1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
/* Balanced binary trees using treaps.
Copyright (C) 2000-2017 Free Software Foundation, Inc.
Contributed by Andy Vaught
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* The idea is to balance the tree using pseudorandom numbers. The
main constraint on this implementation is that we have several
distinct structures that have to be arranged in a binary tree.
These structures all contain a BBT_HEADER() in front that gives the
treap-related information. The key and value are assumed to reside
in the rest of the structure.
When calling, we are also passed a comparison function that
compares two nodes. We don't implement a separate 'find' function
here, but rather use separate functions for each variety of tree.
We are also restricted to not copy treap structures, which most
implementations find convenient, because we otherwise would need to
know how long the structure is.
This implementation is based on Stefan Nilsson's article in the
July 1997 Doctor Dobb's Journal, "Treaps in Java". */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "gfortran.h"
typedef struct gfc_treap
{
BBT_HEADER (gfc_treap);
}
gfc_bbt;
/* Simple linear congruential pseudorandom number generator. The
period of this generator is 44071, which is plenty for our
purposes. */
static int
pseudo_random (void)
{
static int x0 = 5341;
x0 = (22611 * x0 + 10) % 44071;
return x0;
}
/* Rotate the treap left. */
static gfc_bbt *
rotate_left (gfc_bbt *t)
{
gfc_bbt *temp;
temp = t->right;
t->right = t->right->left;
temp->left = t;
return temp;
}
/* Rotate the treap right. */
static gfc_bbt *
rotate_right (gfc_bbt *t)
{
gfc_bbt *temp;
temp = t->left;
t->left = t->left->right;
temp->right = t;
return temp;
}
/* Recursive insertion function. Returns the updated treap, or
aborts if we find a duplicate key. */
static gfc_bbt *
insert (gfc_bbt *new_bbt, gfc_bbt *t, compare_fn compare)
{
int c;
if (t == NULL)
return new_bbt;
c = (*compare) (new_bbt, t);
if (c < 0)
{
t->left = insert (new_bbt, t->left, compare);
if (t->priority < t->left->priority)
t = rotate_right (t);
}
else if (c > 0)
{
t->right = insert (new_bbt, t->right, compare);
if (t->priority < t->right->priority)
t = rotate_left (t);
}
else /* if (c == 0) */
gfc_internal_error("insert_bbt(): Duplicate key found");
return t;
}
/* Given root pointer, a new node and a comparison function, insert
the new node into the treap. It is an error to insert a key that
already exists. */
void
gfc_insert_bbt (void *root, void *new_node, compare_fn compare)
{
gfc_bbt **r, *n;
r = (gfc_bbt **) root;
n = (gfc_bbt *) new_node;
n->priority = pseudo_random ();
*r = insert (n, *r, compare);
}
static gfc_bbt *
delete_root (gfc_bbt *t)
{
gfc_bbt *temp;
if (t->left == NULL)
return t->right;
if (t->right == NULL)
return t->left;
if (t->left->priority > t->right->priority)
{
temp = rotate_right (t);
temp->right = delete_root (t);
}
else
{
temp = rotate_left (t);
temp->left = delete_root (t);
}
return temp;
}
/* Delete an element from a tree. The 'old' value does not
necessarily have to point to the element to be deleted, it must
just point to a treap structure with the key to be deleted.
Returns the new root node of the tree. */
static gfc_bbt *
delete_treap (gfc_bbt *old, gfc_bbt *t, compare_fn compare)
{
int c;
if (t == NULL)
return NULL;
c = (*compare) (old, t);
if (c < 0)
t->left = delete_treap (old, t->left, compare);
if (c > 0)
t->right = delete_treap (old, t->right, compare);
if (c == 0)
t = delete_root (t);
return t;
}
void
gfc_delete_bbt (void *root, void *old, compare_fn compare)
{
gfc_bbt **t;
t = (gfc_bbt **) root;
*t = delete_treap ((gfc_bbt *) old, *t, compare);
}
|