aboutsummaryrefslogtreecommitdiff
path: root/gcc/fibonacci_heap.h
blob: 554a142c8f4bf4ec001af0b1d51e95cce65c1f2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
/* Fibonacci heap for GNU compiler.
   Copyright (C) 1998-2017 Free Software Foundation, Inc.
   Contributed by Daniel Berlin (dan@cgsoftware.com).
   Re-implemented in C++ by Martin Liska <mliska@suse.cz>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* Fibonacci heaps are somewhat complex, but, there's an article in
   DDJ that explains them pretty well:

   http://www.ddj.com/articles/1997/9701/9701o/9701o.htm?topic=algoritms

   Introduction to algorithms by Corman and Rivest also goes over them.

   The original paper that introduced them is "Fibonacci heaps and their
   uses in improved network optimization algorithms" by Tarjan and
   Fredman (JACM 34(3), July 1987).

   Amortized and real worst case time for operations:

   ExtractMin: O(lg n) amortized. O(n) worst case.
   DecreaseKey: O(1) amortized.  O(lg n) worst case.
   Insert: O(1) amortized.
   Union: O(1) amortized.  */

#ifndef GCC_FIBONACCI_HEAP_H
#define GCC_FIBONACCI_HEAP_H

/* Forward definition.  */

template<class K, class V>
class fibonacci_heap;

/* Fibonacci heap node class.  */

template<class K, class V>
class fibonacci_node
{
  typedef fibonacci_node<K,V> fibonacci_node_t;
  friend class fibonacci_heap<K,V>;

public:
  /* Default constructor.  */
  fibonacci_node (): m_parent (NULL), m_child (NULL), m_left (this),
    m_right (this), m_degree (0), m_mark (0)
  {
  }

  /* Constructor for a node with given KEY.  */
  fibonacci_node (K key, V *data = NULL): m_parent (NULL), m_child (NULL),
    m_left (this), m_right (this), m_key (key), m_data (data),
    m_degree (0), m_mark (0)
  {
  }

  /* Compare fibonacci node with OTHER node.  */
  int compare (fibonacci_node_t *other)
  {
    if (m_key < other->m_key)
      return -1;
    if (m_key > other->m_key)
      return 1;
    return 0;
  }

  /* Compare the node with a given KEY.  */
  int compare_data (K key)
  {
    return fibonacci_node_t (key).compare (this);
  }

  /* Remove fibonacci heap node.  */
  fibonacci_node_t *remove ();

  /* Link the node with PARENT.  */
  void link (fibonacci_node_t *parent);

  /* Return key associated with the node.  */
  K get_key ()
  {
    return m_key;
  }

  /* Return data associated with the node.  */
  V *get_data ()
  {
    return m_data;
  }

private:
  /* Put node B after this node.  */
  void insert_after (fibonacci_node_t *b);

  /* Insert fibonacci node B after this node.  */
  void insert_before (fibonacci_node_t *b)
  {
    m_left->insert_after (b);
  }

  /* Parent node.  */
  fibonacci_node *m_parent;
  /* Child node.  */
  fibonacci_node *m_child;
  /* Left sibling.  */
  fibonacci_node *m_left;
  /* Right node.  */
  fibonacci_node *m_right;
  /* Key associated with node.  */
  K m_key;
  /* Data associated with node.  */
  V *m_data;

#if defined (__GNUC__) && (!defined (SIZEOF_INT) || SIZEOF_INT < 4)
  /* Degree of the node.  */
  __extension__ unsigned long int m_degree : 31;
  /* Mark of the node.  */
  __extension__ unsigned long int m_mark : 1;
#else
  /* Degree of the node.  */
  unsigned int m_degree : 31;
  /* Mark of the node.  */
  unsigned int m_mark : 1;
#endif
};

/* Fibonacci heap class. */
template<class K, class V>
class fibonacci_heap
{
  typedef fibonacci_node<K,V> fibonacci_node_t;
  friend class fibonacci_node<K,V>;

public:
  /* Default constructor.  */
  fibonacci_heap (K global_min_key): m_nodes (0), m_min (NULL), m_root (NULL),
    m_global_min_key (global_min_key)
  {
  }

  /* Destructor.  */
  ~fibonacci_heap ()
  {
    while (m_min != NULL)
      delete (extract_minimum_node ());
  }

  /* Insert new node given by KEY and DATA associated with the key.  */
  fibonacci_node_t *insert (K key, V *data);

  /* Return true if no entry is present.  */
  bool empty ()
  {
    return m_nodes == 0;
  }

  /* Return the number of nodes.  */
  size_t nodes ()
  {
    return m_nodes;
  }

  /* Return minimal key presented in the heap.  */
  K min_key ()
  {
    if (m_min == NULL)
      gcc_unreachable ();

    return m_min->m_key;
  }

  /* For given NODE, set new KEY value.  */
  K replace_key (fibonacci_node_t *node, K key)
  {
    K okey = node->m_key;

    replace_key_data (node, key, node->m_data);
    return okey;
  }

  /* For given NODE, decrease value to new KEY.  */
  K decrease_key (fibonacci_node_t *node, K key)
  {
    gcc_assert (key <= node->m_key);
    return replace_key (node, key);
  }

  /* For given NODE, set new KEY and DATA value.  */
  V *replace_key_data (fibonacci_node_t *node, K key, V *data);

  /* Extract minimum node in the heap. If RELEASE is specified,
     memory is released.  */
  V *extract_min (bool release = true);

  /* Return value associated with minimum node in the heap.  */
  V *min ()
  {
    if (m_min == NULL)
      return NULL;

    return m_min->m_data;
  }

  /* Replace data associated with NODE and replace it with DATA.  */
  V *replace_data (fibonacci_node_t *node, V *data)
  {
    return replace_key_data (node, node->m_key, data);
  }

  /* Delete NODE in the heap.  */
  V *delete_node (fibonacci_node_t *node, bool release = true);

  /* Union the heap with HEAPB.  */
  fibonacci_heap *union_with (fibonacci_heap *heapb);

private:
  /* Insert new NODE given by KEY and DATA associated with the key.  */
  fibonacci_node_t *insert (fibonacci_node_t *node, K key, V *data);

  /* Insert new NODE that has already filled key and value.  */
  fibonacci_node_t *insert_node (fibonacci_node_t *node);

  /* Insert it into the root list.  */
  void insert_root (fibonacci_node_t *node);

  /* Remove NODE from PARENT's child list.  */
  void cut (fibonacci_node_t *node, fibonacci_node_t *parent);

  /* Process cut of node Y and do it recursivelly.  */
  void cascading_cut (fibonacci_node_t *y);

  /* Extract minimum node from the heap.  */
  fibonacci_node_t * extract_minimum_node ();

  /* Remove root NODE from the heap.  */
  void remove_root (fibonacci_node_t *node);

  /* Consolidate heap.  */
  void consolidate ();

  /* Number of nodes.  */
  size_t m_nodes;
  /* Minimum node of the heap.  */
  fibonacci_node_t *m_min;
  /* Root node of the heap.  */
  fibonacci_node_t *m_root;
  /* Global minimum given in the heap construction.  */
  K m_global_min_key;
};

/* Remove fibonacci heap node.  */

template<class K, class V>
fibonacci_node<K,V> *
fibonacci_node<K,V>::remove ()
{
  fibonacci_node<K,V> *ret;

  if (this == m_left)
    ret = NULL;
  else
    ret = m_left;

  if (m_parent != NULL && m_parent->m_child == this)
    m_parent->m_child = ret;

  m_right->m_left = m_left;
  m_left->m_right = m_right;

  m_parent = NULL;
  m_left = this;
  m_right = this;

  return ret;
}

/* Link the node with PARENT.  */

template<class K, class V>
void
fibonacci_node<K,V>::link (fibonacci_node<K,V> *parent)
{
  if (parent->m_child == NULL)
    parent->m_child = this;
  else
    parent->m_child->insert_before (this);
  m_parent = parent;
  parent->m_degree++;
  m_mark = 0;
}

/* Put node B after this node.  */

template<class K, class V>
void
fibonacci_node<K,V>::insert_after (fibonacci_node<K,V> *b)
{
  fibonacci_node<K,V> *a = this;

  if (a == a->m_right)
    {
      a->m_right = b;
      a->m_left = b;
      b->m_right = a;
      b->m_left = a;
    }
  else
    {
      b->m_right = a->m_right;
      a->m_right->m_left = b;
      a->m_right = b;
      b->m_left = a;
    }
}

/* Insert new node given by KEY and DATA associated with the key.  */

template<class K, class V>
fibonacci_node<K,V>*
fibonacci_heap<K,V>::insert (K key, V *data)
{
  /* Create the new node.  */
  fibonacci_node<K,V> *node = new fibonacci_node_t (key, data);

  return insert_node (node);
}

/* Insert new NODE given by DATA associated with the key.  */

template<class K, class V>
fibonacci_node<K,V>*
fibonacci_heap<K,V>::insert (fibonacci_node_t *node, K key, V *data)
{
  /* Set the node's data.  */
  node->m_data = data;
  node->m_key = key;

  return insert_node (node);
}

/* Insert new NODE that has already filled key and value.  */

template<class K, class V>
fibonacci_node<K,V>*
fibonacci_heap<K,V>::insert_node (fibonacci_node_t *node)
{
  /* Insert it into the root list.  */
  insert_root (node);

  /* If their was no minimum, or this key is less than the min,
     it's the new min.  */
  if (m_min == NULL || node->m_key < m_min->m_key)
    m_min = node;

  m_nodes++;

  return node;
}

/* For given NODE, set new KEY and DATA value.  */

template<class K, class V>
V*
fibonacci_heap<K,V>::replace_key_data (fibonacci_node<K,V> *node, K key,
				       V *data)
{
  K okey;
  fibonacci_node<K,V> *y;
  V *odata = node->m_data;

  /* If we wanted to, we do a real increase by redeleting and
     inserting.  */
  if (node->compare_data (key) > 0)
    {
      delete_node (node, false);

      node = new (node) fibonacci_node_t ();
      insert (node, key, data);

      return odata;
    }

  okey = node->m_key;
  node->m_data = data;
  node->m_key = key;
  y = node->m_parent;

  /* Short-circuit if the key is the same, as we then don't have to
     do anything.  Except if we're trying to force the new node to
     be the new minimum for delete.  */
  if (okey == key && okey != m_global_min_key)
    return odata;

  /* These two compares are specifically <= 0 to make sure that in the case
     of equality, a node we replaced the data on, becomes the new min.  This
     is needed so that delete's call to extractmin gets the right node.  */
  if (y != NULL && node->compare (y) <= 0)
    {
      cut (node, y);
      cascading_cut (y);
    }

  if (node->compare (m_min) <= 0)
    m_min = node;

  return odata;
}

/* Extract minimum node in the heap.  Delete fibonacci node if RELEASE
   is true.  */

template<class K, class V>
V*
fibonacci_heap<K,V>::extract_min (bool release)
{
  fibonacci_node<K,V> *z;
  V *ret = NULL;

  /* If we don't have a min set, it means we have no nodes.  */
  if (m_min != NULL)
    {
      /* Otherwise, extract the min node, free the node, and return the
       node's data.  */
      z = extract_minimum_node ();
      ret = z->m_data;

      if (release)
        delete (z);
    }

  return ret;
}

/* Delete NODE in the heap, if RELEASE is specified memory is released.  */

template<class K, class V>
V*
fibonacci_heap<K,V>::delete_node (fibonacci_node<K,V> *node, bool release)
{
  V *ret = node->m_data;

  /* To perform delete, we just make it the min key, and extract.  */
  replace_key (node, m_global_min_key);
  if (node != m_min)
    {
      fprintf (stderr, "Can't force minimum on fibheap.\n");
      abort ();
    }
  extract_min (release);

  return ret;
}

/* Union the heap with HEAPB.  One of the heaps is going to be deleted.  */

template<class K, class V>
fibonacci_heap<K,V>*
fibonacci_heap<K,V>::union_with (fibonacci_heap<K,V> *heapb)
{
  fibonacci_heap<K,V> *heapa = this;

  fibonacci_node<K,V> *a_root, *b_root;

  /* If one of the heaps is empty, the union is just the other heap.  */
  if ((a_root = heapa->m_root) == NULL)
    {
      delete (heapa);
      return heapb;
    }
  if ((b_root = heapb->m_root) == NULL)
    {
      delete (heapb);
      return heapa;
    }

  /* Merge them to the next nodes on the opposite chain.  */
  a_root->m_left->m_right = b_root;
  b_root->m_left->m_right = a_root;
  std::swap (a_root->m_left, b_root->m_left);
  heapa->m_nodes += heapb->m_nodes;

  /* And set the new minimum, if it's changed.  */
  if (heapb->m_min->compare (heapa->m_min) < 0)
    heapa->m_min = heapb->m_min;

  /* Set m_min to NULL to not to delete live fibonacci nodes.  */
  heapb->m_min = NULL;
  delete (heapb);

  return heapa;
}

/* Insert it into the root list.  */

template<class K, class V>
void
fibonacci_heap<K,V>::insert_root (fibonacci_node_t *node)
{
  /* If the heap is currently empty, the new node becomes the singleton
     circular root list.  */
  if (m_root == NULL)
    {
      m_root = node;
      node->m_left = node;
      node->m_right = node;
      return;
    }

  /* Otherwise, insert it in the circular root list between the root
     and it's right node.  */
  m_root->insert_after (node);
}

/* Remove NODE from PARENT's child list.  */

template<class K, class V>
void
fibonacci_heap<K,V>::cut (fibonacci_node<K,V> *node,
			  fibonacci_node<K,V> *parent)
{
  node->remove ();
  parent->m_degree--;
  insert_root (node);
  node->m_parent = NULL;
  node->m_mark = 0;
}

/* Process cut of node Y and do it recursivelly.  */

template<class K, class V>
void
fibonacci_heap<K,V>::cascading_cut (fibonacci_node<K,V> *y)
{
  fibonacci_node<K,V> *z;

  while ((z = y->m_parent) != NULL)
    {
      if (y->m_mark == 0)
	{
	  y->m_mark = 1;
	  return;
	}
      else
	{
	  cut (y, z);
	  y = z;
	}
    }
}

/* Extract minimum node from the heap.  */

template<class K, class V>
fibonacci_node<K,V>*
fibonacci_heap<K,V>::extract_minimum_node ()
{
  fibonacci_node<K,V> *ret = m_min;
  fibonacci_node<K,V> *x, *y, *orig;

  /* Attach the child list of the minimum node to the root list of the heap.
     If there is no child list, we don't do squat.  */
  for (x = ret->m_child, orig = NULL; x != orig && x != NULL; x = y)
    {
      if (orig == NULL)
	orig = x;
      y = x->m_right;
      x->m_parent = NULL;
      insert_root (x);
    }

  /* Remove the old root.  */
  remove_root (ret);
  m_nodes--;

  /* If we are left with no nodes, then the min is NULL.  */
  if (m_nodes == 0)
    m_min = NULL;
  else
    {
      /* Otherwise, consolidate to find new minimum, as well as do the reorg
       work that needs to be done.  */
      m_min = ret->m_right;
      consolidate ();
    }

  return ret;
}

/* Remove root NODE from the heap.  */

template<class K, class V>
void
fibonacci_heap<K,V>::remove_root (fibonacci_node<K,V> *node)
{
  if (node->m_left == node)
    m_root = NULL;
  else
    m_root = node->remove ();
}

/* Consolidate heap.  */

template<class K, class V>
void fibonacci_heap<K,V>::consolidate ()
{
  int D = 1 + 8 * sizeof (long);
  auto_vec<fibonacci_node<K,V> *> a (D);
  a.safe_grow_cleared (D);
  fibonacci_node<K,V> *w, *x, *y;
  int i, d;

  while ((w = m_root) != NULL)
    {
      x = w;
      remove_root (w);
      d = x->m_degree;
      while (a[d] != NULL)
	{
	  y = a[d];
	  if (x->compare (y) > 0)
	    std::swap (x, y);
	  y->link (x);
	  a[d] = NULL;
	  d++;
	}
      a[d] = x;
    }
  m_min = NULL;
  for (i = 0; i < D; i++)
    if (a[i] != NULL)
      {
	insert_root (a[i]);
	if (m_min == NULL || a[i]->compare (m_min) < 0)
	  m_min = a[i];
      }
}

#endif  // GCC_FIBONACCI_HEAP_H