aboutsummaryrefslogtreecommitdiff
path: root/gcc/fortran/array.c
blob: f23d0bc7888cfb3fd0d82b16027adb1448bbd257 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
/* Array things
   Copyright (C) 2000, 2001, 2002, 2004, 2005, 2006, 2007, 2008, 2009, 2010
   Free Software Foundation, Inc.
   Contributed by Andy Vaught

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "gfortran.h"
#include "match.h"
#include "constructor.h"

/**************** Array reference matching subroutines *****************/

/* Copy an array reference structure.  */

gfc_array_ref *
gfc_copy_array_ref (gfc_array_ref *src)
{
  gfc_array_ref *dest;
  int i;

  if (src == NULL)
    return NULL;

  dest = gfc_get_array_ref ();

  *dest = *src;

  for (i = 0; i < GFC_MAX_DIMENSIONS; i++)
    {
      dest->start[i] = gfc_copy_expr (src->start[i]);
      dest->end[i] = gfc_copy_expr (src->end[i]);
      dest->stride[i] = gfc_copy_expr (src->stride[i]);
    }

  return dest;
}


/* Match a single dimension of an array reference.  This can be a
   single element or an array section.  Any modifications we've made
   to the ar structure are cleaned up by the caller.  If the init
   is set, we require the subscript to be a valid initialization
   expression.  */

static match
match_subscript (gfc_array_ref *ar, int init, bool match_star)
{
  match m = MATCH_ERROR;
  bool star = false;
  int i;

  i = ar->dimen + ar->codimen;

  gfc_gobble_whitespace ();
  ar->c_where[i] = gfc_current_locus;
  ar->start[i] = ar->end[i] = ar->stride[i] = NULL;

  /* We can't be sure of the difference between DIMEN_ELEMENT and
     DIMEN_VECTOR until we know the type of the element itself at
     resolution time.  */

  ar->dimen_type[i] = DIMEN_UNKNOWN;

  if (gfc_match_char (':') == MATCH_YES)
    goto end_element;

  /* Get start element.  */
  if (match_star && (m = gfc_match_char ('*')) == MATCH_YES)
    star = true;

  if (!star && init)
    m = gfc_match_init_expr (&ar->start[i]);
  else if (!star)
    m = gfc_match_expr (&ar->start[i]);

  if (m == MATCH_NO && gfc_match_char ('*') == MATCH_YES)
    return MATCH_NO;
  else if (m == MATCH_NO)
    gfc_error ("Expected array subscript at %C");
  if (m != MATCH_YES)
    return MATCH_ERROR;

  if (gfc_match_char (':') == MATCH_NO)
    goto matched;

  if (star)
    {
      gfc_error ("Unexpected '*' in coarray subscript at %C");
      return MATCH_ERROR;
    }

  /* Get an optional end element.  Because we've seen the colon, we
     definitely have a range along this dimension.  */
end_element:
  ar->dimen_type[i] = DIMEN_RANGE;

  if (match_star && (m = gfc_match_char ('*')) == MATCH_YES)
    star = true;
  else if (init)
    m = gfc_match_init_expr (&ar->end[i]);
  else
    m = gfc_match_expr (&ar->end[i]);

  if (m == MATCH_ERROR)
    return MATCH_ERROR;

  /* See if we have an optional stride.  */
  if (gfc_match_char (':') == MATCH_YES)
    {
      if (star)
	{
	  gfc_error ("Strides not allowed in coarray subscript at %C");
	  return MATCH_ERROR;
	}

      m = init ? gfc_match_init_expr (&ar->stride[i])
	       : gfc_match_expr (&ar->stride[i]);

      if (m == MATCH_NO)
	gfc_error ("Expected array subscript stride at %C");
      if (m != MATCH_YES)
	return MATCH_ERROR;
    }

matched:
  if (star)
    ar->dimen_type[i] = DIMEN_STAR;

  return MATCH_YES;
}


/* Match an array reference, whether it is the whole array or a
   particular elements or a section. If init is set, the reference has
   to consist of init expressions.  */

match
gfc_match_array_ref (gfc_array_ref *ar, gfc_array_spec *as, int init,
		     int corank)
{
  match m;
  bool matched_bracket = false;

  memset (ar, '\0', sizeof (ar));

  ar->where = gfc_current_locus;
  ar->as = as;
  ar->type = AR_UNKNOWN;

  if (gfc_match_char ('[') == MATCH_YES)
    {
       matched_bracket = true;
       goto coarray;
    }

  if (gfc_match_char ('(') != MATCH_YES)
    {
      ar->type = AR_FULL;
      ar->dimen = 0;
      return MATCH_YES;
    }

  for (ar->dimen = 0; ar->dimen < GFC_MAX_DIMENSIONS; ar->dimen++)
    {
      m = match_subscript (ar, init, false);
      if (m == MATCH_ERROR)
	return MATCH_ERROR;

      if (gfc_match_char (')') == MATCH_YES)
	{
	  ar->dimen++;
	  goto coarray;
	}

      if (gfc_match_char (',') != MATCH_YES)
	{
	  gfc_error ("Invalid form of array reference at %C");
	  return MATCH_ERROR;
	}
    }

  gfc_error ("Array reference at %C cannot have more than %d dimensions",
	     GFC_MAX_DIMENSIONS);
  return MATCH_ERROR;

coarray:
  if (!matched_bracket && gfc_match_char ('[') != MATCH_YES)
    {
      if (ar->dimen > 0)
	return MATCH_YES;
      else
	return MATCH_ERROR;
    }

  if (gfc_option.coarray == GFC_FCOARRAY_NONE)
    {
      gfc_fatal_error ("Coarrays disabled at %C, use -fcoarray= to enable");
      return MATCH_ERROR;
    }

  if (corank == 0)
    {
	gfc_error ("Unexpected coarray designator at %C");
	return MATCH_ERROR;
    }

  for (ar->codimen = 0; ar->codimen + ar->dimen < GFC_MAX_DIMENSIONS; ar->codimen++)
    {
      m = match_subscript (ar, init, ar->codimen == (corank - 1));
      if (m == MATCH_ERROR)
	return MATCH_ERROR;

      if (gfc_match_char (']') == MATCH_YES)
	{
	  ar->codimen++;
	  if (ar->codimen < corank)
	    {
	      gfc_error ("Too few codimensions at %C, expected %d not %d",
			 corank, ar->codimen);
	      return MATCH_ERROR;
	    }
	  if (ar->codimen > corank)
	    {
	      gfc_error ("Too many codimensions at %C, expected %d not %d",
			 corank, ar->codimen);
	      return MATCH_ERROR;
	    }
	  return MATCH_YES;
	}

      if (gfc_match_char (',') != MATCH_YES)
	{
	  if (gfc_match_char ('*') == MATCH_YES)
	    gfc_error ("Unexpected '*' for codimension %d of %d at %C",
		       ar->codimen + 1, corank);
	  else
	    gfc_error ("Invalid form of coarray reference at %C");
	  return MATCH_ERROR;
	}
      if (ar->codimen >= corank)
	{
	  gfc_error ("Invalid codimension %d at %C, only %d codimensions exist",
		     ar->codimen + 1, corank);
	  return MATCH_ERROR;
	}
    }

  gfc_error ("Array reference at %C cannot have more than %d dimensions",
	     GFC_MAX_DIMENSIONS);
  return MATCH_ERROR;

}


/************** Array specification matching subroutines ***************/

/* Free all of the expressions associated with array bounds
   specifications.  */

void
gfc_free_array_spec (gfc_array_spec *as)
{
  int i;

  if (as == NULL)
    return;

  for (i = 0; i < as->rank + as->corank; i++)
    {
      gfc_free_expr (as->lower[i]);
      gfc_free_expr (as->upper[i]);
    }

  free (as);
}


/* Take an array bound, resolves the expression, that make up the
   shape and check associated constraints.  */

static gfc_try
resolve_array_bound (gfc_expr *e, int check_constant)
{
  if (e == NULL)
    return SUCCESS;

  if (gfc_resolve_expr (e) == FAILURE
      || gfc_specification_expr (e) == FAILURE)
    return FAILURE;

  if (check_constant && !gfc_is_constant_expr (e))
    {
      if (e->expr_type == EXPR_VARIABLE)
	gfc_error ("Variable '%s' at %L in this context must be constant",
		   e->symtree->n.sym->name, &e->where);
      else
	gfc_error ("Expression at %L in this context must be constant",
		   &e->where);
      return FAILURE;
    }

  return SUCCESS;
}


/* Takes an array specification, resolves the expressions that make up
   the shape and make sure everything is integral.  */

gfc_try
gfc_resolve_array_spec (gfc_array_spec *as, int check_constant)
{
  gfc_expr *e;
  int i;

  if (as == NULL)
    return SUCCESS;

  for (i = 0; i < as->rank + as->corank; i++)
    {
      e = as->lower[i];
      if (resolve_array_bound (e, check_constant) == FAILURE)
	return FAILURE;

      e = as->upper[i];
      if (resolve_array_bound (e, check_constant) == FAILURE)
	return FAILURE;

      if ((as->lower[i] == NULL) || (as->upper[i] == NULL))
	continue;

      /* If the size is negative in this dimension, set it to zero.  */
      if (as->lower[i]->expr_type == EXPR_CONSTANT
	    && as->upper[i]->expr_type == EXPR_CONSTANT
	    && mpz_cmp (as->upper[i]->value.integer,
			as->lower[i]->value.integer) < 0)
	{
	  gfc_free_expr (as->upper[i]);
	  as->upper[i] = gfc_copy_expr (as->lower[i]);
	  mpz_sub_ui (as->upper[i]->value.integer,
		      as->upper[i]->value.integer, 1);
	}
    }

  return SUCCESS;
}


/* Match a single array element specification.  The return values as
   well as the upper and lower bounds of the array spec are filled
   in according to what we see on the input.  The caller makes sure
   individual specifications make sense as a whole.


	Parsed       Lower   Upper  Returned
	------------------------------------
	  :           NULL    NULL   AS_DEFERRED (*)
	  x            1       x     AS_EXPLICIT
	  x:           x      NULL   AS_ASSUMED_SHAPE
	  x:y          x       y     AS_EXPLICIT
	  x:*          x      NULL   AS_ASSUMED_SIZE
	  *            1      NULL   AS_ASSUMED_SIZE

  (*) For non-pointer dummy arrays this is AS_ASSUMED_SHAPE.  This
  is fixed during the resolution of formal interfaces.

   Anything else AS_UNKNOWN.  */

static array_type
match_array_element_spec (gfc_array_spec *as)
{
  gfc_expr **upper, **lower;
  match m;
  int rank;

  rank = as->rank == -1 ? 0 : as->rank;
  lower = &as->lower[rank + as->corank - 1];
  upper = &as->upper[rank + as->corank - 1];

  if (gfc_match_char ('*') == MATCH_YES)
    {
      *lower = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
      return AS_ASSUMED_SIZE;
    }

  if (gfc_match_char (':') == MATCH_YES)
    return AS_DEFERRED;

  m = gfc_match_expr (upper);
  if (m == MATCH_NO)
    gfc_error ("Expected expression in array specification at %C");
  if (m != MATCH_YES)
    return AS_UNKNOWN;
  if (gfc_expr_check_typed (*upper, gfc_current_ns, false) == FAILURE)
    return AS_UNKNOWN;

  if (gfc_match_char (':') == MATCH_NO)
    {
      *lower = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
      return AS_EXPLICIT;
    }

  *lower = *upper;
  *upper = NULL;

  if (gfc_match_char ('*') == MATCH_YES)
    return AS_ASSUMED_SIZE;

  m = gfc_match_expr (upper);
  if (m == MATCH_ERROR)
    return AS_UNKNOWN;
  if (m == MATCH_NO)
    return AS_ASSUMED_SHAPE;
  if (gfc_expr_check_typed (*upper, gfc_current_ns, false) == FAILURE)
    return AS_UNKNOWN;

  return AS_EXPLICIT;
}


/* Matches an array specification, incidentally figuring out what sort
   it is. Match either a normal array specification, or a coarray spec
   or both. Optionally allow [:] for coarrays.  */

match
gfc_match_array_spec (gfc_array_spec **asp, bool match_dim, bool match_codim)
{
  array_type current_type;
  gfc_array_spec *as;
  int i;

  as = gfc_get_array_spec ();

  if (!match_dim)
    goto coarray;

  if (gfc_match_char ('(') != MATCH_YES)
    {
      if (!match_codim)
	goto done;
      goto coarray;
    }

  if (gfc_match (" .. )") == MATCH_YES)
    {
      as->type = AS_ASSUMED_RANK;
      as->rank = -1;

      if (gfc_notify_std (GFC_STD_F2008_TS, "Assumed-rank array at %C")
	  == FAILURE)
	goto cleanup;

      if (!match_codim)
	goto done;
      goto coarray;
    }

  for (;;)
    {
      as->rank++;
      current_type = match_array_element_spec (as);

      /* Note that current_type == AS_ASSUMED_SIZE for both assumed-size
	 and implied-shape specifications.  If the rank is at least 2, we can
	 distinguish between them.  But for rank 1, we currently return
	 ASSUMED_SIZE; this gets adjusted later when we know for sure
	 whether the symbol parsed is a PARAMETER or not.  */

      if (as->rank == 1)
	{
	  if (current_type == AS_UNKNOWN)
	    goto cleanup;
	  as->type = current_type;
	}
      else
	switch (as->type)
	  {		/* See how current spec meshes with the existing.  */
	  case AS_UNKNOWN:
	    goto cleanup;

	  case AS_IMPLIED_SHAPE:
	    if (current_type != AS_ASSUMED_SHAPE)
	      {
		gfc_error ("Bad array specification for implied-shape"
			   " array at %C");
		goto cleanup;
	      }
	    break;

	  case AS_EXPLICIT:
	    if (current_type == AS_ASSUMED_SIZE)
	      {
		as->type = AS_ASSUMED_SIZE;
		break;
	      }

	    if (current_type == AS_EXPLICIT)
	      break;

	    gfc_error ("Bad array specification for an explicitly shaped "
		       "array at %C");

	    goto cleanup;

	  case AS_ASSUMED_SHAPE:
	    if ((current_type == AS_ASSUMED_SHAPE)
		|| (current_type == AS_DEFERRED))
	      break;

	    gfc_error ("Bad array specification for assumed shape "
		       "array at %C");
	    goto cleanup;

	  case AS_DEFERRED:
	    if (current_type == AS_DEFERRED)
	      break;

	    if (current_type == AS_ASSUMED_SHAPE)
	      {
		as->type = AS_ASSUMED_SHAPE;
		break;
	      }

	    gfc_error ("Bad specification for deferred shape array at %C");
	    goto cleanup;

	  case AS_ASSUMED_SIZE:
	    if (as->rank == 2 && current_type == AS_ASSUMED_SIZE)
	      {
		as->type = AS_IMPLIED_SHAPE;
		break;
	      }

	    gfc_error ("Bad specification for assumed size array at %C");
	    goto cleanup;

	  case AS_ASSUMED_RANK:
	    gcc_unreachable (); 
	  }

      if (gfc_match_char (')') == MATCH_YES)
	break;

      if (gfc_match_char (',') != MATCH_YES)
	{
	  gfc_error ("Expected another dimension in array declaration at %C");
	  goto cleanup;
	}

      if (as->rank + as->corank >= GFC_MAX_DIMENSIONS)
	{
	  gfc_error ("Array specification at %C has more than %d dimensions",
		     GFC_MAX_DIMENSIONS);
	  goto cleanup;
	}

      if (as->corank + as->rank >= 7
	  && gfc_notify_std (GFC_STD_F2008, "Array "
			     "specification at %C with more than 7 dimensions")
	     == FAILURE)
	goto cleanup;
    }

  if (!match_codim)
    goto done;

coarray:
  if (gfc_match_char ('[')  != MATCH_YES)
    goto done;

  if (gfc_notify_std (GFC_STD_F2008, "Coarray declaration at %C")
      == FAILURE)
    goto cleanup;

  if (gfc_option.coarray == GFC_FCOARRAY_NONE)
    {
      gfc_fatal_error ("Coarrays disabled at %C, use -fcoarray= to enable");
      goto cleanup;
    }

  if (as->rank >= GFC_MAX_DIMENSIONS)
    {
      gfc_error ("Array specification at %C has more than %d "
		 "dimensions", GFC_MAX_DIMENSIONS);
      goto cleanup;
    }

  for (;;)
    {
      as->corank++;
      current_type = match_array_element_spec (as);

      if (current_type == AS_UNKNOWN)
	goto cleanup;

      if (as->corank == 1)
	as->cotype = current_type;
      else
	switch (as->cotype)
	  { /* See how current spec meshes with the existing.  */
	    case AS_IMPLIED_SHAPE:
	    case AS_UNKNOWN:
	      goto cleanup;

	    case AS_EXPLICIT:
	      if (current_type == AS_ASSUMED_SIZE)
		{
		  as->cotype = AS_ASSUMED_SIZE;
		  break;
		}

	      if (current_type == AS_EXPLICIT)
		break;

	      gfc_error ("Bad array specification for an explicitly "
			 "shaped array at %C");

	      goto cleanup;

	    case AS_ASSUMED_SHAPE:
	      if ((current_type == AS_ASSUMED_SHAPE)
		  || (current_type == AS_DEFERRED))
		break;

	      gfc_error ("Bad array specification for assumed shape "
			 "array at %C");
	      goto cleanup;

	    case AS_DEFERRED:
	      if (current_type == AS_DEFERRED)
		break;

	      if (current_type == AS_ASSUMED_SHAPE)
		{
		  as->cotype = AS_ASSUMED_SHAPE;
		  break;
		}

	      gfc_error ("Bad specification for deferred shape array at %C");
	      goto cleanup;

	    case AS_ASSUMED_SIZE:
	      gfc_error ("Bad specification for assumed size array at %C");
	      goto cleanup;

	    case AS_ASSUMED_RANK:
	      gcc_unreachable (); 
	  }

      if (gfc_match_char (']') == MATCH_YES)
	break;

      if (gfc_match_char (',') != MATCH_YES)
	{
	  gfc_error ("Expected another dimension in array declaration at %C");
	  goto cleanup;
	}

      if (as->rank + as->corank >= GFC_MAX_DIMENSIONS)
	{
	  gfc_error ("Array specification at %C has more than %d "
		     "dimensions", GFC_MAX_DIMENSIONS);
	  goto cleanup;
	}
    }

  if (current_type == AS_EXPLICIT)
    {
      gfc_error ("Upper bound of last coarray dimension must be '*' at %C");
      goto cleanup;
    }

  if (as->cotype == AS_ASSUMED_SIZE)
    as->cotype = AS_EXPLICIT;

  if (as->rank == 0)
    as->type = as->cotype;

done:
  if (as->rank == 0 && as->corank == 0)
    {
      *asp = NULL;
      gfc_free_array_spec (as);
      return MATCH_NO;
    }

  /* If a lower bounds of an assumed shape array is blank, put in one.  */
  if (as->type == AS_ASSUMED_SHAPE)
    {
      for (i = 0; i < as->rank + as->corank; i++)
	{
	  if (as->lower[i] == NULL)
	    as->lower[i] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 1);
	}
    }

  *asp = as;

  return MATCH_YES;

cleanup:
  /* Something went wrong.  */
  gfc_free_array_spec (as);
  return MATCH_ERROR;
}


/* Given a symbol and an array specification, modify the symbol to
   have that array specification.  The error locus is needed in case
   something goes wrong.  On failure, the caller must free the spec.  */

gfc_try
gfc_set_array_spec (gfc_symbol *sym, gfc_array_spec *as, locus *error_loc)
{
  int i;

  if (as == NULL)
    return SUCCESS;

  if (as->rank
      && gfc_add_dimension (&sym->attr, sym->name, error_loc) == FAILURE)
    return FAILURE;

  if (as->corank
      && gfc_add_codimension (&sym->attr, sym->name, error_loc) == FAILURE)
    return FAILURE;

  if (sym->as == NULL)
    {
      sym->as = as;
      return SUCCESS;
    }

  if ((sym->as->type == AS_ASSUMED_RANK && as->corank)
      || (as->type == AS_ASSUMED_RANK && sym->as->corank))
    {
      gfc_error ("The assumed-rank array '%s' at %L shall not have a "
		 "codimension", sym->name, error_loc);
      return FAILURE;
    }

  if (as->corank)
    {
      /* The "sym" has no corank (checked via gfc_add_codimension). Thus
	 the codimension is simply added.  */
      gcc_assert (as->rank == 0 && sym->as->corank == 0);

      sym->as->cotype = as->cotype;
      sym->as->corank = as->corank;
      for (i = 0; i < as->corank; i++)
	{
	  sym->as->lower[sym->as->rank + i] = as->lower[i];
	  sym->as->upper[sym->as->rank + i] = as->upper[i];
	}
    }
  else
    {
      /* The "sym" has no rank (checked via gfc_add_dimension). Thus
	 the dimension is added - but first the codimensions (if existing
	 need to be shifted to make space for the dimension.  */
      gcc_assert (as->corank == 0 && sym->as->rank == 0);

      sym->as->rank = as->rank;
      sym->as->type = as->type;
      sym->as->cray_pointee = as->cray_pointee;
      sym->as->cp_was_assumed = as->cp_was_assumed;

      for (i = 0; i < sym->as->corank; i++)
	{
	  sym->as->lower[as->rank + i] = sym->as->lower[i];
	  sym->as->upper[as->rank + i] = sym->as->upper[i];
	}
      for (i = 0; i < as->rank; i++)
	{
	  sym->as->lower[i] = as->lower[i];
	  sym->as->upper[i] = as->upper[i];
	}
    }

  free (as);
  return SUCCESS;
}


/* Copy an array specification.  */

gfc_array_spec *
gfc_copy_array_spec (gfc_array_spec *src)
{
  gfc_array_spec *dest;
  int i;

  if (src == NULL)
    return NULL;

  dest = gfc_get_array_spec ();

  *dest = *src;

  for (i = 0; i < dest->rank + dest->corank; i++)
    {
      dest->lower[i] = gfc_copy_expr (dest->lower[i]);
      dest->upper[i] = gfc_copy_expr (dest->upper[i]);
    }

  return dest;
}


/* Returns nonzero if the two expressions are equal.  Only handles integer
   constants.  */

static int
compare_bounds (gfc_expr *bound1, gfc_expr *bound2)
{
  if (bound1 == NULL || bound2 == NULL
      || bound1->expr_type != EXPR_CONSTANT
      || bound2->expr_type != EXPR_CONSTANT
      || bound1->ts.type != BT_INTEGER
      || bound2->ts.type != BT_INTEGER)
    gfc_internal_error ("gfc_compare_array_spec(): Array spec clobbered");

  if (mpz_cmp (bound1->value.integer, bound2->value.integer) == 0)
    return 1;
  else
    return 0;
}


/* Compares two array specifications.  They must be constant or deferred
   shape.  */

int
gfc_compare_array_spec (gfc_array_spec *as1, gfc_array_spec *as2)
{
  int i;

  if (as1 == NULL && as2 == NULL)
    return 1;

  if (as1 == NULL || as2 == NULL)
    return 0;

  if (as1->rank != as2->rank)
    return 0;

  if (as1->corank != as2->corank)
    return 0;

  if (as1->rank == 0)
    return 1;

  if (as1->type != as2->type)
    return 0;

  if (as1->type == AS_EXPLICIT)
    for (i = 0; i < as1->rank + as1->corank; i++)
      {
	if (compare_bounds (as1->lower[i], as2->lower[i]) == 0)
	  return 0;

	if (compare_bounds (as1->upper[i], as2->upper[i]) == 0)
	  return 0;
      }

  return 1;
}


/****************** Array constructor functions ******************/


/* Given an expression node that might be an array constructor and a
   symbol, make sure that no iterators in this or child constructors
   use the symbol as an implied-DO iterator.  Returns nonzero if a
   duplicate was found.  */

static int
check_duplicate_iterator (gfc_constructor_base base, gfc_symbol *master)
{
  gfc_constructor *c;
  gfc_expr *e;

  for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c))
    {
      e = c->expr;

      if (e->expr_type == EXPR_ARRAY
	  && check_duplicate_iterator (e->value.constructor, master))
	return 1;

      if (c->iterator == NULL)
	continue;

      if (c->iterator->var->symtree->n.sym == master)
	{
	  gfc_error ("DO-iterator '%s' at %L is inside iterator of the "
		     "same name", master->name, &c->where);

	  return 1;
	}
    }

  return 0;
}


/* Forward declaration because these functions are mutually recursive.  */
static match match_array_cons_element (gfc_constructor_base *);

/* Match a list of array elements.  */

static match
match_array_list (gfc_constructor_base *result)
{
  gfc_constructor_base head;
  gfc_constructor *p;
  gfc_iterator iter;
  locus old_loc;
  gfc_expr *e;
  match m;
  int n;

  old_loc = gfc_current_locus;

  if (gfc_match_char ('(') == MATCH_NO)
    return MATCH_NO;

  memset (&iter, '\0', sizeof (gfc_iterator));
  head = NULL;

  m = match_array_cons_element (&head);
  if (m != MATCH_YES)
    goto cleanup;

  if (gfc_match_char (',') != MATCH_YES)
    {
      m = MATCH_NO;
      goto cleanup;
    }

  for (n = 1;; n++)
    {
      m = gfc_match_iterator (&iter, 0);
      if (m == MATCH_YES)
	break;
      if (m == MATCH_ERROR)
	goto cleanup;

      m = match_array_cons_element (&head);
      if (m == MATCH_ERROR)
	goto cleanup;
      if (m == MATCH_NO)
	{
	  if (n > 2)
	    goto syntax;
	  m = MATCH_NO;
	  goto cleanup;		/* Could be a complex constant */
	}

      if (gfc_match_char (',') != MATCH_YES)
	{
	  if (n > 2)
	    goto syntax;
	  m = MATCH_NO;
	  goto cleanup;
	}
    }

  if (gfc_match_char (')') != MATCH_YES)
    goto syntax;

  if (check_duplicate_iterator (head, iter.var->symtree->n.sym))
    {
      m = MATCH_ERROR;
      goto cleanup;
    }

  e = gfc_get_array_expr (BT_UNKNOWN, 0, &old_loc);
  e->value.constructor = head;

  p = gfc_constructor_append_expr (result, e, &gfc_current_locus);
  p->iterator = gfc_get_iterator ();
  *p->iterator = iter;

  return MATCH_YES;

syntax:
  gfc_error ("Syntax error in array constructor at %C");
  m = MATCH_ERROR;

cleanup:
  gfc_constructor_free (head);
  gfc_free_iterator (&iter, 0);
  gfc_current_locus = old_loc;
  return m;
}


/* Match a single element of an array constructor, which can be a
   single expression or a list of elements.  */

static match
match_array_cons_element (gfc_constructor_base *result)
{
  gfc_expr *expr;
  match m;

  m = match_array_list (result);
  if (m != MATCH_NO)
    return m;

  m = gfc_match_expr (&expr);
  if (m != MATCH_YES)
    return m;

  gfc_constructor_append_expr (result, expr, &gfc_current_locus);
  return MATCH_YES;
}


/* Match an array constructor.  */

match
gfc_match_array_constructor (gfc_expr **result)
{
  gfc_constructor_base head, new_cons;
  gfc_expr *expr;
  gfc_typespec ts;
  locus where;
  match m;
  const char *end_delim;
  bool seen_ts;

  if (gfc_match (" (/") == MATCH_NO)
    {
      if (gfc_match (" [") == MATCH_NO)
	return MATCH_NO;
      else
	{
	  if (gfc_notify_std (GFC_STD_F2003, "[...] "
			      "style array constructors at %C") == FAILURE)
	    return MATCH_ERROR;
	  end_delim = " ]";
	}
    }
  else
    end_delim = " /)";

  where = gfc_current_locus;
  head = new_cons = NULL;
  seen_ts = false;

  /* Try to match an optional "type-spec ::"  */
  if (gfc_match_decl_type_spec (&ts, 0) == MATCH_YES)
    {
      seen_ts = (gfc_match (" ::") == MATCH_YES);

      if (seen_ts)
	{
	  if (gfc_notify_std (GFC_STD_F2003, "Array constructor "
			      "including type specification at %C") == FAILURE)
	    goto cleanup;

	  if (ts.deferred)
	    {
	      gfc_error ("Type-spec at %L cannot contain a deferred "
			 "type parameter", &where);
	      goto cleanup;
	    }
	}
    }

  if (! seen_ts)
    gfc_current_locus = where;

  if (gfc_match (end_delim) == MATCH_YES)
    {
      if (seen_ts)
	goto done;
      else
	{
	  gfc_error ("Empty array constructor at %C is not allowed");
	  goto cleanup;
	}
    }

  for (;;)
    {
      m = match_array_cons_element (&head);
      if (m == MATCH_ERROR)
	goto cleanup;
      if (m == MATCH_NO)
	goto syntax;

      if (gfc_match_char (',') == MATCH_NO)
	break;
    }

  if (gfc_match (end_delim) == MATCH_NO)
    goto syntax;

done:
  /* Size must be calculated at resolution time.  */
  if (seen_ts)
    {
      expr = gfc_get_array_expr (ts.type, ts.kind, &where);
      expr->ts = ts;
    }
  else
    expr = gfc_get_array_expr (BT_UNKNOWN, 0, &where);

  expr->value.constructor = head;
  if (expr->ts.u.cl)
    expr->ts.u.cl->length_from_typespec = seen_ts;

  *result = expr;
  return MATCH_YES;

syntax:
  gfc_error ("Syntax error in array constructor at %C");

cleanup:
  gfc_constructor_free (head);
  return MATCH_ERROR;
}



/************** Check array constructors for correctness **************/

/* Given an expression, compare it's type with the type of the current
   constructor.  Returns nonzero if an error was issued.  The
   cons_state variable keeps track of whether the type of the
   constructor being read or resolved is known to be good, bad or just
   starting out.  */

static gfc_typespec constructor_ts;
static enum
{ CONS_START, CONS_GOOD, CONS_BAD }
cons_state;

static int
check_element_type (gfc_expr *expr, bool convert)
{
  if (cons_state == CONS_BAD)
    return 0;			/* Suppress further errors */

  if (cons_state == CONS_START)
    {
      if (expr->ts.type == BT_UNKNOWN)
	cons_state = CONS_BAD;
      else
	{
	  cons_state = CONS_GOOD;
	  constructor_ts = expr->ts;
	}

      return 0;
    }

  if (gfc_compare_types (&constructor_ts, &expr->ts))
    return 0;

  if (convert)
    return gfc_convert_type (expr, &constructor_ts, 1) == SUCCESS ? 0 : 1;

  gfc_error ("Element in %s array constructor at %L is %s",
	     gfc_typename (&constructor_ts), &expr->where,
	     gfc_typename (&expr->ts));

  cons_state = CONS_BAD;
  return 1;
}


/* Recursive work function for gfc_check_constructor_type().  */

static gfc_try
check_constructor_type (gfc_constructor_base base, bool convert)
{
  gfc_constructor *c;
  gfc_expr *e;

  for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c))
    {
      e = c->expr;

      if (e->expr_type == EXPR_ARRAY)
	{
	  if (check_constructor_type (e->value.constructor, convert) == FAILURE)
	    return FAILURE;

	  continue;
	}

      if (check_element_type (e, convert))
	return FAILURE;
    }

  return SUCCESS;
}


/* Check that all elements of an array constructor are the same type.
   On FAILURE, an error has been generated.  */

gfc_try
gfc_check_constructor_type (gfc_expr *e)
{
  gfc_try t;

  if (e->ts.type != BT_UNKNOWN)
    {
      cons_state = CONS_GOOD;
      constructor_ts = e->ts;
    }
  else
    {
      cons_state = CONS_START;
      gfc_clear_ts (&constructor_ts);
    }

  /* If e->ts.type != BT_UNKNOWN, the array constructor included a
     typespec, and we will now convert the values on the fly.  */
  t = check_constructor_type (e->value.constructor, e->ts.type != BT_UNKNOWN);
  if (t == SUCCESS && e->ts.type == BT_UNKNOWN)
    e->ts = constructor_ts;

  return t;
}



typedef struct cons_stack
{
  gfc_iterator *iterator;
  struct cons_stack *previous;
}
cons_stack;

static cons_stack *base;

static gfc_try check_constructor (gfc_constructor_base, gfc_try (*) (gfc_expr *));

/* Check an EXPR_VARIABLE expression in a constructor to make sure
   that that variable is an iteration variables.  */

gfc_try
gfc_check_iter_variable (gfc_expr *expr)
{
  gfc_symbol *sym;
  cons_stack *c;

  sym = expr->symtree->n.sym;

  for (c = base; c && c->iterator; c = c->previous)
    if (sym == c->iterator->var->symtree->n.sym)
      return SUCCESS;

  return FAILURE;
}


/* Recursive work function for gfc_check_constructor().  This amounts
   to calling the check function for each expression in the
   constructor, giving variables with the names of iterators a pass.  */

static gfc_try
check_constructor (gfc_constructor_base ctor, gfc_try (*check_function) (gfc_expr *))
{
  cons_stack element;
  gfc_expr *e;
  gfc_try t;
  gfc_constructor *c;

  for (c = gfc_constructor_first (ctor); c; c = gfc_constructor_next (c))
    {
      e = c->expr;

      if (e->expr_type != EXPR_ARRAY)
	{
	  if ((*check_function) (e) == FAILURE)
	    return FAILURE;
	  continue;
	}

      element.previous = base;
      element.iterator = c->iterator;

      base = &element;
      t = check_constructor (e->value.constructor, check_function);
      base = element.previous;

      if (t == FAILURE)
	return FAILURE;
    }

  /* Nothing went wrong, so all OK.  */
  return SUCCESS;
}


/* Checks a constructor to see if it is a particular kind of
   expression -- specification, restricted, or initialization as
   determined by the check_function.  */

gfc_try
gfc_check_constructor (gfc_expr *expr, gfc_try (*check_function) (gfc_expr *))
{
  cons_stack *base_save;
  gfc_try t;

  base_save = base;
  base = NULL;

  t = check_constructor (expr->value.constructor, check_function);
  base = base_save;

  return t;
}



/**************** Simplification of array constructors ****************/

iterator_stack *iter_stack;

typedef struct
{
  gfc_constructor_base base;
  int extract_count, extract_n;
  gfc_expr *extracted;
  mpz_t *count;

  mpz_t *offset;
  gfc_component *component;
  mpz_t *repeat;

  gfc_try (*expand_work_function) (gfc_expr *);
}
expand_info;

static expand_info current_expand;

static gfc_try expand_constructor (gfc_constructor_base);


/* Work function that counts the number of elements present in a
   constructor.  */

static gfc_try
count_elements (gfc_expr *e)
{
  mpz_t result;

  if (e->rank == 0)
    mpz_add_ui (*current_expand.count, *current_expand.count, 1);
  else
    {
      if (gfc_array_size (e, &result) == FAILURE)
	{
	  gfc_free_expr (e);
	  return FAILURE;
	}

      mpz_add (*current_expand.count, *current_expand.count, result);
      mpz_clear (result);
    }

  gfc_free_expr (e);
  return SUCCESS;
}


/* Work function that extracts a particular element from an array
   constructor, freeing the rest.  */

static gfc_try
extract_element (gfc_expr *e)
{
  if (e->rank != 0)
    {				/* Something unextractable */
      gfc_free_expr (e);
      return FAILURE;
    }

  if (current_expand.extract_count == current_expand.extract_n)
    current_expand.extracted = e;
  else
    gfc_free_expr (e);

  current_expand.extract_count++;
  
  return SUCCESS;
}


/* Work function that constructs a new constructor out of the old one,
   stringing new elements together.  */

static gfc_try
expand (gfc_expr *e)
{
  gfc_constructor *c = gfc_constructor_append_expr (&current_expand.base,
						    e, &e->where);

  c->n.component = current_expand.component;
  return SUCCESS;
}


/* Given an initialization expression that is a variable reference,
   substitute the current value of the iteration variable.  */

void
gfc_simplify_iterator_var (gfc_expr *e)
{
  iterator_stack *p;

  for (p = iter_stack; p; p = p->prev)
    if (e->symtree == p->variable)
      break;

  if (p == NULL)
    return;		/* Variable not found */

  gfc_replace_expr (e, gfc_get_int_expr (gfc_default_integer_kind, NULL, 0));

  mpz_set (e->value.integer, p->value);

  return;
}


/* Expand an expression with that is inside of a constructor,
   recursing into other constructors if present.  */

static gfc_try
expand_expr (gfc_expr *e)
{
  if (e->expr_type == EXPR_ARRAY)
    return expand_constructor (e->value.constructor);

  e = gfc_copy_expr (e);

  if (gfc_simplify_expr (e, 1) == FAILURE)
    {
      gfc_free_expr (e);
      return FAILURE;
    }

  return current_expand.expand_work_function (e);
}


static gfc_try
expand_iterator (gfc_constructor *c)
{
  gfc_expr *start, *end, *step;
  iterator_stack frame;
  mpz_t trip;
  gfc_try t;

  end = step = NULL;

  t = FAILURE;

  mpz_init (trip);
  mpz_init (frame.value);
  frame.prev = NULL;

  start = gfc_copy_expr (c->iterator->start);
  if (gfc_simplify_expr (start, 1) == FAILURE)
    goto cleanup;

  if (start->expr_type != EXPR_CONSTANT || start->ts.type != BT_INTEGER)
    goto cleanup;

  end = gfc_copy_expr (c->iterator->end);
  if (gfc_simplify_expr (end, 1) == FAILURE)
    goto cleanup;

  if (end->expr_type != EXPR_CONSTANT || end->ts.type != BT_INTEGER)
    goto cleanup;

  step = gfc_copy_expr (c->iterator->step);
  if (gfc_simplify_expr (step, 1) == FAILURE)
    goto cleanup;

  if (step->expr_type != EXPR_CONSTANT || step->ts.type != BT_INTEGER)
    goto cleanup;

  if (mpz_sgn (step->value.integer) == 0)
    {
      gfc_error ("Iterator step at %L cannot be zero", &step->where);
      goto cleanup;
    }

  /* Calculate the trip count of the loop.  */
  mpz_sub (trip, end->value.integer, start->value.integer);
  mpz_add (trip, trip, step->value.integer);
  mpz_tdiv_q (trip, trip, step->value.integer);

  mpz_set (frame.value, start->value.integer);

  frame.prev = iter_stack;
  frame.variable = c->iterator->var->symtree;
  iter_stack = &frame;

  while (mpz_sgn (trip) > 0)
    {
      if (expand_expr (c->expr) == FAILURE)
	goto cleanup;

      mpz_add (frame.value, frame.value, step->value.integer);
      mpz_sub_ui (trip, trip, 1);
    }

  t = SUCCESS;

cleanup:
  gfc_free_expr (start);
  gfc_free_expr (end);
  gfc_free_expr (step);

  mpz_clear (trip);
  mpz_clear (frame.value);

  iter_stack = frame.prev;

  return t;
}


/* Expand a constructor into constant constructors without any
   iterators, calling the work function for each of the expanded
   expressions.  The work function needs to either save or free the
   passed expression.  */

static gfc_try
expand_constructor (gfc_constructor_base base)
{
  gfc_constructor *c;
  gfc_expr *e;

  for (c = gfc_constructor_first (base); c; c = gfc_constructor_next(c))
    {
      if (c->iterator != NULL)
	{
	  if (expand_iterator (c) == FAILURE)
	    return FAILURE;
	  continue;
	}

      e = c->expr;

      if (e->expr_type == EXPR_ARRAY)
	{
	  if (expand_constructor (e->value.constructor) == FAILURE)
	    return FAILURE;

	  continue;
	}

      e = gfc_copy_expr (e);
      if (gfc_simplify_expr (e, 1) == FAILURE)
	{
	  gfc_free_expr (e);
	  return FAILURE;
	}
      current_expand.offset = &c->offset;
      current_expand.repeat = &c->repeat;
      current_expand.component = c->n.component;
      if (current_expand.expand_work_function (e) == FAILURE)
	return FAILURE;
    }
  return SUCCESS;
}


/* Given an array expression and an element number (starting at zero),
   return a pointer to the array element.  NULL is returned if the
   size of the array has been exceeded.  The expression node returned
   remains a part of the array and should not be freed.  Access is not
   efficient at all, but this is another place where things do not
   have to be particularly fast.  */

static gfc_expr *
gfc_get_array_element (gfc_expr *array, int element)
{
  expand_info expand_save;
  gfc_expr *e;
  gfc_try rc;

  expand_save = current_expand;
  current_expand.extract_n = element;
  current_expand.expand_work_function = extract_element;
  current_expand.extracted = NULL;
  current_expand.extract_count = 0;

  iter_stack = NULL;

  rc = expand_constructor (array->value.constructor);
  e = current_expand.extracted;
  current_expand = expand_save;

  if (rc == FAILURE)
    return NULL;

  return e;
}


/* Top level subroutine for expanding constructors.  We only expand
   constructor if they are small enough.  */

gfc_try
gfc_expand_constructor (gfc_expr *e, bool fatal)
{
  expand_info expand_save;
  gfc_expr *f;
  gfc_try rc;

  /* If we can successfully get an array element at the max array size then
     the array is too big to expand, so we just return.  */
  f = gfc_get_array_element (e, gfc_option.flag_max_array_constructor);
  if (f != NULL)
    {
      gfc_free_expr (f);
      if (fatal)
	{
	  gfc_error ("The number of elements in the array constructor "
		     "at %L requires an increase of the allowed %d "
		     "upper limit.   See -fmax-array-constructor "
		     "option", &e->where,
		     gfc_option.flag_max_array_constructor);
	  return FAILURE;
	}
      return SUCCESS;
    }

  /* We now know the array is not too big so go ahead and try to expand it.  */
  expand_save = current_expand;
  current_expand.base = NULL;

  iter_stack = NULL;

  current_expand.expand_work_function = expand;

  if (expand_constructor (e->value.constructor) == FAILURE)
    {
      gfc_constructor_free (current_expand.base);
      rc = FAILURE;
      goto done;
    }

  gfc_constructor_free (e->value.constructor);
  e->value.constructor = current_expand.base;

  rc = SUCCESS;

done:
  current_expand = expand_save;

  return rc;
}


/* Work function for checking that an element of a constructor is a
   constant, after removal of any iteration variables.  We return
   FAILURE if not so.  */

static gfc_try
is_constant_element (gfc_expr *e)
{
  int rv;

  rv = gfc_is_constant_expr (e);
  gfc_free_expr (e);

  return rv ? SUCCESS : FAILURE;
}


/* Given an array constructor, determine if the constructor is
   constant or not by expanding it and making sure that all elements
   are constants.  This is a bit of a hack since something like (/ (i,
   i=1,100000000) /) will take a while as* opposed to a more clever
   function that traverses the expression tree. FIXME.  */

int
gfc_constant_ac (gfc_expr *e)
{
  expand_info expand_save;
  gfc_try rc;

  iter_stack = NULL;
  expand_save = current_expand;
  current_expand.expand_work_function = is_constant_element;

  rc = expand_constructor (e->value.constructor);

  current_expand = expand_save;
  if (rc == FAILURE)
    return 0;

  return 1;
}


/* Returns nonzero if an array constructor has been completely
   expanded (no iterators) and zero if iterators are present.  */

int
gfc_expanded_ac (gfc_expr *e)
{
  gfc_constructor *c;

  if (e->expr_type == EXPR_ARRAY)
    for (c = gfc_constructor_first (e->value.constructor);
	 c; c = gfc_constructor_next (c))
      if (c->iterator != NULL || !gfc_expanded_ac (c->expr))
	return 0;

  return 1;
}


/*************** Type resolution of array constructors ***************/


/* The symbol expr_is_sought_symbol_ref will try to find.  */
static const gfc_symbol *sought_symbol = NULL;


/* Tells whether the expression E is a variable reference to the symbol
   in the static variable SOUGHT_SYMBOL, and sets the locus pointer WHERE
   accordingly.
   To be used with gfc_expr_walker: if a reference is found we don't need
   to look further so we return 1 to skip any further walk.  */

static int
expr_is_sought_symbol_ref (gfc_expr **e, int *walk_subtrees ATTRIBUTE_UNUSED,
			   void *where)
{
  gfc_expr *expr = *e;
  locus *sym_loc = (locus *)where;

  if (expr->expr_type == EXPR_VARIABLE
      && expr->symtree->n.sym == sought_symbol)
    {
      *sym_loc = expr->where;
      return 1;
    }

  return 0;
}


/* Tells whether the expression EXPR contains a reference to the symbol
   SYM and in that case sets the position SYM_LOC where the reference is.  */

static bool
find_symbol_in_expr (gfc_symbol *sym, gfc_expr *expr, locus *sym_loc)
{
  int ret;

  sought_symbol = sym;
  ret = gfc_expr_walker (&expr, &expr_is_sought_symbol_ref, sym_loc);
  sought_symbol = NULL;
  return ret;
}


/* Recursive array list resolution function.  All of the elements must
   be of the same type.  */

static gfc_try
resolve_array_list (gfc_constructor_base base)
{
  gfc_try t;
  gfc_constructor *c;
  gfc_iterator *iter;

  t = SUCCESS;

  for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c))
    {
      iter = c->iterator;
      if (iter != NULL)
        {
	  gfc_symbol *iter_var;
	  locus iter_var_loc;
	 
	  if (gfc_resolve_iterator (iter, false) == FAILURE)
	    t = FAILURE;

	  /* Check for bounds referencing the iterator variable.  */
	  gcc_assert (iter->var->expr_type == EXPR_VARIABLE);
	  iter_var = iter->var->symtree->n.sym;
	  if (find_symbol_in_expr (iter_var, iter->start, &iter_var_loc))
	    {
	      if (gfc_notify_std (GFC_STD_LEGACY, "AC-IMPLIED-DO initial "
				  "expression references control variable "
				  "at %L", &iter_var_loc) == FAILURE)
	       t = FAILURE;
	    }
	  if (find_symbol_in_expr (iter_var, iter->end, &iter_var_loc))
	    {
	      if (gfc_notify_std (GFC_STD_LEGACY, "AC-IMPLIED-DO final "
				  "expression references control variable "
				  "at %L", &iter_var_loc) == FAILURE)
	       t = FAILURE;
	    }
	  if (find_symbol_in_expr (iter_var, iter->step, &iter_var_loc))
	    {
	      if (gfc_notify_std (GFC_STD_LEGACY, "AC-IMPLIED-DO step "
				  "expression references control variable "
				  "at %L", &iter_var_loc) == FAILURE)
	       t = FAILURE;
	    }
	}

      if (gfc_resolve_expr (c->expr) == FAILURE)
	t = FAILURE;
    }

  return t;
}

/* Resolve character array constructor. If it has a specified constant character
   length, pad/truncate the elements here; if the length is not specified and
   all elements are of compile-time known length, emit an error as this is
   invalid.  */

gfc_try
gfc_resolve_character_array_constructor (gfc_expr *expr)
{
  gfc_constructor *p;
  int found_length;

  gcc_assert (expr->expr_type == EXPR_ARRAY);
  gcc_assert (expr->ts.type == BT_CHARACTER);

  if (expr->ts.u.cl == NULL)
    {
      for (p = gfc_constructor_first (expr->value.constructor);
	   p; p = gfc_constructor_next (p))
	if (p->expr->ts.u.cl != NULL)
	  {
	    /* Ensure that if there is a char_len around that it is
	       used; otherwise the middle-end confuses them!  */
	    expr->ts.u.cl = p->expr->ts.u.cl;
	    goto got_charlen;
	  }

      expr->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
    }

got_charlen:

  found_length = -1;

  if (expr->ts.u.cl->length == NULL)
    {
      /* Check that all constant string elements have the same length until
	 we reach the end or find a variable-length one.  */

      for (p = gfc_constructor_first (expr->value.constructor);
	   p; p = gfc_constructor_next (p))
	{
	  int current_length = -1;
	  gfc_ref *ref;
	  for (ref = p->expr->ref; ref; ref = ref->next)
	    if (ref->type == REF_SUBSTRING
		&& ref->u.ss.start->expr_type == EXPR_CONSTANT
		&& ref->u.ss.end->expr_type == EXPR_CONSTANT)
	      break;

	  if (p->expr->expr_type == EXPR_CONSTANT)
	    current_length = p->expr->value.character.length;
	  else if (ref)
	    {
	      long j;
	      j = mpz_get_ui (ref->u.ss.end->value.integer)
		- mpz_get_ui (ref->u.ss.start->value.integer) + 1;
	      current_length = (int) j;
	    }
	  else if (p->expr->ts.u.cl && p->expr->ts.u.cl->length
		   && p->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT)
	    {
	      long j;
	      j = mpz_get_si (p->expr->ts.u.cl->length->value.integer);
	      current_length = (int) j;
	    }
	  else
	    return SUCCESS;

	  gcc_assert (current_length != -1);

	  if (found_length == -1)
	    found_length = current_length;
	  else if (found_length != current_length)
	    {
	      gfc_error ("Different CHARACTER lengths (%d/%d) in array"
			 " constructor at %L", found_length, current_length,
			 &p->expr->where);
	      return FAILURE;
	    }

	  gcc_assert (found_length == current_length);
	}

      gcc_assert (found_length != -1);

      /* Update the character length of the array constructor.  */
      expr->ts.u.cl->length = gfc_get_int_expr (gfc_default_integer_kind,
						NULL, found_length);
    }
  else 
    {
      /* We've got a character length specified.  It should be an integer,
	 otherwise an error is signalled elsewhere.  */
      gcc_assert (expr->ts.u.cl->length);

      /* If we've got a constant character length, pad according to this.
	 gfc_extract_int does check for BT_INTEGER and EXPR_CONSTANT and sets
	 max_length only if they pass.  */
      gfc_extract_int (expr->ts.u.cl->length, &found_length);

      /* Now pad/truncate the elements accordingly to the specified character
	 length.  This is ok inside this conditional, as in the case above
	 (without typespec) all elements are verified to have the same length
	 anyway.  */
      if (found_length != -1)
	for (p = gfc_constructor_first (expr->value.constructor);
	     p; p = gfc_constructor_next (p))
	  if (p->expr->expr_type == EXPR_CONSTANT)
	    {
	      gfc_expr *cl = NULL;
	      int current_length = -1;
	      bool has_ts;

	      if (p->expr->ts.u.cl && p->expr->ts.u.cl->length)
	      {
		cl = p->expr->ts.u.cl->length;
		gfc_extract_int (cl, &current_length);
	      }

	      /* If gfc_extract_int above set current_length, we implicitly
		 know the type is BT_INTEGER and it's EXPR_CONSTANT.  */

	      has_ts = (expr->ts.u.cl && expr->ts.u.cl->length_from_typespec);

	      if (! cl
		  || (current_length != -1 && current_length != found_length))
		gfc_set_constant_character_len (found_length, p->expr,
						has_ts ? -1 : found_length);
	    }
    }

  return SUCCESS;
}


/* Resolve all of the expressions in an array list.  */

gfc_try
gfc_resolve_array_constructor (gfc_expr *expr)
{
  gfc_try t;

  t = resolve_array_list (expr->value.constructor);
  if (t == SUCCESS)
    t = gfc_check_constructor_type (expr);

  /* gfc_resolve_character_array_constructor is called in gfc_resolve_expr after
     the call to this function, so we don't need to call it here; if it was
     called twice, an error message there would be duplicated.  */

  return t;
}


/* Copy an iterator structure.  */

gfc_iterator *
gfc_copy_iterator (gfc_iterator *src)
{
  gfc_iterator *dest;

  if (src == NULL)
    return NULL;

  dest = gfc_get_iterator ();

  dest->var = gfc_copy_expr (src->var);
  dest->start = gfc_copy_expr (src->start);
  dest->end = gfc_copy_expr (src->end);
  dest->step = gfc_copy_expr (src->step);

  return dest;
}


/********* Subroutines for determining the size of an array *********/

/* These are needed just to accommodate RESHAPE().  There are no
   diagnostics here, we just return a negative number if something
   goes wrong.  */


/* Get the size of single dimension of an array specification.  The
   array is guaranteed to be one dimensional.  */

gfc_try
spec_dimen_size (gfc_array_spec *as, int dimen, mpz_t *result)
{
  if (as == NULL)
    return FAILURE;

  if (dimen < 0 || dimen > as->rank - 1)
    gfc_internal_error ("spec_dimen_size(): Bad dimension");

  if (as->type != AS_EXPLICIT
      || as->lower[dimen]->expr_type != EXPR_CONSTANT
      || as->upper[dimen]->expr_type != EXPR_CONSTANT
      || as->lower[dimen]->ts.type != BT_INTEGER
      || as->upper[dimen]->ts.type != BT_INTEGER)
    return FAILURE;

  mpz_init (*result);

  mpz_sub (*result, as->upper[dimen]->value.integer,
	   as->lower[dimen]->value.integer);

  mpz_add_ui (*result, *result, 1);

  return SUCCESS;
}


gfc_try
spec_size (gfc_array_spec *as, mpz_t *result)
{
  mpz_t size;
  int d;

  if (as->type == AS_ASSUMED_RANK)
    return FAILURE;

  mpz_init_set_ui (*result, 1);

  for (d = 0; d < as->rank; d++)
    {
      if (spec_dimen_size (as, d, &size) == FAILURE)
	{
	  mpz_clear (*result);
	  return FAILURE;
	}

      mpz_mul (*result, *result, size);
      mpz_clear (size);
    }

  return SUCCESS;
}


/* Get the number of elements in an array section. Optionally, also supply
   the end value.  */

gfc_try
gfc_ref_dimen_size (gfc_array_ref *ar, int dimen, mpz_t *result, mpz_t *end)
{
  mpz_t upper, lower, stride;
  gfc_try t;

  if (dimen < 0 || ar == NULL || dimen > ar->dimen - 1)
    gfc_internal_error ("gfc_ref_dimen_size(): Bad dimension");

  switch (ar->dimen_type[dimen])
    {
    case DIMEN_ELEMENT:
      mpz_init (*result);
      mpz_set_ui (*result, 1);
      t = SUCCESS;
      break;

    case DIMEN_VECTOR:
      t = gfc_array_size (ar->start[dimen], result);	/* Recurse! */
      break;

    case DIMEN_RANGE:
      mpz_init (upper);
      mpz_init (lower);
      mpz_init (stride);
      t = FAILURE;

      if (ar->start[dimen] == NULL)
	{
	  if (ar->as->lower[dimen] == NULL
	      || ar->as->lower[dimen]->expr_type != EXPR_CONSTANT)
	    goto cleanup;
	  mpz_set (lower, ar->as->lower[dimen]->value.integer);
	}
      else
	{
	  if (ar->start[dimen]->expr_type != EXPR_CONSTANT)
	    goto cleanup;
	  mpz_set (lower, ar->start[dimen]->value.integer);
	}

      if (ar->end[dimen] == NULL)
	{
	  if (ar->as->upper[dimen] == NULL
	      || ar->as->upper[dimen]->expr_type != EXPR_CONSTANT)
	    goto cleanup;
	  mpz_set (upper, ar->as->upper[dimen]->value.integer);
	}
      else
	{
	  if (ar->end[dimen]->expr_type != EXPR_CONSTANT)
	    goto cleanup;
	  mpz_set (upper, ar->end[dimen]->value.integer);
	}

      if (ar->stride[dimen] == NULL)
	mpz_set_ui (stride, 1);
      else
	{
	  if (ar->stride[dimen]->expr_type != EXPR_CONSTANT)
	    goto cleanup;
	  mpz_set (stride, ar->stride[dimen]->value.integer);
	}

      mpz_init (*result);
      mpz_sub (*result, upper, lower);
      mpz_add (*result, *result, stride);
      mpz_div (*result, *result, stride);

      /* Zero stride caught earlier.  */
      if (mpz_cmp_ui (*result, 0) < 0)
	mpz_set_ui (*result, 0);
      t = SUCCESS;

      if (end)
	{
	  mpz_init (*end);

	  mpz_sub_ui (*end, *result, 1UL);
	  mpz_mul (*end, *end, stride);
	  mpz_add (*end, *end, lower);
	}

    cleanup:
      mpz_clear (upper);
      mpz_clear (lower);
      mpz_clear (stride);
      return t;

    default:
      gfc_internal_error ("gfc_ref_dimen_size(): Bad dimen_type");
    }

  return t;
}


static gfc_try
ref_size (gfc_array_ref *ar, mpz_t *result)
{
  mpz_t size;
  int d;

  mpz_init_set_ui (*result, 1);

  for (d = 0; d < ar->dimen; d++)
    {
      if (gfc_ref_dimen_size (ar, d, &size, NULL) == FAILURE)
	{
	  mpz_clear (*result);
	  return FAILURE;
	}

      mpz_mul (*result, *result, size);
      mpz_clear (size);
    }

  return SUCCESS;
}


/* Given an array expression and a dimension, figure out how many
   elements it has along that dimension.  Returns SUCCESS if we were
   able to return a result in the 'result' variable, FAILURE
   otherwise.  */

gfc_try
gfc_array_dimen_size (gfc_expr *array, int dimen, mpz_t *result)
{
  gfc_ref *ref;
  int i;

  if (array->ts.type == BT_CLASS)
    return FAILURE;

  if (array->rank == -1)
    return FAILURE;

  if (dimen < 0 || array == NULL || dimen > array->rank - 1)
    gfc_internal_error ("gfc_array_dimen_size(): Bad dimension");

  switch (array->expr_type)
    {
    case EXPR_VARIABLE:
    case EXPR_FUNCTION:
      for (ref = array->ref; ref; ref = ref->next)
	{
	  if (ref->type != REF_ARRAY)
	    continue;

	  if (ref->u.ar.type == AR_FULL)
	    return spec_dimen_size (ref->u.ar.as, dimen, result);

	  if (ref->u.ar.type == AR_SECTION)
	    {
	      for (i = 0; dimen >= 0; i++)
		if (ref->u.ar.dimen_type[i] != DIMEN_ELEMENT)
		  dimen--;

	      return gfc_ref_dimen_size (&ref->u.ar, i - 1, result, NULL);
	    }
	}

      if (array->shape && array->shape[dimen])
	{
	  mpz_init_set (*result, array->shape[dimen]);
	  return SUCCESS;
	}

      if (array->symtree->n.sym->attr.generic
	  && array->value.function.esym != NULL)
	{
	  if (spec_dimen_size (array->value.function.esym->as, dimen, result)
	      == FAILURE)
	    return FAILURE;
	}
      else if (spec_dimen_size (array->symtree->n.sym->as, dimen, result)
	       == FAILURE)
	return FAILURE;

      break;

    case EXPR_ARRAY:
      if (array->shape == NULL) {
	/* Expressions with rank > 1 should have "shape" properly set */
	if ( array->rank != 1 )
	  gfc_internal_error ("gfc_array_dimen_size(): Bad EXPR_ARRAY expr");
	return gfc_array_size(array, result);
      }

      /* Fall through */
    default:
      if (array->shape == NULL)
	return FAILURE;

      mpz_init_set (*result, array->shape[dimen]);

      break;
    }

  return SUCCESS;
}


/* Given an array expression, figure out how many elements are in the
   array.  Returns SUCCESS if this is possible, and sets the 'result'
   variable.  Otherwise returns FAILURE.  */

gfc_try
gfc_array_size (gfc_expr *array, mpz_t *result)
{
  expand_info expand_save;
  gfc_ref *ref;
  int i;
  gfc_try t;

  if (array->ts.type == BT_CLASS)
    return FAILURE;

  switch (array->expr_type)
    {
    case EXPR_ARRAY:
      gfc_push_suppress_errors ();

      expand_save = current_expand;

      current_expand.count = result;
      mpz_init_set_ui (*result, 0);

      current_expand.expand_work_function = count_elements;
      iter_stack = NULL;

      t = expand_constructor (array->value.constructor);

      gfc_pop_suppress_errors ();

      if (t == FAILURE)
	mpz_clear (*result);
      current_expand = expand_save;
      return t;

    case EXPR_VARIABLE:
      for (ref = array->ref; ref; ref = ref->next)
	{
	  if (ref->type != REF_ARRAY)
	    continue;

	  if (ref->u.ar.type == AR_FULL)
	    return spec_size (ref->u.ar.as, result);

	  if (ref->u.ar.type == AR_SECTION)
	    return ref_size (&ref->u.ar, result);
	}

      return spec_size (array->symtree->n.sym->as, result);


    default:
      if (array->rank == 0 || array->shape == NULL)
	return FAILURE;

      mpz_init_set_ui (*result, 1);

      for (i = 0; i < array->rank; i++)
	mpz_mul (*result, *result, array->shape[i]);

      break;
    }

  return SUCCESS;
}


/* Given an array reference, return the shape of the reference in an
   array of mpz_t integers.  */

gfc_try
gfc_array_ref_shape (gfc_array_ref *ar, mpz_t *shape)
{
  int d;
  int i;

  d = 0;

  switch (ar->type)
    {
    case AR_FULL:
      for (; d < ar->as->rank; d++)
	if (spec_dimen_size (ar->as, d, &shape[d]) == FAILURE)
	  goto cleanup;

      return SUCCESS;

    case AR_SECTION:
      for (i = 0; i < ar->dimen; i++)
	{
	  if (ar->dimen_type[i] != DIMEN_ELEMENT)
	    {
	      if (gfc_ref_dimen_size (ar, i, &shape[d], NULL) == FAILURE)
		goto cleanup;
	      d++;
	    }
	}

      return SUCCESS;

    default:
      break;
    }

cleanup:
  gfc_clear_shape (shape, d);
  return FAILURE;
}


/* Given an array expression, find the array reference structure that
   characterizes the reference.  */

gfc_array_ref *
gfc_find_array_ref (gfc_expr *e)
{
  gfc_ref *ref;

  for (ref = e->ref; ref; ref = ref->next)
    if (ref->type == REF_ARRAY
	&& (ref->u.ar.type == AR_FULL || ref->u.ar.type == AR_SECTION))
      break;

  if (ref == NULL)
    gfc_internal_error ("gfc_find_array_ref(): No ref found");

  return &ref->u.ar;
}


/* Find out if an array shape is known at compile time.  */

int
gfc_is_compile_time_shape (gfc_array_spec *as)
{
  int i;

  if (as->type != AS_EXPLICIT)
    return 0;

  for (i = 0; i < as->rank; i++)
    if (!gfc_is_constant_expr (as->lower[i])
	|| !gfc_is_constant_expr (as->upper[i]))
      return 0;

  return 1;
}