinsic %<NULL()%> without %<MOLD%> argument at %L "
		     "passed to assumed-rank dummy %qs",
		     &a->expr->where, f->sym->name);
	  ok = false;
	  goto match;
	}

      if (warn_surprising
	  && a->expr->expr_type == EXPR_VARIABLE
	  && a->expr->symtree->n.sym->as
	  && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SIZE
	  && f->sym->as
	  && f->sym->as->type == AS_ASSUMED_RANK)
	gfc_warning (0, "The assumed-size dummy %qs is being passed at %L to "
		     "an assumed-rank dummy %qs", a->expr->symtree->name,
		     &a->expr->where, f->sym->name);

      if (a->expr->expr_type == EXPR_NULL
	  && a->expr->ts.type == BT_UNKNOWN
	  && f->sym->ts.type == BT_CHARACTER
	  && !f->sym->ts.deferred
	  && f->sym->ts.u.cl
	  && f->sym->ts.u.cl->length == NULL)
	{
	  gfc_error ("Intrinsic %<NULL()%> without %<MOLD%> argument at %L "
		     "passed to assumed-length dummy %qs",
		     &a->expr->where, f->sym->name);
	  ok = false;
	  goto match;
	}

      if (a->expr->expr_type == EXPR_NULL
	  && ((f->sym->ts.type != BT_CLASS && !f->sym->attr.pointer
	       && (f->sym->attr.allocatable || !f->sym->attr.optional
		   || (gfc_option.allow_std & GFC_STD_F2008) == 0))
	      || (f->sym->ts.type == BT_CLASS
		  && !CLASS_DATA (f->sym)->attr.class_pointer
		  && (CLASS_DATA (f->sym)->attr.allocatable
		      || !f->sym->attr.optional
		      || (gfc_option.allow_std & GFC_STD_F2008) == 0))))
	{
	  if (where
	      && (!f->sym->attr.optional
		  || (f->sym->ts.type != BT_CLASS && f->sym->attr.allocatable)
		  || (f->sym->ts.type == BT_CLASS
			 && CLASS_DATA (f->sym)->attr.allocatable)))
	    gfc_error ("Unexpected NULL() intrinsic at %L to dummy %qs",
		       where, f->sym->name);
	  else if (where)
	    gfc_error ("Fortran 2008: Null pointer at %L to non-pointer "
		       "dummy %qs", where, f->sym->name);
	  ok = false;
	  goto match;
	}

      if (!compare_parameter (f->sym, a->expr, ranks_must_agree,
			      is_elemental, where))
	{
	  ok = false;
	  goto match;
	}

      /* TS 29113, 6.3p2; F2018 15.5.2.4.  */
      if (f->sym->ts.type == BT_ASSUMED
	  && (a->expr->ts.type == BT_DERIVED
	      || (a->expr->ts.type == BT_CLASS && CLASS_DATA (a->expr))))
	{
	  gfc_symbol *derived = (a->expr->ts.type == BT_DERIVED
				 ? a->expr->ts.u.derived
				 : CLASS_DATA (a->expr)->ts.u.derived);
	  gfc_namespace *f2k_derived = derived->f2k_derived;
	  if (derived->attr.pdt_type
	      || (f2k_derived
		  && (f2k_derived->finalizers || f2k_derived->tb_sym_root)))
	    {
	      gfc_error ("Actual argument at %L to assumed-type dummy "
			 "has type parameters or is of "
			 "derived type with type-bound or FINAL procedures",
			 &a->expr->where);
	      ok = false;
	      goto match;
	    }
	}

      if (UNLIMITED_POLY (a->expr)
	  && !(f->sym->ts.type == BT_ASSUMED || UNLIMITED_POLY (f->sym)))
	{
	  gfc_error ("Unlimited polymorphic actual argument at %L is not "
		     "matched with either an unlimited polymorphic or "
		     "assumed type dummy argument", &a->expr->where);
	  ok = false;
	  goto match;
	}

      /* Special case for character arguments.  For allocatable, pointer
	 and assumed-shape dummies, the string length needs to match
	 exactly.  */
      if (a->expr->ts.type == BT_CHARACTER
	  && a->expr->ts.u.cl && a->expr->ts.u.cl->length
	  && a->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
	  && a->expr->ts.u.cl->length->ts.type == BT_INTEGER
	  && f->sym->ts.type == BT_CHARACTER && f->sym->ts.u.cl
	  && f->sym->ts.u.cl->length
	  && f->sym->ts.u.cl->length->expr_type == EXPR_CONSTANT
	  && f->sym->ts.u.cl->length->ts.type == BT_INTEGER
	  && (f->sym->attr.pointer || f->sym->attr.allocatable
	      || (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
	  && (mpz_cmp (a->expr->ts.u.cl->length->value.integer,
		       f->sym->ts.u.cl->length->value.integer) != 0))
	{
	  if (where && (f->sym->attr.pointer || f->sym->attr.allocatable))
	    gfc_warning (0, "Character length mismatch (%ld/%ld) between actual "
			 "argument and pointer or allocatable dummy argument "
			 "%qs at %L",
			 mpz_get_si (a->expr->ts.u.cl->length->value.integer),
			 mpz_get_si (f->sym->ts.u.cl->length->value.integer),
			 f->sym->name, &a->expr->where);
	  else if (where)
	    gfc_warning (0, "Character length mismatch (%ld/%ld) between actual "
			 "argument and assumed-shape dummy argument %qs "
			 "at %L",
			 mpz_get_si (a->expr->ts.u.cl->length->value.integer),
			 mpz_get_si (f->sym->ts.u.cl->length->value.integer),
			 f->sym->name, &a->expr->where);
	  ok = false;
	  goto match;
	}

      if ((f->sym->attr.pointer || f->sym->attr.allocatable)
	  && f->sym->ts.deferred != a->expr->ts.deferred
	  && a->expr->ts.type == BT_CHARACTER)
	{
	  if (where)
	    gfc_error ("Actual argument at %L to allocatable or "
		       "pointer dummy argument %qs must have a deferred "
		       "length type parameter if and only if the dummy has one",
		       &a->expr->where, f->sym->name);
	  ok = false;
	  goto match;
	}

      if (f->sym->ts.type == BT_CLASS)
	goto skip_size_check;

      /* Skip size check for NULL() actual without MOLD argument.  */
      if (a->expr->expr_type == EXPR_NULL && a->expr->ts.type == BT_UNKNOWN)
	goto skip_size_check;

      actual_size = get_expr_storage_size (a->expr);
      formal_size = get_sym_storage_size (f->sym);
      if (actual_size != 0 && actual_size < formal_size
	  && a->expr->ts.type != BT_PROCEDURE
	  && f->sym->attr.flavor != FL_PROCEDURE)
	{
	  if (a->expr->ts.type == BT_CHARACTER && !f->sym->as && where)
	    {
	      gfc_warning (0, "Character length of actual argument shorter "
			   "than of dummy argument %qs (%lu/%lu) at %L",
			   f->sym->name, actual_size, formal_size,
			   &a->expr->where);
	      goto skip_size_check;
	    }
          else if (where)
	    {
	      /* Emit a warning for -std=legacy and an error otherwise. */
	      if (gfc_option.warn_std == 0)
	        gfc_warning (0, "Actual argument contains too few "
			     "elements for dummy argument %qs (%lu/%lu) "
			     "at %L", f->sym->name, actual_size,
			     formal_size, &a->expr->where);
	      else
	        gfc_error_now ("Actual argument contains too few "
			       "elements for dummy argument %qs (%lu/%lu) "
			       "at %L", f->sym->name, actual_size,
			       formal_size, &a->expr->where);
	    }
	  ok = false;
	  goto match;
	}

     skip_size_check:

      /* Satisfy F03:12.4.1.3 by ensuring that a procedure pointer actual
         argument is provided for a procedure pointer formal argument.  */
      if (f->sym->attr.proc_pointer
	  && !((a->expr->expr_type == EXPR_VARIABLE
		&& (a->expr->symtree->n.sym->attr.proc_pointer
		    || gfc_is_proc_ptr_comp (a->expr)))
	       || (a->expr->expr_type == EXPR_FUNCTION
		   && is_procptr_result (a->expr))))
	{
	  if (where)
	    gfc_error ("Expected a procedure pointer for argument %qs at %L",
		       f->sym->name, &a->expr->where);
	  ok = false;
	  goto match;
	}

      /* Satisfy F03:12.4.1.3 by ensuring that a procedure actual argument is
	 provided for a procedure formal argument.  */
      if (f->sym->attr.flavor == FL_PROCEDURE
	  && !((a->expr->expr_type == EXPR_VARIABLE
		&& (a->expr->symtree->n.sym->attr.flavor == FL_PROCEDURE
		    || a->expr->symtree->n.sym->attr.proc_pointer
		    || gfc_is_proc_ptr_comp (a->expr)))
	       || (a->expr->expr_type == EXPR_FUNCTION
		   && is_procptr_result (a->expr))))
	{
	  if (where)
	    gfc_error ("Expected a procedure for argument %qs at %L",
		       f->sym->name, &a->expr->where);
	  ok = false;
	  goto match;
	}

      /* Class array variables and expressions store array info in a
	 different place from non-class objects; consolidate the logic
	 to access it here instead of repeating it below.  Note that
	 pointer_arg and allocatable_arg are not fully general and are
	 only used in a specific situation below with an assumed-rank
	 argument.  */
      if (f->sym->ts.type == BT_CLASS && CLASS_DATA (f->sym))
	{
	  gfc_component *classdata = CLASS_DATA (f->sym);
	  fas = classdata->as;
	  pointer_dummy = classdata->attr.class_pointer;
	}
      else
	{
	  fas = f->sym->as;
	  pointer_dummy = f->sym->attr.pointer;
	}

      if (a->expr->expr_type != EXPR_VARIABLE)
	{
	  aas = NULL;
	  pointer_arg = false;
	  allocatable_arg = false;
	}
      else if (a->expr->ts.type == BT_CLASS
	       && a->expr->symtree->n.sym
	       && CLASS_DATA (a->expr->symtree->n.sym))
	{
	  gfc_component *classdata = CLASS_DATA (a->expr->symtree->n.sym);
	  aas = classdata->as;
	  pointer_arg = classdata->attr.class_pointer;
	  allocatable_arg = classdata->attr.allocatable;
	}
      else
	{
	  aas = a->expr->symtree->n.sym->as;
	  pointer_arg = a->expr->symtree->n.sym->attr.pointer;
	  allocatable_arg = a->expr->symtree->n.sym->attr.allocatable;
	}

      /* F2018:9.5.2(2) permits assumed-size whole array expressions as
	 actual arguments only if the shape is not required; thus it
	 cannot be passed to an assumed-shape array dummy.
	 F2018:15.5.2.(2) permits passing a nonpointer actual to an
	 intent(in) pointer dummy argument and this is accepted by
	 the compare_pointer check below, but this also requires shape
	 information.
	 There's more discussion of this in PR94110.  */
      if (fas
	  && (fas->type == AS_ASSUMED_SHAPE
	      || fas->type == AS_DEFERRED
	      || (fas->type == AS_ASSUMED_RANK && pointer_dummy))
	  && aas
	  && aas->type == AS_ASSUMED_SIZE
	  && (a->expr->ref == NULL
	      || (a->expr->ref->type == REF_ARRAY
		  && a->expr->ref->u.ar.type == AR_FULL)))
	{
	  if (where)
	    gfc_error ("Actual argument for %qs cannot be an assumed-size"
		       " array at %L", f->sym->name, where);
	  ok = false;
	  goto match;
	}

      /* Diagnose F2018 C839 (TS29113 C535c).  Here the problem is
	 passing an assumed-size array to an INTENT(OUT) assumed-rank
	 dummy when it doesn't have the size information needed to run
	 initializers and finalizers.  */
      if (f->sym->attr.intent == INTENT_OUT
	  && fas
	  && fas->type == AS_ASSUMED_RANK
	  && aas
	  && ((aas->type == AS_ASSUMED_SIZE
	       && (a->expr->ref == NULL
		   || (a->expr->ref->type == REF_ARRAY
		       && a->expr->ref->u.ar.type == AR_FULL)))
	      || (aas->type == AS_ASSUMED_RANK
		  && !pointer_arg
		  && !allocatable_arg))
	  && (a->expr->ts.type == BT_CLASS
	      || (a->expr->ts.type == BT_DERIVED
		  && (gfc_is_finalizable (a->expr->ts.u.derived, NULL)
		      || gfc_has_ultimate_allocatable (a->expr)
		      || gfc_has_default_initializer
			   (a->expr->ts.u.derived)))))
	{
	  if (where)
	    gfc_error ("Actual argument to assumed-rank INTENT(OUT) "
		       "dummy %qs at %L cannot be of unknown size",
		       f->sym->name, where);
	  ok = false;
	  goto match;
	}

      if (a->expr->expr_type != EXPR_NULL)
	{
	  int cmp = compare_pointer (f->sym, a->expr);
	  bool pre2008 = ((gfc_option.allow_std & GFC_STD_F2008) == 0);

	  if (pre2008 && cmp == 0)
	    {
	      if (where)
		gfc_error ("Actual argument for %qs at %L must be a pointer",
			   f->sym->name, &a->expr->where);
	      ok = false;
	      goto match;
	    }

	  if (pre2008 && cmp == 2)
	    {
	      if (where)
		gfc_error ("Fortran 2008: Non-pointer actual argument at %L to "
			   "pointer dummy %qs", &a->expr->where, f->sym->name);
	      ok = false;
	      goto match;
	    }

	  if (!pre2008 && cmp == 0)
	    {
	      if (where)
		gfc_error ("Actual argument for %qs at %L must be a pointer "
			   "or a valid target for the dummy pointer in a "
			   "pointer assignment statement",
			   f->sym->name, &a->expr->where);
	      ok = false;
	      goto match;
	    }
	}


      /* Fortran 2008, C1242.  */
      if (f->sym->attr.pointer && gfc_is_coindexed (a->expr))
	{
	  if (where)
	    gfc_error ("Coindexed actual argument at %L to pointer "
		       "dummy %qs",
		       &a->expr->where, f->sym->name);
	  ok = false;
	  goto match;
	}

      /* Fortran 2008, 12.5.2.5 (no constraint).  */
      if (a->expr->expr_type == EXPR_VARIABLE
	  && f->sym->attr.intent != INTENT_IN
	  && f->sym->attr.allocatable
	  && gfc_is_coindexed (a->expr))
	{
	  if (where)
	    gfc_error ("Coindexed actual argument at %L to allocatable "
		       "dummy %qs requires INTENT(IN)",
		       &a->expr->where, f->sym->name);
	  ok = false;
	  goto match;
	}

      /* Fortran 2008, C1237.  */
      if (a->expr->expr_type == EXPR_VARIABLE
	  && (f->sym->attr.asynchronous || f->sym->attr.volatile_)
	  && gfc_is_coindexed (a->expr)
	  && (a->expr->symtree->n.sym->attr.volatile_
	      || a->expr->symtree->n.sym->attr.asynchronous))
	{
	  if (where)
	    gfc_error ("Coindexed ASYNCHRONOUS or VOLATILE actual argument at "
		       "%L requires that dummy %qs has neither "
		       "ASYNCHRONOUS nor VOLATILE", &a->expr->where,
		       f->sym->name);
	  ok = false;
	  goto match;
	}

      /* Fortran 2008, 12.5.2.4 (no constraint).  */
      if (a->expr->expr_type == EXPR_VARIABLE
	  && f->sym->attr.intent != INTENT_IN && !f->sym->attr.value
	  && gfc_is_coindexed (a->expr)
	  && gfc_has_ultimate_allocatable (a->expr))
	{
	  if (where)
	    gfc_error ("Coindexed actual argument at %L with allocatable "
		       "ultimate component to dummy %qs requires either VALUE "
		       "or INTENT(IN)", &a->expr->where, f->sym->name);
	  ok = false;
	  goto match;
	}

     if (f->sym->ts.type == BT_CLASS
	   && CLASS_DATA (f->sym)->attr.allocatable
	   && gfc_is_class_array_ref (a->expr, &full_array)
	   && !full_array)
	{
	  if (where)
	    gfc_error ("Actual CLASS array argument for %qs must be a full "
		       "array at %L", f->sym->name, &a->expr->where);
	  ok = false;
	  goto match;
	}


      if (a->expr->expr_type != EXPR_NULL
	  && !compare_allocatable (f->sym, a->expr))
	{
	  if (where)
	    gfc_error ("Actual argument for %qs must be ALLOCATABLE at %L",
		       f->sym->name, &a->expr->where);
	  ok = false;
	  goto match;
	}

      if (a->expr->expr_type == EXPR_FUNCTION
	  && a->expr->value.function.esym
	  && f->sym->attr.allocatable)
	{
	  if (where)
	    gfc_error ("Actual argument for %qs at %L is a function result "
		       "and the dummy argument is ALLOCATABLE",
		       f->sym->name, &a->expr->where);
	  ok = false;
	  goto match;
	}

      /* Check intent = OUT/INOUT for definable actual argument.  */
      if (!in_statement_function
	  && (f->sym->attr.intent == INTENT_OUT
	      || f->sym->attr.intent == INTENT_INOUT))
	{
	  const char* context = (where
				 ? _("actual argument to INTENT = OUT/INOUT")
				 : NULL);

	  if (((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
		&& CLASS_DATA (f->sym)->attr.class_pointer)
	       || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
	      && !gfc_check_vardef_context (a->expr, true, false, false, context))
	    {
	      ok = false;
	      goto match;
	    }
	  if (!gfc_check_vardef_context (a->expr, false, false, false, context))
	    {
	      ok = false;
	      goto match;
	    }
	}

      if ((f->sym->attr.intent == INTENT_OUT
	   || f->sym->attr.intent == INTENT_INOUT
	   || f->sym->attr.volatile_
	   || f->sym->attr.asynchronous)
	  && gfc_has_vector_subscript (a->expr))
	{
	  if (where)
	    gfc_error ("Array-section actual argument with vector "
		       "subscripts at %L is incompatible with INTENT(OUT), "
		       "INTENT(INOUT), VOLATILE or ASYNCHRONOUS attribute "
		       "of the dummy argument %qs",
		       &a->expr->where, f->sym->name);
	  ok = false;
	  goto match;
	}

      /* C1232 (R1221) For an actual argument which is an array section or
	 an assumed-shape array, the dummy argument shall be an assumed-
	 shape array, if the dummy argument has the VOLATILE attribute.  */

      if (f->sym->attr.volatile_
	  && a->expr->expr_type == EXPR_VARIABLE
	  && a->expr->symtree->n.sym->as
	  && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
	  && !(fas && fas->type == AS_ASSUMED_SHAPE))
	{
	  if (where)
	    gfc_error ("Assumed-shape actual argument at %L is "
		       "incompatible with the non-assumed-shape "
		       "dummy argument %qs due to VOLATILE attribute",
		       &a->expr->where,f->sym->name);
	  ok = false;
	  goto match;
	}

      /* Find the last array_ref.  */
      actual_arr_ref = NULL;
      if (a->expr->ref)
	actual_arr_ref = gfc_find_array_ref (a->expr, true);

      if (f->sym->attr.volatile_
	  && actual_arr_ref && actual_arr_ref->type == AR_SECTION
	  && !(fas && fas->type == AS_ASSUMED_SHAPE))
	{
	  if (where)
	    gfc_error ("Array-section actual argument at %L is "
		       "incompatible with the non-assumed-shape "
		       "dummy argument %qs due to VOLATILE attribute",
		       &a->expr->where, f->sym->name);
	  ok = false;
	  goto match;
	}

      /* C1233 (R1221) For an actual argument which is a pointer array, the
	 dummy argument shall be an assumed-shape or pointer array, if the
	 dummy argument has the VOLATILE attribute.  */

      if (f->sym->attr.volatile_
	  && a->expr->expr_type == EXPR_VARIABLE
	  && a->expr->symtree->n.sym->attr.pointer
	  && a->expr->symtree->n.sym->as
	  && !(fas
	       && (fas->type == AS_ASSUMED_SHAPE
		   || f->sym->attr.pointer)))
	{
	  if (where)
	    gfc_error ("Pointer-array actual argument at %L requires "
		       "an assumed-shape or pointer-array dummy "
		       "argument %qs due to VOLATILE attribute",
		       &a->expr->where,f->sym->name);
	  ok = false;
	  goto match;
	}

    match:
      if (a == actual)
	na = i;

      new_arg[i++] = a;
    }

  /* Give up now if we saw any bad argument.  */
  if (!ok)
    return false;

  /* Make sure missing actual arguments are optional.  */
  i = 0;
  for (f = formal; f; f = f->next, i++)
    {
      if (new_arg[i] != NULL)
	continue;
      if (f->sym == NULL)
	{
	  if (where)
	    gfc_error ("Missing alternate return spec in subroutine call "
		       "at %L", where);
	  return false;
	}
      /* For CLASS, the optional attribute might be set at either location. */
      if (((f->sym->ts.type != BT_CLASS || !CLASS_DATA (f->sym)->attr.optional)
	   && !f->sym->attr.optional)
	  || (in_statement_function
	      && (f->sym->attr.optional
		  || (f->sym->ts.type == BT_CLASS
		      && CLASS_DATA (f->sym)->attr.optional))))
	{
	  if (where)
	    gfc_error ("Missing actual argument for argument %qs at %L",
		       f->sym->name, where);
	  return false;
	}
    }

  /* We should have handled the cases where the formal arglist is null
     already.  */
  gcc_assert (n > 0);

  /* The argument lists are compatible.  We now relink a new actual
     argument list with null arguments in the right places.  The head
     of the list remains the head.  */
  for (f = formal, i = 0; f; f = f->next, i++)
    if (new_arg[i] == NULL)
      {
	new_arg[i] = gfc_get_actual_arglist ();
	new_arg[i]->associated_dummy = get_nonintrinsic_dummy_arg (f);
      }

  if (na != 0)
    {
      std::swap (*new_arg[0], *actual);
      std::swap (new_arg[0], new_arg[na]);
    }

  for (i = 0; i < n - 1; i++)
    new_arg[i]->next = new_arg[i + 1];

  new_arg[i]->next = NULL;

  if (*ap == NULL && n > 0)
    *ap = new_arg[0];

  return true;
}


typedef struct
{
  gfc_formal_arglist *f;
  gfc_actual_arglist *a;
}
argpair;

/* qsort comparison function for argument pairs, with the following
   order:
    - p->a->expr == NULL
    - p->a->expr->expr_type != EXPR_VARIABLE
    - by gfc_symbol pointer value (larger first).  */

static int
pair_cmp (const void *p1, const void *p2)
{
  const gfc_actual_arglist *a1, *a2;

  /* *p1 and *p2 are elements of the to-be-sorted array.  */
  a1 = ((const argpair *) p1)->a;
  a2 = ((const argpair *) p2)->a;
  if (!a1->expr)
    {
      if (!a2->expr)
	return 0;
      return -1;
    }
  if (!a2->expr)
    return 1;
  if (a1->expr->expr_type != EXPR_VARIABLE)
    {
      if (a2->expr->expr_type != EXPR_VARIABLE)
	return 0;
      return -1;
    }
  if (a2->expr->expr_type != EXPR_VARIABLE)
    return 1;
  if (a1->expr->symtree->n.sym > a2->expr->symtree->n.sym)
    return -1;
  return a1->expr->symtree->n.sym < a2->expr->symtree->n.sym;
}


/* Given two expressions from some actual arguments, test whether they
   refer to the same expression. The analysis is conservative.
   Returning false will produce no warning.  */

static bool
compare_actual_expr (gfc_expr *e1, gfc_expr *e2)
{
  const gfc_ref *r1, *r2;

  if (!e1 || !e2
      || e1->expr_type != EXPR_VARIABLE
      || e2->expr_type != EXPR_VARIABLE
      || e1->symtree->n.sym != e2->symtree->n.sym)
    return false;

  /* TODO: improve comparison, see expr.cc:show_ref().  */
  for (r1 = e1->ref, r2 = e2->ref; r1 && r2; r1 = r1->next, r2 = r2->next)
    {
      if (r1->type != r2->type)
	return false;
      switch (r1->type)
	{
	case REF_ARRAY:
	  if (r1->u.ar.type != r2->u.ar.type)
	    return false;
	  /* TODO: At the moment, consider only full arrays;
	     we could do better.  */
	  if (r1->u.ar.type != AR_FULL || r2->u.ar.type != AR_FULL)
	    return false;
	  break;

	case REF_COMPONENT:
	  if (r1->u.c.component != r2->u.c.component)
	    return false;
	  break;

	case REF_SUBSTRING:
	  return false;

	case REF_INQUIRY:
	  if (e1->symtree->n.sym->ts.type == BT_COMPLEX
	      && e1->ts.type == BT_REAL && e2->ts.type == BT_REAL
	      && r1->u.i != r2->u.i)
	    return false;
	  break;

	default:
	  gfc_internal_error ("compare_actual_expr(): Bad component code");
	}
    }
  if (!r1 && !r2)
    return true;
  return false;
}


/* Given formal and actual argument lists that correspond to one
   another, check that identical actual arguments aren't not
   associated with some incompatible INTENTs.  */

static bool
check_some_aliasing (gfc_formal_arglist *f, gfc_actual_arglist *a)
{
  sym_intent f1_intent, f2_intent;
  gfc_formal_arglist *f1;
  gfc_actual_arglist *a1;
  size_t n, i, j;
  argpair *p;
  bool t = true;

  n = 0;
  for (f1 = f, a1 = a;; f1 = f1->next, a1 = a1->next)
    {
      if (f1 == NULL && a1 == NULL)
	break;
      if (f1 == NULL || a1 == NULL)
	gfc_internal_error ("check_some_aliasing(): List mismatch");
      n++;
    }
  if (n == 0)
    return t;
  p = XALLOCAVEC (argpair, n);

  for (i = 0, f1 = f, a1 = a; i < n; i++, f1 = f1->next, a1 = a1->next)
    {
      p[i].f = f1;
      p[i].a = a1;
    }

  qsort (p, n, sizeof (argpair), pair_cmp);

  for (i = 0; i < n; i++)
    {
      if (!p[i].a->expr
	  || p[i].a->expr->expr_type != EXPR_VARIABLE
	  || p[i].a->expr->ts.type == BT_PROCEDURE)
	continue;
      f1_intent = p[i].f->sym->attr.intent;
      for (j = i + 1; j < n; j++)
	{
	  /* Expected order after the sort.  */
	  if (!p[j].a->expr || p[j].a->expr->expr_type != EXPR_VARIABLE)
	    gfc_internal_error ("check_some_aliasing(): corrupted data");

	  /* Are the expression the same?  */
	  if (!compare_actual_expr (p[i].a->expr, p[j].a->expr))
	    break;
	  f2_intent = p[j].f->sym->attr.intent;
	  if ((f1_intent == INTENT_IN && f2_intent == INTENT_OUT)
	      || (f1_intent == INTENT_OUT && f2_intent == INTENT_IN)
	      || (f1_intent == INTENT_OUT && f2_intent == INTENT_OUT))
	    {
	      gfc_warning (0, "Same actual argument associated with INTENT(%s) "
			   "argument %qs and INTENT(%s) argument %qs at %L",
			   gfc_intent_string (f1_intent), p[i].f->sym->name,
			   gfc_intent_string (f2_intent), p[j].f->sym->name,
			   &p[i].a->expr->where);
	      t = false;
	    }
	}
    }

  return t;
}


/* Given formal and actual argument lists that correspond to one
   another, check that they are compatible in the sense that intents
   are not mismatched.  */

static bool
check_intents (gfc_formal_arglist *f, gfc_actual_arglist *a)
{
  sym_intent f_intent;

  for (;; f = f->next, a = a->next)
    {
      gfc_expr *expr;

      if (f == NULL && a == NULL)
	break;
      if (f == NULL || a == NULL)
	gfc_internal_error ("check_intents(): List mismatch");

      if (a->expr && a->expr->expr_type == EXPR_FUNCTION
	  && a->expr->value.function.isym
	  && a->expr->value.function.isym->id == GFC_ISYM_CAF_GET)
	expr = a->expr->value.function.actual->expr;
      else
	expr = a->expr;

      if (expr == NULL || expr->expr_type != EXPR_VARIABLE)
	continue;

      f_intent = f->sym->attr.intent;

      if (gfc_pure (NULL) && gfc_impure_variable (expr->symtree->n.sym))
	{
	  if ((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
	       && CLASS_DATA (f->sym)->attr.class_pointer)
	      || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
	    {
	      gfc_error ("Procedure argument at %L is local to a PURE "
			 "procedure and has the POINTER attribute",
			 &expr->where);
	      return false;
	    }
	}

       /* Fortran 2008, C1283.  */
       if (gfc_pure (NULL) && gfc_is_coindexed (expr))
	{
	  if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT)
	    {
	      gfc_error ("Coindexed actual argument at %L in PURE procedure "
			 "is passed to an INTENT(%s) argument",
			 &expr->where, gfc_intent_string (f_intent));
	      return false;
	    }

	  if ((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
               && CLASS_DATA (f->sym)->attr.class_pointer)
              || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
	    {
	      gfc_error ("Coindexed actual argument at %L in PURE procedure "
			 "is passed to a POINTER dummy argument",
			 &expr->where);
	      return false;
	    }
	}

       /* F2008, Section 12.5.2.4.  */
       if (expr->ts.type == BT_CLASS && f->sym->ts.type == BT_CLASS
	   && gfc_is_coindexed (expr))
	 {
	   gfc_error ("Coindexed polymorphic actual argument at %L is passed "
		      "polymorphic dummy argument %qs",
			 &expr->where, f->sym->name);
	   return false;
	 }
    }

  return true;
}


/* Check how a procedure is used against its interface.  If all goes
   well, the actual argument list will also end up being properly
   sorted.  */

bool
gfc_procedure_use (gfc_symbol *sym, gfc_actual_arglist **ap, locus *where)
{
  gfc_actual_arglist *a;
  gfc_formal_arglist *dummy_args;
  bool implicit = false;

  /* Warn about calls with an implicit interface.  Special case
     for calling a ISO_C_BINDING because c_loc and c_funloc
     are pseudo-unknown.  Additionally, warn about procedures not
     explicitly declared at all if requested.  */
  if (sym->attr.if_source == IFSRC_UNKNOWN && !sym->attr.is_iso_c)
    {
      bool has_implicit_none_export = false;
      implicit = true;
      if (sym->attr.proc == PROC_UNKNOWN)
	for (gfc_namespace *ns = sym->ns; ns; ns = ns->parent)
	  if (ns->has_implicit_none_export)
	    {
	      has_implicit_none_export = true;
	      break;
	    }
      if (has_implicit_none_export)
	{
	  const char *guessed
	    = gfc_lookup_function_fuzzy (sym->name, sym->ns->sym_root);
	  if (guessed)
	    gfc_error ("Procedure %qs called at %L is not explicitly declared"
		       "; did you mean %qs?",
		       sym->name, where, guessed);
	  else
	    gfc_error ("Procedure %qs called at %L is not explicitly declared",
		       sym->name, where);
	  return false;
	}
      if (warn_implicit_interface)
	gfc_warning (OPT_Wimplicit_interface,
		     "Procedure %qs called with an implicit interface at %L",
		     sym->name, where);
      else if (warn_implicit_procedure && sym->attr.proc == PROC_UNKNOWN)
	gfc_warning (OPT_Wimplicit_procedure,
		     "Procedure %qs called at %L is not explicitly declared",
		     sym->name, where);
      gfc_find_proc_namespace (sym->ns)->implicit_interface_calls = 1;
    }

  if (sym->attr.if_source == IFSRC_UNKNOWN)
    {
      if (sym->attr.pointer)
	{
	  gfc_error ("The pointer object %qs at %L must have an explicit "
		     "function interface or be declared as array",
		     sym->name, where);
	  return false;
	}

      if (sym->attr.allocatable && !sym->attr.external)
	{
	  gfc_error ("The allocatable object %qs at %L must have an explicit "
		     "function interface or be declared as array",
		     sym->name, where);
	  return false;
	}

      if (sym->attr.allocatable)
	{
	  gfc_error ("Allocatable function %qs at %L must have an explicit "
		     "function interface", sym->name, where);
	  return false;
	}

      for (a = *ap; a; a = a->next)
	{
	  if (a->expr && a->expr->error)
	    return false;

	  /* F2018, 15.4.2.2 Explicit interface is required for a
	     polymorphic dummy argument, so there is no way to
	     legally have a class appear in an argument with an
	     implicit interface.  */

	  if (implicit && a->expr && a->expr->ts.type == BT_CLASS)
	    {
	      gfc_error ("Explicit interface required for polymorphic "
			 "argument at %L",&a->expr->where);
	      a->expr->error = 1;
	      break;
	    }

	  /* Skip g77 keyword extensions like %VAL, %REF, %LOC.  */
	  if (a->name != NULL && a->name[0] != '%')
	    {
	      gfc_error ("Keyword argument requires explicit interface "
			 "for procedure %qs at %L", sym->name, &a->expr->where);
	      break;
	    }

	  /* TS 29113, 6.2.  */
	  if (a->expr && a->expr->ts.type == BT_ASSUMED
	      && sym->intmod_sym_id != ISOCBINDING_LOC)
	    {
	      gfc_error ("Assumed-type argument %s at %L requires an explicit "
			 "interface", a->expr->symtree->n.sym->name,
			 &a->expr->where);
	      a->expr->error = 1;
	      break;
	    }

	  /* F2008, C1303 and C1304.  */
	  if (a->expr
	      && (a->expr->ts.type == BT_DERIVED || a->expr->ts.type == BT_CLASS)
	      && a->expr->ts.u.derived
	      && ((a->expr->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
		   && a->expr->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
		  || gfc_expr_attr (a->expr).lock_comp))
	    {
	      gfc_error ("Actual argument of LOCK_TYPE or with LOCK_TYPE "
			 "component at %L requires an explicit interface for "
			 "procedure %qs", &a->expr->where, sym->name);
	      a->expr->error = 1;
	      break;
	    }

	  if (a->expr
	      && (a->expr->ts.type == BT_DERIVED || a->expr->ts.type == BT_CLASS)
	      && a->expr->ts.u.derived
	      && ((a->expr->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
		   && a->expr->ts.u.derived->intmod_sym_id
		      == ISOFORTRAN_EVENT_TYPE)
		  || gfc_expr_attr (a->expr).event_comp))
	    {
	      gfc_error ("Actual argument of EVENT_TYPE or with EVENT_TYPE "
			 "component at %L requires an explicit interface for "
			 "procedure %qs", &a->expr->where, sym->name);
	      a->expr->error = 1;
	      break;
	    }

	  if (a->expr && a->expr->expr_type == EXPR_NULL
	      && a->expr->ts.type == BT_UNKNOWN)
	    {
	      gfc_error ("MOLD argument to NULL required at %L",
			 &a->expr->where);
	      a->expr->error = 1;
	      return false;
	    }

	  if (a->expr && a->expr->expr_type == EXPR_NULL)
	    {
	      gfc_error ("Passing intrinsic NULL as actual argument at %L "
			 "requires an explicit interface", &a->expr->where);
	      a->expr->error = 1;
	      return false;
	    }

	  /* TS 29113, C407b.  */
	  if (a->expr && a->expr->expr_type == EXPR_VARIABLE
	      && symbol_rank (a->expr->symtree->n.sym) == -1)
	    {
	      gfc_error ("Assumed-rank argument requires an explicit interface "
			 "at %L", &a->expr->where);
	      a->expr->error = 1;
	      return false;
	    }
	}

      return true;
    }

  dummy_args = gfc_sym_get_dummy_args (sym);

  /* For a statement function, check that types and type parameters of actual
     arguments and dummy arguments match.  */
  if (!gfc_compare_actual_formal (ap, dummy_args, 0, sym->attr.elemental,
				  sym->attr.proc == PROC_ST_FUNCTION, where))
    return false;

  if (!check_intents (dummy_args, *ap))
    return false;

  if (warn_aliasing)
    check_some_aliasing (dummy_args, *ap);

  return true;
}


/* Check how a procedure pointer component is used against its interface.
   If all goes well, the actual argument list will also end up being properly
   sorted. Completely analogous to gfc_procedure_use.  */

void
gfc_ppc_use (gfc_component *comp, gfc_actual_arglist **ap, locus *where)
{
  /* Warn about calls with an implicit interface.  Special case
     for calling a ISO_C_BINDING because c_loc and c_funloc
     are pseudo-unknown.  */
  if (warn_implicit_interface
      && comp->attr.if_source == IFSRC_UNKNOWN
      && !comp->attr.is_iso_c)
    gfc_warning (OPT_Wimplicit_interface,
		 "Procedure pointer component %qs called with an implicit "
		 "interface at %L", comp->name, where);

  if (comp->attr.if_source == IFSRC_UNKNOWN)
    {
      gfc_actual_arglist *a;
      for (a = *ap; a; a = a->next)
	{
	  /* Skip g77 keyword extensions like %VAL, %REF, %LOC.  */
	  if (a->name != NULL && a->name[0] != '%')
	    {
	      gfc_error ("Keyword argument requires explicit interface "
			 "for procedure pointer component %qs at %L",
			 comp->name, &a->expr->where);
	      break;
	    }
	}

      return;
    }

  if (!gfc_compare_actual_formal (ap, comp->ts.interface->formal, 0,
			      comp->attr.elemental, false, where))
    return;

  check_intents (comp->ts.interface->formal, *ap);
  if (warn_aliasing)
    check_some_aliasing (comp->ts.interface->formal, *ap);
}


/* Try if an actual argument list matches the formal list of a symbol,
   respecting the symbol's attributes like ELEMENTAL.  This is used for
   GENERIC resolution.  */

bool
gfc_arglist_matches_symbol (gfc_actual_arglist** args, gfc_symbol* sym)
{
  gfc_formal_arglist *dummy_args;
  bool r;

  if (sym->attr.flavor != FL_PROCEDURE)
    return false;

  dummy_args = gfc_sym_get_dummy_args (sym);

  r = !sym->attr.elemental;
  if (gfc_compare_actual_formal (args, dummy_args, r, !r, false, NULL))
    {
      check_intents (dummy_args, *args);
      if (warn_aliasing)
	check_some_aliasing (dummy_args, *args);
      return true;
    }

  return false;
}


/* Given an interface pointer and an actual argument list, search for
   a formal argument list that matches the actual.  If found, returns
   a pointer to the symbol of the correct interface.  Returns NULL if
   not found.  */

gfc_symbol *
gfc_search_interface (gfc_interface *intr, int sub_flag,
		      gfc_actual_arglist **ap)
{
  gfc_symbol *elem_sym = NULL;
  gfc_symbol *null_sym = NULL;
  locus null_expr_loc;
  gfc_actual_arglist *a;
  bool has_null_arg = false;

  for (a = *ap; a; a = a->next)
    if (a->expr && a->expr->expr_type == EXPR_NULL
	&& a->expr->ts.type == BT_UNKNOWN)
      {
	has_null_arg = true;
	null_expr_loc = a->expr->where;
	break;
      }

  for (; intr; intr = intr->next)
    {
      if (gfc_fl_struct (intr->sym->attr.flavor))
	continue;
      if (sub_flag && intr->sym->attr.function)
	continue;
      if (!sub_flag && intr->sym->attr.subroutine)
	continue;

      if (gfc_arglist_matches_symbol (ap, intr->sym))
	{
	  if (has_null_arg && null_sym)
	    {
	      gfc_error ("MOLD= required in NULL() argument at %L: Ambiguity "
			 "between specific functions %s and %s",
			 &null_expr_loc, null_sym->name, intr->sym->name);
	      return NULL;
	    }
	  else if (has_null_arg)
	    {
	      null_sym = intr->sym;
	      continue;
	    }

	  /* Satisfy 12.4.4.1 such that an elemental match has lower
	     weight than a non-elemental match.  */
	  if (intr->sym->attr.elemental)
	    {
	      elem_sym = intr->sym;
	      continue;
	    }
	  return intr->sym;
	}
    }

  if (null_sym)
    return null_sym;

  return elem_sym ? elem_sym : NULL;
}


/* Do a brute force recursive search for a symbol.  */

static gfc_symtree *
find_symtree0 (gfc_symtree *root, gfc_symbol *sym)
{
  gfc_symtree * st;

  if (root->n.sym == sym)
    return root;

  st = NULL;
  if (root->left)
    st = find_symtree0 (root->left, sym);
  if (root->right && ! st)
    st = find_symtree0 (root->right, sym);
  return st;
}


/* Find a symtree for a symbol.  */

gfc_symtree *
gfc_find_sym_in_symtree (gfc_symbol *sym)
{
  gfc_symtree *st;
  gfc_namespace *ns;

  /* First try to find it by name.  */
  gfc_find_sym_tree (sym->name, gfc_current_ns, 1, &st);
  if (st && st->n.sym == sym)
    return st;

  /* If it's been renamed, resort to a brute-force search.  */
  /* TODO: avoid having to do this search.  If the symbol doesn't exist
     in the symtree for the current namespace, it should probably be added.  */
  for (ns = gfc_current_ns; ns; ns = ns->parent)
    {
      st = find_symtree0 (ns->sym_root, sym);
      if (st)
	return st;
    }
  gfc_internal_error ("Unable to find symbol %qs", sym->name);
  /* Not reached.  */
}


/* See if the arglist to an operator-call contains a derived-type argument
   with a matching type-bound operator.  If so, return the matching specific
   procedure defined as operator-target as well as the base-object to use
   (which is the found derived-type argument with operator).  The generic
   name, if any, is transmitted to the final expression via 'gname'.  */

static gfc_typebound_proc*
matching_typebound_op (gfc_expr** tb_base,
		       gfc_actual_arglist* args,
		       gfc_intrinsic_op op, const char* uop,
		       const char ** gname)
{
  gfc_actual_arglist* base;

  for (base = args; base; base = base->next)
    if (base->expr->ts.type == BT_DERIVED || base->expr->ts.type == BT_CLASS)
      {
	gfc_typebound_proc* tb;
	gfc_symbol* derived;
	bool result;

	while (base->expr->expr_type == EXPR_OP
	       && base->expr->value.op.op == INTRINSIC_PARENTHESES)
	  base->expr = base->expr->value.op.op1;

	if (base->expr->ts.type == BT_CLASS)
	  {
	    if (!base->expr->ts.u.derived || CLASS_DATA (base->expr) == NULL
		|| !gfc_expr_attr (base->expr).class_ok)
	      continue;
	    derived = CLASS_DATA (base->expr)->ts.u.derived;
	  }
	else
	  derived = base->expr->ts.u.derived;

	if (op == INTRINSIC_USER)
	  {
	    gfc_symtree* tb_uop;

	    gcc_assert (uop);
	    tb_uop = gfc_find_typebound_user_op (derived, &result, uop,
						 false, NULL);

	    if (tb_uop)
	      tb = tb_uop->n.tb;
	    else
	      tb = NULL;
	  }
	else
	  tb = gfc_find_typebound_intrinsic_op (derived, &result, op,
						false, NULL);

	/* This means we hit a PRIVATE operator which is use-associated and
	   should thus not be seen.  */
	if (!result)
	  tb = NULL;

	/* Look through the super-type hierarchy for a matching specific
	   binding.  */
	for (; tb; tb = tb->overridden)
	  {
	    gfc_tbp_generic* g;

	    gcc_assert (tb->is_generic);
	    for (g = tb->u.generic; g; g = g->next)
	      {
		gfc_symbol* target;
		gfc_actual_arglist* argcopy;
		bool matches;

		gcc_assert (g->specific);
		if (g->specific->error)
		  continue;

		target = g->specific->u.specific->n.sym;

		/* Check if this arglist matches the formal.  */
		argcopy = gfc_copy_actual_arglist (args);
		matches = gfc_arglist_matches_symbol (&argcopy, target);
		gfc_free_actual_arglist (argcopy);

		/* Return if we found a match.  */
		if (matches)
		  {
		    *tb_base = base->expr;
		    *gname = g->specific_st->name;
		    return g->specific;
		  }
	      }
	  }
      }

  return NULL;
}


/* For the 'actual arglist' of an operator call and a specific typebound
   procedure that has been found the target of a type-bound operator, build the
   appropriate EXPR_COMPCALL and resolve it.  We take this indirection over
   type-bound procedures rather than resolving type-bound operators 'directly'
   so that we can reuse the existing logic.  */

static void
build_compcall_for_operator (gfc_expr* e, gfc_actual_arglist* actual,
			     gfc_expr* base, gfc_typebound_proc* target,
			     const char *gname)
{
  e->expr_type = EXPR_COMPCALL;
  e->value.compcall.tbp = target;
  e->value.compcall.name = gname ? gname : "$op";
  e->value.compcall.actual = actual;
  e->value.compcall.base_object = base;
  e->value.compcall.ignore_pass = 1;
  e->value.compcall.assign = 0;
  if (e->ts.type == BT_UNKNOWN
	&& target->function)
    {
      if (target->is_generic)
	e->ts = target->u.generic->specific->u.specific->n.sym->ts;
      else
	e->ts = target->u.specific->n.sym->ts;
    }
}


/* This subroutine is called when an expression is being resolved.
   The expression node in question is either a user defined operator
   or an intrinsic operator with arguments that aren't compatible
   with the operator.  This subroutine builds an actual argument list
   corresponding to the operands, then searches for a compatible
   interface.  If one is found, the expression node is replaced with
   the appropriate function call. We use the 'match' enum to specify
   whether a replacement has been made or not, or if an error occurred.  */

match
gfc_extend_expr (gfc_expr *e)
{
  gfc_actual_arglist *actual;
  gfc_symbol *sym;
  gfc_namespace *ns;
  gfc_user_op *uop;
  gfc_intrinsic_op i;
  const char *gname;
  gfc_typebound_proc* tbo;
  gfc_expr* tb_base;

  sym = NULL;

  actual = gfc_get_actual_arglist ();
  actual->expr = e->value.op.op1;

  gname = NULL;

  if (e->value.op.op2 != NULL)
    {
      actual->next = gfc_get_actual_arglist ();
      actual->next->expr = e->value.op.op2;
    }

  i = fold_unary_intrinsic (e->value.op.op);

  /* See if we find a matching type-bound operator.  */
  if (i == INTRINSIC_USER)
    tbo = matching_typebound_op (&tb_base, actual,
				  i, e->value.op.uop->name, &gname);
  else
    switch (i)
      {
#define CHECK_OS_COMPARISON(comp) \
  case INTRINSIC_##comp: \
  case INTRINSIC_##comp##_OS: \
    tbo = matching_typebound_op (&tb_base, actual, \
				 INTRINSIC_##comp, NULL, &gname); \
    if (!tbo) \
      tbo = matching_typebound_op (&tb_base, actual, \
				   INTRINSIC_##comp##_OS, NULL, &gname); \
    break;
	CHECK_OS_COMPARISON(EQ)
	CHECK_OS_COMPARISON(NE)
	CHECK_OS_COMPARISON(GT)
	CHECK_OS_COMPARISON(GE)
	CHECK_OS_COMPARISON(LT)
	CHECK_OS_COMPARISON(LE)
#undef CHECK_OS_COMPARISON

	default:
	  tbo = matching_typebound_op (&tb_base, actual, i, NULL, &gname);
	  break;
      }

  /* If there is a matching typebound-operator, replace the expression with
      a call to it and succeed.  */
  if (tbo)
    {
      gcc_assert (tb_base);
      build_compcall_for_operator (e, actual, tb_base, tbo, gname);

      if (!gfc_resolve_expr (e))
	return MATCH_ERROR;
      else
	return MATCH_YES;
    }

  if (i == INTRINSIC_USER)
    {
      for (ns = gfc_current_ns; ns; ns = ns->parent)
	{
	  uop = gfc_find_uop (e->value.op.uop->name, ns);
	  if (uop == NULL)
	    continue;

	  sym = gfc_search_interface (uop->op, 0, &actual);
	  if (sym != NULL)
	    break;
	}
    }
  else
    {
      for (ns = gfc_current_ns; ns; ns = ns->parent)
	{
	  /* Due to the distinction between '==' and '.eq.' and friends, one has
	     to check if either is defined.  */
	  switch (i)
	    {
#define CHECK_OS_COMPARISON(comp) \
  case INTRINSIC_##comp: \
  case INTRINSIC_##comp##_OS: \
    sym = gfc_search_interface (ns->op[INTRINSIC_##comp], 0, &actual); \
    if (!sym) \
      sym = gfc_search_interface (ns->op[INTRINSIC_##comp##_OS], 0, &actual); \
    break;
	      CHECK_OS_COMPARISON(EQ)
	      CHECK_OS_COMPARISON(NE)
	      CHECK_OS_COMPARISON(GT)
	      CHECK_OS_COMPARISON(GE)
	      CHECK_OS_COMPARISON(LT)
	      CHECK_OS_COMPARISON(LE)
#undef CHECK_OS_COMPARISON

	      default:
		sym = gfc_search_interface (ns->op[i], 0, &actual);
	    }

	  if (sym != NULL)
	    break;
	}

      /* F2018(15.4.3.4.2) requires that the use of unlimited polymorphic
	 formal arguments does not override the intrinsic uses.  */
      gfc_push_suppress_errors ();
      if (sym
	  && (UNLIMITED_POLY (sym->formal->sym)
	      || (sym->formal->next
		  && UNLIMITED_POLY (sym->formal->next->sym)))
	  && !gfc_check_operator_interface (sym, e->value.op.op, e->where))
	sym = NULL;
      gfc_pop_suppress_errors ();
    }

  /* TODO: Do an ambiguity-check and error if multiple matching interfaces are
     found rather than just taking the first one and not checking further.  */

  if (sym == NULL)
    {
      /* Don't use gfc_free_actual_arglist().  */
      free (actual->next);
      free (actual);
      return MATCH_NO;
    }

  /* Change the expression node to a function call.  */
  e->expr_type = EXPR_FUNCTION;
  e->symtree = gfc_find_sym_in_symtree (sym);
  e->value.function.actual = actual;
  e->value.function.esym = NULL;
  e->value.function.isym = NULL;
  e->value.function.name = NULL;
  e->user_operator = 1;

  if (!gfc_resolve_expr (e))
    return MATCH_ERROR;

  return MATCH_YES;
}


/* Tries to replace an assignment code node with a subroutine call to the
   subroutine associated with the assignment operator. Return true if the node
   was replaced. On false, no error is generated.  */

bool
gfc_extend_assign (gfc_code *c, gfc_namespace *ns)
{
  gfc_actual_arglist *actual;
  gfc_expr *lhs, *rhs, *tb_base;
  gfc_symbol *sym = NULL;
  const char *gname = NULL;
  gfc_typebound_proc* tbo;

  lhs = c->expr1;
  rhs = c->expr2;

  /* Don't allow an intrinsic assignment with a BOZ rhs to be replaced.  */
  if (c->op == EXEC_ASSIGN
      && c->expr1->expr_type == EXPR_VARIABLE
      && c->expr2->expr_type == EXPR_CONSTANT && c->expr2->ts.type == BT_BOZ)
    return false;

  /* Don't allow an intrinsic assignment to be replaced.  */
  if (lhs->ts.type != BT_DERIVED && lhs->ts.type != BT_CLASS
      && (rhs->rank == 0 || rhs->rank == lhs->rank)
      && (lhs->ts.type == rhs->ts.type
	  || (gfc_numeric_ts (&lhs->ts) && gfc_numeric_ts (&rhs->ts))))
    return false;

  actual = gfc_get_actual_arglist ();
  actual->expr = lhs;

  actual->next = gfc_get_actual_arglist ();
  actual->next->expr = rhs;

  /* TODO: Ambiguity-check, see above for gfc_extend_expr.  */

  /* See if we find a matching type-bound assignment.  */
  tbo = matching_typebound_op (&tb_base, actual, INTRINSIC_ASSIGN,
			       NULL, &gname);

  if (tbo)
    {
      /* Success: Replace the expression with a type-bound call.  */
      gcc_assert (tb_base);
      c->expr1 = gfc_get_expr ();
      build_compcall_for_operator (c->expr1, actual, tb_base, tbo, gname);
      c->expr1->value.compcall.assign = 1;
      c->expr1->where = c->loc;
      c->expr2 = NULL;
      c->op = EXEC_COMPCALL;
      return true;
    }

  /* See if we find an 'ordinary' (non-typebound) assignment procedure.  */
  for (; ns; ns = ns->parent)
    {
      sym = gfc_search_interface (ns->op[INTRINSIC_ASSIGN], 1, &actual);
      if (sym != NULL)
	break;
    }

  if (sym)
    {
      /* Success: Replace the assignment with the call.  */
      c->op = EXEC_ASSIGN_CALL;
      c->symtree = gfc_find_sym_in_symtree (sym);
      c->expr1 = NULL;
      c->expr2 = NULL;
      c->ext.actual = actual;
      return true;
    }

  /* Failure: No assignment procedure found.  */
  free (actual->next);
  free (actual);
  return false;
}


/* Make sure that the interface just parsed is not already present in
   the given interface list.  Ambiguity isn't checked yet since module
   procedures can be present without interfaces.  */

bool
gfc_check_new_interface (gfc_interface *base, gfc_symbol *new_sym, locus loc)
{
  gfc_interface *ip;

  for (ip = base; ip; ip = ip->next)
    {
      if (ip->sym == new_sym)
	{
	  gfc_error ("Entity %qs at %L is already present in the interface",
		     new_sym->name, &loc);
	  return false;
	}
    }

  return true;
}


/* Add a symbol to the current interface.  */

bool
gfc_add_interface (gfc_symbol *new_sym)
{
  gfc_interface **head, *intr;
  gfc_namespace *ns;
  gfc_symbol *sym;

  switch (current_interface.type)
    {
    case INTERFACE_NAMELESS:
    case INTERFACE_ABSTRACT:
      return true;

    case INTERFACE_INTRINSIC_OP:
      for (ns = current_interface.ns; ns; ns = ns->parent)
	switch (current_interface.op)
	  {
	    case INTRINSIC_EQ:
	    case INTRINSIC_EQ_OS:
	      if (!gfc_check_new_interface (ns->op[INTRINSIC_EQ], new_sym,
					    gfc_current_locus)
	          || !gfc_check_new_interface (ns->op[INTRINSIC_EQ_OS],
					       new_sym, gfc_current_locus))
		return false;
	      break;

	    case INTRINSIC_NE:
	    case INTRINSIC_NE_OS:
	      if (!gfc_check_new_interface (ns->op[INTRINSIC_NE], new_sym,
					    gfc_current_locus)
	          || !gfc_check_new_interface (ns->op[INTRINSIC_NE_OS],
					       new_sym, gfc_current_locus))
		return false;
	      break;

	    case INTRINSIC_GT:
	    case INTRINSIC_GT_OS:
	      if (!gfc_check_new_interface (ns->op[INTRINSIC_GT],
					    new_sym, gfc_current_locus)
	          || !gfc_check_new_interface (ns->op[INTRINSIC_GT_OS],
					       new_sym, gfc_current_locus))
		return false;
	      break;

	    case INTRINSIC_GE:
	    case INTRINSIC_GE_OS:
	      if (!gfc_check_new_interface (ns->op[INTRINSIC_GE],
					    new_sym, gfc_current_locus)
	          || !gfc_check_new_interface (ns->op[INTRINSIC_GE_OS],
					       new_sym, gfc_current_locus))
		return false;
	      break;

	    case INTRINSIC_LT:
	    case INTRINSIC_LT_OS:
	      if (!gfc_check_new_interface (ns->op[INTRINSIC_LT],
					    new_sym, gfc_current_locus)
	          || !gfc_check_new_interface (ns->op[INTRINSIC_LT_OS],
					       new_sym, gfc_current_locus))
		return false;
	      break;

	    case INTRINSIC_LE:
	    case INTRINSIC_LE_OS:
	      if (!gfc_check_new_interface (ns->op[INTRINSIC_LE],
					    new_sym, gfc_current_locus)
	          || !gfc_check_new_interface (ns->op[INTRINSIC_LE_OS],
					       new_sym, gfc_current_locus))
		return false;
	      break;

	    default:
	      if (!gfc_check_new_interface (ns->op[current_interface.op],
					    new_sym, gfc_current_locus))
		return false;
	  }

      head = &current_interface.ns->op[current_interface.op];
      break;

    case INTERFACE_GENERIC:
    case INTERFACE_DTIO:
      for (ns = current_interface.ns; ns; ns = ns->parent)
	{
	  gfc_find_symbol (current_interface.sym->name, ns, 0, &sym);
	  if (sym == NULL)
	    continue;

	  if (!gfc_check_new_interface (sym->generic,
					new_sym, gfc_current_locus))
	    return false;
	}

      head = &current_interface.sym->generic;
      break;

    case INTERFACE_USER_OP:
      if (!gfc_check_new_interface (current_interface.uop->op,
				    new_sym, gfc_current_locus))
	return false;

      head = &current_interface.uop->op;
      break;

    default:
      gfc_internal_error ("gfc_add_interface(): Bad interface type");
    }

  intr = gfc_get_interface ();
  intr->sym = new_sym;
  intr->where = gfc_current_locus;

  intr->next = *head;
  *head = intr;

  return true;
}


gfc_interface *&
gfc_current_interface_head (void)
{
  switch (current_interface.type)
    {
      case INTERFACE_INTRINSIC_OP:
	return current_interface.ns->op[current_interface.op];

      case INTERFACE_GENERIC:
      case INTERFACE_DTIO:
	return current_interface.sym->generic;

      case INTERFACE_USER_OP:
	return current_interface.uop->op;

      default:
	gcc_unreachable ();
    }
}


void
gfc_set_current_interface_head (gfc_interface *i)
{
  switch (current_interface.type)
    {
      case INTERFACE_INTRINSIC_OP:
	current_interface.ns->op[current_interface.op] = i;
	break;

      case INTERFACE_GENERIC:
      case INTERFACE_DTIO:
	current_interface.sym->generic = i;
	break;

      case INTERFACE_USER_OP:
	current_interface.uop->op = i;
	break;

      default:
	gcc_unreachable ();
    }
}


/* Gets rid of a formal argument list.  We do not free symbols.
   Symbols are freed when a namespace is freed.  */

void
gfc_free_formal_arglist (gfc_formal_arglist *p)
{
  gfc_formal_arglist *q;

  for (; p; p = q)
    {
      q = p->next;
      free (p);
    }
}


/* Check that it is ok for the type-bound procedure 'proc' to override the
   procedure 'old', cf. F08:4.5.7.3.  */

bool
gfc_check_typebound_override (gfc_symtree* proc, gfc_symtree* old)
{
  locus where;
  gfc_symbol *proc_target, *old_target;
  unsigned proc_pass_arg, old_pass_arg, argpos;
  gfc_formal_arglist *proc_formal, *old_formal;
  bool check_type;
  char err[200];

  /* This procedure should only be called for non-GENERIC proc.  */
  gcc_assert (!proc->n.tb->is_generic);

  /* If the overwritten procedure is GENERIC, this is an error.  */
  if (old->n.tb->is_generic)
    {
      gfc_error ("Cannot overwrite GENERIC %qs at %L",
		 old->name, &proc->n.tb->where);
      return false;
    }

  where = proc->n.tb->where;
  proc_target = proc->n.tb->u.specific->n.sym;
  old_target = old->n.tb->u.specific->n.sym;

  /* Check that overridden binding is not NON_OVERRIDABLE.  */
  if (old->n.tb->non_overridable)
    {
      gfc_error ("%qs at %L overrides a procedure binding declared"
		 " NON_OVERRIDABLE", proc->name, &where);
      return false;
    }

  /* It's an error to override a non-DEFERRED procedure with a DEFERRED one.  */
  if (!old->n.tb->deferred && proc->n.tb->deferred)
    {
      gfc_error ("%qs at %L must not be DEFERRED as it overrides a"
		 " non-DEFERRED binding", proc->name, &where);
      return false;
    }

  /* If the overridden binding is PURE, the overriding must be, too.  */
  if (old_target->attr.pure && !proc_target->attr.pure)
    {
      gfc_error ("%qs at %L overrides a PURE procedure and must also be PURE",
		 proc->name, &where);
      return false;
    }

  /* If the overridden binding is ELEMENTAL, the overriding must be, too.  If it
     is not, the overriding must not be either.  */
  if (old_target->attr.elemental && !proc_target->attr.elemental)
    {
      gfc_error ("%qs at %L overrides an ELEMENTAL procedure and must also be"
		 " ELEMENTAL", proc->name, &where);
      return false;
    }
  if (!old_target->attr.elemental && proc_target->attr.elemental)
    {
      gfc_error ("%qs at %L overrides a non-ELEMENTAL procedure and must not"
		 " be ELEMENTAL, either", proc->name, &where);
      return false;
    }

  /* If the overridden binding is a SUBROUTINE, the overriding must also be a
     SUBROUTINE.  */
  if (old_target->attr.subroutine && !proc_target->attr.subroutine)
    {
      gfc_error ("%qs at %L overrides a SUBROUTINE and must also be a"
		 " SUBROUTINE", proc->name, &where);
      return false;
    }

  /* If the overridden binding is a FUNCTION, the overriding must also be a
     FUNCTION and have the same characteristics.  */
  if (old_target->attr.function)
    {
      if (!proc_target->attr.function)
	{
	  gfc_error ("%qs at %L overrides a FUNCTION and must also be a"
		     " FUNCTION", proc->name, &where);
	  return false;
	}

      if (!gfc_check_result_characteristics (proc_target, old_target,
					     err, sizeof(err)))
	{
	  gfc_error ("Result mismatch for the overriding procedure "
		     "%qs at %L: %s", proc->name, &where, err);
	  return false;
	}
    }

  /* If the overridden binding is PUBLIC, the overriding one must not be
     PRIVATE.  */
  if (old->n.tb->access == ACCESS_PUBLIC
      && proc->n.tb->access == ACCESS_PRIVATE)
    {
      gfc_error ("%qs at %L overrides a PUBLIC procedure and must not be"
		 " PRIVATE", proc->name, &where);
      return false;
    }

  /* Compare the formal argument lists of both procedures.  This is also abused
     to find the position of the passed-object dummy arguments of both
     bindings as at least the overridden one might not yet be resolved and we
     need those positions in the check below.  */
  proc_pass_arg = old_pass_arg = 0;
  if (!proc->n.tb->nopass && !proc->n.tb->pass_arg)
    proc_pass_arg = 1;
  if (!old->n.tb->nopass && !old->n.tb->pass_arg)
    old_pass_arg = 1;
  argpos = 1;
  proc_formal = gfc_sym_get_dummy_args (proc_target);
  old_formal = gfc_sym_get_dummy_args (old_target);
  for ( ; proc_formal && old_formal;
       proc_formal = proc_formal->next, old_formal = old_formal->next)
    {
      if (proc->n.tb->pass_arg
	  && !strcmp (proc->n.tb->pass_arg, proc_formal->sym->name))
	proc_pass_arg = argpos;
      if (old->n.tb->pass_arg
	  && !strcmp (old->n.tb->pass_arg, old_formal->sym->name))
	old_pass_arg = argpos;

      /* Check that the names correspond.  */
      if (strcmp (proc_formal->sym->name, old_formal->sym->name))
	{
	  gfc_error ("Dummy argument %qs of %qs at %L should be named %qs as"
		     " to match the corresponding argument of the overridden"
		     " procedure", proc_formal->sym->name, proc->name, &where,
		     old_formal->sym->name);
	  return false;
	}

      check_type = proc_pass_arg != argpos && old_pass_arg != argpos;
      if (!gfc_check_dummy_characteristics (proc_formal->sym, old_formal->sym,
					check_type, err, sizeof(err)))
	{
	  gfc_error_opt (0, "Argument mismatch for the overriding procedure "
			 "%qs at %L: %s", proc->name, &where, err);
	  return false;
	}

      ++argpos;
    }
  if (proc_formal || old_formal)
    {
      gfc_error ("%qs at %L must have the same number of formal arguments as"
		 " the overridden procedure", proc->name, &where);
      return false;
    }

  /* If the overridden binding is NOPASS, the overriding one must also be
     NOPASS.  */
  if (old->n.tb->nopass && !proc->n.tb->nopass)
    {
      gfc_error ("%qs at %L overrides a NOPASS binding and must also be"
		 " NOPASS", proc->name, &where);
      return false;
    }

  /* If the overridden binding is PASS(x), the overriding one must also be
     PASS and the passed-object dummy arguments must correspond.  */
  if (!old->n.tb->nopass)
    {
      if (proc->n.tb->nopass)
	{
	  gfc_error ("%qs at %L overrides a binding with PASS and must also be"
		     " PASS", proc->name, &where);
	  return false;
	}

      if (proc_pass_arg != old_pass_arg)
	{
	  gfc_error ("Passed-object dummy argument of %qs at %L must be at"
		     " the same position as the passed-object dummy argument of"
		     " the overridden procedure", proc->name, &where);
	  return false;
	}
    }

  return true;
}


/* The following three functions check that the formal arguments
   of user defined derived type IO procedures are compliant with
   the requirements of the standard, see F03:9.5.3.7.2 (F08:9.6.4.8.3).  */

static void
check_dtio_arg_TKR_intent (gfc_symbol *fsym, bool typebound, bt type,
			   int kind, int rank, sym_intent intent)
{
  if (fsym->ts.type != type)
    {
      gfc_error ("DTIO dummy argument at %L must be of type %s",
		 &fsym->declared_at, gfc_basic_typename (type));
      return;
    }

  if (fsym->ts.type != BT_CLASS && fsym->ts.type != BT_DERIVED
      && fsym->ts.kind != kind)
    gfc_error ("DTIO dummy argument at %L must be of KIND = %d",
	       &fsym->declared_at, kind);

  if (!typebound
      && rank == 0
      && (((type == BT_CLASS) && CLASS_DATA (fsym)->attr.dimension)
	  || ((type != BT_CLASS) && fsym->attr.dimension)))
    gfc_error ("DTIO dummy argument at %L must be a scalar",
	       &fsym->declared_at);
  else if (rank == 1
	   && (fsym->as == NULL || fsym->as->type != AS_ASSUMED_SHAPE))
    gfc_error ("DTIO dummy argument at %L must be an "
	       "ASSUMED SHAPE ARRAY", &fsym->declared_at);

  if (type == BT_CHARACTER && fsym->ts.u.cl->length != NULL)
    gfc_error ("DTIO character argument at %L must have assumed length",
               &fsym->declared_at);

  if (fsym->attr.intent != intent)
    gfc_error ("DTIO dummy argument at %L must have INTENT %s",
	       &fsym->declared_at, gfc_code2string (intents, (int)intent));
  return;
}


static void
check_dtio_interface1 (gfc_symbol *derived, gfc_symtree *tb_io_st,
		       bool typebound, bool formatted, int code)
{
  gfc_symbol *dtio_sub, *generic_proc, *fsym;
  gfc_typebound_proc *tb_io_proc, *specific_proc;
  gfc_interface *intr;
  gfc_formal_arglist *formal;
  int arg_num;

  bool read = ((dtio_codes)code == DTIO_RF)
	       || ((dtio_codes)code == DTIO_RUF);
  bt type;
  sym_intent intent;
  int kind;

  dtio_sub = NULL;
  if (typebound)
    {
      /* Typebound DTIO binding.  */
      tb_io_proc = tb_io_st->n.tb;
      if (tb_io_proc == NULL)
	return;

      gcc_assert (tb_io_proc->is_generic);

      specific_proc = tb_io_proc->u.generic->specific;
      if (specific_proc == NULL || specific_proc->is_generic)
	return;

      dtio_sub = specific_proc->u.specific->n.sym;
    }
  else
    {
      generic_proc = tb_io_st->n.sym;
      if (generic_proc == NULL || generic_proc->generic == NULL)
	return;

      for (intr = tb_io_st->n.sym->generic; intr; intr = intr->next)
	{
	  if (intr->sym && intr->sym->formal && intr->sym->formal->sym
	      && ((intr->sym->formal->sym->ts.type == BT_CLASS
	           && CLASS_DATA (intr->sym->formal->sym)->ts.u.derived
							     == derived)
		  || (intr->sym->formal->sym->ts.type == BT_DERIVED
		      && intr->sym->formal->sym->ts.u.derived == derived)))
	    {
	      dtio_sub = intr->sym;
	      break;
	    }
	  else if (intr->sym && intr->sym->formal && !intr->sym->formal->sym)
	    {
	      gfc_error ("Alternate return at %L is not permitted in a DTIO "
			 "procedure", &intr->sym->declared_at);
	      return;
	    }
	}

      if (dtio_sub == NULL)
	return;
    }

  gcc_assert (dtio_sub);
  if (!dtio_sub->attr.subroutine)
    gfc_error ("DTIO procedure %qs at %L must be a subroutine",
	       dtio_sub->name, &dtio_sub->declared_at);

  if (!dtio_sub->resolve_symbol_called)
    gfc_resolve_formal_arglist (dtio_sub);

  arg_num = 0;
  for (formal = dtio_sub->formal; formal; formal = formal->next)
    arg_num++;

  if (arg_num < (formatted ? 6 : 4))
    {
      gfc_error ("Too few dummy arguments in DTIO procedure %qs at %L",
		 dtio_sub->name, &dtio_sub->declared_at);
      return;
    }

  if (arg_num > (formatted ? 6 : 4))
    {
      gfc_error ("Too many dummy arguments in DTIO procedure %qs at %L",
		 dtio_sub->name, &dtio_sub->declared_at);
      return;
    }

  /* Now go through the formal arglist.  */
  arg_num = 1;
  for (formal = dtio_sub->formal; formal; formal = formal->next, arg_num++)
    {
      if (!formatted && arg_num == 3)
	arg_num = 5;
      fsym = formal->sym;

      if (fsym == NULL)
	{
	  gfc_error ("Alternate return at %L is not permitted in a DTIO "
		     "procedure", &dtio_sub->declared_at);
	  return;
	}

      switch (arg_num)
	{
	case(1):			/* DTV  */
	  type = derived->attr.sequence || derived->attr.is_bind_c ?
		 BT_DERIVED : BT_CLASS;
	  kind = 0;
	  intent = read ? INTENT_INOUT : INTENT_IN;
	  check_dtio_arg_TKR_intent (fsym, typebound, type, kind,
				     0, intent);
	  break;

	case(2):			/* UNIT  */
	  type = BT_INTEGER;
	  kind = gfc_default_integer_kind;
	  intent = INTENT_IN;
	  check_dtio_arg_TKR_intent (fsym, typebound, type, kind,
				     0, intent);
	  break;
	case(3):			/* IOTYPE  */
	  type = BT_CHARACTER;
	  kind = gfc_default_character_kind;
	  intent = INTENT_IN;
	  check_dtio_arg_TKR_intent (fsym, typebound, type, kind,
				     0, intent);
	  break;
	case(4):			/* VLIST  */
	  type = BT_INTEGER;
	  kind = gfc_default_integer_kind;
	  intent = INTENT_IN;
	  check_dtio_arg_TKR_intent (fsym, typebound, type, kind,
				     1, intent);
	  break;
	case(5):			/* IOSTAT  */
	  type = BT_INTEGER;
	  kind = gfc_default_integer_kind;
	  intent = INTENT_OUT;
	  check_dtio_arg_TKR_intent (fsym, typebound, type, kind,
				     0, intent);
	  break;
	case(6):			/* IOMSG  */
	  type = BT_CHARACTER;
	  kind = gfc_default_character_kind;
	  intent = INTENT_INOUT;
	  check_dtio_arg_TKR_intent (fsym, typebound, type, kind,
				     0, intent);
	  break;
	default:
	  gcc_unreachable ();
	}
    }
  derived->attr.has_dtio_procs = 1;
  return;
}

void
gfc_check_dtio_interfaces (gfc_symbol *derived)
{
  gfc_symtree *tb_io_st;
  bool t = false;
  int code;
  bool formatted;

  if (derived->attr.is_class == 1 || derived->attr.vtype == 1)
    return;

  /* Check typebound DTIO bindings.  */
  for (code = 0; code < 4; code++)
    {
      formatted = ((dtio_codes)code == DTIO_RF)
		   || ((dtio_codes)code == DTIO_WF);

      tb_io_st = gfc_find_typebound_proc (derived, &t,
					  gfc_code2string (dtio_procs, code),
					  true, &derived->declared_at);
      if (tb_io_st != NULL)
	check_dtio_interface1 (derived, tb_io_st, true, formatted, code);
    }

  /* Check generic DTIO interfaces.  */
  for (code = 0; code < 4; code++)
    {
      formatted = ((dtio_codes)code == DTIO_RF)
		   || ((dtio_codes)code == DTIO_WF);

      tb_io_st = gfc_find_symtree (derived->ns->sym_root,
				   gfc_code2string (dtio_procs, code));
      if (tb_io_st != NULL)
	check_dtio_interface1 (derived, tb_io_st, false, formatted, code);
    }
}


gfc_symtree*
gfc_find_typebound_dtio_proc (gfc_symbol *derived, bool write, bool formatted)
{
  gfc_symtree *tb_io_st = NULL;
  bool t = false;

  if (!derived || !derived->resolve_symbol_called
      || derived->attr.flavor != FL_DERIVED)
    return NULL;

  /* Try to find a typebound DTIO binding.  */
  if (formatted == true)
    {
      if (write == true)
        tb_io_st = gfc_find_typebound_proc (derived, &t,
					    gfc_code2string (dtio_procs,
							     DTIO_WF),
					    true,
					    &derived->declared_at);
      else
        tb_io_st = gfc_find_typebound_proc (derived, &t,
					    gfc_code2string (dtio_procs,
							     DTIO_RF),
					    true,
					    &derived->declared_at);
    }
  else
    {
      if (write == true)
        tb_io_st = gfc_find_typebound_proc (derived, &t,
					    gfc_code2string (dtio_procs,
							     DTIO_WUF),
					    true,
					    &derived->declared_at);
      else
        tb_io_st = gfc_find_typebound_proc (derived, &t,
					    gfc_code2string (dtio_procs,
							     DTIO_RUF),
					    true,
					    &derived->declared_at);
    }
  return tb_io_st;
}


gfc_symbol *
gfc_find_specific_dtio_proc (gfc_symbol *derived, bool write, bool formatted)
{
  gfc_symtree *tb_io_st = NULL;
  gfc_symbol *dtio_sub = NULL;
  gfc_symbol *extended;
  gfc_typebound_proc *tb_io_proc, *specific_proc;

  tb_io_st = gfc_find_typebound_dtio_proc (derived, write, formatted);

  if (tb_io_st != NULL)
    {
      const char *genname;
      gfc_symtree *st;

      tb_io_proc = tb_io_st->n.tb;
      gcc_assert (tb_io_proc != NULL);
      gcc_assert (tb_io_proc->is_generic);
      gcc_assert (tb_io_proc->u.generic->next == NULL);

      specific_proc = tb_io_proc->u.generic->specific;
      gcc_assert (!specific_proc->is_generic);

      /* Go back and make sure that we have the right specific procedure.
	 Here we most likely have a procedure from the parent type, which
	 can be overridden in extensions.  */
      genname = tb_io_proc->u.generic->specific_st->name;
      st = gfc_find_typebound_proc (derived, NULL, genname,
				    true, &tb_io_proc->where);
      if (st)
	dtio_sub = st->n.tb->u.specific->n.sym;
      else
	dtio_sub = specific_proc->u.specific->n.sym;

      goto finish;
    }

  /* If there is not a typebound binding, look for a generic
     DTIO interface.  */
  for (extended = derived; extended;
       extended = gfc_get_derived_super_type (extended))
    {
      if (extended == NULL || extended->ns == NULL
	  || extended->attr.flavor == FL_UNKNOWN)
	return NULL;

      if (formatted == true)
	{
	  if (write == true)
	    tb_io_st = gfc_find_symtree (extended->ns->sym_root,
					 gfc_code2string (dtio_procs,
							  DTIO_WF));
	  else
	    tb_io_st = gfc_find_symtree (extended->ns->sym_root,
					 gfc_code2string (dtio_procs,
							  DTIO_RF));
	}
      else
	{
	  if (write == true)
	    tb_io_st = gfc_find_symtree (extended->ns->sym_root,
					 gfc_code2string (dtio_procs,
							  DTIO_WUF));
	  else
	    tb_io_st = gfc_find_symtree (extended->ns->sym_root,
					 gfc_code2string (dtio_procs,
							  DTIO_RUF));
	}

      if (tb_io_st != NULL
	  && tb_io_st->n.sym
	  && tb_io_st->n.sym->generic)
	{
	  for (gfc_interface *intr = tb_io_st->n.sym->generic;
	       intr && intr->sym; intr = intr->next)
	    {
	      if (intr->sym->formal)
		{
		  gfc_symbol *fsym = intr->sym->formal->sym;
		  if ((fsym->ts.type == BT_CLASS
		      && CLASS_DATA (fsym)->ts.u.derived == extended)
		      || (fsym->ts.type == BT_DERIVED
			  && fsym->ts.u.derived == extended))
		    {
		      dtio_sub = intr->sym;
		      break;
		    }
		}
	    }
	}
    }

finish:
  if (dtio_sub
      && dtio_sub->formal->sym->ts.type == BT_CLASS
      && derived != CLASS_DATA (dtio_sub->formal->sym)->ts.u.derived)
    gfc_find_derived_vtab (derived);

  return dtio_sub;
}

/* Helper function - if we do not find an interface for a procedure,
   construct it from the actual arglist.  Luckily, this can only
   happen for call by reference, so the information we actually need
   to provide (and which would be impossible to guess from the call
   itself) is not actually needed.  */

void
gfc_get_formal_from_actual_arglist (gfc_symbol *sym,
				    gfc_actual_arglist *actual_args)
{
  gfc_actual_arglist *a;
  gfc_formal_arglist **f;
  gfc_symbol *s;
  char name[GFC_MAX_SYMBOL_LEN + 1];
  static int var_num;

  f = &sym->formal;
  for (a = actual_args; a != NULL; a = a->next)
    {
      (*f) = gfc_get_formal_arglist ();
      if (a->expr)
	{
	  snprintf (name, GFC_MAX_SYMBOL_LEN, "_formal_%d", var_num ++);
	  gfc_get_symbol (name, gfc_current_ns, &s);
	  if (a->expr->ts.type == BT_PROCEDURE)
	    {
	      s->attr.flavor = FL_PROCEDURE;
	    }
	  else
	    {
	      s->ts = a->expr->ts;

	      if (s->ts.type == BT_CHARACTER)
		s->ts.u.cl = gfc_get_charlen ();

	      s->ts.deferred = 0;
	      s->ts.is_iso_c = 0;
	      s->ts.is_c_interop = 0;
	      s->attr.flavor = FL_VARIABLE;
	      if (a->expr->rank > 0)
		{
		  s->attr.dimension = 1;
		  s->as = gfc_get_array_spec ();
		  s->as->rank = 1;
		  s->as->lower[0] = gfc_get_int_expr (gfc_index_integer_kind,
						      &a->expr->where, 1);
		  s->as->upper[0] = NULL;
		  s->as->type = AS_ASSUMED_SIZE;
		}
	      else
		s->maybe_array = maybe_dummy_array_arg (a->expr);
	    }
	  s->attr.dummy = 1;
	  s->attr.artificial = 1;
	  s->declared_at = a->expr->where;
	  s->attr.intent = INTENT_UNKNOWN;
	  (*f)->sym = s;
	}
      else  /* If a->expr is NULL, this is an alternate rerturn.  */
	(*f)->sym = NULL;

      f = &((*f)->next);
    }
}


const char *
gfc_dummy_arg_get_name (gfc_dummy_arg & dummy_arg)
{
  switch (dummy_arg.intrinsicness)
    {
    case GFC_INTRINSIC_DUMMY_ARG:
      return dummy_arg.u.intrinsic->name;

    case GFC_NON_INTRINSIC_DUMMY_ARG:
      return dummy_arg.u.non_intrinsic->sym->name;

    default:
      gcc_unreachable ();
    }
}


const gfc_typespec &
gfc_dummy_arg_get_typespec (gfc_dummy_arg & dummy_arg)
{
  switch (dummy_arg.intrinsicness)
    {
    case GFC_INTRINSIC_DUMMY_ARG:
      return dummy_arg.u.intrinsic->ts;

    case GFC_NON_INTRINSIC_DUMMY_ARG:
      return dummy_arg.u.non_intrinsic->sym->ts;

    default:
      gcc_unreachable ();
    }
}


bool
gfc_dummy_arg_is_optional (gfc_dummy_arg & dummy_arg)
{
  switch (dummy_arg.intrinsicness)
    {
    case GFC_INTRINSIC_DUMMY_ARG:
      return dummy_arg.u.intrinsic->optional;

    case GFC_NON_INTRINSIC_DUMMY_ARG:
      return dummy_arg.u.non_intrinsic->sym->attr.optional;

    default:
      gcc_unreachable ();
    }
}