aboutsummaryrefslogtreecommitdiff
path: root/gcc/expr.c
blob: 2d8868e52cefdfdc2d81135811cbf1cb3e6ff82b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
/* Convert tree expression to rtl instructions, for GNU compiler.
   Copyright (C) 1988-2017 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "predict.h"
#include "memmodel.h"
#include "tm_p.h"
#include "ssa.h"
#include "expmed.h"
#include "optabs.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "cgraph.h"
#include "diagnostic.h"
#include "alias.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "attribs.h"
#include "varasm.h"
#include "except.h"
#include "insn-attr.h"
#include "dojump.h"
#include "explow.h"
#include "calls.h"
#include "stmt.h"
/* Include expr.h after insn-config.h so we get HAVE_conditional_move.  */
#include "expr.h"
#include "optabs-tree.h"
#include "libfuncs.h"
#include "reload.h"
#include "langhooks.h"
#include "common/common-target.h"
#include "tree-ssa-live.h"
#include "tree-outof-ssa.h"
#include "tree-ssa-address.h"
#include "builtins.h"
#include "tree-chkp.h"
#include "rtl-chkp.h"
#include "ccmp.h"


/* If this is nonzero, we do not bother generating VOLATILE
   around volatile memory references, and we are willing to
   output indirect addresses.  If cse is to follow, we reject
   indirect addresses so a useful potential cse is generated;
   if it is used only once, instruction combination will produce
   the same indirect address eventually.  */
int cse_not_expected;

static bool block_move_libcall_safe_for_call_parm (void);
static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT,
					unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
					unsigned HOST_WIDE_INT);
static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
static rtx_insn *compress_float_constant (rtx, rtx);
static rtx get_subtarget (rtx);
static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
				     HOST_WIDE_INT, unsigned HOST_WIDE_INT,
				     unsigned HOST_WIDE_INT, machine_mode,
				     tree, int, alias_set_type, bool);
static void store_constructor (tree, rtx, int, HOST_WIDE_INT, bool);
static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT,
			unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
			machine_mode, tree, alias_set_type, bool, bool);

static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);

static int is_aligning_offset (const_tree, const_tree);
static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
static rtx do_store_flag (sepops, rtx, machine_mode);
#ifdef PUSH_ROUNDING
static void emit_single_push_insn (machine_mode, rtx, tree);
#endif
static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx, int);
static rtx const_vector_from_tree (tree);
static rtx const_scalar_mask_from_tree (tree);
static tree tree_expr_size (const_tree);
static HOST_WIDE_INT int_expr_size (tree);


/* This is run to set up which modes can be used
   directly in memory and to initialize the block move optab.  It is run
   at the beginning of compilation and when the target is reinitialized.  */

void
init_expr_target (void)
{
  rtx pat;
  machine_mode mode;
  int num_clobbers;
  rtx mem, mem1;
  rtx reg;

  /* Try indexing by frame ptr and try by stack ptr.
     It is known that on the Convex the stack ptr isn't a valid index.
     With luck, one or the other is valid on any machine.  */
  mem = gen_rtx_MEM (word_mode, stack_pointer_rtx);
  mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx);

  /* A scratch register we can modify in-place below to avoid
     useless RTL allocations.  */
  reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);

  rtx_insn *insn = as_a<rtx_insn *> (rtx_alloc (INSN));
  pat = gen_rtx_SET (NULL_RTX, NULL_RTX);
  PATTERN (insn) = pat;

  for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
       mode = (machine_mode) ((int) mode + 1))
    {
      int regno;

      direct_load[(int) mode] = direct_store[(int) mode] = 0;
      PUT_MODE (mem, mode);
      PUT_MODE (mem1, mode);

      /* See if there is some register that can be used in this mode and
	 directly loaded or stored from memory.  */

      if (mode != VOIDmode && mode != BLKmode)
	for (regno = 0; regno < FIRST_PSEUDO_REGISTER
	     && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
	     regno++)
	  {
	    if (! HARD_REGNO_MODE_OK (regno, mode))
	      continue;

	    set_mode_and_regno (reg, mode, regno);

	    SET_SRC (pat) = mem;
	    SET_DEST (pat) = reg;
	    if (recog (pat, insn, &num_clobbers) >= 0)
	      direct_load[(int) mode] = 1;

	    SET_SRC (pat) = mem1;
	    SET_DEST (pat) = reg;
	    if (recog (pat, insn, &num_clobbers) >= 0)
	      direct_load[(int) mode] = 1;

	    SET_SRC (pat) = reg;
	    SET_DEST (pat) = mem;
	    if (recog (pat, insn, &num_clobbers) >= 0)
	      direct_store[(int) mode] = 1;

	    SET_SRC (pat) = reg;
	    SET_DEST (pat) = mem1;
	    if (recog (pat, insn, &num_clobbers) >= 0)
	      direct_store[(int) mode] = 1;
	  }
    }

  mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1));

  for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    {
      machine_mode srcmode;
      for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
	   srcmode = GET_MODE_WIDER_MODE (srcmode))
	{
	  enum insn_code ic;

	  ic = can_extend_p (mode, srcmode, 0);
	  if (ic == CODE_FOR_nothing)
	    continue;

	  PUT_MODE (mem, srcmode);

	  if (insn_operand_matches (ic, 1, mem))
	    float_extend_from_mem[mode][srcmode] = true;
	}
    }
}

/* This is run at the start of compiling a function.  */

void
init_expr (void)
{
  memset (&crtl->expr, 0, sizeof (crtl->expr));
}

/* Copy data from FROM to TO, where the machine modes are not the same.
   Both modes may be integer, or both may be floating, or both may be
   fixed-point.
   UNSIGNEDP should be nonzero if FROM is an unsigned type.
   This causes zero-extension instead of sign-extension.  */

void
convert_move (rtx to, rtx from, int unsignedp)
{
  machine_mode to_mode = GET_MODE (to);
  machine_mode from_mode = GET_MODE (from);
  int to_real = SCALAR_FLOAT_MODE_P (to_mode);
  int from_real = SCALAR_FLOAT_MODE_P (from_mode);
  enum insn_code code;
  rtx libcall;

  /* rtx code for making an equivalent value.  */
  enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
			      : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));


  gcc_assert (to_real == from_real);
  gcc_assert (to_mode != BLKmode);
  gcc_assert (from_mode != BLKmode);

  /* If the source and destination are already the same, then there's
     nothing to do.  */
  if (to == from)
    return;

  /* If FROM is a SUBREG that indicates that we have already done at least
     the required extension, strip it.  We don't handle such SUBREGs as
     TO here.  */

  if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
      && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from)))
	  >= GET_MODE_PRECISION (to_mode))
      && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
    from = gen_lowpart (to_mode, from), from_mode = to_mode;

  gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));

  if (to_mode == from_mode
      || (from_mode == VOIDmode && CONSTANT_P (from)))
    {
      emit_move_insn (to, from);
      return;
    }

  if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
    {
      gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));

      if (VECTOR_MODE_P (to_mode))
	from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
      else
	to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);

      emit_move_insn (to, from);
      return;
    }

  if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
    {
      convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
      convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
      return;
    }

  if (to_real)
    {
      rtx value;
      rtx_insn *insns;
      convert_optab tab;

      gcc_assert ((GET_MODE_PRECISION (from_mode)
		   != GET_MODE_PRECISION (to_mode))
		  || (DECIMAL_FLOAT_MODE_P (from_mode)
		      != DECIMAL_FLOAT_MODE_P (to_mode)));

      if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
	/* Conversion between decimal float and binary float, same size.  */
	tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
      else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
	tab = sext_optab;
      else
	tab = trunc_optab;

      /* Try converting directly if the insn is supported.  */

      code = convert_optab_handler (tab, to_mode, from_mode);
      if (code != CODE_FOR_nothing)
	{
	  emit_unop_insn (code, to, from,
			  tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
	  return;
	}

      /* Otherwise use a libcall.  */
      libcall = convert_optab_libfunc (tab, to_mode, from_mode);

      /* Is this conversion implemented yet?  */
      gcc_assert (libcall);

      start_sequence ();
      value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
				       1, from, from_mode);
      insns = get_insns ();
      end_sequence ();
      emit_libcall_block (insns, to, value,
			  tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
								       from)
			  : gen_rtx_FLOAT_EXTEND (to_mode, from));
      return;
    }

  /* Handle pointer conversion.  */			/* SPEE 900220.  */
  /* If the target has a converter from FROM_MODE to TO_MODE, use it.  */
  {
    convert_optab ctab;

    if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
      ctab = trunc_optab;
    else if (unsignedp)
      ctab = zext_optab;
    else
      ctab = sext_optab;

    if (convert_optab_handler (ctab, to_mode, from_mode)
	!= CODE_FOR_nothing)
      {
	emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
			to, from, UNKNOWN);
	return;
      }
  }

  /* Targets are expected to provide conversion insns between PxImode and
     xImode for all MODE_PARTIAL_INT modes they use, but no others.  */
  if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
    {
      machine_mode full_mode
	= smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);

      gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
		  != CODE_FOR_nothing);

      if (full_mode != from_mode)
	from = convert_to_mode (full_mode, from, unsignedp);
      emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
		      to, from, UNKNOWN);
      return;
    }
  if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
    {
      rtx new_from;
      machine_mode full_mode
	= smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
      convert_optab ctab = unsignedp ? zext_optab : sext_optab;
      enum insn_code icode;

      icode = convert_optab_handler (ctab, full_mode, from_mode);
      gcc_assert (icode != CODE_FOR_nothing);

      if (to_mode == full_mode)
	{
	  emit_unop_insn (icode, to, from, UNKNOWN);
	  return;
	}

      new_from = gen_reg_rtx (full_mode);
      emit_unop_insn (icode, new_from, from, UNKNOWN);

      /* else proceed to integer conversions below.  */
      from_mode = full_mode;
      from = new_from;
    }

   /* Make sure both are fixed-point modes or both are not.  */
   gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
	       ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
   if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
    {
      /* If we widen from_mode to to_mode and they are in the same class,
	 we won't saturate the result.
	 Otherwise, always saturate the result to play safe.  */
      if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
	  && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
	expand_fixed_convert (to, from, 0, 0);
      else
	expand_fixed_convert (to, from, 0, 1);
      return;
    }

  /* Now both modes are integers.  */

  /* Handle expanding beyond a word.  */
  if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
      && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
    {
      rtx_insn *insns;
      rtx lowpart;
      rtx fill_value;
      rtx lowfrom;
      int i;
      machine_mode lowpart_mode;
      int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);

      /* Try converting directly if the insn is supported.  */
      if ((code = can_extend_p (to_mode, from_mode, unsignedp))
	  != CODE_FOR_nothing)
	{
	  /* If FROM is a SUBREG, put it into a register.  Do this
	     so that we always generate the same set of insns for
	     better cse'ing; if an intermediate assignment occurred,
	     we won't be doing the operation directly on the SUBREG.  */
	  if (optimize > 0 && GET_CODE (from) == SUBREG)
	    from = force_reg (from_mode, from);
	  emit_unop_insn (code, to, from, equiv_code);
	  return;
	}
      /* Next, try converting via full word.  */
      else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
	       && ((code = can_extend_p (to_mode, word_mode, unsignedp))
		   != CODE_FOR_nothing))
	{
	  rtx word_to = gen_reg_rtx (word_mode);
	  if (REG_P (to))
	    {
	      if (reg_overlap_mentioned_p (to, from))
		from = force_reg (from_mode, from);
	      emit_clobber (to);
	    }
	  convert_move (word_to, from, unsignedp);
	  emit_unop_insn (code, to, word_to, equiv_code);
	  return;
	}

      /* No special multiword conversion insn; do it by hand.  */
      start_sequence ();

      /* Since we will turn this into a no conflict block, we must ensure
         the source does not overlap the target so force it into an isolated
         register when maybe so.  Likewise for any MEM input, since the
         conversion sequence might require several references to it and we
         must ensure we're getting the same value every time.  */

      if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
	from = force_reg (from_mode, from);

      /* Get a copy of FROM widened to a word, if necessary.  */
      if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
	lowpart_mode = word_mode;
      else
	lowpart_mode = from_mode;

      lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);

      lowpart = gen_lowpart (lowpart_mode, to);
      emit_move_insn (lowpart, lowfrom);

      /* Compute the value to put in each remaining word.  */
      if (unsignedp)
	fill_value = const0_rtx;
      else
	fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
					    LT, lowfrom, const0_rtx,
					    lowpart_mode, 0, -1);

      /* Fill the remaining words.  */
      for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
	{
	  int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
	  rtx subword = operand_subword (to, index, 1, to_mode);

	  gcc_assert (subword);

	  if (fill_value != subword)
	    emit_move_insn (subword, fill_value);
	}

      insns = get_insns ();
      end_sequence ();

      emit_insn (insns);
      return;
    }

  /* Truncating multi-word to a word or less.  */
  if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
      && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
    {
      if (!((MEM_P (from)
	     && ! MEM_VOLATILE_P (from)
	     && direct_load[(int) to_mode]
	     && ! mode_dependent_address_p (XEXP (from, 0),
					    MEM_ADDR_SPACE (from)))
	    || REG_P (from)
	    || GET_CODE (from) == SUBREG))
	from = force_reg (from_mode, from);
      convert_move (to, gen_lowpart (word_mode, from), 0);
      return;
    }

  /* Now follow all the conversions between integers
     no more than a word long.  */

  /* For truncation, usually we can just refer to FROM in a narrower mode.  */
  if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
      && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
    {
      if (!((MEM_P (from)
	     && ! MEM_VOLATILE_P (from)
	     && direct_load[(int) to_mode]
	     && ! mode_dependent_address_p (XEXP (from, 0),
					    MEM_ADDR_SPACE (from)))
	    || REG_P (from)
	    || GET_CODE (from) == SUBREG))
	from = force_reg (from_mode, from);
      if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
	  && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
	from = copy_to_reg (from);
      emit_move_insn (to, gen_lowpart (to_mode, from));
      return;
    }

  /* Handle extension.  */
  if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
    {
      /* Convert directly if that works.  */
      if ((code = can_extend_p (to_mode, from_mode, unsignedp))
	  != CODE_FOR_nothing)
	{
	  emit_unop_insn (code, to, from, equiv_code);
	  return;
	}
      else
	{
	  machine_mode intermediate;
	  rtx tmp;
	  int shift_amount;

	  /* Search for a mode to convert via.  */
	  for (intermediate = from_mode; intermediate != VOIDmode;
	       intermediate = GET_MODE_WIDER_MODE (intermediate))
	    if (((can_extend_p (to_mode, intermediate, unsignedp)
		  != CODE_FOR_nothing)
		 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
		     && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, intermediate)))
		&& (can_extend_p (intermediate, from_mode, unsignedp)
		    != CODE_FOR_nothing))
	      {
		convert_move (to, convert_to_mode (intermediate, from,
						   unsignedp), unsignedp);
		return;
	      }

	  /* No suitable intermediate mode.
	     Generate what we need with	shifts.  */
	  shift_amount = (GET_MODE_PRECISION (to_mode)
			  - GET_MODE_PRECISION (from_mode));
	  from = gen_lowpart (to_mode, force_reg (from_mode, from));
	  tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
			      to, unsignedp);
	  tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
			      to, unsignedp);
	  if (tmp != to)
	    emit_move_insn (to, tmp);
	  return;
	}
    }

  /* Support special truncate insns for certain modes.  */
  if (convert_optab_handler (trunc_optab, to_mode,
			     from_mode) != CODE_FOR_nothing)
    {
      emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
		      to, from, UNKNOWN);
      return;
    }

  /* Handle truncation of volatile memrefs, and so on;
     the things that couldn't be truncated directly,
     and for which there was no special instruction.

     ??? Code above formerly short-circuited this, for most integer
     mode pairs, with a force_reg in from_mode followed by a recursive
     call to this routine.  Appears always to have been wrong.  */
  if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
    {
      rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
      emit_move_insn (to, temp);
      return;
    }

  /* Mode combination is not recognized.  */
  gcc_unreachable ();
}

/* Return an rtx for a value that would result
   from converting X to mode MODE.
   Both X and MODE may be floating, or both integer.
   UNSIGNEDP is nonzero if X is an unsigned value.
   This can be done by referring to a part of X in place
   or by copying to a new temporary with conversion.  */

rtx
convert_to_mode (machine_mode mode, rtx x, int unsignedp)
{
  return convert_modes (mode, VOIDmode, x, unsignedp);
}

/* Return an rtx for a value that would result
   from converting X from mode OLDMODE to mode MODE.
   Both modes may be floating, or both integer.
   UNSIGNEDP is nonzero if X is an unsigned value.

   This can be done by referring to a part of X in place
   or by copying to a new temporary with conversion.

   You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode.  */

rtx
convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
{
  rtx temp;

  /* If FROM is a SUBREG that indicates that we have already done at least
     the required extension, strip it.  */

  if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
      && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
      && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
    x = gen_lowpart (mode, SUBREG_REG (x));

  if (GET_MODE (x) != VOIDmode)
    oldmode = GET_MODE (x);

  if (mode == oldmode)
    return x;

  if (CONST_SCALAR_INT_P (x) && GET_MODE_CLASS (mode) == MODE_INT)
    {
      /* If the caller did not tell us the old mode, then there is not
	 much to do with respect to canonicalization.  We have to
	 assume that all the bits are significant.  */
      if (GET_MODE_CLASS (oldmode) != MODE_INT)
	oldmode = MAX_MODE_INT;
      wide_int w = wide_int::from (rtx_mode_t (x, oldmode),
				   GET_MODE_PRECISION (mode),
				   unsignedp ? UNSIGNED : SIGNED);
      return immed_wide_int_const (w, mode);
    }

  /* We can do this with a gen_lowpart if both desired and current modes
     are integer, and this is either a constant integer, a register, or a
     non-volatile MEM. */
  if (GET_MODE_CLASS (mode) == MODE_INT
      && GET_MODE_CLASS (oldmode) == MODE_INT
      && GET_MODE_PRECISION (mode) <= GET_MODE_PRECISION (oldmode)
      && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) mode])
          || (REG_P (x)
              && (!HARD_REGISTER_P (x)
                  || HARD_REGNO_MODE_OK (REGNO (x), mode))
              && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x)))))

   return gen_lowpart (mode, x);

  /* Converting from integer constant into mode is always equivalent to an
     subreg operation.  */
  if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
    {
      gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
      return simplify_gen_subreg (mode, x, oldmode, 0);
    }

  temp = gen_reg_rtx (mode);
  convert_move (temp, x, unsignedp);
  return temp;
}

/* Return the largest alignment we can use for doing a move (or store)
   of MAX_PIECES.  ALIGN is the largest alignment we could use.  */

static unsigned int
alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
{
  machine_mode tmode;

  tmode = mode_for_size (max_pieces * BITS_PER_UNIT, MODE_INT, 1);
  if (align >= GET_MODE_ALIGNMENT (tmode))
    align = GET_MODE_ALIGNMENT (tmode);
  else
    {
      machine_mode tmode, xmode;

      for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
	   tmode != VOIDmode;
	   xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
	if (GET_MODE_SIZE (tmode) > max_pieces
	    || SLOW_UNALIGNED_ACCESS (tmode, align))
	  break;

      align = MAX (align, GET_MODE_ALIGNMENT (xmode));
    }

  return align;
}

/* Return the widest integer mode no wider than SIZE.  If no such mode
   can be found, return VOIDmode.  */

static machine_mode
widest_int_mode_for_size (unsigned int size)
{
  machine_mode tmode, mode = VOIDmode;

  for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
       tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
    if (GET_MODE_SIZE (tmode) < size)
      mode = tmode;

  return mode;
}

/* Determine whether an operation OP on LEN bytes with alignment ALIGN can
   and should be performed piecewise.  */

static bool
can_do_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align,
		  enum by_pieces_operation op)
{
  return targetm.use_by_pieces_infrastructure_p (len, align, op,
						 optimize_insn_for_speed_p ());
}

/* Determine whether the LEN bytes can be moved by using several move
   instructions.  Return nonzero if a call to move_by_pieces should
   succeed.  */

bool
can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align)
{
  return can_do_by_pieces (len, align, MOVE_BY_PIECES);
}

/* Return number of insns required to perform operation OP by pieces
   for L bytes.  ALIGN (in bits) is maximum alignment we can assume.  */

unsigned HOST_WIDE_INT
by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
		  unsigned int max_size, by_pieces_operation op)
{
  unsigned HOST_WIDE_INT n_insns = 0;

  align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);

  while (max_size > 1 && l > 0)
    {
      machine_mode mode;
      enum insn_code icode;

      mode = widest_int_mode_for_size (max_size);

      if (mode == VOIDmode)
	break;
      unsigned int modesize = GET_MODE_SIZE (mode);

      icode = optab_handler (mov_optab, mode);
      if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
	{
	  unsigned HOST_WIDE_INT n_pieces = l / modesize;
	  l %= modesize;
	  switch (op)
	    {
	    default:
	      n_insns += n_pieces;
	      break;

	    case COMPARE_BY_PIECES:
	      int batch = targetm.compare_by_pieces_branch_ratio (mode);
	      int batch_ops = 4 * batch - 1;
	      unsigned HOST_WIDE_INT full = n_pieces / batch;
	      n_insns += full * batch_ops;
	      if (n_pieces % batch != 0)
		n_insns++;
	      break;

	    }
	}
      max_size = modesize;
    }

  gcc_assert (!l);
  return n_insns;
}

/* Used when performing piecewise block operations, holds information
   about one of the memory objects involved.  The member functions
   can be used to generate code for loading from the object and
   updating the address when iterating.  */

class pieces_addr
{
  /* The object being referenced, a MEM.  Can be NULL_RTX to indicate
     stack pushes.  */
  rtx m_obj;
  /* The address of the object.  Can differ from that seen in the
     MEM rtx if we copied the address to a register.  */
  rtx m_addr;
  /* Nonzero if the address on the object has an autoincrement already,
     signifies whether that was an increment or decrement.  */
  signed char m_addr_inc;
  /* Nonzero if we intend to use autoinc without the address already
     having autoinc form.  We will insert add insns around each memory
     reference, expecting later passes to form autoinc addressing modes.
     The only supported options are predecrement and postincrement.  */
  signed char m_explicit_inc;
  /* True if we have either of the two possible cases of using
     autoincrement.  */
  bool m_auto;
  /* True if this is an address to be used for load operations rather
     than stores.  */
  bool m_is_load;

  /* Optionally, a function to obtain constants for any given offset into
     the objects, and data associated with it.  */
  by_pieces_constfn m_constfn;
  void *m_cfndata;
public:
  pieces_addr (rtx, bool, by_pieces_constfn, void *);
  rtx adjust (machine_mode, HOST_WIDE_INT);
  void increment_address (HOST_WIDE_INT);
  void maybe_predec (HOST_WIDE_INT);
  void maybe_postinc (HOST_WIDE_INT);
  void decide_autoinc (machine_mode, bool, HOST_WIDE_INT);
  int get_addr_inc ()
  {
    return m_addr_inc;
  }
};

/* Initialize a pieces_addr structure from an object OBJ.  IS_LOAD is
   true if the operation to be performed on this object is a load
   rather than a store.  For stores, OBJ can be NULL, in which case we
   assume the operation is a stack push.  For loads, the optional
   CONSTFN and its associated CFNDATA can be used in place of the
   memory load.  */

pieces_addr::pieces_addr (rtx obj, bool is_load, by_pieces_constfn constfn,
			  void *cfndata)
  : m_obj (obj), m_is_load (is_load), m_constfn (constfn), m_cfndata (cfndata)
{
  m_addr_inc = 0;
  m_auto = false;
  if (obj)
    {
      rtx addr = XEXP (obj, 0);
      rtx_code code = GET_CODE (addr);
      m_addr = addr;
      bool dec = code == PRE_DEC || code == POST_DEC;
      bool inc = code == PRE_INC || code == POST_INC;
      m_auto = inc || dec;
      if (m_auto)
	m_addr_inc = dec ? -1 : 1;

      /* While we have always looked for these codes here, the code
	 implementing the memory operation has never handled them.
	 Support could be added later if necessary or beneficial.  */
      gcc_assert (code != PRE_INC && code != POST_DEC);
    }
  else
    {
      m_addr = NULL_RTX;
      if (!is_load)
	{
	  m_auto = true;
	  if (STACK_GROWS_DOWNWARD)
	    m_addr_inc = -1;
	  else
	    m_addr_inc = 1;
	}
      else
	gcc_assert (constfn != NULL);
    }
  m_explicit_inc = 0;
  if (constfn)
    gcc_assert (is_load);
}

/* Decide whether to use autoinc for an address involved in a memory op.
   MODE is the mode of the accesses, REVERSE is true if we've decided to
   perform the operation starting from the end, and LEN is the length of
   the operation.  Don't override an earlier decision to set m_auto.  */

void
pieces_addr::decide_autoinc (machine_mode ARG_UNUSED (mode), bool reverse,
			     HOST_WIDE_INT len)
{
  if (m_auto || m_obj == NULL_RTX)
    return;

  bool use_predec = (m_is_load
		     ? USE_LOAD_PRE_DECREMENT (mode)
		     : USE_STORE_PRE_DECREMENT (mode));
  bool use_postinc = (m_is_load
		      ? USE_LOAD_POST_INCREMENT (mode)
		      : USE_STORE_POST_INCREMENT (mode));
  machine_mode addr_mode = get_address_mode (m_obj);

  if (use_predec && reverse)
    {
      m_addr = copy_to_mode_reg (addr_mode,
				 plus_constant (addr_mode,
						m_addr, len));
      m_auto = true;
      m_explicit_inc = -1;
    }
  else if (use_postinc && !reverse)
    {
      m_addr = copy_to_mode_reg (addr_mode, m_addr);
      m_auto = true;
      m_explicit_inc = 1;
    }
  else if (CONSTANT_P (m_addr))
    m_addr = copy_to_mode_reg (addr_mode, m_addr);
}

/* Adjust the address to refer to the data at OFFSET in MODE.  If we
   are using autoincrement for this address, we don't add the offset,
   but we still modify the MEM's properties.  */

rtx
pieces_addr::adjust (machine_mode mode, HOST_WIDE_INT offset)
{
  if (m_constfn)
    return m_constfn (m_cfndata, offset, mode);
  if (m_obj == NULL_RTX)
    return NULL_RTX;
  if (m_auto)
    return adjust_automodify_address (m_obj, mode, m_addr, offset);
  else
    return adjust_address (m_obj, mode, offset);
}

/* Emit an add instruction to increment the address by SIZE.  */

void
pieces_addr::increment_address (HOST_WIDE_INT size)
{
  rtx amount = gen_int_mode (size, GET_MODE (m_addr));
  emit_insn (gen_add2_insn (m_addr, amount));
}

/* If we are supposed to decrement the address after each access, emit code
   to do so now.  Increment by SIZE (which has should have the correct sign
   already).  */

void
pieces_addr::maybe_predec (HOST_WIDE_INT size)
{
  if (m_explicit_inc >= 0)
    return;
  gcc_assert (HAVE_PRE_DECREMENT);
  increment_address (size);
}

/* If we are supposed to decrement the address after each access, emit code
   to do so now.  Increment by SIZE.  */

void
pieces_addr::maybe_postinc (HOST_WIDE_INT size)
{
  if (m_explicit_inc <= 0)
    return;
  gcc_assert (HAVE_POST_INCREMENT);
  increment_address (size);
}

/* This structure is used by do_op_by_pieces to describe the operation
   to be performed.  */

class op_by_pieces_d
{
 protected:
  pieces_addr m_to, m_from;
  unsigned HOST_WIDE_INT m_len;
  HOST_WIDE_INT m_offset;
  unsigned int m_align;
  unsigned int m_max_size;
  bool m_reverse;

  /* Virtual functions, overriden by derived classes for the specific
     operation.  */
  virtual void generate (rtx, rtx, machine_mode) = 0;
  virtual bool prepare_mode (machine_mode, unsigned int) = 0;
  virtual void finish_mode (machine_mode)
  {
  }

 public:
  op_by_pieces_d (rtx, bool, rtx, bool, by_pieces_constfn, void *,
		  unsigned HOST_WIDE_INT, unsigned int);
  void run ();
};

/* The constructor for an op_by_pieces_d structure.  We require two
   objects named TO and FROM, which are identified as loads or stores
   by TO_LOAD and FROM_LOAD.  If FROM is a load, the optional FROM_CFN
   and its associated FROM_CFN_DATA can be used to replace loads with
   constant values.  LEN describes the length of the operation.  */

op_by_pieces_d::op_by_pieces_d (rtx to, bool to_load,
				rtx from, bool from_load,
				by_pieces_constfn from_cfn,
				void *from_cfn_data,
				unsigned HOST_WIDE_INT len,
				unsigned int align)
  : m_to (to, to_load, NULL, NULL),
    m_from (from, from_load, from_cfn, from_cfn_data),
    m_len (len), m_max_size (MOVE_MAX_PIECES + 1)
{
  int toi = m_to.get_addr_inc ();
  int fromi = m_from.get_addr_inc ();
  if (toi >= 0 && fromi >= 0)
    m_reverse = false;
  else if (toi <= 0 && fromi <= 0)
    m_reverse = true;
  else
    gcc_unreachable ();

  m_offset = m_reverse ? len : 0;
  align = MIN (to ? MEM_ALIGN (to) : align,
	       from ? MEM_ALIGN (from) : align);

  /* If copying requires more than two move insns,
     copy addresses to registers (to make displacements shorter)
     and use post-increment if available.  */
  if (by_pieces_ninsns (len, align, m_max_size, MOVE_BY_PIECES) > 2)
    {
      /* Find the mode of the largest comparison.  */
      machine_mode mode = widest_int_mode_for_size (m_max_size);

      m_from.decide_autoinc (mode, m_reverse, len);
      m_to.decide_autoinc (mode, m_reverse, len);
    }

  align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
  m_align = align;
}

/* This function contains the main loop used for expanding a block
   operation.  First move what we can in the largest integer mode,
   then go to successively smaller modes.  For every access, call
   GENFUN with the two operands and the EXTRA_DATA.  */

void
op_by_pieces_d::run ()
{
  while (m_max_size > 1 && m_len > 0)
    {
      machine_mode mode = widest_int_mode_for_size (m_max_size);

      if (mode == VOIDmode)
	break;

      if (prepare_mode (mode, m_align))
	{
	  unsigned int size = GET_MODE_SIZE (mode);
	  rtx to1 = NULL_RTX, from1;

	  while (m_len >= size)
	    {
	      if (m_reverse)
		m_offset -= size;

	      to1 = m_to.adjust (mode, m_offset);
	      from1 = m_from.adjust (mode, m_offset);

	      m_to.maybe_predec (-(HOST_WIDE_INT)size);
	      m_from.maybe_predec (-(HOST_WIDE_INT)size);

	      generate (to1, from1, mode);

	      m_to.maybe_postinc (size);
	      m_from.maybe_postinc (size);

	      if (!m_reverse)
		m_offset += size;

	      m_len -= size;
	    }

	  finish_mode (mode);
	}

      m_max_size = GET_MODE_SIZE (mode);
    }

  /* The code above should have handled everything.  */
  gcc_assert (!m_len);
}

/* Derived class from op_by_pieces_d, providing support for block move
   operations.  */

class move_by_pieces_d : public op_by_pieces_d
{
  insn_gen_fn m_gen_fun;
  void generate (rtx, rtx, machine_mode);
  bool prepare_mode (machine_mode, unsigned int);

 public:
  move_by_pieces_d (rtx to, rtx from, unsigned HOST_WIDE_INT len,
		    unsigned int align)
    : op_by_pieces_d (to, false, from, true, NULL, NULL, len, align)
  {
  }
  rtx finish_endp (int);
};

/* Return true if MODE can be used for a set of copies, given an
   alignment ALIGN.  Prepare whatever data is necessary for later
   calls to generate.  */

bool
move_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
{
  insn_code icode = optab_handler (mov_optab, mode);
  m_gen_fun = GEN_FCN (icode);
  return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
}

/* A callback used when iterating for a compare_by_pieces_operation.
   OP0 and OP1 are the values that have been loaded and should be
   compared in MODE.  If OP0 is NULL, this means we should generate a
   push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
   gen function that should be used to generate the mode.  */

void
move_by_pieces_d::generate (rtx op0, rtx op1,
			    machine_mode mode ATTRIBUTE_UNUSED)
{
#ifdef PUSH_ROUNDING
  if (op0 == NULL_RTX)
    {
      emit_single_push_insn (mode, op1, NULL);
      return;
    }
#endif
  emit_insn (m_gen_fun (op0, op1));
}

/* Perform the final adjustment at the end of a string to obtain the
   correct return value for the block operation.  If ENDP is 1 return
   memory at the end ala mempcpy, and if ENDP is 2 return memory the
   end minus one byte ala stpcpy.  */

rtx
move_by_pieces_d::finish_endp (int endp)
{
  gcc_assert (!m_reverse);
  if (endp == 2)
    {
      m_to.maybe_postinc (-1);
      --m_offset;
    }
  return m_to.adjust (QImode, m_offset);
}

/* Generate several move instructions to copy LEN bytes from block FROM to
   block TO.  (These are MEM rtx's with BLKmode).

   If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
   used to push FROM to the stack.

   ALIGN is maximum stack alignment we can assume.

   If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
   mempcpy, and if ENDP is 2 return memory the end minus one byte ala
   stpcpy.  */

rtx
move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
		unsigned int align, int endp)
{
#ifndef PUSH_ROUNDING
  if (to == NULL)
    gcc_unreachable ();
#endif

  move_by_pieces_d data (to, from, len, align);

  data.run ();

  if (endp)
    return data.finish_endp (endp);
  else
    return to;
}

/* Derived class from op_by_pieces_d, providing support for block move
   operations.  */

class store_by_pieces_d : public op_by_pieces_d
{
  insn_gen_fn m_gen_fun;
  void generate (rtx, rtx, machine_mode);
  bool prepare_mode (machine_mode, unsigned int);

 public:
  store_by_pieces_d (rtx to, by_pieces_constfn cfn, void *cfn_data,
		     unsigned HOST_WIDE_INT len, unsigned int align)
    : op_by_pieces_d (to, false, NULL_RTX, true, cfn, cfn_data, len, align)
  {
  }
  rtx finish_endp (int);
};

/* Return true if MODE can be used for a set of stores, given an
   alignment ALIGN.  Prepare whatever data is necessary for later
   calls to generate.  */

bool
store_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
{
  insn_code icode = optab_handler (mov_optab, mode);
  m_gen_fun = GEN_FCN (icode);
  return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
}

/* A callback used when iterating for a store_by_pieces_operation.
   OP0 and OP1 are the values that have been loaded and should be
   compared in MODE.  If OP0 is NULL, this means we should generate a
   push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
   gen function that should be used to generate the mode.  */

void
store_by_pieces_d::generate (rtx op0, rtx op1, machine_mode)
{
  emit_insn (m_gen_fun (op0, op1));
}

/* Perform the final adjustment at the end of a string to obtain the
   correct return value for the block operation.  If ENDP is 1 return
   memory at the end ala mempcpy, and if ENDP is 2 return memory the
   end minus one byte ala stpcpy.  */

rtx
store_by_pieces_d::finish_endp (int endp)
{
  gcc_assert (!m_reverse);
  if (endp == 2)
    {
      m_to.maybe_postinc (-1);
      --m_offset;
    }
  return m_to.adjust (QImode, m_offset);
}

/* Determine whether the LEN bytes generated by CONSTFUN can be
   stored to memory using several move instructions.  CONSTFUNDATA is
   a pointer which will be passed as argument in every CONSTFUN call.
   ALIGN is maximum alignment we can assume.  MEMSETP is true if this is
   a memset operation and false if it's a copy of a constant string.
   Return nonzero if a call to store_by_pieces should succeed.  */

int
can_store_by_pieces (unsigned HOST_WIDE_INT len,
		     rtx (*constfun) (void *, HOST_WIDE_INT, machine_mode),
		     void *constfundata, unsigned int align, bool memsetp)
{
  unsigned HOST_WIDE_INT l;
  unsigned int max_size;
  HOST_WIDE_INT offset = 0;
  machine_mode mode;
  enum insn_code icode;
  int reverse;
  /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it.  */
  rtx cst ATTRIBUTE_UNUSED;

  if (len == 0)
    return 1;

  if (!targetm.use_by_pieces_infrastructure_p (len, align,
					       memsetp
						 ? SET_BY_PIECES
						 : STORE_BY_PIECES,
					       optimize_insn_for_speed_p ()))
    return 0;

  align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);

  /* We would first store what we can in the largest integer mode, then go to
     successively smaller modes.  */

  for (reverse = 0;
       reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
       reverse++)
    {
      l = len;
      max_size = STORE_MAX_PIECES + 1;
      while (max_size > 1 && l > 0)
	{
	  mode = widest_int_mode_for_size (max_size);

	  if (mode == VOIDmode)
	    break;

	  icode = optab_handler (mov_optab, mode);
	  if (icode != CODE_FOR_nothing
	      && align >= GET_MODE_ALIGNMENT (mode))
	    {
	      unsigned int size = GET_MODE_SIZE (mode);

	      while (l >= size)
		{
		  if (reverse)
		    offset -= size;

		  cst = (*constfun) (constfundata, offset, mode);
		  if (!targetm.legitimate_constant_p (mode, cst))
		    return 0;

		  if (!reverse)
		    offset += size;

		  l -= size;
		}
	    }

	  max_size = GET_MODE_SIZE (mode);
	}

      /* The code above should have handled everything.  */
      gcc_assert (!l);
    }

  return 1;
}

/* Generate several move instructions to store LEN bytes generated by
   CONSTFUN to block TO.  (A MEM rtx with BLKmode).  CONSTFUNDATA is a
   pointer which will be passed as argument in every CONSTFUN call.
   ALIGN is maximum alignment we can assume.  MEMSETP is true if this is
   a memset operation and false if it's a copy of a constant string.
   If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
   mempcpy, and if ENDP is 2 return memory the end minus one byte ala
   stpcpy.  */

rtx
store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
		 rtx (*constfun) (void *, HOST_WIDE_INT, machine_mode),
		 void *constfundata, unsigned int align, bool memsetp, int endp)
{
  if (len == 0)
    {
      gcc_assert (endp != 2);
      return to;
    }

  gcc_assert (targetm.use_by_pieces_infrastructure_p
		(len, align,
		 memsetp ? SET_BY_PIECES : STORE_BY_PIECES,
		 optimize_insn_for_speed_p ()));

  store_by_pieces_d data (to, constfun, constfundata, len, align);
  data.run ();

  if (endp)
    return data.finish_endp (endp);
  else
    return to;
}

/* Callback routine for clear_by_pieces.
   Return const0_rtx unconditionally.  */

static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT, machine_mode)
{
  return const0_rtx;
}

/* Generate several move instructions to clear LEN bytes of block TO.  (A MEM
   rtx with BLKmode).  ALIGN is maximum alignment we can assume.  */

static void
clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
{
  if (len == 0)
    return;

  store_by_pieces_d data (to, clear_by_pieces_1, NULL, len, align);
  data.run ();
}

/* Context used by compare_by_pieces_genfn.  It stores the fail label
   to jump to in case of miscomparison, and for branch ratios greater than 1,
   it stores an accumulator and the current and maximum counts before
   emitting another branch.  */

class compare_by_pieces_d : public op_by_pieces_d
{
  rtx_code_label *m_fail_label;
  rtx m_accumulator;
  int m_count, m_batch;

  void generate (rtx, rtx, machine_mode);
  bool prepare_mode (machine_mode, unsigned int);
  void finish_mode (machine_mode);
 public:
  compare_by_pieces_d (rtx op0, rtx op1, by_pieces_constfn op1_cfn,
		       void *op1_cfn_data, HOST_WIDE_INT len, int align,
		       rtx_code_label *fail_label)
    : op_by_pieces_d (op0, true, op1, true, op1_cfn, op1_cfn_data, len, align)
  {
    m_fail_label = fail_label;
  }
};

/* A callback used when iterating for a compare_by_pieces_operation.
   OP0 and OP1 are the values that have been loaded and should be
   compared in MODE.  DATA holds a pointer to the compare_by_pieces_data
   context structure.  */

void
compare_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode)
{
  if (m_batch > 1)
    {
      rtx temp = expand_binop (mode, sub_optab, op0, op1, NULL_RTX,
			       true, OPTAB_LIB_WIDEN);
      if (m_count != 0)
	temp = expand_binop (mode, ior_optab, m_accumulator, temp, temp,
			     true, OPTAB_LIB_WIDEN);
      m_accumulator = temp;

      if (++m_count < m_batch)
	return;

      m_count = 0;
      op0 = m_accumulator;
      op1 = const0_rtx;
      m_accumulator = NULL_RTX;
    }
  do_compare_rtx_and_jump (op0, op1, NE, true, mode, NULL_RTX, NULL,
			   m_fail_label, -1);
}

/* Return true if MODE can be used for a set of moves and comparisons,
   given an alignment ALIGN.  Prepare whatever data is necessary for
   later calls to generate.  */

bool
compare_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
{
  insn_code icode = optab_handler (mov_optab, mode);
  if (icode == CODE_FOR_nothing
      || align < GET_MODE_ALIGNMENT (mode)
      || !can_compare_p (EQ, mode, ccp_jump))
    return false;
  m_batch = targetm.compare_by_pieces_branch_ratio (mode);
  if (m_batch < 0)
    return false;
  m_accumulator = NULL_RTX;
  m_count = 0;
  return true;
}

/* Called after expanding a series of comparisons in MODE.  If we have
   accumulated results for which we haven't emitted a branch yet, do
   so now.  */

void
compare_by_pieces_d::finish_mode (machine_mode mode)
{
  if (m_accumulator != NULL_RTX)
    do_compare_rtx_and_jump (m_accumulator, const0_rtx, NE, true, mode,
			     NULL_RTX, NULL, m_fail_label, -1);
}

/* Generate several move instructions to compare LEN bytes from blocks
   ARG0 and ARG1.  (These are MEM rtx's with BLKmode).

   If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
   used to push FROM to the stack.

   ALIGN is maximum stack alignment we can assume.

   Optionally, the caller can pass a constfn and associated data in A1_CFN
   and A1_CFN_DATA. describing that the second operand being compared is a
   known constant and how to obtain its data.  */

static rtx
compare_by_pieces (rtx arg0, rtx arg1, unsigned HOST_WIDE_INT len,
		   rtx target, unsigned int align,
		   by_pieces_constfn a1_cfn, void *a1_cfn_data)
{
  rtx_code_label *fail_label = gen_label_rtx ();
  rtx_code_label *end_label = gen_label_rtx ();

  if (target == NULL_RTX
      || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
    target = gen_reg_rtx (TYPE_MODE (integer_type_node));

  compare_by_pieces_d data (arg0, arg1, a1_cfn, a1_cfn_data, len, align,
			    fail_label);

  data.run ();

  emit_move_insn (target, const0_rtx);
  emit_jump (end_label);
  emit_barrier ();
  emit_label (fail_label);
  emit_move_insn (target, const1_rtx);
  emit_label (end_label);

  return target;
}

/* Emit code to move a block Y to a block X.  This may be done with
   string-move instructions, with multiple scalar move instructions,
   or with a library call.

   Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
   SIZE is an rtx that says how long they are.
   ALIGN is the maximum alignment we can assume they have.
   METHOD describes what kind of copy this is, and what mechanisms may be used.
   MIN_SIZE is the minimal size of block to move
   MAX_SIZE is the maximal size of block to move, if it can not be represented
   in unsigned HOST_WIDE_INT, than it is mask of all ones.

   Return the address of the new block, if memcpy is called and returns it,
   0 otherwise.  */

rtx
emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
		       unsigned int expected_align, HOST_WIDE_INT expected_size,
		       unsigned HOST_WIDE_INT min_size,
		       unsigned HOST_WIDE_INT max_size,
		       unsigned HOST_WIDE_INT probable_max_size)
{
  bool may_use_call;
  rtx retval = 0;
  unsigned int align;

  gcc_assert (size);
  if (CONST_INT_P (size) && INTVAL (size) == 0)
    return 0;

  switch (method)
    {
    case BLOCK_OP_NORMAL:
    case BLOCK_OP_TAILCALL:
      may_use_call = true;
      break;

    case BLOCK_OP_CALL_PARM:
      may_use_call = block_move_libcall_safe_for_call_parm ();

      /* Make inhibit_defer_pop nonzero around the library call
	 to force it to pop the arguments right away.  */
      NO_DEFER_POP;
      break;

    case BLOCK_OP_NO_LIBCALL:
      may_use_call = false;
      break;

    default:
      gcc_unreachable ();
    }

  gcc_assert (MEM_P (x) && MEM_P (y));
  align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
  gcc_assert (align >= BITS_PER_UNIT);

  /* Make sure we've got BLKmode addresses; store_one_arg can decide that
     block copy is more efficient for other large modes, e.g. DCmode.  */
  x = adjust_address (x, BLKmode, 0);
  y = adjust_address (y, BLKmode, 0);

  /* Set MEM_SIZE as appropriate for this block copy.  The main place this
     can be incorrect is coming from __builtin_memcpy.  */
  if (CONST_INT_P (size))
    {
      x = shallow_copy_rtx (x);
      y = shallow_copy_rtx (y);
      set_mem_size (x, INTVAL (size));
      set_mem_size (y, INTVAL (size));
    }

  if (CONST_INT_P (size) && can_move_by_pieces (INTVAL (size), align))
    move_by_pieces (x, y, INTVAL (size), align, 0);
  else if (emit_block_move_via_movmem (x, y, size, align,
				       expected_align, expected_size,
				       min_size, max_size, probable_max_size))
    ;
  else if (may_use_call
	   && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
	   && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
    {
      /* Since x and y are passed to a libcall, mark the corresponding
	 tree EXPR as addressable.  */
      tree y_expr = MEM_EXPR (y);
      tree x_expr = MEM_EXPR (x);
      if (y_expr)
	mark_addressable (y_expr);
      if (x_expr)
	mark_addressable (x_expr);
      retval = emit_block_copy_via_libcall (x, y, size,
					    method == BLOCK_OP_TAILCALL);
    }

  else
    emit_block_move_via_loop (x, y, size, align);

  if (method == BLOCK_OP_CALL_PARM)
    OK_DEFER_POP;

  return retval;
}

rtx
emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
{
  unsigned HOST_WIDE_INT max, min = 0;
  if (GET_CODE (size) == CONST_INT)
    min = max = UINTVAL (size);
  else
    max = GET_MODE_MASK (GET_MODE (size));
  return emit_block_move_hints (x, y, size, method, 0, -1,
				min, max, max);
}

/* A subroutine of emit_block_move.  Returns true if calling the
   block move libcall will not clobber any parameters which may have
   already been placed on the stack.  */

static bool
block_move_libcall_safe_for_call_parm (void)
{
#if defined (REG_PARM_STACK_SPACE)
  tree fn;
#endif

  /* If arguments are pushed on the stack, then they're safe.  */
  if (PUSH_ARGS)
    return true;

  /* If registers go on the stack anyway, any argument is sure to clobber
     an outgoing argument.  */
#if defined (REG_PARM_STACK_SPACE)
  fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
  /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
     depend on its argument.  */
  (void) fn;
  if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
      && REG_PARM_STACK_SPACE (fn) != 0)
    return false;
#endif

  /* If any argument goes in memory, then it might clobber an outgoing
     argument.  */
  {
    CUMULATIVE_ARGS args_so_far_v;
    cumulative_args_t args_so_far;
    tree fn, arg;

    fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
    INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
    args_so_far = pack_cumulative_args (&args_so_far_v);

    arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
    for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
      {
	machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
	rtx tmp = targetm.calls.function_arg (args_so_far, mode,
					      NULL_TREE, true);
	if (!tmp || !REG_P (tmp))
	  return false;
	if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1))
	  return false;
	targetm.calls.function_arg_advance (args_so_far, mode,
					    NULL_TREE, true);
      }
  }
  return true;
}

/* A subroutine of emit_block_move.  Expand a movmem pattern;
   return true if successful.  */

static bool
emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
			    unsigned int expected_align, HOST_WIDE_INT expected_size,
			    unsigned HOST_WIDE_INT min_size,
			    unsigned HOST_WIDE_INT max_size,
			    unsigned HOST_WIDE_INT probable_max_size)
{
  int save_volatile_ok = volatile_ok;
  machine_mode mode;

  if (expected_align < align)
    expected_align = align;
  if (expected_size != -1)
    {
      if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
	expected_size = probable_max_size;
      if ((unsigned HOST_WIDE_INT)expected_size < min_size)
	expected_size = min_size;
    }

  /* Since this is a move insn, we don't care about volatility.  */
  volatile_ok = 1;

  /* Try the most limited insn first, because there's no point
     including more than one in the machine description unless
     the more limited one has some advantage.  */

  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    {
      enum insn_code code = direct_optab_handler (movmem_optab, mode);

      if (code != CODE_FOR_nothing
	  /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
	     here because if SIZE is less than the mode mask, as it is
	     returned by the macro, it will definitely be less than the
	     actual mode mask.  Since SIZE is within the Pmode address
	     space, we limit MODE to Pmode.  */
	  && ((CONST_INT_P (size)
	       && ((unsigned HOST_WIDE_INT) INTVAL (size)
		   <= (GET_MODE_MASK (mode) >> 1)))
	      || max_size <= (GET_MODE_MASK (mode) >> 1)
	      || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
	{
	  struct expand_operand ops[9];
	  unsigned int nops;

	  /* ??? When called via emit_block_move_for_call, it'd be
	     nice if there were some way to inform the backend, so
	     that it doesn't fail the expansion because it thinks
	     emitting the libcall would be more efficient.  */
	  nops = insn_data[(int) code].n_generator_args;
	  gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);

	  create_fixed_operand (&ops[0], x);
	  create_fixed_operand (&ops[1], y);
	  /* The check above guarantees that this size conversion is valid.  */
	  create_convert_operand_to (&ops[2], size, mode, true);
	  create_integer_operand (&ops[3], align / BITS_PER_UNIT);
	  if (nops >= 6)
	    {
	      create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
	      create_integer_operand (&ops[5], expected_size);
	    }
	  if (nops >= 8)
	    {
	      create_integer_operand (&ops[6], min_size);
	      /* If we can not represent the maximal size,
		 make parameter NULL.  */
	      if ((HOST_WIDE_INT) max_size != -1)
	        create_integer_operand (&ops[7], max_size);
	      else
		create_fixed_operand (&ops[7], NULL);
	    }
	  if (nops == 9)
	    {
	      /* If we can not represent the maximal size,
		 make parameter NULL.  */
	      if ((HOST_WIDE_INT) probable_max_size != -1)
	        create_integer_operand (&ops[8], probable_max_size);
	      else
		create_fixed_operand (&ops[8], NULL);
	    }
	  if (maybe_expand_insn (code, nops, ops))
	    {
	      volatile_ok = save_volatile_ok;
	      return true;
	    }
	}
    }

  volatile_ok = save_volatile_ok;
  return false;
}

/* A subroutine of emit_block_move.  Copy the data via an explicit
   loop.  This is used only when libcalls are forbidden.  */
/* ??? It'd be nice to copy in hunks larger than QImode.  */

static void
emit_block_move_via_loop (rtx x, rtx y, rtx size,
			  unsigned int align ATTRIBUTE_UNUSED)
{
  rtx_code_label *cmp_label, *top_label;
  rtx iter, x_addr, y_addr, tmp;
  machine_mode x_addr_mode = get_address_mode (x);
  machine_mode y_addr_mode = get_address_mode (y);
  machine_mode iter_mode;

  iter_mode = GET_MODE (size);
  if (iter_mode == VOIDmode)
    iter_mode = word_mode;

  top_label = gen_label_rtx ();
  cmp_label = gen_label_rtx ();
  iter = gen_reg_rtx (iter_mode);

  emit_move_insn (iter, const0_rtx);

  x_addr = force_operand (XEXP (x, 0), NULL_RTX);
  y_addr = force_operand (XEXP (y, 0), NULL_RTX);
  do_pending_stack_adjust ();

  emit_jump (cmp_label);
  emit_label (top_label);

  tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
  x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);

  if (x_addr_mode != y_addr_mode)
    tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
  y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);

  x = change_address (x, QImode, x_addr);
  y = change_address (y, QImode, y_addr);

  emit_move_insn (x, y);

  tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
			     true, OPTAB_LIB_WIDEN);
  if (tmp != iter)
    emit_move_insn (iter, tmp);

  emit_label (cmp_label);

  emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
			   true, top_label, REG_BR_PROB_BASE * 90 / 100);
}

/* Expand a call to memcpy or memmove or memcmp, and return the result.
   TAILCALL is true if this is a tail call.  */

rtx
emit_block_op_via_libcall (enum built_in_function fncode, rtx dst, rtx src,
			   rtx size, bool tailcall)
{
  rtx dst_addr, src_addr;
  tree call_expr, dst_tree, src_tree, size_tree;
  machine_mode size_mode;

  dst_addr = copy_addr_to_reg (XEXP (dst, 0));
  dst_addr = convert_memory_address (ptr_mode, dst_addr);
  dst_tree = make_tree (ptr_type_node, dst_addr);

  src_addr = copy_addr_to_reg (XEXP (src, 0));
  src_addr = convert_memory_address (ptr_mode, src_addr);
  src_tree = make_tree (ptr_type_node, src_addr);

  size_mode = TYPE_MODE (sizetype);
  size = convert_to_mode (size_mode, size, 1);
  size = copy_to_mode_reg (size_mode, size);
  size_tree = make_tree (sizetype, size);

  /* It is incorrect to use the libcall calling conventions for calls to
     memcpy/memmove/memcmp because they can be provided by the user.  */
  tree fn = builtin_decl_implicit (fncode);
  call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
  CALL_EXPR_TAILCALL (call_expr) = tailcall;

  return expand_call (call_expr, NULL_RTX, false);
}

/* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
   ARG3_TYPE is the type of ARG3_RTX.  Return the result rtx on success,
   otherwise return null.  */

rtx
expand_cmpstrn_or_cmpmem (insn_code icode, rtx target, rtx arg1_rtx,
			  rtx arg2_rtx, tree arg3_type, rtx arg3_rtx,
			  HOST_WIDE_INT align)
{
  machine_mode insn_mode = insn_data[icode].operand[0].mode;

  if (target && (!REG_P (target) || HARD_REGISTER_P (target)))
    target = NULL_RTX;

  struct expand_operand ops[5];
  create_output_operand (&ops[0], target, insn_mode);
  create_fixed_operand (&ops[1], arg1_rtx);
  create_fixed_operand (&ops[2], arg2_rtx);
  create_convert_operand_from (&ops[3], arg3_rtx, TYPE_MODE (arg3_type),
			       TYPE_UNSIGNED (arg3_type));
  create_integer_operand (&ops[4], align);
  if (maybe_expand_insn (icode, 5, ops))
    return ops[0].value;
  return NULL_RTX;
}

/* Expand a block compare between X and Y with length LEN using the
   cmpmem optab, placing the result in TARGET.  LEN_TYPE is the type
   of the expression that was used to calculate the length.  ALIGN
   gives the known minimum common alignment.  */

static rtx
emit_block_cmp_via_cmpmem (rtx x, rtx y, rtx len, tree len_type, rtx target,
			   unsigned align)
{
  /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
     implementing memcmp because it will stop if it encounters two
     zero bytes.  */
  insn_code icode = direct_optab_handler (cmpmem_optab, SImode);

  if (icode == CODE_FOR_nothing)
    return NULL_RTX;

  return expand_cmpstrn_or_cmpmem (icode, target, x, y, len_type, len, align);
}

/* Emit code to compare a block Y to a block X.  This may be done with
   string-compare instructions, with multiple scalar instructions,
   or with a library call.

   Both X and Y must be MEM rtx's.  LEN is an rtx that says how long
   they are.  LEN_TYPE is the type of the expression that was used to
   calculate it.

   If EQUALITY_ONLY is true, it means we don't have to return the tri-state
   value of a normal memcmp call, instead we can just compare for equality.
   If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
   returning NULL_RTX.

   Optionally, the caller can pass a constfn and associated data in Y_CFN
   and Y_CFN_DATA. describing that the second operand being compared is a
   known constant and how to obtain its data.
   Return the result of the comparison, or NULL_RTX if we failed to
   perform the operation.  */

rtx
emit_block_cmp_hints (rtx x, rtx y, rtx len, tree len_type, rtx target,
		      bool equality_only, by_pieces_constfn y_cfn,
		      void *y_cfndata)
{
  rtx result = 0;

  if (CONST_INT_P (len) && INTVAL (len) == 0)
    return const0_rtx;

  gcc_assert (MEM_P (x) && MEM_P (y));
  unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
  gcc_assert (align >= BITS_PER_UNIT);

  x = adjust_address (x, BLKmode, 0);
  y = adjust_address (y, BLKmode, 0);

  if (equality_only
      && CONST_INT_P (len)
      && can_do_by_pieces (INTVAL (len), align, COMPARE_BY_PIECES))
    result = compare_by_pieces (x, y, INTVAL (len), target, align,
				y_cfn, y_cfndata);
  else
    result = emit_block_cmp_via_cmpmem (x, y, len, len_type, target, align);

  return result;
}

/* Copy all or part of a value X into registers starting at REGNO.
   The number of registers to be filled is NREGS.  */

void
move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
{
  if (nregs == 0)
    return;

  if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
    x = validize_mem (force_const_mem (mode, x));

  /* See if the machine can do this with a load multiple insn.  */
  if (targetm.have_load_multiple ())
    {
      rtx_insn *last = get_last_insn ();
      rtx first = gen_rtx_REG (word_mode, regno);
      if (rtx_insn *pat = targetm.gen_load_multiple (first, x,
						     GEN_INT (nregs)))
	{
	  emit_insn (pat);
	  return;
	}
      else
	delete_insns_since (last);
    }

  for (int i = 0; i < nregs; i++)
    emit_move_insn (gen_rtx_REG (word_mode, regno + i),
		    operand_subword_force (x, i, mode));
}

/* Copy all or part of a BLKmode value X out of registers starting at REGNO.
   The number of registers to be filled is NREGS.  */

void
move_block_from_reg (int regno, rtx x, int nregs)
{
  if (nregs == 0)
    return;

  /* See if the machine can do this with a store multiple insn.  */
  if (targetm.have_store_multiple ())
    {
      rtx_insn *last = get_last_insn ();
      rtx first = gen_rtx_REG (word_mode, regno);
      if (rtx_insn *pat = targetm.gen_store_multiple (x, first,
						      GEN_INT (nregs)))
	{
	  emit_insn (pat);
	  return;
	}
      else
	delete_insns_since (last);
    }

  for (int i = 0; i < nregs; i++)
    {
      rtx tem = operand_subword (x, i, 1, BLKmode);

      gcc_assert (tem);

      emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
    }
}

/* Generate a PARALLEL rtx for a new non-consecutive group of registers from
   ORIG, where ORIG is a non-consecutive group of registers represented by
   a PARALLEL.  The clone is identical to the original except in that the
   original set of registers is replaced by a new set of pseudo registers.
   The new set has the same modes as the original set.  */

rtx
gen_group_rtx (rtx orig)
{
  int i, length;
  rtx *tmps;

  gcc_assert (GET_CODE (orig) == PARALLEL);

  length = XVECLEN (orig, 0);
  tmps = XALLOCAVEC (rtx, length);

  /* Skip a NULL entry in first slot.  */
  i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;

  if (i)
    tmps[0] = 0;

  for (; i < length; i++)
    {
      machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
      rtx offset = XEXP (XVECEXP (orig, 0, i), 1);

      tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
    }

  return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
}

/* A subroutine of emit_group_load.  Arguments as for emit_group_load,
   except that values are placed in TMPS[i], and must later be moved
   into corresponding XEXP (XVECEXP (DST, 0, i), 0) element.  */

static void
emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
{
  rtx src;
  int start, i;
  machine_mode m = GET_MODE (orig_src);

  gcc_assert (GET_CODE (dst) == PARALLEL);

  if (m != VOIDmode
      && !SCALAR_INT_MODE_P (m)
      && !MEM_P (orig_src)
      && GET_CODE (orig_src) != CONCAT)
    {
      machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
      if (imode == BLKmode)
	src = assign_stack_temp (GET_MODE (orig_src), ssize);
      else
	src = gen_reg_rtx (imode);
      if (imode != BLKmode)
	src = gen_lowpart (GET_MODE (orig_src), src);
      emit_move_insn (src, orig_src);
      /* ...and back again.  */
      if (imode != BLKmode)
	src = gen_lowpart (imode, src);
      emit_group_load_1 (tmps, dst, src, type, ssize);
      return;
    }

  /* Check for a NULL entry, used to indicate that the parameter goes
     both on the stack and in registers.  */
  if (XEXP (XVECEXP (dst, 0, 0), 0))
    start = 0;
  else
    start = 1;

  /* Process the pieces.  */
  for (i = start; i < XVECLEN (dst, 0); i++)
    {
      machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
      HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
      unsigned int bytelen = GET_MODE_SIZE (mode);
      int shift = 0;

      /* Handle trailing fragments that run over the size of the struct.  */
      if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
	{
	  /* Arrange to shift the fragment to where it belongs.
	     extract_bit_field loads to the lsb of the reg.  */
	  if (
#ifdef BLOCK_REG_PADDING
	      BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
	      == (BYTES_BIG_ENDIAN ? upward : downward)
#else
	      BYTES_BIG_ENDIAN
#endif
	      )
	    shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
	  bytelen = ssize - bytepos;
	  gcc_assert (bytelen > 0);
	}

      /* If we won't be loading directly from memory, protect the real source
	 from strange tricks we might play; but make sure that the source can
	 be loaded directly into the destination.  */
      src = orig_src;
      if (!MEM_P (orig_src)
	  && (!CONSTANT_P (orig_src)
	      || (GET_MODE (orig_src) != mode
		  && GET_MODE (orig_src) != VOIDmode)))
	{
	  if (GET_MODE (orig_src) == VOIDmode)
	    src = gen_reg_rtx (mode);
	  else
	    src = gen_reg_rtx (GET_MODE (orig_src));

	  emit_move_insn (src, orig_src);
	}

      /* Optimize the access just a bit.  */
      if (MEM_P (src)
	  && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
	      || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
	  && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
	  && bytelen == GET_MODE_SIZE (mode))
	{
	  tmps[i] = gen_reg_rtx (mode);
	  emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
	}
      else if (COMPLEX_MODE_P (mode)
	       && GET_MODE (src) == mode
	       && bytelen == GET_MODE_SIZE (mode))
	/* Let emit_move_complex do the bulk of the work.  */
	tmps[i] = src;
      else if (GET_CODE (src) == CONCAT)
	{
	  unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
	  unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
	  unsigned int elt = bytepos / slen0;
	  unsigned int subpos = bytepos % slen0;

	  if (subpos + bytelen <= slen0)
	    {
	      /* The following assumes that the concatenated objects all
		 have the same size.  In this case, a simple calculation
		 can be used to determine the object and the bit field
		 to be extracted.  */
	      tmps[i] = XEXP (src, elt);
	      if (subpos != 0
		  || subpos + bytelen != slen0
		  || (!CONSTANT_P (tmps[i])
		      && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode)))
		tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
					     subpos * BITS_PER_UNIT,
					     1, NULL_RTX, mode, mode, false);
	    }
	  else
	    {
	      rtx mem;

	      gcc_assert (!bytepos);
	      mem = assign_stack_temp (GET_MODE (src), slen);
	      emit_move_insn (mem, src);
	      tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
					   0, 1, NULL_RTX, mode, mode, false);
	    }
	}
      /* FIXME: A SIMD parallel will eventually lead to a subreg of a
	 SIMD register, which is currently broken.  While we get GCC
	 to emit proper RTL for these cases, let's dump to memory.  */
      else if (VECTOR_MODE_P (GET_MODE (dst))
	       && REG_P (src))
	{
	  int slen = GET_MODE_SIZE (GET_MODE (src));
	  rtx mem;

	  mem = assign_stack_temp (GET_MODE (src), slen);
	  emit_move_insn (mem, src);
	  tmps[i] = adjust_address (mem, mode, (int) bytepos);
	}
      else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
               && XVECLEN (dst, 0) > 1)
        tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
      else if (CONSTANT_P (src))
	{
	  HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;

	  if (len == ssize)
	    tmps[i] = src;
	  else
	    {
	      rtx first, second;

	      /* TODO: const_wide_int can have sizes other than this...  */
	      gcc_assert (2 * len == ssize);
	      split_double (src, &first, &second);
	      if (i)
		tmps[i] = second;
	      else
		tmps[i] = first;
	    }
	}
      else if (REG_P (src) && GET_MODE (src) == mode)
	tmps[i] = src;
      else
	tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
				     bytepos * BITS_PER_UNIT, 1, NULL_RTX,
				     mode, mode, false);

      if (shift)
	tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
				shift, tmps[i], 0);
    }
}

/* Emit code to move a block SRC of type TYPE to a block DST,
   where DST is non-consecutive registers represented by a PARALLEL.
   SSIZE represents the total size of block ORIG_SRC in bytes, or -1
   if not known.  */

void
emit_group_load (rtx dst, rtx src, tree type, int ssize)
{
  rtx *tmps;
  int i;

  tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
  emit_group_load_1 (tmps, dst, src, type, ssize);

  /* Copy the extracted pieces into the proper (probable) hard regs.  */
  for (i = 0; i < XVECLEN (dst, 0); i++)
    {
      rtx d = XEXP (XVECEXP (dst, 0, i), 0);
      if (d == NULL)
	continue;
      emit_move_insn (d, tmps[i]);
    }
}

/* Similar, but load SRC into new pseudos in a format that looks like
   PARALLEL.  This can later be fed to emit_group_move to get things
   in the right place.  */

rtx
emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
{
  rtvec vec;
  int i;

  vec = rtvec_alloc (XVECLEN (parallel, 0));
  emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);

  /* Convert the vector to look just like the original PARALLEL, except
     with the computed values.  */
  for (i = 0; i < XVECLEN (parallel, 0); i++)
    {
      rtx e = XVECEXP (parallel, 0, i);
      rtx d = XEXP (e, 0);

      if (d)
	{
	  d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
	  e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
	}
      RTVEC_ELT (vec, i) = e;
    }

  return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
}

/* Emit code to move a block SRC to block DST, where SRC and DST are
   non-consecutive groups of registers, each represented by a PARALLEL.  */

void
emit_group_move (rtx dst, rtx src)
{
  int i;

  gcc_assert (GET_CODE (src) == PARALLEL
	      && GET_CODE (dst) == PARALLEL
	      && XVECLEN (src, 0) == XVECLEN (dst, 0));

  /* Skip first entry if NULL.  */
  for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
    emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
		    XEXP (XVECEXP (src, 0, i), 0));
}

/* Move a group of registers represented by a PARALLEL into pseudos.  */

rtx
emit_group_move_into_temps (rtx src)
{
  rtvec vec = rtvec_alloc (XVECLEN (src, 0));
  int i;

  for (i = 0; i < XVECLEN (src, 0); i++)
    {
      rtx e = XVECEXP (src, 0, i);
      rtx d = XEXP (e, 0);

      if (d)
	e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
      RTVEC_ELT (vec, i) = e;
    }

  return gen_rtx_PARALLEL (GET_MODE (src), vec);
}

/* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
   where SRC is non-consecutive registers represented by a PARALLEL.
   SSIZE represents the total size of block ORIG_DST, or -1 if not
   known.  */

void
emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
{
  rtx *tmps, dst;
  int start, finish, i;
  machine_mode m = GET_MODE (orig_dst);

  gcc_assert (GET_CODE (src) == PARALLEL);

  if (!SCALAR_INT_MODE_P (m)
      && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
    {
      machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
      if (imode == BLKmode)
        dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
      else
        dst = gen_reg_rtx (imode);
      emit_group_store (dst, src, type, ssize);
      if (imode != BLKmode)
        dst = gen_lowpart (GET_MODE (orig_dst), dst);
      emit_move_insn (orig_dst, dst);
      return;
    }

  /* Check for a NULL entry, used to indicate that the parameter goes
     both on the stack and in registers.  */
  if (XEXP (XVECEXP (src, 0, 0), 0))
    start = 0;
  else
    start = 1;
  finish = XVECLEN (src, 0);

  tmps = XALLOCAVEC (rtx, finish);

  /* Copy the (probable) hard regs into pseudos.  */
  for (i = start; i < finish; i++)
    {
      rtx reg = XEXP (XVECEXP (src, 0, i), 0);
      if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
	{
	  tmps[i] = gen_reg_rtx (GET_MODE (reg));
	  emit_move_insn (tmps[i], reg);
	}
      else
	tmps[i] = reg;
    }

  /* If we won't be storing directly into memory, protect the real destination
     from strange tricks we might play.  */
  dst = orig_dst;
  if (GET_CODE (dst) == PARALLEL)
    {
      rtx temp;

      /* We can get a PARALLEL dst if there is a conditional expression in
	 a return statement.  In that case, the dst and src are the same,
	 so no action is necessary.  */
      if (rtx_equal_p (dst, src))
	return;

      /* It is unclear if we can ever reach here, but we may as well handle
	 it.  Allocate a temporary, and split this into a store/load to/from
	 the temporary.  */
      temp = assign_stack_temp (GET_MODE (dst), ssize);
      emit_group_store (temp, src, type, ssize);
      emit_group_load (dst, temp, type, ssize);
      return;
    }
  else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
    {
      machine_mode outer = GET_MODE (dst);
      machine_mode inner;
      HOST_WIDE_INT bytepos;
      bool done = false;
      rtx temp;

      if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
	dst = gen_reg_rtx (outer);

      /* Make life a bit easier for combine.  */
      /* If the first element of the vector is the low part
	 of the destination mode, use a paradoxical subreg to
	 initialize the destination.  */
      if (start < finish)
	{
	  inner = GET_MODE (tmps[start]);
	  bytepos = subreg_lowpart_offset (inner, outer);
	  if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
	    {
	      temp = simplify_gen_subreg (outer, tmps[start],
					  inner, 0);
	      if (temp)
		{
		  emit_move_insn (dst, temp);
		  done = true;
		  start++;
		}
	    }
	}

      /* If the first element wasn't the low part, try the last.  */
      if (!done
	  && start < finish - 1)
	{
	  inner = GET_MODE (tmps[finish - 1]);
	  bytepos = subreg_lowpart_offset (inner, outer);
	  if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
	    {
	      temp = simplify_gen_subreg (outer, tmps[finish - 1],
					  inner, 0);
	      if (temp)
		{
		  emit_move_insn (dst, temp);
		  done = true;
		  finish--;
		}
	    }
	}

      /* Otherwise, simply initialize the result to zero.  */
      if (!done)
        emit_move_insn (dst, CONST0_RTX (outer));
    }

  /* Process the pieces.  */
  for (i = start; i < finish; i++)
    {
      HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
      machine_mode mode = GET_MODE (tmps[i]);
      unsigned int bytelen = GET_MODE_SIZE (mode);
      unsigned int adj_bytelen;
      rtx dest = dst;

      /* Handle trailing fragments that run over the size of the struct.  */
      if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
	adj_bytelen = ssize - bytepos;
      else
	adj_bytelen = bytelen;

      if (GET_CODE (dst) == CONCAT)
	{
	  if (bytepos + adj_bytelen
	      <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
	    dest = XEXP (dst, 0);
	  else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
	    {
	      bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
	      dest = XEXP (dst, 1);
	    }
	  else
	    {
	      machine_mode dest_mode = GET_MODE (dest);
	      machine_mode tmp_mode = GET_MODE (tmps[i]);

	      gcc_assert (bytepos == 0 && XVECLEN (src, 0));

	      if (GET_MODE_ALIGNMENT (dest_mode)
		  >= GET_MODE_ALIGNMENT (tmp_mode))
		{
		  dest = assign_stack_temp (dest_mode,
					    GET_MODE_SIZE (dest_mode));
		  emit_move_insn (adjust_address (dest,
						  tmp_mode,
						  bytepos),
				  tmps[i]);
		  dst = dest;
		}
	      else
		{
		  dest = assign_stack_temp (tmp_mode,
					    GET_MODE_SIZE (tmp_mode));
		  emit_move_insn (dest, tmps[i]);
		  dst = adjust_address (dest, dest_mode, bytepos);
		}
	      break;
	    }
	}

      /* Handle trailing fragments that run over the size of the struct.  */
      if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
	{
	  /* store_bit_field always takes its value from the lsb.
	     Move the fragment to the lsb if it's not already there.  */
	  if (
#ifdef BLOCK_REG_PADDING
	      BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
	      == (BYTES_BIG_ENDIAN ? upward : downward)
#else
	      BYTES_BIG_ENDIAN
#endif
	      )
	    {
	      int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
	      tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
				      shift, tmps[i], 0);
	    }

	  /* Make sure not to write past the end of the struct.  */
	  store_bit_field (dest,
			   adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
			   bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
			   VOIDmode, tmps[i], false);
	}

      /* Optimize the access just a bit.  */
      else if (MEM_P (dest)
	       && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
		   || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
	       && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
	       && bytelen == GET_MODE_SIZE (mode))
	emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);

      else
	store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
			 0, 0, mode, tmps[i], false);
    }

  /* Copy from the pseudo into the (probable) hard reg.  */
  if (orig_dst != dst)
    emit_move_insn (orig_dst, dst);
}

/* Return a form of X that does not use a PARALLEL.  TYPE is the type
   of the value stored in X.  */

rtx
maybe_emit_group_store (rtx x, tree type)
{
  machine_mode mode = TYPE_MODE (type);
  gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
  if (GET_CODE (x) == PARALLEL)
    {
      rtx result = gen_reg_rtx (mode);
      emit_group_store (result, x, type, int_size_in_bytes (type));
      return result;
    }
  return x;
}

/* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.

   This is used on targets that return BLKmode values in registers.  */

static void
copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
{
  unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
  rtx src = NULL, dst = NULL;
  unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
  unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
  machine_mode mode = GET_MODE (srcreg);
  machine_mode tmode = GET_MODE (target);
  machine_mode copy_mode;

  /* BLKmode registers created in the back-end shouldn't have survived.  */
  gcc_assert (mode != BLKmode);

  /* If the structure doesn't take up a whole number of words, see whether
     SRCREG is padded on the left or on the right.  If it's on the left,
     set PADDING_CORRECTION to the number of bits to skip.

     In most ABIs, the structure will be returned at the least end of
     the register, which translates to right padding on little-endian
     targets and left padding on big-endian targets.  The opposite
     holds if the structure is returned at the most significant
     end of the register.  */
  if (bytes % UNITS_PER_WORD != 0
      && (targetm.calls.return_in_msb (type)
	  ? !BYTES_BIG_ENDIAN
	  : BYTES_BIG_ENDIAN))
    padding_correction
      = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));

  /* We can use a single move if we have an exact mode for the size.  */
  else if (MEM_P (target)
	   && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target))
	       || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
	   && bytes == GET_MODE_SIZE (mode))
  {
    emit_move_insn (adjust_address (target, mode, 0), srcreg);
    return;
  }

  /* And if we additionally have the same mode for a register.  */
  else if (REG_P (target)
	   && GET_MODE (target) == mode
	   && bytes == GET_MODE_SIZE (mode))
  {
    emit_move_insn (target, srcreg);
    return;
  }

  /* This code assumes srcreg is at least a full word.  If it isn't, copy it
     into a new pseudo which is a full word.  */
  if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
    {
      srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
      mode = word_mode;
    }

  /* Copy the structure BITSIZE bits at a time.  If the target lives in
     memory, take care of not reading/writing past its end by selecting
     a copy mode suited to BITSIZE.  This should always be possible given
     how it is computed.

     If the target lives in register, make sure not to select a copy mode
     larger than the mode of the register.

     We could probably emit more efficient code for machines which do not use
     strict alignment, but it doesn't seem worth the effort at the current
     time.  */

  copy_mode = word_mode;
  if (MEM_P (target))
    {
      machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
      if (mem_mode != BLKmode)
	copy_mode = mem_mode;
    }
  else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
    copy_mode = tmode;

  for (bitpos = 0, xbitpos = padding_correction;
       bitpos < bytes * BITS_PER_UNIT;
       bitpos += bitsize, xbitpos += bitsize)
    {
      /* We need a new source operand each time xbitpos is on a
	 word boundary and when xbitpos == padding_correction
	 (the first time through).  */
      if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
	src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);

      /* We need a new destination operand each time bitpos is on
	 a word boundary.  */
      if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
	dst = target;
      else if (bitpos % BITS_PER_WORD == 0)
	dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);

      /* Use xbitpos for the source extraction (right justified) and
	 bitpos for the destination store (left justified).  */
      store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
		       extract_bit_field (src, bitsize,
					  xbitpos % BITS_PER_WORD, 1,
					  NULL_RTX, copy_mode, copy_mode,
					  false),
		       false);
    }
}

/* Copy BLKmode value SRC into a register of mode MODE.  Return the
   register if it contains any data, otherwise return null.

   This is used on targets that return BLKmode values in registers.  */

rtx
copy_blkmode_to_reg (machine_mode mode, tree src)
{
  int i, n_regs;
  unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
  unsigned int bitsize;
  rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
  machine_mode dst_mode;

  gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);

  x = expand_normal (src);

  bytes = int_size_in_bytes (TREE_TYPE (src));
  if (bytes == 0)
    return NULL_RTX;

  /* If the structure doesn't take up a whole number of words, see
     whether the register value should be padded on the left or on
     the right.  Set PADDING_CORRECTION to the number of padding
     bits needed on the left side.

     In most ABIs, the structure will be returned at the least end of
     the register, which translates to right padding on little-endian
     targets and left padding on big-endian targets.  The opposite
     holds if the structure is returned at the most significant
     end of the register.  */
  if (bytes % UNITS_PER_WORD != 0
      && (targetm.calls.return_in_msb (TREE_TYPE (src))
	  ? !BYTES_BIG_ENDIAN
	  : BYTES_BIG_ENDIAN))
    padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
					   * BITS_PER_UNIT));

  n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
  dst_words = XALLOCAVEC (rtx, n_regs);
  bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);

  /* Copy the structure BITSIZE bits at a time.  */
  for (bitpos = 0, xbitpos = padding_correction;
       bitpos < bytes * BITS_PER_UNIT;
       bitpos += bitsize, xbitpos += bitsize)
    {
      /* We need a new destination pseudo each time xbitpos is
	 on a word boundary and when xbitpos == padding_correction
	 (the first time through).  */
      if (xbitpos % BITS_PER_WORD == 0
	  || xbitpos == padding_correction)
	{
	  /* Generate an appropriate register.  */
	  dst_word = gen_reg_rtx (word_mode);
	  dst_words[xbitpos / BITS_PER_WORD] = dst_word;

	  /* Clear the destination before we move anything into it.  */
	  emit_move_insn (dst_word, CONST0_RTX (word_mode));
	}

      /* We need a new source operand each time bitpos is on a word
	 boundary.  */
      if (bitpos % BITS_PER_WORD == 0)
	src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);

      /* Use bitpos for the source extraction (left justified) and
	 xbitpos for the destination store (right justified).  */
      store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
		       0, 0, word_mode,
		       extract_bit_field (src_word, bitsize,
					  bitpos % BITS_PER_WORD, 1,
					  NULL_RTX, word_mode, word_mode,
					  false),
		       false);
    }

  if (mode == BLKmode)
    {
      /* Find the smallest integer mode large enough to hold the
	 entire structure.  */
      for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
	   mode != VOIDmode;
	   mode = GET_MODE_WIDER_MODE (mode))
	/* Have we found a large enough mode?  */
	if (GET_MODE_SIZE (mode) >= bytes)
	  break;

      /* A suitable mode should have been found.  */
      gcc_assert (mode != VOIDmode);
    }

  if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
    dst_mode = word_mode;
  else
    dst_mode = mode;
  dst = gen_reg_rtx (dst_mode);

  for (i = 0; i < n_regs; i++)
    emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);

  if (mode != dst_mode)
    dst = gen_lowpart (mode, dst);

  return dst;
}

/* Add a USE expression for REG to the (possibly empty) list pointed
   to by CALL_FUSAGE.  REG must denote a hard register.  */

void
use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
{
  gcc_assert (REG_P (reg));

  if (!HARD_REGISTER_P (reg))
    return;

  *call_fusage
    = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
}

/* Add a CLOBBER expression for REG to the (possibly empty) list pointed
   to by CALL_FUSAGE.  REG must denote a hard register.  */

void
clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
{
  gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);

  *call_fusage
    = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
}

/* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
   starting at REGNO.  All of these registers must be hard registers.  */

void
use_regs (rtx *call_fusage, int regno, int nregs)
{
  int i;

  gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);

  for (i = 0; i < nregs; i++)
    use_reg (call_fusage, regno_reg_rtx[regno + i]);
}

/* Add USE expressions to *CALL_FUSAGE for each REG contained in the
   PARALLEL REGS.  This is for calls that pass values in multiple
   non-contiguous locations.  The Irix 6 ABI has examples of this.  */

void
use_group_regs (rtx *call_fusage, rtx regs)
{
  int i;

  for (i = 0; i < XVECLEN (regs, 0); i++)
    {
      rtx reg = XEXP (XVECEXP (regs, 0, i), 0);

      /* A NULL entry means the parameter goes both on the stack and in
	 registers.  This can also be a MEM for targets that pass values
	 partially on the stack and partially in registers.  */
      if (reg != 0 && REG_P (reg))
	use_reg (call_fusage, reg);
    }
}

/* Return the defining gimple statement for SSA_NAME NAME if it is an
   assigment and the code of the expresion on the RHS is CODE.  Return
   NULL otherwise.  */

static gimple *
get_def_for_expr (tree name, enum tree_code code)
{
  gimple *def_stmt;

  if (TREE_CODE (name) != SSA_NAME)
    return NULL;

  def_stmt = get_gimple_for_ssa_name (name);
  if (!def_stmt
      || gimple_assign_rhs_code (def_stmt) != code)
    return NULL;

  return def_stmt;
}

/* Return the defining gimple statement for SSA_NAME NAME if it is an
   assigment and the class of the expresion on the RHS is CLASS.  Return
   NULL otherwise.  */

static gimple *
get_def_for_expr_class (tree name, enum tree_code_class tclass)
{
  gimple *def_stmt;

  if (TREE_CODE (name) != SSA_NAME)
    return NULL;

  def_stmt = get_gimple_for_ssa_name (name);
  if (!def_stmt
      || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
    return NULL;

  return def_stmt;
}

/* Write zeros through the storage of OBJECT.  If OBJECT has BLKmode, SIZE is
   its length in bytes.  */

rtx
clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
		     unsigned int expected_align, HOST_WIDE_INT expected_size,
		     unsigned HOST_WIDE_INT min_size,
		     unsigned HOST_WIDE_INT max_size,
		     unsigned HOST_WIDE_INT probable_max_size)
{
  machine_mode mode = GET_MODE (object);
  unsigned int align;

  gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);

  /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
     just move a zero.  Otherwise, do this a piece at a time.  */
  if (mode != BLKmode
      && CONST_INT_P (size)
      && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
    {
      rtx zero = CONST0_RTX (mode);
      if (zero != NULL)
	{
	  emit_move_insn (object, zero);
	  return NULL;
	}

      if (COMPLEX_MODE_P (mode))
	{
	  zero = CONST0_RTX (GET_MODE_INNER (mode));
	  if (zero != NULL)
	    {
	      write_complex_part (object, zero, 0);
	      write_complex_part (object, zero, 1);
	      return NULL;
	    }
	}
    }

  if (size == const0_rtx)
    return NULL;

  align = MEM_ALIGN (object);

  if (CONST_INT_P (size)
      && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
						 CLEAR_BY_PIECES,
						 optimize_insn_for_speed_p ()))
    clear_by_pieces (object, INTVAL (size), align);
  else if (set_storage_via_setmem (object, size, const0_rtx, align,
				   expected_align, expected_size,
				   min_size, max_size, probable_max_size))
    ;
  else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
    return set_storage_via_libcall (object, size, const0_rtx,
				    method == BLOCK_OP_TAILCALL);
  else
    gcc_unreachable ();

  return NULL;
}

rtx
clear_storage (rtx object, rtx size, enum block_op_methods method)
{
  unsigned HOST_WIDE_INT max, min = 0;
  if (GET_CODE (size) == CONST_INT)
    min = max = UINTVAL (size);
  else
    max = GET_MODE_MASK (GET_MODE (size));
  return clear_storage_hints (object, size, method, 0, -1, min, max, max);
}


/* A subroutine of clear_storage.  Expand a call to memset.
   Return the return value of memset, 0 otherwise.  */

rtx
set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
{
  tree call_expr, fn, object_tree, size_tree, val_tree;
  machine_mode size_mode;

  object = copy_addr_to_reg (XEXP (object, 0));
  object_tree = make_tree (ptr_type_node, object);

  if (!CONST_INT_P (val))
    val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
  val_tree = make_tree (integer_type_node, val);

  size_mode = TYPE_MODE (sizetype);
  size = convert_to_mode (size_mode, size, 1);
  size = copy_to_mode_reg (size_mode, size);
  size_tree = make_tree (sizetype, size);

  /* It is incorrect to use the libcall calling conventions for calls to
     memset because it can be provided by the user.  */
  fn = builtin_decl_implicit (BUILT_IN_MEMSET);
  call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
  CALL_EXPR_TAILCALL (call_expr) = tailcall;

  return expand_call (call_expr, NULL_RTX, false);
}

/* Expand a setmem pattern; return true if successful.  */

bool
set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
			unsigned int expected_align, HOST_WIDE_INT expected_size,
			unsigned HOST_WIDE_INT min_size,
			unsigned HOST_WIDE_INT max_size,
			unsigned HOST_WIDE_INT probable_max_size)
{
  /* Try the most limited insn first, because there's no point
     including more than one in the machine description unless
     the more limited one has some advantage.  */

  machine_mode mode;

  if (expected_align < align)
    expected_align = align;
  if (expected_size != -1)
    {
      if ((unsigned HOST_WIDE_INT)expected_size > max_size)
	expected_size = max_size;
      if ((unsigned HOST_WIDE_INT)expected_size < min_size)
	expected_size = min_size;
    }

  for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
       mode = GET_MODE_WIDER_MODE (mode))
    {
      enum insn_code code = direct_optab_handler (setmem_optab, mode);

      if (code != CODE_FOR_nothing
	  /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
	     here because if SIZE is less than the mode mask, as it is
	     returned by the macro, it will definitely be less than the
	     actual mode mask.  Since SIZE is within the Pmode address
	     space, we limit MODE to Pmode.  */
	  && ((CONST_INT_P (size)
	       && ((unsigned HOST_WIDE_INT) INTVAL (size)
		   <= (GET_MODE_MASK (mode) >> 1)))
	      || max_size <= (GET_MODE_MASK (mode) >> 1)
	      || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
	{
	  struct expand_operand ops[9];
	  unsigned int nops;

	  nops = insn_data[(int) code].n_generator_args;
	  gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);

	  create_fixed_operand (&ops[0], object);
	  /* The check above guarantees that this size conversion is valid.  */
	  create_convert_operand_to (&ops[1], size, mode, true);
	  create_convert_operand_from (&ops[2], val, byte_mode, true);
	  create_integer_operand (&ops[3], align / BITS_PER_UNIT);
	  if (nops >= 6)
	    {
	      create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
	      create_integer_operand (&ops[5], expected_size);
	    }
	  if (nops >= 8)
	    {
	      create_integer_operand (&ops[6], min_size);
	      /* If we can not represent the maximal size,
		 make parameter NULL.  */
	      if ((HOST_WIDE_INT) max_size != -1)
	        create_integer_operand (&ops[7], max_size);
	      else
		create_fixed_operand (&ops[7], NULL);
	    }
	  if (nops == 9)
	    {
	      /* If we can not represent the maximal size,
		 make parameter NULL.  */
	      if ((HOST_WIDE_INT) probable_max_size != -1)
	        create_integer_operand (&ops[8], probable_max_size);
	      else
		create_fixed_operand (&ops[8], NULL);
	    }
	  if (maybe_expand_insn (code, nops, ops))
	    return true;
	}
    }

  return false;
}


/* Write to one of the components of the complex value CPLX.  Write VAL to
   the real part if IMAG_P is false, and the imaginary part if its true.  */

void
write_complex_part (rtx cplx, rtx val, bool imag_p)
{
  machine_mode cmode;
  machine_mode imode;
  unsigned ibitsize;

  if (GET_CODE (cplx) == CONCAT)
    {
      emit_move_insn (XEXP (cplx, imag_p), val);
      return;
    }

  cmode = GET_MODE (cplx);
  imode = GET_MODE_INNER (cmode);
  ibitsize = GET_MODE_BITSIZE (imode);

  /* For MEMs simplify_gen_subreg may generate an invalid new address
     because, e.g., the original address is considered mode-dependent
     by the target, which restricts simplify_subreg from invoking
     adjust_address_nv.  Instead of preparing fallback support for an
     invalid address, we call adjust_address_nv directly.  */
  if (MEM_P (cplx))
    {
      emit_move_insn (adjust_address_nv (cplx, imode,
					 imag_p ? GET_MODE_SIZE (imode) : 0),
		      val);
      return;
    }

  /* If the sub-object is at least word sized, then we know that subregging
     will work.  This special case is important, since store_bit_field
     wants to operate on integer modes, and there's rarely an OImode to
     correspond to TCmode.  */
  if (ibitsize >= BITS_PER_WORD
      /* For hard regs we have exact predicates.  Assume we can split
	 the original object if it spans an even number of hard regs.
	 This special case is important for SCmode on 64-bit platforms
	 where the natural size of floating-point regs is 32-bit.  */
      || (REG_P (cplx)
	  && REGNO (cplx) < FIRST_PSEUDO_REGISTER
	  && REG_NREGS (cplx) % 2 == 0))
    {
      rtx part = simplify_gen_subreg (imode, cplx, cmode,
				      imag_p ? GET_MODE_SIZE (imode) : 0);
      if (part)
        {
	  emit_move_insn (part, val);
	  return;
	}
      else
	/* simplify_gen_subreg may fail for sub-word MEMs.  */
	gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
    }

  store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val,
		   false);
}

/* Extract one of the components of the complex value CPLX.  Extract the
   real part if IMAG_P is false, and the imaginary part if it's true.  */

rtx
read_complex_part (rtx cplx, bool imag_p)
{
  machine_mode cmode, imode;
  unsigned ibitsize;

  if (GET_CODE (cplx) == CONCAT)
    return XEXP (cplx, imag_p);

  cmode = GET_MODE (cplx);
  imode = GET_MODE_INNER (cmode);
  ibitsize = GET_MODE_BITSIZE (imode);

  /* Special case reads from complex constants that got spilled to memory.  */
  if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
    {
      tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
      if (decl && TREE_CODE (decl) == COMPLEX_CST)
	{
	  tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
	  if (CONSTANT_CLASS_P (part))
	    return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
	}
    }

  /* For MEMs simplify_gen_subreg may generate an invalid new address
     because, e.g., the original address is considered mode-dependent
     by the target, which restricts simplify_subreg from invoking
     adjust_address_nv.  Instead of preparing fallback support for an
     invalid address, we call adjust_address_nv directly.  */
  if (MEM_P (cplx))
    return adjust_address_nv (cplx, imode,
			      imag_p ? GET_MODE_SIZE (imode) : 0);

  /* If the sub-object is at least word sized, then we know that subregging
     will work.  This special case is important, since extract_bit_field
     wants to operate on integer modes, and there's rarely an OImode to
     correspond to TCmode.  */
  if (ibitsize >= BITS_PER_WORD
      /* For hard regs we have exact predicates.  Assume we can split
	 the original object if it spans an even number of hard regs.
	 This special case is important for SCmode on 64-bit platforms
	 where the natural size of floating-point regs is 32-bit.  */
      || (REG_P (cplx)
	  && REGNO (cplx) < FIRST_PSEUDO_REGISTER
	  && REG_NREGS (cplx) % 2 == 0))
    {
      rtx ret = simplify_gen_subreg (imode, cplx, cmode,
				     imag_p ? GET_MODE_SIZE (imode) : 0);
      if (ret)
        return ret;
      else
	/* simplify_gen_subreg may fail for sub-word MEMs.  */
	gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
    }

  return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
			    true, NULL_RTX, imode, imode, false);
}

/* A subroutine of emit_move_insn_1.  Yet another lowpart generator.
   NEW_MODE and OLD_MODE are the same size.  Return NULL if X cannot be
   represented in NEW_MODE.  If FORCE is true, this will never happen, as
   we'll force-create a SUBREG if needed.  */

static rtx
emit_move_change_mode (machine_mode new_mode,
		       machine_mode old_mode, rtx x, bool force)
{
  rtx ret;

  if (push_operand (x, GET_MODE (x)))
    {
      ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
      MEM_COPY_ATTRIBUTES (ret, x);
    }
  else if (MEM_P (x))
    {
      /* We don't have to worry about changing the address since the
	 size in bytes is supposed to be the same.  */
      if (reload_in_progress)
	{
	  /* Copy the MEM to change the mode and move any
	     substitutions from the old MEM to the new one.  */
	  ret = adjust_address_nv (x, new_mode, 0);
	  copy_replacements (x, ret);
	}
      else
	ret = adjust_address (x, new_mode, 0);
    }
  else
    {
      /* Note that we do want simplify_subreg's behavior of validating
	 that the new mode is ok for a hard register.  If we were to use
	 simplify_gen_subreg, we would create the subreg, but would
	 probably run into the target not being able to implement it.  */
      /* Except, of course, when FORCE is true, when this is exactly what
	 we want.  Which is needed for CCmodes on some targets.  */
      if (force)
	ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
      else
	ret = simplify_subreg (new_mode, x, old_mode, 0);
    }

  return ret;
}

/* A subroutine of emit_move_insn_1.  Generate a move from Y into X using
   an integer mode of the same size as MODE.  Returns the instruction
   emitted, or NULL if such a move could not be generated.  */

static rtx_insn *
emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
{
  machine_mode imode;
  enum insn_code code;

  /* There must exist a mode of the exact size we require.  */
  imode = int_mode_for_mode (mode);
  if (imode == BLKmode)
    return NULL;

  /* The target must support moves in this mode.  */
  code = optab_handler (mov_optab, imode);
  if (code == CODE_FOR_nothing)
    return NULL;

  x = emit_move_change_mode (imode, mode, x, force);
  if (x == NULL_RTX)
    return NULL;
  y = emit_move_change_mode (imode, mode, y, force);
  if (y == NULL_RTX)
    return NULL;
  return emit_insn (GEN_FCN (code) (x, y));
}

/* A subroutine of emit_move_insn_1.  X is a push_operand in MODE.
   Return an equivalent MEM that does not use an auto-increment.  */

rtx
emit_move_resolve_push (machine_mode mode, rtx x)
{
  enum rtx_code code = GET_CODE (XEXP (x, 0));
  HOST_WIDE_INT adjust;
  rtx temp;

  adjust = GET_MODE_SIZE (mode);
#ifdef PUSH_ROUNDING
  adjust = PUSH_ROUNDING (adjust);
#endif
  if (code == PRE_DEC || code == POST_DEC)
    adjust = -adjust;
  else if (code == PRE_MODIFY || code == POST_MODIFY)
    {
      rtx expr = XEXP (XEXP (x, 0), 1);
      HOST_WIDE_INT val;

      gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
      gcc_assert (CONST_INT_P (XEXP (expr, 1)));
      val = INTVAL (XEXP (expr, 1));
      if (GET_CODE (expr) == MINUS)
	val = -val;
      gcc_assert (adjust == val || adjust == -val);
      adjust = val;
    }

  /* Do not use anti_adjust_stack, since we don't want to update
     stack_pointer_delta.  */
  temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
			      gen_int_mode (adjust, Pmode), stack_pointer_rtx,
			      0, OPTAB_LIB_WIDEN);
  if (temp != stack_pointer_rtx)
    emit_move_insn (stack_pointer_rtx, temp);

  switch (code)
    {
    case PRE_INC:
    case PRE_DEC:
    case PRE_MODIFY:
      temp = stack_pointer_rtx;
      break;
    case POST_INC:
    case POST_DEC:
    case POST_MODIFY:
      temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
      break;
    default:
      gcc_unreachable ();
    }

  return replace_equiv_address (x, temp);
}

/* A subroutine of emit_move_complex.  Generate a move from Y into X.
   X is known to satisfy push_operand, and MODE is known to be complex.
   Returns the last instruction emitted.  */

rtx_insn *
emit_move_complex_push (machine_mode mode, rtx x, rtx y)
{
  machine_mode submode = GET_MODE_INNER (mode);
  bool imag_first;

#ifdef PUSH_ROUNDING
  unsigned int submodesize = GET_MODE_SIZE (submode);

  /* In case we output to the stack, but the size is smaller than the
     machine can push exactly, we need to use move instructions.  */
  if (PUSH_ROUNDING (submodesize) != submodesize)
    {
      x = emit_move_resolve_push (mode, x);
      return emit_move_insn (x, y);
    }
#endif

  /* Note that the real part always precedes the imag part in memory
     regardless of machine's endianness.  */
  switch (GET_CODE (XEXP (x, 0)))
    {
    case PRE_DEC:
    case POST_DEC:
      imag_first = true;
      break;
    case PRE_INC:
    case POST_INC:
      imag_first = false;
      break;
    default:
      gcc_unreachable ();
    }

  emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
		  read_complex_part (y, imag_first));
  return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
			 read_complex_part (y, !imag_first));
}

/* A subroutine of emit_move_complex.  Perform the move from Y to X
   via two moves of the parts.  Returns the last instruction emitted.  */

rtx_insn *
emit_move_complex_parts (rtx x, rtx y)
{
  /* Show the output dies here.  This is necessary for SUBREGs
     of pseudos since we cannot track their lifetimes correctly;
     hard regs shouldn't appear here except as return values.  */
  if (!reload_completed && !reload_in_progress
      && REG_P (x) && !reg_overlap_mentioned_p (x, y))
    emit_clobber (x);

  write_complex_part (x, read_complex_part (y, false), false);
  write_complex_part (x, read_complex_part (y, true), true);

  return get_last_insn ();
}

/* A subroutine of emit_move_insn_1.  Generate a move from Y into X.
   MODE is known to be complex.  Returns the last instruction emitted.  */

static rtx_insn *
emit_move_complex (machine_mode mode, rtx x, rtx y)
{
  bool try_int;

  /* Need to take special care for pushes, to maintain proper ordering
     of the data, and possibly extra padding.  */
  if (push_operand (x, mode))
    return emit_move_complex_push (mode, x, y);

  /* See if we can coerce the target into moving both values at once, except
     for floating point where we favor moving as parts if this is easy.  */
  if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
      && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
      && !(REG_P (x)
	   && HARD_REGISTER_P (x)
	   && REG_NREGS (x) == 1)
      && !(REG_P (y)
	   && HARD_REGISTER_P (y)
	   && REG_NREGS (y) == 1))
    try_int = false;
  /* Not possible if the values are inherently not adjacent.  */
  else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
    try_int = false;
  /* Is possible if both are registers (or subregs of registers).  */
  else if (register_operand (x, mode) && register_operand (y, mode))
    try_int = true;
  /* If one of the operands is a memory, and alignment constraints
     are friendly enough, we may be able to do combined memory operations.
     We do not attempt this if Y is a constant because that combination is
     usually better with the by-parts thing below.  */
  else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
	   && (!STRICT_ALIGNMENT
	       || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
    try_int = true;
  else
    try_int = false;

  if (try_int)
    {
      rtx_insn *ret;

      /* For memory to memory moves, optimal behavior can be had with the
	 existing block move logic.  */
      if (MEM_P (x) && MEM_P (y))
	{
	  emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
			   BLOCK_OP_NO_LIBCALL);
	  return get_last_insn ();
	}

      ret = emit_move_via_integer (mode, x, y, true);
      if (ret)
	return ret;
    }

  return emit_move_complex_parts (x, y);
}

/* A subroutine of emit_move_insn_1.  Generate a move from Y into X.
   MODE is known to be MODE_CC.  Returns the last instruction emitted.  */

static rtx_insn *
emit_move_ccmode (machine_mode mode, rtx x, rtx y)
{
  rtx_insn *ret;

  /* Assume all MODE_CC modes are equivalent; if we have movcc, use it.  */
  if (mode != CCmode)
    {
      enum insn_code code = optab_handler (mov_optab, CCmode);
      if (code != CODE_FOR_nothing)
	{
	  x = emit_move_change_mode (CCmode, mode, x, true);
	  y = emit_move_change_mode (CCmode, mode, y, true);
	  return emit_insn (GEN_FCN (code) (x, y));
	}
    }

  /* Otherwise, find the MODE_INT mode of the same width.  */
  ret = emit_move_via_integer (mode, x, y, false);
  gcc_assert (ret != NULL);
  return ret;
}

/* Return true if word I of OP lies entirely in the
   undefined bits of a paradoxical subreg.  */

static bool
undefined_operand_subword_p (const_rtx op, int i)
{
  machine_mode innermode, innermostmode;
  int offset;
  if (GET_CODE (op) != SUBREG)
    return false;
  innermode = GET_MODE (op);
  innermostmode = GET_MODE (SUBREG_REG (op));
  offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
  /* The SUBREG_BYTE represents offset, as if the value were stored in
     memory, except for a paradoxical subreg where we define
     SUBREG_BYTE to be 0; undo this exception as in
     simplify_subreg.  */
  if (SUBREG_BYTE (op) == 0
      && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
    {
      int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
      if (WORDS_BIG_ENDIAN)
	offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
      if (BYTES_BIG_ENDIAN)
	offset += difference % UNITS_PER_WORD;
    }
  if (offset >= GET_MODE_SIZE (innermostmode)
      || offset <= -GET_MODE_SIZE (word_mode))
    return true;
  return false;
}

/* A subroutine of emit_move_insn_1.  Generate a move from Y into X.
   MODE is any multi-word or full-word mode that lacks a move_insn
   pattern.  Note that you will get better code if you define such
   patterns, even if they must turn into multiple assembler instructions.  */

static rtx_insn *
emit_move_multi_word (machine_mode mode, rtx x, rtx y)
{
  rtx_insn *last_insn = 0;
  rtx_insn *seq;
  rtx inner;
  bool need_clobber;
  int i;

  gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);

  /* If X is a push on the stack, do the push now and replace
     X with a reference to the stack pointer.  */
  if (push_operand (x, mode))
    x = emit_move_resolve_push (mode, x);

  /* If we are in reload, see if either operand is a MEM whose address
     is scheduled for replacement.  */
  if (reload_in_progress && MEM_P (x)
      && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
    x = replace_equiv_address_nv (x, inner);
  if (reload_in_progress && MEM_P (y)
      && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
    y = replace_equiv_address_nv (y, inner);

  start_sequence ();

  need_clobber = false;
  for (i = 0;
       i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
       i++)
    {
      rtx xpart = operand_subword (x, i, 1, mode);
      rtx ypart;

      /* Do not generate code for a move if it would come entirely
	 from the undefined bits of a paradoxical subreg.  */
      if (undefined_operand_subword_p (y, i))
	continue;

      ypart = operand_subword (y, i, 1, mode);

      /* If we can't get a part of Y, put Y into memory if it is a
	 constant.  Otherwise, force it into a register.  Then we must
	 be able to get a part of Y.  */
      if (ypart == 0 && CONSTANT_P (y))
	{
	  y = use_anchored_address (force_const_mem (mode, y));
	  ypart = operand_subword (y, i, 1, mode);
	}
      else if (ypart == 0)
	ypart = operand_subword_force (y, i, mode);

      gcc_assert (xpart && ypart);

      need_clobber |= (GET_CODE (xpart) == SUBREG);

      last_insn = emit_move_insn (xpart, ypart);
    }

  seq = get_insns ();
  end_sequence ();

  /* Show the output dies here.  This is necessary for SUBREGs
     of pseudos since we cannot track their lifetimes correctly;
     hard regs shouldn't appear here except as return values.
     We never want to emit such a clobber after reload.  */
  if (x != y
      && ! (reload_in_progress || reload_completed)
      && need_clobber != 0)
    emit_clobber (x);

  emit_insn (seq);

  return last_insn;
}

/* Low level part of emit_move_insn.
   Called just like emit_move_insn, but assumes X and Y
   are basically valid.  */

rtx_insn *
emit_move_insn_1 (rtx x, rtx y)
{
  machine_mode mode = GET_MODE (x);
  enum insn_code code;

  gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);

  code = optab_handler (mov_optab, mode);
  if (code != CODE_FOR_nothing)
    return emit_insn (GEN_FCN (code) (x, y));

  /* Expand complex moves by moving real part and imag part.  */
  if (COMPLEX_MODE_P (mode))
    return emit_move_complex (mode, x, y);

  if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
      || ALL_FIXED_POINT_MODE_P (mode))
    {
      rtx_insn *result = emit_move_via_integer (mode, x, y, true);

      /* If we can't find an integer mode, use multi words.  */
      if (result)
	return result;
      else
	return emit_move_multi_word (mode, x, y);
    }

  if (GET_MODE_CLASS (mode) == MODE_CC)
    return emit_move_ccmode (mode, x, y);

  /* Try using a move pattern for the corresponding integer mode.  This is
     only safe when simplify_subreg can convert MODE constants into integer
     constants.  At present, it can only do this reliably if the value
     fits within a HOST_WIDE_INT.  */
  if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
    {
      rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);

      if (ret)
	{
	  if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
	    return ret;
	}
    }

  return emit_move_multi_word (mode, x, y);
}

/* Generate code to copy Y into X.
   Both Y and X must have the same mode, except that
   Y can be a constant with VOIDmode.
   This mode cannot be BLKmode; use emit_block_move for that.

   Return the last instruction emitted.  */

rtx_insn *
emit_move_insn (rtx x, rtx y)
{
  machine_mode mode = GET_MODE (x);
  rtx y_cst = NULL_RTX;
  rtx_insn *last_insn;
  rtx set;

  gcc_assert (mode != BLKmode
	      && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));

  if (CONSTANT_P (y))
    {
      if (optimize
	  && SCALAR_FLOAT_MODE_P (GET_MODE (x))
	  && (last_insn = compress_float_constant (x, y)))
	return last_insn;

      y_cst = y;

      if (!targetm.legitimate_constant_p (mode, y))
	{
	  y = force_const_mem (mode, y);

	  /* If the target's cannot_force_const_mem prevented the spill,
	     assume that the target's move expanders will also take care
	     of the non-legitimate constant.  */
	  if (!y)
	    y = y_cst;
	  else
	    y = use_anchored_address (y);
	}
    }

  /* If X or Y are memory references, verify that their addresses are valid
     for the machine.  */
  if (MEM_P (x)
      && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
					 MEM_ADDR_SPACE (x))
	  && ! push_operand (x, GET_MODE (x))))
    x = validize_mem (x);

  if (MEM_P (y)
      && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
					MEM_ADDR_SPACE (y)))
    y = validize_mem (y);

  gcc_assert (mode != BLKmode);

  last_insn = emit_move_insn_1 (x, y);

  if (y_cst && REG_P (x)
      && (set = single_set (last_insn)) != NULL_RTX
      && SET_DEST (set) == x
      && ! rtx_equal_p (y_cst, SET_SRC (set)))
    set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));

  return last_insn;
}

/* Generate the body of an instruction to copy Y into X.
   It may be a list of insns, if one insn isn't enough.  */

rtx_insn *
gen_move_insn (rtx x, rtx y)
{
  rtx_insn *seq;

  start_sequence ();
  emit_move_insn_1 (x, y);
  seq = get_insns ();
  end_sequence ();
  return seq;
}

/* If Y is representable exactly in a narrower mode, and the target can
   perform the extension directly from constant or memory, then emit the
   move as an extension.  */

static rtx_insn *
compress_float_constant (rtx x, rtx y)
{
  machine_mode dstmode = GET_MODE (x);
  machine_mode orig_srcmode = GET_MODE (y);
  machine_mode srcmode;
  const REAL_VALUE_TYPE *r;
  int oldcost, newcost;
  bool speed = optimize_insn_for_speed_p ();

  r = CONST_DOUBLE_REAL_VALUE (y);

  if (targetm.legitimate_constant_p (dstmode, y))
    oldcost = set_src_cost (y, orig_srcmode, speed);
  else
    oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed);

  for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
       srcmode != orig_srcmode;
       srcmode = GET_MODE_WIDER_MODE (srcmode))
    {
      enum insn_code ic;
      rtx trunc_y;
      rtx_insn *last_insn;

      /* Skip if the target can't extend this way.  */
      ic = can_extend_p (dstmode, srcmode, 0);
      if (ic == CODE_FOR_nothing)
	continue;

      /* Skip if the narrowed value isn't exact.  */
      if (! exact_real_truncate (srcmode, r))
	continue;

      trunc_y = const_double_from_real_value (*r, srcmode);

      if (targetm.legitimate_constant_p (srcmode, trunc_y))
	{
	  /* Skip if the target needs extra instructions to perform
	     the extension.  */
	  if (!insn_operand_matches (ic, 1, trunc_y))
	    continue;
	  /* This is valid, but may not be cheaper than the original. */
	  newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
				  dstmode, speed);
	  if (oldcost < newcost)
	    continue;
	}
      else if (float_extend_from_mem[dstmode][srcmode])
	{
	  trunc_y = force_const_mem (srcmode, trunc_y);
	  /* This is valid, but may not be cheaper than the original. */
	  newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
				  dstmode, speed);
	  if (oldcost < newcost)
	    continue;
	  trunc_y = validize_mem (trunc_y);
	}
      else
	continue;

      /* For CSE's benefit, force the compressed constant pool entry
	 into a new pseudo.  This constant may be used in different modes,
	 and if not, combine will put things back together for us.  */
      trunc_y = force_reg (srcmode, trunc_y);

      /* If x is a hard register, perform the extension into a pseudo,
	 so that e.g. stack realignment code is aware of it.  */
      rtx target = x;
      if (REG_P (x) && HARD_REGISTER_P (x))
	target = gen_reg_rtx (dstmode);

      emit_unop_insn (ic, target, trunc_y, UNKNOWN);
      last_insn = get_last_insn ();

      if (REG_P (target))
	set_unique_reg_note (last_insn, REG_EQUAL, y);

      if (target != x)
	return emit_move_insn (x, target);
      return last_insn;
    }

  return NULL;
}

/* Pushing data onto the stack.  */

/* Push a block of length SIZE (perhaps variable)
   and return an rtx to address the beginning of the block.
   The value may be virtual_outgoing_args_rtx.

   EXTRA is the number of bytes of padding to push in addition to SIZE.
   BELOW nonzero means this padding comes at low addresses;
   otherwise, the padding comes at high addresses.  */

rtx
push_block (rtx size, int extra, int below)
{
  rtx temp;

  size = convert_modes (Pmode, ptr_mode, size, 1);
  if (CONSTANT_P (size))
    anti_adjust_stack (plus_constant (Pmode, size, extra));
  else if (REG_P (size) && extra == 0)
    anti_adjust_stack (size);
  else
    {
      temp = copy_to_mode_reg (Pmode, size);
      if (extra != 0)
	temp = expand_binop (Pmode, add_optab, temp,
			     gen_int_mode (extra, Pmode),
			     temp, 0, OPTAB_LIB_WIDEN);
      anti_adjust_stack (temp);
    }

  if (STACK_GROWS_DOWNWARD)
    {
      temp = virtual_outgoing_args_rtx;
      if (extra != 0 && below)
	temp = plus_constant (Pmode, temp, extra);
    }
  else
    {
      if (CONST_INT_P (size))
	temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
			      -INTVAL (size) - (below ? 0 : extra));
      else if (extra != 0 && !below)
	temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
			     negate_rtx (Pmode, plus_constant (Pmode, size,
							       extra)));
      else
	temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
			     negate_rtx (Pmode, size));
    }

  return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
}

/* A utility routine that returns the base of an auto-inc memory, or NULL.  */

static rtx
mem_autoinc_base (rtx mem)
{
  if (MEM_P (mem))
    {
      rtx addr = XEXP (mem, 0);
      if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
	return XEXP (addr, 0);
    }
  return NULL;
}

/* A utility routine used here, in reload, and in try_split.  The insns
   after PREV up to and including LAST are known to adjust the stack,
   with a final value of END_ARGS_SIZE.  Iterate backward from LAST
   placing notes as appropriate.  PREV may be NULL, indicating the
   entire insn sequence prior to LAST should be scanned.

   The set of allowed stack pointer modifications is small:
     (1) One or more auto-inc style memory references (aka pushes),
     (2) One or more addition/subtraction with the SP as destination,
     (3) A single move insn with the SP as destination,
     (4) A call_pop insn,
     (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.

   Insns in the sequence that do not modify the SP are ignored,
   except for noreturn calls.

   The return value is the amount of adjustment that can be trivially
   verified, via immediate operand or auto-inc.  If the adjustment
   cannot be trivially extracted, the return value is INT_MIN.  */

HOST_WIDE_INT
find_args_size_adjust (rtx_insn *insn)
{
  rtx dest, set, pat;
  int i;

  pat = PATTERN (insn);
  set = NULL;

  /* Look for a call_pop pattern.  */
  if (CALL_P (insn))
    {
      /* We have to allow non-call_pop patterns for the case
	 of emit_single_push_insn of a TLS address.  */
      if (GET_CODE (pat) != PARALLEL)
	return 0;

      /* All call_pop have a stack pointer adjust in the parallel.
	 The call itself is always first, and the stack adjust is
	 usually last, so search from the end.  */
      for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
	{
	  set = XVECEXP (pat, 0, i);
	  if (GET_CODE (set) != SET)
	    continue;
	  dest = SET_DEST (set);
	  if (dest == stack_pointer_rtx)
	    break;
	}
      /* We'd better have found the stack pointer adjust.  */
      if (i == 0)
	return 0;
      /* Fall through to process the extracted SET and DEST
	 as if it was a standalone insn.  */
    }
  else if (GET_CODE (pat) == SET)
    set = pat;
  else if ((set = single_set (insn)) != NULL)
    ;
  else if (GET_CODE (pat) == PARALLEL)
    {
      /* ??? Some older ports use a parallel with a stack adjust
	 and a store for a PUSH_ROUNDING pattern, rather than a
	 PRE/POST_MODIFY rtx.  Don't force them to update yet...  */
      /* ??? See h8300 and m68k, pushqi1.  */
      for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
	{
	  set = XVECEXP (pat, 0, i);
	  if (GET_CODE (set) != SET)
	    continue;
	  dest = SET_DEST (set);
	  if (dest == stack_pointer_rtx)
	    break;

	  /* We do not expect an auto-inc of the sp in the parallel.  */
	  gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
	  gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
			       != stack_pointer_rtx);
	}
      if (i < 0)
	return 0;
    }
  else
    return 0;

  dest = SET_DEST (set);

  /* Look for direct modifications of the stack pointer.  */
  if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
    {
      /* Look for a trivial adjustment, otherwise assume nothing.  */
      /* Note that the SPU restore_stack_block pattern refers to
	 the stack pointer in V4SImode.  Consider that non-trivial.  */
      if (SCALAR_INT_MODE_P (GET_MODE (dest))
	  && GET_CODE (SET_SRC (set)) == PLUS
	  && XEXP (SET_SRC (set), 0) == stack_pointer_rtx
	  && CONST_INT_P (XEXP (SET_SRC (set), 1)))
	return INTVAL (XEXP (SET_SRC (set), 1));
      /* ??? Reload can generate no-op moves, which will be cleaned
	 up later.  Recognize it and continue searching.  */
      else if (rtx_equal_p (dest, SET_SRC (set)))
	return 0;
      else
	return HOST_WIDE_INT_MIN;
    }
  else
    {
      rtx mem, addr;

      /* Otherwise only think about autoinc patterns.  */
      if (mem_autoinc_base (dest) == stack_pointer_rtx)
	{
	  mem = dest;
	  gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
			       != stack_pointer_rtx);
	}
      else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
	mem = SET_SRC (set);
      else
	return 0;

      addr = XEXP (mem, 0);
      switch (GET_CODE (addr))
	{
	case PRE_INC:
	case POST_INC:
	  return GET_MODE_SIZE (GET_MODE (mem));
	case PRE_DEC:
	case POST_DEC:
	  return -GET_MODE_SIZE (GET_MODE (mem));
	case PRE_MODIFY:
	case POST_MODIFY:
	  addr = XEXP (addr, 1);
	  gcc_assert (GET_CODE (addr) == PLUS);
	  gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
	  gcc_assert (CONST_INT_P (XEXP (addr, 1)));
	  return INTVAL (XEXP (addr, 1));
	default:
	  gcc_unreachable ();
	}
    }
}

int
fixup_args_size_notes (rtx_insn *prev, rtx_insn *last, int end_args_size)
{
  int args_size = end_args_size;
  bool saw_unknown = false;
  rtx_insn *insn;

  for (insn = last; insn != prev; insn = PREV_INSN (insn))
    {
      HOST_WIDE_INT this_delta;

      if (!NONDEBUG_INSN_P (insn))
	continue;

      this_delta = find_args_size_adjust (insn);
      if (this_delta == 0)
	{
	  if (!CALL_P (insn)
	      || ACCUMULATE_OUTGOING_ARGS
	      || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
	    continue;
	}

      gcc_assert (!saw_unknown);
      if (this_delta == HOST_WIDE_INT_MIN)
	saw_unknown = true;

      add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (args_size));
      if (STACK_GROWS_DOWNWARD)
	this_delta = -(unsigned HOST_WIDE_INT) this_delta;

      args_size -= this_delta;
    }

  return saw_unknown ? INT_MIN : args_size;
}

#ifdef PUSH_ROUNDING
/* Emit single push insn.  */

static void
emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
{
  rtx dest_addr;
  unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
  rtx dest;
  enum insn_code icode;

  stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
  /* If there is push pattern, use it.  Otherwise try old way of throwing
     MEM representing push operation to move expander.  */
  icode = optab_handler (push_optab, mode);
  if (icode != CODE_FOR_nothing)
    {
      struct expand_operand ops[1];

      create_input_operand (&ops[0], x, mode);
      if (maybe_expand_insn (icode, 1, ops))
	return;
    }
  if (GET_MODE_SIZE (mode) == rounded_size)
    dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
  /* If we are to pad downward, adjust the stack pointer first and
     then store X into the stack location using an offset.  This is
     because emit_move_insn does not know how to pad; it does not have
     access to type.  */
  else if (FUNCTION_ARG_PADDING (mode, type) == downward)
    {
      unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
      HOST_WIDE_INT offset;

      emit_move_insn (stack_pointer_rtx,
		      expand_binop (Pmode,
				    STACK_GROWS_DOWNWARD ? sub_optab
				    : add_optab,
				    stack_pointer_rtx,
				    gen_int_mode (rounded_size, Pmode),
				    NULL_RTX, 0, OPTAB_LIB_WIDEN));

      offset = (HOST_WIDE_INT) padding_size;
      if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC)
	/* We have already decremented the stack pointer, so get the
	   previous value.  */
	offset += (HOST_WIDE_INT) rounded_size;

      if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC)
	/* We have already incremented the stack pointer, so get the
	   previous value.  */
	offset -= (HOST_WIDE_INT) rounded_size;

      dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
				gen_int_mode (offset, Pmode));
    }
  else
    {
      if (STACK_GROWS_DOWNWARD)
	/* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC.  */
	dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
				  gen_int_mode (-(HOST_WIDE_INT) rounded_size,
						Pmode));
      else
	/* ??? This seems wrong if STACK_PUSH_CODE == POST_INC.  */
	dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
				  gen_int_mode (rounded_size, Pmode));

      dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
    }

  dest = gen_rtx_MEM (mode, dest_addr);

  if (type != 0)
    {
      set_mem_attributes (dest, type, 1);

      if (cfun->tail_call_marked)
	/* Function incoming arguments may overlap with sibling call
	   outgoing arguments and we cannot allow reordering of reads
	   from function arguments with stores to outgoing arguments
	   of sibling calls.  */
	set_mem_alias_set (dest, 0);
    }
  emit_move_insn (dest, x);
}

/* Emit and annotate a single push insn.  */

static void
emit_single_push_insn (machine_mode mode, rtx x, tree type)
{
  int delta, old_delta = stack_pointer_delta;
  rtx_insn *prev = get_last_insn ();
  rtx_insn *last;

  emit_single_push_insn_1 (mode, x, type);

  last = get_last_insn ();

  /* Notice the common case where we emitted exactly one insn.  */
  if (PREV_INSN (last) == prev)
    {
      add_reg_note (last, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
      return;
    }

  delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
  gcc_assert (delta == INT_MIN || delta == old_delta);
}
#endif

/* If reading SIZE bytes from X will end up reading from
   Y return the number of bytes that overlap.  Return -1
   if there is no overlap or -2 if we can't determine
   (for example when X and Y have different base registers).  */

static int
memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size)
{
  rtx tmp = plus_constant (Pmode, x, size);
  rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y);

  if (!CONST_INT_P (sub))
    return -2;

  HOST_WIDE_INT val = INTVAL (sub);

  return IN_RANGE (val, 1, size) ? val : -1;
}

/* Generate code to push X onto the stack, assuming it has mode MODE and
   type TYPE.
   MODE is redundant except when X is a CONST_INT (since they don't
   carry mode info).
   SIZE is an rtx for the size of data to be copied (in bytes),
   needed only if X is BLKmode.
   Return true if successful.  May return false if asked to push a
   partial argument during a sibcall optimization (as specified by
   SIBCALL_P) and the incoming and outgoing pointers cannot be shown
   to not overlap.

   ALIGN (in bits) is maximum alignment we can assume.

   If PARTIAL and REG are both nonzero, then copy that many of the first
   bytes of X into registers starting with REG, and push the rest of X.
   The amount of space pushed is decreased by PARTIAL bytes.
   REG must be a hard register in this case.
   If REG is zero but PARTIAL is not, take any all others actions for an
   argument partially in registers, but do not actually load any
   registers.

   EXTRA is the amount in bytes of extra space to leave next to this arg.
   This is ignored if an argument block has already been allocated.

   On a machine that lacks real push insns, ARGS_ADDR is the address of
   the bottom of the argument block for this call.  We use indexing off there
   to store the arg.  On machines with push insns, ARGS_ADDR is 0 when a
   argument block has not been preallocated.

   ARGS_SO_FAR is the size of args previously pushed for this call.

   REG_PARM_STACK_SPACE is nonzero if functions require stack space
   for arguments passed in registers.  If nonzero, it will be the number
   of bytes required.  */

bool
emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
		unsigned int align, int partial, rtx reg, int extra,
		rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
		rtx alignment_pad, bool sibcall_p)
{
  rtx xinner;
  enum direction stack_direction = STACK_GROWS_DOWNWARD ? downward : upward;

  /* Decide where to pad the argument: `downward' for below,
     `upward' for above, or `none' for don't pad it.
     Default is below for small data on big-endian machines; else above.  */
  enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);

  /* Invert direction if stack is post-decrement.
     FIXME: why?  */
  if (STACK_PUSH_CODE == POST_DEC)
    if (where_pad != none)
      where_pad = (where_pad == downward ? upward : downward);

  xinner = x;

  int nregs = partial / UNITS_PER_WORD;
  rtx *tmp_regs = NULL;
  int overlapping = 0;

  if (mode == BLKmode
      || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
    {
      /* Copy a block into the stack, entirely or partially.  */

      rtx temp;
      int used;
      int offset;
      int skip;

      offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
      used = partial - offset;

      if (mode != BLKmode)
	{
	  /* A value is to be stored in an insufficiently aligned
	     stack slot; copy via a suitably aligned slot if
	     necessary.  */
	  size = GEN_INT (GET_MODE_SIZE (mode));
	  if (!MEM_P (xinner))
	    {
	      temp = assign_temp (type, 1, 1);
	      emit_move_insn (temp, xinner);
	      xinner = temp;
	    }
	}

      gcc_assert (size);

      /* USED is now the # of bytes we need not copy to the stack
	 because registers will take care of them.  */

      if (partial != 0)
	xinner = adjust_address (xinner, BLKmode, used);

      /* If the partial register-part of the arg counts in its stack size,
	 skip the part of stack space corresponding to the registers.
	 Otherwise, start copying to the beginning of the stack space,
	 by setting SKIP to 0.  */
      skip = (reg_parm_stack_space == 0) ? 0 : used;

#ifdef PUSH_ROUNDING
      /* Do it with several push insns if that doesn't take lots of insns
	 and if there is no difficulty with push insns that skip bytes
	 on the stack for alignment purposes.  */
      if (args_addr == 0
	  && PUSH_ARGS
	  && CONST_INT_P (size)
	  && skip == 0
	  && MEM_ALIGN (xinner) >= align
	  && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
	  /* Here we avoid the case of a structure whose weak alignment
	     forces many pushes of a small amount of data,
	     and such small pushes do rounding that causes trouble.  */
	  && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
	      || align >= BIGGEST_ALIGNMENT
	      || (PUSH_ROUNDING (align / BITS_PER_UNIT)
		  == (align / BITS_PER_UNIT)))
	  && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
	{
	  /* Push padding now if padding above and stack grows down,
	     or if padding below and stack grows up.
	     But if space already allocated, this has already been done.  */
	  if (extra && args_addr == 0
	      && where_pad != none && where_pad != stack_direction)
	    anti_adjust_stack (GEN_INT (extra));

	  move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
	}
      else
#endif /* PUSH_ROUNDING  */
	{
	  rtx target;

	  /* Otherwise make space on the stack and copy the data
	     to the address of that space.  */

	  /* Deduct words put into registers from the size we must copy.  */
	  if (partial != 0)
	    {
	      if (CONST_INT_P (size))
		size = GEN_INT (INTVAL (size) - used);
	      else
		size = expand_binop (GET_MODE (size), sub_optab, size,
				     gen_int_mode (used, GET_MODE (size)),
				     NULL_RTX, 0, OPTAB_LIB_WIDEN);
	    }

	  /* Get the address of the stack space.
	     In this case, we do not deal with EXTRA separately.
	     A single stack adjust will do.  */
	  if (! args_addr)
	    {
	      temp = push_block (size, extra, where_pad == downward);
	      extra = 0;
	    }
	  else if (CONST_INT_P (args_so_far))
	    temp = memory_address (BLKmode,
				   plus_constant (Pmode, args_addr,
						  skip + INTVAL (args_so_far)));
	  else
	    temp = memory_address (BLKmode,
				   plus_constant (Pmode,
						  gen_rtx_PLUS (Pmode,
								args_addr,
								args_so_far),
						  skip));

	  if (!ACCUMULATE_OUTGOING_ARGS)
	    {
	      /* If the source is referenced relative to the stack pointer,
		 copy it to another register to stabilize it.  We do not need
		 to do this if we know that we won't be changing sp.  */

	      if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
		  || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
		temp = copy_to_reg (temp);
	    }

	  target = gen_rtx_MEM (BLKmode, temp);

	  /* We do *not* set_mem_attributes here, because incoming arguments
	     may overlap with sibling call outgoing arguments and we cannot
	     allow reordering of reads from function arguments with stores
	     to outgoing arguments of sibling calls.  We do, however, want
	     to record the alignment of the stack slot.  */
	  /* ALIGN may well be better aligned than TYPE, e.g. due to
	     PARM_BOUNDARY.  Assume the caller isn't lying.  */
	  set_mem_align (target, align);

	  /* If part should go in registers and pushing to that part would
	     overwrite some of the values that need to go into regs, load the
	     overlapping values into temporary pseudos to be moved into the hard
	     regs at the end after the stack pushing has completed.
	     We cannot load them directly into the hard regs here because
	     they can be clobbered by the block move expansions.
	     See PR 65358.  */

	  if (partial > 0 && reg != 0 && mode == BLKmode
	      && GET_CODE (reg) != PARALLEL)
	    {
	      overlapping = memory_load_overlap (XEXP (x, 0), temp, partial);
	      if (overlapping > 0)
	        {
		  gcc_assert (overlapping % UNITS_PER_WORD == 0);
		  overlapping /= UNITS_PER_WORD;

		  tmp_regs = XALLOCAVEC (rtx, overlapping);

		  for (int i = 0; i < overlapping; i++)
		    tmp_regs[i] = gen_reg_rtx (word_mode);

		  for (int i = 0; i < overlapping; i++)
		    emit_move_insn (tmp_regs[i],
				    operand_subword_force (target, i, mode));
	        }
	      else if (overlapping == -1)
		overlapping = 0;
	      /* Could not determine whether there is overlap.
	         Fail the sibcall.  */
	      else
		{
		  overlapping = 0;
		  if (sibcall_p)
		    return false;
		}
	    }
	  emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
	}
    }
  else if (partial > 0)
    {
      /* Scalar partly in registers.  */

      int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
      int i;
      int not_stack;
      /* # bytes of start of argument
	 that we must make space for but need not store.  */
      int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
      int args_offset = INTVAL (args_so_far);
      int skip;

      /* Push padding now if padding above and stack grows down,
	 or if padding below and stack grows up.
	 But if space already allocated, this has already been done.  */
      if (extra && args_addr == 0
	  && where_pad != none && where_pad != stack_direction)
	anti_adjust_stack (GEN_INT (extra));

      /* If we make space by pushing it, we might as well push
	 the real data.  Otherwise, we can leave OFFSET nonzero
	 and leave the space uninitialized.  */
      if (args_addr == 0)
	offset = 0;

      /* Now NOT_STACK gets the number of words that we don't need to
	 allocate on the stack.  Convert OFFSET to words too.  */
      not_stack = (partial - offset) / UNITS_PER_WORD;
      offset /= UNITS_PER_WORD;

      /* If the partial register-part of the arg counts in its stack size,
	 skip the part of stack space corresponding to the registers.
	 Otherwise, start copying to the beginning of the stack space,
	 by setting SKIP to 0.  */
      skip = (reg_parm_stack_space == 0) ? 0 : not_stack;

      if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
	x = validize_mem (force_const_mem (mode, x));

      /* If X is a hard register in a non-integer mode, copy it into a pseudo;
	 SUBREGs of such registers are not allowed.  */
      if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
	   && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
	x = copy_to_reg (x);

      /* Loop over all the words allocated on the stack for this arg.  */
      /* We can do it by words, because any scalar bigger than a word
	 has a size a multiple of a word.  */
      for (i = size - 1; i >= not_stack; i--)
	if (i >= not_stack + offset)
	  if (!emit_push_insn (operand_subword_force (x, i, mode),
			  word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
			  0, args_addr,
			  GEN_INT (args_offset + ((i - not_stack + skip)
						  * UNITS_PER_WORD)),
			  reg_parm_stack_space, alignment_pad, sibcall_p))
	    return false;
    }
  else
    {
      rtx addr;
      rtx dest;

      /* Push padding now if padding above and stack grows down,
	 or if padding below and stack grows up.
	 But if space already allocated, this has already been done.  */
      if (extra && args_addr == 0
	  && where_pad != none && where_pad != stack_direction)
	anti_adjust_stack (GEN_INT (extra));

#ifdef PUSH_ROUNDING
      if (args_addr == 0 && PUSH_ARGS)
	emit_single_push_insn (mode, x, type);
      else
#endif
	{
	  if (CONST_INT_P (args_so_far))
	    addr
	      = memory_address (mode,
				plus_constant (Pmode, args_addr,
					       INTVAL (args_so_far)));
	  else
	    addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
						       args_so_far));
	  dest = gen_rtx_MEM (mode, addr);

	  /* We do *not* set_mem_attributes here, because incoming arguments
	     may overlap with sibling call outgoing arguments and we cannot
	     allow reordering of reads from function arguments with stores
	     to outgoing arguments of sibling calls.  We do, however, want
	     to record the alignment of the stack slot.  */
	  /* ALIGN may well be better aligned than TYPE, e.g. due to
	     PARM_BOUNDARY.  Assume the caller isn't lying.  */
	  set_mem_align (dest, align);

	  emit_move_insn (dest, x);
	}
    }

  /* Move the partial arguments into the registers and any overlapping
     values that we moved into the pseudos in tmp_regs.  */
  if (partial > 0 && reg != 0)
    {
      /* Handle calls that pass values in multiple non-contiguous locations.
	 The Irix 6 ABI has examples of this.  */
      if (GET_CODE (reg) == PARALLEL)
	emit_group_load (reg, x, type, -1);
      else
        {
	  gcc_assert (partial % UNITS_PER_WORD == 0);
	  move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode);

	  for (int i = 0; i < overlapping; i++)
	    emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg)
						    + nregs - overlapping + i),
			    tmp_regs[i]);

	}
    }

  if (extra && args_addr == 0 && where_pad == stack_direction)
    anti_adjust_stack (GEN_INT (extra));

  if (alignment_pad && args_addr == 0)
    anti_adjust_stack (alignment_pad);

  return true;
}

/* Return X if X can be used as a subtarget in a sequence of arithmetic
   operations.  */

static rtx
get_subtarget (rtx x)
{
  return (optimize
          || x == 0
	   /* Only registers can be subtargets.  */
	   || !REG_P (x)
	   /* Don't use hard regs to avoid extending their life.  */
	   || REGNO (x) < FIRST_PSEUDO_REGISTER
	  ? 0 : x);
}

/* A subroutine of expand_assignment.  Optimize FIELD op= VAL, where
   FIELD is a bitfield.  Returns true if the optimization was successful,
   and there's nothing else to do.  */

static bool
optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
				 unsigned HOST_WIDE_INT bitpos,
				 unsigned HOST_WIDE_INT bitregion_start,
				 unsigned HOST_WIDE_INT bitregion_end,
				 machine_mode mode1, rtx str_rtx,
				 tree to, tree src, bool reverse)
{
  machine_mode str_mode = GET_MODE (str_rtx);
  unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
  tree op0, op1;
  rtx value, result;
  optab binop;
  gimple *srcstmt;
  enum tree_code code;

  if (mode1 != VOIDmode
      || bitsize >= BITS_PER_WORD
      || str_bitsize > BITS_PER_WORD
      || TREE_SIDE_EFFECTS (to)
      || TREE_THIS_VOLATILE (to))
    return false;

  STRIP_NOPS (src);
  if (TREE_CODE (src) != SSA_NAME)
    return false;
  if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
    return false;

  srcstmt = get_gimple_for_ssa_name (src);
  if (!srcstmt
      || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
    return false;

  code = gimple_assign_rhs_code (srcstmt);

  op0 = gimple_assign_rhs1 (srcstmt);

  /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
     to find its initialization.  Hopefully the initialization will
     be from a bitfield load.  */
  if (TREE_CODE (op0) == SSA_NAME)
    {
      gimple *op0stmt = get_gimple_for_ssa_name (op0);

      /* We want to eventually have OP0 be the same as TO, which
	 should be a bitfield.  */
      if (!op0stmt
	  || !is_gimple_assign (op0stmt)
	  || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
	return false;
      op0 = gimple_assign_rhs1 (op0stmt);
    }

  op1 = gimple_assign_rhs2 (srcstmt);

  if (!operand_equal_p (to, op0, 0))
    return false;

  if (MEM_P (str_rtx))
    {
      unsigned HOST_WIDE_INT offset1;

      if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
	str_mode = word_mode;
      str_mode = get_best_mode (bitsize, bitpos,
				bitregion_start, bitregion_end,
				MEM_ALIGN (str_rtx), str_mode, 0);
      if (str_mode == VOIDmode)
	return false;
      str_bitsize = GET_MODE_BITSIZE (str_mode);

      offset1 = bitpos;
      bitpos %= str_bitsize;
      offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
      str_rtx = adjust_address (str_rtx, str_mode, offset1);
    }
  else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
    return false;
  else
    gcc_assert (!reverse);

  /* If the bit field covers the whole REG/MEM, store_field
     will likely generate better code.  */
  if (bitsize >= str_bitsize)
    return false;

  /* We can't handle fields split across multiple entities.  */
  if (bitpos + bitsize > str_bitsize)
    return false;

  if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
    bitpos = str_bitsize - bitpos - bitsize;

  switch (code)
    {
    case PLUS_EXPR:
    case MINUS_EXPR:
      /* For now, just optimize the case of the topmost bitfield
	 where we don't need to do any masking and also
	 1 bit bitfields where xor can be used.
	 We might win by one instruction for the other bitfields
	 too if insv/extv instructions aren't used, so that
	 can be added later.  */
      if ((reverse || bitpos + bitsize != str_bitsize)
	  && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
	break;

      value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
      value = convert_modes (str_mode,
			     TYPE_MODE (TREE_TYPE (op1)), value,
			     TYPE_UNSIGNED (TREE_TYPE (op1)));

      /* We may be accessing data outside the field, which means
	 we can alias adjacent data.  */
      if (MEM_P (str_rtx))
	{
	  str_rtx = shallow_copy_rtx (str_rtx);
	  set_mem_alias_set (str_rtx, 0);
	  set_mem_expr (str_rtx, 0);
	}

      if (bitsize == 1 && (reverse || bitpos + bitsize != str_bitsize))
	{
	  value = expand_and (str_mode, value, const1_rtx, NULL);
	  binop = xor_optab;
	}
      else
	binop = code == PLUS_EXPR ? add_optab : sub_optab;

      value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
      if (reverse)
	value = flip_storage_order (str_mode, value);
      result = expand_binop (str_mode, binop, str_rtx,
			     value, str_rtx, 1, OPTAB_WIDEN);
      if (result != str_rtx)
	emit_move_insn (str_rtx, result);
      return true;

    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
      if (TREE_CODE (op1) != INTEGER_CST)
	break;
      value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
      value = convert_modes (str_mode,
			     TYPE_MODE (TREE_TYPE (op1)), value,
			     TYPE_UNSIGNED (TREE_TYPE (op1)));

      /* We may be accessing data outside the field, which means
	 we can alias adjacent data.  */
      if (MEM_P (str_rtx))
	{
	  str_rtx = shallow_copy_rtx (str_rtx);
	  set_mem_alias_set (str_rtx, 0);
	  set_mem_expr (str_rtx, 0);
	}

      binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
      if (bitpos + bitsize != str_bitsize)
	{
	  rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << bitsize) - 1,
				   str_mode);
	  value = expand_and (str_mode, value, mask, NULL_RTX);
	}
      value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
      if (reverse)
	value = flip_storage_order (str_mode, value);
      result = expand_binop (str_mode, binop, str_rtx,
			     value, str_rtx, 1, OPTAB_WIDEN);
      if (result != str_rtx)
	emit_move_insn (str_rtx, result);
      return true;

    default:
      break;
    }

  return false;
}

/* In the C++ memory model, consecutive bit fields in a structure are
   considered one memory location.

   Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
   returns the bit range of consecutive bits in which this COMPONENT_REF
   belongs.  The values are returned in *BITSTART and *BITEND.  *BITPOS
   and *OFFSET may be adjusted in the process.

   If the access does not need to be restricted, 0 is returned in both
   *BITSTART and *BITEND.  */

void
get_bit_range (unsigned HOST_WIDE_INT *bitstart,
	       unsigned HOST_WIDE_INT *bitend,
	       tree exp,
	       HOST_WIDE_INT *bitpos,
	       tree *offset)
{
  HOST_WIDE_INT bitoffset;
  tree field, repr;

  gcc_assert (TREE_CODE (exp) == COMPONENT_REF);

  field = TREE_OPERAND (exp, 1);
  repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
  /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
     need to limit the range we can access.  */
  if (!repr)
    {
      *bitstart = *bitend = 0;
      return;
    }

  /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
     part of a larger bit field, then the representative does not serve any
     useful purpose.  This can occur in Ada.  */
  if (handled_component_p (TREE_OPERAND (exp, 0)))
    {
      machine_mode rmode;
      HOST_WIDE_INT rbitsize, rbitpos;
      tree roffset;
      int unsignedp, reversep, volatilep = 0;
      get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
			   &roffset, &rmode, &unsignedp, &reversep,
			   &volatilep);
      if ((rbitpos % BITS_PER_UNIT) != 0)
	{
	  *bitstart = *bitend = 0;
	  return;
	}
    }

  /* Compute the adjustment to bitpos from the offset of the field
     relative to the representative.  DECL_FIELD_OFFSET of field and
     repr are the same by construction if they are not constants,
     see finish_bitfield_layout.  */
  if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field))
      && tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr)))
    bitoffset = (tree_to_uhwi (DECL_FIELD_OFFSET (field))
		 - tree_to_uhwi (DECL_FIELD_OFFSET (repr))) * BITS_PER_UNIT;
  else
    bitoffset = 0;
  bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
		- tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));

  /* If the adjustment is larger than bitpos, we would have a negative bit
     position for the lower bound and this may wreak havoc later.  Adjust
     offset and bitpos to make the lower bound non-negative in that case.  */
  if (bitoffset > *bitpos)
    {
      HOST_WIDE_INT adjust = bitoffset - *bitpos;
      gcc_assert ((adjust % BITS_PER_UNIT) == 0);

      *bitpos += adjust;
      if (*offset == NULL_TREE)
	*offset = size_int (-adjust / BITS_PER_UNIT);
      else
	*offset
	  = size_binop (MINUS_EXPR, *offset, size_int (adjust / BITS_PER_UNIT));
      *bitstart = 0;
    }
  else
    *bitstart = *bitpos - bitoffset;

  *bitend = *bitstart + tree_to_uhwi (DECL_SIZE (repr)) - 1;
}

/* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
   in memory and has non-BLKmode.  DECL_RTL must not be a MEM; if
   DECL_RTL was not set yet, return NORTL.  */

static inline bool
addr_expr_of_non_mem_decl_p_1 (tree addr, bool nortl)
{
  if (TREE_CODE (addr) != ADDR_EXPR)
    return false;

  tree base = TREE_OPERAND (addr, 0);

  if (!DECL_P (base)
      || TREE_ADDRESSABLE (base)
      || DECL_MODE (base) == BLKmode)
    return false;

  if (!DECL_RTL_SET_P (base))
    return nortl;

  return (!MEM_P (DECL_RTL (base)));
}

/* Returns true if the MEM_REF REF refers to an object that does not
   reside in memory and has non-BLKmode.  */

static inline bool
mem_ref_refers_to_non_mem_p (tree ref)
{
  tree base = TREE_OPERAND (ref, 0);
  return addr_expr_of_non_mem_decl_p_1 (base, false);
}

/* Expand an assignment that stores the value of FROM into TO.  If NONTEMPORAL
   is true, try generating a nontemporal store.  */

void
expand_assignment (tree to, tree from, bool nontemporal)
{
  rtx to_rtx = 0;
  rtx result;
  machine_mode mode;
  unsigned int align;
  enum insn_code icode;

  /* Don't crash if the lhs of the assignment was erroneous.  */
  if (TREE_CODE (to) == ERROR_MARK)
    {
      expand_normal (from);
      return;
    }

  /* Optimize away no-op moves without side-effects.  */
  if (operand_equal_p (to, from, 0))
    return;

  /* Handle misaligned stores.  */
  mode = TYPE_MODE (TREE_TYPE (to));
  if ((TREE_CODE (to) == MEM_REF
       || TREE_CODE (to) == TARGET_MEM_REF)
      && mode != BLKmode
      && !mem_ref_refers_to_non_mem_p (to)
      && ((align = get_object_alignment (to))
	  < GET_MODE_ALIGNMENT (mode))
      && (((icode = optab_handler (movmisalign_optab, mode))
	   != CODE_FOR_nothing)
	  || SLOW_UNALIGNED_ACCESS (mode, align)))
    {
      rtx reg, mem;

      reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
      reg = force_not_mem (reg);
      mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
      if (TREE_CODE (to) == MEM_REF && REF_REVERSE_STORAGE_ORDER (to))
	reg = flip_storage_order (mode, reg);

      if (icode != CODE_FOR_nothing)
	{
	  struct expand_operand ops[2];

	  create_fixed_operand (&ops[0], mem);
	  create_input_operand (&ops[1], reg, mode);
	  /* The movmisalign<mode> pattern cannot fail, else the assignment
	     would silently be omitted.  */
	  expand_insn (icode, 2, ops);
	}
      else
	store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg,
			 false);
      return;
    }

  /* Assignment of a structure component needs special treatment
     if the structure component's rtx is not simply a MEM.
     Assignment of an array element at a constant index, and assignment of
     an array element in an unaligned packed structure field, has the same
     problem.  Same for (partially) storing into a non-memory object.  */
  if (handled_component_p (to)
      || (TREE_CODE (to) == MEM_REF
	  && (REF_REVERSE_STORAGE_ORDER (to)
	      || mem_ref_refers_to_non_mem_p (to)))
      || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
    {
      machine_mode mode1;
      HOST_WIDE_INT bitsize, bitpos;
      unsigned HOST_WIDE_INT bitregion_start = 0;
      unsigned HOST_WIDE_INT bitregion_end = 0;
      tree offset;
      int unsignedp, reversep, volatilep = 0;
      tree tem;

      push_temp_slots ();
      tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
				 &unsignedp, &reversep, &volatilep);

      /* Make sure bitpos is not negative, it can wreak havoc later.  */
      if (bitpos < 0)
	{
	  gcc_assert (offset == NULL_TREE);
	  offset = size_int (bitpos >> LOG2_BITS_PER_UNIT);
	  bitpos &= BITS_PER_UNIT - 1;
	}

      if (TREE_CODE (to) == COMPONENT_REF
	  && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
	get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
      /* The C++ memory model naturally applies to byte-aligned fields.
	 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
	 BITSIZE are not byte-aligned, there is no need to limit the range
	 we can access.  This can occur with packed structures in Ada.  */
      else if (bitsize > 0
	       && bitsize % BITS_PER_UNIT == 0
	       && bitpos % BITS_PER_UNIT == 0)
	{
	  bitregion_start = bitpos;
	  bitregion_end = bitpos + bitsize - 1;
	}

      to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);

      /* If the field has a mode, we want to access it in the
	 field's mode, not the computed mode.
	 If a MEM has VOIDmode (external with incomplete type),
	 use BLKmode for it instead.  */
      if (MEM_P (to_rtx))
	{
	  if (mode1 != VOIDmode)
	    to_rtx = adjust_address (to_rtx, mode1, 0);
	  else if (GET_MODE (to_rtx) == VOIDmode)
	    to_rtx = adjust_address (to_rtx, BLKmode, 0);
	}
 
      if (offset != 0)
	{
	  machine_mode address_mode;
	  rtx offset_rtx;

	  if (!MEM_P (to_rtx))
	    {
	      /* We can get constant negative offsets into arrays with broken
		 user code.  Translate this to a trap instead of ICEing.  */
	      gcc_assert (TREE_CODE (offset) == INTEGER_CST);
	      expand_builtin_trap ();
	      to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
	    }

	  offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
	  address_mode = get_address_mode (to_rtx);
	  if (GET_MODE (offset_rtx) != address_mode)
	    {
		/* We cannot be sure that the RTL in offset_rtx is valid outside
		   of a memory address context, so force it into a register
		   before attempting to convert it to the desired mode.  */
	      offset_rtx = force_operand (offset_rtx, NULL_RTX);
	      offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
	    }

	  /* If we have an expression in OFFSET_RTX and a non-zero
	     byte offset in BITPOS, adding the byte offset before the
	     OFFSET_RTX results in better intermediate code, which makes
	     later rtl optimization passes perform better.

	     We prefer intermediate code like this:

	     r124:DI=r123:DI+0x18
	     [r124:DI]=r121:DI

	     ... instead of ...

	     r124:DI=r123:DI+0x10
	     [r124:DI+0x8]=r121:DI

	     This is only done for aligned data values, as these can
	     be expected to result in single move instructions.  */
	  if (mode1 != VOIDmode
	      && bitpos != 0
	      && bitsize > 0
	      && (bitpos % bitsize) == 0
	      && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
	      && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
	    {
	      to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
	      bitregion_start = 0;
	      if (bitregion_end >= (unsigned HOST_WIDE_INT) bitpos)
		bitregion_end -= bitpos;
	      bitpos = 0;
	    }

	  to_rtx = offset_address (to_rtx, offset_rtx,
				   highest_pow2_factor_for_target (to,
				   				   offset));
	}

      /* No action is needed if the target is not a memory and the field
	 lies completely outside that target.  This can occur if the source
	 code contains an out-of-bounds access to a small array.  */
      if (!MEM_P (to_rtx)
	  && GET_MODE (to_rtx) != BLKmode
	  && (unsigned HOST_WIDE_INT) bitpos
	     >= GET_MODE_PRECISION (GET_MODE (to_rtx)))
	{
	  expand_normal (from);
	  result = NULL;
	}
      /* Handle expand_expr of a complex value returning a CONCAT.  */
      else if (GET_CODE (to_rtx) == CONCAT)
	{
	  unsigned short mode_bitsize = GET_MODE_BITSIZE (GET_MODE (to_rtx));
	  if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from)))
	      && bitpos == 0
	      && bitsize == mode_bitsize)
	    result = store_expr (from, to_rtx, false, nontemporal, reversep);
	  else if (bitsize == mode_bitsize / 2
		   && (bitpos == 0 || bitpos == mode_bitsize / 2))
	    result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
				 nontemporal, reversep);
	  else if (bitpos + bitsize <= mode_bitsize / 2)
	    result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
				  bitregion_start, bitregion_end,
				  mode1, from, get_alias_set (to),
				  nontemporal, reversep);
	  else if (bitpos >= mode_bitsize / 2)
	    result = store_field (XEXP (to_rtx, 1), bitsize,
				  bitpos - mode_bitsize / 2,
				  bitregion_start, bitregion_end,
				  mode1, from, get_alias_set (to),
				  nontemporal, reversep);
	  else if (bitpos == 0 && bitsize == mode_bitsize)
	    {
	      rtx from_rtx;
	      result = expand_normal (from);
	      from_rtx = simplify_gen_subreg (GET_MODE (to_rtx), result,
					      TYPE_MODE (TREE_TYPE (from)), 0);
	      emit_move_insn (XEXP (to_rtx, 0),
			      read_complex_part (from_rtx, false));
	      emit_move_insn (XEXP (to_rtx, 1),
			      read_complex_part (from_rtx, true));
	    }
	  else
	    {
	      rtx temp = assign_stack_temp (GET_MODE (to_rtx),
					    GET_MODE_SIZE (GET_MODE (to_rtx)));
	      write_complex_part (temp, XEXP (to_rtx, 0), false);
	      write_complex_part (temp, XEXP (to_rtx, 1), true);
	      result = store_field (temp, bitsize, bitpos,
				    bitregion_start, bitregion_end,
				    mode1, from, get_alias_set (to),
				    nontemporal, reversep);
	      emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
	      emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
	    }
	}
      else
	{
	  if (MEM_P (to_rtx))
	    {
	      /* If the field is at offset zero, we could have been given the
		 DECL_RTX of the parent struct.  Don't munge it.  */
	      to_rtx = shallow_copy_rtx (to_rtx);
	      set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
	      if (volatilep)
		MEM_VOLATILE_P (to_rtx) = 1;
	    }

	  if (optimize_bitfield_assignment_op (bitsize, bitpos,
					       bitregion_start, bitregion_end,
					       mode1, to_rtx, to, from,
					       reversep))
	    result = NULL;
	  else
	    result = store_field (to_rtx, bitsize, bitpos,
				  bitregion_start, bitregion_end,
				  mode1, from, get_alias_set (to),
				  nontemporal, reversep);
	}

      if (result)
	preserve_temp_slots (result);
      pop_temp_slots ();
      return;
    }

  /* If the rhs is a function call and its value is not an aggregate,
     call the function before we start to compute the lhs.
     This is needed for correct code for cases such as
     val = setjmp (buf) on machines where reference to val
     requires loading up part of an address in a separate insn.

     Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
     since it might be a promoted variable where the zero- or sign- extension
     needs to be done.  Handling this in the normal way is safe because no
     computation is done before the call.  The same is true for SSA names.  */
  if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
      && COMPLETE_TYPE_P (TREE_TYPE (from))
      && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
      && ! (((VAR_P (to)
	      || TREE_CODE (to) == PARM_DECL
	      || TREE_CODE (to) == RESULT_DECL)
	     && REG_P (DECL_RTL (to)))
	    || TREE_CODE (to) == SSA_NAME))
    {
      rtx value;
      rtx bounds;

      push_temp_slots ();
      value = expand_normal (from);

      /* Split value and bounds to store them separately.  */
      chkp_split_slot (value, &value, &bounds);

      if (to_rtx == 0)
	to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);

      /* Handle calls that return values in multiple non-contiguous locations.
	 The Irix 6 ABI has examples of this.  */
      if (GET_CODE (to_rtx) == PARALLEL)
	{
	  if (GET_CODE (value) == PARALLEL)
	    emit_group_move (to_rtx, value);
	  else
	    emit_group_load (to_rtx, value, TREE_TYPE (from),
			     int_size_in_bytes (TREE_TYPE (from)));
	}
      else if (GET_CODE (value) == PARALLEL)
	emit_group_store (to_rtx, value, TREE_TYPE (from),
			  int_size_in_bytes (TREE_TYPE (from)));
      else if (GET_MODE (to_rtx) == BLKmode)
	{
	  /* Handle calls that return BLKmode values in registers.  */
	  if (REG_P (value))
	    copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
	  else
	    emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
	}
      else
	{
	  if (POINTER_TYPE_P (TREE_TYPE (to)))
	    value = convert_memory_address_addr_space
		      (GET_MODE (to_rtx), value,
		       TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));

	  emit_move_insn (to_rtx, value);
	}

      /* Store bounds if required.  */
      if (bounds
	  && (BOUNDED_P (to) || chkp_type_has_pointer (TREE_TYPE (to))))
	{
	  gcc_assert (MEM_P (to_rtx));
	  chkp_emit_bounds_store (bounds, value, to_rtx);
	}

      preserve_temp_slots (to_rtx);
      pop_temp_slots ();
      return;
    }

  /* Ordinary treatment.  Expand TO to get a REG or MEM rtx.  */
  to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);

  /* Don't move directly into a return register.  */
  if (TREE_CODE (to) == RESULT_DECL
      && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
    {
      rtx temp;

      push_temp_slots ();

      /* If the source is itself a return value, it still is in a pseudo at
	 this point so we can move it back to the return register directly.  */
      if (REG_P (to_rtx)
	  && TYPE_MODE (TREE_TYPE (from)) == BLKmode
	  && TREE_CODE (from) != CALL_EXPR)
	temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
      else
	temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);

      /* Handle calls that return values in multiple non-contiguous locations.
	 The Irix 6 ABI has examples of this.  */
      if (GET_CODE (to_rtx) == PARALLEL)
	{
	  if (GET_CODE (temp) == PARALLEL)
	    emit_group_move (to_rtx, temp);
	  else
	    emit_group_load (to_rtx, temp, TREE_TYPE (from),
			     int_size_in_bytes (TREE_TYPE (from)));
	}
      else if (temp)
	emit_move_insn (to_rtx, temp);

      preserve_temp_slots (to_rtx);
      pop_temp_slots ();
      return;
    }

  /* In case we are returning the contents of an object which overlaps
     the place the value is being stored, use a safe function when copying
     a value through a pointer into a structure value return block.  */
  if (TREE_CODE (to) == RESULT_DECL
      && TREE_CODE (from) == INDIRECT_REF
      && ADDR_SPACE_GENERIC_P
	   (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
      && refs_may_alias_p (to, from)
      && cfun->returns_struct
      && !cfun->returns_pcc_struct)
    {
      rtx from_rtx, size;

      push_temp_slots ();
      size = expr_size (from);
      from_rtx = expand_normal (from);

      emit_block_move_via_libcall (XEXP (to_rtx, 0), XEXP (from_rtx, 0), size);

      preserve_temp_slots (to_rtx);
      pop_temp_slots ();
      return;
    }

  /* Compute FROM and store the value in the rtx we got.  */

  push_temp_slots ();
  result = store_expr_with_bounds (from, to_rtx, 0, nontemporal, false, to);
  preserve_temp_slots (result);
  pop_temp_slots ();
  return;
}

/* Emits nontemporal store insn that moves FROM to TO.  Returns true if this
   succeeded, false otherwise.  */

bool
emit_storent_insn (rtx to, rtx from)
{
  struct expand_operand ops[2];
  machine_mode mode = GET_MODE (to);
  enum insn_code code = optab_handler (storent_optab, mode);

  if (code == CODE_FOR_nothing)
    return false;

  create_fixed_operand (&ops[0], to);
  create_input_operand (&ops[1], from, mode);
  return maybe_expand_insn (code, 2, ops);
}

/* Generate code for computing expression EXP,
   and storing the value into TARGET.

   If the mode is BLKmode then we may return TARGET itself.
   It turns out that in BLKmode it doesn't cause a problem.
   because C has no operators that could combine two different
   assignments into the same BLKmode object with different values
   with no sequence point.  Will other languages need this to
   be more thorough?

   If CALL_PARAM_P is nonzero, this is a store into a call param on the
   stack, and block moves may need to be treated specially.

   If NONTEMPORAL is true, try using a nontemporal store instruction.

   If REVERSE is true, the store is to be done in reverse order.

   If BTARGET is not NULL then computed bounds of EXP are
   associated with BTARGET.  */

rtx
store_expr_with_bounds (tree exp, rtx target, int call_param_p,
			bool nontemporal, bool reverse, tree btarget)
{
  rtx temp;
  rtx alt_rtl = NULL_RTX;
  location_t loc = curr_insn_location ();

  if (VOID_TYPE_P (TREE_TYPE (exp)))
    {
      /* C++ can generate ?: expressions with a throw expression in one
	 branch and an rvalue in the other. Here, we resolve attempts to
	 store the throw expression's nonexistent result.  */
      gcc_assert (!call_param_p);
      expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
      return NULL_RTX;
    }
  if (TREE_CODE (exp) == COMPOUND_EXPR)
    {
      /* Perform first part of compound expression, then assign from second
	 part.  */
      expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
		   call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
      return store_expr_with_bounds (TREE_OPERAND (exp, 1), target,
				     call_param_p, nontemporal, reverse,
				     btarget);
    }
  else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
    {
      /* For conditional expression, get safe form of the target.  Then
	 test the condition, doing the appropriate assignment on either
	 side.  This avoids the creation of unnecessary temporaries.
	 For non-BLKmode, it is more efficient not to do this.  */

      rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();

      do_pending_stack_adjust ();
      NO_DEFER_POP;
      jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
      store_expr_with_bounds (TREE_OPERAND (exp, 1), target, call_param_p,
			      nontemporal, reverse, btarget);
      emit_jump_insn (targetm.gen_jump (lab2));
      emit_barrier ();
      emit_label (lab1);
      store_expr_with_bounds (TREE_OPERAND (exp, 2), target, call_param_p,
			      nontemporal, reverse, btarget);
      emit_label (lab2);
      OK_DEFER_POP;

      return NULL_RTX;
    }
  else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
    /* If this is a scalar in a register that is stored in a wider mode
       than the declared mode, compute the result into its declared mode
       and then convert to the wider mode.  Our value is the computed
       expression.  */
    {
      rtx inner_target = 0;

      /* We can do the conversion inside EXP, which will often result
	 in some optimizations.  Do the conversion in two steps: first
	 change the signedness, if needed, then the extend.  But don't
	 do this if the type of EXP is a subtype of something else
	 since then the conversion might involve more than just
	 converting modes.  */
      if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
	  && TREE_TYPE (TREE_TYPE (exp)) == 0
	  && GET_MODE_PRECISION (GET_MODE (target))
	     == TYPE_PRECISION (TREE_TYPE (exp)))
	{
	  if (!SUBREG_CHECK_PROMOTED_SIGN (target,
					  TYPE_UNSIGNED (TREE_TYPE (exp))))
	    {
	      /* Some types, e.g. Fortran's logical*4, won't have a signed
		 version, so use the mode instead.  */
	      tree ntype
		= (signed_or_unsigned_type_for
		   (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
	      if (ntype == NULL)
		ntype = lang_hooks.types.type_for_mode
		  (TYPE_MODE (TREE_TYPE (exp)),
		   SUBREG_PROMOTED_SIGN (target));

	      exp = fold_convert_loc (loc, ntype, exp);
	    }

	  exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
				  (GET_MODE (SUBREG_REG (target)),
				   SUBREG_PROMOTED_SIGN (target)),
				  exp);

	  inner_target = SUBREG_REG (target);
	}

      temp = expand_expr (exp, inner_target, VOIDmode,
			  call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);

      /* Handle bounds returned by call.  */
      if (TREE_CODE (exp) == CALL_EXPR)
	{
	  rtx bounds;
	  chkp_split_slot (temp, &temp, &bounds);
	  if (bounds && btarget)
	    {
	      gcc_assert (TREE_CODE (btarget) == SSA_NAME);
	      rtx tmp = targetm.calls.load_returned_bounds (bounds);
	      chkp_set_rtl_bounds (btarget, tmp);
	    }
	}

      /* If TEMP is a VOIDmode constant, use convert_modes to make
	 sure that we properly convert it.  */
      if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
	{
	  temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
				temp, SUBREG_PROMOTED_SIGN (target));
	  temp = convert_modes (GET_MODE (SUBREG_REG (target)),
			        GET_MODE (target), temp,
				SUBREG_PROMOTED_SIGN (target));
	}

      convert_move (SUBREG_REG (target), temp,
		    SUBREG_PROMOTED_SIGN (target));

      return NULL_RTX;
    }
  else if ((TREE_CODE (exp) == STRING_CST
	    || (TREE_CODE (exp) == MEM_REF
		&& TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
		&& TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
		   == STRING_CST
		&& integer_zerop (TREE_OPERAND (exp, 1))))
	   && !nontemporal && !call_param_p
	   && MEM_P (target))
    {
      /* Optimize initialization of an array with a STRING_CST.  */
      HOST_WIDE_INT exp_len, str_copy_len;
      rtx dest_mem;
      tree str = TREE_CODE (exp) == STRING_CST
		 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);

      exp_len = int_expr_size (exp);
      if (exp_len <= 0)
	goto normal_expr;

      if (TREE_STRING_LENGTH (str) <= 0)
	goto normal_expr;

      str_copy_len = strlen (TREE_STRING_POINTER (str));
      if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
	goto normal_expr;

      str_copy_len = TREE_STRING_LENGTH (str);
      if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
	  && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
	{
	  str_copy_len += STORE_MAX_PIECES - 1;
	  str_copy_len &= ~(STORE_MAX_PIECES - 1);
	}
      str_copy_len = MIN (str_copy_len, exp_len);
      if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
				CONST_CAST (char *, TREE_STRING_POINTER (str)),
				MEM_ALIGN (target), false))
	goto normal_expr;

      dest_mem = target;

      dest_mem = store_by_pieces (dest_mem,
				  str_copy_len, builtin_strncpy_read_str,
				  CONST_CAST (char *,
					      TREE_STRING_POINTER (str)),
				  MEM_ALIGN (target), false,
				  exp_len > str_copy_len ? 1 : 0);
      if (exp_len > str_copy_len)
	clear_storage (adjust_address (dest_mem, BLKmode, 0),
		       GEN_INT (exp_len - str_copy_len),
		       BLOCK_OP_NORMAL);
      return NULL_RTX;
    }
  else
    {
      rtx tmp_target;

  normal_expr:
      /* If we want to use a nontemporal or a reverse order store, force the
	 value into a register first.  */
      tmp_target = nontemporal || reverse ? NULL_RTX : target;
      temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
			       (call_param_p
				? EXPAND_STACK_PARM : EXPAND_NORMAL),
			       &alt_rtl, false);

      /* Handle bounds returned by call.  */
      if (TREE_CODE (exp) == CALL_EXPR)
	{
	  rtx bounds;
	  chkp_split_slot (temp, &temp, &bounds);
	  if (bounds && btarget)
	    {
	      gcc_assert (TREE_CODE (btarget) == SSA_NAME);
	      rtx tmp = targetm.calls.load_returned_bounds (bounds);
	      chkp_set_rtl_bounds (btarget, tmp);
	    }
	}
    }

  /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
     the same as that of TARGET, adjust the constant.  This is needed, for
     example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want 
     only a word-sized value.  */
  if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
      && TREE_CODE (exp) != ERROR_MARK
      && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
    temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
			  temp, TYPE_UNSIGNED (TREE_TYPE (exp)));

  /* If value was not generated in the target, store it there.
     Convert the value to TARGET's type first if necessary and emit the
     pending incrementations that have been queued when expanding EXP.
     Note that we cannot emit the whole queue blindly because this will
     effectively disable the POST_INC optimization later.

     If TEMP and TARGET compare equal according to rtx_equal_p, but
     one or both of them are volatile memory refs, we have to distinguish
     two cases:
     - expand_expr has used TARGET.  In this case, we must not generate
       another copy.  This can be detected by TARGET being equal according
       to == .
     - expand_expr has not used TARGET - that means that the source just
       happens to have the same RTX form.  Since temp will have been created
       by expand_expr, it will compare unequal according to == .
       We must generate a copy in this case, to reach the correct number
       of volatile memory references.  */

  if ((! rtx_equal_p (temp, target)
       || (temp != target && (side_effects_p (temp)
			      || side_effects_p (target))))
      && TREE_CODE (exp) != ERROR_MARK
      /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
	 but TARGET is not valid memory reference, TEMP will differ
	 from TARGET although it is really the same location.  */
      && !(alt_rtl
	   && rtx_equal_p (alt_rtl, target)
	   && !side_effects_p (alt_rtl)
	   && !side_effects_p (target))
      /* If there's nothing to copy, don't bother.  Don't call
	 expr_size unless necessary, because some front-ends (C++)
	 expr_size-hook must not be given objects that are not
	 supposed to be bit-copied or bit-initialized.  */
      && expr_size (exp) != const0_rtx)
    {
      if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
	{
	  if (GET_MODE (target) == BLKmode)
	    {
	      /* Handle calls that return BLKmode values in registers.  */
	      if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
		copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
	      else
		store_bit_field (target,
				 INTVAL (expr_size (exp)) * BITS_PER_UNIT,
				 0, 0, 0, GET_MODE (temp), temp, reverse);
	    }
	  else
	    convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
	}

      else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
	{
	  /* Handle copying a string constant into an array.  The string
	     constant may be shorter than the array.  So copy just the string's
	     actual length, and clear the rest.  First get the size of the data
	     type of the string, which is actually the size of the target.  */
	  rtx size = expr_size (exp);

	  if (CONST_INT_P (size)
	      && INTVAL (size) < TREE_STRING_LENGTH (exp))
	    emit_block_move (target, temp, size,
			     (call_param_p
			      ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
	  else
	    {
	      machine_mode pointer_mode
		= targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
	      machine_mode address_mode = get_address_mode (target);

	      /* Compute the size of the data to copy from the string.  */
	      tree copy_size
		= size_binop_loc (loc, MIN_EXPR,
				  make_tree (sizetype, size),
				  size_int (TREE_STRING_LENGTH (exp)));
	      rtx copy_size_rtx
		= expand_expr (copy_size, NULL_RTX, VOIDmode,
			       (call_param_p
				? EXPAND_STACK_PARM : EXPAND_NORMAL));
	      rtx_code_label *label = 0;

	      /* Copy that much.  */
	      copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
					       TYPE_UNSIGNED (sizetype));
	      emit_block_move (target, temp, copy_size_rtx,
			       (call_param_p
				? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));

	      /* Figure out how much is left in TARGET that we have to clear.
		 Do all calculations in pointer_mode.  */
	      if (CONST_INT_P (copy_size_rtx))
		{
		  size = plus_constant (address_mode, size,
					-INTVAL (copy_size_rtx));
		  target = adjust_address (target, BLKmode,
					   INTVAL (copy_size_rtx));
		}
	      else
		{
		  size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
				       copy_size_rtx, NULL_RTX, 0,
				       OPTAB_LIB_WIDEN);

		  if (GET_MODE (copy_size_rtx) != address_mode)
		    copy_size_rtx = convert_to_mode (address_mode,
						     copy_size_rtx,
						     TYPE_UNSIGNED (sizetype));

		  target = offset_address (target, copy_size_rtx,
					   highest_pow2_factor (copy_size));
		  label = gen_label_rtx ();
		  emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
					   GET_MODE (size), 0, label);
		}

	      if (size != const0_rtx)
		clear_storage (target, size, BLOCK_OP_NORMAL);

	      if (label)
		emit_label (label);
	    }
	}
      /* Handle calls that return values in multiple non-contiguous locations.
	 The Irix 6 ABI has examples of this.  */
      else if (GET_CODE (target) == PARALLEL)
	{
	  if (GET_CODE (temp) == PARALLEL)
	    emit_group_move (target, temp);
	  else
	    emit_group_load (target, temp, TREE_TYPE (exp),
			     int_size_in_bytes (TREE_TYPE (exp)));
	}
      else if (GET_CODE (temp) == PARALLEL)
	emit_group_store (target, temp, TREE_TYPE (exp),
			  int_size_in_bytes (TREE_TYPE (exp)));
      else if (GET_MODE (temp) == BLKmode)
	emit_block_move (target, temp, expr_size (exp),
			 (call_param_p
			  ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
      /* If we emit a nontemporal store, there is nothing else to do.  */
      else if (nontemporal && emit_storent_insn (target, temp))
	;
      else
	{
	  if (reverse)
	    temp = flip_storage_order (GET_MODE (target), temp);
	  temp = force_operand (temp, target);
	  if (temp != target)
	    emit_move_insn (target, temp);
	}
    }

  return NULL_RTX;
}

/* Same as store_expr_with_bounds but ignoring bounds of EXP.  */
rtx
store_expr (tree exp, rtx target, int call_param_p, bool nontemporal,
	    bool reverse)
{
  return store_expr_with_bounds (exp, target, call_param_p, nontemporal,
				 reverse, NULL);
}

/* Return true if field F of structure TYPE is a flexible array.  */

static bool
flexible_array_member_p (const_tree f, const_tree type)
{
  const_tree tf;

  tf = TREE_TYPE (f);
  return (DECL_CHAIN (f) == NULL
	  && TREE_CODE (tf) == ARRAY_TYPE
	  && TYPE_DOMAIN (tf)
	  && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
	  && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
	  && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
	  && int_size_in_bytes (type) >= 0);
}

/* If FOR_CTOR_P, return the number of top-level elements that a constructor
   must have in order for it to completely initialize a value of type TYPE.
   Return -1 if the number isn't known.

   If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE.  */

static HOST_WIDE_INT
count_type_elements (const_tree type, bool for_ctor_p)
{
  switch (TREE_CODE (type))
    {
    case ARRAY_TYPE:
      {
	tree nelts;

	nelts = array_type_nelts (type);
	if (nelts && tree_fits_uhwi_p (nelts))
	  {
	    unsigned HOST_WIDE_INT n;

	    n = tree_to_uhwi (nelts) + 1;
	    if (n == 0 || for_ctor_p)
	      return n;
	    else
	      return n * count_type_elements (TREE_TYPE (type), false);
	  }
	return for_ctor_p ? -1 : 1;
      }

    case RECORD_TYPE:
      {
	unsigned HOST_WIDE_INT n;
	tree f;

	n = 0;
	for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
	  if (TREE_CODE (f) == FIELD_DECL)
	    {
	      if (!for_ctor_p)
		n += count_type_elements (TREE_TYPE (f), false);
	      else if (!flexible_array_member_p (f, type))
		/* Don't count flexible arrays, which are not supposed
		   to be initialized.  */
		n += 1;
	    }

	return n;
      }

    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      {
	tree f;
	HOST_WIDE_INT n, m;

	gcc_assert (!for_ctor_p);
	/* Estimate the number of scalars in each field and pick the
	   maximum.  Other estimates would do instead; the idea is simply
	   to make sure that the estimate is not sensitive to the ordering
	   of the fields.  */
	n = 1;
	for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
	  if (TREE_CODE (f) == FIELD_DECL)
	    {
	      m = count_type_elements (TREE_TYPE (f), false);
	      /* If the field doesn't span the whole union, add an extra
		 scalar for the rest.  */
	      if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
				    TYPE_SIZE (type)) != 1)
		m++;
	      if (n < m)
		n = m;
	    }
	return n;
      }

    case COMPLEX_TYPE:
      return 2;

    case VECTOR_TYPE:
      return TYPE_VECTOR_SUBPARTS (type);

    case INTEGER_TYPE:
    case REAL_TYPE:
    case FIXED_POINT_TYPE:
    case ENUMERAL_TYPE:
    case BOOLEAN_TYPE:
    case POINTER_TYPE:
    case OFFSET_TYPE:
    case REFERENCE_TYPE:
    case NULLPTR_TYPE:
      return 1;

    case ERROR_MARK:
      return 0;

    case VOID_TYPE:
    case METHOD_TYPE:
    case FUNCTION_TYPE:
    case LANG_TYPE:
    default:
      gcc_unreachable ();
    }
}

/* Helper for categorize_ctor_elements.  Identical interface.  */

static bool
categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
			    HOST_WIDE_INT *p_init_elts, bool *p_complete)
{
  unsigned HOST_WIDE_INT idx;
  HOST_WIDE_INT nz_elts, init_elts, num_fields;
  tree value, purpose, elt_type;

  /* Whether CTOR is a valid constant initializer, in accordance with what
     initializer_constant_valid_p does.  If inferred from the constructor
     elements, true until proven otherwise.  */
  bool const_from_elts_p = constructor_static_from_elts_p (ctor);
  bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);

  nz_elts = 0;
  init_elts = 0;
  num_fields = 0;
  elt_type = NULL_TREE;

  FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
    {
      HOST_WIDE_INT mult = 1;

      if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
	{
	  tree lo_index = TREE_OPERAND (purpose, 0);
	  tree hi_index = TREE_OPERAND (purpose, 1);

	  if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
	    mult = (tree_to_uhwi (hi_index)
		    - tree_to_uhwi (lo_index) + 1);
	}
      num_fields += mult;
      elt_type = TREE_TYPE (value);

      switch (TREE_CODE (value))
	{
	case CONSTRUCTOR:
	  {
	    HOST_WIDE_INT nz = 0, ic = 0;

	    bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &ic,
							   p_complete);

	    nz_elts += mult * nz;
 	    init_elts += mult * ic;

	    if (const_from_elts_p && const_p)
	      const_p = const_elt_p;
	  }
	  break;

	case INTEGER_CST:
	case REAL_CST:
	case FIXED_CST:
	  if (!initializer_zerop (value))
	    nz_elts += mult;
	  init_elts += mult;
	  break;

	case STRING_CST:
	  nz_elts += mult * TREE_STRING_LENGTH (value);
	  init_elts += mult * TREE_STRING_LENGTH (value);
	  break;

	case COMPLEX_CST:
	  if (!initializer_zerop (TREE_REALPART (value)))
	    nz_elts += mult;
	  if (!initializer_zerop (TREE_IMAGPART (value)))
	    nz_elts += mult;
	  init_elts += mult;
	  break;

	case VECTOR_CST:
	  {
	    unsigned i;
	    for (i = 0; i < VECTOR_CST_NELTS (value); ++i)
	      {
		tree v = VECTOR_CST_ELT (value, i);
		if (!initializer_zerop (v))
		  nz_elts += mult;
		init_elts += mult;
	      }
	  }
	  break;

	default:
	  {
	    HOST_WIDE_INT tc = count_type_elements (elt_type, false);
	    nz_elts += mult * tc;
	    init_elts += mult * tc;

	    if (const_from_elts_p && const_p)
	      const_p
		= initializer_constant_valid_p (value,
						elt_type,
						TYPE_REVERSE_STORAGE_ORDER
						(TREE_TYPE (ctor)))
		  != NULL_TREE;
	  }
	  break;
	}
    }

  if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
						num_fields, elt_type))
    *p_complete = false;

  *p_nz_elts += nz_elts;
  *p_init_elts += init_elts;

  return const_p;
}

/* Examine CTOR to discover:
   * how many scalar fields are set to nonzero values,
     and place it in *P_NZ_ELTS;
   * how many scalar fields in total are in CTOR,
     and place it in *P_ELT_COUNT.
   * whether the constructor is complete -- in the sense that every
     meaningful byte is explicitly given a value --
     and place it in *P_COMPLETE.

   Return whether or not CTOR is a valid static constant initializer, the same
   as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0".  */

bool
categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
			  HOST_WIDE_INT *p_init_elts, bool *p_complete)
{
  *p_nz_elts = 0;
  *p_init_elts = 0;
  *p_complete = true;

  return categorize_ctor_elements_1 (ctor, p_nz_elts, p_init_elts, p_complete);
}

/* TYPE is initialized by a constructor with NUM_ELTS elements, the last
   of which had type LAST_TYPE.  Each element was itself a complete
   initializer, in the sense that every meaningful byte was explicitly
   given a value.  Return true if the same is true for the constructor
   as a whole.  */

bool
complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
			  const_tree last_type)
{
  if (TREE_CODE (type) == UNION_TYPE
      || TREE_CODE (type) == QUAL_UNION_TYPE)
    {
      if (num_elts == 0)
	return false;

      gcc_assert (num_elts == 1 && last_type);

      /* ??? We could look at each element of the union, and find the
	 largest element.  Which would avoid comparing the size of the
	 initialized element against any tail padding in the union.
	 Doesn't seem worth the effort...  */
      return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
    }

  return count_type_elements (type, true) == num_elts;
}

/* Return 1 if EXP contains mostly (3/4)  zeros.  */

static int
mostly_zeros_p (const_tree exp)
{
  if (TREE_CODE (exp) == CONSTRUCTOR)
    {
      HOST_WIDE_INT nz_elts, init_elts;
      bool complete_p;

      categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
      return !complete_p || nz_elts < init_elts / 4;
    }

  return initializer_zerop (exp);
}

/* Return 1 if EXP contains all zeros.  */

static int
all_zeros_p (const_tree exp)
{
  if (TREE_CODE (exp) == CONSTRUCTOR)
    {
      HOST_WIDE_INT nz_elts, init_elts;
      bool complete_p;

      categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
      return nz_elts == 0;
    }

  return initializer_zerop (exp);
}

/* Helper function for store_constructor.
   TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
   CLEARED is as for store_constructor.
   ALIAS_SET is the alias set to use for any stores.
   If REVERSE is true, the store is to be done in reverse order.

   This provides a recursive shortcut back to store_constructor when it isn't
   necessary to go through store_field.  This is so that we can pass through
   the cleared field to let store_constructor know that we may not have to
   clear a substructure if the outer structure has already been cleared.  */

static void
store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
			 HOST_WIDE_INT bitpos,
			 unsigned HOST_WIDE_INT bitregion_start,
			 unsigned HOST_WIDE_INT bitregion_end,
			 machine_mode mode,
			 tree exp, int cleared,
			 alias_set_type alias_set, bool reverse)
{
  if (TREE_CODE (exp) == CONSTRUCTOR
      /* We can only call store_constructor recursively if the size and
	 bit position are on a byte boundary.  */
      && bitpos % BITS_PER_UNIT == 0
      && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
      /* If we have a nonzero bitpos for a register target, then we just
	 let store_field do the bitfield handling.  This is unlikely to
	 generate unnecessary clear instructions anyways.  */
      && (bitpos == 0 || MEM_P (target)))
    {
      if (MEM_P (target))
	target
	  = adjust_address (target,
			    GET_MODE (target) == BLKmode
			    || 0 != (bitpos
				     % GET_MODE_ALIGNMENT (GET_MODE (target)))
			    ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);


      /* Update the alias set, if required.  */
      if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
	  && MEM_ALIAS_SET (target) != 0)
	{
	  target = copy_rtx (target);
	  set_mem_alias_set (target, alias_set);
	}

      store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT,
			 reverse);
    }
  else
    store_field (target, bitsize, bitpos, bitregion_start, bitregion_end, mode,
		 exp, alias_set, false, reverse);
}


/* Returns the number of FIELD_DECLs in TYPE.  */

static int
fields_length (const_tree type)
{
  tree t = TYPE_FIELDS (type);
  int count = 0;

  for (; t; t = DECL_CHAIN (t))
    if (TREE_CODE (t) == FIELD_DECL)
      ++count;

  return count;
}


/* Store the value of constructor EXP into the rtx TARGET.
   TARGET is either a REG or a MEM; we know it cannot conflict, since
   safe_from_p has been called.
   CLEARED is true if TARGET is known to have been zero'd.
   SIZE is the number of bytes of TARGET we are allowed to modify: this
   may not be the same as the size of EXP if we are assigning to a field
   which has been packed to exclude padding bits.
   If REVERSE is true, the store is to be done in reverse order.  */

static void
store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size,
		   bool reverse)
{
  tree type = TREE_TYPE (exp);
  HOST_WIDE_INT exp_size = int_size_in_bytes (type);
  HOST_WIDE_INT bitregion_end = size > 0 ? size * BITS_PER_UNIT - 1 : 0;

  switch (TREE_CODE (type))
    {
    case RECORD_TYPE:
    case UNION_TYPE:
    case QUAL_UNION_TYPE:
      {
	unsigned HOST_WIDE_INT idx;
	tree field, value;

	/* The storage order is specified for every aggregate type.  */
	reverse = TYPE_REVERSE_STORAGE_ORDER (type);

	/* If size is zero or the target is already cleared, do nothing.  */
	if (size == 0 || cleared)
	  cleared = 1;
	/* We either clear the aggregate or indicate the value is dead.  */
	else if ((TREE_CODE (type) == UNION_TYPE
		  || TREE_CODE (type) == QUAL_UNION_TYPE)
		 && ! CONSTRUCTOR_ELTS (exp))
	  /* If the constructor is empty, clear the union.  */
	  {
	    clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
	    cleared = 1;
	  }

	/* If we are building a static constructor into a register,
	   set the initial value as zero so we can fold the value into
	   a constant.  But if more than one register is involved,
	   this probably loses.  */
	else if (REG_P (target) && TREE_STATIC (exp)
		 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
	  {
	    emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
	    cleared = 1;
	  }

        /* If the constructor has fewer fields than the structure or
	   if we are initializing the structure to mostly zeros, clear
	   the whole structure first.  Don't do this if TARGET is a
	   register whose mode size isn't equal to SIZE since
	   clear_storage can't handle this case.  */
	else if (size > 0
		 && (((int) CONSTRUCTOR_NELTS (exp) != fields_length (type))
		     || mostly_zeros_p (exp))
		 && (!REG_P (target)
		     || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
			 == size)))
	  {
	    clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
	    cleared = 1;
	  }

	if (REG_P (target) && !cleared)
	  emit_clobber (target);

	/* Store each element of the constructor into the
	   corresponding field of TARGET.  */
	FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
	  {
	    machine_mode mode;
	    HOST_WIDE_INT bitsize;
	    HOST_WIDE_INT bitpos = 0;
	    tree offset;
	    rtx to_rtx = target;

	    /* Just ignore missing fields.  We cleared the whole
	       structure, above, if any fields are missing.  */
	    if (field == 0)
	      continue;

	    if (cleared && initializer_zerop (value))
	      continue;

	    if (tree_fits_uhwi_p (DECL_SIZE (field)))
	      bitsize = tree_to_uhwi (DECL_SIZE (field));
	    else
	      gcc_unreachable ();

	    mode = DECL_MODE (field);
	    if (DECL_BIT_FIELD (field))
	      mode = VOIDmode;

	    offset = DECL_FIELD_OFFSET (field);
	    if (tree_fits_shwi_p (offset)
		&& tree_fits_shwi_p (bit_position (field)))
	      {
		bitpos = int_bit_position (field);
		offset = NULL_TREE;
	      }
	    else
	      gcc_unreachable ();

	    /* If this initializes a field that is smaller than a
	       word, at the start of a word, try to widen it to a full
	       word.  This special case allows us to output C++ member
	       function initializations in a form that the optimizers
	       can understand.  */
	    if (WORD_REGISTER_OPERATIONS
		&& REG_P (target)
		&& bitsize < BITS_PER_WORD
		&& bitpos % BITS_PER_WORD == 0
		&& GET_MODE_CLASS (mode) == MODE_INT
		&& TREE_CODE (value) == INTEGER_CST
		&& exp_size >= 0
		&& bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
	      {
		tree type = TREE_TYPE (value);

		if (TYPE_PRECISION (type) < BITS_PER_WORD)
		  {
		    type = lang_hooks.types.type_for_mode
		      (word_mode, TYPE_UNSIGNED (type));
		    value = fold_convert (type, value);
		    /* Make sure the bits beyond the original bitsize are zero
		       so that we can correctly avoid extra zeroing stores in
		       later constructor elements.  */
		    tree bitsize_mask
		      = wide_int_to_tree (type, wi::mask (bitsize, false,
							   BITS_PER_WORD));
		    value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask);
		  }

		if (BYTES_BIG_ENDIAN)
		  value
		   = fold_build2 (LSHIFT_EXPR, type, value,
				   build_int_cst (type,
						  BITS_PER_WORD - bitsize));
		bitsize = BITS_PER_WORD;
		mode = word_mode;
	      }

	    if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
		&& DECL_NONADDRESSABLE_P (field))
	      {
		to_rtx = copy_rtx (to_rtx);
		MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
	      }

	    store_constructor_field (to_rtx, bitsize, bitpos,
				     0, bitregion_end, mode,
				     value, cleared,
				     get_alias_set (TREE_TYPE (field)),
				     reverse);
	  }
	break;
      }
    case ARRAY_TYPE:
      {
	tree value, index;
	unsigned HOST_WIDE_INT i;
	int need_to_clear;
	tree domain;
	tree elttype = TREE_TYPE (type);
	int const_bounds_p;
	HOST_WIDE_INT minelt = 0;
	HOST_WIDE_INT maxelt = 0;

	/* The storage order is specified for every aggregate type.  */
	reverse = TYPE_REVERSE_STORAGE_ORDER (type);

	domain = TYPE_DOMAIN (type);
	const_bounds_p = (TYPE_MIN_VALUE (domain)
			  && TYPE_MAX_VALUE (domain)
			  && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
			  && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));

	/* If we have constant bounds for the range of the type, get them.  */
	if (const_bounds_p)
	  {
	    minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
	    maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
	  }

	/* If the constructor has fewer elements than the array, clear
           the whole array first.  Similarly if this is static
           constructor of a non-BLKmode object.  */
	if (cleared)
	  need_to_clear = 0;
	else if (REG_P (target) && TREE_STATIC (exp))
	  need_to_clear = 1;
	else
	  {
	    unsigned HOST_WIDE_INT idx;
	    tree index, value;
	    HOST_WIDE_INT count = 0, zero_count = 0;
	    need_to_clear = ! const_bounds_p;

	    /* This loop is a more accurate version of the loop in
	       mostly_zeros_p (it handles RANGE_EXPR in an index).  It
	       is also needed to check for missing elements.  */
	    FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
	      {
		HOST_WIDE_INT this_node_count;

		if (need_to_clear)
		  break;

		if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
		  {
		    tree lo_index = TREE_OPERAND (index, 0);
		    tree hi_index = TREE_OPERAND (index, 1);

		    if (! tree_fits_uhwi_p (lo_index)
			|| ! tree_fits_uhwi_p (hi_index))
		      {
			need_to_clear = 1;
			break;
		      }

		    this_node_count = (tree_to_uhwi (hi_index)
				       - tree_to_uhwi (lo_index) + 1);
		  }
		else
		  this_node_count = 1;

		count += this_node_count;
		if (mostly_zeros_p (value))
		  zero_count += this_node_count;
	      }

	    /* Clear the entire array first if there are any missing
	       elements, or if the incidence of zero elements is >=
	       75%.  */
	    if (! need_to_clear
		&& (count < maxelt - minelt + 1
		    || 4 * zero_count >= 3 * count))
	      need_to_clear = 1;
	  }

	if (need_to_clear && size > 0)
	  {
	    if (REG_P (target))
	      emit_move_insn (target,  CONST0_RTX (GET_MODE (target)));
	    else
	      clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
	    cleared = 1;
	  }

	if (!cleared && REG_P (target))
	  /* Inform later passes that the old value is dead.  */
	  emit_clobber (target);

	/* Store each element of the constructor into the
	   corresponding element of TARGET, determined by counting the
	   elements.  */
	FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
	  {
	    machine_mode mode;
	    HOST_WIDE_INT bitsize;
	    HOST_WIDE_INT bitpos;
	    rtx xtarget = target;

	    if (cleared && initializer_zerop (value))
	      continue;

	    mode = TYPE_MODE (elttype);
	    if (mode == BLKmode)
	      bitsize = (tree_fits_uhwi_p (TYPE_SIZE (elttype))
			 ? tree_to_uhwi (TYPE_SIZE (elttype))
			 : -1);
	    else
	      bitsize = GET_MODE_BITSIZE (mode);

	    if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
	      {
		tree lo_index = TREE_OPERAND (index, 0);
		tree hi_index = TREE_OPERAND (index, 1);
		rtx index_r, pos_rtx;
		HOST_WIDE_INT lo, hi, count;
		tree position;

		/* If the range is constant and "small", unroll the loop.  */
		if (const_bounds_p
		    && tree_fits_shwi_p (lo_index)
		    && tree_fits_shwi_p (hi_index)
		    && (lo = tree_to_shwi (lo_index),
			hi = tree_to_shwi (hi_index),
			count = hi - lo + 1,
			(!MEM_P (target)
			 || count <= 2
			 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
			     && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
				 <= 40 * 8)))))
		  {
		    lo -= minelt;  hi -= minelt;
		    for (; lo <= hi; lo++)
		      {
			bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));

			if (MEM_P (target)
			    && !MEM_KEEP_ALIAS_SET_P (target)
			    && TREE_CODE (type) == ARRAY_TYPE
			    && TYPE_NONALIASED_COMPONENT (type))
			  {
			    target = copy_rtx (target);
			    MEM_KEEP_ALIAS_SET_P (target) = 1;
			  }

			store_constructor_field
			  (target, bitsize, bitpos, 0, bitregion_end,
			   mode, value, cleared,
			   get_alias_set (elttype), reverse);
		      }
		  }
		else
		  {
		    rtx_code_label *loop_start = gen_label_rtx ();
		    rtx_code_label *loop_end = gen_label_rtx ();
		    tree exit_cond;

		    expand_normal (hi_index);

		    index = build_decl (EXPR_LOCATION (exp),
					VAR_DECL, NULL_TREE, domain);
		    index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
		    SET_DECL_RTL (index, index_r);
		    store_expr (lo_index, index_r, 0, false, reverse);

		    /* Build the head of the loop.  */
		    do_pending_stack_adjust ();
		    emit_label (loop_start);

		    /* Assign value to element index.  */
		    position =
		      fold_convert (ssizetype,
				    fold_build2 (MINUS_EXPR,
						 TREE_TYPE (index),
						 index,
						 TYPE_MIN_VALUE (domain)));

		    position =
			size_binop (MULT_EXPR, position,
				    fold_convert (ssizetype,
						  TYPE_SIZE_UNIT (elttype)));

		    pos_rtx = expand_normal (position);
		    xtarget = offset_address (target, pos_rtx,
					      highest_pow2_factor (position));
		    xtarget = adjust_address (xtarget, mode, 0);
		    if (TREE_CODE (value) == CONSTRUCTOR)
		      store_constructor (value, xtarget, cleared,
					 bitsize / BITS_PER_UNIT, reverse);
		    else
		      store_expr (value, xtarget, 0, false, reverse);

		    /* Generate a conditional jump to exit the loop.  */
		    exit_cond = build2 (LT_EXPR, integer_type_node,
					index, hi_index);
		    jumpif (exit_cond, loop_end, -1);

		    /* Update the loop counter, and jump to the head of
		       the loop.  */
		    expand_assignment (index,
				       build2 (PLUS_EXPR, TREE_TYPE (index),
					       index, integer_one_node),
				       false);

		    emit_jump (loop_start);

		    /* Build the end of the loop.  */
		    emit_label (loop_end);
		  }
	      }
	    else if ((index != 0 && ! tree_fits_shwi_p (index))
		     || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
	      {
		tree position;

		if (index == 0)
		  index = ssize_int (1);

		if (minelt)
		  index = fold_convert (ssizetype,
					fold_build2 (MINUS_EXPR,
						     TREE_TYPE (index),
						     index,
						     TYPE_MIN_VALUE (domain)));

		position =
		  size_binop (MULT_EXPR, index,
			      fold_convert (ssizetype,
					    TYPE_SIZE_UNIT (elttype)));
		xtarget = offset_address (target,
					  expand_normal (position),
					  highest_pow2_factor (position));
		xtarget = adjust_address (xtarget, mode, 0);
		store_expr (value, xtarget, 0, false, reverse);
	      }
	    else
	      {
		if (index != 0)
		  bitpos = ((tree_to_shwi (index) - minelt)
			    * tree_to_uhwi (TYPE_SIZE (elttype)));
		else
		  bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));

		if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
		    && TREE_CODE (type) == ARRAY_TYPE
		    && TYPE_NONALIASED_COMPONENT (type))
		  {
		    target = copy_rtx (target);
		    MEM_KEEP_ALIAS_SET_P (target) = 1;
		  }
		store_constructor_field (target, bitsize, bitpos, 0,
					 bitregion_end, mode, value,
					 cleared, get_alias_set (elttype),
					 reverse);
	      }
	  }
	break;
      }

    case VECTOR_TYPE:
      {
	unsigned HOST_WIDE_INT idx;
	constructor_elt *ce;
	int i;
	int need_to_clear;
	int icode = CODE_FOR_nothing;
	tree elttype = TREE_TYPE (type);
	int elt_size = tree_to_uhwi (TYPE_SIZE (elttype));
	machine_mode eltmode = TYPE_MODE (elttype);
	HOST_WIDE_INT bitsize;
	HOST_WIDE_INT bitpos;
	rtvec vector = NULL;
	unsigned n_elts;
	alias_set_type alias;

	gcc_assert (eltmode != BLKmode);

	n_elts = TYPE_VECTOR_SUBPARTS (type);
	if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
	  {
	    machine_mode mode = GET_MODE (target);

	    icode = (int) optab_handler (vec_init_optab, mode);
	    /* Don't use vec_init<mode> if some elements have VECTOR_TYPE.  */
	    if (icode != CODE_FOR_nothing)
	      {
		tree value;

		FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
		  if (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE)
		    {
		      icode = CODE_FOR_nothing;
		      break;
		    }
	      }
	    if (icode != CODE_FOR_nothing)
	      {
		unsigned int i;

		vector = rtvec_alloc (n_elts);
		for (i = 0; i < n_elts; i++)
		  RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
	      }
	  }

	/* If the constructor has fewer elements than the vector,
	   clear the whole array first.  Similarly if this is static
	   constructor of a non-BLKmode object.  */
	if (cleared)
	  need_to_clear = 0;
	else if (REG_P (target) && TREE_STATIC (exp))
	  need_to_clear = 1;
	else
	  {
	    unsigned HOST_WIDE_INT count = 0, zero_count = 0;
	    tree value;

	    FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
	      {
		int n_elts_here = tree_to_uhwi
		  (int_const_binop (TRUNC_DIV_EXPR,
				    TYPE_SIZE (TREE_TYPE (value)),
				    TYPE_SIZE (elttype)));

		count += n_elts_here;
		if (mostly_zeros_p (value))
		  zero_count += n_elts_here;
	      }

	    /* Clear the entire vector first if there are any missing elements,
	       or if the incidence of zero elements is >= 75%.  */
	    need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
	  }

	if (need_to_clear && size > 0 && !vector)
	  {
	    if (REG_P (target))
	      emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
	    else
	      clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
	    cleared = 1;
	  }

	/* Inform later passes that the old value is dead.  */
	if (!cleared && !vector && REG_P (target))
	  emit_move_insn (target, CONST0_RTX (GET_MODE (target)));

        if (MEM_P (target))
	  alias = MEM_ALIAS_SET (target);
	else
	  alias = get_alias_set (elttype);

        /* Store each element of the constructor into the corresponding
	   element of TARGET, determined by counting the elements.  */
	for (idx = 0, i = 0;
	     vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
	     idx++, i += bitsize / elt_size)
	  {
	    HOST_WIDE_INT eltpos;
	    tree value = ce->value;

	    bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value)));
	    if (cleared && initializer_zerop (value))
	      continue;

	    if (ce->index)
	      eltpos = tree_to_uhwi (ce->index);
	    else
	      eltpos = i;

	    if (vector)
	      {
		/* vec_init<mode> should not be used if there are VECTOR_TYPE
		   elements.  */
		gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
		RTVEC_ELT (vector, eltpos)
		  = expand_normal (value);
	      }
	    else
	      {
		machine_mode value_mode =
		  TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
		  ? TYPE_MODE (TREE_TYPE (value))
		  : eltmode;
		bitpos = eltpos * elt_size;
		store_constructor_field (target, bitsize, bitpos, 0,
					 bitregion_end, value_mode,
					 value, cleared, alias, reverse);
	      }
	  }

	if (vector)
	  emit_insn (GEN_FCN (icode)
		     (target,
		      gen_rtx_PARALLEL (GET_MODE (target), vector)));
	break;
      }

    default:
      gcc_unreachable ();
    }
}

/* Store the value of EXP (an expression tree)
   into a subfield of TARGET which has mode MODE and occupies
   BITSIZE bits, starting BITPOS bits from the start of TARGET.
   If MODE is VOIDmode, it means that we are storing into a bit-field.

   BITREGION_START is bitpos of the first bitfield in this region.
   BITREGION_END is the bitpos of the ending bitfield in this region.
   These two fields are 0, if the C++ memory model does not apply,
   or we are not interested in keeping track of bitfield regions.

   Always return const0_rtx unless we have something particular to
   return.

   ALIAS_SET is the alias set for the destination.  This value will
   (in general) be different from that for TARGET, since TARGET is a
   reference to the containing structure.

   If NONTEMPORAL is true, try generating a nontemporal store.

   If REVERSE is true, the store is to be done in reverse order.  */

static rtx
store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
	     unsigned HOST_WIDE_INT bitregion_start,
	     unsigned HOST_WIDE_INT bitregion_end,
	     machine_mode mode, tree exp,
	     alias_set_type alias_set, bool nontemporal,  bool reverse)
{
  if (TREE_CODE (exp) == ERROR_MARK)
    return const0_rtx;

  /* If we have nothing to store, do nothing unless the expression has
     side-effects.  */
  if (bitsize == 0)
    return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);

  if (GET_CODE (target) == CONCAT)
    {
      /* We're storing into a struct containing a single __complex.  */

      gcc_assert (!bitpos);
      return store_expr (exp, target, 0, nontemporal, reverse);
    }

  /* If the structure is in a register or if the component
     is a bit field, we cannot use addressing to access it.
     Use bit-field techniques or SUBREG to store in it.  */

  if (mode == VOIDmode
      || (mode != BLKmode && ! direct_store[(int) mode]
	  && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
	  && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
      || REG_P (target)
      || GET_CODE (target) == SUBREG
      /* If the field isn't aligned enough to store as an ordinary memref,
	 store it as a bit field.  */
      || (mode != BLKmode
	  && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
		|| bitpos % GET_MODE_ALIGNMENT (mode))
	       && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
	      || (bitpos % BITS_PER_UNIT != 0)))
      || (bitsize >= 0 && mode != BLKmode
	  && GET_MODE_BITSIZE (mode) > bitsize)
      /* If the RHS and field are a constant size and the size of the
	 RHS isn't the same size as the bitfield, we must use bitfield
	 operations.  */
      || (bitsize >= 0
	  && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
	  && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0
	  /* Except for initialization of full bytes from a CONSTRUCTOR, which
	     we will handle specially below.  */
	  && !(TREE_CODE (exp) == CONSTRUCTOR
	       && bitsize % BITS_PER_UNIT == 0)
	  /* And except for bitwise copying of TREE_ADDRESSABLE types,
	     where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
	     includes some extra padding.  store_expr / expand_expr will in
	     that case call get_inner_reference that will have the bitsize
	     we check here and thus the block move will not clobber the
	     padding that shouldn't be clobbered.  In the future we could
	     replace the TREE_ADDRESSABLE check with a check that
	     get_base_address needs to live in memory.  */
	  && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
	      || TREE_CODE (exp) != COMPONENT_REF
	      || TREE_CODE (DECL_SIZE (TREE_OPERAND (exp, 1))) != INTEGER_CST
	      || (bitsize % BITS_PER_UNIT != 0)
	      || (bitpos % BITS_PER_UNIT != 0)
	      || (compare_tree_int (DECL_SIZE (TREE_OPERAND (exp, 1)), bitsize)
		  != 0)))
      /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
         decl we must use bitfield operations.  */
      || (bitsize >= 0
	  && TREE_CODE (exp) == MEM_REF
	  && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
	  && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
	  && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
	  && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
    {
      rtx temp;
      gimple *nop_def;

      /* If EXP is a NOP_EXPR of precision less than its mode, then that
	 implies a mask operation.  If the precision is the same size as
	 the field we're storing into, that mask is redundant.  This is
	 particularly common with bit field assignments generated by the
	 C front end.  */
      nop_def = get_def_for_expr (exp, NOP_EXPR);
      if (nop_def)
	{
	  tree type = TREE_TYPE (exp);
	  if (INTEGRAL_TYPE_P (type)
	      && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
	      && bitsize == TYPE_PRECISION (type))
	    {
	      tree op = gimple_assign_rhs1 (nop_def);
	      type = TREE_TYPE (op);
	      if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
		exp = op;
	    }
	}

      temp = expand_normal (exp);

      /* Handle calls that return values in multiple non-contiguous locations.
	 The Irix 6 ABI has examples of this.  */
      if (GET_CODE (temp) == PARALLEL)
	{
	  HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
	  machine_mode temp_mode
	    = smallest_mode_for_size (size * BITS_PER_UNIT, MODE_INT);
	  rtx temp_target = gen_reg_rtx (temp_mode);
	  emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
	  temp = temp_target;
	}

      /* Handle calls that return BLKmode values in registers.  */
      else if (mode == BLKmode && REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
	{
	  rtx temp_target = gen_reg_rtx (GET_MODE (temp));
	  copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
	  temp = temp_target;
	}

      /* If the value has aggregate type and an integral mode then, if BITSIZE
	 is narrower than this mode and this is for big-endian data, we first
	 need to put the value into the low-order bits for store_bit_field,
	 except when MODE is BLKmode and BITSIZE larger than the word size
	 (see the handling of fields larger than a word in store_bit_field).
	 Moreover, the field may be not aligned on a byte boundary; in this
	 case, if it has reverse storage order, it needs to be accessed as a
	 scalar field with reverse storage order and we must first put the
	 value into target order.  */
      if (AGGREGATE_TYPE_P (TREE_TYPE (exp))
	  && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT)
	{
	  HOST_WIDE_INT size = GET_MODE_BITSIZE (GET_MODE (temp));

	  reverse = TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp));

	  if (reverse)
	    temp = flip_storage_order (GET_MODE (temp), temp);

	  if (bitsize < size
	      && reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN
	      && !(mode == BLKmode && bitsize > BITS_PER_WORD))
	    temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
				 size - bitsize, NULL_RTX, 1);
	}

      /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE.  */
      if (mode != VOIDmode && mode != BLKmode
	  && mode != TYPE_MODE (TREE_TYPE (exp)))
	temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);

      /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
	 and BITPOS must be aligned on a byte boundary.  If so, we simply do
	 a block copy.  Likewise for a BLKmode-like TARGET.  */
      if (GET_MODE (temp) == BLKmode
	  && (GET_MODE (target) == BLKmode
	      || (MEM_P (target)
		  && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
		  && (bitpos % BITS_PER_UNIT) == 0
		  && (bitsize % BITS_PER_UNIT) == 0)))
	{
	  gcc_assert (MEM_P (target) && MEM_P (temp)
		      && (bitpos % BITS_PER_UNIT) == 0);

	  target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
	  emit_block_move (target, temp,
			   GEN_INT ((bitsize + BITS_PER_UNIT - 1)
				    / BITS_PER_UNIT),
			   BLOCK_OP_NORMAL);

	  return const0_rtx;
	}

      /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
	 word size, we need to load the value (see again store_bit_field).  */
      if (GET_MODE (temp) == BLKmode && bitsize <= BITS_PER_WORD)
	{
	  machine_mode temp_mode = smallest_mode_for_size (bitsize, MODE_INT);
	  temp = extract_bit_field (temp, bitsize, 0, 1, NULL_RTX, temp_mode,
				    temp_mode, false);
	}

      /* Store the value in the bitfield.  */
      store_bit_field (target, bitsize, bitpos,
		       bitregion_start, bitregion_end,
		       mode, temp, reverse);

      return const0_rtx;
    }
  else
    {
      /* Now build a reference to just the desired component.  */
      rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);

      if (to_rtx == target)
	to_rtx = copy_rtx (to_rtx);

      if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
	set_mem_alias_set (to_rtx, alias_set);

      /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
	 into a target smaller than its type; handle that case now.  */
      if (TREE_CODE (exp) == CONSTRUCTOR && bitsize >= 0)
	{
	  gcc_assert (bitsize % BITS_PER_UNIT == 0);
	  store_constructor (exp, to_rtx, 0, bitsize / BITS_PER_UNIT, reverse);
	  return to_rtx;
	}

      return store_expr (exp, to_rtx, 0, nontemporal, reverse);
    }
}

/* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
   an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
   codes and find the ultimate containing object, which we return.

   We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
   bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
   storage order of the field.
   If the position of the field is variable, we store a tree
   giving the variable offset (in units) in *POFFSET.
   This offset is in addition to the bit position.
   If the position is not variable, we store 0 in *POFFSET.

   If any of the extraction expressions is volatile,
   we store 1 in *PVOLATILEP.  Otherwise we don't change that.

   If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
   Otherwise, it is a mode that can be used to access the field.

   If the field describes a variable-sized object, *PMODE is set to
   BLKmode and *PBITSIZE is set to -1.  An access cannot be made in
   this case, but the address of the object can be found.  */

tree
get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
		     HOST_WIDE_INT *pbitpos, tree *poffset,
		     machine_mode *pmode, int *punsignedp,
		     int *preversep, int *pvolatilep)
{
  tree size_tree = 0;
  machine_mode mode = VOIDmode;
  bool blkmode_bitfield = false;
  tree offset = size_zero_node;
  offset_int bit_offset = 0;

  /* First get the mode, signedness, storage order and size.  We do this from
     just the outermost expression.  */
  *pbitsize = -1;
  if (TREE_CODE (exp) == COMPONENT_REF)
    {
      tree field = TREE_OPERAND (exp, 1);
      size_tree = DECL_SIZE (field);
      if (flag_strict_volatile_bitfields > 0
	  && TREE_THIS_VOLATILE (exp)
	  && DECL_BIT_FIELD_TYPE (field)
	  && DECL_MODE (field) != BLKmode)
	/* Volatile bitfields should be accessed in the mode of the
	     field's type, not the mode computed based on the bit
	     size.  */
	mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
      else if (!DECL_BIT_FIELD (field))
	mode = DECL_MODE (field);
      else if (DECL_MODE (field) == BLKmode)
	blkmode_bitfield = true;

      *punsignedp = DECL_UNSIGNED (field);
    }
  else if (TREE_CODE (exp) == BIT_FIELD_REF)
    {
      size_tree = TREE_OPERAND (exp, 1);
      *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
		     || TYPE_UNSIGNED (TREE_TYPE (exp)));

      /* For vector types, with the correct size of access, use the mode of
	 inner type.  */
      if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
	  && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
	  && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
        mode = TYPE_MODE (TREE_TYPE (exp));
    }
  else
    {
      mode = TYPE_MODE (TREE_TYPE (exp));
      *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));

      if (mode == BLKmode)
	size_tree = TYPE_SIZE (TREE_TYPE (exp));
      else
	*pbitsize = GET_MODE_BITSIZE (mode);
    }

  if (size_tree != 0)
    {
      if (! tree_fits_uhwi_p (size_tree))
	mode = BLKmode, *pbitsize = -1;
      else
	*pbitsize = tree_to_uhwi (size_tree);
    }

  *preversep = reverse_storage_order_for_component_p (exp);

  /* Compute cumulative bit-offset for nested component-refs and array-refs,
     and find the ultimate containing object.  */
  while (1)
    {
      switch (TREE_CODE (exp))
	{
	case BIT_FIELD_REF:
	  bit_offset += wi::to_offset (TREE_OPERAND (exp, 2));
	  break;

	case COMPONENT_REF:
	  {
	    tree field = TREE_OPERAND (exp, 1);
	    tree this_offset = component_ref_field_offset (exp);

	    /* If this field hasn't been filled in yet, don't go past it.
	       This should only happen when folding expressions made during
	       type construction.  */
	    if (this_offset == 0)
	      break;

	    offset = size_binop (PLUS_EXPR, offset, this_offset);
	    bit_offset += wi::to_offset (DECL_FIELD_BIT_OFFSET (field));

	    /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN.  */
	  }
	  break;

	case ARRAY_REF:
	case ARRAY_RANGE_REF:
	  {
	    tree index = TREE_OPERAND (exp, 1);
	    tree low_bound = array_ref_low_bound (exp);
	    tree unit_size = array_ref_element_size (exp);

	    /* We assume all arrays have sizes that are a multiple of a byte.
	       First subtract the lower bound, if any, in the type of the
	       index, then convert to sizetype and multiply by the size of
	       the array element.  */
	    if (! integer_zerop (low_bound))
	      index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
				   index, low_bound);

	    offset = size_binop (PLUS_EXPR, offset,
			         size_binop (MULT_EXPR,
					     fold_convert (sizetype, index),
					     unit_size));
	  }
	  break;

	case REALPART_EXPR:
	  break;

	case IMAGPART_EXPR:
	  bit_offset += *pbitsize;
	  break;

	case VIEW_CONVERT_EXPR:
	  break;

	case MEM_REF:
	  /* Hand back the decl for MEM[&decl, off].  */
	  if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
	    {
	      tree off = TREE_OPERAND (exp, 1);
	      if (!integer_zerop (off))
		{
		  offset_int boff, coff = mem_ref_offset (exp);
		  boff = coff << LOG2_BITS_PER_UNIT;
		  bit_offset += boff;
		}
	      exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
	    }
	  goto done;

	default:
	  goto done;
	}

      /* If any reference in the chain is volatile, the effect is volatile.  */
      if (TREE_THIS_VOLATILE (exp))
	*pvolatilep = 1;

      exp = TREE_OPERAND (exp, 0);
    }
 done:

  /* If OFFSET is constant, see if we can return the whole thing as a
     constant bit position.  Make sure to handle overflow during
     this conversion.  */
  if (TREE_CODE (offset) == INTEGER_CST)
    {
      offset_int tem = wi::sext (wi::to_offset (offset),
				 TYPE_PRECISION (sizetype));
      tem <<= LOG2_BITS_PER_UNIT;
      tem += bit_offset;
      if (wi::fits_shwi_p (tem))
	{
	  *pbitpos = tem.to_shwi ();
	  *poffset = offset = NULL_TREE;
	}
    }

  /* Otherwise, split it up.  */
  if (offset)
    {
      /* Avoid returning a negative bitpos as this may wreak havoc later.  */
      if (wi::neg_p (bit_offset) || !wi::fits_shwi_p (bit_offset))
        {
	  offset_int mask = wi::mask <offset_int> (LOG2_BITS_PER_UNIT, false);
	  offset_int tem = bit_offset.and_not (mask);
	  /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
	     Subtract it to BIT_OFFSET and add it (scaled) to OFFSET.  */
	  bit_offset -= tem;
	  tem >>= LOG2_BITS_PER_UNIT;
	  offset = size_binop (PLUS_EXPR, offset,
			       wide_int_to_tree (sizetype, tem));
	}

      *pbitpos = bit_offset.to_shwi ();
      *poffset = offset;
    }

  /* We can use BLKmode for a byte-aligned BLKmode bitfield.  */
  if (mode == VOIDmode
      && blkmode_bitfield
      && (*pbitpos % BITS_PER_UNIT) == 0
      && (*pbitsize % BITS_PER_UNIT) == 0)
    *pmode = BLKmode;
  else
    *pmode = mode;

  return exp;
}

/* Alignment in bits the TARGET of an assignment may be assumed to have.  */

static unsigned HOST_WIDE_INT
target_align (const_tree target)
{
  /* We might have a chain of nested references with intermediate misaligning
     bitfields components, so need to recurse to find out.  */

  unsigned HOST_WIDE_INT this_align, outer_align;

  switch (TREE_CODE (target))
    {
    case BIT_FIELD_REF:
      return 1;

    case COMPONENT_REF:
      this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
      outer_align = target_align (TREE_OPERAND (target, 0));
      return MIN (this_align, outer_align);

    case ARRAY_REF:
    case ARRAY_RANGE_REF:
      this_align = TYPE_ALIGN (TREE_TYPE (target));
      outer_align = target_align (TREE_OPERAND (target, 0));
      return MIN (this_align, outer_align);

    CASE_CONVERT:
    case NON_LVALUE_EXPR:
    case VIEW_CONVERT_EXPR:
      this_align = TYPE_ALIGN (TREE_TYPE (target));
      outer_align = target_align (TREE_OPERAND (target, 0));
      return MAX (this_align, outer_align);

    default:
      return TYPE_ALIGN (TREE_TYPE (target));
    }
}


/* Given an rtx VALUE that may contain additions and multiplications, return
   an equivalent value that just refers to a register, memory, or constant.
   This is done by generating instructions to perform the arithmetic and
   returning a pseudo-register containing the value.

   The returned value may be a REG, SUBREG, MEM or constant.  */

rtx
force_operand (rtx value, rtx target)
{
  rtx op1, op2;
  /* Use subtarget as the target for operand 0 of a binary operation.  */
  rtx subtarget = get_subtarget (target);
  enum rtx_code code = GET_CODE (value);

  /* Check for subreg applied to an expression produced by loop optimizer.  */
  if (code == SUBREG
      && !REG_P (SUBREG_REG (value))
      && !MEM_P (SUBREG_REG (value)))
    {
      value
	= simplify_gen_subreg (GET_MODE (value),
			       force_reg (GET_MODE (SUBREG_REG (value)),
					  force_operand (SUBREG_REG (value),
							 NULL_RTX)),
			       GET_MODE (SUBREG_REG (value)),
			       SUBREG_BYTE (value));
      code = GET_CODE (value);
    }

  /* Check for a PIC address load.  */
  if ((code == PLUS || code == MINUS)
      && XEXP (value, 0) == pic_offset_table_rtx
      && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
	  || GET_CODE (XEXP (value, 1)) == LABEL_REF
	  || GET_CODE (XEXP (value, 1)) == CONST))
    {
      if (!subtarget)
	subtarget = gen_reg_rtx (GET_MODE (value));
      emit_move_insn (subtarget, value);
      return subtarget;
    }

  if (ARITHMETIC_P (value))
    {
      op2 = XEXP (value, 1);
      if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
	subtarget = 0;
      if (code == MINUS && CONST_INT_P (op2))
	{
	  code = PLUS;
	  op2 = negate_rtx (GET_MODE (value), op2);
	}

      /* Check for an addition with OP2 a constant integer and our first
         operand a PLUS of a virtual register and something else.  In that
         case, we want to emit the sum of the virtual register and the
         constant first and then add the other value.  This allows virtual
         register instantiation to simply modify the constant rather than
         creating another one around this addition.  */
      if (code == PLUS && CONST_INT_P (op2)
	  && GET_CODE (XEXP (value, 0)) == PLUS
	  && REG_P (XEXP (XEXP (value, 0), 0))
	  && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
	  && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
	{
	  rtx temp = expand_simple_binop (GET_MODE (value), code,
					  XEXP (XEXP (value, 0), 0), op2,
					  subtarget, 0, OPTAB_LIB_WIDEN);
	  return expand_simple_binop (GET_MODE (value), code, temp,
				      force_operand (XEXP (XEXP (value,
								 0), 1), 0),
				      target, 0, OPTAB_LIB_WIDEN);
	}

      op1 = force_operand (XEXP (value, 0), subtarget);
      op2 = force_operand (op2, NULL_RTX);
      switch (code)
	{
	case MULT:
	  return expand_mult (GET_MODE (value), op1, op2, target, 1);
	case DIV:
	  if (!INTEGRAL_MODE_P (GET_MODE (value)))
	    return expand_simple_binop (GET_MODE (value), code, op1, op2,
					target, 1, OPTAB_LIB_WIDEN);
	  else
	    return expand_divmod (0,
				  FLOAT_MODE_P (GET_MODE (value))
				  ? RDIV_EXPR : TRUNC_DIV_EXPR,
				  GET_MODE (value), op1, op2, target, 0);
	case MOD:
	  return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
				target, 0);
	case UDIV:
	  return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
				target, 1);
	case UMOD:
	  return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
				target, 1);
	case ASHIFTRT:
	  return expand_simple_binop (GET_MODE (value), code, op1, op2,
				      target, 0, OPTAB_LIB_WIDEN);
	default:
	  return expand_simple_binop (GET_MODE (value), code, op1, op2,
				      target, 1, OPTAB_LIB_WIDEN);
	}
    }
  if (UNARY_P (value))
    {
      if (!target)
	target = gen_reg_rtx (GET_MODE (value));
      op1 = force_operand (XEXP (value, 0), NULL_RTX);
      switch (code)
	{
	case ZERO_EXTEND:
	case SIGN_EXTEND:
	case TRUNCATE:
	case FLOAT_EXTEND:
	case FLOAT_TRUNCATE:
	  convert_move (target, op1, code == ZERO_EXTEND);
	  return target;

	case FIX:
	case UNSIGNED_FIX:
	  expand_fix (target, op1, code == UNSIGNED_FIX);
	  return target;

	case FLOAT:
	case UNSIGNED_FLOAT:
	  expand_float (target, op1, code == UNSIGNED_FLOAT);
	  return target;

	default:
	  return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
	}
    }

#ifdef INSN_SCHEDULING
  /* On machines that have insn scheduling, we want all memory reference to be
     explicit, so we need to deal with such paradoxical SUBREGs.  */
  if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
    value
      = simplify_gen_subreg (GET_MODE (value),
			     force_reg (GET_MODE (SUBREG_REG (value)),
					force_operand (SUBREG_REG (value),
						       NULL_RTX)),
			     GET_MODE (SUBREG_REG (value)),
			     SUBREG_BYTE (value));
#endif

  return value;
}

/* Subroutine of expand_expr: return nonzero iff there is no way that
   EXP can reference X, which is being modified.  TOP_P is nonzero if this
   call is going to be used to determine whether we need a temporary
   for EXP, as opposed to a recursive call to this function.

   It is always safe for this routine to return zero since it merely
   searches for optimization opportunities.  */

int
safe_from_p (const_rtx x, tree exp, int top_p)
{
  rtx exp_rtl = 0;
  int i, nops;

  if (x == 0
      /* If EXP has varying size, we MUST use a target since we currently
	 have no way of allocating temporaries of variable size
	 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
	 So we assume here that something at a higher level has prevented a
	 clash.  This is somewhat bogus, but the best we can do.  Only
	 do this when X is BLKmode and when we are at the top level.  */
      || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
	  && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
	  && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
	      || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
	      || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
	      != INTEGER_CST)
	  && GET_MODE (x) == BLKmode)
      /* If X is in the outgoing argument area, it is always safe.  */
      || (MEM_P (x)
	  && (XEXP (x, 0) == virtual_outgoing_args_rtx
	      || (GET_CODE (XEXP (x, 0)) == PLUS
		  && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
    return 1;

  /* If this is a subreg of a hard register, declare it unsafe, otherwise,
     find the underlying pseudo.  */
  if (GET_CODE (x) == SUBREG)
    {
      x = SUBREG_REG (x);
      if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
	return 0;
    }

  /* Now look at our tree code and possibly recurse.  */
  switch (TREE_CODE_CLASS (TREE_CODE (exp)))
    {
    case tcc_declaration:
      exp_rtl = DECL_RTL_IF_SET (exp);
      break;

    case tcc_constant:
      return 1;

    case tcc_exceptional:
      if (TREE_CODE (exp) == TREE_LIST)
	{
	  while (1)
	    {
	      if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
		return 0;
	      exp = TREE_CHAIN (exp);
	      if (!exp)
		return 1;
	      if (TREE_CODE (exp) != TREE_LIST)
		return safe_from_p (x, exp, 0);
	    }
	}
      else if (TREE_CODE (exp) == CONSTRUCTOR)
	{
	  constructor_elt *ce;
	  unsigned HOST_WIDE_INT idx;

	  FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
	    if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
		|| !safe_from_p (x, ce->value, 0))
	      return 0;
	  return 1;
	}
      else if (TREE_CODE (exp) == ERROR_MARK)
	return 1;	/* An already-visited SAVE_EXPR? */
      else
	return 0;

    case tcc_statement:
      /* The only case we look at here is the DECL_INITIAL inside a
	 DECL_EXPR.  */
      return (TREE_CODE (exp) != DECL_EXPR
	      || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
	      || !DECL_INITIAL (DECL_EXPR_DECL (exp))
	      || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));

    case tcc_binary:
    case tcc_comparison:
      if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
	return 0;
      /* Fall through.  */

    case tcc_unary:
      return safe_from_p (x, TREE_OPERAND (exp, 0), 0);

    case tcc_expression:
    case tcc_reference:
    case tcc_vl_exp:
      /* Now do code-specific tests.  EXP_RTL is set to any rtx we find in
	 the expression.  If it is set, we conflict iff we are that rtx or
	 both are in memory.  Otherwise, we check all operands of the
	 expression recursively.  */

      switch (TREE_CODE (exp))
	{
	case ADDR_EXPR:
	  /* If the operand is static or we are static, we can't conflict.
	     Likewise if we don't conflict with the operand at all.  */
	  if (staticp (TREE_OPERAND (exp, 0))
	      || TREE_STATIC (exp)
	      || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
	    return 1;

	  /* Otherwise, the only way this can conflict is if we are taking
	     the address of a DECL a that address if part of X, which is
	     very rare.  */
	  exp = TREE_OPERAND (exp, 0);
	  if (DECL_P (exp))
	    {
	      if (!DECL_RTL_SET_P (exp)
		  || !MEM_P (DECL_RTL (exp)))
		return 0;
	      else
		exp_rtl = XEXP (DECL_RTL (exp), 0);
	    }
	  break;

	case MEM_REF:
	  if (MEM_P (x)
	      && alias_sets_conflict_p (MEM_ALIAS_SET (x),
					get_alias_set (exp)))
	    return 0;
	  break;

	case CALL_EXPR:
	  /* Assume that the call will clobber all hard registers and
	     all of memory.  */
	  if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
	      || MEM_P (x))
	    return 0;
	  break;

	case WITH_CLEANUP_EXPR:
	case CLEANUP_POINT_EXPR:
	  /* Lowered by gimplify.c.  */
	  gcc_unreachable ();

	case SAVE_EXPR:
	  return safe_from_p (x, TREE_OPERAND (exp, 0), 0);

	default:
	  break;
	}

      /* If we have an rtx, we do not need to scan our operands.  */
      if (exp_rtl)
	break;

      nops = TREE_OPERAND_LENGTH (exp);
      for (i = 0; i < nops; i++)
	if (TREE_OPERAND (exp, i) != 0
	    && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
	  return 0;

      break;

    case tcc_type:
      /* Should never get a type here.  */
      gcc_unreachable ();
    }

  /* If we have an rtl, find any enclosed object.  Then see if we conflict
     with it.  */
  if (exp_rtl)
    {
      if (GET_CODE (exp_rtl) == SUBREG)
	{
	  exp_rtl = SUBREG_REG (exp_rtl);
	  if (REG_P (exp_rtl)
	      && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
	    return 0;
	}

      /* If the rtl is X, then it is not safe.  Otherwise, it is unless both
	 are memory and they conflict.  */
      return ! (rtx_equal_p (x, exp_rtl)
		|| (MEM_P (x) && MEM_P (exp_rtl)
		    && true_dependence (exp_rtl, VOIDmode, x)));
    }

  /* If we reach here, it is safe.  */
  return 1;
}


/* Return the highest power of two that EXP is known to be a multiple of.
   This is used in updating alignment of MEMs in array references.  */

unsigned HOST_WIDE_INT
highest_pow2_factor (const_tree exp)
{
  unsigned HOST_WIDE_INT ret;
  int trailing_zeros = tree_ctz (exp);
  if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
    return BIGGEST_ALIGNMENT;
  ret = HOST_WIDE_INT_1U << trailing_zeros;
  if (ret > BIGGEST_ALIGNMENT)
    return BIGGEST_ALIGNMENT;
  return ret;
}

/* Similar, except that the alignment requirements of TARGET are
   taken into account.  Assume it is at least as aligned as its
   type, unless it is a COMPONENT_REF in which case the layout of
   the structure gives the alignment.  */

static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (const_tree target, const_tree exp)
{
  unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
  unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);

  return MAX (factor, talign);
}

/* Convert the tree comparison code TCODE to the rtl one where the
   signedness is UNSIGNEDP.  */

static enum rtx_code
convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
{
  enum rtx_code code;
  switch (tcode)
    {
    case EQ_EXPR:
      code = EQ;
      break;
    case NE_EXPR:
      code = NE;
      break;
    case LT_EXPR:
      code = unsignedp ? LTU : LT;
      break;
    case LE_EXPR:
      code = unsignedp ? LEU : LE;
      break;
    case GT_EXPR:
      code = unsignedp ? GTU : GT;
      break;
    case GE_EXPR:
      code = unsignedp ? GEU : GE;
      break;
    case UNORDERED_EXPR:
      code = UNORDERED;
      break;
    case ORDERED_EXPR:
      code = ORDERED;
      break;
    case UNLT_EXPR:
      code = UNLT;
      break;
    case UNLE_EXPR:
      code = UNLE;
      break;
    case UNGT_EXPR:
      code = UNGT;
      break;
    case UNGE_EXPR:
      code = UNGE;
      break;
    case UNEQ_EXPR:
      code = UNEQ;
      break;
    case LTGT_EXPR:
      code = LTGT;
      break;

    default:
      gcc_unreachable ();
    }
  return code;
}

/* Subroutine of expand_expr.  Expand the two operands of a binary
   expression EXP0 and EXP1 placing the results in OP0 and OP1.
   The value may be stored in TARGET if TARGET is nonzero.  The
   MODIFIER argument is as documented by expand_expr.  */

void
expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
		 enum expand_modifier modifier)
{
  if (! safe_from_p (target, exp1, 1))
    target = 0;
  if (operand_equal_p (exp0, exp1, 0))
    {
      *op0 = expand_expr (exp0, target, VOIDmode, modifier);
      *op1 = copy_rtx (*op0);
    }
  else
    {
      *op0 = expand_expr (exp0, target, VOIDmode, modifier);
      *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
    }
}


/* Return a MEM that contains constant EXP.  DEFER is as for
   output_constant_def and MODIFIER is as for expand_expr.  */

static rtx
expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
{
  rtx mem;

  mem = output_constant_def (exp, defer);
  if (modifier != EXPAND_INITIALIZER)
    mem = use_anchored_address (mem);
  return mem;
}

/* A subroutine of expand_expr_addr_expr.  Evaluate the address of EXP.
   The TARGET, TMODE and MODIFIER arguments are as for expand_expr.  */

static rtx
expand_expr_addr_expr_1 (tree exp, rtx target, machine_mode tmode,
		         enum expand_modifier modifier, addr_space_t as)
{
  rtx result, subtarget;
  tree inner, offset;
  HOST_WIDE_INT bitsize, bitpos;
  int unsignedp, reversep, volatilep = 0;
  machine_mode mode1;

  /* If we are taking the address of a constant and are at the top level,
     we have to use output_constant_def since we can't call force_const_mem
     at top level.  */
  /* ??? This should be considered a front-end bug.  We should not be
     generating ADDR_EXPR of something that isn't an LVALUE.  The only
     exception here is STRING_CST.  */
  if (CONSTANT_CLASS_P (exp))
    {
      result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
      if (modifier < EXPAND_SUM)
	result = force_operand (result, target);
      return result;
    }

  /* Everything must be something allowed by is_gimple_addressable.  */
  switch (TREE_CODE (exp))
    {
    case INDIRECT_REF:
      /* This case will happen via recursion for &a->b.  */
      return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);

    case MEM_REF:
      {
	tree tem = TREE_OPERAND (exp, 0);
	if (!integer_zerop (TREE_OPERAND (exp, 1)))
	  tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
	return expand_expr (tem, target, tmode, modifier);
      }

    case CONST_DECL:
      /* Expand the initializer like constants above.  */
      result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
					   0, modifier), 0);
      if (modifier < EXPAND_SUM)
	result = force_operand (result, target);
      return result;

    case REALPART_EXPR:
      /* The real part of the complex number is always first, therefore
	 the address is the same as the address of the parent object.  */
      offset = 0;
      bitpos = 0;
      inner = TREE_OPERAND (exp, 0);
      break;

    case IMAGPART_EXPR:
      /* The imaginary part of the complex number is always second.
	 The expression is therefore always offset by the size of the
	 scalar type.  */
      offset = 0;
      bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
      inner = TREE_OPERAND (exp, 0);
      break;

    case COMPOUND_LITERAL_EXPR:
      /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
	 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
	 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
	 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
	 the initializers aren't gimplified.  */
      if (COMPOUND_LITERAL_EXPR_DECL (exp)
	  && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp)))
	return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
					target, tmode, modifier, as);
      /* FALLTHRU */
    default:
      /* If the object is a DECL, then expand it for its rtl.  Don't bypass
	 expand_expr, as that can have various side effects; LABEL_DECLs for
	 example, may not have their DECL_RTL set yet.  Expand the rtl of
	 CONSTRUCTORs too, which should yield a memory reference for the
	 constructor's contents.  Assume language specific tree nodes can
	 be expanded in some interesting way.  */
      gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
      if (DECL_P (exp)
	  || TREE_CODE (exp) == CONSTRUCTOR
	  || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
	{
	  result = expand_expr (exp, target, tmode,
				modifier == EXPAND_INITIALIZER
				? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);

	  /* If the DECL isn't in memory, then the DECL wasn't properly
	     marked TREE_ADDRESSABLE, which will be either a front-end
	     or a tree optimizer bug.  */

	  gcc_assert (MEM_P (result));
	  result = XEXP (result, 0);

	  /* ??? Is this needed anymore?  */
	  if (DECL_P (exp))
	    TREE_USED (exp) = 1;

	  if (modifier != EXPAND_INITIALIZER
	      && modifier != EXPAND_CONST_ADDRESS
	      && modifier != EXPAND_SUM)
	    result = force_operand (result, target);
	  return result;
	}

      /* Pass FALSE as the last argument to get_inner_reference although
	 we are expanding to RTL.  The rationale is that we know how to
	 handle "aligning nodes" here: we can just bypass them because
	 they won't change the final object whose address will be returned
	 (they actually exist only for that purpose).  */
      inner = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
				   &unsignedp, &reversep, &volatilep);
      break;
    }

  /* We must have made progress.  */
  gcc_assert (inner != exp);

  subtarget = offset || bitpos ? NULL_RTX : target;
  /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
     inner alignment, force the inner to be sufficiently aligned.  */
  if (CONSTANT_CLASS_P (inner)
      && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
    {
      inner = copy_node (inner);
      TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
      SET_TYPE_ALIGN (TREE_TYPE (inner), TYPE_ALIGN (TREE_TYPE (exp)));
      TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
    }
  result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);

  if (offset)
    {
      rtx tmp;

      if (modifier != EXPAND_NORMAL)
	result = force_operand (result, NULL);
      tmp = expand_expr (offset, NULL_RTX, tmode,
			 modifier == EXPAND_INITIALIZER
			  ? EXPAND_INITIALIZER : EXPAND_NORMAL);

      /* expand_expr is allowed to return an object in a mode other
	 than TMODE.  If it did, we need to convert.  */
      if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
	tmp = convert_modes (tmode, GET_MODE (tmp),
			     tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
      result = convert_memory_address_addr_space (tmode, result, as);
      tmp = convert_memory_address_addr_space (tmode, tmp, as);

      if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
	result = simplify_gen_binary (PLUS, tmode, result, tmp);
      else
	{
	  subtarget = bitpos ? NULL_RTX : target;
	  result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
					1, OPTAB_LIB_WIDEN);
	}
    }

  if (bitpos)
    {
      /* Someone beforehand should have rejected taking the address
	 of such an object.  */
      gcc_assert ((bitpos % BITS_PER_UNIT) == 0);

      result = convert_memory_address_addr_space (tmode, result, as);
      result = plus_constant (tmode, result, bitpos / BITS_PER_UNIT);
      if (modifier < EXPAND_SUM)
	result = force_operand (result, target);
    }

  return result;
}

/* A subroutine of expand_expr.  Evaluate EXP, which is an ADDR_EXPR.
   The TARGET, TMODE and MODIFIER arguments are as for expand_expr.  */

static rtx
expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
		       enum expand_modifier modifier)
{
  addr_space_t as = ADDR_SPACE_GENERIC;
  machine_mode address_mode = Pmode;
  machine_mode pointer_mode = ptr_mode;
  machine_mode rmode;
  rtx result;

  /* Target mode of VOIDmode says "whatever's natural".  */
  if (tmode == VOIDmode)
    tmode = TYPE_MODE (TREE_TYPE (exp));

  if (POINTER_TYPE_P (TREE_TYPE (exp)))
    {
      as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
      address_mode = targetm.addr_space.address_mode (as);
      pointer_mode = targetm.addr_space.pointer_mode (as);
    }

  /* We can get called with some Weird Things if the user does silliness
     like "(short) &a".  In that case, convert_memory_address won't do
     the right thing, so ignore the given target mode.  */
  if (tmode != address_mode && tmode != pointer_mode)
    tmode = address_mode;

  result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
				    tmode, modifier, as);

  /* Despite expand_expr claims concerning ignoring TMODE when not
     strictly convenient, stuff breaks if we don't honor it.  Note
     that combined with the above, we only do this for pointer modes.  */
  rmode = GET_MODE (result);
  if (rmode == VOIDmode)
    rmode = tmode;
  if (rmode != tmode)
    result = convert_memory_address_addr_space (tmode, result, as);

  return result;
}

/* Generate code for computing CONSTRUCTOR EXP.
   An rtx for the computed value is returned.  If AVOID_TEMP_MEM
   is TRUE, instead of creating a temporary variable in memory
   NULL is returned and the caller needs to handle it differently.  */

static rtx
expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
		    bool avoid_temp_mem)
{
  tree type = TREE_TYPE (exp);
  machine_mode mode = TYPE_MODE (type);

  /* Try to avoid creating a temporary at all.  This is possible
     if all of the initializer is zero.
     FIXME: try to handle all [0..255] initializers we can handle
     with memset.  */
  if (TREE_STATIC (exp)
      && !TREE_ADDRESSABLE (exp)
      && target != 0 && mode == BLKmode
      && all_zeros_p (exp))
    {
      clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
      return target;
    }

  /* All elts simple constants => refer to a constant in memory.  But
     if this is a non-BLKmode mode, let it store a field at a time
     since that should make a CONST_INT, CONST_WIDE_INT or
     CONST_DOUBLE when we fold.  Likewise, if we have a target we can
     use, it is best to store directly into the target unless the type
     is large enough that memcpy will be used.  If we are making an
     initializer and all operands are constant, put it in memory as
     well.

     FIXME: Avoid trying to fill vector constructors piece-meal.
     Output them with output_constant_def below unless we're sure
     they're zeros.  This should go away when vector initializers
     are treated like VECTOR_CST instead of arrays.  */
  if ((TREE_STATIC (exp)
       && ((mode == BLKmode
	    && ! (target != 0 && safe_from_p (target, exp, 1)))
		  || TREE_ADDRESSABLE (exp)
		  || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
		      && (! can_move_by_pieces
				     (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
				      TYPE_ALIGN (type)))
		      && ! mostly_zeros_p (exp))))
      || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
	  && TREE_CONSTANT (exp)))
    {
      rtx constructor;

      if (avoid_temp_mem)
	return NULL_RTX;

      constructor = expand_expr_constant (exp, 1, modifier);

      if (modifier != EXPAND_CONST_ADDRESS
	  && modifier != EXPAND_INITIALIZER
	  && modifier != EXPAND_SUM)
	constructor = validize_mem (constructor);

      return constructor;
    }

  /* Handle calls that pass values in multiple non-contiguous
     locations.  The Irix 6 ABI has examples of this.  */
  if (target == 0 || ! safe_from_p (target, exp, 1)
      || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
    {
      if (avoid_temp_mem)
	return NULL_RTX;

      target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
    }

  store_constructor (exp, target, 0, int_expr_size (exp), false);
  return target;
}


/* expand_expr: generate code for computing expression EXP.
   An rtx for the computed value is returned.  The value is never null.
   In the case of a void EXP, const0_rtx is returned.

   The value may be stored in TARGET if TARGET is nonzero.
   TARGET is just a suggestion; callers must assume that
   the rtx returned may not be the same as TARGET.

   If TARGET is CONST0_RTX, it means that the value will be ignored.

   If TMODE is not VOIDmode, it suggests generating the
   result in mode TMODE.  But this is done only when convenient.
   Otherwise, TMODE is ignored and the value generated in its natural mode.
   TMODE is just a suggestion; callers must assume that
   the rtx returned may not have mode TMODE.

   Note that TARGET may have neither TMODE nor MODE.  In that case, it
   probably will not be used.

   If MODIFIER is EXPAND_SUM then when EXP is an addition
   we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
   or a nest of (PLUS ...) and (MINUS ...) where the terms are
   products as above, or REG or MEM, or constant.
   Ordinarily in such cases we would output mul or add instructions
   and then return a pseudo reg containing the sum.

   EXPAND_INITIALIZER is much like EXPAND_SUM except that
   it also marks a label as absolutely required (it can't be dead).
   It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
   This is used for outputting expressions used in initializers.

   EXPAND_CONST_ADDRESS says that it is okay to return a MEM
   with a constant address even if that address is not normally legitimate.
   EXPAND_INITIALIZER and EXPAND_SUM also have this effect.

   EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
   a call parameter.  Such targets require special care as we haven't yet
   marked TARGET so that it's safe from being trashed by libcalls.  We
   don't want to use TARGET for anything but the final result;
   Intermediate values must go elsewhere.   Additionally, calls to
   emit_block_move will be flagged with BLOCK_OP_CALL_PARM.

   If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
   address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
   DECL_RTL of the VAR_DECL.  *ALT_RTL is also set if EXP is a
   COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
   recursively.

   If INNER_REFERENCE_P is true, we are expanding an inner reference.
   In this case, we don't adjust a returned MEM rtx that wouldn't be
   sufficiently aligned for its mode; instead, it's up to the caller
   to deal with it afterwards.  This is used to make sure that unaligned
   base objects for which out-of-bounds accesses are supported, for
   example record types with trailing arrays, aren't realigned behind
   the back of the caller.
   The normal operating mode is to pass FALSE for this parameter.  */

rtx
expand_expr_real (tree exp, rtx target, machine_mode tmode,
		  enum expand_modifier modifier, rtx *alt_rtl,
		  bool inner_reference_p)
{
  rtx ret;

  /* Handle ERROR_MARK before anybody tries to access its type.  */
  if (TREE_CODE (exp) == ERROR_MARK
      || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
    {
      ret = CONST0_RTX (tmode);
      return ret ? ret : const0_rtx;
    }

  ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
			    inner_reference_p);
  return ret;
}

/* Try to expand the conditional expression which is represented by
   TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves.  If it succeeds
   return the rtl reg which represents the result.  Otherwise return
   NULL_RTX.  */

static rtx
expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
			      tree treeop1 ATTRIBUTE_UNUSED,
			      tree treeop2 ATTRIBUTE_UNUSED)
{
  rtx insn;
  rtx op00, op01, op1, op2;
  enum rtx_code comparison_code;
  machine_mode comparison_mode;
  gimple *srcstmt;
  rtx temp;
  tree type = TREE_TYPE (treeop1);
  int unsignedp = TYPE_UNSIGNED (type);
  machine_mode mode = TYPE_MODE (type);
  machine_mode orig_mode = mode;
  static bool expanding_cond_expr_using_cmove = false;

  /* Conditional move expansion can end up TERing two operands which,
     when recursively hitting conditional expressions can result in
     exponential behavior if the cmove expansion ultimatively fails.
     It's hardly profitable to TER a cmove into a cmove so avoid doing
     that by failing early if we end up recursing.  */
  if (expanding_cond_expr_using_cmove)
    return NULL_RTX;

  /* If we cannot do a conditional move on the mode, try doing it
     with the promoted mode. */
  if (!can_conditionally_move_p (mode))
    {
      mode = promote_mode (type, mode, &unsignedp);
      if (!can_conditionally_move_p (mode))
	return NULL_RTX;
      temp = assign_temp (type, 0, 0); /* Use promoted mode for temp.  */
    }
  else
    temp = assign_temp (type, 0, 1);

  expanding_cond_expr_using_cmove = true;
  start_sequence ();
  expand_operands (treeop1, treeop2,
		   temp, &op1, &op2, EXPAND_NORMAL);

  if (TREE_CODE (treeop0) == SSA_NAME
      && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
    {
      tree type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
      enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
      op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
      op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
      comparison_mode = TYPE_MODE (type);
      unsignedp = TYPE_UNSIGNED (type);
      comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
    }
  else if (COMPARISON_CLASS_P (treeop0))
    {
      tree type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
      enum tree_code cmpcode = TREE_CODE (treeop0);
      op00 = expand_normal (TREE_OPERAND (treeop0, 0));
      op01 = expand_normal (TREE_OPERAND (treeop0, 1));
      unsignedp = TYPE_UNSIGNED (type);
      comparison_mode = TYPE_MODE (type);
      comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
    }
  else
    {
      op00 = expand_normal (treeop0);
      op01 = const0_rtx;
      comparison_code = NE;
      comparison_mode = GET_MODE (op00);
      if (comparison_mode == VOIDmode)
	comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
    }
  expanding_cond_expr_using_cmove = false;

  if (GET_MODE (op1) != mode)
    op1 = gen_lowpart (mode, op1);

  if (GET_MODE (op2) != mode)
    op2 = gen_lowpart (mode, op2);

  /* Try to emit the conditional move.  */
  insn = emit_conditional_move (temp, comparison_code,
				op00, op01, comparison_mode,
				op1, op2, mode,
				unsignedp);

  /* If we could do the conditional move, emit the sequence,
     and return.  */
  if (insn)
    {
      rtx_insn *seq = get_insns ();
      end_sequence ();
      emit_insn (seq);
      return convert_modes (orig_mode, mode, temp, 0);
    }

  /* Otherwise discard the sequence and fall back to code with
     branches.  */
  end_sequence ();
  return NULL_RTX;
}

rtx
expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
		    enum expand_modifier modifier)
{
  rtx op0, op1, op2, temp;
  rtx_code_label *lab;
  tree type;
  int unsignedp;
  machine_mode mode;
  enum tree_code code = ops->code;
  optab this_optab;
  rtx subtarget, original_target;
  int ignore;
  bool reduce_bit_field;
  location_t loc = ops->location;
  tree treeop0, treeop1, treeop2;
#define REDUCE_BIT_FIELD(expr)	(reduce_bit_field			  \
				 ? reduce_to_bit_field_precision ((expr), \
								  target, \
								  type)	  \
				 : (expr))

  type = ops->type;
  mode = TYPE_MODE (type);
  unsignedp = TYPE_UNSIGNED (type);

  treeop0 = ops->op0;
  treeop1 = ops->op1;
  treeop2 = ops->op2;

  /* We should be called only on simple (binary or unary) expressions,
     exactly those that are valid in gimple expressions that aren't
     GIMPLE_SINGLE_RHS (or invalid).  */
  gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
	      || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
	      || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);

  ignore = (target == const0_rtx
	    || ((CONVERT_EXPR_CODE_P (code)
		 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
		&& TREE_CODE (type) == VOID_TYPE));

  /* We should be called only if we need the result.  */
  gcc_assert (!ignore);

  /* An operation in what may be a bit-field type needs the
     result to be reduced to the precision of the bit-field type,
     which is narrower than that of the type's mode.  */
  reduce_bit_field = (INTEGRAL_TYPE_P (type)
		      && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));

  if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
    target = 0;

  /* Use subtarget as the target for operand 0 of a binary operation.  */
  subtarget = get_subtarget (target);
  original_target = target;

  switch (code)
    {
    case NON_LVALUE_EXPR:
    case PAREN_EXPR:
    CASE_CONVERT:
      if (treeop0 == error_mark_node)
	return const0_rtx;

      if (TREE_CODE (type) == UNION_TYPE)
	{
	  tree valtype = TREE_TYPE (treeop0);

	  /* If both input and output are BLKmode, this conversion isn't doing
	     anything except possibly changing memory attribute.  */
	  if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
	    {
	      rtx result = expand_expr (treeop0, target, tmode,
					modifier);

	      result = copy_rtx (result);
	      set_mem_attributes (result, type, 0);
	      return result;
	    }

	  if (target == 0)
	    {
	      if (TYPE_MODE (type) != BLKmode)
		target = gen_reg_rtx (TYPE_MODE (type));
	      else
		target = assign_temp (type, 1, 1);
	    }

	  if (MEM_P (target))
	    /* Store data into beginning of memory target.  */
	    store_expr (treeop0,
			adjust_address (target, TYPE_MODE (valtype), 0),
			modifier == EXPAND_STACK_PARM,
			false, TYPE_REVERSE_STORAGE_ORDER (type));

	  else
	    {
	      gcc_assert (REG_P (target)
			  && !TYPE_REVERSE_STORAGE_ORDER (type));

	      /* Store this field into a union of the proper type.  */
	      store_field (target,
			   MIN ((int_size_in_bytes (TREE_TYPE
						    (treeop0))
				 * BITS_PER_UNIT),
				(HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
			   0, 0, 0, TYPE_MODE (valtype), treeop0, 0,
			   false, false);
	    }

	  /* Return the entire union.  */
	  return target;
	}

      if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
	{
	  op0 = expand_expr (treeop0, target, VOIDmode,
			     modifier);

	  /* If the signedness of the conversion differs and OP0 is
	     a promoted SUBREG, clear that indication since we now
	     have to do the proper extension.  */
	  if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
	      && GET_CODE (op0) == SUBREG)
	    SUBREG_PROMOTED_VAR_P (op0) = 0;

	  return REDUCE_BIT_FIELD (op0);
	}

      op0 = expand_expr (treeop0, NULL_RTX, mode,
			 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
      if (GET_MODE (op0) == mode)
	;

      /* If OP0 is a constant, just convert it into the proper mode.  */
      else if (CONSTANT_P (op0))
	{
	  tree inner_type = TREE_TYPE (treeop0);
	  machine_mode inner_mode = GET_MODE (op0);

	  if (inner_mode == VOIDmode)
	    inner_mode = TYPE_MODE (inner_type);

	  if (modifier == EXPAND_INITIALIZER)
	    op0 = lowpart_subreg (mode, op0, inner_mode);
	  else
	    op0=  convert_modes (mode, inner_mode, op0,
				 TYPE_UNSIGNED (inner_type));
	}

      else if (modifier == EXPAND_INITIALIZER)
	op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);

      else if (target == 0)
	op0 = convert_to_mode (mode, op0,
			       TYPE_UNSIGNED (TREE_TYPE
					      (treeop0)));
      else
	{
	  convert_move (target, op0,
			TYPE_UNSIGNED (TREE_TYPE (treeop0)));
	  op0 = target;
	}

      return REDUCE_BIT_FIELD (op0);

    case ADDR_SPACE_CONVERT_EXPR:
      {
	tree treeop0_type = TREE_TYPE (treeop0);

	gcc_assert (POINTER_TYPE_P (type));
	gcc_assert (POINTER_TYPE_P (treeop0_type));

	addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
	addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));

        /* Conversions between pointers to the same address space should
	   have been implemented via CONVERT_EXPR / NOP_EXPR.  */
	gcc_assert (as_to != as_from);

	op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);

        /* Ask target code to handle conversion between pointers
	   to overlapping address spaces.  */
	if (targetm.addr_space.subset_p (as_to, as_from)
	    || targetm.addr_space.subset_p (as_from, as_to))
	  {
	    op0 = targetm.addr_space.convert (op0, treeop0_type, type);
	  }
        else
          {
	    /* For disjoint address spaces, converting anything but a null
	       pointer invokes undefined behavior.  We truncate or extend the
	       value as if we'd converted via integers, which handles 0 as
	       required, and all others as the programmer likely expects.  */
#ifndef POINTERS_EXTEND_UNSIGNED
	    const int POINTERS_EXTEND_UNSIGNED = 1;
#endif
	    op0 = convert_modes (mode, TYPE_MODE (treeop0_type),
				 op0, POINTERS_EXTEND_UNSIGNED);
	  }
	gcc_assert (op0);
	return op0;
      }

    case POINTER_PLUS_EXPR:
      /* Even though the sizetype mode and the pointer's mode can be different
         expand is able to handle this correctly and get the correct result out
         of the PLUS_EXPR code.  */
      /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
         if sizetype precision is smaller than pointer precision.  */
      if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
	treeop1 = fold_convert_loc (loc, type,
				    fold_convert_loc (loc, ssizetype,
						      treeop1));
      /* If sizetype precision is larger than pointer precision, truncate the
	 offset to have matching modes.  */
      else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
	treeop1 = fold_convert_loc (loc, type, treeop1);
      /* FALLTHRU */

    case PLUS_EXPR:
      /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
	 something else, make sure we add the register to the constant and
	 then to the other thing.  This case can occur during strength
	 reduction and doing it this way will produce better code if the
	 frame pointer or argument pointer is eliminated.

	 fold-const.c will ensure that the constant is always in the inner
	 PLUS_EXPR, so the only case we need to do anything about is if
	 sp, ap, or fp is our second argument, in which case we must swap
	 the innermost first argument and our second argument.  */

      if (TREE_CODE (treeop0) == PLUS_EXPR
	  && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
	  && VAR_P (treeop1)
	  && (DECL_RTL (treeop1) == frame_pointer_rtx
	      || DECL_RTL (treeop1) == stack_pointer_rtx
	      || DECL_RTL (treeop1) == arg_pointer_rtx))
	{
	  gcc_unreachable ();
	}

      /* If the result is to be ptr_mode and we are adding an integer to
	 something, we might be forming a constant.  So try to use
	 plus_constant.  If it produces a sum and we can't accept it,
	 use force_operand.  This allows P = &ARR[const] to generate
	 efficient code on machines where a SYMBOL_REF is not a valid
	 address.

	 If this is an EXPAND_SUM call, always return the sum.  */
      if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
	  || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
	{
	  if (modifier == EXPAND_STACK_PARM)
	    target = 0;
	  if (TREE_CODE (treeop0) == INTEGER_CST
	      && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
	      && TREE_CONSTANT (treeop1))
	    {
	      rtx constant_part;
	      HOST_WIDE_INT wc;
	      machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));

	      op1 = expand_expr (treeop1, subtarget, VOIDmode,
				 EXPAND_SUM);
	      /* Use wi::shwi to ensure that the constant is
		 truncated according to the mode of OP1, then sign extended
		 to a HOST_WIDE_INT.  Using the constant directly can result
		 in non-canonical RTL in a 64x32 cross compile.  */
	      wc = TREE_INT_CST_LOW (treeop0);
	      constant_part =
		immed_wide_int_const (wi::shwi (wc, wmode), wmode);
	      op1 = plus_constant (mode, op1, INTVAL (constant_part));
	      if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
		op1 = force_operand (op1, target);
	      return REDUCE_BIT_FIELD (op1);
	    }

	  else if (TREE_CODE (treeop1) == INTEGER_CST
		   && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
		   && TREE_CONSTANT (treeop0))
	    {
	      rtx constant_part;
	      HOST_WIDE_INT wc;
	      machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));

	      op0 = expand_expr (treeop0, subtarget, VOIDmode,
				 (modifier == EXPAND_INITIALIZER
				 ? EXPAND_INITIALIZER : EXPAND_SUM));
	      if (! CONSTANT_P (op0))
		{
		  op1 = expand_expr (treeop1, NULL_RTX,
				     VOIDmode, modifier);
		  /* Return a PLUS if modifier says it's OK.  */
		  if (modifier == EXPAND_SUM
		      || modifier == EXPAND_INITIALIZER)
		    return simplify_gen_binary (PLUS, mode, op0, op1);
		  goto binop2;
		}
	      /* Use wi::shwi to ensure that the constant is
		 truncated according to the mode of OP1, then sign extended
		 to a HOST_WIDE_INT.  Using the constant directly can result
		 in non-canonical RTL in a 64x32 cross compile.  */
	      wc = TREE_INT_CST_LOW (treeop1);
	      constant_part
		= immed_wide_int_const (wi::shwi (wc, wmode), wmode);
	      op0 = plus_constant (mode, op0, INTVAL (constant_part));
	      if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
		op0 = force_operand (op0, target);
	      return REDUCE_BIT_FIELD (op0);
	    }
	}

      /* Use TER to expand pointer addition of a negated value
	 as pointer subtraction.  */
      if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
	   || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
	       && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
	  && TREE_CODE (treeop1) == SSA_NAME
	  && TYPE_MODE (TREE_TYPE (treeop0))
	     == TYPE_MODE (TREE_TYPE (treeop1)))
	{
	  gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR);
	  if (def)
	    {
	      treeop1 = gimple_assign_rhs1 (def);
	      code = MINUS_EXPR;
	      goto do_minus;
	    }
	}

      /* No sense saving up arithmetic to be done
	 if it's all in the wrong mode to form part of an address.
	 And force_operand won't know whether to sign-extend or
	 zero-extend.  */
      if (modifier != EXPAND_INITIALIZER
	  && (modifier != EXPAND_SUM || mode != ptr_mode))
	{
	  expand_operands (treeop0, treeop1,
			   subtarget, &op0, &op1, modifier);
	  if (op0 == const0_rtx)
	    return op1;
	  if (op1 == const0_rtx)
	    return op0;
	  goto binop2;
	}

      expand_operands (treeop0, treeop1,
		       subtarget, &op0, &op1, modifier);
      return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));

    case MINUS_EXPR:
    do_minus:
      /* For initializers, we are allowed to return a MINUS of two
	 symbolic constants.  Here we handle all cases when both operands
	 are constant.  */
      /* Handle difference of two symbolic constants,
	 for the sake of an initializer.  */
      if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
	  && really_constant_p (treeop0)
	  && really_constant_p (treeop1))
	{
	  expand_operands (treeop0, treeop1,
			   NULL_RTX, &op0, &op1, modifier);

	  /* If the last operand is a CONST_INT, use plus_constant of
	     the negated constant.  Else make the MINUS.  */
	  if (CONST_INT_P (op1))
	    return REDUCE_BIT_FIELD (plus_constant (mode, op0,
						    -INTVAL (op1)));
	  else
	    return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
	}

      /* No sense saving up arithmetic to be done
	 if it's all in the wrong mode to form part of an address.
	 And force_operand won't know whether to sign-extend or
	 zero-extend.  */
      if (modifier != EXPAND_INITIALIZER
	  && (modifier != EXPAND_SUM || mode != ptr_mode))
	goto binop;

      expand_operands (treeop0, treeop1,
		       subtarget, &op0, &op1, modifier);

      /* Convert A - const to A + (-const).  */
      if (CONST_INT_P (op1))
	{
	  op1 = negate_rtx (mode, op1);
	  return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
	}

      goto binop2;

    case WIDEN_MULT_PLUS_EXPR:
    case WIDEN_MULT_MINUS_EXPR:
      expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
      op2 = expand_normal (treeop2);
      target = expand_widen_pattern_expr (ops, op0, op1, op2,
					  target, unsignedp);
      return target;

    case WIDEN_MULT_EXPR:
      /* If first operand is constant, swap them.
	 Thus the following special case checks need only
	 check the second operand.  */
      if (TREE_CODE (treeop0) == INTEGER_CST)
	std::swap (treeop0, treeop1);

      /* First, check if we have a multiplication of one signed and one
	 unsigned operand.  */
      if (TREE_CODE (treeop1) != INTEGER_CST
	  && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
	      != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
	{
	  machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
	  this_optab = usmul_widen_optab;
	  if (find_widening_optab_handler (this_optab, mode, innermode, 0)
		!= CODE_FOR_nothing)
	    {
	      if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
		expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
				 EXPAND_NORMAL);
	      else
		expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
				 EXPAND_NORMAL);
	      /* op0 and op1 might still be constant, despite the above
		 != INTEGER_CST check.  Handle it.  */
	      if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
		{
		  op0 = convert_modes (innermode, mode, op0, true);
		  op1 = convert_modes (innermode, mode, op1, false);
		  return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
							target, unsignedp));
		}
	      goto binop3;
	    }
	}
      /* Check for a multiplication with matching signedness.  */
      else if ((TREE_CODE (treeop1) == INTEGER_CST
		&& int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
	       || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
		   == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
	{
	  tree op0type = TREE_TYPE (treeop0);
	  machine_mode innermode = TYPE_MODE (op0type);
	  bool zextend_p = TYPE_UNSIGNED (op0type);
	  optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
	  this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;

	  if (TREE_CODE (treeop0) != INTEGER_CST)
	    {
	      if (find_widening_optab_handler (this_optab, mode, innermode, 0)
		    != CODE_FOR_nothing)
		{
		  expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
				   EXPAND_NORMAL);
		  /* op0 and op1 might still be constant, despite the above
		     != INTEGER_CST check.  Handle it.  */
		  if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
		    {
		     widen_mult_const:
		      op0 = convert_modes (innermode, mode, op0, zextend_p);
		      op1
			= convert_modes (innermode, mode, op1,
					 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
		      return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
							    target,
							    unsignedp));
		    }
		  temp = expand_widening_mult (mode, op0, op1, target,
					       unsignedp, this_optab);
		  return REDUCE_BIT_FIELD (temp);
		}
	      if (find_widening_optab_handler (other_optab, mode, innermode, 0)
		    != CODE_FOR_nothing
		  && innermode == word_mode)
		{
		  rtx htem, hipart;
		  op0 = expand_normal (treeop0);
		  if (TREE_CODE (treeop1) == INTEGER_CST)
		    op1 = convert_modes (innermode, mode,
					 expand_normal (treeop1),
					 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
		  else
		    op1 = expand_normal (treeop1);
		  /* op0 and op1 might still be constant, despite the above
		     != INTEGER_CST check.  Handle it.  */
		  if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
		    goto widen_mult_const;
		  temp = expand_binop (mode, other_optab, op0, op1, target,
				       unsignedp, OPTAB_LIB_WIDEN);
		  hipart = gen_highpart (innermode, temp);
		  htem = expand_mult_highpart_adjust (innermode, hipart,
						      op0, op1, hipart,
						      zextend_p);
		  if (htem != hipart)
		    emit_move_insn (hipart, htem);
		  return REDUCE_BIT_FIELD (temp);
		}
	    }
	}
      treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
      treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
      expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
      return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));

    case FMA_EXPR:
      {
	optab opt = fma_optab;
	gimple *def0, *def2;

	/* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
	   call.  */
	if (optab_handler (fma_optab, mode) == CODE_FOR_nothing)
	  {
	    tree fn = mathfn_built_in (TREE_TYPE (treeop0), BUILT_IN_FMA);
	    tree call_expr;

	    gcc_assert (fn != NULL_TREE);
	    call_expr = build_call_expr (fn, 3, treeop0, treeop1, treeop2);
	    return expand_builtin (call_expr, target, subtarget, mode, false);
	  }

	def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
	/* The multiplication is commutative - look at its 2nd operand
	   if the first isn't fed by a negate.  */
	if (!def0)
	  {
	    def0 = get_def_for_expr (treeop1, NEGATE_EXPR);
	    /* Swap operands if the 2nd operand is fed by a negate.  */
	    if (def0)
	      std::swap (treeop0, treeop1);
	  }
	def2 = get_def_for_expr (treeop2, NEGATE_EXPR);

	op0 = op2 = NULL;

	if (def0 && def2
	    && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
	  {
	    opt = fnms_optab;
	    op0 = expand_normal (gimple_assign_rhs1 (def0));
	    op2 = expand_normal (gimple_assign_rhs1 (def2));
	  }
	else if (def0
		 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
	  {
	    opt = fnma_optab;
	    op0 = expand_normal (gimple_assign_rhs1 (def0));
	  }
	else if (def2
		 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
	  {
	    opt = fms_optab;
	    op2 = expand_normal (gimple_assign_rhs1 (def2));
	  }

	if (op0 == NULL)
	  op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
	if (op2 == NULL)
	  op2 = expand_normal (treeop2);
	op1 = expand_normal (treeop1);

	return expand_ternary_op (TYPE_MODE (type), opt,
				  op0, op1, op2, target, 0);
      }

    case MULT_EXPR:
      /* If this is a fixed-point operation, then we cannot use the code
	 below because "expand_mult" doesn't support sat/no-sat fixed-point
         multiplications.   */
      if (ALL_FIXED_POINT_MODE_P (mode))
	goto binop;

      /* If first operand is constant, swap them.
	 Thus the following special case checks need only
	 check the second operand.  */
      if (TREE_CODE (treeop0) == INTEGER_CST)
	std::swap (treeop0, treeop1);

      /* Attempt to return something suitable for generating an
	 indexed address, for machines that support that.  */

      if (modifier == EXPAND_SUM && mode == ptr_mode
	  && tree_fits_shwi_p (treeop1))
	{
	  tree exp1 = treeop1;

	  op0 = expand_expr (treeop0, subtarget, VOIDmode,
			     EXPAND_SUM);

	  if (!REG_P (op0))
	    op0 = force_operand (op0, NULL_RTX);
	  if (!REG_P (op0))
	    op0 = copy_to_mode_reg (mode, op0);

	  return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
			       gen_int_mode (tree_to_shwi (exp1),
					     TYPE_MODE (TREE_TYPE (exp1)))));
	}

      if (modifier == EXPAND_STACK_PARM)
	target = 0;

      expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
      return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));

    case TRUNC_DIV_EXPR:
    case FLOOR_DIV_EXPR:
    case CEIL_DIV_EXPR:
    case ROUND_DIV_EXPR:
    case EXACT_DIV_EXPR:
      /* If this is a fixed-point operation, then we cannot use the code
	 below because "expand_divmod" doesn't support sat/no-sat fixed-point
         divisions.   */
      if (ALL_FIXED_POINT_MODE_P (mode))
	goto binop;

      if (modifier == EXPAND_STACK_PARM)
	target = 0;
      /* Possible optimization: compute the dividend with EXPAND_SUM
	 then if the divisor is constant can optimize the case
	 where some terms of the dividend have coeffs divisible by it.  */
      expand_operands (treeop0, treeop1,
		       subtarget, &op0, &op1, EXPAND_NORMAL);
      return expand_divmod (0, code, mode, op0, op1, target, unsignedp);

    case RDIV_EXPR:
      goto binop;

    case MULT_HIGHPART_EXPR:
      expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
      temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
      gcc_assert (temp);
      return temp;

    case TRUNC_MOD_EXPR:
    case FLOOR_MOD_EXPR:
    case CEIL_MOD_EXPR:
    case ROUND_MOD_EXPR:
      if (modifier == EXPAND_STACK_PARM)
	target = 0;
      expand_operands (treeop0, treeop1,
		       subtarget, &op0, &op1, EXPAND_NORMAL);
      return expand_divmod (1, code, mode, op0, op1, target, unsignedp);

    case FIXED_CONVERT_EXPR:
      op0 = expand_normal (treeop0);
      if (target == 0 || modifier == EXPAND_STACK_PARM)
	target = gen_reg_rtx (mode);

      if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
	   && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
          || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
	expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
      else
	expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
      return target;

    case FIX_TRUNC_EXPR:
      op0 = expand_normal (treeop0);
      if (target == 0 || modifier == EXPAND_STACK_PARM)
	target = gen_reg_rtx (mode);
      expand_fix (target, op0, unsignedp);
      return target;

    case FLOAT_EXPR:
      op0 = expand_normal (treeop0);
      if (target == 0 || modifier == EXPAND_STACK_PARM)
	target = gen_reg_rtx (mode);
      /* expand_float can't figure out what to do if FROM has VOIDmode.
	 So give it the correct mode.  With -O, cse will optimize this.  */
      if (GET_MODE (op0) == VOIDmode)
	op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
				op0);
      expand_float (target, op0,
		    TYPE_UNSIGNED (TREE_TYPE (treeop0)));
      return target;

    case NEGATE_EXPR:
      op0 = expand_expr (treeop0, subtarget,
			 VOIDmode, EXPAND_NORMAL);
      if (modifier == EXPAND_STACK_PARM)
	target = 0;
      temp = expand_unop (mode,
      			  optab_for_tree_code (NEGATE_EXPR, type,
					       optab_default),
			  op0, target, 0);
      gcc_assert (temp);
      return REDUCE_BIT_FIELD (temp);

    case ABS_EXPR:
      op0 = expand_expr (treeop0, subtarget,
			 VOIDmode, EXPAND_NORMAL);
      if (modifier == EXPAND_STACK_PARM)
	target = 0;

      /* ABS_EXPR is not valid for complex arguments.  */
      gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
		  && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);

      /* Unsigned abs is simply the operand.  Testing here means we don't
	 risk generating incorrect code below.  */
      if (TYPE_UNSIGNED (type))
	return op0;

      return expand_abs (mode, op0, target, unsignedp,
			 safe_from_p (target, treeop0, 1));

    case MAX_EXPR:
    case MIN_EXPR:
      target = original_target;
      if (target == 0
	  || modifier == EXPAND_STACK_PARM
	  || (MEM_P (target) && MEM_VOLATILE_P (target))
	  || GET_MODE (target) != mode
	  || (REG_P (target)
	      && REGNO (target) < FIRST_PSEUDO_REGISTER))
	target = gen_reg_rtx (mode);
      expand_operands (treeop0, treeop1,
		       target, &op0, &op1, EXPAND_NORMAL);

      /* First try to do it with a special MIN or MAX instruction.
	 If that does not win, use a conditional jump to select the proper
	 value.  */
      this_optab = optab_for_tree_code (code, type, optab_default);
      temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
			   OPTAB_WIDEN);
      if (temp != 0)
	return temp;

      /* At this point, a MEM target is no longer useful; we will get better
	 code without it.  */

      if (! REG_P (target))
	target = gen_reg_rtx (mode);

      /* If op1 was placed in target, swap op0 and op1.  */
      if (target != op0 && target == op1)
	std::swap (op0, op1);

      /* We generate better code and avoid problems with op1 mentioning
	 target by forcing op1 into a pseudo if it isn't a constant.  */
      if (! CONSTANT_P (op1))
	op1 = force_reg (mode, op1);

      {
	enum rtx_code comparison_code;
	rtx cmpop1 = op1;

	if (code == MAX_EXPR)
	  comparison_code = unsignedp ? GEU : GE;
	else
	  comparison_code = unsignedp ? LEU : LE;

	/* Canonicalize to comparisons against 0.  */
	if (op1 == const1_rtx)
	  {
	    /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
	       or (a != 0 ? a : 1) for unsigned.
	       For MIN we are safe converting (a <= 1 ? a : 1)
	       into (a <= 0 ? a : 1)  */
	    cmpop1 = const0_rtx;
	    if (code == MAX_EXPR)
	      comparison_code = unsignedp ? NE : GT;
	  }
	if (op1 == constm1_rtx && !unsignedp)
	  {
	    /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
	       and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
	    cmpop1 = const0_rtx;
	    if (code == MIN_EXPR)
	      comparison_code = LT;
	  }

	/* Use a conditional move if possible.  */
	if (can_conditionally_move_p (mode))
	  {
	    rtx insn;

	    start_sequence ();

	    /* Try to emit the conditional move.  */
	    insn = emit_conditional_move (target, comparison_code,
					  op0, cmpop1, mode,
					  op0, op1, mode,
					  unsignedp);

	    /* If we could do the conditional move, emit the sequence,
	       and return.  */
	    if (insn)
	      {
		rtx_insn *seq = get_insns ();
		end_sequence ();
		emit_insn (seq);
		return target;
	      }

	    /* Otherwise discard the sequence and fall back to code with
	       branches.  */
	    end_sequence ();
	  }

	if (target != op0)
	  emit_move_insn (target, op0);

	lab = gen_label_rtx ();
	do_compare_rtx_and_jump (target, cmpop1, comparison_code,
				 unsignedp, mode, NULL_RTX, NULL, lab,
				 -1);
      }
      emit_move_insn (target, op1);
      emit_label (lab);
      return target;

    case BIT_NOT_EXPR:
      op0 = expand_expr (treeop0, subtarget,
			 VOIDmode, EXPAND_NORMAL);
      if (modifier == EXPAND_STACK_PARM)
	target = 0;
      /* In case we have to reduce the result to bitfield precision
	 for unsigned bitfield expand this as XOR with a proper constant
	 instead.  */
      if (reduce_bit_field && TYPE_UNSIGNED (type))
	{
	  wide_int mask = wi::mask (TYPE_PRECISION (type),
				    false, GET_MODE_PRECISION (mode));

	  temp = expand_binop (mode, xor_optab, op0,
			       immed_wide_int_const (mask, mode),
			       target, 1, OPTAB_LIB_WIDEN);
	}
      else
	temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
      gcc_assert (temp);
      return temp;

      /* ??? Can optimize bitwise operations with one arg constant.
	 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
	 and (a bitwise1 b) bitwise2 b (etc)
	 but that is probably not worth while.  */

    case BIT_AND_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
      goto binop;

    case LROTATE_EXPR:
    case RROTATE_EXPR:
      gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
		  || (GET_MODE_PRECISION (TYPE_MODE (type))
		      == TYPE_PRECISION (type)));
      /* fall through */

    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
      {
	/* If this is a fixed-point operation, then we cannot use the code
	   below because "expand_shift" doesn't support sat/no-sat fixed-point
	   shifts.  */
	if (ALL_FIXED_POINT_MODE_P (mode))
	  goto binop;

	if (! safe_from_p (subtarget, treeop1, 1))
	  subtarget = 0;
	if (modifier == EXPAND_STACK_PARM)
	  target = 0;
	op0 = expand_expr (treeop0, subtarget,
			   VOIDmode, EXPAND_NORMAL);

	/* Left shift optimization when shifting across word_size boundary.

	   If mode == GET_MODE_WIDER_MODE (word_mode), then normally
	   there isn't native instruction to support this wide mode
	   left shift.  Given below scenario:

	    Type A = (Type) B  << C

	    |<		 T	    >|
	    | dest_high  |  dest_low |

			 | word_size |

	   If the shift amount C caused we shift B to across the word
	   size boundary, i.e part of B shifted into high half of
	   destination register, and part of B remains in the low
	   half, then GCC will use the following left shift expand
	   logic:

	   1. Initialize dest_low to B.
	   2. Initialize every bit of dest_high to the sign bit of B.
	   3. Logic left shift dest_low by C bit to finalize dest_low.
	      The value of dest_low before this shift is kept in a temp D.
	   4. Logic left shift dest_high by C.
	   5. Logic right shift D by (word_size - C).
	   6. Or the result of 4 and 5 to finalize dest_high.

	   While, by checking gimple statements, if operand B is
	   coming from signed extension, then we can simplify above
	   expand logic into:

	      1. dest_high = src_low >> (word_size - C).
	      2. dest_low = src_low << C.

	   We can use one arithmetic right shift to finish all the
	   purpose of steps 2, 4, 5, 6, thus we reduce the steps
	   needed from 6 into 2.

	   The case is similar for zero extension, except that we
	   initialize dest_high to zero rather than copies of the sign
	   bit from B.  Furthermore, we need to use a logical right shift
	   in this case.

	   The choice of sign-extension versus zero-extension is
	   determined entirely by whether or not B is signed and is
	   independent of the current setting of unsignedp.  */

	temp = NULL_RTX;
	if (code == LSHIFT_EXPR
	    && target
	    && REG_P (target)
	    && mode == GET_MODE_WIDER_MODE (word_mode)
	    && GET_MODE_SIZE (mode) == 2 * GET_MODE_SIZE (word_mode)
	    && TREE_CONSTANT (treeop1)
	    && TREE_CODE (treeop0) == SSA_NAME)
	  {
	    gimple *def = SSA_NAME_DEF_STMT (treeop0);
	    if (is_gimple_assign (def)
		&& gimple_assign_rhs_code (def) == NOP_EXPR)
	      {
		machine_mode rmode = TYPE_MODE
		  (TREE_TYPE (gimple_assign_rhs1 (def)));

		if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (mode)
		    && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode)
		    && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode))
			>= GET_MODE_BITSIZE (word_mode)))
		  {
		    rtx_insn *seq, *seq_old;
		    unsigned int high_off = subreg_highpart_offset (word_mode,
								    mode);
		    bool extend_unsigned
		      = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def)));
		    rtx low = lowpart_subreg (word_mode, op0, mode);
		    rtx dest_low = lowpart_subreg (word_mode, target, mode);
		    rtx dest_high = simplify_gen_subreg (word_mode, target,
							 mode, high_off);
		    HOST_WIDE_INT ramount = (BITS_PER_WORD
					     - TREE_INT_CST_LOW (treeop1));
		    tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount);

		    start_sequence ();
		    /* dest_high = src_low >> (word_size - C).  */
		    temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low,
						  rshift, dest_high,
						  extend_unsigned);
		    if (temp != dest_high)
		      emit_move_insn (dest_high, temp);

		    /* dest_low = src_low << C.  */
		    temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low,
						  treeop1, dest_low, unsignedp);
		    if (temp != dest_low)
		      emit_move_insn (dest_low, temp);

		    seq = get_insns ();
		    end_sequence ();
		    temp = target ;

		    if (have_insn_for (ASHIFT, mode))
		      {
			bool speed_p = optimize_insn_for_speed_p ();
			start_sequence ();
			rtx ret_old = expand_variable_shift (code, mode, op0,
							     treeop1, target,
							     unsignedp);

			seq_old = get_insns ();
			end_sequence ();
			if (seq_cost (seq, speed_p)
			    >= seq_cost (seq_old, speed_p))
			  {
			    seq = seq_old;
			    temp = ret_old;
			  }
		      }
		      emit_insn (seq);
		  }
	      }
	  }

	if (temp == NULL_RTX)
	  temp = expand_variable_shift (code, mode, op0, treeop1, target,
					unsignedp);
	if (code == LSHIFT_EXPR)
	  temp = REDUCE_BIT_FIELD (temp);
	return temp;
      }

      /* Could determine the answer when only additive constants differ.  Also,
	 the addition of one can be handled by changing the condition.  */
    case LT_EXPR:
    case LE_EXPR:
    case GT_EXPR:
    case GE_EXPR:
    case EQ_EXPR:
    case NE_EXPR:
    case UNORDERED_EXPR:
    case ORDERED_EXPR:
    case UNLT_EXPR:
    case UNLE_EXPR:
    case UNGT_EXPR:
    case UNGE_EXPR:
    case UNEQ_EXPR:
    case LTGT_EXPR:
      {
	temp = do_store_flag (ops,
			      modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
			      tmode != VOIDmode ? tmode : mode);
	if (temp)
	  return temp;

	/* Use a compare and a jump for BLKmode comparisons, or for function
	   type comparisons is have_canonicalize_funcptr_for_compare.  */

	if ((target == 0
	     || modifier == EXPAND_STACK_PARM
	     || ! safe_from_p (target, treeop0, 1)
	     || ! safe_from_p (target, treeop1, 1)
	     /* Make sure we don't have a hard reg (such as function's return
		value) live across basic blocks, if not optimizing.  */
	     || (!optimize && REG_P (target)
		 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
	  target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);

	emit_move_insn (target, const0_rtx);

	rtx_code_label *lab1 = gen_label_rtx ();
	jumpifnot_1 (code, treeop0, treeop1, lab1, -1);

	if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
	  emit_move_insn (target, constm1_rtx);
	else
	  emit_move_insn (target, const1_rtx);

	emit_label (lab1);
	return target;
      }
    case COMPLEX_EXPR:
      /* Get the rtx code of the operands.  */
      op0 = expand_normal (treeop0);
      op1 = expand_normal (treeop1);

      if (!target)
	target = gen_reg_rtx (TYPE_MODE (type));
      else
	/* If target overlaps with op1, then either we need to force
	   op1 into a pseudo (if target also overlaps with op0),
	   or write the complex parts in reverse order.  */
	switch (GET_CODE (target))
	  {
	  case CONCAT:
	    if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
	      {
		if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
		  {
		  complex_expr_force_op1:
		    temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
		    emit_move_insn (temp, op1);
		    op1 = temp;
		    break;
		  }
	      complex_expr_swap_order:
		/* Move the imaginary (op1) and real (op0) parts to their
		   location.  */
		write_complex_part (target, op1, true);
		write_complex_part (target, op0, false);

		return target;
	      }
	    break;
	  case MEM:
	    temp = adjust_address_nv (target,
				      GET_MODE_INNER (GET_MODE (target)), 0);
	    if (reg_overlap_mentioned_p (temp, op1))
	      {
		machine_mode imode = GET_MODE_INNER (GET_MODE (target));
		temp = adjust_address_nv (target, imode,
					  GET_MODE_SIZE (imode));
		if (reg_overlap_mentioned_p (temp, op0))
		  goto complex_expr_force_op1;
		goto complex_expr_swap_order;
	      }
	    break;
	  default:
	    if (reg_overlap_mentioned_p (target, op1))
	      {
		if (reg_overlap_mentioned_p (target, op0))
		  goto complex_expr_force_op1;
		goto complex_expr_swap_order;
	      }
	    break;
	  }

      /* Move the real (op0) and imaginary (op1) parts to their location.  */
      write_complex_part (target, op0, false);
      write_complex_part (target, op1, true);

      return target;

    case WIDEN_SUM_EXPR:
      {
        tree oprnd0 = treeop0;
        tree oprnd1 = treeop1;

        expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
        target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
                                            target, unsignedp);
        return target;
      }

    case REDUC_MAX_EXPR:
    case REDUC_MIN_EXPR:
    case REDUC_PLUS_EXPR:
      {
        op0 = expand_normal (treeop0);
        this_optab = optab_for_tree_code (code, type, optab_default);
        machine_mode vec_mode = TYPE_MODE (TREE_TYPE (treeop0));

	struct expand_operand ops[2];
	enum insn_code icode = optab_handler (this_optab, vec_mode);

	create_output_operand (&ops[0], target, mode);
	create_input_operand (&ops[1], op0, vec_mode);
	expand_insn (icode, 2, ops);
	target = ops[0].value;
	if (GET_MODE (target) != mode)
	  return gen_lowpart (tmode, target);
	return target;
      }

    case VEC_UNPACK_HI_EXPR:
    case VEC_UNPACK_LO_EXPR:
      {
	op0 = expand_normal (treeop0);
	temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
					  target, unsignedp);
	gcc_assert (temp);
	return temp;
      }

    case VEC_UNPACK_FLOAT_HI_EXPR:
    case VEC_UNPACK_FLOAT_LO_EXPR:
      {
	op0 = expand_normal (treeop0);
	/* The signedness is determined from input operand.  */
	temp = expand_widen_pattern_expr
	  (ops, op0, NULL_RTX, NULL_RTX,
	   target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));

	gcc_assert (temp);
	return temp;
      }

    case VEC_WIDEN_MULT_HI_EXPR:
    case VEC_WIDEN_MULT_LO_EXPR:
    case VEC_WIDEN_MULT_EVEN_EXPR:
    case VEC_WIDEN_MULT_ODD_EXPR:
    case VEC_WIDEN_LSHIFT_HI_EXPR:
    case VEC_WIDEN_LSHIFT_LO_EXPR:
      expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
      target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
					  target, unsignedp);
      gcc_assert (target);
      return target;

    case VEC_PACK_TRUNC_EXPR:
    case VEC_PACK_SAT_EXPR:
    case VEC_PACK_FIX_TRUNC_EXPR:
      mode = TYPE_MODE (TREE_TYPE (treeop0));
      goto binop;

    case VEC_PERM_EXPR:
      expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
      op2 = expand_normal (treeop2);

      /* Careful here: if the target doesn't support integral vector modes,
	 a constant selection vector could wind up smooshed into a normal
	 integral constant.  */
      if (CONSTANT_P (op2) && GET_CODE (op2) != CONST_VECTOR)
	{
	  tree sel_type = TREE_TYPE (treeop2);
	  machine_mode vmode
	    = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type)),
			       TYPE_VECTOR_SUBPARTS (sel_type));
	  gcc_assert (GET_MODE_CLASS (vmode) == MODE_VECTOR_INT);
	  op2 = simplify_subreg (vmode, op2, TYPE_MODE (sel_type), 0);
	  gcc_assert (op2 && GET_CODE (op2) == CONST_VECTOR);
	}
      else
        gcc_assert (GET_MODE_CLASS (GET_MODE (op2)) == MODE_VECTOR_INT);

      temp = expand_vec_perm (mode, op0, op1, op2, target);
      gcc_assert (temp);
      return temp;

    case DOT_PROD_EXPR:
      {
	tree oprnd0 = treeop0;
	tree oprnd1 = treeop1;
	tree oprnd2 = treeop2;
	rtx op2;

	expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
	op2 = expand_normal (oprnd2);
	target = expand_widen_pattern_expr (ops, op0, op1, op2,
					    target, unsignedp);
	return target;
      }

      case SAD_EXPR:
      {
	tree oprnd0 = treeop0;
	tree oprnd1 = treeop1;
	tree oprnd2 = treeop2;
	rtx op2;

	expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
	op2 = expand_normal (oprnd2);
	target = expand_widen_pattern_expr (ops, op0, op1, op2,
					    target, unsignedp);
	return target;
      }

    case REALIGN_LOAD_EXPR:
      {
        tree oprnd0 = treeop0;
        tree oprnd1 = treeop1;
        tree oprnd2 = treeop2;
        rtx op2;

        this_optab = optab_for_tree_code (code, type, optab_default);
        expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
        op2 = expand_normal (oprnd2);
        temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
				  target, unsignedp);
        gcc_assert (temp);
        return temp;
      }

    case COND_EXPR:
      {
	/* A COND_EXPR with its type being VOID_TYPE represents a
	   conditional jump and is handled in
	   expand_gimple_cond_expr.  */
	gcc_assert (!VOID_TYPE_P (type));

	/* Note that COND_EXPRs whose type is a structure or union
	   are required to be constructed to contain assignments of
	   a temporary variable, so that we can evaluate them here
	   for side effect only.  If type is void, we must do likewise.  */

	gcc_assert (!TREE_ADDRESSABLE (type)
		    && !ignore
		    && TREE_TYPE (treeop1) != void_type_node
		    && TREE_TYPE (treeop2) != void_type_node);

	temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
	if (temp)
	  return temp;

	/* If we are not to produce a result, we have no target.  Otherwise,
	   if a target was specified use it; it will not be used as an
	   intermediate target unless it is safe.  If no target, use a
	   temporary.  */

	if (modifier != EXPAND_STACK_PARM
	    && original_target
	    && safe_from_p (original_target, treeop0, 1)
	    && GET_MODE (original_target) == mode
	    && !MEM_P (original_target))
	  temp = original_target;
	else
	  temp = assign_temp (type, 0, 1);

	do_pending_stack_adjust ();
	NO_DEFER_POP;
	rtx_code_label *lab0 = gen_label_rtx ();
	rtx_code_label *lab1 = gen_label_rtx ();
	jumpifnot (treeop0, lab0, -1);
	store_expr (treeop1, temp,
		    modifier == EXPAND_STACK_PARM,
		    false, false);

	emit_jump_insn (targetm.gen_jump (lab1));
	emit_barrier ();
	emit_label (lab0);
	store_expr (treeop2, temp,
		    modifier == EXPAND_STACK_PARM,
		    false, false);

	emit_label (lab1);
	OK_DEFER_POP;
	return temp;
      }

    case VEC_COND_EXPR:
      target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
      return target;

    case BIT_INSERT_EXPR:
      {
	unsigned bitpos = tree_to_uhwi (treeop2);
	unsigned bitsize;
	if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1)))
	  bitsize = TYPE_PRECISION (TREE_TYPE (treeop1));
	else
	  bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1)));
	rtx op0 = expand_normal (treeop0);
	rtx op1 = expand_normal (treeop1);
	rtx dst = gen_reg_rtx (mode);
	emit_move_insn (dst, op0);
	store_bit_field (dst, bitsize, bitpos, 0, 0,
			 TYPE_MODE (TREE_TYPE (treeop1)), op1, false);
	return dst;
      }

    default:
      gcc_unreachable ();
    }

  /* Here to do an ordinary binary operator.  */
 binop:
  expand_operands (treeop0, treeop1,
		   subtarget, &op0, &op1, EXPAND_NORMAL);
 binop2:
  this_optab = optab_for_tree_code (code, type, optab_default);
 binop3:
  if (modifier == EXPAND_STACK_PARM)
    target = 0;
  temp = expand_binop (mode, this_optab, op0, op1, target,
		       unsignedp, OPTAB_LIB_WIDEN);
  gcc_assert (temp);
  /* Bitwise operations do not need bitfield reduction as we expect their
     operands being properly truncated.  */
  if (code == BIT_XOR_EXPR
      || code == BIT_AND_EXPR
      || code == BIT_IOR_EXPR)
    return temp;
  return REDUCE_BIT_FIELD (temp);
}
#undef REDUCE_BIT_FIELD


/* Return TRUE if expression STMT is suitable for replacement.  
   Never consider memory loads as replaceable, because those don't ever lead 
   into constant expressions.  */

static bool
stmt_is_replaceable_p (gimple *stmt)
{
  if (ssa_is_replaceable_p (stmt))
    {
      /* Don't move around loads.  */
      if (!gimple_assign_single_p (stmt)
	  || is_gimple_val (gimple_assign_rhs1 (stmt)))
	return true;
    }
  return false;
}

rtx
expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
		    enum expand_modifier modifier, rtx *alt_rtl,
		    bool inner_reference_p)
{
  rtx op0, op1, temp, decl_rtl;
  tree type;
  int unsignedp;
  machine_mode mode, dmode;
  enum tree_code code = TREE_CODE (exp);
  rtx subtarget, original_target;
  int ignore;
  tree context;
  bool reduce_bit_field;
  location_t loc = EXPR_LOCATION (exp);
  struct separate_ops ops;
  tree treeop0, treeop1, treeop2;
  tree ssa_name = NULL_TREE;
  gimple *g;

  type = TREE_TYPE (exp);
  mode = TYPE_MODE (type);
  unsignedp = TYPE_UNSIGNED (type);

  treeop0 = treeop1 = treeop2 = NULL_TREE;
  if (!VL_EXP_CLASS_P (exp))
    switch (TREE_CODE_LENGTH (code))
      {
	default:
	case 3: treeop2 = TREE_OPERAND (exp, 2); /* FALLTHRU */
	case 2: treeop1 = TREE_OPERAND (exp, 1); /* FALLTHRU */
	case 1: treeop0 = TREE_OPERAND (exp, 0); /* FALLTHRU */
	case 0: break;
      }
  ops.code = code;
  ops.type = type;
  ops.op0 = treeop0;
  ops.op1 = treeop1;
  ops.op2 = treeop2;
  ops.location = loc;

  ignore = (target == const0_rtx
	    || ((CONVERT_EXPR_CODE_P (code)
		 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
		&& TREE_CODE (type) == VOID_TYPE));

  /* An operation in what may be a bit-field type needs the
     result to be reduced to the precision of the bit-field type,
     which is narrower than that of the type's mode.  */
  reduce_bit_field = (!ignore
		      && INTEGRAL_TYPE_P (type)
		      && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));

  /* If we are going to ignore this result, we need only do something
     if there is a side-effect somewhere in the expression.  If there
     is, short-circuit the most common cases here.  Note that we must
     not call expand_expr with anything but const0_rtx in case this
     is an initial expansion of a size that contains a PLACEHOLDER_EXPR.  */

  if (ignore)
    {
      if (! TREE_SIDE_EFFECTS (exp))
	return const0_rtx;

      /* Ensure we reference a volatile object even if value is ignored, but
	 don't do this if all we are doing is taking its address.  */
      if (TREE_THIS_VOLATILE (exp)
	  && TREE_CODE (exp) != FUNCTION_DECL
	  && mode != VOIDmode && mode != BLKmode
	  && modifier != EXPAND_CONST_ADDRESS)
	{
	  temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
	  if (MEM_P (temp))
	    copy_to_reg (temp);
	  return const0_rtx;
	}

      if (TREE_CODE_CLASS (code) == tcc_unary
	  || code == BIT_FIELD_REF
	  || code == COMPONENT_REF
	  || code == INDIRECT_REF)
	return expand_expr (treeop0, const0_rtx, VOIDmode,
			    modifier);

      else if (TREE_CODE_CLASS (code) == tcc_binary
	       || TREE_CODE_CLASS (code) == tcc_comparison
	       || code == ARRAY_REF || code == ARRAY_RANGE_REF)
	{
	  expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
	  expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
	  return const0_rtx;
	}

      target = 0;
    }

  if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
    target = 0;

  /* Use subtarget as the target for operand 0 of a binary operation.  */
  subtarget = get_subtarget (target);
  original_target = target;

  switch (code)
    {
    case LABEL_DECL:
      {
	tree function = decl_function_context (exp);

	temp = label_rtx (exp);
	temp = gen_rtx_LABEL_REF (Pmode, temp);

	if (function != current_function_decl
	    && function != 0)
	  LABEL_REF_NONLOCAL_P (temp) = 1;

	temp = gen_rtx_MEM (FUNCTION_MODE, temp);
	return temp;
      }

    case SSA_NAME:
      /* ??? ivopts calls expander, without any preparation from
         out-of-ssa.  So fake instructions as if this was an access to the
	 base variable.  This unnecessarily allocates a pseudo, see how we can
	 reuse it, if partition base vars have it set already.  */
      if (!currently_expanding_to_rtl)
	{
	  tree var = SSA_NAME_VAR (exp);
	  if (var && DECL_RTL_SET_P (var))
	    return DECL_RTL (var);
	  return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
			      LAST_VIRTUAL_REGISTER + 1);
	}

      g = get_gimple_for_ssa_name (exp);
      /* For EXPAND_INITIALIZER try harder to get something simpler.  */
      if (g == NULL
	  && modifier == EXPAND_INITIALIZER
	  && !SSA_NAME_IS_DEFAULT_DEF (exp)
	  && (optimize || !SSA_NAME_VAR (exp)
	      || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
	  && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
	g = SSA_NAME_DEF_STMT (exp);
      if (g)
	{
	  rtx r;
	  location_t saved_loc = curr_insn_location ();
	  location_t loc = gimple_location (g);
	  if (loc != UNKNOWN_LOCATION)
	    set_curr_insn_location (loc);
	  ops.code = gimple_assign_rhs_code (g);
          switch (get_gimple_rhs_class (ops.code))
	    {
	    case GIMPLE_TERNARY_RHS:
	      ops.op2 = gimple_assign_rhs3 (g);
	      /* Fallthru */
	    case GIMPLE_BINARY_RHS:
	      ops.op1 = gimple_assign_rhs2 (g);

	      /* Try to expand conditonal compare.  */
	      if (targetm.gen_ccmp_first)
		{
		  gcc_checking_assert (targetm.gen_ccmp_next != NULL);
		  r = expand_ccmp_expr (g);
		  if (r)
		    break;
		}
	      /* Fallthru */
	    case GIMPLE_UNARY_RHS:
	      ops.op0 = gimple_assign_rhs1 (g);
	      ops.type = TREE_TYPE (gimple_assign_lhs (g));
	      ops.location = loc;
	      r = expand_expr_real_2 (&ops, target, tmode, modifier);
	      break;
	    case GIMPLE_SINGLE_RHS:
	      {
		r = expand_expr_real (gimple_assign_rhs1 (g), target,
				      tmode, modifier, NULL, inner_reference_p);
		break;
	      }
	    default:
	      gcc_unreachable ();
	    }
	  set_curr_insn_location (saved_loc);
	  if (REG_P (r) && !REG_EXPR (r))
	    set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
	  return r;
	}

      ssa_name = exp;
      decl_rtl = get_rtx_for_ssa_name (ssa_name);
      exp = SSA_NAME_VAR (ssa_name);
      goto expand_decl_rtl;

    case PARM_DECL:
    case VAR_DECL:
      /* If a static var's type was incomplete when the decl was written,
	 but the type is complete now, lay out the decl now.  */
      if (DECL_SIZE (exp) == 0
	  && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
	  && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
	layout_decl (exp, 0);

      /* fall through */

    case FUNCTION_DECL:
    case RESULT_DECL:
      decl_rtl = DECL_RTL (exp);
    expand_decl_rtl:
      gcc_assert (decl_rtl);

      /* DECL_MODE might change when TYPE_MODE depends on attribute target
	 settings for VECTOR_TYPE_P that might switch for the function.  */
      if (currently_expanding_to_rtl
	  && code == VAR_DECL && MEM_P (decl_rtl)
	  && VECTOR_TYPE_P (type) && exp && DECL_MODE (exp) != mode)
	decl_rtl = change_address (decl_rtl, TYPE_MODE (type), 0);
      else
	decl_rtl = copy_rtx (decl_rtl);

      /* Record writes to register variables.  */
      if (modifier == EXPAND_WRITE
	  && REG_P (decl_rtl)
	  && HARD_REGISTER_P (decl_rtl))
        add_to_hard_reg_set (&crtl->asm_clobbers,
			     GET_MODE (decl_rtl), REGNO (decl_rtl));

      /* Ensure variable marked as used even if it doesn't go through
	 a parser.  If it hasn't be used yet, write out an external
	 definition.  */
      if (exp)
	TREE_USED (exp) = 1;

      /* Show we haven't gotten RTL for this yet.  */
      temp = 0;

      /* Variables inherited from containing functions should have
	 been lowered by this point.  */
      if (exp)
	context = decl_function_context (exp);
      gcc_assert (!exp
		  || SCOPE_FILE_SCOPE_P (context)
		  || context == current_function_decl
		  || TREE_STATIC (exp)
		  || DECL_EXTERNAL (exp)
		  /* ??? C++ creates functions that are not TREE_STATIC.  */
		  || TREE_CODE (exp) == FUNCTION_DECL);

      /* This is the case of an array whose size is to be determined
	 from its initializer, while the initializer is still being parsed.
	 ??? We aren't parsing while expanding anymore.  */

      if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
	temp = validize_mem (decl_rtl);

      /* If DECL_RTL is memory, we are in the normal case and the
	 address is not valid, get the address into a register.  */

      else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
	{
	  if (alt_rtl)
	    *alt_rtl = decl_rtl;
	  decl_rtl = use_anchored_address (decl_rtl);
	  if (modifier != EXPAND_CONST_ADDRESS
	      && modifier != EXPAND_SUM
	      && !memory_address_addr_space_p (exp ? DECL_MODE (exp)
					       : GET_MODE (decl_rtl),
					       XEXP (decl_rtl, 0),
					       MEM_ADDR_SPACE (decl_rtl)))
	    temp = replace_equiv_address (decl_rtl,
					  copy_rtx (XEXP (decl_rtl, 0)));
	}

      /* If we got something, return it.  But first, set the alignment
	 if the address is a register.  */
      if (temp != 0)
	{
	  if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0)))
	    mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));

	  return temp;
	}

      if (exp)
	dmode = DECL_MODE (exp);
      else
	dmode = TYPE_MODE (TREE_TYPE (ssa_name));

      /* If the mode of DECL_RTL does not match that of the decl,
	 there are two cases: we are dealing with a BLKmode value
	 that is returned in a register, or we are dealing with
	 a promoted value.  In the latter case, return a SUBREG
	 of the wanted mode, but mark it so that we know that it
	 was already extended.  */
      if (REG_P (decl_rtl)
	  && dmode != BLKmode
	  && GET_MODE (decl_rtl) != dmode)
	{
	  machine_mode pmode;

	  /* Get the signedness to be used for this variable.  Ensure we get
	     the same mode we got when the variable was declared.  */
	  if (code != SSA_NAME)
	    pmode = promote_decl_mode (exp, &unsignedp);
	  else if ((g = SSA_NAME_DEF_STMT (ssa_name))
		   && gimple_code (g) == GIMPLE_CALL
		   && !gimple_call_internal_p (g))
	    pmode = promote_function_mode (type, mode, &unsignedp,
					   gimple_call_fntype (g),
					   2);
	  else
	    pmode = promote_ssa_mode (ssa_name, &unsignedp);
	  gcc_assert (GET_MODE (decl_rtl) == pmode);

	  temp = gen_lowpart_SUBREG (mode, decl_rtl);
	  SUBREG_PROMOTED_VAR_P (temp) = 1;
	  SUBREG_PROMOTED_SET (temp, unsignedp);
	  return temp;
	}

      return decl_rtl;

    case INTEGER_CST:
      /* Given that TYPE_PRECISION (type) is not always equal to
         GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
         the former to the latter according to the signedness of the
         type. */
      temp = immed_wide_int_const (wi::to_wide
				   (exp,
				    GET_MODE_PRECISION (TYPE_MODE (type))),
				   TYPE_MODE (type));
      return temp;

    case VECTOR_CST:
      {
	tree tmp = NULL_TREE;
	if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
	    || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
	    || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
	    || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
	    || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
	    || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
	  return const_vector_from_tree (exp);
	if (GET_MODE_CLASS (mode) == MODE_INT)
	  {
	    if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
	      return const_scalar_mask_from_tree (exp);
	    else
	      {
		tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
		if (type_for_mode)
		  tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR,
					type_for_mode, exp);
	      }
	  }
	if (!tmp)
	  {
	    vec<constructor_elt, va_gc> *v;
	    unsigned i;
	    vec_alloc (v, VECTOR_CST_NELTS (exp));
	    for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
	      CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
	    tmp = build_constructor (type, v);
	  }
	return expand_expr (tmp, ignore ? const0_rtx : target,
			    tmode, modifier);
      }

    case CONST_DECL:
      if (modifier == EXPAND_WRITE)
	{
	  /* Writing into CONST_DECL is always invalid, but handle it
	     gracefully.  */
	  addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
	  machine_mode address_mode = targetm.addr_space.address_mode (as);
	  op0 = expand_expr_addr_expr_1 (exp, NULL_RTX, address_mode,
					 EXPAND_NORMAL, as);
	  op0 = memory_address_addr_space (mode, op0, as);
	  temp = gen_rtx_MEM (mode, op0);
	  set_mem_addr_space (temp, as);
	  return temp;
	}
      return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);

    case REAL_CST:
      /* If optimized, generate immediate CONST_DOUBLE
	 which will be turned into memory by reload if necessary.

	 We used to force a register so that loop.c could see it.  But
	 this does not allow gen_* patterns to perform optimizations with
	 the constants.  It also produces two insns in cases like "x = 1.0;".
	 On most machines, floating-point constants are not permitted in
	 many insns, so we'd end up copying it to a register in any case.

	 Now, we do the copying in expand_binop, if appropriate.  */
      return const_double_from_real_value (TREE_REAL_CST (exp),
					   TYPE_MODE (TREE_TYPE (exp)));

    case FIXED_CST:
      return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
					   TYPE_MODE (TREE_TYPE (exp)));

    case COMPLEX_CST:
      /* Handle evaluating a complex constant in a CONCAT target.  */
      if (original_target && GET_CODE (original_target) == CONCAT)
	{
	  machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
	  rtx rtarg, itarg;

	  rtarg = XEXP (original_target, 0);
	  itarg = XEXP (original_target, 1);

	  /* Move the real and imaginary parts separately.  */
	  op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
	  op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);

	  if (op0 != rtarg)
	    emit_move_insn (rtarg, op0);
	  if (op1 != itarg)
	    emit_move_insn (itarg, op1);

	  return original_target;
	}

      /* fall through */

    case STRING_CST:
      temp = expand_expr_constant (exp, 1, modifier);

      /* temp contains a constant address.
	 On RISC machines where a constant address isn't valid,
	 make some insns to get that address into a register.  */
      if (modifier != EXPAND_CONST_ADDRESS
	  && modifier != EXPAND_INITIALIZER
	  && modifier != EXPAND_SUM
	  && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
					    MEM_ADDR_SPACE (temp)))
	return replace_equiv_address (temp,
				      copy_rtx (XEXP (temp, 0)));
      return temp;

    case SAVE_EXPR:
      {
	tree val = treeop0;
	rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
				      inner_reference_p);

	if (!SAVE_EXPR_RESOLVED_P (exp))
	  {
	    /* We can indeed still hit this case, typically via builtin
	       expanders calling save_expr immediately before expanding
	       something.  Assume this means that we only have to deal
	       with non-BLKmode values.  */
	    gcc_assert (GET_MODE (ret) != BLKmode);

	    val = build_decl (curr_insn_location (),
			      VAR_DECL, NULL, TREE_TYPE (exp));
	    DECL_ARTIFICIAL (val) = 1;
	    DECL_IGNORED_P (val) = 1;
	    treeop0 = val;
	    TREE_OPERAND (exp, 0) = treeop0;
	    SAVE_EXPR_RESOLVED_P (exp) = 1;

	    if (!CONSTANT_P (ret))
	      ret = copy_to_reg (ret);
	    SET_DECL_RTL (val, ret);
	  }

        return ret;
      }


    case CONSTRUCTOR:
      /* If we don't need the result, just ensure we evaluate any
	 subexpressions.  */
      if (ignore)
	{
	  unsigned HOST_WIDE_INT idx;
	  tree value;

	  FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
	    expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);

	  return const0_rtx;
	}

      return expand_constructor (exp, target, modifier, false);

    case TARGET_MEM_REF:
      {
	addr_space_t as
	  = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
	enum insn_code icode;
	unsigned int align;

	op0 = addr_for_mem_ref (exp, as, true);
	op0 = memory_address_addr_space (mode, op0, as);
	temp = gen_rtx_MEM (mode, op0);
	set_mem_attributes (temp, exp, 0);
	set_mem_addr_space (temp, as);
	align = get_object_alignment (exp);
	if (modifier != EXPAND_WRITE
	    && modifier != EXPAND_MEMORY
	    && mode != BLKmode
	    && align < GET_MODE_ALIGNMENT (mode)
	    /* If the target does not have special handling for unaligned
	       loads of mode then it can use regular moves for them.  */
	    && ((icode = optab_handler (movmisalign_optab, mode))
		!= CODE_FOR_nothing))
	  {
	    struct expand_operand ops[2];

	    /* We've already validated the memory, and we're creating a
	       new pseudo destination.  The predicates really can't fail,
	       nor can the generator.  */
	    create_output_operand (&ops[0], NULL_RTX, mode);
	    create_fixed_operand (&ops[1], temp);
	    expand_insn (icode, 2, ops);
	    temp = ops[0].value;
	  }
	return temp;
      }

    case MEM_REF:
      {
	const bool reverse = REF_REVERSE_STORAGE_ORDER (exp);
	addr_space_t as
	  = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
	machine_mode address_mode;
	tree base = TREE_OPERAND (exp, 0);
	gimple *def_stmt;
	enum insn_code icode;
	unsigned align;
	/* Handle expansion of non-aliased memory with non-BLKmode.  That
	   might end up in a register.  */
	if (mem_ref_refers_to_non_mem_p (exp))
	  {
	    HOST_WIDE_INT offset = mem_ref_offset (exp).to_short_addr ();
	    base = TREE_OPERAND (base, 0);
	    if (offset == 0
	        && !reverse
		&& tree_fits_uhwi_p (TYPE_SIZE (type))
		&& (GET_MODE_BITSIZE (DECL_MODE (base))
		    == tree_to_uhwi (TYPE_SIZE (type))))
	      return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
				  target, tmode, modifier);
	    if (TYPE_MODE (type) == BLKmode)
	      {
		temp = assign_stack_temp (DECL_MODE (base),
					  GET_MODE_SIZE (DECL_MODE (base)));
		store_expr (base, temp, 0, false, false);
		temp = adjust_address (temp, BLKmode, offset);
		set_mem_size (temp, int_size_in_bytes (type));
		return temp;
	      }
	    exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
			  bitsize_int (offset * BITS_PER_UNIT));
	    REF_REVERSE_STORAGE_ORDER (exp) = reverse;
	    return expand_expr (exp, target, tmode, modifier);
	  }
	address_mode = targetm.addr_space.address_mode (as);
	base = TREE_OPERAND (exp, 0);
	if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
	  {
	    tree mask = gimple_assign_rhs2 (def_stmt);
	    base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
			   gimple_assign_rhs1 (def_stmt), mask);
	    TREE_OPERAND (exp, 0) = base;
	  }
	align = get_object_alignment (exp);
	op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
	op0 = memory_address_addr_space (mode, op0, as);
	if (!integer_zerop (TREE_OPERAND (exp, 1)))
	  {
	    rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
	    op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
	    op0 = memory_address_addr_space (mode, op0, as);
	  }
	temp = gen_rtx_MEM (mode, op0);
	set_mem_attributes (temp, exp, 0);
	set_mem_addr_space (temp, as);
	if (TREE_THIS_VOLATILE (exp))
	  MEM_VOLATILE_P (temp) = 1;
	if (modifier != EXPAND_WRITE
	    && modifier != EXPAND_MEMORY
	    && !inner_reference_p
	    && mode != BLKmode
	    && align < GET_MODE_ALIGNMENT (mode))
	  {
	    if ((icode = optab_handler (movmisalign_optab, mode))
		!= CODE_FOR_nothing)
	      {
		struct expand_operand ops[2];

		/* We've already validated the memory, and we're creating a
		   new pseudo destination.  The predicates really can't fail,
		   nor can the generator.  */
		create_output_operand (&ops[0], NULL_RTX, mode);
		create_fixed_operand (&ops[1], temp);
		expand_insn (icode, 2, ops);
		temp = ops[0].value;
	      }
	    else if (SLOW_UNALIGNED_ACCESS (mode, align))
	      temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
					0, TYPE_UNSIGNED (TREE_TYPE (exp)),
					(modifier == EXPAND_STACK_PARM
					 ? NULL_RTX : target),
					mode, mode, false);
	  }
	if (reverse
	    && modifier != EXPAND_MEMORY
	    && modifier != EXPAND_WRITE)
	  temp = flip_storage_order (mode, temp);
	return temp;
      }

    case ARRAY_REF:

      {
	tree array = treeop0;
	tree index = treeop1;
	tree init;

	/* Fold an expression like: "foo"[2].
	   This is not done in fold so it won't happen inside &.
	   Don't fold if this is for wide characters since it's too
	   difficult to do correctly and this is a very rare case.  */

	if (modifier != EXPAND_CONST_ADDRESS
	    && modifier != EXPAND_INITIALIZER
	    && modifier != EXPAND_MEMORY)
	  {
	    tree t = fold_read_from_constant_string (exp);

	    if (t)
	      return expand_expr (t, target, tmode, modifier);
	  }

	/* If this is a constant index into a constant array,
	   just get the value from the array.  Handle both the cases when
	   we have an explicit constructor and when our operand is a variable
	   that was declared const.  */

	if (modifier != EXPAND_CONST_ADDRESS
	    && modifier != EXPAND_INITIALIZER
	    && modifier != EXPAND_MEMORY
	    && TREE_CODE (array) == CONSTRUCTOR
	    && ! TREE_SIDE_EFFECTS (array)
	    && TREE_CODE (index) == INTEGER_CST)
	  {
	    unsigned HOST_WIDE_INT ix;
	    tree field, value;

	    FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
				      field, value)
	      if (tree_int_cst_equal (field, index))
		{
		  if (!TREE_SIDE_EFFECTS (value))
		    return expand_expr (fold (value), target, tmode, modifier);
		  break;
		}
	  }

	else if (optimize >= 1
		 && modifier != EXPAND_CONST_ADDRESS
		 && modifier != EXPAND_INITIALIZER
		 && modifier != EXPAND_MEMORY
		 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
		 && TREE_CODE (index) == INTEGER_CST
		 && (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
		 && (init = ctor_for_folding (array)) != error_mark_node)
	  {
	    if (init == NULL_TREE)
	      {
		tree value = build_zero_cst (type);
		if (TREE_CODE (value) == CONSTRUCTOR)
		  {
		    /* If VALUE is a CONSTRUCTOR, this optimization is only
		       useful if this doesn't store the CONSTRUCTOR into
		       memory.  If it does, it is more efficient to just
		       load the data from the array directly.  */
		    rtx ret = expand_constructor (value, target,
						  modifier, true);
		    if (ret == NULL_RTX)
		      value = NULL_TREE;
		  }

		if (value)
		  return expand_expr (value, target, tmode, modifier);
	      }
	    else if (TREE_CODE (init) == CONSTRUCTOR)
	      {
		unsigned HOST_WIDE_INT ix;
		tree field, value;

		FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
					  field, value)
		  if (tree_int_cst_equal (field, index))
		    {
		      if (TREE_SIDE_EFFECTS (value))
			break;

		      if (TREE_CODE (value) == CONSTRUCTOR)
			{
			  /* If VALUE is a CONSTRUCTOR, this
			     optimization is only useful if
			     this doesn't store the CONSTRUCTOR
			     into memory.  If it does, it is more
			     efficient to just load the data from
			     the array directly.  */
			  rtx ret = expand_constructor (value, target,
							modifier, true);
			  if (ret == NULL_RTX)
			    break;
			}

		      return
		        expand_expr (fold (value), target, tmode, modifier);
		    }
	      }
	    else if (TREE_CODE (init) == STRING_CST)
	      {
		tree low_bound = array_ref_low_bound (exp);
		tree index1 = fold_convert_loc (loc, sizetype, treeop1);

		/* Optimize the special case of a zero lower bound.

		   We convert the lower bound to sizetype to avoid problems
		   with constant folding.  E.g. suppose the lower bound is
		   1 and its mode is QI.  Without the conversion
		      (ARRAY + (INDEX - (unsigned char)1))
		   becomes
		      (ARRAY + (-(unsigned char)1) + INDEX)
		   which becomes
		      (ARRAY + 255 + INDEX).  Oops!  */
		if (!integer_zerop (low_bound))
		  index1 = size_diffop_loc (loc, index1,
					    fold_convert_loc (loc, sizetype,
							      low_bound));

		if (tree_fits_uhwi_p (index1)
		    && compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
		  {
		    tree type = TREE_TYPE (TREE_TYPE (init));
		    machine_mode mode = TYPE_MODE (type);

		    if (GET_MODE_CLASS (mode) == MODE_INT
			&& GET_MODE_SIZE (mode) == 1)
		      return gen_int_mode (TREE_STRING_POINTER (init)
					   [TREE_INT_CST_LOW (index1)],
					   mode);
		  }
	      }
	  }
      }
      goto normal_inner_ref;

    case COMPONENT_REF:
      /* If the operand is a CONSTRUCTOR, we can just extract the
	 appropriate field if it is present.  */
      if (TREE_CODE (treeop0) == CONSTRUCTOR)
	{
	  unsigned HOST_WIDE_INT idx;
	  tree field, value;

	  FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
				    idx, field, value)
	    if (field == treeop1
		/* We can normally use the value of the field in the
		   CONSTRUCTOR.  However, if this is a bitfield in
		   an integral mode that we can fit in a HOST_WIDE_INT,
		   we must mask only the number of bits in the bitfield,
		   since this is done implicitly by the constructor.  If
		   the bitfield does not meet either of those conditions,
		   we can't do this optimization.  */
		&& (! DECL_BIT_FIELD (field)
		    || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
			&& (GET_MODE_PRECISION (DECL_MODE (field))
			    <= HOST_BITS_PER_WIDE_INT))))
	      {
		if (DECL_BIT_FIELD (field)
		    && modifier == EXPAND_STACK_PARM)
		  target = 0;
		op0 = expand_expr (value, target, tmode, modifier);
		if (DECL_BIT_FIELD (field))
		  {
		    HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
		    machine_mode imode = TYPE_MODE (TREE_TYPE (field));

		    if (TYPE_UNSIGNED (TREE_TYPE (field)))
		      {
			op1 = gen_int_mode ((HOST_WIDE_INT_1 << bitsize) - 1,
					    imode);
			op0 = expand_and (imode, op0, op1, target);
		      }
		    else
		      {
			int count = GET_MODE_PRECISION (imode) - bitsize;

			op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
					    target, 0);
			op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
					    target, 0);
		      }
		  }

		return op0;
	      }
	}
      goto normal_inner_ref;

    case BIT_FIELD_REF:
    case ARRAY_RANGE_REF:
    normal_inner_ref:
      {
	machine_mode mode1, mode2;
	HOST_WIDE_INT bitsize, bitpos;
	tree offset;
	int reversep, volatilep = 0, must_force_mem;
	tree tem
	  = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
				 &unsignedp, &reversep, &volatilep);
	rtx orig_op0, memloc;
	bool clear_mem_expr = false;

	/* If we got back the original object, something is wrong.  Perhaps
	   we are evaluating an expression too early.  In any event, don't
	   infinitely recurse.  */
	gcc_assert (tem != exp);

	/* If TEM's type is a union of variable size, pass TARGET to the inner
	   computation, since it will need a temporary and TARGET is known
	   to have to do.  This occurs in unchecked conversion in Ada.  */
	orig_op0 = op0
	  = expand_expr_real (tem,
			      (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
			       && COMPLETE_TYPE_P (TREE_TYPE (tem))
			       && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
				   != INTEGER_CST)
			       && modifier != EXPAND_STACK_PARM
			       ? target : NULL_RTX),
			      VOIDmode,
			      modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
			      NULL, true);

	/* If the field has a mode, we want to access it in the
	   field's mode, not the computed mode.
	   If a MEM has VOIDmode (external with incomplete type),
	   use BLKmode for it instead.  */
	if (MEM_P (op0))
	  {
	    if (mode1 != VOIDmode)
	      op0 = adjust_address (op0, mode1, 0);
	    else if (GET_MODE (op0) == VOIDmode)
	      op0 = adjust_address (op0, BLKmode, 0);
	  }

	mode2
	  = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);

	/* If we have either an offset, a BLKmode result, or a reference
	   outside the underlying object, we must force it to memory.
	   Such a case can occur in Ada if we have unchecked conversion
	   of an expression from a scalar type to an aggregate type or
	   for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
	   passed a partially uninitialized object or a view-conversion
	   to a larger size.  */
	must_force_mem = (offset
			  || mode1 == BLKmode
			  || bitpos + bitsize > GET_MODE_BITSIZE (mode2));

	/* Handle CONCAT first.  */
	if (GET_CODE (op0) == CONCAT && !must_force_mem)
	  {
	    if (bitpos == 0
		&& bitsize == GET_MODE_BITSIZE (GET_MODE (op0))
		&& COMPLEX_MODE_P (mode1)
		&& COMPLEX_MODE_P (GET_MODE (op0))
		&& (GET_MODE_PRECISION (GET_MODE_INNER (mode1))
		    == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0)))))
	      {
		if (reversep)
		  op0 = flip_storage_order (GET_MODE (op0), op0);
		if (mode1 != GET_MODE (op0))
		  {
		    rtx parts[2];
		    for (int i = 0; i < 2; i++)
		      {
			rtx op = read_complex_part (op0, i != 0);
			if (GET_CODE (op) == SUBREG)
			  op = force_reg (GET_MODE (op), op);
			rtx temp = gen_lowpart_common (GET_MODE_INNER (mode1),
						       op);
			if (temp)
			  op = temp;
			else
			  {
			    if (!REG_P (op) && !MEM_P (op))
			      op = force_reg (GET_MODE (op), op);
			    op = gen_lowpart (GET_MODE_INNER (mode1), op);
			  }
			parts[i] = op;
		      }
		    op0 = gen_rtx_CONCAT (mode1, parts[0], parts[1]);
		  }
		return op0;
	      }
	    if (bitpos == 0
		&& bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
		&& bitsize)
	      {
		op0 = XEXP (op0, 0);
		mode2 = GET_MODE (op0);
	      }
	    else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
		     && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
		     && bitpos
		     && bitsize)
	      {
		op0 = XEXP (op0, 1);
		bitpos = 0;
		mode2 = GET_MODE (op0);
	      }
	    else
	      /* Otherwise force into memory.  */
	      must_force_mem = 1;
	  }

	/* If this is a constant, put it in a register if it is a legitimate
	   constant and we don't need a memory reference.  */
	if (CONSTANT_P (op0)
	    && mode2 != BLKmode
	    && targetm.legitimate_constant_p (mode2, op0)
	    && !must_force_mem)
	  op0 = force_reg (mode2, op0);

	/* Otherwise, if this is a constant, try to force it to the constant
	   pool.  Note that back-ends, e.g. MIPS, may refuse to do so if it
	   is a legitimate constant.  */
	else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
	  op0 = validize_mem (memloc);

	/* Otherwise, if this is a constant or the object is not in memory
	   and need be, put it there.  */
	else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
	  {
	    memloc = assign_temp (TREE_TYPE (tem), 1, 1);
	    emit_move_insn (memloc, op0);
	    op0 = memloc;
	    clear_mem_expr = true;
	  }

	if (offset)
	  {
	    machine_mode address_mode;
	    rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
					  EXPAND_SUM);

	    gcc_assert (MEM_P (op0));

	    address_mode = get_address_mode (op0);
	    if (GET_MODE (offset_rtx) != address_mode)
	      {
		/* We cannot be sure that the RTL in offset_rtx is valid outside
		   of a memory address context, so force it into a register
		   before attempting to convert it to the desired mode.  */
		offset_rtx = force_operand (offset_rtx, NULL_RTX);
		offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
	      }

	    /* See the comment in expand_assignment for the rationale.  */
	    if (mode1 != VOIDmode
		&& bitpos != 0
		&& bitsize > 0
		&& (bitpos % bitsize) == 0
		&& (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
		&& MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
	      {
		op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
		bitpos = 0;
	      }

	    op0 = offset_address (op0, offset_rtx,
				  highest_pow2_factor (offset));
	  }

	/* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
	   record its alignment as BIGGEST_ALIGNMENT.  */
	if (MEM_P (op0) && bitpos == 0 && offset != 0
	    && is_aligning_offset (offset, tem))
	  set_mem_align (op0, BIGGEST_ALIGNMENT);

	/* Don't forget about volatility even if this is a bitfield.  */
	if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
	  {
	    if (op0 == orig_op0)
	      op0 = copy_rtx (op0);

	    MEM_VOLATILE_P (op0) = 1;
	  }

	/* In cases where an aligned union has an unaligned object
	   as a field, we might be extracting a BLKmode value from
	   an integer-mode (e.g., SImode) object.  Handle this case
	   by doing the extract into an object as wide as the field
	   (which we know to be the width of a basic mode), then
	   storing into memory, and changing the mode to BLKmode.  */
	if (mode1 == VOIDmode
	    || REG_P (op0) || GET_CODE (op0) == SUBREG
	    || (mode1 != BLKmode && ! direct_load[(int) mode1]
		&& GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
		&& GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
		&& modifier != EXPAND_CONST_ADDRESS
		&& modifier != EXPAND_INITIALIZER
		&& modifier != EXPAND_MEMORY)
	    /* If the bitfield is volatile and the bitsize
	       is narrower than the access size of the bitfield,
	       we need to extract bitfields from the access.  */
	    || (volatilep && TREE_CODE (exp) == COMPONENT_REF
		&& DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
		&& mode1 != BLKmode
		&& bitsize < GET_MODE_SIZE (mode1) * BITS_PER_UNIT)
	    /* If the field isn't aligned enough to fetch as a memref,
	       fetch it as a bit field.  */
	    || (mode1 != BLKmode
		&& (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
		      || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
		      || (MEM_P (op0)
			  && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
			      || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
		     && modifier != EXPAND_MEMORY
		     && ((modifier == EXPAND_CONST_ADDRESS
			  || modifier == EXPAND_INITIALIZER)
			 ? STRICT_ALIGNMENT
			 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
		    || (bitpos % BITS_PER_UNIT != 0)))
	    /* If the type and the field are a constant size and the
	       size of the type isn't the same size as the bitfield,
	       we must use bitfield operations.  */
	    || (bitsize >= 0
		&& TYPE_SIZE (TREE_TYPE (exp))
		&& TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
		&& 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
					  bitsize)))
	  {
	    machine_mode ext_mode = mode;

	    if (ext_mode == BLKmode
		&& ! (target != 0 && MEM_P (op0)
		      && MEM_P (target)
		      && bitpos % BITS_PER_UNIT == 0))
	      ext_mode = mode_for_size (bitsize, MODE_INT, 1);

	    if (ext_mode == BLKmode)
	      {
		if (target == 0)
		  target = assign_temp (type, 1, 1);

		/* ??? Unlike the similar test a few lines below, this one is
		   very likely obsolete.  */
		if (bitsize == 0)
		  return target;

		/* In this case, BITPOS must start at a byte boundary and
		   TARGET, if specified, must be a MEM.  */
		gcc_assert (MEM_P (op0)
			    && (!target || MEM_P (target))
			    && !(bitpos % BITS_PER_UNIT));

		emit_block_move (target,
				 adjust_address (op0, VOIDmode,
						 bitpos / BITS_PER_UNIT),
				 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
					  / BITS_PER_UNIT),
				 (modifier == EXPAND_STACK_PARM
				  ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));

		return target;
	      }

	    /* If we have nothing to extract, the result will be 0 for targets
	       with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise.  Always
	       return 0 for the sake of consistency, as reading a zero-sized
	       bitfield is valid in Ada and the value is fully specified.  */
	    if (bitsize == 0)
	      return const0_rtx;

	    op0 = validize_mem (op0);

	    if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
	      mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));

	    /* If the result has a record type and the extraction is done in
	       an integral mode, then the field may be not aligned on a byte
	       boundary; in this case, if it has reverse storage order, it
	       needs to be extracted as a scalar field with reverse storage
	       order and put back into memory order afterwards.  */
	    if (TREE_CODE (type) == RECORD_TYPE
		&& GET_MODE_CLASS (ext_mode) == MODE_INT)
	      reversep = TYPE_REVERSE_STORAGE_ORDER (type);

	    op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
				     (modifier == EXPAND_STACK_PARM
				      ? NULL_RTX : target),
				     ext_mode, ext_mode, reversep);

	    /* If the result has a record type and the mode of OP0 is an
	       integral mode then, if BITSIZE is narrower than this mode
	       and this is for big-endian data, we must put the field
	       into the high-order bits.  And we must also put it back
	       into memory order if it has been previously reversed.  */
	    if (TREE_CODE (type) == RECORD_TYPE
		&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT)
	      {
		HOST_WIDE_INT size = GET_MODE_BITSIZE (GET_MODE (op0));

		if (bitsize < size
		    && reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
		  op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
				      size - bitsize, op0, 1);

		if (reversep)
		  op0 = flip_storage_order (GET_MODE (op0), op0);
	      }

	    /* If the result type is BLKmode, store the data into a temporary
	       of the appropriate type, but with the mode corresponding to the
	       mode for the data we have (op0's mode).  */
	    if (mode == BLKmode)
	      {
		rtx new_rtx
		  = assign_stack_temp_for_type (ext_mode,
						GET_MODE_BITSIZE (ext_mode),
						type);
		emit_move_insn (new_rtx, op0);
		op0 = copy_rtx (new_rtx);
		PUT_MODE (op0, BLKmode);
	      }

	    return op0;
	  }

	/* If the result is BLKmode, use that to access the object
	   now as well.  */
	if (mode == BLKmode)
	  mode1 = BLKmode;

	/* Get a reference to just this component.  */
	if (modifier == EXPAND_CONST_ADDRESS
	    || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
	  op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
	else
	  op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);

	if (op0 == orig_op0)
	  op0 = copy_rtx (op0);

	/* Don't set memory attributes if the base expression is
	   SSA_NAME that got expanded as a MEM.  In that case, we should
	   just honor its original memory attributes.  */
	if (TREE_CODE (tem) != SSA_NAME || !MEM_P (orig_op0))
	  set_mem_attributes (op0, exp, 0);

	if (REG_P (XEXP (op0, 0)))
	  mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));

	/* If op0 is a temporary because the original expressions was forced
	   to memory, clear MEM_EXPR so that the original expression cannot
	   be marked as addressable through MEM_EXPR of the temporary.  */
	if (clear_mem_expr)
	  set_mem_expr (op0, NULL_TREE);

	MEM_VOLATILE_P (op0) |= volatilep;

        if (reversep
	    && modifier != EXPAND_MEMORY
	    && modifier != EXPAND_WRITE)
	  op0 = flip_storage_order (mode1, op0);

	if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
	    || modifier == EXPAND_CONST_ADDRESS
	    || modifier == EXPAND_INITIALIZER)
	  return op0;

	if (target == 0)
	  target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);

	convert_move (target, op0, unsignedp);
	return target;
      }

    case OBJ_TYPE_REF:
      return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);

    case CALL_EXPR:
      /* All valid uses of __builtin_va_arg_pack () are removed during
	 inlining.  */
      if (CALL_EXPR_VA_ARG_PACK (exp))
	error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
      {
	tree fndecl = get_callee_fndecl (exp), attr;

	if (fndecl
	    && (attr = lookup_attribute ("error",
					 DECL_ATTRIBUTES (fndecl))) != NULL)
	  error ("%Kcall to %qs declared with attribute error: %s",
		 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
		 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
	if (fndecl
	    && (attr = lookup_attribute ("warning",
					 DECL_ATTRIBUTES (fndecl))) != NULL)
	  warning_at (tree_nonartificial_location (exp),
		      0, "%Kcall to %qs declared with attribute warning: %s",
		      exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
		      TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));

	/* Check for a built-in function.  */
	if (fndecl && DECL_BUILT_IN (fndecl))
	  {
	    gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
	    if (CALL_WITH_BOUNDS_P (exp))
	      return expand_builtin_with_bounds (exp, target, subtarget,
						 tmode, ignore);
	    else
	      return expand_builtin (exp, target, subtarget, tmode, ignore);
	  }
      }
      return expand_call (exp, target, ignore);

    case VIEW_CONVERT_EXPR:
      op0 = NULL_RTX;

      /* If we are converting to BLKmode, try to avoid an intermediate
	 temporary by fetching an inner memory reference.  */
      if (mode == BLKmode
	  && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
	  && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
	  && handled_component_p (treeop0))
      {
	machine_mode mode1;
	HOST_WIDE_INT bitsize, bitpos;
	tree offset;
	int unsignedp, reversep, volatilep = 0;
	tree tem
	  = get_inner_reference (treeop0, &bitsize, &bitpos, &offset, &mode1,
				 &unsignedp, &reversep, &volatilep);
	rtx orig_op0;

	/* ??? We should work harder and deal with non-zero offsets.  */
	if (!offset
	    && (bitpos % BITS_PER_UNIT) == 0
	    && !reversep
	    && bitsize >= 0
	    && compare_tree_int (TYPE_SIZE (type), bitsize) == 0)
	  {
	    /* See the normal_inner_ref case for the rationale.  */
	    orig_op0
	      = expand_expr_real (tem,
				  (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
				   && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
				       != INTEGER_CST)
				   && modifier != EXPAND_STACK_PARM
				   ? target : NULL_RTX),
				  VOIDmode,
				  modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
				  NULL, true);

	    if (MEM_P (orig_op0))
	      {
		op0 = orig_op0;

		/* Get a reference to just this component.  */
		if (modifier == EXPAND_CONST_ADDRESS
		    || modifier == EXPAND_SUM
		    || modifier == EXPAND_INITIALIZER)
		  op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
		else
		  op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);

		if (op0 == orig_op0)
		  op0 = copy_rtx (op0);

		set_mem_attributes (op0, treeop0, 0);
		if (REG_P (XEXP (op0, 0)))
		  mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));

		MEM_VOLATILE_P (op0) |= volatilep;
	      }
	  }
      }

      if (!op0)
	op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
				NULL, inner_reference_p);

      /* If the input and output modes are both the same, we are done.  */
      if (mode == GET_MODE (op0))
	;
      /* If neither mode is BLKmode, and both modes are the same size
	 then we can use gen_lowpart.  */
      else if (mode != BLKmode && GET_MODE (op0) != BLKmode
	       && (GET_MODE_PRECISION (mode)
		   == GET_MODE_PRECISION (GET_MODE (op0)))
	       && !COMPLEX_MODE_P (GET_MODE (op0)))
	{
	  if (GET_CODE (op0) == SUBREG)
	    op0 = force_reg (GET_MODE (op0), op0);
	  temp = gen_lowpart_common (mode, op0);
	  if (temp)
	    op0 = temp;
	  else
	    {
	      if (!REG_P (op0) && !MEM_P (op0))
		op0 = force_reg (GET_MODE (op0), op0);
	      op0 = gen_lowpart (mode, op0);
	    }
	}
      /* If both types are integral, convert from one mode to the other.  */
      else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
	op0 = convert_modes (mode, GET_MODE (op0), op0,
			     TYPE_UNSIGNED (TREE_TYPE (treeop0)));
      /* If the output type is a bit-field type, do an extraction.  */
      else if (reduce_bit_field)
	return extract_bit_field (op0, TYPE_PRECISION (type), 0,
				  TYPE_UNSIGNED (type), NULL_RTX,
				  mode, mode, false);
      /* As a last resort, spill op0 to memory, and reload it in a
	 different mode.  */
      else if (!MEM_P (op0))
	{
	  /* If the operand is not a MEM, force it into memory.  Since we
	     are going to be changing the mode of the MEM, don't call
	     force_const_mem for constants because we don't allow pool
	     constants to change mode.  */
	  tree inner_type = TREE_TYPE (treeop0);

	  gcc_assert (!TREE_ADDRESSABLE (exp));

	  if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
	    target
	      = assign_stack_temp_for_type
		(TYPE_MODE (inner_type),
		 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);

	  emit_move_insn (target, op0);
	  op0 = target;
	}

      /* If OP0 is (now) a MEM, we need to deal with alignment issues.  If the
	 output type is such that the operand is known to be aligned, indicate
	 that it is.  Otherwise, we need only be concerned about alignment for
	 non-BLKmode results.  */
      if (MEM_P (op0))
	{
	  enum insn_code icode;

	  if (modifier != EXPAND_WRITE
	      && modifier != EXPAND_MEMORY
	      && !inner_reference_p
	      && mode != BLKmode
	      && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
	    {
	      /* If the target does have special handling for unaligned
		 loads of mode then use them.  */
	      if ((icode = optab_handler (movmisalign_optab, mode))
		  != CODE_FOR_nothing)
		{
		  rtx reg;

		  op0 = adjust_address (op0, mode, 0);
		  /* We've already validated the memory, and we're creating a
		     new pseudo destination.  The predicates really can't
		     fail.  */
		  reg = gen_reg_rtx (mode);

		  /* Nor can the insn generator.  */
		  rtx_insn *insn = GEN_FCN (icode) (reg, op0);
		  emit_insn (insn);
		  return reg;
		}
	      else if (STRICT_ALIGNMENT)
		{
		  tree inner_type = TREE_TYPE (treeop0);
		  HOST_WIDE_INT temp_size
		    = MAX (int_size_in_bytes (inner_type),
			   (HOST_WIDE_INT) GET_MODE_SIZE (mode));
		  rtx new_rtx
		    = assign_stack_temp_for_type (mode, temp_size, type);
		  rtx new_with_op0_mode
		    = adjust_address (new_rtx, GET_MODE (op0), 0);

		  gcc_assert (!TREE_ADDRESSABLE (exp));

		  if (GET_MODE (op0) == BLKmode)
		    emit_block_move (new_with_op0_mode, op0,
				     GEN_INT (GET_MODE_SIZE (mode)),
				     (modifier == EXPAND_STACK_PARM
				      ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
		  else
		    emit_move_insn (new_with_op0_mode, op0);

		  op0 = new_rtx;
		}
	    }

	  op0 = adjust_address (op0, mode, 0);
	}

      return op0;

    case MODIFY_EXPR:
      {
	tree lhs = treeop0;
	tree rhs = treeop1;
	gcc_assert (ignore);

	/* Check for |= or &= of a bitfield of size one into another bitfield
	   of size 1.  In this case, (unless we need the result of the
	   assignment) we can do this more efficiently with a
	   test followed by an assignment, if necessary.

	   ??? At this point, we can't get a BIT_FIELD_REF here.  But if
	   things change so we do, this code should be enhanced to
	   support it.  */
	if (TREE_CODE (lhs) == COMPONENT_REF
	    && (TREE_CODE (rhs) == BIT_IOR_EXPR
		|| TREE_CODE (rhs) == BIT_AND_EXPR)
	    && TREE_OPERAND (rhs, 0) == lhs
	    && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
	    && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
	    && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
	  {
	    rtx_code_label *label = gen_label_rtx ();
	    int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
	    do_jump (TREE_OPERAND (rhs, 1),
		     value ? label : 0,
		     value ? 0 : label, -1);
	    expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
			       false);
	    do_pending_stack_adjust ();
	    emit_label (label);
	    return const0_rtx;
	  }

	expand_assignment (lhs, rhs, false);
	return const0_rtx;
      }

    case ADDR_EXPR:
      return expand_expr_addr_expr (exp, target, tmode, modifier);

    case REALPART_EXPR:
      op0 = expand_normal (treeop0);
      return read_complex_part (op0, false);

    case IMAGPART_EXPR:
      op0 = expand_normal (treeop0);
      return read_complex_part (op0, true);

    case RETURN_EXPR:
    case LABEL_EXPR:
    case GOTO_EXPR:
    case SWITCH_EXPR:
    case ASM_EXPR:
      /* Expanded in cfgexpand.c.  */
      gcc_unreachable ();

    case TRY_CATCH_EXPR:
    case CATCH_EXPR:
    case EH_FILTER_EXPR:
    case TRY_FINALLY_EXPR:
      /* Lowered by tree-eh.c.  */
      gcc_unreachable ();

    case WITH_CLEANUP_EXPR:
    case CLEANUP_POINT_EXPR:
    case TARGET_EXPR:
    case CASE_LABEL_EXPR:
    case VA_ARG_EXPR:
    case BIND_EXPR:
    case INIT_EXPR:
    case CONJ_EXPR:
    case COMPOUND_EXPR:
    case PREINCREMENT_EXPR:
    case PREDECREMENT_EXPR:
    case POSTINCREMENT_EXPR:
    case POSTDECREMENT_EXPR:
    case LOOP_EXPR:
    case EXIT_EXPR:
    case COMPOUND_LITERAL_EXPR:
      /* Lowered by gimplify.c.  */
      gcc_unreachable ();

    case FDESC_EXPR:
      /* Function descriptors are not valid except for as
	 initialization constants, and should not be expanded.  */
      gcc_unreachable ();

    case WITH_SIZE_EXPR:
      /* WITH_SIZE_EXPR expands to its first argument.  The caller should
	 have pulled out the size to use in whatever context it needed.  */
      return expand_expr_real (treeop0, original_target, tmode,
			       modifier, alt_rtl, inner_reference_p);

    default:
      return expand_expr_real_2 (&ops, target, tmode, modifier);
    }
}

/* Subroutine of above: reduce EXP to the precision of TYPE (in the
   signedness of TYPE), possibly returning the result in TARGET.  */
static rtx
reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
{
  HOST_WIDE_INT prec = TYPE_PRECISION (type);
  if (target && GET_MODE (target) != GET_MODE (exp))
    target = 0;
  /* For constant values, reduce using build_int_cst_type. */
  if (CONST_INT_P (exp))
    {
      HOST_WIDE_INT value = INTVAL (exp);
      tree t = build_int_cst_type (type, value);
      return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
    }
  else if (TYPE_UNSIGNED (type))
    {
      machine_mode mode = GET_MODE (exp);
      rtx mask = immed_wide_int_const
	(wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
      return expand_and (mode, exp, mask, target);
    }
  else
    {
      int count = GET_MODE_PRECISION (GET_MODE (exp)) - prec;
      exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp),
			  exp, count, target, 0);
      return expand_shift (RSHIFT_EXPR, GET_MODE (exp),
			   exp, count, target, 0);
    }
}

/* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
   when applied to the address of EXP produces an address known to be
   aligned more than BIGGEST_ALIGNMENT.  */

static int
is_aligning_offset (const_tree offset, const_tree exp)
{
  /* Strip off any conversions.  */
  while (CONVERT_EXPR_P (offset))
    offset = TREE_OPERAND (offset, 0);

  /* We must now have a BIT_AND_EXPR with a constant that is one less than
     power of 2 and which is larger than BIGGEST_ALIGNMENT.  */
  if (TREE_CODE (offset) != BIT_AND_EXPR
      || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
      || compare_tree_int (TREE_OPERAND (offset, 1),
			   BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
      || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1))
    return 0;

  /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
     It must be NEGATE_EXPR.  Then strip any more conversions.  */
  offset = TREE_OPERAND (offset, 0);
  while (CONVERT_EXPR_P (offset))
    offset = TREE_OPERAND (offset, 0);

  if (TREE_CODE (offset) != NEGATE_EXPR)
    return 0;

  offset = TREE_OPERAND (offset, 0);
  while (CONVERT_EXPR_P (offset))
    offset = TREE_OPERAND (offset, 0);

  /* This must now be the address of EXP.  */
  return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
}

/* Return the tree node if an ARG corresponds to a string constant or zero
   if it doesn't.  If we return nonzero, set *PTR_OFFSET to the offset
   in bytes within the string that ARG is accessing.  The type of the
   offset will be `sizetype'.  */

tree
string_constant (tree arg, tree *ptr_offset)
{
  tree array, offset, lower_bound;
  STRIP_NOPS (arg);

  if (TREE_CODE (arg) == ADDR_EXPR)
    {
      if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
	{
	  *ptr_offset = size_zero_node;
	  return TREE_OPERAND (arg, 0);
	}
      else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
	{
	  array = TREE_OPERAND (arg, 0);
	  offset = size_zero_node;
	}
      else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
	{
	  array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
	  offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
	  if (TREE_CODE (array) != STRING_CST && !VAR_P (array))
	    return 0;

	  /* Check if the array has a nonzero lower bound.  */
	  lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
	  if (!integer_zerop (lower_bound))
	    {
	      /* If the offset and base aren't both constants, return 0.  */
	      if (TREE_CODE (lower_bound) != INTEGER_CST)
	        return 0;
	      if (TREE_CODE (offset) != INTEGER_CST)
		return 0;
	      /* Adjust offset by the lower bound.  */
	      offset = size_diffop (fold_convert (sizetype, offset),
				    fold_convert (sizetype, lower_bound));
	    }
	}
      else if (TREE_CODE (TREE_OPERAND (arg, 0)) == MEM_REF)
	{
	  array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
	  offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
	  if (TREE_CODE (array) != ADDR_EXPR)
	    return 0;
	  array = TREE_OPERAND (array, 0);
	  if (TREE_CODE (array) != STRING_CST && !VAR_P (array))
	    return 0;
	}
      else
	return 0;
    }
  else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
    {
      tree arg0 = TREE_OPERAND (arg, 0);
      tree arg1 = TREE_OPERAND (arg, 1);

      STRIP_NOPS (arg0);
      STRIP_NOPS (arg1);

      if (TREE_CODE (arg0) == ADDR_EXPR
	  && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
	      || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
	{
	  array = TREE_OPERAND (arg0, 0);
	  offset = arg1;
	}
      else if (TREE_CODE (arg1) == ADDR_EXPR
	       && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
		   || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
	{
	  array = TREE_OPERAND (arg1, 0);
	  offset = arg0;
	}
      else
	return 0;
    }
  else
    return 0;

  if (TREE_CODE (array) == STRING_CST)
    {
      *ptr_offset = fold_convert (sizetype, offset);
      return array;
    }
  else if (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
    {
      int length;
      tree init = ctor_for_folding (array);

      /* Variables initialized to string literals can be handled too.  */
      if (init == error_mark_node
	  || !init
	  || TREE_CODE (init) != STRING_CST)
	return 0;

      /* Avoid const char foo[4] = "abcde";  */
      if (DECL_SIZE_UNIT (array) == NULL_TREE
	  || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
	  || (length = TREE_STRING_LENGTH (init)) <= 0
	  || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
	return 0;

      /* If variable is bigger than the string literal, OFFSET must be constant
	 and inside of the bounds of the string literal.  */
      offset = fold_convert (sizetype, offset);
      if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
	  && (! tree_fits_uhwi_p (offset)
	      || compare_tree_int (offset, length) >= 0))
	return 0;

      *ptr_offset = offset;
      return init;
    }

  return 0;
}

/* Generate code to calculate OPS, and exploded expression
   using a store-flag instruction and return an rtx for the result.
   OPS reflects a comparison.

   If TARGET is nonzero, store the result there if convenient.

   Return zero if there is no suitable set-flag instruction
   available on this machine.

   Once expand_expr has been called on the arguments of the comparison,
   we are committed to doing the store flag, since it is not safe to
   re-evaluate the expression.  We emit the store-flag insn by calling
   emit_store_flag, but only expand the arguments if we have a reason
   to believe that emit_store_flag will be successful.  If we think that
   it will, but it isn't, we have to simulate the store-flag with a
   set/jump/set sequence.  */

static rtx
do_store_flag (sepops ops, rtx target, machine_mode mode)
{
  enum rtx_code code;
  tree arg0, arg1, type;
  machine_mode operand_mode;
  int unsignedp;
  rtx op0, op1;
  rtx subtarget = target;
  location_t loc = ops->location;

  arg0 = ops->op0;
  arg1 = ops->op1;

  /* Don't crash if the comparison was erroneous.  */
  if (arg0 == error_mark_node || arg1 == error_mark_node)
    return const0_rtx;

  type = TREE_TYPE (arg0);
  operand_mode = TYPE_MODE (type);
  unsignedp = TYPE_UNSIGNED (type);

  /* We won't bother with BLKmode store-flag operations because it would mean
     passing a lot of information to emit_store_flag.  */
  if (operand_mode == BLKmode)
    return 0;

  /* We won't bother with store-flag operations involving function pointers
     when function pointers must be canonicalized before comparisons.  */
  if (targetm.have_canonicalize_funcptr_for_compare ()
      && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
	   && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
	       == FUNCTION_TYPE))
	  || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
	      && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
		  == FUNCTION_TYPE))))
    return 0;

  STRIP_NOPS (arg0);
  STRIP_NOPS (arg1);
  
  /* For vector typed comparisons emit code to generate the desired
     all-ones or all-zeros mask.  Conveniently use the VEC_COND_EXPR
     expander for this.  */
  if (TREE_CODE (ops->type) == VECTOR_TYPE)
    {
      tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
      if (VECTOR_BOOLEAN_TYPE_P (ops->type)
	  && expand_vec_cmp_expr_p (TREE_TYPE (arg0), ops->type, ops->code))
	return expand_vec_cmp_expr (ops->type, ifexp, target);
      else
	{
	  tree if_true = constant_boolean_node (true, ops->type);
	  tree if_false = constant_boolean_node (false, ops->type);
	  return expand_vec_cond_expr (ops->type, ifexp, if_true,
				       if_false, target);
	}
    }

  /* Get the rtx comparison code to use.  We know that EXP is a comparison
     operation of some type.  Some comparisons against 1 and -1 can be
     converted to comparisons with zero.  Do so here so that the tests
     below will be aware that we have a comparison with zero.   These
     tests will not catch constants in the first operand, but constants
     are rarely passed as the first operand.  */

  switch (ops->code)
    {
    case EQ_EXPR:
      code = EQ;
      break;
    case NE_EXPR:
      code = NE;
      break;
    case LT_EXPR:
      if (integer_onep (arg1))
	arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
      else
	code = unsignedp ? LTU : LT;
      break;
    case LE_EXPR:
      if (! unsignedp && integer_all_onesp (arg1))
	arg1 = integer_zero_node, code = LT;
      else
	code = unsignedp ? LEU : LE;
      break;
    case GT_EXPR:
      if (! unsignedp && integer_all_onesp (arg1))
	arg1 = integer_zero_node, code = GE;
      else
	code = unsignedp ? GTU : GT;
      break;
    case GE_EXPR:
      if (integer_onep (arg1))
	arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
      else
	code = unsignedp ? GEU : GE;
      break;

    case UNORDERED_EXPR:
      code = UNORDERED;
      break;
    case ORDERED_EXPR:
      code = ORDERED;
      break;
    case UNLT_EXPR:
      code = UNLT;
      break;
    case UNLE_EXPR:
      code = UNLE;
      break;
    case UNGT_EXPR:
      code = UNGT;
      break;
    case UNGE_EXPR:
      code = UNGE;
      break;
    case UNEQ_EXPR:
      code = UNEQ;
      break;
    case LTGT_EXPR:
      code = LTGT;
      break;

    default:
      gcc_unreachable ();
    }

  /* Put a constant second.  */
  if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
      || TREE_CODE (arg0) == FIXED_CST)
    {
      std::swap (arg0, arg1);
      code = swap_condition (code);
    }

  /* If this is an equality or inequality test of a single bit, we can
     do this by shifting the bit being tested to the low-order bit and
     masking the result with the constant 1.  If the condition was EQ,
     we xor it with 1.  This does not require an scc insn and is faster
     than an scc insn even if we have it.

     The code to make this transformation was moved into fold_single_bit_test,
     so we just call into the folder and expand its result.  */

  if ((code == NE || code == EQ)
      && integer_zerop (arg1)
      && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
    {
      gimple *srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
      if (srcstmt
	  && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
	{
	  enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
	  tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
	  tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
				       gimple_assign_rhs1 (srcstmt),
				       gimple_assign_rhs2 (srcstmt));
	  temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
	  if (temp)
	    return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
	}
    }

  if (! get_subtarget (target)
      || GET_MODE (subtarget) != operand_mode)
    subtarget = 0;

  expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);

  if (target == 0)
    target = gen_reg_rtx (mode);

  /* Try a cstore if possible.  */
  return emit_store_flag_force (target, code, op0, op1,
				operand_mode, unsignedp,
				(TYPE_PRECISION (ops->type) == 1
				 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
}

/* Attempt to generate a casesi instruction.  Returns 1 if successful,
   0 otherwise (i.e. if there is no casesi instruction).

   DEFAULT_PROBABILITY is the probability of jumping to the default
   label.  */
int
try_casesi (tree index_type, tree index_expr, tree minval, tree range,
	    rtx table_label, rtx default_label, rtx fallback_label,
            int default_probability)
{
  struct expand_operand ops[5];
  machine_mode index_mode = SImode;
  rtx op1, op2, index;

  if (! targetm.have_casesi ())
    return 0;

  /* Convert the index to SImode.  */
  if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
    {
      machine_mode omode = TYPE_MODE (index_type);
      rtx rangertx = expand_normal (range);

      /* We must handle the endpoints in the original mode.  */
      index_expr = build2 (MINUS_EXPR, index_type,
			   index_expr, minval);
      minval = integer_zero_node;
      index = expand_normal (index_expr);
      if (default_label)
        emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
				 omode, 1, default_label,
                                 default_probability);
      /* Now we can safely truncate.  */
      index = convert_to_mode (index_mode, index, 0);
    }
  else
    {
      if (TYPE_MODE (index_type) != index_mode)
	{
	  index_type = lang_hooks.types.type_for_mode (index_mode, 0);
	  index_expr = fold_convert (index_type, index_expr);
	}

      index = expand_normal (index_expr);
    }

  do_pending_stack_adjust ();

  op1 = expand_normal (minval);
  op2 = expand_normal (range);

  create_input_operand (&ops[0], index, index_mode);
  create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
  create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
  create_fixed_operand (&ops[3], table_label);
  create_fixed_operand (&ops[4], (default_label
				  ? default_label
				  : fallback_label));
  expand_jump_insn (targetm.code_for_casesi, 5, ops);
  return 1;
}

/* Attempt to generate a tablejump instruction; same concept.  */
/* Subroutine of the next function.

   INDEX is the value being switched on, with the lowest value
   in the table already subtracted.
   MODE is its expected mode (needed if INDEX is constant).
   RANGE is the length of the jump table.
   TABLE_LABEL is a CODE_LABEL rtx for the table itself.

   DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
   index value is out of range.
   DEFAULT_PROBABILITY is the probability of jumping to
   the default label.  */

static void
do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
	      rtx default_label, int default_probability)
{
  rtx temp, vector;

  if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
    cfun->cfg->max_jumptable_ents = INTVAL (range);

  /* Do an unsigned comparison (in the proper mode) between the index
     expression and the value which represents the length of the range.
     Since we just finished subtracting the lower bound of the range
     from the index expression, this comparison allows us to simultaneously
     check that the original index expression value is both greater than
     or equal to the minimum value of the range and less than or equal to
     the maximum value of the range.  */

  if (default_label)
    emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
			     default_label, default_probability);


  /* If index is in range, it must fit in Pmode.
     Convert to Pmode so we can index with it.  */
  if (mode != Pmode)
    index = convert_to_mode (Pmode, index, 1);

  /* Don't let a MEM slip through, because then INDEX that comes
     out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
     and break_out_memory_refs will go to work on it and mess it up.  */
#ifdef PIC_CASE_VECTOR_ADDRESS
  if (flag_pic && !REG_P (index))
    index = copy_to_mode_reg (Pmode, index);
#endif

  /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
     GET_MODE_SIZE, because this indicates how large insns are.  The other
     uses should all be Pmode, because they are addresses.  This code
     could fail if addresses and insns are not the same size.  */
  index = simplify_gen_binary (MULT, Pmode, index,
			       gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
					     Pmode));
  index = simplify_gen_binary (PLUS, Pmode, index,
			       gen_rtx_LABEL_REF (Pmode, table_label));

#ifdef PIC_CASE_VECTOR_ADDRESS
  if (flag_pic)
    index = PIC_CASE_VECTOR_ADDRESS (index);
  else
#endif
    index = memory_address (CASE_VECTOR_MODE, index);
  temp = gen_reg_rtx (CASE_VECTOR_MODE);
  vector = gen_const_mem (CASE_VECTOR_MODE, index);
  convert_move (temp, vector, 0);

  emit_jump_insn (targetm.gen_tablejump (temp, table_label));

  /* If we are generating PIC code or if the table is PC-relative, the
     table and JUMP_INSN must be adjacent, so don't output a BARRIER.  */
  if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
    emit_barrier ();
}

int
try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
	       rtx table_label, rtx default_label, int default_probability)
{
  rtx index;

  if (! targetm.have_tablejump ())
    return 0;

  index_expr = fold_build2 (MINUS_EXPR, index_type,
			    fold_convert (index_type, index_expr),
			    fold_convert (index_type, minval));
  index = expand_normal (index_expr);
  do_pending_stack_adjust ();

  do_tablejump (index, TYPE_MODE (index_type),
		convert_modes (TYPE_MODE (index_type),
			       TYPE_MODE (TREE_TYPE (range)),
			       expand_normal (range),
			       TYPE_UNSIGNED (TREE_TYPE (range))),
		table_label, default_label, default_probability);
  return 1;
}

/* Return a CONST_VECTOR rtx representing vector mask for
   a VECTOR_CST of booleans.  */
static rtx
const_vector_mask_from_tree (tree exp)
{
  rtvec v;
  unsigned i;
  int units;
  tree elt;
  machine_mode inner, mode;

  mode = TYPE_MODE (TREE_TYPE (exp));
  units = GET_MODE_NUNITS (mode);
  inner = GET_MODE_INNER (mode);

  v = rtvec_alloc (units);

  for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
    {
      elt = VECTOR_CST_ELT (exp, i);

      gcc_assert (TREE_CODE (elt) == INTEGER_CST);
      if (integer_zerop (elt))
	RTVEC_ELT (v, i) = CONST0_RTX (inner);
      else if (integer_onep (elt)
	       || integer_minus_onep (elt))
	RTVEC_ELT (v, i) = CONSTM1_RTX (inner);
      else
	gcc_unreachable ();
    }

  return gen_rtx_CONST_VECTOR (mode, v);
}

/* Return a CONST_INT rtx representing vector mask for
   a VECTOR_CST of booleans.  */
static rtx
const_scalar_mask_from_tree (tree exp)
{
  machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
  wide_int res = wi::zero (GET_MODE_PRECISION (mode));
  tree elt;
  unsigned i;

  for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
    {
      elt = VECTOR_CST_ELT (exp, i);
      gcc_assert (TREE_CODE (elt) == INTEGER_CST);
      if (integer_all_onesp (elt))
	res = wi::set_bit (res, i);
      else
	gcc_assert (integer_zerop (elt));
    }

  return immed_wide_int_const (res, mode);
}

/* Return a CONST_VECTOR rtx for a VECTOR_CST tree.  */
static rtx
const_vector_from_tree (tree exp)
{
  rtvec v;
  unsigned i;
  int units;
  tree elt;
  machine_mode inner, mode;

  mode = TYPE_MODE (TREE_TYPE (exp));

  if (initializer_zerop (exp))
    return CONST0_RTX (mode);

  if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
    return const_vector_mask_from_tree (exp);

  units = GET_MODE_NUNITS (mode);
  inner = GET_MODE_INNER (mode);

  v = rtvec_alloc (units);

  for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
    {
      elt = VECTOR_CST_ELT (exp, i);

      if (TREE_CODE (elt) == REAL_CST)
	RTVEC_ELT (v, i) = const_double_from_real_value (TREE_REAL_CST (elt),
							 inner);
      else if (TREE_CODE (elt) == FIXED_CST)
	RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
							 inner);
      else
	RTVEC_ELT (v, i) = immed_wide_int_const (elt, inner);
    }

  return gen_rtx_CONST_VECTOR (mode, v);
}

/* Build a decl for a personality function given a language prefix.  */

tree
build_personality_function (const char *lang)
{
  const char *unwind_and_version;
  tree decl, type;
  char *name;

  switch (targetm_common.except_unwind_info (&global_options))
    {
    case UI_NONE:
      return NULL;
    case UI_SJLJ:
      unwind_and_version = "_sj0";
      break;
    case UI_DWARF2:
    case UI_TARGET:
      unwind_and_version = "_v0";
      break;
    case UI_SEH:
      unwind_and_version = "_seh0";
      break;
    default:
      gcc_unreachable ();
    }

  name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));

  type = build_function_type_list (integer_type_node, integer_type_node,
				   long_long_unsigned_type_node,
				   ptr_type_node, ptr_type_node, NULL_TREE);
  decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
		     get_identifier (name), type);
  DECL_ARTIFICIAL (decl) = 1;
  DECL_EXTERNAL (decl) = 1;
  TREE_PUBLIC (decl) = 1;

  /* Zap the nonsensical SYMBOL_REF_DECL for this.  What we're left with
     are the flags assigned by targetm.encode_section_info.  */
  SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);

  return decl;
}

/* Extracts the personality function of DECL and returns the corresponding
   libfunc.  */

rtx
get_personality_function (tree decl)
{
  tree personality = DECL_FUNCTION_PERSONALITY (decl);
  enum eh_personality_kind pk;

  pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
  if (pk == eh_personality_none)
    return NULL;

  if (!personality
      && pk == eh_personality_any)
    personality = lang_hooks.eh_personality ();

  if (pk == eh_personality_lang)
    gcc_assert (personality != NULL_TREE);

  return XEXP (DECL_RTL (personality), 0);
}

/* Returns a tree for the size of EXP in bytes.  */

static tree
tree_expr_size (const_tree exp)
{
  if (DECL_P (exp)
      && DECL_SIZE_UNIT (exp) != 0)
    return DECL_SIZE_UNIT (exp);
  else
    return size_in_bytes (TREE_TYPE (exp));
}

/* Return an rtx for the size in bytes of the value of EXP.  */

rtx
expr_size (tree exp)
{
  tree size;

  if (TREE_CODE (exp) == WITH_SIZE_EXPR)
    size = TREE_OPERAND (exp, 1);
  else
    {
      size = tree_expr_size (exp);
      gcc_assert (size);
      gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
    }

  return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
}

/* Return a wide integer for the size in bytes of the value of EXP, or -1
   if the size can vary or is larger than an integer.  */

static HOST_WIDE_INT
int_expr_size (tree exp)
{
  tree size;

  if (TREE_CODE (exp) == WITH_SIZE_EXPR)
    size = TREE_OPERAND (exp, 1);
  else
    {
      size = tree_expr_size (exp);
      gcc_assert (size);
    }

  if (size == 0 || !tree_fits_shwi_p (size))
    return -1;

  return tree_to_shwi (size);
}