aboutsummaryrefslogtreecommitdiff
path: root/gcc/expmed.cc
blob: b12b0e000c214592bb4f9dfb4bd598aecb6ed456 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
/* Medium-level subroutines: convert bit-field store and extract
   and shifts, multiplies and divides to rtl instructions.
   Copyright (C) 1987-2022 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

/* Work around tree-optimization/91825.  */
#pragma GCC diagnostic warning "-Wmaybe-uninitialized"

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "predict.h"
#include "memmodel.h"
#include "tm_p.h"
#include "optabs.h"
#include "expmed.h"
#include "regs.h"
#include "emit-rtl.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "dojump.h"
#include "explow.h"
#include "expr.h"
#include "langhooks.h"
#include "tree-vector-builder.h"

struct target_expmed default_target_expmed;
#if SWITCHABLE_TARGET
struct target_expmed *this_target_expmed = &default_target_expmed;
#endif

static bool store_integral_bit_field (rtx, opt_scalar_int_mode,
				      unsigned HOST_WIDE_INT,
				      unsigned HOST_WIDE_INT,
				      poly_uint64, poly_uint64,
				      machine_mode, rtx, bool, bool);
static void store_fixed_bit_field (rtx, opt_scalar_int_mode,
				   unsigned HOST_WIDE_INT,
				   unsigned HOST_WIDE_INT,
				   poly_uint64, poly_uint64,
				   rtx, scalar_int_mode, bool);
static void store_fixed_bit_field_1 (rtx, scalar_int_mode,
				     unsigned HOST_WIDE_INT,
				     unsigned HOST_WIDE_INT,
				     rtx, scalar_int_mode, bool);
static void store_split_bit_field (rtx, opt_scalar_int_mode,
				   unsigned HOST_WIDE_INT,
				   unsigned HOST_WIDE_INT,
				   poly_uint64, poly_uint64,
				   rtx, scalar_int_mode, bool);
static rtx extract_integral_bit_field (rtx, opt_scalar_int_mode,
				       unsigned HOST_WIDE_INT,
				       unsigned HOST_WIDE_INT, int, rtx,
				       machine_mode, machine_mode, bool, bool);
static rtx extract_fixed_bit_field (machine_mode, rtx, opt_scalar_int_mode,
				    unsigned HOST_WIDE_INT,
				    unsigned HOST_WIDE_INT, rtx, int, bool);
static rtx extract_fixed_bit_field_1 (machine_mode, rtx, scalar_int_mode,
				      unsigned HOST_WIDE_INT,
				      unsigned HOST_WIDE_INT, rtx, int, bool);
static rtx lshift_value (machine_mode, unsigned HOST_WIDE_INT, int);
static rtx extract_split_bit_field (rtx, opt_scalar_int_mode,
				    unsigned HOST_WIDE_INT,
				    unsigned HOST_WIDE_INT, int, bool);
static void do_cmp_and_jump (rtx, rtx, enum rtx_code, machine_mode, rtx_code_label *);
static rtx expand_smod_pow2 (scalar_int_mode, rtx, HOST_WIDE_INT);
static rtx expand_sdiv_pow2 (scalar_int_mode, rtx, HOST_WIDE_INT);

/* Return a constant integer mask value of mode MODE with BITSIZE ones
   followed by BITPOS zeros, or the complement of that if COMPLEMENT.
   The mask is truncated if necessary to the width of mode MODE.  The
   mask is zero-extended if BITSIZE+BITPOS is too small for MODE.  */

static inline rtx
mask_rtx (scalar_int_mode mode, int bitpos, int bitsize, bool complement)
{
  return immed_wide_int_const
    (wi::shifted_mask (bitpos, bitsize, complement,
		       GET_MODE_PRECISION (mode)), mode);
}

/* Test whether a value is zero of a power of two.  */
#define EXACT_POWER_OF_2_OR_ZERO_P(x) \
  (((x) & ((x) - HOST_WIDE_INT_1U)) == 0)

struct init_expmed_rtl
{
  rtx reg;
  rtx plus;
  rtx neg;
  rtx mult;
  rtx sdiv;
  rtx udiv;
  rtx sdiv_32;
  rtx smod_32;
  rtx wide_mult;
  rtx wide_lshr;
  rtx wide_trunc;
  rtx shift;
  rtx shift_mult;
  rtx shift_add;
  rtx shift_sub0;
  rtx shift_sub1;
  rtx zext;
  rtx trunc;

  rtx pow2[MAX_BITS_PER_WORD];
  rtx cint[MAX_BITS_PER_WORD];
};

static void
init_expmed_one_conv (struct init_expmed_rtl *all, scalar_int_mode to_mode,
		      scalar_int_mode from_mode, bool speed)
{
  int to_size, from_size;
  rtx which;

  to_size = GET_MODE_PRECISION (to_mode);
  from_size = GET_MODE_PRECISION (from_mode);

  /* Most partial integers have a precision less than the "full"
     integer it requires for storage.  In case one doesn't, for
     comparison purposes here, reduce the bit size by one in that
     case.  */
  if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT
      && pow2p_hwi (to_size))
    to_size --;
  if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT
      && pow2p_hwi (from_size))
    from_size --;
  
  /* Assume cost of zero-extend and sign-extend is the same.  */
  which = (to_size < from_size ? all->trunc : all->zext);

  PUT_MODE (all->reg, from_mode);
  set_convert_cost (to_mode, from_mode, speed,
		    set_src_cost (which, to_mode, speed));
  /* Restore all->reg's mode.  */
  PUT_MODE (all->reg, to_mode);
}

static void
init_expmed_one_mode (struct init_expmed_rtl *all,
		      machine_mode mode, int speed)
{
  int m, n, mode_bitsize;
  machine_mode mode_from;

  mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);

  PUT_MODE (all->reg, mode);
  PUT_MODE (all->plus, mode);
  PUT_MODE (all->neg, mode);
  PUT_MODE (all->mult, mode);
  PUT_MODE (all->sdiv, mode);
  PUT_MODE (all->udiv, mode);
  PUT_MODE (all->sdiv_32, mode);
  PUT_MODE (all->smod_32, mode);
  PUT_MODE (all->wide_trunc, mode);
  PUT_MODE (all->shift, mode);
  PUT_MODE (all->shift_mult, mode);
  PUT_MODE (all->shift_add, mode);
  PUT_MODE (all->shift_sub0, mode);
  PUT_MODE (all->shift_sub1, mode);
  PUT_MODE (all->zext, mode);
  PUT_MODE (all->trunc, mode);

  set_add_cost (speed, mode, set_src_cost (all->plus, mode, speed));
  set_neg_cost (speed, mode, set_src_cost (all->neg, mode, speed));
  set_mul_cost (speed, mode, set_src_cost (all->mult, mode, speed));
  set_sdiv_cost (speed, mode, set_src_cost (all->sdiv, mode, speed));
  set_udiv_cost (speed, mode, set_src_cost (all->udiv, mode, speed));

  set_sdiv_pow2_cheap (speed, mode, (set_src_cost (all->sdiv_32, mode, speed)
				     <= 2 * add_cost (speed, mode)));
  set_smod_pow2_cheap (speed, mode, (set_src_cost (all->smod_32, mode, speed)
				     <= 4 * add_cost (speed, mode)));

  set_shift_cost (speed, mode, 0, 0);
  {
    int cost = add_cost (speed, mode);
    set_shiftadd_cost (speed, mode, 0, cost);
    set_shiftsub0_cost (speed, mode, 0, cost);
    set_shiftsub1_cost (speed, mode, 0, cost);
  }

  n = MIN (MAX_BITS_PER_WORD, mode_bitsize);
  for (m = 1; m < n; m++)
    {
      XEXP (all->shift, 1) = all->cint[m];
      XEXP (all->shift_mult, 1) = all->pow2[m];

      set_shift_cost (speed, mode, m, set_src_cost (all->shift, mode, speed));
      set_shiftadd_cost (speed, mode, m, set_src_cost (all->shift_add, mode,
						       speed));
      set_shiftsub0_cost (speed, mode, m, set_src_cost (all->shift_sub0, mode,
							speed));
      set_shiftsub1_cost (speed, mode, m, set_src_cost (all->shift_sub1, mode,
							speed));
    }

  scalar_int_mode int_mode_to;
  if (is_a <scalar_int_mode> (mode, &int_mode_to))
    {
      for (mode_from = MIN_MODE_INT; mode_from <= MAX_MODE_INT;
	   mode_from = (machine_mode)(mode_from + 1))
	init_expmed_one_conv (all, int_mode_to,
			      as_a <scalar_int_mode> (mode_from), speed);

      scalar_int_mode wider_mode;
      if (GET_MODE_CLASS (int_mode_to) == MODE_INT
	  && GET_MODE_WIDER_MODE (int_mode_to).exists (&wider_mode))
	{
	  PUT_MODE (all->reg, mode);
	  PUT_MODE (all->zext, wider_mode);
	  PUT_MODE (all->wide_mult, wider_mode);
	  PUT_MODE (all->wide_lshr, wider_mode);
	  XEXP (all->wide_lshr, 1)
	    = gen_int_shift_amount (wider_mode, mode_bitsize);

	  set_mul_widen_cost (speed, wider_mode,
			      set_src_cost (all->wide_mult, wider_mode, speed));
	  set_mul_highpart_cost (speed, int_mode_to,
				 set_src_cost (all->wide_trunc,
					       int_mode_to, speed));
	}
    }
}

void
init_expmed (void)
{
  struct init_expmed_rtl all;
  machine_mode mode = QImode;
  int m, speed;

  memset (&all, 0, sizeof all);
  for (m = 1; m < MAX_BITS_PER_WORD; m++)
    {
      all.pow2[m] = GEN_INT (HOST_WIDE_INT_1 << m);
      all.cint[m] = GEN_INT (m);
    }

  /* Avoid using hard regs in ways which may be unsupported.  */
  all.reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
  all.plus = gen_rtx_PLUS (mode, all.reg, all.reg);
  all.neg = gen_rtx_NEG (mode, all.reg);
  all.mult = gen_rtx_MULT (mode, all.reg, all.reg);
  all.sdiv = gen_rtx_DIV (mode, all.reg, all.reg);
  all.udiv = gen_rtx_UDIV (mode, all.reg, all.reg);
  all.sdiv_32 = gen_rtx_DIV (mode, all.reg, all.pow2[5]);
  all.smod_32 = gen_rtx_MOD (mode, all.reg, all.pow2[5]);
  all.zext = gen_rtx_ZERO_EXTEND (mode, all.reg);
  all.wide_mult = gen_rtx_MULT (mode, all.zext, all.zext);
  all.wide_lshr = gen_rtx_LSHIFTRT (mode, all.wide_mult, all.reg);
  all.wide_trunc = gen_rtx_TRUNCATE (mode, all.wide_lshr);
  all.shift = gen_rtx_ASHIFT (mode, all.reg, all.reg);
  all.shift_mult = gen_rtx_MULT (mode, all.reg, all.reg);
  all.shift_add = gen_rtx_PLUS (mode, all.shift_mult, all.reg);
  all.shift_sub0 = gen_rtx_MINUS (mode, all.shift_mult, all.reg);
  all.shift_sub1 = gen_rtx_MINUS (mode, all.reg, all.shift_mult);
  all.trunc = gen_rtx_TRUNCATE (mode, all.reg);

  for (speed = 0; speed < 2; speed++)
    {
      crtl->maybe_hot_insn_p = speed;
      set_zero_cost (speed, set_src_cost (const0_rtx, mode, speed));

      for (mode = MIN_MODE_INT; mode <= MAX_MODE_INT;
	   mode = (machine_mode)(mode + 1))
	init_expmed_one_mode (&all, mode, speed);

      if (MIN_MODE_PARTIAL_INT != VOIDmode)
	for (mode = MIN_MODE_PARTIAL_INT; mode <= MAX_MODE_PARTIAL_INT;
	     mode = (machine_mode)(mode + 1))
	  init_expmed_one_mode (&all, mode, speed);

      if (MIN_MODE_VECTOR_INT != VOIDmode)
	for (mode = MIN_MODE_VECTOR_INT; mode <= MAX_MODE_VECTOR_INT;
	     mode = (machine_mode)(mode + 1))
	  init_expmed_one_mode (&all, mode, speed);
    }

  if (alg_hash_used_p ())
    {
      struct alg_hash_entry *p = alg_hash_entry_ptr (0);
      memset (p, 0, sizeof (*p) * NUM_ALG_HASH_ENTRIES);
    }
  else
    set_alg_hash_used_p (true);
  default_rtl_profile ();

  ggc_free (all.trunc);
  ggc_free (all.shift_sub1);
  ggc_free (all.shift_sub0);
  ggc_free (all.shift_add);
  ggc_free (all.shift_mult);
  ggc_free (all.shift);
  ggc_free (all.wide_trunc);
  ggc_free (all.wide_lshr);
  ggc_free (all.wide_mult);
  ggc_free (all.zext);
  ggc_free (all.smod_32);
  ggc_free (all.sdiv_32);
  ggc_free (all.udiv);
  ggc_free (all.sdiv);
  ggc_free (all.mult);
  ggc_free (all.neg);
  ggc_free (all.plus);
  ggc_free (all.reg);
}

/* Return an rtx representing minus the value of X.
   MODE is the intended mode of the result,
   useful if X is a CONST_INT.  */

rtx
negate_rtx (machine_mode mode, rtx x)
{
  rtx result = simplify_unary_operation (NEG, mode, x, mode);

  if (result == 0)
    result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);

  return result;
}

/* Whether reverse storage order is supported on the target.  */
static int reverse_storage_order_supported = -1;

/* Check whether reverse storage order is supported on the target.  */

static void
check_reverse_storage_order_support (void)
{
  if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
    {
      reverse_storage_order_supported = 0;
      sorry ("reverse scalar storage order");
    }
  else
    reverse_storage_order_supported = 1;
}

/* Whether reverse FP storage order is supported on the target.  */
static int reverse_float_storage_order_supported = -1;

/* Check whether reverse FP storage order is supported on the target.  */

static void
check_reverse_float_storage_order_support (void)
{
  if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
    {
      reverse_float_storage_order_supported = 0;
      sorry ("reverse floating-point scalar storage order");
    }
  else
    reverse_float_storage_order_supported = 1;
}

/* Return an rtx representing value of X with reverse storage order.
   MODE is the intended mode of the result,
   useful if X is a CONST_INT.  */

rtx
flip_storage_order (machine_mode mode, rtx x)
{
  scalar_int_mode int_mode;
  rtx result;

  if (mode == QImode)
    return x;

  if (COMPLEX_MODE_P (mode))
    {
      rtx real = read_complex_part (x, false);
      rtx imag = read_complex_part (x, true);

      real = flip_storage_order (GET_MODE_INNER (mode), real);
      imag = flip_storage_order (GET_MODE_INNER (mode), imag);

      return gen_rtx_CONCAT (mode, real, imag);
    }

  if (UNLIKELY (reverse_storage_order_supported < 0))
    check_reverse_storage_order_support ();

  if (!is_a <scalar_int_mode> (mode, &int_mode))
    {
      if (FLOAT_MODE_P (mode)
	  && UNLIKELY (reverse_float_storage_order_supported < 0))
	check_reverse_float_storage_order_support ();

      if (!int_mode_for_size (GET_MODE_PRECISION (mode), 0).exists (&int_mode)
	  || !targetm.scalar_mode_supported_p (int_mode))
	{
	  sorry ("reverse storage order for %smode", GET_MODE_NAME (mode));
	  return x;
	}
      x = gen_lowpart (int_mode, x);
    }

  result = simplify_unary_operation (BSWAP, int_mode, x, int_mode);
  if (result == 0)
    result = expand_unop (int_mode, bswap_optab, x, NULL_RTX, 1);

  if (int_mode != mode)
    result = gen_lowpart (mode, result);

  return result;
}

/* If MODE is set, adjust bitfield memory MEM so that it points to the
   first unit of mode MODE that contains a bitfield of size BITSIZE at
   bit position BITNUM.  If MODE is not set, return a BLKmode reference
   to every byte in the bitfield.  Set *NEW_BITNUM to the bit position
   of the field within the new memory.  */

static rtx
narrow_bit_field_mem (rtx mem, opt_scalar_int_mode mode,
		      unsigned HOST_WIDE_INT bitsize,
		      unsigned HOST_WIDE_INT bitnum,
		      unsigned HOST_WIDE_INT *new_bitnum)
{
  scalar_int_mode imode;
  if (mode.exists (&imode))
    {
      unsigned int unit = GET_MODE_BITSIZE (imode);
      *new_bitnum = bitnum % unit;
      HOST_WIDE_INT offset = (bitnum - *new_bitnum) / BITS_PER_UNIT;
      return adjust_bitfield_address (mem, imode, offset);
    }
  else
    {
      *new_bitnum = bitnum % BITS_PER_UNIT;
      HOST_WIDE_INT offset = bitnum / BITS_PER_UNIT;
      HOST_WIDE_INT size = ((*new_bitnum + bitsize + BITS_PER_UNIT - 1)
			    / BITS_PER_UNIT);
      return adjust_bitfield_address_size (mem, BLKmode, offset, size);
    }
}

/* The caller wants to perform insertion or extraction PATTERN on a
   bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
   BITREGION_START and BITREGION_END are as for store_bit_field
   and FIELDMODE is the natural mode of the field.

   Search for a mode that is compatible with the memory access
   restrictions and (where applicable) with a register insertion or
   extraction.  Return the new memory on success, storing the adjusted
   bit position in *NEW_BITNUM.  Return null otherwise.  */

static rtx
adjust_bit_field_mem_for_reg (enum extraction_pattern pattern,
			      rtx op0, HOST_WIDE_INT bitsize,
			      HOST_WIDE_INT bitnum,
			      poly_uint64 bitregion_start,
			      poly_uint64 bitregion_end,
			      machine_mode fieldmode,
			      unsigned HOST_WIDE_INT *new_bitnum)
{
  bit_field_mode_iterator iter (bitsize, bitnum, bitregion_start,
				bitregion_end, MEM_ALIGN (op0),
				MEM_VOLATILE_P (op0));
  scalar_int_mode best_mode;
  if (iter.next_mode (&best_mode))
    {
      /* We can use a memory in BEST_MODE.  See whether this is true for
	 any wider modes.  All other things being equal, we prefer to
	 use the widest mode possible because it tends to expose more
	 CSE opportunities.  */
      if (!iter.prefer_smaller_modes ())
	{
	  /* Limit the search to the mode required by the corresponding
	     register insertion or extraction instruction, if any.  */
	  scalar_int_mode limit_mode = word_mode;
	  extraction_insn insn;
	  if (get_best_reg_extraction_insn (&insn, pattern,
					    GET_MODE_BITSIZE (best_mode),
					    fieldmode))
	    limit_mode = insn.field_mode;

	  scalar_int_mode wider_mode;
	  while (iter.next_mode (&wider_mode)
		 && GET_MODE_SIZE (wider_mode) <= GET_MODE_SIZE (limit_mode))
	    best_mode = wider_mode;
	}
      return narrow_bit_field_mem (op0, best_mode, bitsize, bitnum,
				   new_bitnum);
    }
  return NULL_RTX;
}

/* Return true if a bitfield of size BITSIZE at bit number BITNUM within
   a structure of mode STRUCT_MODE represents a lowpart subreg.   The subreg
   offset is then BITNUM / BITS_PER_UNIT.  */

static bool
lowpart_bit_field_p (poly_uint64 bitnum, poly_uint64 bitsize,
		     machine_mode struct_mode)
{
  poly_uint64 regsize = REGMODE_NATURAL_SIZE (struct_mode);
  if (BYTES_BIG_ENDIAN)
    return (multiple_p (bitnum, BITS_PER_UNIT)
	    && (known_eq (bitnum + bitsize, GET_MODE_BITSIZE (struct_mode))
		|| multiple_p (bitnum + bitsize,
			       regsize * BITS_PER_UNIT)));
  else
    return multiple_p (bitnum, regsize * BITS_PER_UNIT);
}

/* Return true if -fstrict-volatile-bitfields applies to an access of OP0
   containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
   Return false if the access would touch memory outside the range
   BITREGION_START to BITREGION_END for conformance to the C++ memory
   model.  */

static bool
strict_volatile_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
			    unsigned HOST_WIDE_INT bitnum,
			    scalar_int_mode fieldmode,
			    poly_uint64 bitregion_start,
			    poly_uint64 bitregion_end)
{
  unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (fieldmode);

  /* -fstrict-volatile-bitfields must be enabled and we must have a
     volatile MEM.  */
  if (!MEM_P (op0)
      || !MEM_VOLATILE_P (op0)
      || flag_strict_volatile_bitfields <= 0)
    return false;

  /* The bit size must not be larger than the field mode, and
     the field mode must not be larger than a word.  */
  if (bitsize > modesize || modesize > BITS_PER_WORD)
    return false;

  /* Check for cases of unaligned fields that must be split.  */
  if (bitnum % modesize + bitsize > modesize)
    return false;

  /* The memory must be sufficiently aligned for a MODESIZE access.
     This condition guarantees, that the memory access will not
     touch anything after the end of the structure.  */
  if (MEM_ALIGN (op0) < modesize)
    return false;

  /* Check for cases where the C++ memory model applies.  */
  if (maybe_ne (bitregion_end, 0U)
      && (maybe_lt (bitnum - bitnum % modesize, bitregion_start)
	  || maybe_gt (bitnum - bitnum % modesize + modesize - 1,
		       bitregion_end)))
    return false;

  return true;
}

/* Return true if OP is a memory and if a bitfield of size BITSIZE at
   bit number BITNUM can be treated as a simple value of mode MODE.
   Store the byte offset in *BYTENUM if so.  */

static bool
simple_mem_bitfield_p (rtx op0, poly_uint64 bitsize, poly_uint64 bitnum,
		       machine_mode mode, poly_uint64 *bytenum)
{
  return (MEM_P (op0)
	  && multiple_p (bitnum, BITS_PER_UNIT, bytenum)
	  && known_eq (bitsize, GET_MODE_BITSIZE (mode))
	  && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (op0))
	      || (multiple_p (bitnum, GET_MODE_ALIGNMENT (mode))
		  && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode))));
}

/* Try to use instruction INSV to store VALUE into a field of OP0.
   If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is a
   BLKmode MEM.  VALUE_MODE is the mode of VALUE.  BITSIZE and BITNUM
   are as for store_bit_field.  */

static bool
store_bit_field_using_insv (const extraction_insn *insv, rtx op0,
			    opt_scalar_int_mode op0_mode,
			    unsigned HOST_WIDE_INT bitsize,
			    unsigned HOST_WIDE_INT bitnum,
			    rtx value, scalar_int_mode value_mode)
{
  class expand_operand ops[4];
  rtx value1;
  rtx xop0 = op0;
  rtx_insn *last = get_last_insn ();
  bool copy_back = false;

  scalar_int_mode op_mode = insv->field_mode;
  unsigned int unit = GET_MODE_BITSIZE (op_mode);
  if (bitsize == 0 || bitsize > unit)
    return false;

  if (MEM_P (xop0))
    /* Get a reference to the first byte of the field.  */
    xop0 = narrow_bit_field_mem (xop0, insv->struct_mode, bitsize, bitnum,
				 &bitnum);
  else
    {
      /* Convert from counting within OP0 to counting in OP_MODE.  */
      if (BYTES_BIG_ENDIAN)
	bitnum += unit - GET_MODE_BITSIZE (op0_mode.require ());

      /* If xop0 is a register, we need it in OP_MODE
	 to make it acceptable to the format of insv.  */
      if (GET_CODE (xop0) == SUBREG)
	{
	  /* If such a SUBREG can't be created, give up.  */
	  if (!validate_subreg (op_mode, GET_MODE (SUBREG_REG (xop0)),
				SUBREG_REG (xop0), SUBREG_BYTE (xop0)))
	    return false;
	  /* We can't just change the mode, because this might clobber op0,
	     and we will need the original value of op0 if insv fails.  */
	  xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0),
				 SUBREG_BYTE (xop0));
	}
      if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
	xop0 = gen_lowpart_SUBREG (op_mode, xop0);
    }

  /* If the destination is a paradoxical subreg such that we need a
     truncate to the inner mode, perform the insertion on a temporary and
     truncate the result to the original destination.  Note that we can't
     just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
     X) 0)) is (reg:N X).  */
  if (GET_CODE (xop0) == SUBREG
      && REG_P (SUBREG_REG (xop0))
      && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0)),
					 op_mode))
    {
      rtx tem = gen_reg_rtx (op_mode);
      emit_move_insn (tem, xop0);
      xop0 = tem;
      copy_back = true;
    }

  /* There are similar overflow check at the start of store_bit_field_1,
     but that only check the situation where the field lies completely
     outside the register, while there do have situation where the field
     lies partialy in the register, we need to adjust bitsize for this
     partial overflow situation.  Without this fix, pr48335-2.c on big-endian
     will broken on those arch support bit insert instruction, like arm, aarch64
     etc.  */
  if (bitsize + bitnum > unit && bitnum < unit)
    {
      warning (OPT_Wextra, "write of %wu-bit data outside the bound of "
	       "destination object, data truncated into %wu-bit",
	       bitsize, unit - bitnum);
      bitsize = unit - bitnum;
    }

  /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
     "backwards" from the size of the unit we are inserting into.
     Otherwise, we count bits from the most significant on a
     BYTES/BITS_BIG_ENDIAN machine.  */

  if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
    bitnum = unit - bitsize - bitnum;

  /* Convert VALUE to op_mode (which insv insn wants) in VALUE1.  */
  value1 = value;
  if (value_mode != op_mode)
    {
      if (GET_MODE_BITSIZE (value_mode) >= bitsize)
	{
	  rtx tmp;
	  /* Optimization: Don't bother really extending VALUE
	     if it has all the bits we will actually use.  However,
	     if we must narrow it, be sure we do it correctly.  */

	  if (GET_MODE_SIZE (value_mode) < GET_MODE_SIZE (op_mode))
	    {
	      tmp = simplify_subreg (op_mode, value1, value_mode, 0);
	      if (! tmp)
		tmp = simplify_gen_subreg (op_mode,
					   force_reg (value_mode, value1),
					   value_mode, 0);
	    }
	  else
	    {
	      tmp = gen_lowpart_if_possible (op_mode, value1);
	      if (! tmp)
		tmp = gen_lowpart (op_mode, force_reg (value_mode, value1));
	    }
	  value1 = tmp;
	}
      else if (CONST_INT_P (value))
	value1 = gen_int_mode (INTVAL (value), op_mode);
      else
	/* Parse phase is supposed to make VALUE's data type
	   match that of the component reference, which is a type
	   at least as wide as the field; so VALUE should have
	   a mode that corresponds to that type.  */
	gcc_assert (CONSTANT_P (value));
    }

  create_fixed_operand (&ops[0], xop0);
  create_integer_operand (&ops[1], bitsize);
  create_integer_operand (&ops[2], bitnum);
  create_input_operand (&ops[3], value1, op_mode);
  if (maybe_expand_insn (insv->icode, 4, ops))
    {
      if (copy_back)
	convert_move (op0, xop0, true);
      return true;
    }
  delete_insns_since (last);
  return false;
}

/* A subroutine of store_bit_field, with the same arguments.  Return true
   if the operation could be implemented.

   If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
   no other way of implementing the operation.  If FALLBACK_P is false,
   return false instead.

   if UNDEFINED_P is true then STR_RTX is undefined and may be set using
   a subreg instead.  */

static bool
store_bit_field_1 (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
		   poly_uint64 bitregion_start, poly_uint64 bitregion_end,
		   machine_mode fieldmode,
		   rtx value, bool reverse, bool fallback_p, bool undefined_p)
{
  rtx op0 = str_rtx;

  while (GET_CODE (op0) == SUBREG)
    {
      bitnum += subreg_memory_offset (op0) * BITS_PER_UNIT;
      op0 = SUBREG_REG (op0);
    }

  /* No action is needed if the target is a register and if the field
     lies completely outside that register.  This can occur if the source
     code contains an out-of-bounds access to a small array.  */
  if (REG_P (op0) && known_ge (bitnum, GET_MODE_BITSIZE (GET_MODE (op0))))
    return true;

  /* Use vec_set patterns for inserting parts of vectors whenever
     available.  */
  machine_mode outermode = GET_MODE (op0);
  scalar_mode innermode = GET_MODE_INNER (outermode);
  poly_uint64 pos;
  if (VECTOR_MODE_P (outermode)
      && !MEM_P (op0)
      && optab_handler (vec_set_optab, outermode) != CODE_FOR_nothing
      && fieldmode == innermode
      && known_eq (bitsize, GET_MODE_BITSIZE (innermode))
      && multiple_p (bitnum, GET_MODE_BITSIZE (innermode), &pos))
    {
      class expand_operand ops[3];
      enum insn_code icode = optab_handler (vec_set_optab, outermode);

      create_fixed_operand (&ops[0], op0);
      create_input_operand (&ops[1], value, innermode);
      create_integer_operand (&ops[2], pos);
      if (maybe_expand_insn (icode, 3, ops))
	return true;
    }

  /* If the target is a register, overwriting the entire object, or storing
     a full-word or multi-word field can be done with just a SUBREG.  */
  if (!MEM_P (op0)
      && known_eq (bitsize, GET_MODE_BITSIZE (fieldmode)))
    {
      /* Use the subreg machinery either to narrow OP0 to the required
	 words or to cope with mode punning between equal-sized modes.
	 In the latter case, use subreg on the rhs side, not lhs.  */
      rtx sub;
      poly_uint64 bytenum;
      poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (op0));
      if (known_eq (bitnum, 0U)
	  && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0))))
	{
	  sub = simplify_gen_subreg (GET_MODE (op0), value, fieldmode, 0);
	  if (sub)
	    {
	      if (reverse)
		sub = flip_storage_order (GET_MODE (op0), sub);
	      emit_move_insn (op0, sub);
	      return true;
	    }
	}
      else if (multiple_p (bitnum, BITS_PER_UNIT, &bytenum)
	       && (undefined_p
		   || (multiple_p (bitnum, regsize * BITS_PER_UNIT)
		       && multiple_p (bitsize, regsize * BITS_PER_UNIT)))
	       && known_ge (GET_MODE_BITSIZE (GET_MODE (op0)), bitsize))
	{
	  sub = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0), bytenum);
	  if (sub)
	    {
	      if (reverse)
		value = flip_storage_order (fieldmode, value);
	      emit_move_insn (sub, value);
	      return true;
	    }
	}
    }

  /* If the target is memory, storing any naturally aligned field can be
     done with a simple store.  For targets that support fast unaligned
     memory, any naturally sized, unit aligned field can be done directly.  */
  poly_uint64 bytenum;
  if (simple_mem_bitfield_p (op0, bitsize, bitnum, fieldmode, &bytenum))
    {
      op0 = adjust_bitfield_address (op0, fieldmode, bytenum);
      if (reverse)
	value = flip_storage_order (fieldmode, value);
      emit_move_insn (op0, value);
      return true;
    }

  /* It's possible we'll need to handle other cases here for
     polynomial bitnum and bitsize.  */

  /* From here on we need to be looking at a fixed-size insertion.  */
  unsigned HOST_WIDE_INT ibitsize = bitsize.to_constant ();
  unsigned HOST_WIDE_INT ibitnum = bitnum.to_constant ();

  /* Make sure we are playing with integral modes.  Pun with subregs
     if we aren't.  This must come after the entire register case above,
     since that case is valid for any mode.  The following cases are only
     valid for integral modes.  */
  opt_scalar_int_mode op0_mode = int_mode_for_mode (GET_MODE (op0));
  scalar_int_mode imode;
  if (!op0_mode.exists (&imode) || imode != GET_MODE (op0))
    {
      if (MEM_P (op0))
	op0 = adjust_bitfield_address_size (op0, op0_mode.else_blk (),
					    0, MEM_SIZE (op0));
      else if (!op0_mode.exists ())
	{
	  if (ibitnum == 0
	      && known_eq (ibitsize, GET_MODE_BITSIZE (GET_MODE (op0)))
	      && MEM_P (value)
	      && !reverse)
	    {
	      value = adjust_address (value, GET_MODE (op0), 0);
	      emit_move_insn (op0, value);
	      return true;
	    }
	  if (!fallback_p)
	    return false;
	  rtx temp = assign_stack_temp (GET_MODE (op0),
					GET_MODE_SIZE (GET_MODE (op0)));
	  emit_move_insn (temp, op0);
	  store_bit_field_1 (temp, bitsize, bitnum, 0, 0, fieldmode, value,
			     reverse, fallback_p, undefined_p);
	  emit_move_insn (op0, temp);
	  return true;
	}
      else
	op0 = gen_lowpart (op0_mode.require (), op0);
    }

  return store_integral_bit_field (op0, op0_mode, ibitsize, ibitnum,
				   bitregion_start, bitregion_end,
				   fieldmode, value, reverse, fallback_p);
}

/* Subroutine of store_bit_field_1, with the same arguments, except
   that BITSIZE and BITNUM are constant.  Handle cases specific to
   integral modes.  If OP0_MODE is defined, it is the mode of OP0,
   otherwise OP0 is a BLKmode MEM.  */

static bool
store_integral_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
			  unsigned HOST_WIDE_INT bitsize,
			  unsigned HOST_WIDE_INT bitnum,
			  poly_uint64 bitregion_start,
			  poly_uint64 bitregion_end,
			  machine_mode fieldmode,
			  rtx value, bool reverse, bool fallback_p)
{
  /* Storing an lsb-aligned field in a register
     can be done with a movstrict instruction.  */

  if (!MEM_P (op0)
      && !reverse
      && lowpart_bit_field_p (bitnum, bitsize, op0_mode.require ())
      && known_eq (bitsize, GET_MODE_BITSIZE (fieldmode))
      && optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing)
    {
      class expand_operand ops[2];
      enum insn_code icode = optab_handler (movstrict_optab, fieldmode);
      rtx arg0 = op0;
      unsigned HOST_WIDE_INT subreg_off;

      if (GET_CODE (arg0) == SUBREG)
	{
	  /* Else we've got some float mode source being extracted into
	     a different float mode destination -- this combination of
	     subregs results in Severe Tire Damage.  */
	  gcc_assert (GET_MODE (SUBREG_REG (arg0)) == fieldmode
		      || GET_MODE_CLASS (fieldmode) == MODE_INT
		      || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
	  arg0 = SUBREG_REG (arg0);
	}

      subreg_off = bitnum / BITS_PER_UNIT;
      if (validate_subreg (fieldmode, GET_MODE (arg0), arg0, subreg_off)
	  /* STRICT_LOW_PART must have a non-paradoxical subreg as
	     operand.  */
	  && !paradoxical_subreg_p (fieldmode, GET_MODE (arg0)))
	{
	  arg0 = gen_rtx_SUBREG (fieldmode, arg0, subreg_off);

	  create_fixed_operand (&ops[0], arg0);
	  /* Shrink the source operand to FIELDMODE.  */
	  create_convert_operand_to (&ops[1], value, fieldmode, false);
	  if (maybe_expand_insn (icode, 2, ops))
	    return true;
	}
    }

  /* Handle fields bigger than a word.  */

  if (bitsize > BITS_PER_WORD)
    {
      /* Here we transfer the words of the field
	 in the order least significant first.
	 This is because the most significant word is the one which may
	 be less than full.
	 However, only do that if the value is not BLKmode.  */

      const bool backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
      const int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
      rtx_insn *last;

      /* This is the mode we must force value to, so that there will be enough
	 subwords to extract.  Note that fieldmode will often (always?) be
	 VOIDmode, because that is what store_field uses to indicate that this
	 is a bit field, but passing VOIDmode to operand_subword_force
	 is not allowed.

	 The mode must be fixed-size, since insertions into variable-sized
	 objects are meant to be handled before calling this function.  */
      fixed_size_mode value_mode = as_a <fixed_size_mode> (GET_MODE (value));
      if (value_mode == VOIDmode)
	value_mode = smallest_int_mode_for_size (nwords * BITS_PER_WORD);

      last = get_last_insn ();
      for (int i = 0; i < nwords; i++)
	{
	  /* Number of bits to be stored in this iteration, i.e. BITS_PER_WORD
	     except maybe for the last iteration.  */
	  const unsigned HOST_WIDE_INT new_bitsize
	    = MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD);
	  /* Bit offset from the starting bit number in the target.  */
	  const unsigned int bit_offset
	    = backwards ^ reverse
	      ? MAX ((int) bitsize - (i + 1) * BITS_PER_WORD, 0)
	      : i * BITS_PER_WORD;
	  /* Starting word number in the value.  */
	  const unsigned int wordnum
	    = backwards
	      ? GET_MODE_SIZE (value_mode) / UNITS_PER_WORD - (i + 1)
	      : i;
	  /* The chunk of the value in word_mode.  We use bit-field extraction
	      in BLKmode to handle unaligned memory references and to shift the
	      last chunk right on big-endian machines if need be.  */
	  rtx value_word
	    = fieldmode == BLKmode
	      ? extract_bit_field (value, new_bitsize, wordnum * BITS_PER_WORD,
				   1, NULL_RTX, word_mode, word_mode, false,
				   NULL)
	      : operand_subword_force (value, wordnum, value_mode);

	  if (!store_bit_field_1 (op0, new_bitsize,
				  bitnum + bit_offset,
				  bitregion_start, bitregion_end,
				  word_mode,
				  value_word, reverse, fallback_p, false))
	    {
	      delete_insns_since (last);
	      return false;
	    }
	}
      return true;
    }

  /* If VALUE has a floating-point or complex mode, access it as an
     integer of the corresponding size.  This can occur on a machine
     with 64 bit registers that uses SFmode for float.  It can also
     occur for unaligned float or complex fields.  */
  rtx orig_value = value;
  scalar_int_mode value_mode;
  if (GET_MODE (value) == VOIDmode)
    /* By this point we've dealt with values that are bigger than a word,
       so word_mode is a conservatively correct choice.  */
    value_mode = word_mode;
  else if (!is_a <scalar_int_mode> (GET_MODE (value), &value_mode))
    {
      value_mode = int_mode_for_mode (GET_MODE (value)).require ();
      value = gen_reg_rtx (value_mode);
      emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
    }

  /* If OP0 is a multi-word register, narrow it to the affected word.
     If the region spans two words, defer to store_split_bit_field.
     Don't do this if op0 is a single hard register wider than word
     such as a float or vector register.  */
  if (!MEM_P (op0)
      && GET_MODE_SIZE (op0_mode.require ()) > UNITS_PER_WORD
      && (!REG_P (op0)
	  || !HARD_REGISTER_P (op0)
	  || hard_regno_nregs (REGNO (op0), op0_mode.require ()) != 1))
    {
      if (bitnum % BITS_PER_WORD + bitsize > BITS_PER_WORD)
	{
	  if (!fallback_p)
	    return false;

	  store_split_bit_field (op0, op0_mode, bitsize, bitnum,
				 bitregion_start, bitregion_end,
				 value, value_mode, reverse);
	  return true;
	}
      op0 = simplify_gen_subreg (word_mode, op0, op0_mode.require (),
				 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
      gcc_assert (op0);
      op0_mode = word_mode;
      bitnum %= BITS_PER_WORD;
    }

  /* From here on we can assume that the field to be stored in fits
     within a word.  If the destination is a register, it too fits
     in a word.  */

  extraction_insn insv;
  if (!MEM_P (op0)
      && !reverse
      && get_best_reg_extraction_insn (&insv, EP_insv,
				       GET_MODE_BITSIZE (op0_mode.require ()),
				       fieldmode)
      && store_bit_field_using_insv (&insv, op0, op0_mode,
				     bitsize, bitnum, value, value_mode))
    return true;

  /* If OP0 is a memory, try copying it to a register and seeing if a
     cheap register alternative is available.  */
  if (MEM_P (op0) && !reverse)
    {
      if (get_best_mem_extraction_insn (&insv, EP_insv, bitsize, bitnum,
					fieldmode)
	  && store_bit_field_using_insv (&insv, op0, op0_mode,
					 bitsize, bitnum, value, value_mode))
	return true;

      rtx_insn *last = get_last_insn ();

      /* Try loading part of OP0 into a register, inserting the bitfield
	 into that, and then copying the result back to OP0.  */
      unsigned HOST_WIDE_INT bitpos;
      rtx xop0 = adjust_bit_field_mem_for_reg (EP_insv, op0, bitsize, bitnum,
					       bitregion_start, bitregion_end,
					       fieldmode, &bitpos);
      if (xop0)
	{
	  rtx tempreg = copy_to_reg (xop0);
	  if (store_bit_field_1 (tempreg, bitsize, bitpos,
				 bitregion_start, bitregion_end,
				 fieldmode, orig_value, reverse, false, false))
	    {
	      emit_move_insn (xop0, tempreg);
	      return true;
	    }
	  delete_insns_since (last);
	}
    }

  if (!fallback_p)
    return false;

  store_fixed_bit_field (op0, op0_mode, bitsize, bitnum, bitregion_start,
			 bitregion_end, value, value_mode, reverse);
  return true;
}

/* Generate code to store value from rtx VALUE
   into a bit-field within structure STR_RTX
   containing BITSIZE bits starting at bit BITNUM.

   BITREGION_START is bitpos of the first bitfield in this region.
   BITREGION_END is the bitpos of the ending bitfield in this region.
   These two fields are 0, if the C++ memory model does not apply,
   or we are not interested in keeping track of bitfield regions.

   FIELDMODE is the machine-mode of the FIELD_DECL node for this field.

   If REVERSE is true, the store is to be done in reverse order.

   If UNDEFINED_P is true then STR_RTX is currently undefined.  */

void
store_bit_field (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
		 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
		 machine_mode fieldmode,
		 rtx value, bool reverse, bool undefined_p)
{
  /* Handle -fstrict-volatile-bitfields in the cases where it applies.  */
  unsigned HOST_WIDE_INT ibitsize = 0, ibitnum = 0;
  scalar_int_mode int_mode;
  if (bitsize.is_constant (&ibitsize)
      && bitnum.is_constant (&ibitnum)
      && is_a <scalar_int_mode> (fieldmode, &int_mode)
      && strict_volatile_bitfield_p (str_rtx, ibitsize, ibitnum, int_mode,
				     bitregion_start, bitregion_end))
    {
      /* Storing of a full word can be done with a simple store.
	 We know here that the field can be accessed with one single
	 instruction.  For targets that support unaligned memory,
	 an unaligned access may be necessary.  */
      if (ibitsize == GET_MODE_BITSIZE (int_mode))
	{
	  str_rtx = adjust_bitfield_address (str_rtx, int_mode,
					     ibitnum / BITS_PER_UNIT);
	  if (reverse)
	    value = flip_storage_order (int_mode, value);
	  gcc_assert (ibitnum % BITS_PER_UNIT == 0);
	  emit_move_insn (str_rtx, value);
	}
      else
	{
	  rtx temp;

	  str_rtx = narrow_bit_field_mem (str_rtx, int_mode, ibitsize,
					  ibitnum, &ibitnum);
	  gcc_assert (ibitnum + ibitsize <= GET_MODE_BITSIZE (int_mode));
	  temp = copy_to_reg (str_rtx);
	  if (!store_bit_field_1 (temp, ibitsize, ibitnum, 0, 0,
				  int_mode, value, reverse, true, undefined_p))
	    gcc_unreachable ();

	  emit_move_insn (str_rtx, temp);
	}

      return;
    }

  /* Under the C++0x memory model, we must not touch bits outside the
     bit region.  Adjust the address to start at the beginning of the
     bit region.  */
  if (MEM_P (str_rtx) && maybe_ne (bitregion_start, 0U))
    {
      scalar_int_mode best_mode;
      machine_mode addr_mode = VOIDmode;

      poly_uint64 offset = exact_div (bitregion_start, BITS_PER_UNIT);
      bitnum -= bitregion_start;
      poly_int64 size = bits_to_bytes_round_up (bitnum + bitsize);
      bitregion_end -= bitregion_start;
      bitregion_start = 0;
      if (bitsize.is_constant (&ibitsize)
	  && bitnum.is_constant (&ibitnum)
	  && get_best_mode (ibitsize, ibitnum,
			    bitregion_start, bitregion_end,
			    MEM_ALIGN (str_rtx), INT_MAX,
			    MEM_VOLATILE_P (str_rtx), &best_mode))
	addr_mode = best_mode;
      str_rtx = adjust_bitfield_address_size (str_rtx, addr_mode,
					      offset, size);
    }

  if (!store_bit_field_1 (str_rtx, bitsize, bitnum,
			  bitregion_start, bitregion_end,
			  fieldmode, value, reverse, true, undefined_p))
    gcc_unreachable ();
}

/* Use shifts and boolean operations to store VALUE into a bit field of
   width BITSIZE in OP0, starting at bit BITNUM.  If OP0_MODE is defined,
   it is the mode of OP0, otherwise OP0 is a BLKmode MEM.  VALUE_MODE is
   the mode of VALUE.

   If REVERSE is true, the store is to be done in reverse order.  */

static void
store_fixed_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
		       unsigned HOST_WIDE_INT bitsize,
		       unsigned HOST_WIDE_INT bitnum,
		       poly_uint64 bitregion_start, poly_uint64 bitregion_end,
		       rtx value, scalar_int_mode value_mode, bool reverse)
{
  /* There is a case not handled here:
     a structure with a known alignment of just a halfword
     and a field split across two aligned halfwords within the structure.
     Or likewise a structure with a known alignment of just a byte
     and a field split across two bytes.
     Such cases are not supposed to be able to occur.  */

  scalar_int_mode best_mode;
  if (MEM_P (op0))
    {
      unsigned int max_bitsize = BITS_PER_WORD;
      scalar_int_mode imode;
      if (op0_mode.exists (&imode) && GET_MODE_BITSIZE (imode) < max_bitsize)
	max_bitsize = GET_MODE_BITSIZE (imode);

      if (!get_best_mode (bitsize, bitnum, bitregion_start, bitregion_end,
			  MEM_ALIGN (op0), max_bitsize, MEM_VOLATILE_P (op0),
			  &best_mode))
	{
	  /* The only way this should occur is if the field spans word
	     boundaries.  */
	  store_split_bit_field (op0, op0_mode, bitsize, bitnum,
				 bitregion_start, bitregion_end,
				 value, value_mode, reverse);
	  return;
	}

      op0 = narrow_bit_field_mem (op0, best_mode, bitsize, bitnum, &bitnum);
    }
  else
    best_mode = op0_mode.require ();

  store_fixed_bit_field_1 (op0, best_mode, bitsize, bitnum,
			   value, value_mode, reverse);
}

/* Helper function for store_fixed_bit_field, stores
   the bit field always using MODE, which is the mode of OP0.  The other
   arguments are as for store_fixed_bit_field.  */

static void
store_fixed_bit_field_1 (rtx op0, scalar_int_mode mode,
			 unsigned HOST_WIDE_INT bitsize,
			 unsigned HOST_WIDE_INT bitnum,
			 rtx value, scalar_int_mode value_mode, bool reverse)
{
  rtx temp;
  int all_zero = 0;
  int all_one = 0;

  /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
     for invalid input, such as f5 from gcc.dg/pr48335-2.c.  */

  if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
    /* BITNUM is the distance between our msb
       and that of the containing datum.
       Convert it to the distance from the lsb.  */
    bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;

  /* Now BITNUM is always the distance between our lsb
     and that of OP0.  */

  /* Shift VALUE left by BITNUM bits.  If VALUE is not constant,
     we must first convert its mode to MODE.  */

  if (CONST_INT_P (value))
    {
      unsigned HOST_WIDE_INT v = UINTVAL (value);

      if (bitsize < HOST_BITS_PER_WIDE_INT)
	v &= (HOST_WIDE_INT_1U << bitsize) - 1;

      if (v == 0)
	all_zero = 1;
      else if ((bitsize < HOST_BITS_PER_WIDE_INT
		&& v == (HOST_WIDE_INT_1U << bitsize) - 1)
	       || (bitsize == HOST_BITS_PER_WIDE_INT
		   && v == HOST_WIDE_INT_M1U))
	all_one = 1;

      value = lshift_value (mode, v, bitnum);
    }
  else
    {
      int must_and = (GET_MODE_BITSIZE (value_mode) != bitsize
		      && bitnum + bitsize != GET_MODE_BITSIZE (mode));

      if (value_mode != mode)
	value = convert_to_mode (mode, value, 1);

      if (must_and)
	value = expand_binop (mode, and_optab, value,
			      mask_rtx (mode, 0, bitsize, 0),
			      NULL_RTX, 1, OPTAB_LIB_WIDEN);
      if (bitnum > 0)
	value = expand_shift (LSHIFT_EXPR, mode, value,
			      bitnum, NULL_RTX, 1);
    }

  if (reverse)
    value = flip_storage_order (mode, value);

  /* Now clear the chosen bits in OP0,
     except that if VALUE is -1 we need not bother.  */
  /* We keep the intermediates in registers to allow CSE to combine
     consecutive bitfield assignments.  */

  temp = force_reg (mode, op0);

  if (! all_one)
    {
      rtx mask = mask_rtx (mode, bitnum, bitsize, 1);
      if (reverse)
	mask = flip_storage_order (mode, mask);
      temp = expand_binop (mode, and_optab, temp, mask,
			   NULL_RTX, 1, OPTAB_LIB_WIDEN);
      temp = force_reg (mode, temp);
    }

  /* Now logical-or VALUE into OP0, unless it is zero.  */

  if (! all_zero)
    {
      temp = expand_binop (mode, ior_optab, temp, value,
			   NULL_RTX, 1, OPTAB_LIB_WIDEN);
      temp = force_reg (mode, temp);
    }

  if (op0 != temp)
    {
      op0 = copy_rtx (op0);
      emit_move_insn (op0, temp);
    }
}

/* Store a bit field that is split across multiple accessible memory objects.

   OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
   BITSIZE is the field width; BITPOS the position of its first bit
   (within the word).
   VALUE is the value to store, which has mode VALUE_MODE.
   If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
   a BLKmode MEM.

   If REVERSE is true, the store is to be done in reverse order.

   This does not yet handle fields wider than BITS_PER_WORD.  */

static void
store_split_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
		       unsigned HOST_WIDE_INT bitsize,
		       unsigned HOST_WIDE_INT bitpos,
		       poly_uint64 bitregion_start, poly_uint64 bitregion_end,
		       rtx value, scalar_int_mode value_mode, bool reverse)
{
  unsigned int unit, total_bits, bitsdone = 0;

  /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
     much at a time.  */
  if (REG_P (op0) || GET_CODE (op0) == SUBREG)
    unit = BITS_PER_WORD;
  else
    unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);

  /* If OP0 is a memory with a mode, then UNIT must not be larger than
     OP0's mode as well.  Otherwise, store_fixed_bit_field will call us
     again, and we will mutually recurse forever.  */
  if (MEM_P (op0) && op0_mode.exists ())
    unit = MIN (unit, GET_MODE_BITSIZE (op0_mode.require ()));

  /* If VALUE is a constant other than a CONST_INT, get it into a register in
     WORD_MODE.  If we can do this using gen_lowpart_common, do so.  Note
     that VALUE might be a floating-point constant.  */
  if (CONSTANT_P (value) && !CONST_INT_P (value))
    {
      rtx word = gen_lowpart_common (word_mode, value);

      if (word && (value != word))
	value = word;
      else
	value = gen_lowpart_common (word_mode, force_reg (value_mode, value));
      value_mode = word_mode;
    }

  total_bits = GET_MODE_BITSIZE (value_mode);

  while (bitsdone < bitsize)
    {
      unsigned HOST_WIDE_INT thissize;
      unsigned HOST_WIDE_INT thispos;
      unsigned HOST_WIDE_INT offset;
      rtx part;

      offset = (bitpos + bitsdone) / unit;
      thispos = (bitpos + bitsdone) % unit;

      /* When region of bytes we can touch is restricted, decrease
	 UNIT close to the end of the region as needed.  If op0 is a REG
	 or SUBREG of REG, don't do this, as there can't be data races
	 on a register and we can expand shorter code in some cases.  */
      if (maybe_ne (bitregion_end, 0U)
	  && unit > BITS_PER_UNIT
	  && maybe_gt (bitpos + bitsdone - thispos + unit, bitregion_end + 1)
	  && !REG_P (op0)
	  && (GET_CODE (op0) != SUBREG || !REG_P (SUBREG_REG (op0))))
	{
	  unit = unit / 2;
	  continue;
	}

      /* THISSIZE must not overrun a word boundary.  Otherwise,
	 store_fixed_bit_field will call us again, and we will mutually
	 recurse forever.  */
      thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
      thissize = MIN (thissize, unit - thispos);

      if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
	{
	  /* Fetch successively less significant portions.  */
	  if (CONST_INT_P (value))
	    part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
			     >> (bitsize - bitsdone - thissize))
			    & ((HOST_WIDE_INT_1 << thissize) - 1));
          /* Likewise, but the source is little-endian.  */
          else if (reverse)
	    part = extract_fixed_bit_field (word_mode, value, value_mode,
					    thissize,
					    bitsize - bitsdone - thissize,
					    NULL_RTX, 1, false);
	  else
	    /* The args are chosen so that the last part includes the
	       lsb.  Give extract_bit_field the value it needs (with
	       endianness compensation) to fetch the piece we want.  */
	    part = extract_fixed_bit_field (word_mode, value, value_mode,
					    thissize,
					    total_bits - bitsize + bitsdone,
					    NULL_RTX, 1, false);
	}
      else
	{
	  /* Fetch successively more significant portions.  */
	  if (CONST_INT_P (value))
	    part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
			     >> bitsdone)
			    & ((HOST_WIDE_INT_1 << thissize) - 1));
	  /* Likewise, but the source is big-endian.  */
          else if (reverse)
	    part = extract_fixed_bit_field (word_mode, value, value_mode,
					    thissize,
					    total_bits - bitsdone - thissize,
					    NULL_RTX, 1, false);
	  else
	    part = extract_fixed_bit_field (word_mode, value, value_mode,
					    thissize, bitsdone, NULL_RTX,
					    1, false);
	}

      /* If OP0 is a register, then handle OFFSET here.  */
      rtx op0_piece = op0;
      opt_scalar_int_mode op0_piece_mode = op0_mode;
      if (SUBREG_P (op0) || REG_P (op0))
	{
	  scalar_int_mode imode;
	  if (op0_mode.exists (&imode)
	      && GET_MODE_SIZE (imode) < UNITS_PER_WORD)
	    {
	      if (offset)
		op0_piece = const0_rtx;
	    }
	  else
	    {
	      op0_piece = operand_subword_force (op0,
						 offset * unit / BITS_PER_WORD,
						 GET_MODE (op0));
	      op0_piece_mode = word_mode;
	    }
	  offset &= BITS_PER_WORD / unit - 1;
	}

      /* OFFSET is in UNITs, and UNIT is in bits.  If WORD is const0_rtx,
	 it is just an out-of-bounds access.  Ignore it.  */
      if (op0_piece != const0_rtx)
	store_fixed_bit_field (op0_piece, op0_piece_mode, thissize,
			       offset * unit + thispos, bitregion_start,
			       bitregion_end, part, word_mode, reverse);
      bitsdone += thissize;
    }
}

/* A subroutine of extract_bit_field_1 that converts return value X
   to either MODE or TMODE.  MODE, TMODE and UNSIGNEDP are arguments
   to extract_bit_field.  */

static rtx
convert_extracted_bit_field (rtx x, machine_mode mode,
			     machine_mode tmode, bool unsignedp)
{
  if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
    return x;

  /* If the x mode is not a scalar integral, first convert to the
     integer mode of that size and then access it as a floating-point
     value via a SUBREG.  */
  if (!SCALAR_INT_MODE_P (tmode))
    {
      scalar_int_mode int_mode = int_mode_for_mode (tmode).require ();
      x = convert_to_mode (int_mode, x, unsignedp);
      x = force_reg (int_mode, x);
      return gen_lowpart (tmode, x);
    }

  return convert_to_mode (tmode, x, unsignedp);
}

/* Try to use an ext(z)v pattern to extract a field from OP0.
   Return the extracted value on success, otherwise return null.
   EXTV describes the extraction instruction to use.  If OP0_MODE
   is defined, it is the mode of OP0, otherwise OP0 is a BLKmode MEM.
   The other arguments are as for extract_bit_field.  */

static rtx
extract_bit_field_using_extv (const extraction_insn *extv, rtx op0,
			      opt_scalar_int_mode op0_mode,
			      unsigned HOST_WIDE_INT bitsize,
			      unsigned HOST_WIDE_INT bitnum,
			      int unsignedp, rtx target,
			      machine_mode mode, machine_mode tmode)
{
  class expand_operand ops[4];
  rtx spec_target = target;
  rtx spec_target_subreg = 0;
  scalar_int_mode ext_mode = extv->field_mode;
  unsigned unit = GET_MODE_BITSIZE (ext_mode);

  if (bitsize == 0 || unit < bitsize)
    return NULL_RTX;

  if (MEM_P (op0))
    /* Get a reference to the first byte of the field.  */
    op0 = narrow_bit_field_mem (op0, extv->struct_mode, bitsize, bitnum,
				&bitnum);
  else
    {
      /* Convert from counting within OP0 to counting in EXT_MODE.  */
      if (BYTES_BIG_ENDIAN)
	bitnum += unit - GET_MODE_BITSIZE (op0_mode.require ());

      /* If op0 is a register, we need it in EXT_MODE to make it
	 acceptable to the format of ext(z)v.  */
      if (GET_CODE (op0) == SUBREG && op0_mode.require () != ext_mode)
	return NULL_RTX;
      if (REG_P (op0) && op0_mode.require () != ext_mode)
	op0 = gen_lowpart_SUBREG (ext_mode, op0);
    }

  /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
     "backwards" from the size of the unit we are extracting from.
     Otherwise, we count bits from the most significant on a
     BYTES/BITS_BIG_ENDIAN machine.  */

  if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
    bitnum = unit - bitsize - bitnum;

  if (target == 0)
    target = spec_target = gen_reg_rtx (tmode);

  if (GET_MODE (target) != ext_mode)
    {
      rtx temp;
      /* Don't use LHS paradoxical subreg if explicit truncation is needed
	 between the mode of the extraction (word_mode) and the target
	 mode.  Instead, create a temporary and use convert_move to set
	 the target.  */
      if (REG_P (target)
	  && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target), ext_mode)
	  && (temp = gen_lowpart_if_possible (ext_mode, target)))
	{
	  target = temp;
	  if (partial_subreg_p (GET_MODE (spec_target), ext_mode))
	    spec_target_subreg = target;
	}
      else
	target = gen_reg_rtx (ext_mode);
    }

  create_output_operand (&ops[0], target, ext_mode);
  create_fixed_operand (&ops[1], op0);
  create_integer_operand (&ops[2], bitsize);
  create_integer_operand (&ops[3], bitnum);
  if (maybe_expand_insn (extv->icode, 4, ops))
    {
      target = ops[0].value;
      if (target == spec_target)
	return target;
      if (target == spec_target_subreg)
	return spec_target;
      return convert_extracted_bit_field (target, mode, tmode, unsignedp);
    }
  return NULL_RTX;
}

/* See whether it would be valid to extract the part of OP0 with
   mode OP0_MODE described by BITNUM and BITSIZE into a value of
   mode MODE using a subreg operation.
   Return the subreg if so, otherwise return null.  */

static rtx
extract_bit_field_as_subreg (machine_mode mode, rtx op0,
			     machine_mode op0_mode,
			     poly_uint64 bitsize, poly_uint64 bitnum)
{
  poly_uint64 bytenum;
  if (multiple_p (bitnum, BITS_PER_UNIT, &bytenum)
      && known_eq (bitsize, GET_MODE_BITSIZE (mode))
      && lowpart_bit_field_p (bitnum, bitsize, op0_mode)
      && TRULY_NOOP_TRUNCATION_MODES_P (mode, op0_mode))
    return simplify_gen_subreg (mode, op0, op0_mode, bytenum);
  return NULL_RTX;
}

/* A subroutine of extract_bit_field, with the same arguments.
   If FALLBACK_P is true, fall back to extract_fixed_bit_field
   if we can find no other means of implementing the operation.
   if FALLBACK_P is false, return NULL instead.  */

static rtx
extract_bit_field_1 (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
		     int unsignedp, rtx target, machine_mode mode,
		     machine_mode tmode, bool reverse, bool fallback_p,
		     rtx *alt_rtl)
{
  rtx op0 = str_rtx;
  machine_mode mode1;

  if (tmode == VOIDmode)
    tmode = mode;

  while (GET_CODE (op0) == SUBREG)
    {
      bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
      op0 = SUBREG_REG (op0);
    }

  /* If we have an out-of-bounds access to a register, just return an
     uninitialized register of the required mode.  This can occur if the
     source code contains an out-of-bounds access to a small array.  */
  if (REG_P (op0) && known_ge (bitnum, GET_MODE_BITSIZE (GET_MODE (op0))))
    return gen_reg_rtx (tmode);

  if (REG_P (op0)
      && mode == GET_MODE (op0)
      && known_eq (bitnum, 0U)
      && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0))))
    {
      if (reverse)
	op0 = flip_storage_order (mode, op0);
      /* We're trying to extract a full register from itself.  */
      return op0;
    }

  /* First try to check for vector from vector extractions.  */
  if (VECTOR_MODE_P (GET_MODE (op0))
      && !MEM_P (op0)
      && VECTOR_MODE_P (tmode)
      && known_eq (bitsize, GET_MODE_BITSIZE (tmode))
      && maybe_gt (GET_MODE_SIZE (GET_MODE (op0)), GET_MODE_SIZE (tmode)))
    {
      machine_mode new_mode = GET_MODE (op0);
      if (GET_MODE_INNER (new_mode) != GET_MODE_INNER (tmode))
	{
	  scalar_mode inner_mode = GET_MODE_INNER (tmode);
	  poly_uint64 nunits;
	  if (!multiple_p (GET_MODE_BITSIZE (GET_MODE (op0)),
			   GET_MODE_UNIT_BITSIZE (tmode), &nunits)
	      || !related_vector_mode (tmode, inner_mode,
				       nunits).exists (&new_mode)
	      || maybe_ne (GET_MODE_SIZE (new_mode),
			   GET_MODE_SIZE (GET_MODE (op0))))
	    new_mode = VOIDmode;
	}
      poly_uint64 pos;
      if (new_mode != VOIDmode
	  && (convert_optab_handler (vec_extract_optab, new_mode, tmode)
	      != CODE_FOR_nothing)
	  && multiple_p (bitnum, GET_MODE_BITSIZE (tmode), &pos))
	{
	  class expand_operand ops[3];
	  machine_mode outermode = new_mode;
	  machine_mode innermode = tmode;
	  enum insn_code icode
	    = convert_optab_handler (vec_extract_optab, outermode, innermode);

	  if (new_mode != GET_MODE (op0))
	    op0 = gen_lowpart (new_mode, op0);
	  create_output_operand (&ops[0], target, innermode);
	  ops[0].target = 1;
	  create_input_operand (&ops[1], op0, outermode);
	  create_integer_operand (&ops[2], pos);
	  if (maybe_expand_insn (icode, 3, ops))
	    {
	      if (alt_rtl && ops[0].target)
		*alt_rtl = target;
	      target = ops[0].value;
	      if (GET_MODE (target) != mode)
		return gen_lowpart (tmode, target);
	      return target;
	    }
	}
    }

  /* See if we can get a better vector mode before extracting.  */
  if (VECTOR_MODE_P (GET_MODE (op0))
      && !MEM_P (op0)
      && GET_MODE_INNER (GET_MODE (op0)) != tmode)
    {
      machine_mode new_mode;

      if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
	new_mode = MIN_MODE_VECTOR_FLOAT;
      else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
	new_mode = MIN_MODE_VECTOR_FRACT;
      else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
	new_mode = MIN_MODE_VECTOR_UFRACT;
      else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
	new_mode = MIN_MODE_VECTOR_ACCUM;
      else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
	new_mode = MIN_MODE_VECTOR_UACCUM;
      else
	new_mode = MIN_MODE_VECTOR_INT;

      FOR_EACH_MODE_FROM (new_mode, new_mode)
	if (known_eq (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (GET_MODE (op0)))
	    && known_eq (GET_MODE_UNIT_SIZE (new_mode), GET_MODE_SIZE (tmode))
	    && targetm.vector_mode_supported_p (new_mode)
	    && targetm.modes_tieable_p (GET_MODE (op0), new_mode))
	  break;
      if (new_mode != VOIDmode)
	op0 = gen_lowpart (new_mode, op0);
    }

  /* Use vec_extract patterns for extracting parts of vectors whenever
     available.  If that fails, see whether the current modes and bitregion
     give a natural subreg.  */
  machine_mode outermode = GET_MODE (op0);
  if (VECTOR_MODE_P (outermode) && !MEM_P (op0))
    {
      scalar_mode innermode = GET_MODE_INNER (outermode);
      enum insn_code icode
	= convert_optab_handler (vec_extract_optab, outermode, innermode);
      poly_uint64 pos;
      if (icode != CODE_FOR_nothing
	  && known_eq (bitsize, GET_MODE_BITSIZE (innermode))
	  && multiple_p (bitnum, GET_MODE_BITSIZE (innermode), &pos))
	{
	  class expand_operand ops[3];

	  create_output_operand (&ops[0], target, innermode);
	  ops[0].target = 1;
	  create_input_operand (&ops[1], op0, outermode);
	  create_integer_operand (&ops[2], pos);
	  if (maybe_expand_insn (icode, 3, ops))
	    {
	      if (alt_rtl && ops[0].target)
		*alt_rtl = target;
	      target = ops[0].value;
	      if (GET_MODE (target) != mode)
		return gen_lowpart (tmode, target);
	      return target;
	    }
	}
      /* Using subregs is useful if we're extracting one register vector
	 from a multi-register vector.  extract_bit_field_as_subreg checks
	 for valid bitsize and bitnum, so we don't need to do that here.  */
      if (VECTOR_MODE_P (mode))
	{
	  rtx sub = extract_bit_field_as_subreg (mode, op0, outermode,
						 bitsize, bitnum);
	  if (sub)
	    return sub;
	}
    }

  /* Make sure we are playing with integral modes.  Pun with subregs
     if we aren't.  */
  opt_scalar_int_mode op0_mode = int_mode_for_mode (GET_MODE (op0));
  scalar_int_mode imode;
  if (!op0_mode.exists (&imode) || imode != GET_MODE (op0))
    {
      if (MEM_P (op0))
	op0 = adjust_bitfield_address_size (op0, op0_mode.else_blk (),
					    0, MEM_SIZE (op0));
      else if (op0_mode.exists (&imode))
	{
	  op0 = gen_lowpart (imode, op0);

	  /* If we got a SUBREG, force it into a register since we
	     aren't going to be able to do another SUBREG on it.  */
	  if (GET_CODE (op0) == SUBREG)
	    op0 = force_reg (imode, op0);
	}
      else
	{
	  poly_int64 size = GET_MODE_SIZE (GET_MODE (op0));
	  rtx mem = assign_stack_temp (GET_MODE (op0), size);
	  emit_move_insn (mem, op0);
	  op0 = adjust_bitfield_address_size (mem, BLKmode, 0, size);
	}
    }

  /* ??? We currently assume TARGET is at least as big as BITSIZE.
     If that's wrong, the solution is to test for it and set TARGET to 0
     if needed.  */

  /* Get the mode of the field to use for atomic access or subreg
     conversion.  */
  if (!SCALAR_INT_MODE_P (tmode)
      || !mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0).exists (&mode1))
    mode1 = mode;
  gcc_assert (mode1 != BLKmode);

  /* Extraction of a full MODE1 value can be done with a subreg as long
     as the least significant bit of the value is the least significant
     bit of either OP0 or a word of OP0.  */
  if (!MEM_P (op0) && !reverse && op0_mode.exists (&imode))
    {
      rtx sub = extract_bit_field_as_subreg (mode1, op0, imode,
					     bitsize, bitnum);
      if (sub)
	return convert_extracted_bit_field (sub, mode, tmode, unsignedp);
    }

  /* Extraction of a full MODE1 value can be done with a load as long as
     the field is on a byte boundary and is sufficiently aligned.  */
  poly_uint64 bytenum;
  if (simple_mem_bitfield_p (op0, bitsize, bitnum, mode1, &bytenum))
    {
      op0 = adjust_bitfield_address (op0, mode1, bytenum);
      if (reverse)
	op0 = flip_storage_order (mode1, op0);
      return convert_extracted_bit_field (op0, mode, tmode, unsignedp);
    }

  /* If we have a memory source and a non-constant bit offset, restrict
     the memory to the referenced bytes.  This is a worst-case fallback
     but is useful for things like vector booleans.  */
  if (MEM_P (op0) && !bitnum.is_constant ())
    {
      bytenum = bits_to_bytes_round_down (bitnum);
      bitnum = num_trailing_bits (bitnum);
      poly_uint64 bytesize = bits_to_bytes_round_up (bitnum + bitsize);
      op0 = adjust_bitfield_address_size (op0, BLKmode, bytenum, bytesize);
      op0_mode = opt_scalar_int_mode ();
    }

  /* It's possible we'll need to handle other cases here for
     polynomial bitnum and bitsize.  */

  /* From here on we need to be looking at a fixed-size insertion.  */
  return extract_integral_bit_field (op0, op0_mode, bitsize.to_constant (),
				     bitnum.to_constant (), unsignedp,
				     target, mode, tmode, reverse, fallback_p);
}

/* Subroutine of extract_bit_field_1, with the same arguments, except
   that BITSIZE and BITNUM are constant.  Handle cases specific to
   integral modes.  If OP0_MODE is defined, it is the mode of OP0,
   otherwise OP0 is a BLKmode MEM.  */

static rtx
extract_integral_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
			    unsigned HOST_WIDE_INT bitsize,
			    unsigned HOST_WIDE_INT bitnum, int unsignedp,
			    rtx target, machine_mode mode, machine_mode tmode,
			    bool reverse, bool fallback_p)
{
  /* Handle fields bigger than a word.  */

  if (bitsize > BITS_PER_WORD)
    {
      /* Here we transfer the words of the field
	 in the order least significant first.
	 This is because the most significant word is the one which may
	 be less than full.  */

      const bool backwards = WORDS_BIG_ENDIAN;
      unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
      unsigned int i;
      rtx_insn *last;

      if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
	target = gen_reg_rtx (mode);

      /* In case we're about to clobber a base register or something 
	 (see gcc.c-torture/execute/20040625-1.c).   */
      if (reg_mentioned_p (target, op0))
	target = gen_reg_rtx (mode);

      /* Indicate for flow that the entire target reg is being set.  */
      emit_clobber (target);

      /* The mode must be fixed-size, since extract_bit_field_1 handles
	 extractions from variable-sized objects before calling this
	 function.  */
      unsigned int target_size
	= GET_MODE_SIZE (GET_MODE (target)).to_constant ();
      last = get_last_insn ();
      for (i = 0; i < nwords; i++)
	{
	  /* If I is 0, use the low-order word in both field and target;
	     if I is 1, use the next to lowest word; and so on.  */
	  /* Word number in TARGET to use.  */
	  unsigned int wordnum
	    = (backwards ? target_size / UNITS_PER_WORD - i - 1 : i);
	  /* Offset from start of field in OP0.  */
	  unsigned int bit_offset = (backwards ^ reverse
				     ? MAX ((int) bitsize - ((int) i + 1)
					    * BITS_PER_WORD,
					    0)
				     : (int) i * BITS_PER_WORD);
	  rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
	  rtx result_part
	    = extract_bit_field_1 (op0, MIN (BITS_PER_WORD,
					     bitsize - i * BITS_PER_WORD),
				   bitnum + bit_offset, 1, target_part,
				   mode, word_mode, reverse, fallback_p, NULL);

	  gcc_assert (target_part);
	  if (!result_part)
	    {
	      delete_insns_since (last);
	      return NULL;
	    }

	  if (result_part != target_part)
	    emit_move_insn (target_part, result_part);
	}

      if (unsignedp)
	{
	  /* Unless we've filled TARGET, the upper regs in a multi-reg value
	     need to be zero'd out.  */
	  if (target_size > nwords * UNITS_PER_WORD)
	    {
	      unsigned int i, total_words;

	      total_words = target_size / UNITS_PER_WORD;
	      for (i = nwords; i < total_words; i++)
		emit_move_insn
		  (operand_subword (target,
				    backwards ? total_words - i - 1 : i,
				    1, VOIDmode),
		   const0_rtx);
	    }
	  return target;
	}

      /* Signed bit field: sign-extend with two arithmetic shifts.  */
      target = expand_shift (LSHIFT_EXPR, mode, target,
			     GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
      return expand_shift (RSHIFT_EXPR, mode, target,
			   GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
    }

  /* If OP0 is a multi-word register, narrow it to the affected word.
     If the region spans two words, defer to extract_split_bit_field.  */
  if (!MEM_P (op0) && GET_MODE_SIZE (op0_mode.require ()) > UNITS_PER_WORD)
    {
      if (bitnum % BITS_PER_WORD + bitsize > BITS_PER_WORD)
	{
	  if (!fallback_p)
	    return NULL_RTX;
	  target = extract_split_bit_field (op0, op0_mode, bitsize, bitnum,
					    unsignedp, reverse);
	  return convert_extracted_bit_field (target, mode, tmode, unsignedp);
	}
      /* If OP0 is a hard register, copy it to a pseudo before calling
	 simplify_gen_subreg.  */
      if (REG_P (op0) && HARD_REGISTER_P (op0))
	op0 = copy_to_reg (op0);
      op0 = simplify_gen_subreg (word_mode, op0, op0_mode.require (),
				 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
      op0_mode = word_mode;
      bitnum %= BITS_PER_WORD;
    }

  /* From here on we know the desired field is smaller than a word.
     If OP0 is a register, it too fits within a word.  */
  enum extraction_pattern pattern = unsignedp ? EP_extzv : EP_extv;
  extraction_insn extv;
  if (!MEM_P (op0)
      && !reverse
      /* ??? We could limit the structure size to the part of OP0 that
	 contains the field, with appropriate checks for endianness
	 and TARGET_TRULY_NOOP_TRUNCATION.  */
      && get_best_reg_extraction_insn (&extv, pattern,
				       GET_MODE_BITSIZE (op0_mode.require ()),
				       tmode))
    {
      rtx result = extract_bit_field_using_extv (&extv, op0, op0_mode,
						 bitsize, bitnum,
						 unsignedp, target, mode,
						 tmode);
      if (result)
	return result;
    }

  /* If OP0 is a memory, try copying it to a register and seeing if a
     cheap register alternative is available.  */
  if (MEM_P (op0) & !reverse)
    {
      if (get_best_mem_extraction_insn (&extv, pattern, bitsize, bitnum,
					tmode))
	{
	  rtx result = extract_bit_field_using_extv (&extv, op0, op0_mode,
						     bitsize, bitnum,
						     unsignedp, target, mode,
						     tmode);
	  if (result)
	    return result;
	}

      rtx_insn *last = get_last_insn ();

      /* Try loading part of OP0 into a register and extracting the
	 bitfield from that.  */
      unsigned HOST_WIDE_INT bitpos;
      rtx xop0 = adjust_bit_field_mem_for_reg (pattern, op0, bitsize, bitnum,
					       0, 0, tmode, &bitpos);
      if (xop0)
	{
	  xop0 = copy_to_reg (xop0);
	  rtx result = extract_bit_field_1 (xop0, bitsize, bitpos,
					    unsignedp, target,
					    mode, tmode, reverse, false, NULL);
	  if (result)
	    return result;
	  delete_insns_since (last);
	}
    }

  if (!fallback_p)
    return NULL;

  /* Find a correspondingly-sized integer field, so we can apply
     shifts and masks to it.  */
  scalar_int_mode int_mode;
  if (!int_mode_for_mode (tmode).exists (&int_mode))
    /* If this fails, we should probably push op0 out to memory and then
       do a load.  */
    int_mode = int_mode_for_mode (mode).require ();

  target = extract_fixed_bit_field (int_mode, op0, op0_mode, bitsize,
				    bitnum, target, unsignedp, reverse);

  /* Complex values must be reversed piecewise, so we need to undo the global
     reversal, convert to the complex mode and reverse again.  */
  if (reverse && COMPLEX_MODE_P (tmode))
    {
      target = flip_storage_order (int_mode, target);
      target = convert_extracted_bit_field (target, mode, tmode, unsignedp);
      target = flip_storage_order (tmode, target);
    }
  else
    target = convert_extracted_bit_field (target, mode, tmode, unsignedp);

  return target;
}

/* Generate code to extract a byte-field from STR_RTX
   containing BITSIZE bits, starting at BITNUM,
   and put it in TARGET if possible (if TARGET is nonzero).
   Regardless of TARGET, we return the rtx for where the value is placed.

   STR_RTX is the structure containing the byte (a REG or MEM).
   UNSIGNEDP is nonzero if this is an unsigned bit field.
   MODE is the natural mode of the field value once extracted.
   TMODE is the mode the caller would like the value to have;
   but the value may be returned with type MODE instead.

   If REVERSE is true, the extraction is to be done in reverse order.

   If a TARGET is specified and we can store in it at no extra cost,
   we do so, and return TARGET.
   Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
   if they are equally easy.

   If the result can be stored at TARGET, and ALT_RTL is non-NULL,
   then *ALT_RTL is set to TARGET (before legitimziation).  */

rtx
extract_bit_field (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
		   int unsignedp, rtx target, machine_mode mode,
		   machine_mode tmode, bool reverse, rtx *alt_rtl)
{
  machine_mode mode1;

  /* Handle -fstrict-volatile-bitfields in the cases where it applies.  */
  if (maybe_ne (GET_MODE_BITSIZE (GET_MODE (str_rtx)), 0))
    mode1 = GET_MODE (str_rtx);
  else if (target && maybe_ne (GET_MODE_BITSIZE (GET_MODE (target)), 0))
    mode1 = GET_MODE (target);
  else
    mode1 = tmode;

  unsigned HOST_WIDE_INT ibitsize, ibitnum;
  scalar_int_mode int_mode;
  if (bitsize.is_constant (&ibitsize)
      && bitnum.is_constant (&ibitnum)
      && is_a <scalar_int_mode> (mode1, &int_mode)
      && strict_volatile_bitfield_p (str_rtx, ibitsize, ibitnum,
				     int_mode, 0, 0))
    {
      /* Extraction of a full INT_MODE value can be done with a simple load.
	 We know here that the field can be accessed with one single
	 instruction.  For targets that support unaligned memory,
	 an unaligned access may be necessary.  */
      if (ibitsize == GET_MODE_BITSIZE (int_mode))
	{
	  rtx result = adjust_bitfield_address (str_rtx, int_mode,
						ibitnum / BITS_PER_UNIT);
	  if (reverse)
	    result = flip_storage_order (int_mode, result);
	  gcc_assert (ibitnum % BITS_PER_UNIT == 0);
	  return convert_extracted_bit_field (result, mode, tmode, unsignedp);
	}

      str_rtx = narrow_bit_field_mem (str_rtx, int_mode, ibitsize, ibitnum,
				      &ibitnum);
      gcc_assert (ibitnum + ibitsize <= GET_MODE_BITSIZE (int_mode));
      str_rtx = copy_to_reg (str_rtx);
      return extract_bit_field_1 (str_rtx, ibitsize, ibitnum, unsignedp,
				  target, mode, tmode, reverse, true, alt_rtl);
    }

  return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
			      target, mode, tmode, reverse, true, alt_rtl);
}

/* Use shifts and boolean operations to extract a field of BITSIZE bits
   from bit BITNUM of OP0.  If OP0_MODE is defined, it is the mode of OP0,
   otherwise OP0 is a BLKmode MEM.

   UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
   If REVERSE is true, the extraction is to be done in reverse order.

   If TARGET is nonzero, attempts to store the value there
   and return TARGET, but this is not guaranteed.
   If TARGET is not used, create a pseudo-reg of mode TMODE for the value.  */

static rtx
extract_fixed_bit_field (machine_mode tmode, rtx op0,
			 opt_scalar_int_mode op0_mode,
			 unsigned HOST_WIDE_INT bitsize,
			 unsigned HOST_WIDE_INT bitnum, rtx target,
			 int unsignedp, bool reverse)
{
  scalar_int_mode mode;
  if (MEM_P (op0))
    {
      if (!get_best_mode (bitsize, bitnum, 0, 0, MEM_ALIGN (op0),
			  BITS_PER_WORD, MEM_VOLATILE_P (op0), &mode))
	/* The only way this should occur is if the field spans word
	   boundaries.  */
	return extract_split_bit_field (op0, op0_mode, bitsize, bitnum,
					unsignedp, reverse);

      op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
    }
  else
    mode = op0_mode.require ();

  return extract_fixed_bit_field_1 (tmode, op0, mode, bitsize, bitnum,
				    target, unsignedp, reverse);
}

/* Helper function for extract_fixed_bit_field, extracts
   the bit field always using MODE, which is the mode of OP0.
   The other arguments are as for extract_fixed_bit_field.  */

static rtx
extract_fixed_bit_field_1 (machine_mode tmode, rtx op0, scalar_int_mode mode,
			   unsigned HOST_WIDE_INT bitsize,
			   unsigned HOST_WIDE_INT bitnum, rtx target,
			   int unsignedp, bool reverse)
{
  /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
     for invalid input, such as extract equivalent of f5 from
     gcc.dg/pr48335-2.c.  */

  if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
    /* BITNUM is the distance between our msb and that of OP0.
       Convert it to the distance from the lsb.  */
    bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;

  /* Now BITNUM is always the distance between the field's lsb and that of OP0.
     We have reduced the big-endian case to the little-endian case.  */
  if (reverse)
    op0 = flip_storage_order (mode, op0);

  if (unsignedp)
    {
      if (bitnum)
	{
	  /* If the field does not already start at the lsb,
	     shift it so it does.  */
	  /* Maybe propagate the target for the shift.  */
	  rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
	  if (tmode != mode)
	    subtarget = 0;
	  op0 = expand_shift (RSHIFT_EXPR, mode, op0, bitnum, subtarget, 1);
	}
      /* Convert the value to the desired mode.  TMODE must also be a
	 scalar integer for this conversion to make sense, since we
	 shouldn't reinterpret the bits.  */
      scalar_int_mode new_mode = as_a <scalar_int_mode> (tmode);
      if (mode != new_mode)
	op0 = convert_to_mode (new_mode, op0, 1);

      /* Unless the msb of the field used to be the msb when we shifted,
	 mask out the upper bits.  */

      if (GET_MODE_BITSIZE (mode) != bitnum + bitsize)
	return expand_binop (new_mode, and_optab, op0,
			     mask_rtx (new_mode, 0, bitsize, 0),
			     target, 1, OPTAB_LIB_WIDEN);
      return op0;
    }

  /* To extract a signed bit-field, first shift its msb to the msb of the word,
     then arithmetic-shift its lsb to the lsb of the word.  */
  op0 = force_reg (mode, op0);

  /* Find the narrowest integer mode that contains the field.  */

  opt_scalar_int_mode mode_iter;
  FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
    if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize + bitnum)
      break;

  mode = mode_iter.require ();
  op0 = convert_to_mode (mode, op0, 0);

  if (mode != tmode)
    target = 0;

  if (GET_MODE_BITSIZE (mode) != (bitsize + bitnum))
    {
      int amount = GET_MODE_BITSIZE (mode) - (bitsize + bitnum);
      /* Maybe propagate the target for the shift.  */
      rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
      op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
    }

  return expand_shift (RSHIFT_EXPR, mode, op0,
		       GET_MODE_BITSIZE (mode) - bitsize, target, 0);
}

/* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
   VALUE << BITPOS.  */

static rtx
lshift_value (machine_mode mode, unsigned HOST_WIDE_INT value,
	      int bitpos)
{
  return immed_wide_int_const (wi::lshift (value, bitpos), mode);
}

/* Extract a bit field that is split across two words
   and return an RTX for the result.

   OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
   BITSIZE is the field width; BITPOS, position of its first bit, in the word.
   UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend.
   If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
   a BLKmode MEM.

   If REVERSE is true, the extraction is to be done in reverse order.  */

static rtx
extract_split_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
			 unsigned HOST_WIDE_INT bitsize,
			 unsigned HOST_WIDE_INT bitpos, int unsignedp,
			 bool reverse)
{
  unsigned int unit;
  unsigned int bitsdone = 0;
  rtx result = NULL_RTX;
  int first = 1;

  /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
     much at a time.  */
  if (REG_P (op0) || GET_CODE (op0) == SUBREG)
    unit = BITS_PER_WORD;
  else
    unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);

  while (bitsdone < bitsize)
    {
      unsigned HOST_WIDE_INT thissize;
      rtx part;
      unsigned HOST_WIDE_INT thispos;
      unsigned HOST_WIDE_INT offset;

      offset = (bitpos + bitsdone) / unit;
      thispos = (bitpos + bitsdone) % unit;

      /* THISSIZE must not overrun a word boundary.  Otherwise,
	 extract_fixed_bit_field will call us again, and we will mutually
	 recurse forever.  */
      thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
      thissize = MIN (thissize, unit - thispos);

      /* If OP0 is a register, then handle OFFSET here.  */
      rtx op0_piece = op0;
      opt_scalar_int_mode op0_piece_mode = op0_mode;
      if (SUBREG_P (op0) || REG_P (op0))
	{
	  op0_piece = operand_subword_force (op0, offset, op0_mode.require ());
	  op0_piece_mode = word_mode;
	  offset = 0;
	}

      /* Extract the parts in bit-counting order,
	 whose meaning is determined by BYTES_PER_UNIT.
	 OFFSET is in UNITs, and UNIT is in bits.  */
      part = extract_fixed_bit_field (word_mode, op0_piece, op0_piece_mode,
				      thissize, offset * unit + thispos,
				      0, 1, reverse);
      bitsdone += thissize;

      /* Shift this part into place for the result.  */
      if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
	{
	  if (bitsize != bitsdone)
	    part = expand_shift (LSHIFT_EXPR, word_mode, part,
				 bitsize - bitsdone, 0, 1);
	}
      else
	{
	  if (bitsdone != thissize)
	    part = expand_shift (LSHIFT_EXPR, word_mode, part,
				 bitsdone - thissize, 0, 1);
	}

      if (first)
	result = part;
      else
	/* Combine the parts with bitwise or.  This works
	   because we extracted each part as an unsigned bit field.  */
	result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
			       OPTAB_LIB_WIDEN);

      first = 0;
    }

  /* Unsigned bit field: we are done.  */
  if (unsignedp)
    return result;
  /* Signed bit field: sign-extend with two arithmetic shifts.  */
  result = expand_shift (LSHIFT_EXPR, word_mode, result,
			 BITS_PER_WORD - bitsize, NULL_RTX, 0);
  return expand_shift (RSHIFT_EXPR, word_mode, result,
		       BITS_PER_WORD - bitsize, NULL_RTX, 0);
}

/* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
   the bit pattern.  SRC_MODE is the mode of SRC; if this is smaller than
   MODE, fill the upper bits with zeros.  Fail if the layout of either
   mode is unknown (as for CC modes) or if the extraction would involve
   unprofitable mode punning.  Return the value on success, otherwise
   return null.

   This is different from gen_lowpart* in these respects:

     - the returned value must always be considered an rvalue

     - when MODE is wider than SRC_MODE, the extraction involves
       a zero extension

     - when MODE is smaller than SRC_MODE, the extraction involves
       a truncation (and is thus subject to TARGET_TRULY_NOOP_TRUNCATION).

   In other words, this routine performs a computation, whereas the
   gen_lowpart* routines are conceptually lvalue or rvalue subreg
   operations.  */

rtx
extract_low_bits (machine_mode mode, machine_mode src_mode, rtx src)
{
  scalar_int_mode int_mode, src_int_mode;

  if (mode == src_mode)
    return src;

  if (CONSTANT_P (src))
    {
      /* simplify_gen_subreg can't be used here, as if simplify_subreg
	 fails, it will happily create (subreg (symbol_ref)) or similar
	 invalid SUBREGs.  */
      poly_uint64 byte = subreg_lowpart_offset (mode, src_mode);
      rtx ret = simplify_subreg (mode, src, src_mode, byte);
      if (ret)
	return ret;

      if (GET_MODE (src) == VOIDmode
	  || !validate_subreg (mode, src_mode, src, byte))
	return NULL_RTX;

      src = force_reg (GET_MODE (src), src);
      return gen_rtx_SUBREG (mode, src, byte);
    }

  if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
    return NULL_RTX;

  if (known_eq (GET_MODE_BITSIZE (mode), GET_MODE_BITSIZE (src_mode))
      && targetm.modes_tieable_p (mode, src_mode))
    {
      rtx x = gen_lowpart_common (mode, src);
      if (x)
        return x;
    }

  if (!int_mode_for_mode (src_mode).exists (&src_int_mode)
      || !int_mode_for_mode (mode).exists (&int_mode))
    return NULL_RTX;

  if (!targetm.modes_tieable_p (src_int_mode, src_mode))
    return NULL_RTX;
  if (!targetm.modes_tieable_p (int_mode, mode))
    return NULL_RTX;

  src = gen_lowpart (src_int_mode, src);
  if (!validate_subreg (int_mode, src_int_mode, src,
			subreg_lowpart_offset (int_mode, src_int_mode)))
    return NULL_RTX;

  src = convert_modes (int_mode, src_int_mode, src, true);
  src = gen_lowpart (mode, src);
  return src;
}

/* Add INC into TARGET.  */

void
expand_inc (rtx target, rtx inc)
{
  rtx value = expand_binop (GET_MODE (target), add_optab,
			    target, inc,
			    target, 0, OPTAB_LIB_WIDEN);
  if (value != target)
    emit_move_insn (target, value);
}

/* Subtract DEC from TARGET.  */

void
expand_dec (rtx target, rtx dec)
{
  rtx value = expand_binop (GET_MODE (target), sub_optab,
			    target, dec,
			    target, 0, OPTAB_LIB_WIDEN);
  if (value != target)
    emit_move_insn (target, value);
}

/* Output a shift instruction for expression code CODE,
   with SHIFTED being the rtx for the value to shift,
   and AMOUNT the rtx for the amount to shift by.
   Store the result in the rtx TARGET, if that is convenient.
   If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
   Return the rtx for where the value is.
   If that cannot be done, abort the compilation unless MAY_FAIL is true,
   in which case 0 is returned.  */

static rtx
expand_shift_1 (enum tree_code code, machine_mode mode, rtx shifted,
		rtx amount, rtx target, int unsignedp, bool may_fail = false)
{
  rtx op1, temp = 0;
  int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
  int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
  optab lshift_optab = ashl_optab;
  optab rshift_arith_optab = ashr_optab;
  optab rshift_uns_optab = lshr_optab;
  optab lrotate_optab = rotl_optab;
  optab rrotate_optab = rotr_optab;
  machine_mode op1_mode;
  scalar_mode scalar_mode = GET_MODE_INNER (mode);
  int attempt;
  bool speed = optimize_insn_for_speed_p ();

  op1 = amount;
  op1_mode = GET_MODE (op1);

  /* Determine whether the shift/rotate amount is a vector, or scalar.  If the
     shift amount is a vector, use the vector/vector shift patterns.  */
  if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
    {
      lshift_optab = vashl_optab;
      rshift_arith_optab = vashr_optab;
      rshift_uns_optab = vlshr_optab;
      lrotate_optab = vrotl_optab;
      rrotate_optab = vrotr_optab;
    }

  /* Previously detected shift-counts computed by NEGATE_EXPR
     and shifted in the other direction; but that does not work
     on all machines.  */

  if (SHIFT_COUNT_TRUNCATED)
    {
      if (CONST_INT_P (op1)
	  && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
	      (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (scalar_mode)))
	op1 = gen_int_shift_amount (mode,
				    (unsigned HOST_WIDE_INT) INTVAL (op1)
				    % GET_MODE_BITSIZE (scalar_mode));
      else if (GET_CODE (op1) == SUBREG
	       && subreg_lowpart_p (op1)
	       && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1)))
	       && SCALAR_INT_MODE_P (GET_MODE (op1)))
	op1 = SUBREG_REG (op1);
    }

  /* Canonicalize rotates by constant amount.  If op1 is bitsize / 2,
     prefer left rotation, if op1 is from bitsize / 2 + 1 to
     bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
     amount instead.  */
  if (rotate
      && CONST_INT_P (op1)
      && IN_RANGE (INTVAL (op1), GET_MODE_BITSIZE (scalar_mode) / 2 + left,
		   GET_MODE_BITSIZE (scalar_mode) - 1))
    {
      op1 = gen_int_shift_amount (mode, (GET_MODE_BITSIZE (scalar_mode)
					 - INTVAL (op1)));
      left = !left;
      code = left ? LROTATE_EXPR : RROTATE_EXPR;
    }

  /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi.
     Note that this is not the case for bigger values.  For instance a rotation
     of 0x01020304 by 16 bits gives 0x03040102 which is different from
     0x04030201 (bswapsi).  */
  if (rotate
      && CONST_INT_P (op1)
      && INTVAL (op1) == BITS_PER_UNIT
      && GET_MODE_SIZE (scalar_mode) == 2
      && optab_handler (bswap_optab, mode) != CODE_FOR_nothing)
    return expand_unop (mode, bswap_optab, shifted, NULL_RTX, unsignedp);

  if (op1 == const0_rtx)
    return shifted;

  /* Check whether its cheaper to implement a left shift by a constant
     bit count by a sequence of additions.  */
  if (code == LSHIFT_EXPR
      && CONST_INT_P (op1)
      && INTVAL (op1) > 0
      && INTVAL (op1) < GET_MODE_PRECISION (scalar_mode)
      && INTVAL (op1) < MAX_BITS_PER_WORD
      && (shift_cost (speed, mode, INTVAL (op1))
	  > INTVAL (op1) * add_cost (speed, mode))
      && shift_cost (speed, mode, INTVAL (op1)) != MAX_COST)
    {
      int i;
      for (i = 0; i < INTVAL (op1); i++)
	{
	  temp = force_reg (mode, shifted);
	  shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
				  unsignedp, OPTAB_LIB_WIDEN);
	}
      return shifted;
    }

  for (attempt = 0; temp == 0 && attempt < 3; attempt++)
    {
      enum optab_methods methods;

      if (attempt == 0)
	methods = OPTAB_DIRECT;
      else if (attempt == 1)
	methods = OPTAB_WIDEN;
      else
	methods = OPTAB_LIB_WIDEN;

      if (rotate)
	{
	  /* Widening does not work for rotation.  */
	  if (methods == OPTAB_WIDEN)
	    continue;
	  else if (methods == OPTAB_LIB_WIDEN)
	    {
	      /* If we have been unable to open-code this by a rotation,
		 do it as the IOR of two shifts.  I.e., to rotate A
		 by N bits, compute
		 (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
		 where C is the bitsize of A.

		 It is theoretically possible that the target machine might
		 not be able to perform either shift and hence we would
		 be making two libcalls rather than just the one for the
		 shift (similarly if IOR could not be done).  We will allow
		 this extremely unlikely lossage to avoid complicating the
		 code below.  */

	      rtx subtarget = target == shifted ? 0 : target;
	      rtx new_amount, other_amount;
	      rtx temp1;

	      new_amount = op1;
	      if (op1 == const0_rtx)
		return shifted;
	      else if (CONST_INT_P (op1))
		other_amount = gen_int_shift_amount
		  (mode, GET_MODE_BITSIZE (scalar_mode) - INTVAL (op1));
	      else
		{
		  other_amount
		    = simplify_gen_unary (NEG, GET_MODE (op1),
					  op1, GET_MODE (op1));
		  HOST_WIDE_INT mask = GET_MODE_PRECISION (scalar_mode) - 1;
		  other_amount
		    = simplify_gen_binary (AND, GET_MODE (op1), other_amount,
					   gen_int_mode (mask, GET_MODE (op1)));
		}

	      shifted = force_reg (mode, shifted);

	      temp = expand_shift_1 (left ? LSHIFT_EXPR : RSHIFT_EXPR,
				     mode, shifted, new_amount, 0, 1);
	      temp1 = expand_shift_1 (left ? RSHIFT_EXPR : LSHIFT_EXPR,
				      mode, shifted, other_amount,
				      subtarget, 1);
	      return expand_binop (mode, ior_optab, temp, temp1, target,
				   unsignedp, methods);
	    }

	  temp = expand_binop (mode,
			       left ? lrotate_optab : rrotate_optab,
			       shifted, op1, target, unsignedp, methods);
	}
      else if (unsignedp)
	temp = expand_binop (mode,
			     left ? lshift_optab : rshift_uns_optab,
			     shifted, op1, target, unsignedp, methods);

      /* Do arithmetic shifts.
	 Also, if we are going to widen the operand, we can just as well
	 use an arithmetic right-shift instead of a logical one.  */
      if (temp == 0 && ! rotate
	  && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
	{
	  enum optab_methods methods1 = methods;

	  /* If trying to widen a log shift to an arithmetic shift,
	     don't accept an arithmetic shift of the same size.  */
	  if (unsignedp)
	    methods1 = OPTAB_MUST_WIDEN;

	  /* Arithmetic shift */

	  temp = expand_binop (mode,
			       left ? lshift_optab : rshift_arith_optab,
			       shifted, op1, target, unsignedp, methods1);
	}

      /* We used to try extzv here for logical right shifts, but that was
	 only useful for one machine, the VAX, and caused poor code
	 generation there for lshrdi3, so the code was deleted and a
	 define_expand for lshrsi3 was added to vax.md.  */
    }

  gcc_assert (temp != NULL_RTX || may_fail);
  return temp;
}

/* Output a shift instruction for expression code CODE,
   with SHIFTED being the rtx for the value to shift,
   and AMOUNT the amount to shift by.
   Store the result in the rtx TARGET, if that is convenient.
   If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
   Return the rtx for where the value is.  */

rtx
expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
	      poly_int64 amount, rtx target, int unsignedp)
{
  return expand_shift_1 (code, mode, shifted,
			 gen_int_shift_amount (mode, amount),
			 target, unsignedp);
}

/* Likewise, but return 0 if that cannot be done.  */

rtx
maybe_expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
		    int amount, rtx target, int unsignedp)
{
  return expand_shift_1 (code, mode,
			 shifted, GEN_INT (amount), target, unsignedp, true);
}

/* Output a shift instruction for expression code CODE,
   with SHIFTED being the rtx for the value to shift,
   and AMOUNT the tree for the amount to shift by.
   Store the result in the rtx TARGET, if that is convenient.
   If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
   Return the rtx for where the value is.  */

rtx
expand_variable_shift (enum tree_code code, machine_mode mode, rtx shifted,
		       tree amount, rtx target, int unsignedp)
{
  return expand_shift_1 (code, mode,
			 shifted, expand_normal (amount), target, unsignedp);
}


static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
			const struct mult_cost *, machine_mode mode);
static rtx expand_mult_const (machine_mode, rtx, HOST_WIDE_INT, rtx,
			      const struct algorithm *, enum mult_variant);
static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
static rtx extract_high_half (scalar_int_mode, rtx);
static rtx expmed_mult_highpart (scalar_int_mode, rtx, rtx, rtx, int, int);
static rtx expmed_mult_highpart_optab (scalar_int_mode, rtx, rtx, rtx,
				       int, int);
/* Compute and return the best algorithm for multiplying by T.
   The algorithm must cost less than cost_limit
   If retval.cost >= COST_LIMIT, no algorithm was found and all
   other field of the returned struct are undefined.
   MODE is the machine mode of the multiplication.  */

static void
synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
	    const struct mult_cost *cost_limit, machine_mode mode)
{
  int m;
  struct algorithm *alg_in, *best_alg;
  struct mult_cost best_cost;
  struct mult_cost new_limit;
  int op_cost, op_latency;
  unsigned HOST_WIDE_INT orig_t = t;
  unsigned HOST_WIDE_INT q;
  int maxm, hash_index;
  bool cache_hit = false;
  enum alg_code cache_alg = alg_zero;
  bool speed = optimize_insn_for_speed_p ();
  scalar_int_mode imode;
  struct alg_hash_entry *entry_ptr;

  /* Indicate that no algorithm is yet found.  If no algorithm
     is found, this value will be returned and indicate failure.  */
  alg_out->cost.cost = cost_limit->cost + 1;
  alg_out->cost.latency = cost_limit->latency + 1;

  if (cost_limit->cost < 0
      || (cost_limit->cost == 0 && cost_limit->latency <= 0))
    return;

  /* Be prepared for vector modes.  */
  imode = as_a <scalar_int_mode> (GET_MODE_INNER (mode));

  maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (imode));

  /* Restrict the bits of "t" to the multiplication's mode.  */
  t &= GET_MODE_MASK (imode);

  /* t == 1 can be done in zero cost.  */
  if (t == 1)
    {
      alg_out->ops = 1;
      alg_out->cost.cost = 0;
      alg_out->cost.latency = 0;
      alg_out->op[0] = alg_m;
      return;
    }

  /* t == 0 sometimes has a cost.  If it does and it exceeds our limit,
     fail now.  */
  if (t == 0)
    {
      if (MULT_COST_LESS (cost_limit, zero_cost (speed)))
	return;
      else
	{
	  alg_out->ops = 1;
	  alg_out->cost.cost = zero_cost (speed);
	  alg_out->cost.latency = zero_cost (speed);
	  alg_out->op[0] = alg_zero;
	  return;
	}
    }

  /* We'll be needing a couple extra algorithm structures now.  */

  alg_in = XALLOCA (struct algorithm);
  best_alg = XALLOCA (struct algorithm);
  best_cost = *cost_limit;

  /* Compute the hash index.  */
  hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;

  /* See if we already know what to do for T.  */
  entry_ptr = alg_hash_entry_ptr (hash_index);
  if (entry_ptr->t == t
      && entry_ptr->mode == mode
      && entry_ptr->speed == speed
      && entry_ptr->alg != alg_unknown)
    {
      cache_alg = entry_ptr->alg;

      if (cache_alg == alg_impossible)
	{
	  /* The cache tells us that it's impossible to synthesize
	     multiplication by T within entry_ptr->cost.  */
	  if (!CHEAPER_MULT_COST (&entry_ptr->cost, cost_limit))
	    /* COST_LIMIT is at least as restrictive as the one
	       recorded in the hash table, in which case we have no
	       hope of synthesizing a multiplication.  Just
	       return.  */
	    return;

	  /* If we get here, COST_LIMIT is less restrictive than the
	     one recorded in the hash table, so we may be able to
	     synthesize a multiplication.  Proceed as if we didn't
	     have the cache entry.  */
	}
      else
	{
	  if (CHEAPER_MULT_COST (cost_limit, &entry_ptr->cost))
	    /* The cached algorithm shows that this multiplication
	       requires more cost than COST_LIMIT.  Just return.  This
	       way, we don't clobber this cache entry with
	       alg_impossible but retain useful information.  */
	    return;

	  cache_hit = true;

	  switch (cache_alg)
	    {
	    case alg_shift:
	      goto do_alg_shift;

	    case alg_add_t_m2:
	    case alg_sub_t_m2:
	      goto do_alg_addsub_t_m2;

	    case alg_add_factor:
	    case alg_sub_factor:
	      goto do_alg_addsub_factor;

	    case alg_add_t2_m:
	      goto do_alg_add_t2_m;

	    case alg_sub_t2_m:
	      goto do_alg_sub_t2_m;

	    default:
	      gcc_unreachable ();
	    }
	}
    }

  /* If we have a group of zero bits at the low-order part of T, try
     multiplying by the remaining bits and then doing a shift.  */

  if ((t & 1) == 0)
    {
    do_alg_shift:
      m = ctz_or_zero (t); /* m = number of low zero bits */
      if (m < maxm)
	{
	  q = t >> m;
	  /* The function expand_shift will choose between a shift and
	     a sequence of additions, so the observed cost is given as
	     MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)).  */
	  op_cost = m * add_cost (speed, mode);
	  if (shift_cost (speed, mode, m) < op_cost)
	    op_cost = shift_cost (speed, mode, m);
	  new_limit.cost = best_cost.cost - op_cost;
	  new_limit.latency = best_cost.latency - op_cost;
	  synth_mult (alg_in, q, &new_limit, mode);

	  alg_in->cost.cost += op_cost;
	  alg_in->cost.latency += op_cost;
	  if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
	    {
	      best_cost = alg_in->cost;
	      std::swap (alg_in, best_alg);
	      best_alg->log[best_alg->ops] = m;
	      best_alg->op[best_alg->ops] = alg_shift;
	    }

	  /* See if treating ORIG_T as a signed number yields a better
	     sequence.  Try this sequence only for a negative ORIG_T
	     as it would be useless for a non-negative ORIG_T.  */
	  if ((HOST_WIDE_INT) orig_t < 0)
	    {
	      /* Shift ORIG_T as follows because a right shift of a
		 negative-valued signed type is implementation
		 defined.  */
	      q = ~(~orig_t >> m);
	      /* The function expand_shift will choose between a shift
		 and a sequence of additions, so the observed cost is
		 given as MIN (m * add_cost(speed, mode),
		 shift_cost(speed, mode, m)).  */
	      op_cost = m * add_cost (speed, mode);
	      if (shift_cost (speed, mode, m) < op_cost)
		op_cost = shift_cost (speed, mode, m);
	      new_limit.cost = best_cost.cost - op_cost;
	      new_limit.latency = best_cost.latency - op_cost;
	      synth_mult (alg_in, q, &new_limit, mode);

	      alg_in->cost.cost += op_cost;
	      alg_in->cost.latency += op_cost;
	      if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
		{
		  best_cost = alg_in->cost;
		  std::swap (alg_in, best_alg);
		  best_alg->log[best_alg->ops] = m;
		  best_alg->op[best_alg->ops] = alg_shift;
		}
	    }
	}
      if (cache_hit)
	goto done;
    }

  /* If we have an odd number, add or subtract one.  */
  if ((t & 1) != 0)
    {
      unsigned HOST_WIDE_INT w;

    do_alg_addsub_t_m2:
      for (w = 1; (w & t) != 0; w <<= 1)
	;
      /* If T was -1, then W will be zero after the loop.  This is another
	 case where T ends with ...111.  Handling this with (T + 1) and
	 subtract 1 produces slightly better code and results in algorithm
	 selection much faster than treating it like the ...0111 case
	 below.  */
      if (w == 0
	  || (w > 2
	      /* Reject the case where t is 3.
		 Thus we prefer addition in that case.  */
	      && t != 3))
	{
	  /* T ends with ...111.  Multiply by (T + 1) and subtract T.  */

	  op_cost = add_cost (speed, mode);
	  new_limit.cost = best_cost.cost - op_cost;
	  new_limit.latency = best_cost.latency - op_cost;
	  synth_mult (alg_in, t + 1, &new_limit, mode);

	  alg_in->cost.cost += op_cost;
	  alg_in->cost.latency += op_cost;
	  if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
	    {
	      best_cost = alg_in->cost;
	      std::swap (alg_in, best_alg);
	      best_alg->log[best_alg->ops] = 0;
	      best_alg->op[best_alg->ops] = alg_sub_t_m2;
	    }
	}
      else
	{
	  /* T ends with ...01 or ...011.  Multiply by (T - 1) and add T.  */

	  op_cost = add_cost (speed, mode);
	  new_limit.cost = best_cost.cost - op_cost;
	  new_limit.latency = best_cost.latency - op_cost;
	  synth_mult (alg_in, t - 1, &new_limit, mode);

	  alg_in->cost.cost += op_cost;
	  alg_in->cost.latency += op_cost;
	  if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
	    {
	      best_cost = alg_in->cost;
	      std::swap (alg_in, best_alg);
	      best_alg->log[best_alg->ops] = 0;
	      best_alg->op[best_alg->ops] = alg_add_t_m2;
	    }
	}

      /* We may be able to calculate a * -7, a * -15, a * -31, etc
	 quickly with a - a * n for some appropriate constant n.  */
      m = exact_log2 (-orig_t + 1);
      if (m >= 0 && m < maxm)
	{
	  op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
	  /* If the target has a cheap shift-and-subtract insn use
	     that in preference to a shift insn followed by a sub insn.
	     Assume that the shift-and-sub is "atomic" with a latency
	     equal to it's cost, otherwise assume that on superscalar
	     hardware the shift may be executed concurrently with the
	     earlier steps in the algorithm.  */
	  if (shiftsub1_cost (speed, mode, m) <= op_cost)
	    {
	      op_cost = shiftsub1_cost (speed, mode, m);
	      op_latency = op_cost;
	    }
	  else
	    op_latency = add_cost (speed, mode);

	  new_limit.cost = best_cost.cost - op_cost;
	  new_limit.latency = best_cost.latency - op_latency;
	  synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m,
		      &new_limit, mode);

	  alg_in->cost.cost += op_cost;
	  alg_in->cost.latency += op_latency;
	  if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
	    {
	      best_cost = alg_in->cost;
	      std::swap (alg_in, best_alg);
	      best_alg->log[best_alg->ops] = m;
	      best_alg->op[best_alg->ops] = alg_sub_t_m2;
	    }
	}

      if (cache_hit)
	goto done;
    }

  /* Look for factors of t of the form
     t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
     If we find such a factor, we can multiply by t using an algorithm that
     multiplies by q, shift the result by m and add/subtract it to itself.

     We search for large factors first and loop down, even if large factors
     are less probable than small; if we find a large factor we will find a
     good sequence quickly, and therefore be able to prune (by decreasing
     COST_LIMIT) the search.  */

 do_alg_addsub_factor:
  for (m = floor_log2 (t - 1); m >= 2; m--)
    {
      unsigned HOST_WIDE_INT d;

      d = (HOST_WIDE_INT_1U << m) + 1;
      if (t % d == 0 && t > d && m < maxm
	  && (!cache_hit || cache_alg == alg_add_factor))
	{
	  op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
	  if (shiftadd_cost (speed, mode, m) <= op_cost)
	    op_cost = shiftadd_cost (speed, mode, m);

	  op_latency = op_cost;


	  new_limit.cost = best_cost.cost - op_cost;
	  new_limit.latency = best_cost.latency - op_latency;
	  synth_mult (alg_in, t / d, &new_limit, mode);

	  alg_in->cost.cost += op_cost;
	  alg_in->cost.latency += op_latency;
	  if (alg_in->cost.latency < op_cost)
	    alg_in->cost.latency = op_cost;
	  if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
	    {
	      best_cost = alg_in->cost;
	      std::swap (alg_in, best_alg);
	      best_alg->log[best_alg->ops] = m;
	      best_alg->op[best_alg->ops] = alg_add_factor;
	    }
	  /* Other factors will have been taken care of in the recursion.  */
	  break;
	}

      d = (HOST_WIDE_INT_1U << m) - 1;
      if (t % d == 0 && t > d && m < maxm
	  && (!cache_hit || cache_alg == alg_sub_factor))
	{
	  op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
	  if (shiftsub0_cost (speed, mode, m) <= op_cost)
	    op_cost = shiftsub0_cost (speed, mode, m);

	  op_latency = op_cost;

	  new_limit.cost = best_cost.cost - op_cost;
	  new_limit.latency = best_cost.latency - op_latency;
	  synth_mult (alg_in, t / d, &new_limit, mode);

	  alg_in->cost.cost += op_cost;
	  alg_in->cost.latency += op_latency;
	  if (alg_in->cost.latency < op_cost)
	    alg_in->cost.latency = op_cost;
	  if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
	    {
	      best_cost = alg_in->cost;
	      std::swap (alg_in, best_alg);
	      best_alg->log[best_alg->ops] = m;
	      best_alg->op[best_alg->ops] = alg_sub_factor;
	    }
	  break;
	}
    }
  if (cache_hit)
    goto done;

  /* Try shift-and-add (load effective address) instructions,
     i.e. do a*3, a*5, a*9.  */
  if ((t & 1) != 0)
    {
    do_alg_add_t2_m:
      q = t - 1;
      m = ctz_hwi (q);
      if (q && m < maxm)
	{
	  op_cost = shiftadd_cost (speed, mode, m);
	  new_limit.cost = best_cost.cost - op_cost;
	  new_limit.latency = best_cost.latency - op_cost;
	  synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);

	  alg_in->cost.cost += op_cost;
	  alg_in->cost.latency += op_cost;
	  if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
	    {
	      best_cost = alg_in->cost;
	      std::swap (alg_in, best_alg);
	      best_alg->log[best_alg->ops] = m;
	      best_alg->op[best_alg->ops] = alg_add_t2_m;
	    }
	}
      if (cache_hit)
	goto done;

    do_alg_sub_t2_m:
      q = t + 1;
      m = ctz_hwi (q);
      if (q && m < maxm)
	{
	  op_cost = shiftsub0_cost (speed, mode, m);
	  new_limit.cost = best_cost.cost - op_cost;
	  new_limit.latency = best_cost.latency - op_cost;
	  synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);

	  alg_in->cost.cost += op_cost;
	  alg_in->cost.latency += op_cost;
	  if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
	    {
	      best_cost = alg_in->cost;
	      std::swap (alg_in, best_alg);
	      best_alg->log[best_alg->ops] = m;
	      best_alg->op[best_alg->ops] = alg_sub_t2_m;
	    }
	}
      if (cache_hit)
	goto done;
    }

 done:
  /* If best_cost has not decreased, we have not found any algorithm.  */
  if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
    {
      /* We failed to find an algorithm.  Record alg_impossible for
	 this case (that is, <T, MODE, COST_LIMIT>) so that next time
	 we are asked to find an algorithm for T within the same or
	 lower COST_LIMIT, we can immediately return to the
	 caller.  */
      entry_ptr->t = t;
      entry_ptr->mode = mode;
      entry_ptr->speed = speed;
      entry_ptr->alg = alg_impossible;
      entry_ptr->cost = *cost_limit;
      return;
    }

  /* Cache the result.  */
  if (!cache_hit)
    {
      entry_ptr->t = t;
      entry_ptr->mode = mode;
      entry_ptr->speed = speed;
      entry_ptr->alg = best_alg->op[best_alg->ops];
      entry_ptr->cost.cost = best_cost.cost;
      entry_ptr->cost.latency = best_cost.latency;
    }

  /* If we are getting a too long sequence for `struct algorithm'
     to record, make this search fail.  */
  if (best_alg->ops == MAX_BITS_PER_WORD)
    return;

  /* Copy the algorithm from temporary space to the space at alg_out.
     We avoid using structure assignment because the majority of
     best_alg is normally undefined, and this is a critical function.  */
  alg_out->ops = best_alg->ops + 1;
  alg_out->cost = best_cost;
  memcpy (alg_out->op, best_alg->op,
	  alg_out->ops * sizeof *alg_out->op);
  memcpy (alg_out->log, best_alg->log,
	  alg_out->ops * sizeof *alg_out->log);
}

/* Find the cheapest way of multiplying a value of mode MODE by VAL.
   Try three variations:

       - a shift/add sequence based on VAL itself
       - a shift/add sequence based on -VAL, followed by a negation
       - a shift/add sequence based on VAL - 1, followed by an addition.

   Return true if the cheapest of these cost less than MULT_COST,
   describing the algorithm in *ALG and final fixup in *VARIANT.  */

bool
choose_mult_variant (machine_mode mode, HOST_WIDE_INT val,
		     struct algorithm *alg, enum mult_variant *variant,
		     int mult_cost)
{
  struct algorithm alg2;
  struct mult_cost limit;
  int op_cost;
  bool speed = optimize_insn_for_speed_p ();

  /* Fail quickly for impossible bounds.  */
  if (mult_cost < 0)
    return false;

  /* Ensure that mult_cost provides a reasonable upper bound.
     Any constant multiplication can be performed with less
     than 2 * bits additions.  */
  op_cost = 2 * GET_MODE_UNIT_BITSIZE (mode) * add_cost (speed, mode);
  if (mult_cost > op_cost)
    mult_cost = op_cost;

  *variant = basic_variant;
  limit.cost = mult_cost;
  limit.latency = mult_cost;
  synth_mult (alg, val, &limit, mode);

  /* This works only if the inverted value actually fits in an
     `unsigned int' */
  if (HOST_BITS_PER_INT >= GET_MODE_UNIT_BITSIZE (mode))
    {
      op_cost = neg_cost (speed, mode);
      if (MULT_COST_LESS (&alg->cost, mult_cost))
	{
	  limit.cost = alg->cost.cost - op_cost;
	  limit.latency = alg->cost.latency - op_cost;
	}
      else
	{
	  limit.cost = mult_cost - op_cost;
	  limit.latency = mult_cost - op_cost;
	}

      synth_mult (&alg2, -val, &limit, mode);
      alg2.cost.cost += op_cost;
      alg2.cost.latency += op_cost;
      if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
	*alg = alg2, *variant = negate_variant;
    }

  /* This proves very useful for division-by-constant.  */
  op_cost = add_cost (speed, mode);
  if (MULT_COST_LESS (&alg->cost, mult_cost))
    {
      limit.cost = alg->cost.cost - op_cost;
      limit.latency = alg->cost.latency - op_cost;
    }
  else
    {
      limit.cost = mult_cost - op_cost;
      limit.latency = mult_cost - op_cost;
    }

  synth_mult (&alg2, val - 1, &limit, mode);
  alg2.cost.cost += op_cost;
  alg2.cost.latency += op_cost;
  if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
    *alg = alg2, *variant = add_variant;

  return MULT_COST_LESS (&alg->cost, mult_cost);
}

/* A subroutine of expand_mult, used for constant multiplications.
   Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
   convenient.  Use the shift/add sequence described by ALG and apply
   the final fixup specified by VARIANT.  */

static rtx
expand_mult_const (machine_mode mode, rtx op0, HOST_WIDE_INT val,
		   rtx target, const struct algorithm *alg,
		   enum mult_variant variant)
{
  unsigned HOST_WIDE_INT val_so_far;
  rtx_insn *insn;
  rtx accum, tem;
  int opno;
  machine_mode nmode;

  /* Avoid referencing memory over and over and invalid sharing
     on SUBREGs.  */
  op0 = force_reg (mode, op0);

  /* ACCUM starts out either as OP0 or as a zero, depending on
     the first operation.  */

  if (alg->op[0] == alg_zero)
    {
      accum = copy_to_mode_reg (mode, CONST0_RTX (mode));
      val_so_far = 0;
    }
  else if (alg->op[0] == alg_m)
    {
      accum = copy_to_mode_reg (mode, op0);
      val_so_far = 1;
    }
  else
    gcc_unreachable ();

  for (opno = 1; opno < alg->ops; opno++)
    {
      int log = alg->log[opno];
      rtx shift_subtarget = optimize ? 0 : accum;
      rtx add_target
	= (opno == alg->ops - 1 && target != 0 && variant != add_variant
	   && !optimize)
	  ? target : 0;
      rtx accum_target = optimize ? 0 : accum;
      rtx accum_inner;

      switch (alg->op[opno])
	{
	case alg_shift:
	  tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
	  /* REG_EQUAL note will be attached to the following insn.  */
	  emit_move_insn (accum, tem);
	  val_so_far <<= log;
	  break;

	case alg_add_t_m2:
	  tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
	  accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
				 add_target ? add_target : accum_target);
	  val_so_far += HOST_WIDE_INT_1U << log;
	  break;

	case alg_sub_t_m2:
	  tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
	  accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
				 add_target ? add_target : accum_target);
	  val_so_far -= HOST_WIDE_INT_1U << log;
	  break;

	case alg_add_t2_m:
	  accum = expand_shift (LSHIFT_EXPR, mode, accum,
				log, shift_subtarget, 0);
	  accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
				 add_target ? add_target : accum_target);
	  val_so_far = (val_so_far << log) + 1;
	  break;

	case alg_sub_t2_m:
	  accum = expand_shift (LSHIFT_EXPR, mode, accum,
				log, shift_subtarget, 0);
	  accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
				 add_target ? add_target : accum_target);
	  val_so_far = (val_so_far << log) - 1;
	  break;

	case alg_add_factor:
	  tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
	  accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
				 add_target ? add_target : accum_target);
	  val_so_far += val_so_far << log;
	  break;

	case alg_sub_factor:
	  tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
	  accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
				 (add_target
				  ? add_target : (optimize ? 0 : tem)));
	  val_so_far = (val_so_far << log) - val_so_far;
	  break;

	default:
	  gcc_unreachable ();
	}

      if (SCALAR_INT_MODE_P (mode))
	{
	  /* Write a REG_EQUAL note on the last insn so that we can cse
	     multiplication sequences.  Note that if ACCUM is a SUBREG,
	     we've set the inner register and must properly indicate that.  */
	  tem = op0, nmode = mode;
	  accum_inner = accum;
	  if (GET_CODE (accum) == SUBREG)
	    {
	      accum_inner = SUBREG_REG (accum);
	      nmode = GET_MODE (accum_inner);
	      tem = gen_lowpart (nmode, op0);
	    }

	  /* Don't add a REG_EQUAL note if tem is a paradoxical SUBREG.
	     In that case, only the low bits of accum would be guaranteed to
	     be equal to the content of the REG_EQUAL note, the upper bits
	     can be anything.  */
	  if (!paradoxical_subreg_p (tem))
	    {
	      insn = get_last_insn ();
	      wide_int wval_so_far
		= wi::uhwi (val_so_far,
			    GET_MODE_PRECISION (as_a <scalar_mode> (nmode)));
	      rtx c = immed_wide_int_const (wval_so_far, nmode);
	      set_dst_reg_note (insn, REG_EQUAL, gen_rtx_MULT (nmode, tem, c),
				accum_inner);
	    }
	}
    }

  if (variant == negate_variant)
    {
      val_so_far = -val_so_far;
      accum = expand_unop (mode, neg_optab, accum, target, 0);
    }
  else if (variant == add_variant)
    {
      val_so_far = val_so_far + 1;
      accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
    }

  /* Compare only the bits of val and val_so_far that are significant
     in the result mode, to avoid sign-/zero-extension confusion.  */
  nmode = GET_MODE_INNER (mode);
  val &= GET_MODE_MASK (nmode);
  val_so_far &= GET_MODE_MASK (nmode);
  gcc_assert (val == (HOST_WIDE_INT) val_so_far);

  return accum;
}

/* Perform a multiplication and return an rtx for the result.
   MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
   TARGET is a suggestion for where to store the result (an rtx).

   We check specially for a constant integer as OP1.
   If you want this check for OP0 as well, then before calling
   you should swap the two operands if OP0 would be constant.  */

rtx
expand_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
	     int unsignedp, bool no_libcall)
{
  enum mult_variant variant;
  struct algorithm algorithm;
  rtx scalar_op1;
  int max_cost;
  bool speed = optimize_insn_for_speed_p ();
  bool do_trapv = flag_trapv && SCALAR_INT_MODE_P (mode) && !unsignedp;

  if (CONSTANT_P (op0))
    std::swap (op0, op1);

  /* For vectors, there are several simplifications that can be made if
     all elements of the vector constant are identical.  */
  scalar_op1 = unwrap_const_vec_duplicate (op1);

  if (INTEGRAL_MODE_P (mode))
    {
      rtx fake_reg;
      HOST_WIDE_INT coeff;
      bool is_neg;
      int mode_bitsize;

      if (op1 == CONST0_RTX (mode))
	return op1;
      if (op1 == CONST1_RTX (mode))
	return op0;
      if (op1 == CONSTM1_RTX (mode))
	return expand_unop (mode, do_trapv ? negv_optab : neg_optab,
			    op0, target, 0);

      if (do_trapv)
	goto skip_synth;

      /* If mode is integer vector mode, check if the backend supports
	 vector lshift (by scalar or vector) at all.  If not, we can't use
	 synthetized multiply.  */
      if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
	  && optab_handler (vashl_optab, mode) == CODE_FOR_nothing
	  && optab_handler (ashl_optab, mode) == CODE_FOR_nothing)
	goto skip_synth;

      /* These are the operations that are potentially turned into
	 a sequence of shifts and additions.  */
      mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);

      /* synth_mult does an `unsigned int' multiply.  As long as the mode is
	 less than or equal in size to `unsigned int' this doesn't matter.
	 If the mode is larger than `unsigned int', then synth_mult works
	 only if the constant value exactly fits in an `unsigned int' without
	 any truncation.  This means that multiplying by negative values does
	 not work; results are off by 2^32 on a 32 bit machine.  */
      if (CONST_INT_P (scalar_op1))
	{
	  coeff = INTVAL (scalar_op1);
	  is_neg = coeff < 0;
	}
#if TARGET_SUPPORTS_WIDE_INT
      else if (CONST_WIDE_INT_P (scalar_op1))
#else
      else if (CONST_DOUBLE_AS_INT_P (scalar_op1))
#endif
	{
	  int shift = wi::exact_log2 (rtx_mode_t (scalar_op1, mode));
	  /* Perfect power of 2 (other than 1, which is handled above).  */
	  if (shift > 0)
	    return expand_shift (LSHIFT_EXPR, mode, op0,
				 shift, target, unsignedp);
	  else
	    goto skip_synth;
	}
      else
	goto skip_synth;

      /* We used to test optimize here, on the grounds that it's better to
	 produce a smaller program when -O is not used.  But this causes
	 such a terrible slowdown sometimes that it seems better to always
	 use synth_mult.  */

      /* Special case powers of two.  */
      if (EXACT_POWER_OF_2_OR_ZERO_P (coeff)
	  && !(is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT))
	return expand_shift (LSHIFT_EXPR, mode, op0,
			     floor_log2 (coeff), target, unsignedp);

      fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);

      /* Attempt to handle multiplication of DImode values by negative
	 coefficients, by performing the multiplication by a positive
	 multiplier and then inverting the result.  */
      if (is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT)
	{
	  /* Its safe to use -coeff even for INT_MIN, as the
	     result is interpreted as an unsigned coefficient.
	     Exclude cost of op0 from max_cost to match the cost
	     calculation of the synth_mult.  */
	  coeff = -(unsigned HOST_WIDE_INT) coeff;
	  max_cost = (set_src_cost (gen_rtx_MULT (mode, fake_reg, op1),
				    mode, speed)
		      - neg_cost (speed, mode));
	  if (max_cost <= 0)
	    goto skip_synth;

	  /* Special case powers of two.  */
	  if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
	    {
	      rtx temp = expand_shift (LSHIFT_EXPR, mode, op0,
				       floor_log2 (coeff), target, unsignedp);
	      return expand_unop (mode, neg_optab, temp, target, 0);
	    }

	  if (choose_mult_variant (mode, coeff, &algorithm, &variant,
				   max_cost))
	    {
	      rtx temp = expand_mult_const (mode, op0, coeff, NULL_RTX,
					    &algorithm, variant);
	      return expand_unop (mode, neg_optab, temp, target, 0);
	    }
	  goto skip_synth;
	}

      /* Exclude cost of op0 from max_cost to match the cost
	 calculation of the synth_mult.  */
      max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), mode, speed);
      if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
	return expand_mult_const (mode, op0, coeff, target,
				  &algorithm, variant);
    }
 skip_synth:

  /* Expand x*2.0 as x+x.  */
  if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1)
      && real_equal (CONST_DOUBLE_REAL_VALUE (scalar_op1), &dconst2))
    {
      op0 = force_reg (GET_MODE (op0), op0);
      return expand_binop (mode, add_optab, op0, op0,
			   target, unsignedp,
			   no_libcall ? OPTAB_WIDEN : OPTAB_LIB_WIDEN);
    }

  /* This used to use umul_optab if unsigned, but for non-widening multiply
     there is no difference between signed and unsigned.  */
  op0 = expand_binop (mode, do_trapv ? smulv_optab : smul_optab,
		      op0, op1, target, unsignedp,
		      no_libcall ? OPTAB_WIDEN : OPTAB_LIB_WIDEN);
  gcc_assert (op0 || no_libcall);
  return op0;
}

/* Return a cost estimate for multiplying a register by the given
   COEFFicient in the given MODE and SPEED.  */

int
mult_by_coeff_cost (HOST_WIDE_INT coeff, machine_mode mode, bool speed)
{
  int max_cost;
  struct algorithm algorithm;
  enum mult_variant variant;

  rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
  max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, fake_reg),
			   mode, speed);
  if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
    return algorithm.cost.cost;
  else
    return max_cost;
}

/* Perform a widening multiplication and return an rtx for the result.
   MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
   TARGET is a suggestion for where to store the result (an rtx).
   THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
   or smul_widen_optab.

   We check specially for a constant integer as OP1, comparing the
   cost of a widening multiply against the cost of a sequence of shifts
   and adds.  */

rtx
expand_widening_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
		      int unsignedp, optab this_optab)
{
  bool speed = optimize_insn_for_speed_p ();
  rtx cop1;

  if (CONST_INT_P (op1)
      && GET_MODE (op0) != VOIDmode
      && (cop1 = convert_modes (mode, GET_MODE (op0), op1,
				this_optab == umul_widen_optab))
      && CONST_INT_P (cop1)
      && (INTVAL (cop1) >= 0
	  || HWI_COMPUTABLE_MODE_P (mode)))
    {
      HOST_WIDE_INT coeff = INTVAL (cop1);
      int max_cost;
      enum mult_variant variant;
      struct algorithm algorithm;

      if (coeff == 0)
	return CONST0_RTX (mode);

      /* Special case powers of two.  */
      if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
	{
	  op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
	  return expand_shift (LSHIFT_EXPR, mode, op0,
			       floor_log2 (coeff), target, unsignedp);
	}

      /* Exclude cost of op0 from max_cost to match the cost
	 calculation of the synth_mult.  */
      max_cost = mul_widen_cost (speed, mode);
      if (choose_mult_variant (mode, coeff, &algorithm, &variant,
			       max_cost))
	{
	  op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
	  return expand_mult_const (mode, op0, coeff, target,
				    &algorithm, variant);
	}
    }
  return expand_binop (mode, this_optab, op0, op1, target,
		       unsignedp, OPTAB_LIB_WIDEN);
}

/* Choose a minimal N + 1 bit approximation to 1/D that can be used to
   replace division by D, and put the least significant N bits of the result
   in *MULTIPLIER_PTR and return the most significant bit.

   The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
   needed precision is in PRECISION (should be <= N).

   PRECISION should be as small as possible so this function can choose
   multiplier more freely.

   The rounded-up logarithm of D is placed in *lgup_ptr.  A shift count that
   is to be used for a final right shift is placed in *POST_SHIFT_PTR.

   Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
   where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier.  */

unsigned HOST_WIDE_INT
choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
		   unsigned HOST_WIDE_INT *multiplier_ptr,
		   int *post_shift_ptr, int *lgup_ptr)
{
  int lgup, post_shift;
  int pow, pow2;

  /* lgup = ceil(log2(divisor)); */
  lgup = ceil_log2 (d);

  gcc_assert (lgup <= n);

  pow = n + lgup;
  pow2 = n + lgup - precision;

  /* mlow = 2^(N + lgup)/d */
  wide_int val = wi::set_bit_in_zero (pow, HOST_BITS_PER_DOUBLE_INT);
  wide_int mlow = wi::udiv_trunc (val, d);

  /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
  val |= wi::set_bit_in_zero (pow2, HOST_BITS_PER_DOUBLE_INT);
  wide_int mhigh = wi::udiv_trunc (val, d);

  /* If precision == N, then mlow, mhigh exceed 2^N
     (but they do not exceed 2^(N+1)).  */

  /* Reduce to lowest terms.  */
  for (post_shift = lgup; post_shift > 0; post_shift--)
    {
      unsigned HOST_WIDE_INT ml_lo = wi::extract_uhwi (mlow, 1,
						       HOST_BITS_PER_WIDE_INT);
      unsigned HOST_WIDE_INT mh_lo = wi::extract_uhwi (mhigh, 1,
						       HOST_BITS_PER_WIDE_INT);
      if (ml_lo >= mh_lo)
	break;

      mlow = wi::uhwi (ml_lo, HOST_BITS_PER_DOUBLE_INT);
      mhigh = wi::uhwi (mh_lo, HOST_BITS_PER_DOUBLE_INT);
    }

  *post_shift_ptr = post_shift;
  *lgup_ptr = lgup;
  if (n < HOST_BITS_PER_WIDE_INT)
    {
      unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << n) - 1;
      *multiplier_ptr = mhigh.to_uhwi () & mask;
      return mhigh.to_uhwi () > mask;
    }
  else
    {
      *multiplier_ptr = mhigh.to_uhwi ();
      return wi::extract_uhwi (mhigh, HOST_BITS_PER_WIDE_INT, 1);
    }
}

/* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
   congruent to 1 (mod 2**N).  */

static unsigned HOST_WIDE_INT
invert_mod2n (unsigned HOST_WIDE_INT x, int n)
{
  /* Solve x*y == 1 (mod 2^n), where x is odd.  Return y.  */

  /* The algorithm notes that the choice y = x satisfies
     x*y == 1 mod 2^3, since x is assumed odd.
     Each iteration doubles the number of bits of significance in y.  */

  unsigned HOST_WIDE_INT mask;
  unsigned HOST_WIDE_INT y = x;
  int nbit = 3;

  mask = (n == HOST_BITS_PER_WIDE_INT
	  ? HOST_WIDE_INT_M1U
	  : (HOST_WIDE_INT_1U << n) - 1);

  while (nbit < n)
    {
      y = y * (2 - x*y) & mask;		/* Modulo 2^N */
      nbit *= 2;
    }
  return y;
}

/* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
   flavor of OP0 and OP1.  ADJ_OPERAND is already the high half of the
   product OP0 x OP1.  If UNSIGNEDP is nonzero, adjust the signed product
   to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
   become signed.

   The result is put in TARGET if that is convenient.

   MODE is the mode of operation.  */

rtx
expand_mult_highpart_adjust (scalar_int_mode mode, rtx adj_operand, rtx op0,
			     rtx op1, rtx target, int unsignedp)
{
  rtx tem;
  enum rtx_code adj_code = unsignedp ? PLUS : MINUS;

  tem = expand_shift (RSHIFT_EXPR, mode, op0,
		      GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
  tem = expand_and (mode, tem, op1, NULL_RTX);
  adj_operand
    = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
		     adj_operand);

  tem = expand_shift (RSHIFT_EXPR, mode, op1,
		      GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
  tem = expand_and (mode, tem, op0, NULL_RTX);
  target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
			  target);

  return target;
}

/* Subroutine of expmed_mult_highpart.  Return the MODE high part of OP.  */

static rtx
extract_high_half (scalar_int_mode mode, rtx op)
{
  if (mode == word_mode)
    return gen_highpart (mode, op);

  scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();

  op = expand_shift (RSHIFT_EXPR, wider_mode, op,
		     GET_MODE_BITSIZE (mode), 0, 1);
  return convert_modes (mode, wider_mode, op, 0);
}

/* Like expmed_mult_highpart, but only consider using a multiplication
   optab.  OP1 is an rtx for the constant operand.  */

static rtx
expmed_mult_highpart_optab (scalar_int_mode mode, rtx op0, rtx op1,
			    rtx target, int unsignedp, int max_cost)
{
  rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
  optab moptab;
  rtx tem;
  int size;
  bool speed = optimize_insn_for_speed_p ();

  scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();

  size = GET_MODE_BITSIZE (mode);

  /* Firstly, try using a multiplication insn that only generates the needed
     high part of the product, and in the sign flavor of unsignedp.  */
  if (mul_highpart_cost (speed, mode) < max_cost)
    {
      moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
      tem = expand_binop (mode, moptab, op0, narrow_op1, target,
			  unsignedp, OPTAB_DIRECT);
      if (tem)
	return tem;
    }

  /* Secondly, same as above, but use sign flavor opposite of unsignedp.
     Need to adjust the result after the multiplication.  */
  if (size - 1 < BITS_PER_WORD
      && (mul_highpart_cost (speed, mode)
	  + 2 * shift_cost (speed, mode, size-1)
	  + 4 * add_cost (speed, mode) < max_cost))
    {
      moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
      tem = expand_binop (mode, moptab, op0, narrow_op1, target,
			  unsignedp, OPTAB_DIRECT);
      if (tem)
	/* We used the wrong signedness.  Adjust the result.  */
	return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
					    tem, unsignedp);
    }

  /* Try widening multiplication.  */
  moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
  if (convert_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
      && mul_widen_cost (speed, wider_mode) < max_cost)
    {
      tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
			  unsignedp, OPTAB_WIDEN);
      if (tem)
	return extract_high_half (mode, tem);
    }

  /* Try widening the mode and perform a non-widening multiplication.  */
  if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing
      && size - 1 < BITS_PER_WORD
      && (mul_cost (speed, wider_mode) + shift_cost (speed, mode, size-1)
	  < max_cost))
    {
      rtx_insn *insns;
      rtx wop0, wop1;

      /* We need to widen the operands, for example to ensure the
	 constant multiplier is correctly sign or zero extended.
	 Use a sequence to clean-up any instructions emitted by
	 the conversions if things don't work out.  */
      start_sequence ();
      wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
      wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
      tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
			  unsignedp, OPTAB_WIDEN);
      insns = get_insns ();
      end_sequence ();

      if (tem)
	{
	  emit_insn (insns);
	  return extract_high_half (mode, tem);
	}
    }

  /* Try widening multiplication of opposite signedness, and adjust.  */
  moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
  if (convert_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
      && size - 1 < BITS_PER_WORD
      && (mul_widen_cost (speed, wider_mode)
	  + 2 * shift_cost (speed, mode, size-1)
	  + 4 * add_cost (speed, mode) < max_cost))
    {
      tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
			  NULL_RTX, ! unsignedp, OPTAB_WIDEN);
      if (tem != 0)
	{
	  tem = extract_high_half (mode, tem);
	  /* We used the wrong signedness.  Adjust the result.  */
	  return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
					      target, unsignedp);
	}
    }

  return 0;
}

/* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
   putting the high half of the result in TARGET if that is convenient,
   and return where the result is.  If the operation cannot be performed,
   0 is returned.

   MODE is the mode of operation and result.

   UNSIGNEDP nonzero means unsigned multiply.

   MAX_COST is the total allowed cost for the expanded RTL.  */

static rtx
expmed_mult_highpart (scalar_int_mode mode, rtx op0, rtx op1,
		      rtx target, int unsignedp, int max_cost)
{
  unsigned HOST_WIDE_INT cnst1;
  int extra_cost;
  bool sign_adjust = false;
  enum mult_variant variant;
  struct algorithm alg;
  rtx tem;
  bool speed = optimize_insn_for_speed_p ();

  /* We can't support modes wider than HOST_BITS_PER_INT.  */
  gcc_assert (HWI_COMPUTABLE_MODE_P (mode));

  cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);

  /* We can't optimize modes wider than BITS_PER_WORD.
     ??? We might be able to perform double-word arithmetic if
     mode == word_mode, however all the cost calculations in
     synth_mult etc. assume single-word operations.  */
  scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();
  if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
    return expmed_mult_highpart_optab (mode, op0, op1, target,
				       unsignedp, max_cost);

  extra_cost = shift_cost (speed, mode, GET_MODE_BITSIZE (mode) - 1);

  /* Check whether we try to multiply by a negative constant.  */
  if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
    {
      sign_adjust = true;
      extra_cost += add_cost (speed, mode);
    }

  /* See whether shift/add multiplication is cheap enough.  */
  if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
			   max_cost - extra_cost))
    {
      /* See whether the specialized multiplication optabs are
	 cheaper than the shift/add version.  */
      tem = expmed_mult_highpart_optab (mode, op0, op1, target, unsignedp,
					alg.cost.cost + extra_cost);
      if (tem)
	return tem;

      tem = convert_to_mode (wider_mode, op0, unsignedp);
      tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
      tem = extract_high_half (mode, tem);

      /* Adjust result for signedness.  */
      if (sign_adjust)
	tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);

      return tem;
    }
  return expmed_mult_highpart_optab (mode, op0, op1, target,
				     unsignedp, max_cost);
}


/* Expand signed modulus of OP0 by a power of two D in mode MODE.  */

static rtx
expand_smod_pow2 (scalar_int_mode mode, rtx op0, HOST_WIDE_INT d)
{
  rtx result, temp, shift;
  rtx_code_label *label;
  int logd;
  int prec = GET_MODE_PRECISION (mode);

  logd = floor_log2 (d);
  result = gen_reg_rtx (mode);

  /* Avoid conditional branches when they're expensive.  */
  if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
      && optimize_insn_for_speed_p ())
    {
      rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
				      mode, 0, -1);
      if (signmask)
	{
	  HOST_WIDE_INT masklow = (HOST_WIDE_INT_1 << logd) - 1;
	  signmask = force_reg (mode, signmask);
	  shift = gen_int_shift_amount (mode, GET_MODE_BITSIZE (mode) - logd);

	  /* Use the rtx_cost of a LSHIFTRT instruction to determine
	     which instruction sequence to use.  If logical right shifts
	     are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
	     use a LSHIFTRT, 1 ADD, 1 SUB and an AND.  */

	  temp = gen_rtx_LSHIFTRT (mode, result, shift);
	  if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing
	      || (set_src_cost (temp, mode, optimize_insn_for_speed_p ())
		  > COSTS_N_INSNS (2)))
	    {
	      temp = expand_binop (mode, xor_optab, op0, signmask,
				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
	      temp = expand_binop (mode, sub_optab, temp, signmask,
				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
	      temp = expand_binop (mode, and_optab, temp,
				   gen_int_mode (masklow, mode),
				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
	      temp = expand_binop (mode, xor_optab, temp, signmask,
				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
	      temp = expand_binop (mode, sub_optab, temp, signmask,
				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
	    }
	  else
	    {
	      signmask = expand_binop (mode, lshr_optab, signmask, shift,
				       NULL_RTX, 1, OPTAB_LIB_WIDEN);
	      signmask = force_reg (mode, signmask);

	      temp = expand_binop (mode, add_optab, op0, signmask,
				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
	      temp = expand_binop (mode, and_optab, temp,
				   gen_int_mode (masklow, mode),
				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
	      temp = expand_binop (mode, sub_optab, temp, signmask,
				   NULL_RTX, 1, OPTAB_LIB_WIDEN);
	    }
	  return temp;
	}
    }

  /* Mask contains the mode's signbit and the significant bits of the
     modulus.  By including the signbit in the operation, many targets
     can avoid an explicit compare operation in the following comparison
     against zero.  */
  wide_int mask = wi::mask (logd, false, prec);
  mask = wi::set_bit (mask, prec - 1);

  temp = expand_binop (mode, and_optab, op0,
		       immed_wide_int_const (mask, mode),
		       result, 1, OPTAB_LIB_WIDEN);
  if (temp != result)
    emit_move_insn (result, temp);

  label = gen_label_rtx ();
  do_cmp_and_jump (result, const0_rtx, GE, mode, label);

  temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
		       0, OPTAB_LIB_WIDEN);

  mask = wi::mask (logd, true, prec);
  temp = expand_binop (mode, ior_optab, temp,
		       immed_wide_int_const (mask, mode),
		       result, 1, OPTAB_LIB_WIDEN);
  temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
		       0, OPTAB_LIB_WIDEN);
  if (temp != result)
    emit_move_insn (result, temp);
  emit_label (label);
  return result;
}

/* Expand signed division of OP0 by a power of two D in mode MODE.
   This routine is only called for positive values of D.  */

static rtx
expand_sdiv_pow2 (scalar_int_mode mode, rtx op0, HOST_WIDE_INT d)
{
  rtx temp;
  rtx_code_label *label;
  int logd;

  logd = floor_log2 (d);

  if (d == 2
      && BRANCH_COST (optimize_insn_for_speed_p (),
		      false) >= 1)
    {
      temp = gen_reg_rtx (mode);
      temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
      if (temp != NULL_RTX)
	{
	  temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
			       0, OPTAB_LIB_WIDEN);
	  return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
	}
    }

  if (HAVE_conditional_move
      && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2)
    {
      rtx temp2;

      start_sequence ();
      temp2 = copy_to_mode_reg (mode, op0);
      temp = expand_binop (mode, add_optab, temp2, gen_int_mode (d - 1, mode),
			   NULL_RTX, 0, OPTAB_LIB_WIDEN);
      temp = force_reg (mode, temp);

      /* Construct "temp2 = (temp2 < 0) ? temp : temp2".  */
      temp2 = emit_conditional_move (temp2, { LT, temp2, const0_rtx, mode },
				     temp, temp2, mode, 0);
      if (temp2)
	{
	  rtx_insn *seq = get_insns ();
	  end_sequence ();
	  emit_insn (seq);
	  return expand_shift (RSHIFT_EXPR, mode, temp2, logd, NULL_RTX, 0);
	}
      end_sequence ();
    }

  if (BRANCH_COST (optimize_insn_for_speed_p (),
		   false) >= 2)
    {
      int ushift = GET_MODE_BITSIZE (mode) - logd;

      temp = gen_reg_rtx (mode);
      temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
      if (temp != NULL_RTX)
	{
	  if (GET_MODE_BITSIZE (mode) >= BITS_PER_WORD
	      || shift_cost (optimize_insn_for_speed_p (), mode, ushift)
	      > COSTS_N_INSNS (1))
	    temp = expand_binop (mode, and_optab, temp,
				 gen_int_mode (d - 1, mode),
				 NULL_RTX, 0, OPTAB_LIB_WIDEN);
	  else
	    temp = expand_shift (RSHIFT_EXPR, mode, temp,
				 ushift, NULL_RTX, 1);
	  temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
			       0, OPTAB_LIB_WIDEN);
	  return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
	}
    }

  label = gen_label_rtx ();
  temp = copy_to_mode_reg (mode, op0);
  do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
  expand_inc (temp, gen_int_mode (d - 1, mode));
  emit_label (label);
  return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
}

/* Emit the code to divide OP0 by OP1, putting the result in TARGET
   if that is convenient, and returning where the result is.
   You may request either the quotient or the remainder as the result;
   specify REM_FLAG nonzero to get the remainder.

   CODE is the expression code for which kind of division this is;
   it controls how rounding is done.  MODE is the machine mode to use.
   UNSIGNEDP nonzero means do unsigned division.  */

/* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
   and then correct it by or'ing in missing high bits
   if result of ANDI is nonzero.
   For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
   This could optimize to a bfexts instruction.
   But C doesn't use these operations, so their optimizations are
   left for later.  */
/* ??? For modulo, we don't actually need the highpart of the first product,
   the low part will do nicely.  And for small divisors, the second multiply
   can also be a low-part only multiply or even be completely left out.
   E.g. to calculate the remainder of a division by 3 with a 32 bit
   multiply, multiply with 0x55555556 and extract the upper two bits;
   the result is exact for inputs up to 0x1fffffff.
   The input range can be reduced by using cross-sum rules.
   For odd divisors >= 3, the following table gives right shift counts
   so that if a number is shifted by an integer multiple of the given
   amount, the remainder stays the same:
   2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
   14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
   0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
   20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
   0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12

   Cross-sum rules for even numbers can be derived by leaving as many bits
   to the right alone as the divisor has zeros to the right.
   E.g. if x is an unsigned 32 bit number:
   (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
   */

rtx
expand_divmod (int rem_flag, enum tree_code code, machine_mode mode,
	       tree treeop0, tree treeop1, rtx op0, rtx op1, rtx target,
	       int unsignedp, enum optab_methods methods)
{
  machine_mode compute_mode;
  rtx tquotient;
  rtx quotient = 0, remainder = 0;
  rtx_insn *last;
  rtx_insn *insn;
  optab optab1, optab2;
  int op1_is_constant, op1_is_pow2 = 0;
  int max_cost, extra_cost;
  static HOST_WIDE_INT last_div_const = 0;
  bool speed = optimize_insn_for_speed_p ();

  op1_is_constant = CONST_INT_P (op1);
  if (op1_is_constant)
    {
      wide_int ext_op1 = rtx_mode_t (op1, mode);
      op1_is_pow2 = (wi::popcount (ext_op1) == 1
		     || (! unsignedp
			 && wi::popcount (wi::neg (ext_op1)) == 1));
    }

  /*
     This is the structure of expand_divmod:

     First comes code to fix up the operands so we can perform the operations
     correctly and efficiently.

     Second comes a switch statement with code specific for each rounding mode.
     For some special operands this code emits all RTL for the desired
     operation, for other cases, it generates only a quotient and stores it in
     QUOTIENT.  The case for trunc division/remainder might leave quotient = 0,
     to indicate that it has not done anything.

     Last comes code that finishes the operation.  If QUOTIENT is set and
     REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1.  If
     QUOTIENT is not set, it is computed using trunc rounding.

     We try to generate special code for division and remainder when OP1 is a
     constant.  If |OP1| = 2**n we can use shifts and some other fast
     operations.  For other values of OP1, we compute a carefully selected
     fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
     by m.

     In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
     half of the product.  Different strategies for generating the product are
     implemented in expmed_mult_highpart.

     If what we actually want is the remainder, we generate that by another
     by-constant multiplication and a subtraction.  */

  /* We shouldn't be called with OP1 == const1_rtx, but some of the
     code below will malfunction if we are, so check here and handle
     the special case if so.  */
  if (op1 == const1_rtx)
    return rem_flag ? const0_rtx : op0;

    /* When dividing by -1, we could get an overflow.
     negv_optab can handle overflows.  */
  if (! unsignedp && op1 == constm1_rtx)
    {
      if (rem_flag)
	return const0_rtx;
      return expand_unop (mode, flag_trapv && GET_MODE_CLASS (mode) == MODE_INT
			  ? negv_optab : neg_optab, op0, target, 0);
    }

  if (target
      /* Don't use the function value register as a target
	 since we have to read it as well as write it,
	 and function-inlining gets confused by this.  */
      && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
	  /* Don't clobber an operand while doing a multi-step calculation.  */
	  || ((rem_flag || op1_is_constant)
	      && (reg_mentioned_p (target, op0)
		  || (MEM_P (op0) && MEM_P (target))))
	  || reg_mentioned_p (target, op1)
	  || (MEM_P (op1) && MEM_P (target))))
    target = 0;

  /* Get the mode in which to perform this computation.  Normally it will
     be MODE, but sometimes we can't do the desired operation in MODE.
     If so, pick a wider mode in which we can do the operation.  Convert
     to that mode at the start to avoid repeated conversions.

     First see what operations we need.  These depend on the expression
     we are evaluating.  (We assume that divxx3 insns exist under the
     same conditions that modxx3 insns and that these insns don't normally
     fail.  If these assumptions are not correct, we may generate less
     efficient code in some cases.)

     Then see if we find a mode in which we can open-code that operation
     (either a division, modulus, or shift).  Finally, check for the smallest
     mode for which we can do the operation with a library call.  */

  /* We might want to refine this now that we have division-by-constant
     optimization.  Since expmed_mult_highpart tries so many variants, it is
     not straightforward to generalize this.  Maybe we should make an array
     of possible modes in init_expmed?  Save this for GCC 2.7.  */

  optab1 = (op1_is_pow2
	    ? (unsignedp ? lshr_optab : ashr_optab)
	    : (unsignedp ? udiv_optab : sdiv_optab));
  optab2 = (op1_is_pow2 ? optab1
	    : (unsignedp ? udivmod_optab : sdivmod_optab));

  if (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN)
    {
      FOR_EACH_MODE_FROM (compute_mode, mode)
      if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing
	  || optab_handler (optab2, compute_mode) != CODE_FOR_nothing)
	break;

      if (compute_mode == VOIDmode && methods == OPTAB_LIB_WIDEN)
	FOR_EACH_MODE_FROM (compute_mode, mode)
	  if (optab_libfunc (optab1, compute_mode)
	      || optab_libfunc (optab2, compute_mode))
	    break;
    }
  else
    compute_mode = mode;

  /* If we still couldn't find a mode, use MODE, but expand_binop will
     probably die.  */
  if (compute_mode == VOIDmode)
    compute_mode = mode;

  if (target && GET_MODE (target) == compute_mode)
    tquotient = target;
  else
    tquotient = gen_reg_rtx (compute_mode);

#if 0
  /* It should be possible to restrict the precision to GET_MODE_BITSIZE
     (mode), and thereby get better code when OP1 is a constant.  Do that
     later.  It will require going over all usages of SIZE below.  */
  size = GET_MODE_BITSIZE (mode);
#endif

  /* Only deduct something for a REM if the last divide done was
     for a different constant.   Then set the constant of the last
     divide.  */
  max_cost = (unsignedp 
	      ? udiv_cost (speed, compute_mode)
	      : sdiv_cost (speed, compute_mode));
  if (rem_flag && ! (last_div_const != 0 && op1_is_constant
		     && INTVAL (op1) == last_div_const))
    max_cost -= (mul_cost (speed, compute_mode)
		 + add_cost (speed, compute_mode));

  last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;

  /* Check if the target has specific expansions for the division.  */
  tree cst;
  if (treeop0
      && treeop1
      && (cst = uniform_integer_cst_p (treeop1))
      && targetm.vectorize.can_special_div_by_const (code, TREE_TYPE (treeop0),
						     wi::to_wide (cst),
						     &target, op0, op1))
    return target;


  /* Now convert to the best mode to use.  */
  if (compute_mode != mode)
    {
      op0 = convert_modes (compute_mode, mode, op0, unsignedp);
      op1 = convert_modes (compute_mode, mode, op1, unsignedp);

      /* convert_modes may have placed op1 into a register, so we
	 must recompute the following.  */
      op1_is_constant = CONST_INT_P (op1);
      if (op1_is_constant)
	{
	  wide_int ext_op1 = rtx_mode_t (op1, compute_mode);
	  op1_is_pow2 = (wi::popcount (ext_op1) == 1
			 || (! unsignedp
			     && wi::popcount (wi::neg (ext_op1)) == 1));
	}
      else
	op1_is_pow2 = 0;
    }

  /* If one of the operands is a volatile MEM, copy it into a register.  */

  if (MEM_P (op0) && MEM_VOLATILE_P (op0))
    op0 = force_reg (compute_mode, op0);
  if (MEM_P (op1) && MEM_VOLATILE_P (op1))
    op1 = force_reg (compute_mode, op1);

  /* If we need the remainder or if OP1 is constant, we need to
     put OP0 in a register in case it has any queued subexpressions.  */
  if (rem_flag || op1_is_constant)
    op0 = force_reg (compute_mode, op0);

  last = get_last_insn ();

  /* Promote floor rounding to trunc rounding for unsigned operations.  */
  if (unsignedp)
    {
      if (code == FLOOR_DIV_EXPR)
	code = TRUNC_DIV_EXPR;
      if (code == FLOOR_MOD_EXPR)
	code = TRUNC_MOD_EXPR;
      if (code == EXACT_DIV_EXPR && op1_is_pow2)
	code = TRUNC_DIV_EXPR;
    }

  if (op1 != const0_rtx)
    switch (code)
      {
      case TRUNC_MOD_EXPR:
      case TRUNC_DIV_EXPR:
	if (op1_is_constant)
	  {
	    scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
	    int size = GET_MODE_BITSIZE (int_mode);
	    if (unsignedp)
	      {
		unsigned HOST_WIDE_INT mh, ml;
		int pre_shift, post_shift;
		int dummy;
		wide_int wd = rtx_mode_t (op1, int_mode);
		unsigned HOST_WIDE_INT d = wd.to_uhwi ();

		if (wi::popcount (wd) == 1)
		  {
		    pre_shift = floor_log2 (d);
		    if (rem_flag)
		      {
			unsigned HOST_WIDE_INT mask
			  = (HOST_WIDE_INT_1U << pre_shift) - 1;
			remainder
			  = expand_binop (int_mode, and_optab, op0,
					  gen_int_mode (mask, int_mode),
					  remainder, 1, methods);
			if (remainder)
			  return gen_lowpart (mode, remainder);
		      }
		    quotient = expand_shift (RSHIFT_EXPR, int_mode, op0,
					     pre_shift, tquotient, 1);
		  }
		else if (size <= HOST_BITS_PER_WIDE_INT)
		  {
		    if (d >= (HOST_WIDE_INT_1U << (size - 1)))
		      {
			/* Most significant bit of divisor is set; emit an scc
			   insn.  */
			quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
							  int_mode, 1, 1);
		      }
		    else
		      {
			/* Find a suitable multiplier and right shift count
			   instead of multiplying with D.  */

			mh = choose_multiplier (d, size, size,
						&ml, &post_shift, &dummy);

			/* If the suggested multiplier is more than SIZE bits,
			   we can do better for even divisors, using an
			   initial right shift.  */
			if (mh != 0 && (d & 1) == 0)
			  {
			    pre_shift = ctz_or_zero (d);
			    mh = choose_multiplier (d >> pre_shift, size,
						    size - pre_shift,
						    &ml, &post_shift, &dummy);
			    gcc_assert (!mh);
			  }
			else
			  pre_shift = 0;

			if (mh != 0)
			  {
			    rtx t1, t2, t3, t4;

			    if (post_shift - 1 >= BITS_PER_WORD)
			      goto fail1;

			    extra_cost
			      = (shift_cost (speed, int_mode, post_shift - 1)
				 + shift_cost (speed, int_mode, 1)
				 + 2 * add_cost (speed, int_mode));
			    t1 = expmed_mult_highpart
			      (int_mode, op0, gen_int_mode (ml, int_mode),
			       NULL_RTX, 1, max_cost - extra_cost);
			    if (t1 == 0)
			      goto fail1;
			    t2 = force_operand (gen_rtx_MINUS (int_mode,
							       op0, t1),
						NULL_RTX);
			    t3 = expand_shift (RSHIFT_EXPR, int_mode,
					       t2, 1, NULL_RTX, 1);
			    t4 = force_operand (gen_rtx_PLUS (int_mode,
							      t1, t3),
						NULL_RTX);
			    quotient = expand_shift
			      (RSHIFT_EXPR, int_mode, t4,
			       post_shift - 1, tquotient, 1);
			  }
			else
			  {
			    rtx t1, t2;

			    if (pre_shift >= BITS_PER_WORD
				|| post_shift >= BITS_PER_WORD)
			      goto fail1;

			    t1 = expand_shift
			      (RSHIFT_EXPR, int_mode, op0,
			       pre_shift, NULL_RTX, 1);
			    extra_cost
			      = (shift_cost (speed, int_mode, pre_shift)
				 + shift_cost (speed, int_mode, post_shift));
			    t2 = expmed_mult_highpart
			      (int_mode, t1,
			       gen_int_mode (ml, int_mode),
			       NULL_RTX, 1, max_cost - extra_cost);
			    if (t2 == 0)
			      goto fail1;
			    quotient = expand_shift
			      (RSHIFT_EXPR, int_mode, t2,
			       post_shift, tquotient, 1);
			  }
		      }
		  }
		else		/* Too wide mode to use tricky code */
		  break;

		insn = get_last_insn ();
		if (insn != last)
		  set_dst_reg_note (insn, REG_EQUAL,
				    gen_rtx_UDIV (int_mode, op0, op1),
				    quotient);
	      }
	    else		/* TRUNC_DIV, signed */
	      {
		unsigned HOST_WIDE_INT ml;
		int lgup, post_shift;
		rtx mlr;
		HOST_WIDE_INT d = INTVAL (op1);
		unsigned HOST_WIDE_INT abs_d;

		/* Not prepared to handle division/remainder by
		   0xffffffffffffffff8000000000000000 etc.  */
		if (d == HOST_WIDE_INT_MIN && size > HOST_BITS_PER_WIDE_INT)
		  break;

		/* Since d might be INT_MIN, we have to cast to
		   unsigned HOST_WIDE_INT before negating to avoid
		   undefined signed overflow.  */
		abs_d = (d >= 0
			 ? (unsigned HOST_WIDE_INT) d
			 : - (unsigned HOST_WIDE_INT) d);

		/* n rem d = n rem -d */
		if (rem_flag && d < 0)
		  {
		    d = abs_d;
		    op1 = gen_int_mode (abs_d, int_mode);
		  }

		if (d == 1)
		  quotient = op0;
		else if (d == -1)
		  quotient = expand_unop (int_mode, neg_optab, op0,
					  tquotient, 0);
		else if (size <= HOST_BITS_PER_WIDE_INT
			 && abs_d == HOST_WIDE_INT_1U << (size - 1))
		  {
		    /* This case is not handled correctly below.  */
		    quotient = emit_store_flag (tquotient, EQ, op0, op1,
						int_mode, 1, 1);
		    if (quotient == 0)
		      goto fail1;
		  }
		else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
			 && (size <= HOST_BITS_PER_WIDE_INT || d >= 0)
			 && (rem_flag
			     ? smod_pow2_cheap (speed, int_mode)
			     : sdiv_pow2_cheap (speed, int_mode))
			 /* We assume that cheap metric is true if the
			    optab has an expander for this mode.  */
			 && ((optab_handler ((rem_flag ? smod_optab
					      : sdiv_optab),
					     int_mode)
			      != CODE_FOR_nothing)
			     || (optab_handler (sdivmod_optab, int_mode)
				 != CODE_FOR_nothing)))
		  ;
		else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
		  {
		    if (rem_flag)
		      {
			remainder = expand_smod_pow2 (int_mode, op0, d);
			if (remainder)
			  return gen_lowpart (mode, remainder);
		      }

		    if (sdiv_pow2_cheap (speed, int_mode)
			&& ((optab_handler (sdiv_optab, int_mode)
			     != CODE_FOR_nothing)
			    || (optab_handler (sdivmod_optab, int_mode)
				!= CODE_FOR_nothing)))
		      quotient = expand_divmod (0, TRUNC_DIV_EXPR,
						int_mode, treeop0, treeop1,
						op0, gen_int_mode (abs_d,
							      int_mode),
						NULL_RTX, 0);
		    else
		      quotient = expand_sdiv_pow2 (int_mode, op0, abs_d);

		    /* We have computed OP0 / abs(OP1).  If OP1 is negative,
		       negate the quotient.  */
		    if (d < 0)
		      {
			insn = get_last_insn ();
			if (insn != last
			    && abs_d < (HOST_WIDE_INT_1U
					<< (HOST_BITS_PER_WIDE_INT - 1)))
			  set_dst_reg_note (insn, REG_EQUAL,
					    gen_rtx_DIV (int_mode, op0,
							 gen_int_mode
							   (abs_d,
							    int_mode)),
					    quotient);

			quotient = expand_unop (int_mode, neg_optab,
						quotient, quotient, 0);
		      }
		  }
		else if (size <= HOST_BITS_PER_WIDE_INT)
		  {
		    choose_multiplier (abs_d, size, size - 1,
				       &ml, &post_shift, &lgup);
		    if (ml < HOST_WIDE_INT_1U << (size - 1))
		      {
			rtx t1, t2, t3;

			if (post_shift >= BITS_PER_WORD
			    || size - 1 >= BITS_PER_WORD)
			  goto fail1;

			extra_cost = (shift_cost (speed, int_mode, post_shift)
				      + shift_cost (speed, int_mode, size - 1)
				      + add_cost (speed, int_mode));
			t1 = expmed_mult_highpart
			  (int_mode, op0, gen_int_mode (ml, int_mode),
			   NULL_RTX, 0, max_cost - extra_cost);
			if (t1 == 0)
			  goto fail1;
			t2 = expand_shift
			  (RSHIFT_EXPR, int_mode, t1,
			   post_shift, NULL_RTX, 0);
			t3 = expand_shift
			  (RSHIFT_EXPR, int_mode, op0,
			   size - 1, NULL_RTX, 0);
			if (d < 0)
			  quotient
			    = force_operand (gen_rtx_MINUS (int_mode, t3, t2),
					     tquotient);
			else
			  quotient
			    = force_operand (gen_rtx_MINUS (int_mode, t2, t3),
					     tquotient);
		      }
		    else
		      {
			rtx t1, t2, t3, t4;

			if (post_shift >= BITS_PER_WORD
			    || size - 1 >= BITS_PER_WORD)
			  goto fail1;

			ml |= HOST_WIDE_INT_M1U << (size - 1);
			mlr = gen_int_mode (ml, int_mode);
			extra_cost = (shift_cost (speed, int_mode, post_shift)
				      + shift_cost (speed, int_mode, size - 1)
				      + 2 * add_cost (speed, int_mode));
			t1 = expmed_mult_highpart (int_mode, op0, mlr,
						   NULL_RTX, 0,
						   max_cost - extra_cost);
			if (t1 == 0)
			  goto fail1;
			t2 = force_operand (gen_rtx_PLUS (int_mode, t1, op0),
					    NULL_RTX);
			t3 = expand_shift
			  (RSHIFT_EXPR, int_mode, t2,
			   post_shift, NULL_RTX, 0);
			t4 = expand_shift
			  (RSHIFT_EXPR, int_mode, op0,
			   size - 1, NULL_RTX, 0);
			if (d < 0)
			  quotient
			    = force_operand (gen_rtx_MINUS (int_mode, t4, t3),
					     tquotient);
			else
			  quotient
			    = force_operand (gen_rtx_MINUS (int_mode, t3, t4),
					     tquotient);
		      }
		  }
		else		/* Too wide mode to use tricky code */
		  break;

		insn = get_last_insn ();
		if (insn != last)
		  set_dst_reg_note (insn, REG_EQUAL,
				    gen_rtx_DIV (int_mode, op0, op1),
				    quotient);
	      }
	    break;
	  }
      fail1:
	delete_insns_since (last);
	break;

      case FLOOR_DIV_EXPR:
      case FLOOR_MOD_EXPR:
      /* We will come here only for signed operations.  */
	if (op1_is_constant && HWI_COMPUTABLE_MODE_P (compute_mode))
	  {
	    scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
	    int size = GET_MODE_BITSIZE (int_mode);
	    unsigned HOST_WIDE_INT mh, ml;
	    int pre_shift, lgup, post_shift;
	    HOST_WIDE_INT d = INTVAL (op1);

	    if (d > 0)
	      {
		/* We could just as easily deal with negative constants here,
		   but it does not seem worth the trouble for GCC 2.6.  */
		if (EXACT_POWER_OF_2_OR_ZERO_P (d))
		  {
		    pre_shift = floor_log2 (d);
		    if (rem_flag)
		      {
			unsigned HOST_WIDE_INT mask
			  = (HOST_WIDE_INT_1U << pre_shift) - 1;
			remainder = expand_binop
			  (int_mode, and_optab, op0,
			   gen_int_mode (mask, int_mode),
			   remainder, 0, methods);
			if (remainder)
			  return gen_lowpart (mode, remainder);
		      }
		    quotient = expand_shift
		      (RSHIFT_EXPR, int_mode, op0,
		       pre_shift, tquotient, 0);
		  }
		else
		  {
		    rtx t1, t2, t3, t4;

		    mh = choose_multiplier (d, size, size - 1,
					    &ml, &post_shift, &lgup);
		    gcc_assert (!mh);

		    if (post_shift < BITS_PER_WORD
			&& size - 1 < BITS_PER_WORD)
		      {
			t1 = expand_shift
			  (RSHIFT_EXPR, int_mode, op0,
			   size - 1, NULL_RTX, 0);
			t2 = expand_binop (int_mode, xor_optab, op0, t1,
					   NULL_RTX, 0, OPTAB_WIDEN);
			extra_cost = (shift_cost (speed, int_mode, post_shift)
				      + shift_cost (speed, int_mode, size - 1)
				      + 2 * add_cost (speed, int_mode));
			t3 = expmed_mult_highpart
			  (int_mode, t2, gen_int_mode (ml, int_mode),
			   NULL_RTX, 1, max_cost - extra_cost);
			if (t3 != 0)
			  {
			    t4 = expand_shift
			      (RSHIFT_EXPR, int_mode, t3,
			       post_shift, NULL_RTX, 1);
			    quotient = expand_binop (int_mode, xor_optab,
						     t4, t1, tquotient, 0,
						     OPTAB_WIDEN);
			  }
		      }
		  }
	      }
	    else
	      {
		rtx nsign, t1, t2, t3, t4;
		t1 = force_operand (gen_rtx_PLUS (int_mode,
						  op0, constm1_rtx), NULL_RTX);
		t2 = expand_binop (int_mode, ior_optab, op0, t1, NULL_RTX,
				   0, OPTAB_WIDEN);
		nsign = expand_shift (RSHIFT_EXPR, int_mode, t2,
				      size - 1, NULL_RTX, 0);
		t3 = force_operand (gen_rtx_MINUS (int_mode, t1, nsign),
				    NULL_RTX);
		t4 = expand_divmod (0, TRUNC_DIV_EXPR, int_mode, treeop0,
				    treeop1, t3, op1, NULL_RTX, 0);
		if (t4)
		  {
		    rtx t5;
		    t5 = expand_unop (int_mode, one_cmpl_optab, nsign,
				      NULL_RTX, 0);
		    quotient = force_operand (gen_rtx_PLUS (int_mode, t4, t5),
					      tquotient);
		  }
	      }
	  }

	if (quotient != 0)
	  break;
	delete_insns_since (last);

	/* Try using an instruction that produces both the quotient and
	   remainder, using truncation.  We can easily compensate the quotient
	   or remainder to get floor rounding, once we have the remainder.
	   Notice that we compute also the final remainder value here,
	   and return the result right away.  */
	if (target == 0 || GET_MODE (target) != compute_mode)
	  target = gen_reg_rtx (compute_mode);

	if (rem_flag)
	  {
	    remainder
	      = REG_P (target) ? target : gen_reg_rtx (compute_mode);
	    quotient = gen_reg_rtx (compute_mode);
	  }
	else
	  {
	    quotient
	      = REG_P (target) ? target : gen_reg_rtx (compute_mode);
	    remainder = gen_reg_rtx (compute_mode);
	  }

	if (expand_twoval_binop (sdivmod_optab, op0, op1,
				 quotient, remainder, 0))
	  {
	    /* This could be computed with a branch-less sequence.
	       Save that for later.  */
	    rtx tem;
	    rtx_code_label *label = gen_label_rtx ();
	    do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
	    tem = expand_binop (compute_mode, xor_optab, op0, op1,
				NULL_RTX, 0, OPTAB_WIDEN);
	    do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
	    expand_dec (quotient, const1_rtx);
	    expand_inc (remainder, op1);
	    emit_label (label);
	    return gen_lowpart (mode, rem_flag ? remainder : quotient);
	  }

	/* No luck with division elimination or divmod.  Have to do it
	   by conditionally adjusting op0 *and* the result.  */
	{
	  rtx_code_label *label1, *label2, *label3, *label4, *label5;
	  rtx adjusted_op0;
	  rtx tem;

	  quotient = gen_reg_rtx (compute_mode);
	  adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
	  label1 = gen_label_rtx ();
	  label2 = gen_label_rtx ();
	  label3 = gen_label_rtx ();
	  label4 = gen_label_rtx ();
	  label5 = gen_label_rtx ();
	  do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
	  do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
	  tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
			      quotient, 0, methods);
	  if (tem != quotient)
	    emit_move_insn (quotient, tem);
	  emit_jump_insn (targetm.gen_jump (label5));
	  emit_barrier ();
	  emit_label (label1);
	  expand_inc (adjusted_op0, const1_rtx);
	  emit_jump_insn (targetm.gen_jump (label4));
	  emit_barrier ();
	  emit_label (label2);
	  do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
	  tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
			      quotient, 0, methods);
	  if (tem != quotient)
	    emit_move_insn (quotient, tem);
	  emit_jump_insn (targetm.gen_jump (label5));
	  emit_barrier ();
	  emit_label (label3);
	  expand_dec (adjusted_op0, const1_rtx);
	  emit_label (label4);
	  tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
			      quotient, 0, methods);
	  if (tem != quotient)
	    emit_move_insn (quotient, tem);
	  expand_dec (quotient, const1_rtx);
	  emit_label (label5);
	}
	break;

      case CEIL_DIV_EXPR:
      case CEIL_MOD_EXPR:
	if (unsignedp)
	  {
	    if (op1_is_constant
		&& EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
		&& (HWI_COMPUTABLE_MODE_P (compute_mode)
		    || INTVAL (op1) >= 0))
	      {
		scalar_int_mode int_mode
		  = as_a <scalar_int_mode> (compute_mode);
		rtx t1, t2, t3;
		unsigned HOST_WIDE_INT d = INTVAL (op1);
		t1 = expand_shift (RSHIFT_EXPR, int_mode, op0,
				   floor_log2 (d), tquotient, 1);
		t2 = expand_binop (int_mode, and_optab, op0,
				   gen_int_mode (d - 1, int_mode),
				   NULL_RTX, 1, methods);
		t3 = gen_reg_rtx (int_mode);
		t3 = emit_store_flag (t3, NE, t2, const0_rtx, int_mode, 1, 1);
		if (t3 == 0)
		  {
		    rtx_code_label *lab;
		    lab = gen_label_rtx ();
		    do_cmp_and_jump (t2, const0_rtx, EQ, int_mode, lab);
		    expand_inc (t1, const1_rtx);
		    emit_label (lab);
		    quotient = t1;
		  }
		else
		  quotient = force_operand (gen_rtx_PLUS (int_mode, t1, t3),
					    tquotient);
		break;
	      }

	    /* Try using an instruction that produces both the quotient and
	       remainder, using truncation.  We can easily compensate the
	       quotient or remainder to get ceiling rounding, once we have the
	       remainder.  Notice that we compute also the final remainder
	       value here, and return the result right away.  */
	    if (target == 0 || GET_MODE (target) != compute_mode)
	      target = gen_reg_rtx (compute_mode);

	    if (rem_flag)
	      {
		remainder = (REG_P (target)
			     ? target : gen_reg_rtx (compute_mode));
		quotient = gen_reg_rtx (compute_mode);
	      }
	    else
	      {
		quotient = (REG_P (target)
			    ? target : gen_reg_rtx (compute_mode));
		remainder = gen_reg_rtx (compute_mode);
	      }

	    if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
				     remainder, 1))
	      {
		/* This could be computed with a branch-less sequence.
		   Save that for later.  */
		rtx_code_label *label = gen_label_rtx ();
		do_cmp_and_jump (remainder, const0_rtx, EQ,
				 compute_mode, label);
		expand_inc (quotient, const1_rtx);
		expand_dec (remainder, op1);
		emit_label (label);
		return gen_lowpart (mode, rem_flag ? remainder : quotient);
	      }

	    /* No luck with division elimination or divmod.  Have to do it
	       by conditionally adjusting op0 *and* the result.  */
	    {
	      rtx_code_label *label1, *label2;
	      rtx adjusted_op0, tem;

	      quotient = gen_reg_rtx (compute_mode);
	      adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
	      label1 = gen_label_rtx ();
	      label2 = gen_label_rtx ();
	      do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
			       compute_mode, label1);
	      emit_move_insn  (quotient, const0_rtx);
	      emit_jump_insn (targetm.gen_jump (label2));
	      emit_barrier ();
	      emit_label (label1);
	      expand_dec (adjusted_op0, const1_rtx);
	      tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
				  quotient, 1, methods);
	      if (tem != quotient)
		emit_move_insn (quotient, tem);
	      expand_inc (quotient, const1_rtx);
	      emit_label (label2);
	    }
	  }
	else /* signed */
	  {
	    if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
		&& INTVAL (op1) >= 0)
	      {
		/* This is extremely similar to the code for the unsigned case
		   above.  For 2.7 we should merge these variants, but for
		   2.6.1 I don't want to touch the code for unsigned since that
		   get used in C.  The signed case will only be used by other
		   languages (Ada).  */

		rtx t1, t2, t3;
		unsigned HOST_WIDE_INT d = INTVAL (op1);
		t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
				   floor_log2 (d), tquotient, 0);
		t2 = expand_binop (compute_mode, and_optab, op0,
				   gen_int_mode (d - 1, compute_mode),
				   NULL_RTX, 1, methods);
		t3 = gen_reg_rtx (compute_mode);
		t3 = emit_store_flag (t3, NE, t2, const0_rtx,
				      compute_mode, 1, 1);
		if (t3 == 0)
		  {
		    rtx_code_label *lab;
		    lab = gen_label_rtx ();
		    do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
		    expand_inc (t1, const1_rtx);
		    emit_label (lab);
		    quotient = t1;
		  }
		else
		  quotient = force_operand (gen_rtx_PLUS (compute_mode,
							  t1, t3),
					    tquotient);
		break;
	      }

	    /* Try using an instruction that produces both the quotient and
	       remainder, using truncation.  We can easily compensate the
	       quotient or remainder to get ceiling rounding, once we have the
	       remainder.  Notice that we compute also the final remainder
	       value here, and return the result right away.  */
	    if (target == 0 || GET_MODE (target) != compute_mode)
	      target = gen_reg_rtx (compute_mode);
	    if (rem_flag)
	      {
		remainder= (REG_P (target)
			    ? target : gen_reg_rtx (compute_mode));
		quotient = gen_reg_rtx (compute_mode);
	      }
	    else
	      {
		quotient = (REG_P (target)
			    ? target : gen_reg_rtx (compute_mode));
		remainder = gen_reg_rtx (compute_mode);
	      }

	    if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
				     remainder, 0))
	      {
		/* This could be computed with a branch-less sequence.
		   Save that for later.  */
		rtx tem;
		rtx_code_label *label = gen_label_rtx ();
		do_cmp_and_jump (remainder, const0_rtx, EQ,
				 compute_mode, label);
		tem = expand_binop (compute_mode, xor_optab, op0, op1,
				    NULL_RTX, 0, OPTAB_WIDEN);
		do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
		expand_inc (quotient, const1_rtx);
		expand_dec (remainder, op1);
		emit_label (label);
		return gen_lowpart (mode, rem_flag ? remainder : quotient);
	      }

	    /* No luck with division elimination or divmod.  Have to do it
	       by conditionally adjusting op0 *and* the result.  */
	    {
	      rtx_code_label *label1, *label2, *label3, *label4, *label5;
	      rtx adjusted_op0;
	      rtx tem;

	      quotient = gen_reg_rtx (compute_mode);
	      adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
	      label1 = gen_label_rtx ();
	      label2 = gen_label_rtx ();
	      label3 = gen_label_rtx ();
	      label4 = gen_label_rtx ();
	      label5 = gen_label_rtx ();
	      do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
	      do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
			       compute_mode, label1);
	      tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
				  quotient, 0, methods);
	      if (tem != quotient)
		emit_move_insn (quotient, tem);
	      emit_jump_insn (targetm.gen_jump (label5));
	      emit_barrier ();
	      emit_label (label1);
	      expand_dec (adjusted_op0, const1_rtx);
	      emit_jump_insn (targetm.gen_jump (label4));
	      emit_barrier ();
	      emit_label (label2);
	      do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
			       compute_mode, label3);
	      tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
				  quotient, 0, methods);
	      if (tem != quotient)
		emit_move_insn (quotient, tem);
	      emit_jump_insn (targetm.gen_jump (label5));
	      emit_barrier ();
	      emit_label (label3);
	      expand_inc (adjusted_op0, const1_rtx);
	      emit_label (label4);
	      tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
				  quotient, 0, methods);
	      if (tem != quotient)
		emit_move_insn (quotient, tem);
	      expand_inc (quotient, const1_rtx);
	      emit_label (label5);
	    }
	  }
	break;

      case EXACT_DIV_EXPR:
	if (op1_is_constant && HWI_COMPUTABLE_MODE_P (compute_mode))
	  {
	    scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
	    int size = GET_MODE_BITSIZE (int_mode);
	    HOST_WIDE_INT d = INTVAL (op1);
	    unsigned HOST_WIDE_INT ml;
	    int pre_shift;
	    rtx t1;

	    pre_shift = ctz_or_zero (d);
	    ml = invert_mod2n (d >> pre_shift, size);
	    t1 = expand_shift (RSHIFT_EXPR, int_mode, op0,
			       pre_shift, NULL_RTX, unsignedp);
	    quotient = expand_mult (int_mode, t1, gen_int_mode (ml, int_mode),
				    NULL_RTX, 1);

	    insn = get_last_insn ();
	    set_dst_reg_note (insn, REG_EQUAL,
			      gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
					      int_mode, op0, op1),
			      quotient);
	  }
	break;

      case ROUND_DIV_EXPR:
      case ROUND_MOD_EXPR:
	if (unsignedp)
	  {
	    scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
	    rtx tem;
	    rtx_code_label *label;
	    label = gen_label_rtx ();
	    quotient = gen_reg_rtx (int_mode);
	    remainder = gen_reg_rtx (int_mode);
	    if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
	      {
		rtx tem;
		quotient = expand_binop (int_mode, udiv_optab, op0, op1,
					 quotient, 1, methods);
		tem = expand_mult (int_mode, quotient, op1, NULL_RTX, 1);
		remainder = expand_binop (int_mode, sub_optab, op0, tem,
					  remainder, 1, methods);
	      }
	    tem = plus_constant (int_mode, op1, -1);
	    tem = expand_shift (RSHIFT_EXPR, int_mode, tem, 1, NULL_RTX, 1);
	    do_cmp_and_jump (remainder, tem, LEU, int_mode, label);
	    expand_inc (quotient, const1_rtx);
	    expand_dec (remainder, op1);
	    emit_label (label);
	  }
	else
	  {
	    scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
	    int size = GET_MODE_BITSIZE (int_mode);
	    rtx abs_rem, abs_op1, tem, mask;
	    rtx_code_label *label;
	    label = gen_label_rtx ();
	    quotient = gen_reg_rtx (int_mode);
	    remainder = gen_reg_rtx (int_mode);
	    if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
	      {
		rtx tem;
		quotient = expand_binop (int_mode, sdiv_optab, op0, op1,
					 quotient, 0, methods);
		tem = expand_mult (int_mode, quotient, op1, NULL_RTX, 0);
		remainder = expand_binop (int_mode, sub_optab, op0, tem,
					  remainder, 0, methods);
	      }
	    abs_rem = expand_abs (int_mode, remainder, NULL_RTX, 1, 0);
	    abs_op1 = expand_abs (int_mode, op1, NULL_RTX, 1, 0);
	    tem = expand_shift (LSHIFT_EXPR, int_mode, abs_rem,
				1, NULL_RTX, 1);
	    do_cmp_and_jump (tem, abs_op1, LTU, int_mode, label);
	    tem = expand_binop (int_mode, xor_optab, op0, op1,
				NULL_RTX, 0, OPTAB_WIDEN);
	    mask = expand_shift (RSHIFT_EXPR, int_mode, tem,
				 size - 1, NULL_RTX, 0);
	    tem = expand_binop (int_mode, xor_optab, mask, const1_rtx,
				NULL_RTX, 0, OPTAB_WIDEN);
	    tem = expand_binop (int_mode, sub_optab, tem, mask,
				NULL_RTX, 0, OPTAB_WIDEN);
	    expand_inc (quotient, tem);
	    tem = expand_binop (int_mode, xor_optab, mask, op1,
				NULL_RTX, 0, OPTAB_WIDEN);
	    tem = expand_binop (int_mode, sub_optab, tem, mask,
				NULL_RTX, 0, OPTAB_WIDEN);
	    expand_dec (remainder, tem);
	    emit_label (label);
	  }
	return gen_lowpart (mode, rem_flag ? remainder : quotient);

      default:
	gcc_unreachable ();
      }

  if (quotient == 0)
    {
      if (target && GET_MODE (target) != compute_mode)
	target = 0;

      if (rem_flag)
	{
	  /* Try to produce the remainder without producing the quotient.
	     If we seem to have a divmod pattern that does not require widening,
	     don't try widening here.  We should really have a WIDEN argument
	     to expand_twoval_binop, since what we'd really like to do here is
	     1) try a mod insn in compute_mode
	     2) try a divmod insn in compute_mode
	     3) try a div insn in compute_mode and multiply-subtract to get
	        remainder
	     4) try the same things with widening allowed.  */
	  remainder
	    = sign_expand_binop (compute_mode, umod_optab, smod_optab,
				 op0, op1, target,
				 unsignedp,
				 ((optab_handler (optab2, compute_mode)
				   != CODE_FOR_nothing)
				  ? OPTAB_DIRECT : OPTAB_WIDEN));
	  if (remainder == 0)
	    {
	      /* No luck there.  Can we do remainder and divide at once
		 without a library call?  */
	      remainder = gen_reg_rtx (compute_mode);
	      if (! expand_twoval_binop ((unsignedp
					  ? udivmod_optab
					  : sdivmod_optab),
					 op0, op1,
					 NULL_RTX, remainder, unsignedp))
		remainder = 0;
	    }

	  if (remainder)
	    return gen_lowpart (mode, remainder);
	}

      /* Produce the quotient.  Try a quotient insn, but not a library call.
	 If we have a divmod in this mode, use it in preference to widening
	 the div (for this test we assume it will not fail). Note that optab2
	 is set to the one of the two optabs that the call below will use.  */
      quotient
	= sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
			     op0, op1, rem_flag ? NULL_RTX : target,
			     unsignedp,
			     ((optab_handler (optab2, compute_mode)
			       != CODE_FOR_nothing)
			      ? OPTAB_DIRECT : OPTAB_WIDEN));

      if (quotient == 0)
	{
	  /* No luck there.  Try a quotient-and-remainder insn,
	     keeping the quotient alone.  */
	  quotient = gen_reg_rtx (compute_mode);
	  if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
				     op0, op1,
				     quotient, NULL_RTX, unsignedp))
	    {
	      quotient = 0;
	      if (! rem_flag)
		/* Still no luck.  If we are not computing the remainder,
		   use a library call for the quotient.  */
		quotient = sign_expand_binop (compute_mode,
					      udiv_optab, sdiv_optab,
					      op0, op1, target,
					      unsignedp, methods);
	    }
	}
    }

  if (rem_flag)
    {
      if (target && GET_MODE (target) != compute_mode)
	target = 0;

      if (quotient == 0)
	{
	  /* No divide instruction either.  Use library for remainder.  */
	  remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
					 op0, op1, target,
					 unsignedp, methods);
	  /* No remainder function.  Try a quotient-and-remainder
	     function, keeping the remainder.  */
	  if (!remainder
	      && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
	    {
	      remainder = gen_reg_rtx (compute_mode);
	      if (!expand_twoval_binop_libfunc
		  (unsignedp ? udivmod_optab : sdivmod_optab,
		   op0, op1,
		   NULL_RTX, remainder,
		   unsignedp ? UMOD : MOD))
		remainder = NULL_RTX;
	    }
	}
      else
	{
	  /* We divided.  Now finish doing X - Y * (X / Y).  */
	  remainder = expand_mult (compute_mode, quotient, op1,
				   NULL_RTX, unsignedp);
	  remainder = expand_binop (compute_mode, sub_optab, op0,
				    remainder, target, unsignedp,
				    methods);
	}
    }

  if (methods != OPTAB_LIB_WIDEN
      && (rem_flag ? remainder : quotient) == NULL_RTX)
    return NULL_RTX;

  return gen_lowpart (mode, rem_flag ? remainder : quotient);
}

/* Return a tree node with data type TYPE, describing the value of X.
   Usually this is an VAR_DECL, if there is no obvious better choice.
   X may be an expression, however we only support those expressions
   generated by loop.c.  */

tree
make_tree (tree type, rtx x)
{
  tree t;

  switch (GET_CODE (x))
    {
    case CONST_INT:
    case CONST_WIDE_INT:
      t = wide_int_to_tree (type, rtx_mode_t (x, TYPE_MODE (type)));
      return t;

    case CONST_DOUBLE:
      STATIC_ASSERT (HOST_BITS_PER_WIDE_INT * 2 <= MAX_BITSIZE_MODE_ANY_INT);
      if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
	t = wide_int_to_tree (type,
			      wide_int::from_array (&CONST_DOUBLE_LOW (x), 2,
						    HOST_BITS_PER_WIDE_INT * 2));
      else
	t = build_real (type, *CONST_DOUBLE_REAL_VALUE (x));

      return t;

    case CONST_VECTOR:
      {
	unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
	unsigned int nelts_per_pattern = CONST_VECTOR_NELTS_PER_PATTERN (x);
	tree itype = TREE_TYPE (type);

	/* Build a tree with vector elements.  */
	tree_vector_builder elts (type, npatterns, nelts_per_pattern);
	unsigned int count = elts.encoded_nelts ();
	for (unsigned int i = 0; i < count; ++i)
	  {
	    rtx elt = CONST_VECTOR_ELT (x, i);
	    elts.quick_push (make_tree (itype, elt));
	  }

	return elts.build ();
      }

    case PLUS:
      return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
			  make_tree (type, XEXP (x, 1)));

    case MINUS:
      return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
			  make_tree (type, XEXP (x, 1)));

    case NEG:
      return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));

    case MULT:
      return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
			  make_tree (type, XEXP (x, 1)));

    case ASHIFT:
      return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
			  make_tree (type, XEXP (x, 1)));

    case LSHIFTRT:
      t = unsigned_type_for (type);
      return fold_convert (type, build2 (RSHIFT_EXPR, t,
			    		 make_tree (t, XEXP (x, 0)),
				    	 make_tree (type, XEXP (x, 1))));

    case ASHIFTRT:
      t = signed_type_for (type);
      return fold_convert (type, build2 (RSHIFT_EXPR, t,
					 make_tree (t, XEXP (x, 0)),
				    	 make_tree (type, XEXP (x, 1))));

    case DIV:
      if (TREE_CODE (type) != REAL_TYPE)
	t = signed_type_for (type);
      else
	t = type;

      return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
				    	 make_tree (t, XEXP (x, 0)),
				    	 make_tree (t, XEXP (x, 1))));
    case UDIV:
      t = unsigned_type_for (type);
      return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
				    	 make_tree (t, XEXP (x, 0)),
				    	 make_tree (t, XEXP (x, 1))));

    case SIGN_EXTEND:
    case ZERO_EXTEND:
      t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
					  GET_CODE (x) == ZERO_EXTEND);
      return fold_convert (type, make_tree (t, XEXP (x, 0)));

    case CONST:
      return make_tree (type, XEXP (x, 0));

    case SYMBOL_REF:
      t = SYMBOL_REF_DECL (x);
      if (t)
	return fold_convert (type, build_fold_addr_expr (t));
      /* fall through.  */

    default:
      if (CONST_POLY_INT_P (x))
	return wide_int_to_tree (t, const_poly_int_value (x));

      t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);

      /* If TYPE is a POINTER_TYPE, we might need to convert X from
	 address mode to pointer mode.  */
      if (POINTER_TYPE_P (type))
	x = convert_memory_address_addr_space
	  (SCALAR_INT_TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));

      /* Note that we do *not* use SET_DECL_RTL here, because we do not
	 want set_decl_rtl to go adjusting REG_ATTRS for this temporary.  */
      t->decl_with_rtl.rtl = x;

      return t;
    }
}

/* Compute the logical-and of OP0 and OP1, storing it in TARGET
   and returning TARGET.

   If TARGET is 0, a pseudo-register or constant is returned.  */

rtx
expand_and (machine_mode mode, rtx op0, rtx op1, rtx target)
{
  rtx tem = 0;

  if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
    tem = simplify_binary_operation (AND, mode, op0, op1);
  if (tem == 0)
    tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);

  if (target == 0)
    target = tem;
  else if (tem != target)
    emit_move_insn (target, tem);
  return target;
}

/* Helper function for emit_store_flag.  */
rtx
emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
	     machine_mode mode, machine_mode compare_mode,
	     int unsignedp, rtx x, rtx y, int normalizep,
	     machine_mode target_mode)
{
  class expand_operand ops[4];
  rtx op0, comparison, subtarget;
  rtx_insn *last;
  scalar_int_mode result_mode = targetm.cstore_mode (icode);
  scalar_int_mode int_target_mode;

  last = get_last_insn ();
  x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
  y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
  if (!x || !y)
    {
      delete_insns_since (last);
      return NULL_RTX;
    }

  if (target_mode == VOIDmode)
    int_target_mode = result_mode;
  else
    int_target_mode = as_a <scalar_int_mode> (target_mode);
  if (!target)
    target = gen_reg_rtx (int_target_mode);

  comparison = gen_rtx_fmt_ee (code, result_mode, x, y);

  create_output_operand (&ops[0], optimize ? NULL_RTX : target, result_mode);
  create_fixed_operand (&ops[1], comparison);
  create_fixed_operand (&ops[2], x);
  create_fixed_operand (&ops[3], y);
  if (!maybe_expand_insn (icode, 4, ops))
    {
      delete_insns_since (last);
      return NULL_RTX;
    }
  subtarget = ops[0].value;

  /* If we are converting to a wider mode, first convert to
     INT_TARGET_MODE, then normalize.  This produces better combining
     opportunities on machines that have a SIGN_EXTRACT when we are
     testing a single bit.  This mostly benefits the 68k.

     If STORE_FLAG_VALUE does not have the sign bit set when
     interpreted in MODE, we can do this conversion as unsigned, which
     is usually more efficient.  */
  if (GET_MODE_PRECISION (int_target_mode) > GET_MODE_PRECISION (result_mode))
    {
      gcc_assert (GET_MODE_PRECISION (result_mode) != 1
		  || STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1);

      bool unsignedp = (STORE_FLAG_VALUE >= 0);
      convert_move (target, subtarget, unsignedp);

      op0 = target;
      result_mode = int_target_mode;
    }
  else
    op0 = subtarget;

  /* If we want to keep subexpressions around, don't reuse our last
     target.  */
  if (optimize)
    subtarget = 0;

  /* Now normalize to the proper value in MODE.  Sometimes we don't
     have to do anything.  */
  if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
    ;
  /* STORE_FLAG_VALUE might be the most negative number, so write
     the comparison this way to avoid a compiler-time warning.  */
  else if (- normalizep == STORE_FLAG_VALUE)
    op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);

  /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
     it hard to use a value of just the sign bit due to ANSI integer
     constant typing rules.  */
  else if (val_signbit_known_set_p (result_mode, STORE_FLAG_VALUE))
    op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
			GET_MODE_BITSIZE (result_mode) - 1, subtarget,
			normalizep == 1);
  else
    {
      gcc_assert (STORE_FLAG_VALUE & 1);

      op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
      if (normalizep == -1)
	op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
    }

  /* If we were converting to a smaller mode, do the conversion now.  */
  if (int_target_mode != result_mode)
    {
      convert_move (target, op0, 0);
      return target;
    }
  else
    return op0;
}


/* A subroutine of emit_store_flag only including "tricks" that do not
   need a recursive call.  These are kept separate to avoid infinite
   loops.  */

static rtx
emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
		   machine_mode mode, int unsignedp, int normalizep,
		   machine_mode target_mode)
{
  rtx subtarget;
  enum insn_code icode;
  machine_mode compare_mode;
  enum mode_class mclass;
  enum rtx_code scode;

  if (unsignedp)
    code = unsigned_condition (code);
  scode = swap_condition (code);

  /* If one operand is constant, make it the second one.  Only do this
     if the other operand is not constant as well.  */

  if (swap_commutative_operands_p (op0, op1))
    {
      std::swap (op0, op1);
      code = swap_condition (code);
    }

  if (mode == VOIDmode)
    mode = GET_MODE (op0);

  if (CONST_SCALAR_INT_P (op1))
    canonicalize_comparison (mode, &code, &op1);

  /* For some comparisons with 1 and -1, we can convert this to
     comparisons with zero.  This will often produce more opportunities for
     store-flag insns.  */

  switch (code)
    {
    case LT:
      if (op1 == const1_rtx)
	op1 = const0_rtx, code = LE;
      break;
    case LE:
      if (op1 == constm1_rtx)
	op1 = const0_rtx, code = LT;
      break;
    case GE:
      if (op1 == const1_rtx)
	op1 = const0_rtx, code = GT;
      break;
    case GT:
      if (op1 == constm1_rtx)
	op1 = const0_rtx, code = GE;
      break;
    case GEU:
      if (op1 == const1_rtx)
	op1 = const0_rtx, code = NE;
      break;
    case LTU:
      if (op1 == const1_rtx)
	op1 = const0_rtx, code = EQ;
      break;
    default:
      break;
    }

  /* If this is A < 0 or A >= 0, we can do this by taking the ones
     complement of A (for GE) and shifting the sign bit to the low bit.  */
  scalar_int_mode int_mode;
  if (op1 == const0_rtx && (code == LT || code == GE)
      && is_int_mode (mode, &int_mode)
      && (normalizep || STORE_FLAG_VALUE == 1
	  || val_signbit_p (int_mode, STORE_FLAG_VALUE)))
    {
      scalar_int_mode int_target_mode;
      subtarget = target;

      if (!target)
	int_target_mode = int_mode;
      else
	{
	  /* If the result is to be wider than OP0, it is best to convert it
	     first.  If it is to be narrower, it is *incorrect* to convert it
	     first.  */
	  int_target_mode = as_a <scalar_int_mode> (target_mode);
	  if (GET_MODE_SIZE (int_target_mode) > GET_MODE_SIZE (int_mode))
	    {
	      op0 = convert_modes (int_target_mode, int_mode, op0, 0);
	      int_mode = int_target_mode;
	    }
	}

      if (int_target_mode != int_mode)
	subtarget = 0;

      if (code == GE)
	op0 = expand_unop (int_mode, one_cmpl_optab, op0,
			   ((STORE_FLAG_VALUE == 1 || normalizep)
			    ? 0 : subtarget), 0);

      if (STORE_FLAG_VALUE == 1 || normalizep)
	/* If we are supposed to produce a 0/1 value, we want to do
	   a logical shift from the sign bit to the low-order bit; for
	   a -1/0 value, we do an arithmetic shift.  */
	op0 = expand_shift (RSHIFT_EXPR, int_mode, op0,
			    GET_MODE_BITSIZE (int_mode) - 1,
			    subtarget, normalizep != -1);

      if (int_mode != int_target_mode)
	op0 = convert_modes (int_target_mode, int_mode, op0, 0);

      return op0;
    }

  /* Next try expanding this via the backend's cstore<mode>4.  */
  mclass = GET_MODE_CLASS (mode);
  FOR_EACH_WIDER_MODE_FROM (compare_mode, mode)
    {
     machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
     icode = optab_handler (cstore_optab, optab_mode);
     if (icode != CODE_FOR_nothing)
	{
	  do_pending_stack_adjust ();
	  rtx tem = emit_cstore (target, icode, code, mode, compare_mode,
				 unsignedp, op0, op1, normalizep, target_mode);
	  if (tem)
	    return tem;

	  if (GET_MODE_CLASS (mode) == MODE_FLOAT)
	    {
	      tem = emit_cstore (target, icode, scode, mode, compare_mode,
				 unsignedp, op1, op0, normalizep, target_mode);
	      if (tem)
	        return tem;
	    }
	  break;
	}
    }

  /* If we are comparing a double-word integer with zero or -1, we can
     convert the comparison into one involving a single word.  */
  if (is_int_mode (mode, &int_mode)
      && GET_MODE_BITSIZE (int_mode) == BITS_PER_WORD * 2
      && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
    {
      rtx tem;
      if ((code == EQ || code == NE)
	  && (op1 == const0_rtx || op1 == constm1_rtx))
	{
	  rtx op00, op01;

	  /* Do a logical OR or AND of the two words and compare the
	     result.  */
	  op00 = simplify_gen_subreg (word_mode, op0, int_mode, 0);
	  op01 = simplify_gen_subreg (word_mode, op0, int_mode, UNITS_PER_WORD);
	  tem = expand_binop (word_mode,
			      op1 == const0_rtx ? ior_optab : and_optab,
			      op00, op01, NULL_RTX, unsignedp,
			      OPTAB_DIRECT);

	  if (tem != 0)
	    tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
				   unsignedp, normalizep);
	}
      else if ((code == LT || code == GE) && op1 == const0_rtx)
	{
	  rtx op0h;

	  /* If testing the sign bit, can just test on high word.  */
	  op0h = simplify_gen_subreg (word_mode, op0, int_mode,
				      subreg_highpart_offset (word_mode,
							      int_mode));
	  tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
				 unsignedp, normalizep);
	}
      else
	tem = NULL_RTX;

      if (tem)
	{
	  if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
	    return tem;
	  if (!target)
	    target = gen_reg_rtx (target_mode);

	  convert_move (target, tem,
			!val_signbit_known_set_p (word_mode,
						  (normalizep ? normalizep
						   : STORE_FLAG_VALUE)));
	  return target;
	}
    }

  return 0;
}

/* Subroutine of emit_store_flag that handles cases in which the operands
   are scalar integers.  SUBTARGET is the target to use for temporary
   operations and TRUEVAL is the value to store when the condition is
   true.  All other arguments are as for emit_store_flag.  */

rtx
emit_store_flag_int (rtx target, rtx subtarget, enum rtx_code code, rtx op0,
		     rtx op1, scalar_int_mode mode, int unsignedp,
		     int normalizep, rtx trueval)
{
  machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
  rtx_insn *last = get_last_insn ();

  /* If this is an equality comparison of integers, we can try to exclusive-or
     (or subtract) the two operands and use a recursive call to try the
     comparison with zero.  Don't do any of these cases if branches are
     very cheap.  */

  if ((code == EQ || code == NE) && op1 != const0_rtx)
    {
      rtx tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
			      OPTAB_WIDEN);

      if (tem == 0)
	tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
			    OPTAB_WIDEN);
      if (tem != 0)
	tem = emit_store_flag (target, code, tem, const0_rtx,
			       mode, unsignedp, normalizep);
      if (tem != 0)
	return tem;

      delete_insns_since (last);
    }

  /* For integer comparisons, try the reverse comparison.  However, for
     small X and if we'd have anyway to extend, implementing "X != 0"
     as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0".  */
  rtx_code rcode = reverse_condition (code);
  if (can_compare_p (rcode, mode, ccp_store_flag)
      && ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing
	    && code == NE
	    && GET_MODE_SIZE (mode) < UNITS_PER_WORD
	    && op1 == const0_rtx))
    {
      int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
		      || (STORE_FLAG_VALUE == -1 && normalizep == 1));

      /* Again, for the reverse comparison, use either an addition or a XOR.  */
      if (want_add
	  && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
		       optimize_insn_for_speed_p ()) == 0)
	{
	  rtx tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
				       STORE_FLAG_VALUE, target_mode);
	  if (tem != 0)
	    tem = expand_binop (target_mode, add_optab, tem,
				gen_int_mode (normalizep, target_mode),
				target, 0, OPTAB_WIDEN);
	  if (tem != 0)
	    return tem;
	}
      else if (!want_add
	       && rtx_cost (trueval, mode, XOR, 1,
			    optimize_insn_for_speed_p ()) == 0)
	{
	  rtx tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
				       normalizep, target_mode);
	  if (tem != 0)
	    tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
				INTVAL (trueval) >= 0, OPTAB_WIDEN);
	  if (tem != 0)
	    return tem;
	}

      delete_insns_since (last);
    }

  /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
     the constant zero.  Reject all other comparisons at this point.  Only
     do LE and GT if branches are expensive since they are expensive on
     2-operand machines.  */

  if (op1 != const0_rtx
      || (code != EQ && code != NE
	  && (BRANCH_COST (optimize_insn_for_speed_p (),
			   false) <= 1 || (code != LE && code != GT))))
    return 0;

  /* Try to put the result of the comparison in the sign bit.  Assume we can't
     do the necessary operation below.  */

  rtx tem = 0;

  /* To see if A <= 0, compute (A | (A - 1)).  A <= 0 iff that result has
     the sign bit set.  */

  if (code == LE)
    {
      /* This is destructive, so SUBTARGET can't be OP0.  */
      if (rtx_equal_p (subtarget, op0))
	subtarget = 0;

      tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
			  OPTAB_WIDEN);
      if (tem)
	tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
			    OPTAB_WIDEN);
    }

  /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
     number of bits in the mode of OP0, minus one.  */

  if (code == GT)
    {
      if (rtx_equal_p (subtarget, op0))
	subtarget = 0;

      tem = maybe_expand_shift (RSHIFT_EXPR, mode, op0,
				GET_MODE_BITSIZE (mode) - 1,
				subtarget, 0);
      if (tem)
	tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
			    OPTAB_WIDEN);
    }

  if (code == EQ || code == NE)
    {
      /* For EQ or NE, one way to do the comparison is to apply an operation
	 that converts the operand into a positive number if it is nonzero
	 or zero if it was originally zero.  Then, for EQ, we subtract 1 and
	 for NE we negate.  This puts the result in the sign bit.  Then we
	 normalize with a shift, if needed.

	 Two operations that can do the above actions are ABS and FFS, so try
	 them.  If that doesn't work, and MODE is smaller than a full word,
	 we can use zero-extension to the wider mode (an unsigned conversion)
	 as the operation.  */

      /* Note that ABS doesn't yield a positive number for INT_MIN, but
	 that is compensated by the subsequent overflow when subtracting
	 one / negating.  */

      if (optab_handler (abs_optab, mode) != CODE_FOR_nothing)
	tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
      else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing)
	tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
      else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
	{
	  tem = convert_modes (word_mode, mode, op0, 1);
	  mode = word_mode;
	}

      if (tem != 0)
	{
	  if (code == EQ)
	    tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
				0, OPTAB_WIDEN);
	  else
	    tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
	}

      /* If we couldn't do it that way, for NE we can "or" the two's complement
	 of the value with itself.  For EQ, we take the one's complement of
	 that "or", which is an extra insn, so we only handle EQ if branches
	 are expensive.  */

      if (tem == 0
	  && (code == NE
	      || BRANCH_COST (optimize_insn_for_speed_p (),
			      false) > 1))
	{
	  if (rtx_equal_p (subtarget, op0))
	    subtarget = 0;

	  tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
	  tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
			      OPTAB_WIDEN);

	  if (tem && code == EQ)
	    tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
	}
    }

  if (tem && normalizep)
    tem = maybe_expand_shift (RSHIFT_EXPR, mode, tem,
			      GET_MODE_BITSIZE (mode) - 1,
			      subtarget, normalizep == 1);

  if (tem)
    {
      if (!target)
	;
      else if (GET_MODE (tem) != target_mode)
	{
	  convert_move (target, tem, 0);
	  tem = target;
	}
      else if (!subtarget)
	{
	  emit_move_insn (target, tem);
	  tem = target;
	}
    }
  else
    delete_insns_since (last);

  return tem;
}

/* Emit a store-flags instruction for comparison CODE on OP0 and OP1
   and storing in TARGET.  Normally return TARGET.
   Return 0 if that cannot be done.

   MODE is the mode to use for OP0 and OP1 should they be CONST_INTs.  If
   it is VOIDmode, they cannot both be CONST_INT.

   UNSIGNEDP is for the case where we have to widen the operands
   to perform the operation.  It says to use zero-extension.

   NORMALIZEP is 1 if we should convert the result to be either zero
   or one.  Normalize is -1 if we should convert the result to be
   either zero or -1.  If NORMALIZEP is zero, the result will be left
   "raw" out of the scc insn.  */

rtx
emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
		 machine_mode mode, int unsignedp, int normalizep)
{
  machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
  enum rtx_code rcode;
  rtx subtarget;
  rtx tem, trueval;
  rtx_insn *last;

  /* If we compare constants, we shouldn't use a store-flag operation,
     but a constant load.  We can get there via the vanilla route that
     usually generates a compare-branch sequence, but will in this case
     fold the comparison to a constant, and thus elide the branch.  */
  if (CONSTANT_P (op0) && CONSTANT_P (op1))
    return NULL_RTX;

  tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
			   target_mode);
  if (tem)
    return tem;

  /* If we reached here, we can't do this with a scc insn, however there
     are some comparisons that can be done in other ways.  Don't do any
     of these cases if branches are very cheap.  */
  if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
    return 0;

  /* See what we need to return.  We can only return a 1, -1, or the
     sign bit.  */

  if (normalizep == 0)
    {
      if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
	normalizep = STORE_FLAG_VALUE;

      else if (val_signbit_p (mode, STORE_FLAG_VALUE))
	;
      else
	return 0;
    }

  last = get_last_insn ();

  /* If optimizing, use different pseudo registers for each insn, instead
     of reusing the same pseudo.  This leads to better CSE, but slows
     down the compiler, since there are more pseudos.  */
  subtarget = (!optimize
	       && (target_mode == mode)) ? target : NULL_RTX;
  trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);

  /* For floating-point comparisons, try the reverse comparison or try
     changing the "orderedness" of the comparison.  */
  if (GET_MODE_CLASS (mode) == MODE_FLOAT)
    {
      enum rtx_code first_code;
      bool and_them;

      rcode = reverse_condition_maybe_unordered (code);
      if (can_compare_p (rcode, mode, ccp_store_flag)
	  && (code == ORDERED || code == UNORDERED
	      || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
	      || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
	{
	  int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
			  || (STORE_FLAG_VALUE == -1 && normalizep == 1));

	  /* For the reverse comparison, use either an addition or a XOR.  */
	  if (want_add
	      && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
			   optimize_insn_for_speed_p ()) == 0)
	    {
	      tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
				       STORE_FLAG_VALUE, target_mode);
	      if (tem)
		return expand_binop (target_mode, add_optab, tem,
				     gen_int_mode (normalizep, target_mode),
				     target, 0, OPTAB_WIDEN);
	    }
	  else if (!want_add
		   && rtx_cost (trueval, mode, XOR, 1,
				optimize_insn_for_speed_p ()) == 0)
	    {
	      tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
				       normalizep, target_mode);
	      if (tem)
		return expand_binop (target_mode, xor_optab, tem, trueval,
				     target, INTVAL (trueval) >= 0,
				     OPTAB_WIDEN);
	    }
	}

      delete_insns_since (last);

      /* Cannot split ORDERED and UNORDERED, only try the above trick.  */
      if (code == ORDERED || code == UNORDERED)
	return 0;

      and_them = split_comparison (code, mode, &first_code, &code);

      /* If there are no NaNs, the first comparison should always fall through.
	 Effectively change the comparison to the other one.  */
      if (!HONOR_NANS (mode))
	{
	  gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
	  return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
				    target_mode);
	}

      if (!HAVE_conditional_move)
	return 0;

      /* Do not turn a trapping comparison into a non-trapping one.  */
      if ((code != EQ && code != NE && code != UNEQ && code != LTGT)
	  && flag_trapping_math)
	return 0;

      /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
	 conditional move.  */
      tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
			       normalizep, target_mode);
      if (tem == 0)
	return 0;

      if (and_them)
	tem = emit_conditional_move (target, { code, op0, op1, mode },
				     tem, const0_rtx, GET_MODE (tem), 0);
      else
	tem = emit_conditional_move (target, { code, op0, op1, mode },
				     trueval, tem, GET_MODE (tem), 0);

      if (tem == 0)
	delete_insns_since (last);
      return tem;
    }

  /* The remaining tricks only apply to integer comparisons.  */

  scalar_int_mode int_mode;
  if (is_int_mode (mode, &int_mode))
    return emit_store_flag_int (target, subtarget, code, op0, op1, int_mode,
				unsignedp, normalizep, trueval);

  return 0;
}

/* Like emit_store_flag, but always succeeds.  */

rtx
emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
		       machine_mode mode, int unsignedp, int normalizep)
{
  rtx tem;
  rtx_code_label *label;
  rtx trueval, falseval;

  /* First see if emit_store_flag can do the job.  */
  tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
  if (tem != 0)
    return tem;

  /* If one operand is constant, make it the second one.  Only do this
     if the other operand is not constant as well.  */
  if (swap_commutative_operands_p (op0, op1))
    {
      std::swap (op0, op1);
      code = swap_condition (code);
    }

  if (mode == VOIDmode)
    mode = GET_MODE (op0);

  if (!target)
    target = gen_reg_rtx (word_mode);

  /* If this failed, we have to do this with set/compare/jump/set code.
     For foo != 0, if foo is in OP0, just replace it with 1 if nonzero.  */
  trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
  if (code == NE
      && GET_MODE_CLASS (mode) == MODE_INT
      && REG_P (target)
      && op0 == target
      && op1 == const0_rtx)
    {
      label = gen_label_rtx ();
      do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp, mode,
			       NULL_RTX, NULL, label,
			       profile_probability::uninitialized ());
      emit_move_insn (target, trueval);
      emit_label (label);
      return target;
    }

  if (!REG_P (target)
      || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
    target = gen_reg_rtx (GET_MODE (target));

  /* Jump in the right direction if the target cannot implement CODE
     but can jump on its reverse condition.  */
  falseval = const0_rtx;
  if (! can_compare_p (code, mode, ccp_jump)
      && (! FLOAT_MODE_P (mode)
          || code == ORDERED || code == UNORDERED
          || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
          || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
    {
      enum rtx_code rcode;
      if (FLOAT_MODE_P (mode))
        rcode = reverse_condition_maybe_unordered (code);
      else
        rcode = reverse_condition (code);

      /* Canonicalize to UNORDERED for the libcall.  */
      if (can_compare_p (rcode, mode, ccp_jump)
          || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
	{
	  falseval = trueval;
	  trueval = const0_rtx;
	  code = rcode;
	}
    }

  emit_move_insn (target, trueval);
  label = gen_label_rtx ();
  do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX, NULL,
			   label, profile_probability::uninitialized ());

  emit_move_insn (target, falseval);
  emit_label (label);

  return target;
}

/* Helper function for canonicalize_cmp_for_target.  Swap between inclusive
   and exclusive ranges in order to create an equivalent comparison.  See
   canonicalize_cmp_for_target for the possible cases.  */

static enum rtx_code
equivalent_cmp_code (enum rtx_code code)
{
  switch (code)
    {
    case GT:
      return GE;
    case GE:
      return GT;
    case LT:
      return LE;
    case LE:
      return LT;
    case GTU:
      return GEU;
    case GEU:
      return GTU;
    case LTU:
      return LEU;
    case LEU:
      return LTU;

    default:
      return code;
    }
}

/* Choose the more appropiate immediate in scalar integer comparisons.  The
   purpose of this is to end up with an immediate which can be loaded into a
   register in fewer moves, if possible.

   For each integer comparison there exists an equivalent choice:
     i)   a >  b or a >= b + 1
     ii)  a <= b or a <  b + 1
     iii) a >= b or a >  b - 1
     iv)  a <  b or a <= b - 1

   MODE is the mode of the first operand.
   CODE points to the comparison code.
   IMM points to the rtx containing the immediate.  *IMM must satisfy
   CONST_SCALAR_INT_P on entry and continues to satisfy CONST_SCALAR_INT_P
   on exit.  */

void
canonicalize_comparison (machine_mode mode, enum rtx_code *code, rtx *imm)
{
  if (!SCALAR_INT_MODE_P (mode))
    return;

  int to_add = 0;
  enum signop sgn = unsigned_condition_p (*code) ? UNSIGNED : SIGNED;

  /* Extract the immediate value from the rtx.  */
  wide_int imm_val = rtx_mode_t (*imm, mode);

  if (*code == GT || *code == GTU || *code == LE || *code == LEU)
    to_add = 1;
  else if (*code == GE || *code == GEU || *code == LT || *code == LTU)
    to_add = -1;
  else
    return;

  /* Check for overflow/underflow in the case of signed values and
     wrapping around in the case of unsigned values.  If any occur
     cancel the optimization.  */
  wi::overflow_type overflow = wi::OVF_NONE;
  wide_int imm_modif;

  if (to_add == 1)
    imm_modif = wi::add (imm_val, 1, sgn, &overflow);
  else
    imm_modif = wi::sub (imm_val, 1, sgn, &overflow);

  if (overflow)
    return;

  /* The following creates a pseudo; if we cannot do that, bail out.  */
  if (!can_create_pseudo_p ())
    return;

  rtx reg = gen_rtx_REG (mode, LAST_VIRTUAL_REGISTER + 1);
  rtx new_imm = immed_wide_int_const (imm_modif, mode);

  rtx_insn *old_rtx = gen_move_insn (reg, *imm);
  rtx_insn *new_rtx = gen_move_insn (reg, new_imm);

  /* Update the immediate and the code.  */
  if (insn_cost (old_rtx, true) > insn_cost (new_rtx, true))
    {
      *code = equivalent_cmp_code (*code);
      *imm = new_imm;
    }
}



/* Perform possibly multi-word comparison and conditional jump to LABEL
   if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE.  This is
   now a thin wrapper around do_compare_rtx_and_jump.  */

static void
do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, machine_mode mode,
		 rtx_code_label *label)
{
  int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
  do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode, NULL_RTX,
			   NULL, label, profile_probability::uninitialized ());
}