1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
|
/* Constant folding for calls to built-in and internal functions.
Copyright (C) 1988-2022 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "realmpfr.h"
#include "tree.h"
#include "stor-layout.h"
#include "options.h"
#include "fold-const.h"
#include "fold-const-call.h"
#include "case-cfn-macros.h"
#include "tm.h" /* For C[LT]Z_DEFINED_AT_ZERO. */
#include "builtins.h"
#include "gimple-expr.h"
#include "tree-vector-builder.h"
/* Functions that test for certain constant types, abstracting away the
decision about whether to check for overflow. */
static inline bool
integer_cst_p (tree t)
{
return TREE_CODE (t) == INTEGER_CST && !TREE_OVERFLOW (t);
}
static inline bool
real_cst_p (tree t)
{
return TREE_CODE (t) == REAL_CST && !TREE_OVERFLOW (t);
}
static inline bool
complex_cst_p (tree t)
{
return TREE_CODE (t) == COMPLEX_CST;
}
/* Return true if ARG is a size_type_node constant.
Store it in *SIZE_OUT if so. */
static inline bool
size_t_cst_p (tree t, unsigned HOST_WIDE_INT *size_out)
{
if (types_compatible_p (size_type_node, TREE_TYPE (t))
&& integer_cst_p (t)
&& tree_fits_uhwi_p (t))
{
*size_out = tree_to_uhwi (t);
return true;
}
return false;
}
/* RES is the result of a comparison in which < 0 means "less", 0 means
"equal" and > 0 means "more". Canonicalize it to -1, 0 or 1 and
return it in type TYPE. */
tree
build_cmp_result (tree type, int res)
{
return build_int_cst (type, res < 0 ? -1 : res > 0 ? 1 : 0);
}
/* M is the result of trying to constant-fold an expression (starting
with clear MPFR flags) and INEXACT says whether the result in M is
exact or inexact. Return true if M can be used as a constant-folded
result in format FORMAT, storing the value in *RESULT if so. */
static bool
do_mpfr_ckconv (real_value *result, mpfr_srcptr m, bool inexact,
const real_format *format)
{
/* Proceed iff we get a normal number, i.e. not NaN or Inf and no
overflow/underflow occurred. If -frounding-math, proceed iff the
result of calling FUNC was exact. */
if (!mpfr_number_p (m)
|| mpfr_overflow_p ()
|| mpfr_underflow_p ()
|| (flag_rounding_math && inexact))
return false;
REAL_VALUE_TYPE tmp;
real_from_mpfr (&tmp, m, format, MPFR_RNDN);
/* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR values.
If the REAL_VALUE_TYPE is zero but the mpft_t is not, then we
underflowed in the conversion. */
if (!real_isfinite (&tmp)
|| ((tmp.cl == rvc_zero) != (mpfr_zero_p (m) != 0)))
return false;
real_convert (result, format, &tmp);
return real_identical (result, &tmp);
}
/* Try to evaluate:
*RESULT = f (*ARG)
in format FORMAT, given that FUNC is the MPFR implementation of f.
Return true on success. */
static bool
do_mpfr_arg1 (real_value *result,
int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_rnd_t),
const real_value *arg, const real_format *format)
{
/* To proceed, MPFR must exactly represent the target floating point
format, which only happens when the target base equals two. */
if (format->b != 2 || !real_isfinite (arg))
return false;
int prec = format->p;
mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN;
mpfr_t m;
mpfr_init2 (m, prec);
mpfr_from_real (m, arg, MPFR_RNDN);
mpfr_clear_flags ();
bool inexact = func (m, m, rnd);
bool ok = do_mpfr_ckconv (result, m, inexact, format);
mpfr_clear (m);
return ok;
}
/* Try to evaluate:
*RESULT_SIN = sin (*ARG);
*RESULT_COS = cos (*ARG);
for format FORMAT. Return true on success. */
static bool
do_mpfr_sincos (real_value *result_sin, real_value *result_cos,
const real_value *arg, const real_format *format)
{
/* To proceed, MPFR must exactly represent the target floating point
format, which only happens when the target base equals two. */
if (format->b != 2 || !real_isfinite (arg))
return false;
int prec = format->p;
mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN;
mpfr_t m, ms, mc;
mpfr_inits2 (prec, m, ms, mc, NULL);
mpfr_from_real (m, arg, MPFR_RNDN);
mpfr_clear_flags ();
bool inexact = mpfr_sin_cos (ms, mc, m, rnd);
bool ok = (do_mpfr_ckconv (result_sin, ms, inexact, format)
&& do_mpfr_ckconv (result_cos, mc, inexact, format));
mpfr_clears (m, ms, mc, NULL);
return ok;
}
/* Try to evaluate:
*RESULT = f (*ARG0, *ARG1)
in format FORMAT, given that FUNC is the MPFR implementation of f.
Return true on success. */
static bool
do_mpfr_arg2 (real_value *result,
int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_srcptr, mpfr_rnd_t),
const real_value *arg0, const real_value *arg1,
const real_format *format)
{
/* To proceed, MPFR must exactly represent the target floating point
format, which only happens when the target base equals two. */
if (format->b != 2 || !real_isfinite (arg0) || !real_isfinite (arg1))
return false;
int prec = format->p;
mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN;
mpfr_t m0, m1;
mpfr_inits2 (prec, m0, m1, NULL);
mpfr_from_real (m0, arg0, MPFR_RNDN);
mpfr_from_real (m1, arg1, MPFR_RNDN);
mpfr_clear_flags ();
bool inexact = func (m0, m0, m1, rnd);
bool ok = do_mpfr_ckconv (result, m0, inexact, format);
mpfr_clears (m0, m1, NULL);
return ok;
}
/* Try to evaluate:
*RESULT = f (ARG0, *ARG1)
in format FORMAT, given that FUNC is the MPFR implementation of f.
Return true on success. */
static bool
do_mpfr_arg2 (real_value *result,
int (*func) (mpfr_ptr, long, mpfr_srcptr, mpfr_rnd_t),
const wide_int_ref &arg0, const real_value *arg1,
const real_format *format)
{
if (format->b != 2 || !real_isfinite (arg1))
return false;
int prec = format->p;
mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN;
mpfr_t m;
mpfr_init2 (m, prec);
mpfr_from_real (m, arg1, MPFR_RNDN);
mpfr_clear_flags ();
bool inexact = func (m, arg0.to_shwi (), m, rnd);
bool ok = do_mpfr_ckconv (result, m, inexact, format);
mpfr_clear (m);
return ok;
}
/* Try to evaluate:
*RESULT = f (*ARG0, *ARG1, *ARG2)
in format FORMAT, given that FUNC is the MPFR implementation of f.
Return true on success. */
static bool
do_mpfr_arg3 (real_value *result,
int (*func) (mpfr_ptr, mpfr_srcptr, mpfr_srcptr,
mpfr_srcptr, mpfr_rnd_t),
const real_value *arg0, const real_value *arg1,
const real_value *arg2, const real_format *format)
{
/* To proceed, MPFR must exactly represent the target floating point
format, which only happens when the target base equals two. */
if (format->b != 2
|| !real_isfinite (arg0)
|| !real_isfinite (arg1)
|| !real_isfinite (arg2))
return false;
int prec = format->p;
mpfr_rnd_t rnd = format->round_towards_zero ? MPFR_RNDZ : MPFR_RNDN;
mpfr_t m0, m1, m2;
mpfr_inits2 (prec, m0, m1, m2, NULL);
mpfr_from_real (m0, arg0, MPFR_RNDN);
mpfr_from_real (m1, arg1, MPFR_RNDN);
mpfr_from_real (m2, arg2, MPFR_RNDN);
mpfr_clear_flags ();
bool inexact = func (m0, m0, m1, m2, rnd);
bool ok = do_mpfr_ckconv (result, m0, inexact, format);
mpfr_clears (m0, m1, m2, NULL);
return ok;
}
/* M is the result of trying to constant-fold an expression (starting
with clear MPFR flags) and INEXACT says whether the result in M is
exact or inexact. Return true if M can be used as a constant-folded
result in which the real and imaginary parts have format FORMAT.
Store those parts in *RESULT_REAL and *RESULT_IMAG if so. */
static bool
do_mpc_ckconv (real_value *result_real, real_value *result_imag,
mpc_srcptr m, bool inexact, const real_format *format)
{
/* Proceed iff we get a normal number, i.e. not NaN or Inf and no
overflow/underflow occurred. If -frounding-math, proceed iff the
result of calling FUNC was exact. */
if (!mpfr_number_p (mpc_realref (m))
|| !mpfr_number_p (mpc_imagref (m))
|| mpfr_overflow_p ()
|| mpfr_underflow_p ()
|| (flag_rounding_math && inexact))
return false;
REAL_VALUE_TYPE tmp_real, tmp_imag;
real_from_mpfr (&tmp_real, mpc_realref (m), format, MPFR_RNDN);
real_from_mpfr (&tmp_imag, mpc_imagref (m), format, MPFR_RNDN);
/* Proceed iff GCC's REAL_VALUE_TYPE can hold the MPFR values.
If the REAL_VALUE_TYPE is zero but the mpft_t is not, then we
underflowed in the conversion. */
if (!real_isfinite (&tmp_real)
|| !real_isfinite (&tmp_imag)
|| (tmp_real.cl == rvc_zero) != (mpfr_zero_p (mpc_realref (m)) != 0)
|| (tmp_imag.cl == rvc_zero) != (mpfr_zero_p (mpc_imagref (m)) != 0))
return false;
real_convert (result_real, format, &tmp_real);
real_convert (result_imag, format, &tmp_imag);
return (real_identical (result_real, &tmp_real)
&& real_identical (result_imag, &tmp_imag));
}
/* Try to evaluate:
RESULT = f (ARG)
in format FORMAT, given that FUNC is the mpc implementation of f.
Return true on success. Both RESULT and ARG are represented as
real and imaginary pairs. */
static bool
do_mpc_arg1 (real_value *result_real, real_value *result_imag,
int (*func) (mpc_ptr, mpc_srcptr, mpc_rnd_t),
const real_value *arg_real, const real_value *arg_imag,
const real_format *format)
{
/* To proceed, MPFR must exactly represent the target floating point
format, which only happens when the target base equals two. */
if (format->b != 2
|| !real_isfinite (arg_real)
|| !real_isfinite (arg_imag))
return false;
int prec = format->p;
mpc_rnd_t crnd = format->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN;
mpc_t m;
mpc_init2 (m, prec);
mpfr_from_real (mpc_realref (m), arg_real, MPFR_RNDN);
mpfr_from_real (mpc_imagref (m), arg_imag, MPFR_RNDN);
mpfr_clear_flags ();
bool inexact = func (m, m, crnd);
bool ok = do_mpc_ckconv (result_real, result_imag, m, inexact, format);
mpc_clear (m);
return ok;
}
/* Try to evaluate:
RESULT = f (ARG0, ARG1)
in format FORMAT, given that FUNC is the mpc implementation of f.
Return true on success. RESULT, ARG0 and ARG1 are represented as
real and imaginary pairs. */
static bool
do_mpc_arg2 (real_value *result_real, real_value *result_imag,
int (*func)(mpc_ptr, mpc_srcptr, mpc_srcptr, mpc_rnd_t),
const real_value *arg0_real, const real_value *arg0_imag,
const real_value *arg1_real, const real_value *arg1_imag,
const real_format *format)
{
if (!real_isfinite (arg0_real)
|| !real_isfinite (arg0_imag)
|| !real_isfinite (arg1_real)
|| !real_isfinite (arg1_imag))
return false;
int prec = format->p;
mpc_rnd_t crnd = format->round_towards_zero ? MPC_RNDZZ : MPC_RNDNN;
mpc_t m0, m1;
mpc_init2 (m0, prec);
mpc_init2 (m1, prec);
mpfr_from_real (mpc_realref (m0), arg0_real, MPFR_RNDN);
mpfr_from_real (mpc_imagref (m0), arg0_imag, MPFR_RNDN);
mpfr_from_real (mpc_realref (m1), arg1_real, MPFR_RNDN);
mpfr_from_real (mpc_imagref (m1), arg1_imag, MPFR_RNDN);
mpfr_clear_flags ();
bool inexact = func (m0, m0, m1, crnd);
bool ok = do_mpc_ckconv (result_real, result_imag, m0, inexact, format);
mpc_clear (m0);
mpc_clear (m1);
return ok;
}
/* Try to evaluate:
*RESULT = logb (*ARG)
in format FORMAT. Return true on success. */
static bool
fold_const_logb (real_value *result, const real_value *arg,
const real_format *format)
{
switch (arg->cl)
{
case rvc_nan:
/* If arg is +-NaN, then return it. */
*result = *arg;
return true;
case rvc_inf:
/* If arg is +-Inf, then return +Inf. */
*result = *arg;
result->sign = 0;
return true;
case rvc_zero:
/* Zero may set errno and/or raise an exception. */
return false;
case rvc_normal:
/* For normal numbers, proceed iff radix == 2. In GCC,
normalized significands are in the range [0.5, 1.0). We
want the exponent as if they were [1.0, 2.0) so get the
exponent and subtract 1. */
if (format->b == 2)
{
real_from_integer (result, format, REAL_EXP (arg) - 1, SIGNED);
return true;
}
return false;
}
}
/* Try to evaluate:
*RESULT = significand (*ARG)
in format FORMAT. Return true on success. */
static bool
fold_const_significand (real_value *result, const real_value *arg,
const real_format *format)
{
switch (arg->cl)
{
case rvc_zero:
case rvc_nan:
case rvc_inf:
/* If arg is +-0, +-Inf or +-NaN, then return it. */
*result = *arg;
return true;
case rvc_normal:
/* For normal numbers, proceed iff radix == 2. */
if (format->b == 2)
{
*result = *arg;
/* In GCC, normalized significands are in the range [0.5, 1.0).
We want them to be [1.0, 2.0) so set the exponent to 1. */
SET_REAL_EXP (result, 1);
return true;
}
return false;
}
}
/* Try to evaluate:
*RESULT = f (*ARG)
where FORMAT is the format of *ARG and PRECISION is the number of
significant bits in the result. Return true on success. */
static bool
fold_const_conversion (wide_int *result,
void (*fn) (real_value *, format_helper,
const real_value *),
const real_value *arg, unsigned int precision,
const real_format *format)
{
if (!real_isfinite (arg))
return false;
real_value rounded;
fn (&rounded, format, arg);
bool fail = false;
*result = real_to_integer (&rounded, &fail, precision);
return !fail;
}
/* Try to evaluate:
*RESULT = pow (*ARG0, *ARG1)
in format FORMAT. Return true on success. */
static bool
fold_const_pow (real_value *result, const real_value *arg0,
const real_value *arg1, const real_format *format)
{
if (do_mpfr_arg2 (result, mpfr_pow, arg0, arg1, format))
return true;
/* Check for an integer exponent. */
REAL_VALUE_TYPE cint1;
HOST_WIDE_INT n1 = real_to_integer (arg1);
real_from_integer (&cint1, VOIDmode, n1, SIGNED);
/* Attempt to evaluate pow at compile-time, unless this should
raise an exception. */
if (real_identical (arg1, &cint1)
&& (n1 > 0
|| (!flag_trapping_math && !flag_errno_math)
|| !real_equal (arg0, &dconst0)))
{
bool inexact = real_powi (result, format, arg0, n1);
/* Avoid the folding if flag_signaling_nans is on. */
if (flag_unsafe_math_optimizations
|| (!inexact
&& !(flag_signaling_nans
&& REAL_VALUE_ISSIGNALING_NAN (*arg0))))
return true;
}
return false;
}
/* Try to evaluate:
*RESULT = nextafter (*ARG0, *ARG1)
or
*RESULT = nexttoward (*ARG0, *ARG1)
in format FORMAT. Return true on success. */
static bool
fold_const_nextafter (real_value *result, const real_value *arg0,
const real_value *arg1, const real_format *format)
{
if (REAL_VALUE_ISSIGNALING_NAN (*arg0)
|| REAL_VALUE_ISSIGNALING_NAN (*arg1))
return false;
/* Don't handle composite modes, nor decimal, nor modes without
inf or denorm at least for now. */
if (format->pnan < format->p
|| format->b == 10
|| !format->has_inf
|| !format->has_denorm)
return false;
if (real_nextafter (result, format, arg0, arg1)
/* If raising underflow or overflow and setting errno to ERANGE,
fail if we care about those side-effects. */
&& (flag_trapping_math || flag_errno_math))
return false;
/* Similarly for nextafter (0, 1) raising underflow. */
else if (flag_trapping_math
&& arg0->cl == rvc_zero
&& result->cl != rvc_zero)
return false;
real_convert (result, format, result);
return true;
}
/* Try to evaluate:
*RESULT = ldexp (*ARG0, ARG1)
in format FORMAT. Return true on success. */
static bool
fold_const_builtin_load_exponent (real_value *result, const real_value *arg0,
const wide_int_ref &arg1,
const real_format *format)
{
/* Bound the maximum adjustment to twice the range of the
mode's valid exponents. Use abs to ensure the range is
positive as a sanity check. */
int max_exp_adj = 2 * labs (format->emax - format->emin);
/* The requested adjustment must be inside this range. This
is a preliminary cap to avoid things like overflow, we
may still fail to compute the result for other reasons. */
if (wi::les_p (arg1, -max_exp_adj) || wi::ges_p (arg1, max_exp_adj))
return false;
/* Don't perform operation if we honor signaling NaNs and
operand is a signaling NaN. */
if (!flag_unsafe_math_optimizations
&& flag_signaling_nans
&& REAL_VALUE_ISSIGNALING_NAN (*arg0))
return false;
REAL_VALUE_TYPE initial_result;
real_ldexp (&initial_result, arg0, arg1.to_shwi ());
/* Ensure we didn't overflow. */
if (real_isinf (&initial_result))
return false;
/* Only proceed if the target mode can hold the
resulting value. */
*result = real_value_truncate (format, initial_result);
return real_equal (&initial_result, result);
}
/* Fold a call to __builtin_nan or __builtin_nans with argument ARG and
return type TYPE. QUIET is true if a quiet rather than signalling
NaN is required. */
static tree
fold_const_builtin_nan (tree type, tree arg, bool quiet)
{
REAL_VALUE_TYPE real;
const char *str = c_getstr (arg);
if (str && real_nan (&real, str, quiet, TYPE_MODE (type)))
return build_real (type, real);
return NULL_TREE;
}
/* Fold a call to IFN_REDUC_<CODE> (ARG), returning a value of type TYPE. */
static tree
fold_const_reduction (tree type, tree arg, tree_code code)
{
unsigned HOST_WIDE_INT nelts;
if (TREE_CODE (arg) != VECTOR_CST
|| !VECTOR_CST_NELTS (arg).is_constant (&nelts))
return NULL_TREE;
tree res = VECTOR_CST_ELT (arg, 0);
for (unsigned HOST_WIDE_INT i = 1; i < nelts; i++)
{
res = const_binop (code, type, res, VECTOR_CST_ELT (arg, i));
if (res == NULL_TREE || !CONSTANT_CLASS_P (res))
return NULL_TREE;
}
return res;
}
/* Fold a call to IFN_VEC_CONVERT (ARG) returning TYPE. */
static tree
fold_const_vec_convert (tree ret_type, tree arg)
{
enum tree_code code = NOP_EXPR;
tree arg_type = TREE_TYPE (arg);
if (TREE_CODE (arg) != VECTOR_CST)
return NULL_TREE;
gcc_checking_assert (VECTOR_TYPE_P (ret_type) && VECTOR_TYPE_P (arg_type));
if (INTEGRAL_TYPE_P (TREE_TYPE (ret_type))
&& SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg_type)))
code = FIX_TRUNC_EXPR;
else if (INTEGRAL_TYPE_P (TREE_TYPE (arg_type))
&& SCALAR_FLOAT_TYPE_P (TREE_TYPE (ret_type)))
code = FLOAT_EXPR;
/* We can't handle steps directly when extending, since the
values need to wrap at the original precision first. */
bool step_ok_p
= (INTEGRAL_TYPE_P (TREE_TYPE (ret_type))
&& INTEGRAL_TYPE_P (TREE_TYPE (arg_type))
&& (TYPE_PRECISION (TREE_TYPE (ret_type))
<= TYPE_PRECISION (TREE_TYPE (arg_type))));
tree_vector_builder elts;
if (!elts.new_unary_operation (ret_type, arg, step_ok_p))
return NULL_TREE;
unsigned int count = elts.encoded_nelts ();
for (unsigned int i = 0; i < count; ++i)
{
tree elt = fold_unary (code, TREE_TYPE (ret_type),
VECTOR_CST_ELT (arg, i));
if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt))
return NULL_TREE;
elts.quick_push (elt);
}
return elts.build ();
}
/* Try to evaluate:
IFN_WHILE_ULT (ARG0, ARG1, (TYPE) { ... })
Return the value on success and null on failure. */
static tree
fold_while_ult (tree type, poly_uint64 arg0, poly_uint64 arg1)
{
if (known_ge (arg0, arg1))
return build_zero_cst (type);
if (maybe_ge (arg0, arg1))
return NULL_TREE;
poly_uint64 diff = arg1 - arg0;
poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type);
if (known_ge (diff, nelts))
return build_all_ones_cst (type);
unsigned HOST_WIDE_INT const_diff;
if (known_le (diff, nelts) && diff.is_constant (&const_diff))
{
tree minus_one = build_minus_one_cst (TREE_TYPE (type));
tree zero = build_zero_cst (TREE_TYPE (type));
return build_vector_a_then_b (type, const_diff, minus_one, zero);
}
return NULL_TREE;
}
/* Try to evaluate:
*RESULT = FN (*ARG)
in format FORMAT. Return true on success. */
static bool
fold_const_call_ss (real_value *result, combined_fn fn,
const real_value *arg, const real_format *format)
{
switch (fn)
{
CASE_CFN_SQRT:
CASE_CFN_SQRT_FN:
return (real_compare (GE_EXPR, arg, &dconst0)
&& do_mpfr_arg1 (result, mpfr_sqrt, arg, format));
CASE_CFN_CBRT:
return do_mpfr_arg1 (result, mpfr_cbrt, arg, format);
CASE_CFN_ASIN:
return (real_compare (GE_EXPR, arg, &dconstm1)
&& real_compare (LE_EXPR, arg, &dconst1)
&& do_mpfr_arg1 (result, mpfr_asin, arg, format));
CASE_CFN_ACOS:
return (real_compare (GE_EXPR, arg, &dconstm1)
&& real_compare (LE_EXPR, arg, &dconst1)
&& do_mpfr_arg1 (result, mpfr_acos, arg, format));
CASE_CFN_ATAN:
return do_mpfr_arg1 (result, mpfr_atan, arg, format);
CASE_CFN_ASINH:
return do_mpfr_arg1 (result, mpfr_asinh, arg, format);
CASE_CFN_ACOSH:
return (real_compare (GE_EXPR, arg, &dconst1)
&& do_mpfr_arg1 (result, mpfr_acosh, arg, format));
CASE_CFN_ATANH:
return (real_compare (GE_EXPR, arg, &dconstm1)
&& real_compare (LE_EXPR, arg, &dconst1)
&& do_mpfr_arg1 (result, mpfr_atanh, arg, format));
CASE_CFN_SIN:
return do_mpfr_arg1 (result, mpfr_sin, arg, format);
CASE_CFN_COS:
return do_mpfr_arg1 (result, mpfr_cos, arg, format);
CASE_CFN_TAN:
return do_mpfr_arg1 (result, mpfr_tan, arg, format);
CASE_CFN_SINH:
return do_mpfr_arg1 (result, mpfr_sinh, arg, format);
CASE_CFN_COSH:
return do_mpfr_arg1 (result, mpfr_cosh, arg, format);
CASE_CFN_TANH:
return do_mpfr_arg1 (result, mpfr_tanh, arg, format);
CASE_CFN_ERF:
return do_mpfr_arg1 (result, mpfr_erf, arg, format);
CASE_CFN_ERFC:
return do_mpfr_arg1 (result, mpfr_erfc, arg, format);
CASE_CFN_TGAMMA:
return do_mpfr_arg1 (result, mpfr_gamma, arg, format);
CASE_CFN_EXP:
return do_mpfr_arg1 (result, mpfr_exp, arg, format);
CASE_CFN_EXP2:
return do_mpfr_arg1 (result, mpfr_exp2, arg, format);
CASE_CFN_EXP10:
CASE_CFN_POW10:
return do_mpfr_arg1 (result, mpfr_exp10, arg, format);
CASE_CFN_EXPM1:
return do_mpfr_arg1 (result, mpfr_expm1, arg, format);
CASE_CFN_LOG:
return (real_compare (GT_EXPR, arg, &dconst0)
&& do_mpfr_arg1 (result, mpfr_log, arg, format));
CASE_CFN_LOG2:
return (real_compare (GT_EXPR, arg, &dconst0)
&& do_mpfr_arg1 (result, mpfr_log2, arg, format));
CASE_CFN_LOG10:
return (real_compare (GT_EXPR, arg, &dconst0)
&& do_mpfr_arg1 (result, mpfr_log10, arg, format));
CASE_CFN_LOG1P:
return (real_compare (GT_EXPR, arg, &dconstm1)
&& do_mpfr_arg1 (result, mpfr_log1p, arg, format));
CASE_CFN_J0:
return do_mpfr_arg1 (result, mpfr_j0, arg, format);
CASE_CFN_J1:
return do_mpfr_arg1 (result, mpfr_j1, arg, format);
CASE_CFN_Y0:
return (real_compare (GT_EXPR, arg, &dconst0)
&& do_mpfr_arg1 (result, mpfr_y0, arg, format));
CASE_CFN_Y1:
return (real_compare (GT_EXPR, arg, &dconst0)
&& do_mpfr_arg1 (result, mpfr_y1, arg, format));
CASE_CFN_FLOOR:
CASE_CFN_FLOOR_FN:
if (!REAL_VALUE_ISSIGNALING_NAN (*arg))
{
real_floor (result, format, arg);
return true;
}
return false;
CASE_CFN_CEIL:
CASE_CFN_CEIL_FN:
if (!REAL_VALUE_ISSIGNALING_NAN (*arg))
{
real_ceil (result, format, arg);
return true;
}
return false;
CASE_CFN_TRUNC:
CASE_CFN_TRUNC_FN:
if (!REAL_VALUE_ISSIGNALING_NAN (*arg))
{
real_trunc (result, format, arg);
return true;
}
return false;
CASE_CFN_ROUND:
CASE_CFN_ROUND_FN:
if (!REAL_VALUE_ISSIGNALING_NAN (*arg))
{
real_round (result, format, arg);
return true;
}
return false;
CASE_CFN_ROUNDEVEN:
CASE_CFN_ROUNDEVEN_FN:
if (!REAL_VALUE_ISSIGNALING_NAN (*arg))
{
real_roundeven (result, format, arg);
return true;
}
return false;
CASE_CFN_LOGB:
return fold_const_logb (result, arg, format);
CASE_CFN_SIGNIFICAND:
return fold_const_significand (result, arg, format);
default:
return false;
}
}
/* Try to evaluate:
*RESULT = FN (*ARG)
where FORMAT is the format of ARG and PRECISION is the number of
significant bits in the result. Return true on success. */
static bool
fold_const_call_ss (wide_int *result, combined_fn fn,
const real_value *arg, unsigned int precision,
const real_format *format)
{
switch (fn)
{
CASE_CFN_SIGNBIT:
if (real_isneg (arg))
*result = wi::one (precision);
else
*result = wi::zero (precision);
return true;
CASE_CFN_ILOGB:
/* For ilogb we don't know FP_ILOGB0, so only handle normal values.
Proceed iff radix == 2. In GCC, normalized significands are in
the range [0.5, 1.0). We want the exponent as if they were
[1.0, 2.0) so get the exponent and subtract 1. */
if (arg->cl == rvc_normal && format->b == 2)
{
*result = wi::shwi (REAL_EXP (arg) - 1, precision);
return true;
}
return false;
CASE_CFN_ICEIL:
CASE_CFN_LCEIL:
CASE_CFN_LLCEIL:
return fold_const_conversion (result, real_ceil, arg,
precision, format);
CASE_CFN_LFLOOR:
CASE_CFN_IFLOOR:
CASE_CFN_LLFLOOR:
return fold_const_conversion (result, real_floor, arg,
precision, format);
CASE_CFN_IROUND:
CASE_CFN_LROUND:
CASE_CFN_LLROUND:
return fold_const_conversion (result, real_round, arg,
precision, format);
CASE_CFN_IRINT:
CASE_CFN_LRINT:
CASE_CFN_LLRINT:
/* Not yet folded to a constant. */
return false;
CASE_CFN_FINITE:
case CFN_BUILT_IN_FINITED32:
case CFN_BUILT_IN_FINITED64:
case CFN_BUILT_IN_FINITED128:
case CFN_BUILT_IN_ISFINITE:
*result = wi::shwi (real_isfinite (arg) ? 1 : 0, precision);
return true;
case CFN_BUILT_IN_ISSIGNALING:
*result = wi::shwi (real_issignaling_nan (arg) ? 1 : 0, precision);
return true;
CASE_CFN_ISINF:
case CFN_BUILT_IN_ISINFD32:
case CFN_BUILT_IN_ISINFD64:
case CFN_BUILT_IN_ISINFD128:
if (real_isinf (arg))
*result = wi::shwi (arg->sign ? -1 : 1, precision);
else
*result = wi::shwi (0, precision);
return true;
CASE_CFN_ISNAN:
case CFN_BUILT_IN_ISNAND32:
case CFN_BUILT_IN_ISNAND64:
case CFN_BUILT_IN_ISNAND128:
*result = wi::shwi (real_isnan (arg) ? 1 : 0, precision);
return true;
default:
return false;
}
}
/* Try to evaluate:
*RESULT = FN (ARG)
where ARG_TYPE is the type of ARG and PRECISION is the number of bits
in the result. Return true on success. */
static bool
fold_const_call_ss (wide_int *result, combined_fn fn, const wide_int_ref &arg,
unsigned int precision, tree arg_type)
{
switch (fn)
{
CASE_CFN_FFS:
*result = wi::shwi (wi::ffs (arg), precision);
return true;
CASE_CFN_CLZ:
{
int tmp;
if (wi::ne_p (arg, 0))
tmp = wi::clz (arg);
else if (!CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (arg_type),
tmp))
tmp = TYPE_PRECISION (arg_type);
*result = wi::shwi (tmp, precision);
return true;
}
CASE_CFN_CTZ:
{
int tmp;
if (wi::ne_p (arg, 0))
tmp = wi::ctz (arg);
else if (!CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (arg_type),
tmp))
tmp = TYPE_PRECISION (arg_type);
*result = wi::shwi (tmp, precision);
return true;
}
CASE_CFN_CLRSB:
*result = wi::shwi (wi::clrsb (arg), precision);
return true;
CASE_CFN_POPCOUNT:
*result = wi::shwi (wi::popcount (arg), precision);
return true;
CASE_CFN_PARITY:
*result = wi::shwi (wi::parity (arg), precision);
return true;
case CFN_BUILT_IN_BSWAP16:
case CFN_BUILT_IN_BSWAP32:
case CFN_BUILT_IN_BSWAP64:
case CFN_BUILT_IN_BSWAP128:
*result = wide_int::from (arg, precision, TYPE_SIGN (arg_type)).bswap ();
return true;
default:
return false;
}
}
/* Try to evaluate:
RESULT = FN (*ARG)
where FORMAT is the format of ARG and of the real and imaginary parts
of RESULT, passed as RESULT_REAL and RESULT_IMAG respectively. Return
true on success. */
static bool
fold_const_call_cs (real_value *result_real, real_value *result_imag,
combined_fn fn, const real_value *arg,
const real_format *format)
{
switch (fn)
{
CASE_CFN_CEXPI:
/* cexpi(x+yi) = cos(x)+sin(y)*i. */
return do_mpfr_sincos (result_imag, result_real, arg, format);
default:
return false;
}
}
/* Try to evaluate:
*RESULT = fn (ARG)
where FORMAT is the format of RESULT and of the real and imaginary parts
of ARG, passed as ARG_REAL and ARG_IMAG respectively. Return true on
success. */
static bool
fold_const_call_sc (real_value *result, combined_fn fn,
const real_value *arg_real, const real_value *arg_imag,
const real_format *format)
{
switch (fn)
{
CASE_CFN_CABS:
return do_mpfr_arg2 (result, mpfr_hypot, arg_real, arg_imag, format);
default:
return false;
}
}
/* Try to evaluate:
RESULT = fn (ARG)
where FORMAT is the format of the real and imaginary parts of RESULT
(RESULT_REAL and RESULT_IMAG) and of ARG (ARG_REAL and ARG_IMAG).
Return true on success. */
static bool
fold_const_call_cc (real_value *result_real, real_value *result_imag,
combined_fn fn, const real_value *arg_real,
const real_value *arg_imag, const real_format *format)
{
switch (fn)
{
CASE_CFN_CCOS:
return do_mpc_arg1 (result_real, result_imag, mpc_cos,
arg_real, arg_imag, format);
CASE_CFN_CCOSH:
return do_mpc_arg1 (result_real, result_imag, mpc_cosh,
arg_real, arg_imag, format);
CASE_CFN_CPROJ:
if (real_isinf (arg_real) || real_isinf (arg_imag))
{
real_inf (result_real);
*result_imag = dconst0;
result_imag->sign = arg_imag->sign;
}
else
{
*result_real = *arg_real;
*result_imag = *arg_imag;
}
return true;
CASE_CFN_CSIN:
return do_mpc_arg1 (result_real, result_imag, mpc_sin,
arg_real, arg_imag, format);
CASE_CFN_CSINH:
return do_mpc_arg1 (result_real, result_imag, mpc_sinh,
arg_real, arg_imag, format);
CASE_CFN_CTAN:
return do_mpc_arg1 (result_real, result_imag, mpc_tan,
arg_real, arg_imag, format);
CASE_CFN_CTANH:
return do_mpc_arg1 (result_real, result_imag, mpc_tanh,
arg_real, arg_imag, format);
CASE_CFN_CLOG:
return do_mpc_arg1 (result_real, result_imag, mpc_log,
arg_real, arg_imag, format);
CASE_CFN_CSQRT:
return do_mpc_arg1 (result_real, result_imag, mpc_sqrt,
arg_real, arg_imag, format);
CASE_CFN_CASIN:
return do_mpc_arg1 (result_real, result_imag, mpc_asin,
arg_real, arg_imag, format);
CASE_CFN_CACOS:
return do_mpc_arg1 (result_real, result_imag, mpc_acos,
arg_real, arg_imag, format);
CASE_CFN_CATAN:
return do_mpc_arg1 (result_real, result_imag, mpc_atan,
arg_real, arg_imag, format);
CASE_CFN_CASINH:
return do_mpc_arg1 (result_real, result_imag, mpc_asinh,
arg_real, arg_imag, format);
CASE_CFN_CACOSH:
return do_mpc_arg1 (result_real, result_imag, mpc_acosh,
arg_real, arg_imag, format);
CASE_CFN_CATANH:
return do_mpc_arg1 (result_real, result_imag, mpc_atanh,
arg_real, arg_imag, format);
CASE_CFN_CEXP:
return do_mpc_arg1 (result_real, result_imag, mpc_exp,
arg_real, arg_imag, format);
default:
return false;
}
}
/* Subroutine of fold_const_call, with the same interface. Handle cases
where the arguments and result are numerical. */
static tree
fold_const_call_1 (combined_fn fn, tree type, tree arg)
{
machine_mode mode = TYPE_MODE (type);
machine_mode arg_mode = TYPE_MODE (TREE_TYPE (arg));
if (integer_cst_p (arg))
{
if (SCALAR_INT_MODE_P (mode))
{
wide_int result;
if (fold_const_call_ss (&result, fn, wi::to_wide (arg),
TYPE_PRECISION (type), TREE_TYPE (arg)))
return wide_int_to_tree (type, result);
}
return NULL_TREE;
}
if (real_cst_p (arg))
{
gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg_mode));
if (mode == arg_mode)
{
/* real -> real. */
REAL_VALUE_TYPE result;
if (fold_const_call_ss (&result, fn, TREE_REAL_CST_PTR (arg),
REAL_MODE_FORMAT (mode)))
return build_real (type, result);
}
else if (COMPLEX_MODE_P (mode)
&& GET_MODE_INNER (mode) == arg_mode)
{
/* real -> complex real. */
REAL_VALUE_TYPE result_real, result_imag;
if (fold_const_call_cs (&result_real, &result_imag, fn,
TREE_REAL_CST_PTR (arg),
REAL_MODE_FORMAT (arg_mode)))
return build_complex (type,
build_real (TREE_TYPE (type), result_real),
build_real (TREE_TYPE (type), result_imag));
}
else if (INTEGRAL_TYPE_P (type))
{
/* real -> int. */
wide_int result;
if (fold_const_call_ss (&result, fn,
TREE_REAL_CST_PTR (arg),
TYPE_PRECISION (type),
REAL_MODE_FORMAT (arg_mode)))
return wide_int_to_tree (type, result);
}
return NULL_TREE;
}
if (complex_cst_p (arg))
{
gcc_checking_assert (COMPLEX_MODE_P (arg_mode));
machine_mode inner_mode = GET_MODE_INNER (arg_mode);
tree argr = TREE_REALPART (arg);
tree argi = TREE_IMAGPART (arg);
if (mode == arg_mode
&& real_cst_p (argr)
&& real_cst_p (argi))
{
/* complex real -> complex real. */
REAL_VALUE_TYPE result_real, result_imag;
if (fold_const_call_cc (&result_real, &result_imag, fn,
TREE_REAL_CST_PTR (argr),
TREE_REAL_CST_PTR (argi),
REAL_MODE_FORMAT (inner_mode)))
return build_complex (type,
build_real (TREE_TYPE (type), result_real),
build_real (TREE_TYPE (type), result_imag));
}
if (mode == inner_mode
&& real_cst_p (argr)
&& real_cst_p (argi))
{
/* complex real -> real. */
REAL_VALUE_TYPE result;
if (fold_const_call_sc (&result, fn,
TREE_REAL_CST_PTR (argr),
TREE_REAL_CST_PTR (argi),
REAL_MODE_FORMAT (inner_mode)))
return build_real (type, result);
}
return NULL_TREE;
}
return NULL_TREE;
}
/* Try to fold FN (ARG) to a constant. Return the constant on success,
otherwise return null. TYPE is the type of the return value. */
tree
fold_const_call (combined_fn fn, tree type, tree arg)
{
switch (fn)
{
case CFN_BUILT_IN_STRLEN:
if (const char *str = c_getstr (arg))
return build_int_cst (type, strlen (str));
return NULL_TREE;
CASE_CFN_NAN:
CASE_FLT_FN_FLOATN_NX (CFN_BUILT_IN_NAN):
case CFN_BUILT_IN_NAND32:
case CFN_BUILT_IN_NAND64:
case CFN_BUILT_IN_NAND128:
return fold_const_builtin_nan (type, arg, true);
CASE_CFN_NANS:
CASE_FLT_FN_FLOATN_NX (CFN_BUILT_IN_NANS):
case CFN_BUILT_IN_NANSD32:
case CFN_BUILT_IN_NANSD64:
case CFN_BUILT_IN_NANSD128:
return fold_const_builtin_nan (type, arg, false);
case CFN_REDUC_PLUS:
return fold_const_reduction (type, arg, PLUS_EXPR);
case CFN_REDUC_MAX:
return fold_const_reduction (type, arg, MAX_EXPR);
case CFN_REDUC_MIN:
return fold_const_reduction (type, arg, MIN_EXPR);
case CFN_REDUC_AND:
return fold_const_reduction (type, arg, BIT_AND_EXPR);
case CFN_REDUC_IOR:
return fold_const_reduction (type, arg, BIT_IOR_EXPR);
case CFN_REDUC_XOR:
return fold_const_reduction (type, arg, BIT_XOR_EXPR);
case CFN_VEC_CONVERT:
return fold_const_vec_convert (type, arg);
default:
return fold_const_call_1 (fn, type, arg);
}
}
/* Fold a call to IFN_FOLD_LEFT_<CODE> (ARG0, ARG1), returning a value
of type TYPE. */
static tree
fold_const_fold_left (tree type, tree arg0, tree arg1, tree_code code)
{
if (TREE_CODE (arg1) != VECTOR_CST)
return NULL_TREE;
unsigned HOST_WIDE_INT nelts;
if (!VECTOR_CST_NELTS (arg1).is_constant (&nelts))
return NULL_TREE;
for (unsigned HOST_WIDE_INT i = 0; i < nelts; i++)
{
arg0 = const_binop (code, type, arg0, VECTOR_CST_ELT (arg1, i));
if (arg0 == NULL_TREE || !CONSTANT_CLASS_P (arg0))
return NULL_TREE;
}
return arg0;
}
/* Try to evaluate:
*RESULT = FN (*ARG0, *ARG1)
in format FORMAT. Return true on success. */
static bool
fold_const_call_sss (real_value *result, combined_fn fn,
const real_value *arg0, const real_value *arg1,
const real_format *format)
{
switch (fn)
{
CASE_CFN_DREM:
CASE_CFN_REMAINDER:
return do_mpfr_arg2 (result, mpfr_remainder, arg0, arg1, format);
CASE_CFN_ATAN2:
return do_mpfr_arg2 (result, mpfr_atan2, arg0, arg1, format);
CASE_CFN_FDIM:
return do_mpfr_arg2 (result, mpfr_dim, arg0, arg1, format);
CASE_CFN_FMOD:
return do_mpfr_arg2 (result, mpfr_fmod, arg0, arg1, format);
CASE_CFN_HYPOT:
return do_mpfr_arg2 (result, mpfr_hypot, arg0, arg1, format);
CASE_CFN_COPYSIGN:
CASE_CFN_COPYSIGN_FN:
*result = *arg0;
real_copysign (result, arg1);
return true;
CASE_CFN_FMIN:
CASE_CFN_FMIN_FN:
return do_mpfr_arg2 (result, mpfr_min, arg0, arg1, format);
CASE_CFN_FMAX:
CASE_CFN_FMAX_FN:
return do_mpfr_arg2 (result, mpfr_max, arg0, arg1, format);
CASE_CFN_POW:
return fold_const_pow (result, arg0, arg1, format);
CASE_CFN_NEXTAFTER:
CASE_CFN_NEXTTOWARD:
return fold_const_nextafter (result, arg0, arg1, format);
default:
return false;
}
}
/* Try to evaluate:
*RESULT = FN (*ARG0, ARG1)
where FORMAT is the format of *RESULT and *ARG0. Return true on
success. */
static bool
fold_const_call_sss (real_value *result, combined_fn fn,
const real_value *arg0, const wide_int_ref &arg1,
const real_format *format)
{
switch (fn)
{
CASE_CFN_LDEXP:
return fold_const_builtin_load_exponent (result, arg0, arg1, format);
CASE_CFN_SCALBN:
CASE_CFN_SCALBLN:
return (format->b == 2
&& fold_const_builtin_load_exponent (result, arg0, arg1,
format));
CASE_CFN_POWI:
/* Avoid the folding if flag_signaling_nans is on and
operand is a signaling NaN. */
if (!flag_unsafe_math_optimizations
&& flag_signaling_nans
&& REAL_VALUE_ISSIGNALING_NAN (*arg0))
return false;
real_powi (result, format, arg0, arg1.to_shwi ());
return true;
default:
return false;
}
}
/* Try to evaluate:
*RESULT = FN (ARG0, *ARG1)
where FORMAT is the format of *RESULT and *ARG1. Return true on
success. */
static bool
fold_const_call_sss (real_value *result, combined_fn fn,
const wide_int_ref &arg0, const real_value *arg1,
const real_format *format)
{
switch (fn)
{
CASE_CFN_JN:
return do_mpfr_arg2 (result, mpfr_jn, arg0, arg1, format);
CASE_CFN_YN:
return (real_compare (GT_EXPR, arg1, &dconst0)
&& do_mpfr_arg2 (result, mpfr_yn, arg0, arg1, format));
default:
return false;
}
}
/* Try to evaluate:
RESULT = fn (ARG0, ARG1)
where FORMAT is the format of the real and imaginary parts of RESULT
(RESULT_REAL and RESULT_IMAG), of ARG0 (ARG0_REAL and ARG0_IMAG)
and of ARG1 (ARG1_REAL and ARG1_IMAG). Return true on success. */
static bool
fold_const_call_ccc (real_value *result_real, real_value *result_imag,
combined_fn fn, const real_value *arg0_real,
const real_value *arg0_imag, const real_value *arg1_real,
const real_value *arg1_imag, const real_format *format)
{
switch (fn)
{
CASE_CFN_CPOW:
return do_mpc_arg2 (result_real, result_imag, mpc_pow,
arg0_real, arg0_imag, arg1_real, arg1_imag, format);
default:
return false;
}
}
/* Subroutine of fold_const_call, with the same interface. Handle cases
where the arguments and result are numerical. */
static tree
fold_const_call_1 (combined_fn fn, tree type, tree arg0, tree arg1)
{
machine_mode mode = TYPE_MODE (type);
machine_mode arg0_mode = TYPE_MODE (TREE_TYPE (arg0));
machine_mode arg1_mode = TYPE_MODE (TREE_TYPE (arg1));
if (mode == arg0_mode
&& real_cst_p (arg0)
&& real_cst_p (arg1))
{
gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
REAL_VALUE_TYPE result;
if (arg0_mode == arg1_mode)
{
/* real, real -> real. */
if (fold_const_call_sss (&result, fn, TREE_REAL_CST_PTR (arg0),
TREE_REAL_CST_PTR (arg1),
REAL_MODE_FORMAT (mode)))
return build_real (type, result);
}
else if (arg1_mode == TYPE_MODE (long_double_type_node))
switch (fn)
{
CASE_CFN_NEXTTOWARD:
/* real, long double -> real. */
if (fold_const_call_sss (&result, fn, TREE_REAL_CST_PTR (arg0),
TREE_REAL_CST_PTR (arg1),
REAL_MODE_FORMAT (mode)))
return build_real (type, result);
break;
default:
break;
}
return NULL_TREE;
}
if (real_cst_p (arg0)
&& integer_cst_p (arg1))
{
gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
if (mode == arg0_mode)
{
/* real, int -> real. */
REAL_VALUE_TYPE result;
if (fold_const_call_sss (&result, fn, TREE_REAL_CST_PTR (arg0),
wi::to_wide (arg1),
REAL_MODE_FORMAT (mode)))
return build_real (type, result);
}
return NULL_TREE;
}
if (integer_cst_p (arg0)
&& real_cst_p (arg1))
{
gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg1_mode));
if (mode == arg1_mode)
{
/* int, real -> real. */
REAL_VALUE_TYPE result;
if (fold_const_call_sss (&result, fn, wi::to_wide (arg0),
TREE_REAL_CST_PTR (arg1),
REAL_MODE_FORMAT (mode)))
return build_real (type, result);
}
return NULL_TREE;
}
if (arg0_mode == arg1_mode
&& complex_cst_p (arg0)
&& complex_cst_p (arg1))
{
gcc_checking_assert (COMPLEX_MODE_P (arg0_mode));
machine_mode inner_mode = GET_MODE_INNER (arg0_mode);
tree arg0r = TREE_REALPART (arg0);
tree arg0i = TREE_IMAGPART (arg0);
tree arg1r = TREE_REALPART (arg1);
tree arg1i = TREE_IMAGPART (arg1);
if (mode == arg0_mode
&& real_cst_p (arg0r)
&& real_cst_p (arg0i)
&& real_cst_p (arg1r)
&& real_cst_p (arg1i))
{
/* complex real, complex real -> complex real. */
REAL_VALUE_TYPE result_real, result_imag;
if (fold_const_call_ccc (&result_real, &result_imag, fn,
TREE_REAL_CST_PTR (arg0r),
TREE_REAL_CST_PTR (arg0i),
TREE_REAL_CST_PTR (arg1r),
TREE_REAL_CST_PTR (arg1i),
REAL_MODE_FORMAT (inner_mode)))
return build_complex (type,
build_real (TREE_TYPE (type), result_real),
build_real (TREE_TYPE (type), result_imag));
}
return NULL_TREE;
}
return NULL_TREE;
}
/* Try to fold FN (ARG0, ARG1) to a constant. Return the constant on success,
otherwise return null. TYPE is the type of the return value. */
tree
fold_const_call (combined_fn fn, tree type, tree arg0, tree arg1)
{
const char *p0, *p1;
char c;
switch (fn)
{
case CFN_BUILT_IN_STRSPN:
if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
return build_int_cst (type, strspn (p0, p1));
return NULL_TREE;
case CFN_BUILT_IN_STRCSPN:
if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
return build_int_cst (type, strcspn (p0, p1));
return NULL_TREE;
case CFN_BUILT_IN_STRCMP:
if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
return build_cmp_result (type, strcmp (p0, p1));
return NULL_TREE;
case CFN_BUILT_IN_STRCASECMP:
if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
{
int r = strcmp (p0, p1);
if (r == 0)
return build_cmp_result (type, r);
}
return NULL_TREE;
case CFN_BUILT_IN_INDEX:
case CFN_BUILT_IN_STRCHR:
if ((p0 = c_getstr (arg0)) && target_char_cst_p (arg1, &c))
{
const char *r = strchr (p0, c);
if (r == NULL)
return build_int_cst (type, 0);
return fold_convert (type,
fold_build_pointer_plus_hwi (arg0, r - p0));
}
return NULL_TREE;
case CFN_BUILT_IN_RINDEX:
case CFN_BUILT_IN_STRRCHR:
if ((p0 = c_getstr (arg0)) && target_char_cst_p (arg1, &c))
{
const char *r = strrchr (p0, c);
if (r == NULL)
return build_int_cst (type, 0);
return fold_convert (type,
fold_build_pointer_plus_hwi (arg0, r - p0));
}
return NULL_TREE;
case CFN_BUILT_IN_STRSTR:
if ((p1 = c_getstr (arg1)))
{
if ((p0 = c_getstr (arg0)))
{
const char *r = strstr (p0, p1);
if (r == NULL)
return build_int_cst (type, 0);
return fold_convert (type,
fold_build_pointer_plus_hwi (arg0, r - p0));
}
if (*p1 == '\0')
return fold_convert (type, arg0);
}
return NULL_TREE;
case CFN_FOLD_LEFT_PLUS:
return fold_const_fold_left (type, arg0, arg1, PLUS_EXPR);
default:
return fold_const_call_1 (fn, type, arg0, arg1);
}
}
/* Try to evaluate:
*RESULT = FN (*ARG0, *ARG1, *ARG2)
in format FORMAT. Return true on success. */
static bool
fold_const_call_ssss (real_value *result, combined_fn fn,
const real_value *arg0, const real_value *arg1,
const real_value *arg2, const real_format *format)
{
switch (fn)
{
CASE_CFN_FMA:
CASE_CFN_FMA_FN:
return do_mpfr_arg3 (result, mpfr_fma, arg0, arg1, arg2, format);
case CFN_FMS:
{
real_value new_arg2 = real_value_negate (arg2);
return do_mpfr_arg3 (result, mpfr_fma, arg0, arg1, &new_arg2, format);
}
case CFN_FNMA:
{
real_value new_arg0 = real_value_negate (arg0);
return do_mpfr_arg3 (result, mpfr_fma, &new_arg0, arg1, arg2, format);
}
case CFN_FNMS:
{
real_value new_arg0 = real_value_negate (arg0);
real_value new_arg2 = real_value_negate (arg2);
return do_mpfr_arg3 (result, mpfr_fma, &new_arg0, arg1,
&new_arg2, format);
}
default:
return false;
}
}
/* Subroutine of fold_const_call, with the same interface. Handle cases
where the arguments and result are numerical. */
static tree
fold_const_call_1 (combined_fn fn, tree type, tree arg0, tree arg1, tree arg2)
{
machine_mode mode = TYPE_MODE (type);
machine_mode arg0_mode = TYPE_MODE (TREE_TYPE (arg0));
machine_mode arg1_mode = TYPE_MODE (TREE_TYPE (arg1));
machine_mode arg2_mode = TYPE_MODE (TREE_TYPE (arg2));
if (arg0_mode == arg1_mode
&& arg0_mode == arg2_mode
&& real_cst_p (arg0)
&& real_cst_p (arg1)
&& real_cst_p (arg2))
{
gcc_checking_assert (SCALAR_FLOAT_MODE_P (arg0_mode));
if (mode == arg0_mode)
{
/* real, real, real -> real. */
REAL_VALUE_TYPE result;
if (fold_const_call_ssss (&result, fn, TREE_REAL_CST_PTR (arg0),
TREE_REAL_CST_PTR (arg1),
TREE_REAL_CST_PTR (arg2),
REAL_MODE_FORMAT (mode)))
return build_real (type, result);
}
return NULL_TREE;
}
return NULL_TREE;
}
/* Try to fold FN (ARG0, ARG1, ARG2) to a constant. Return the constant on
success, otherwise return null. TYPE is the type of the return value. */
tree
fold_const_call (combined_fn fn, tree type, tree arg0, tree arg1, tree arg2)
{
const char *p0, *p1;
char c;
unsigned HOST_WIDE_INT s0, s1, s2 = 0;
switch (fn)
{
case CFN_BUILT_IN_STRNCMP:
if (!size_t_cst_p (arg2, &s2))
return NULL_TREE;
if (s2 == 0
&& !TREE_SIDE_EFFECTS (arg0)
&& !TREE_SIDE_EFFECTS (arg1))
return build_int_cst (type, 0);
else if ((p0 = c_getstr (arg0)) && (p1 = c_getstr (arg1)))
return build_int_cst (type, strncmp (p0, p1, MIN (s2, SIZE_MAX)));
return NULL_TREE;
case CFN_BUILT_IN_STRNCASECMP:
if (!size_t_cst_p (arg2, &s2))
return NULL_TREE;
if (s2 == 0
&& !TREE_SIDE_EFFECTS (arg0)
&& !TREE_SIDE_EFFECTS (arg1))
return build_int_cst (type, 0);
else if ((p0 = c_getstr (arg0))
&& (p1 = c_getstr (arg1))
&& strncmp (p0, p1, MIN (s2, SIZE_MAX)) == 0)
return build_int_cst (type, 0);
return NULL_TREE;
case CFN_BUILT_IN_BCMP:
case CFN_BUILT_IN_MEMCMP:
if (!size_t_cst_p (arg2, &s2))
return NULL_TREE;
if (s2 == 0
&& !TREE_SIDE_EFFECTS (arg0)
&& !TREE_SIDE_EFFECTS (arg1))
return build_int_cst (type, 0);
if ((p0 = getbyterep (arg0, &s0))
&& (p1 = getbyterep (arg1, &s1))
&& s2 <= s0
&& s2 <= s1)
return build_cmp_result (type, memcmp (p0, p1, s2));
return NULL_TREE;
case CFN_BUILT_IN_MEMCHR:
if (!size_t_cst_p (arg2, &s2))
return NULL_TREE;
if (s2 == 0
&& !TREE_SIDE_EFFECTS (arg0)
&& !TREE_SIDE_EFFECTS (arg1))
return build_int_cst (type, 0);
if ((p0 = getbyterep (arg0, &s0))
&& s2 <= s0
&& target_char_cst_p (arg1, &c))
{
const char *r = (const char *) memchr (p0, c, s2);
if (r == NULL)
return build_int_cst (type, 0);
return fold_convert (type,
fold_build_pointer_plus_hwi (arg0, r - p0));
}
return NULL_TREE;
case CFN_WHILE_ULT:
{
poly_uint64 parg0, parg1;
if (poly_int_tree_p (arg0, &parg0) && poly_int_tree_p (arg1, &parg1))
return fold_while_ult (type, parg0, parg1);
return NULL_TREE;
}
default:
return fold_const_call_1 (fn, type, arg0, arg1, arg2);
}
}
|