aboutsummaryrefslogtreecommitdiff
path: root/gcc/explow.c
blob: f2b72f6969c52b979f5b58e646076060c9d15dd8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
/* Subroutines for manipulating rtx's in semantically interesting ways.
   Copyright (C) 1987, 1991 Free Software Foundation, Inc.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */


#include "config.h"
#include "rtl.h"
#include "tree.h"
#include "flags.h"
#include "expr.h"
#include "hard-reg-set.h"
#include "insn-config.h"
#include "recog.h"
#include "insn-flags.h"
#include "insn-codes.h"

/* Return an rtx for the sum of X and the integer C.  */

rtx
plus_constant (x, c)
     register rtx x;
     register int c;
{
  register RTX_CODE code;
  register enum machine_mode mode;
  register rtx tem;
  int all_constant = 0;

  if (c == 0)
    return x;

 restart:

  code = GET_CODE (x);
  mode = GET_MODE (x);
  switch (code)
    {
    case CONST_INT:
      return gen_rtx (CONST_INT, VOIDmode, (INTVAL (x) + c));

    case CONST_DOUBLE:
      {
	int l1 = CONST_DOUBLE_LOW (x);
	int h1 = CONST_DOUBLE_HIGH (x);
	int l2 = c;
	int h2 = c < 0 ? ~0 : 0;
	int lv, hv;

	add_double (l1, h1, l2, h2, &lv, &hv);

	return immed_double_const (lv, hv, VOIDmode);
      }

    case MEM:
      /* If this is a reference to the constant pool, try replacing it with
	 a reference to a new constant.  If the resulting address isn't
	 valid, don't return it because we have no way to validize it.  */
      if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
	  && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
	{
	  tem
	    = force_const_mem (GET_MODE (x),
			       plus_constant (get_pool_constant (XEXP (x, 0)),
					      c));
	  if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
	    return tem;
	}
      break;

    case CONST:
      /* If adding to something entirely constant, set a flag
	 so that we can add a CONST around the result.  */
      x = XEXP (x, 0);
      all_constant = 1;
      goto restart;

    case SYMBOL_REF:
    case LABEL_REF:
      all_constant = 1;
      break;

    case PLUS:
      /* The interesting case is adding the integer to a sum.
	 Look for constant term in the sum and combine
	 with C.  For an integer constant term, we make a combined
	 integer.  For a constant term that is not an explicit integer,
	 we cannot really combine, but group them together anyway.  */
      if (GET_CODE (XEXP (x, 0)) == CONST_INT)
	{
	  c += INTVAL (XEXP (x, 0));
	  x = XEXP (x, 1);
	}
      else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
	{
	  c += INTVAL (XEXP (x, 1));
	  x = XEXP (x, 0);
	}
      else if (CONSTANT_P (XEXP (x, 0)))
	return gen_rtx (PLUS, mode,
			plus_constant (XEXP (x, 0), c),
			XEXP (x, 1));
      else if (CONSTANT_P (XEXP (x, 1)))
	return gen_rtx (PLUS, mode,
			XEXP (x, 0),
			plus_constant (XEXP (x, 1), c));
    }

  if (c != 0)
    x = gen_rtx (PLUS, mode, x, gen_rtx (CONST_INT, VOIDmode, c));

  if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
    return x;
  else if (all_constant)
    return gen_rtx (CONST, mode, x);
  else
    return x;
}

/* This is the same a `plus_constant', except that it handles LO_SUM.  */

rtx
plus_constant_for_output (x, c)
     register rtx x;
     register int c;
{
  register RTX_CODE code = GET_CODE (x);
  register enum machine_mode mode = GET_MODE (x);
  int all_constant = 0;

  if (GET_CODE (x) == LO_SUM)
    return gen_rtx (LO_SUM, mode, XEXP (x, 0),
		    plus_constant_for_output (XEXP (x, 1), c));

  else
    return plus_constant (x, c);
}

/* If X is a sum, return a new sum like X but lacking any constant terms.
   Add all the removed constant terms into *CONSTPTR.
   X itself is not altered.  The result != X if and only if
   it is not isomorphic to X.  */

rtx
eliminate_constant_term (x, constptr)
     rtx x;
     rtx *constptr;
{
  register rtx x0, x1;
  rtx tem;

  if (GET_CODE (x) != PLUS)
    return x;

  /* First handle constants appearing at this level explicitly.  */
  if (GET_CODE (XEXP (x, 1)) == CONST_INT
      && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
						XEXP (x, 1)))
      && GET_CODE (tem) == CONST_INT)
    {
      *constptr = tem;
      return eliminate_constant_term (XEXP (x, 0), constptr);
    }

  tem = const0_rtx;
  x0 = eliminate_constant_term (XEXP (x, 0), &tem);
  x1 = eliminate_constant_term (XEXP (x, 1), &tem);
  if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
      && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
						*constptr, tem))
      && GET_CODE (tem) == CONST_INT)
    {
      *constptr = tem;
      return gen_rtx (PLUS, GET_MODE (x), x0, x1);
    }

  return x;
}

/* Returns the insn that next references REG after INSN, or 0
   if REG is clobbered before next referenced or we cannot find
   an insn that references REG in a straight-line piece of code.  */

rtx
find_next_ref (reg, insn)
     rtx reg;
     rtx insn;
{
  rtx next;

  for (insn = NEXT_INSN (insn); insn; insn = next)
    {
      next = NEXT_INSN (insn);
      if (GET_CODE (insn) == NOTE)
	continue;
      if (GET_CODE (insn) == CODE_LABEL
	  || GET_CODE (insn) == BARRIER)
	return 0;
      if (GET_CODE (insn) == INSN
	  || GET_CODE (insn) == JUMP_INSN
	  || GET_CODE (insn) == CALL_INSN)
	{
	  if (reg_set_p (reg, insn))
	    return 0;
	  if (reg_mentioned_p (reg, PATTERN (insn)))
	    return insn;
	  if (GET_CODE (insn) == JUMP_INSN)
	    {
	      if (simplejump_p (insn))
		next = JUMP_LABEL (insn);
	      else
		return 0;
	    }
	  if (GET_CODE (insn) == CALL_INSN
	      && REGNO (reg) < FIRST_PSEUDO_REGISTER
	      && call_used_regs[REGNO (reg)])
	    return 0;
	}
      else
	abort ();
    }
  return 0;
}

/* Return an rtx for the size in bytes of the value of EXP.  */

rtx
expr_size (exp)
     tree exp;
{
  return expand_expr (size_in_bytes (TREE_TYPE (exp)),
		      0, TYPE_MODE (sizetype), 0);
}

/* Return a copy of X in which all memory references
   and all constants that involve symbol refs
   have been replaced with new temporary registers.
   Also emit code to load the memory locations and constants
   into those registers.

   If X contains no such constants or memory references,
   X itself (not a copy) is returned.

   If a constant is found in the address that is not a legitimate constant
   in an insn, it is left alone in the hope that it might be valid in the
   address.

   X may contain no arithmetic except addition, subtraction and multiplication.
   Values returned by expand_expr with 1 for sum_ok fit this constraint.  */

static rtx
break_out_memory_refs (x)
     register rtx x;
{
  if (GET_CODE (x) == MEM
      || (CONSTANT_P (x) && LEGITIMATE_CONSTANT_P (x)
	  && GET_MODE (x) != VOIDmode))
    {
      register rtx temp = force_reg (GET_MODE (x), x);
      mark_reg_pointer (temp);
      x = temp;
    }
  else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
	   || GET_CODE (x) == MULT)
    {
      register rtx op0 = break_out_memory_refs (XEXP (x, 0));
      register rtx op1 = break_out_memory_refs (XEXP (x, 1));
      if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
	x = gen_rtx (GET_CODE (x), Pmode, op0, op1);
    }
  return x;
}

/* Given a memory address or facsimile X, construct a new address,
   currently equivalent, that is stable: future stores won't change it.

   X must be composed of constants, register and memory references
   combined with addition, subtraction and multiplication:
   in other words, just what you can get from expand_expr if sum_ok is 1.

   Works by making copies of all regs and memory locations used
   by X and combining them the same way X does.
   You could also stabilize the reference to this address
   by copying the address to a register with copy_to_reg;
   but then you wouldn't get indexed addressing in the reference.  */

rtx
copy_all_regs (x)
     register rtx x;
{
  if (GET_CODE (x) == REG)
    {
      if (REGNO (x) != FRAME_POINTER_REGNUM)
	x = copy_to_reg (x);
    }
  else if (GET_CODE (x) == MEM)
    x = copy_to_reg (x);
  else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
	   || GET_CODE (x) == MULT)
    {
      register rtx op0 = copy_all_regs (XEXP (x, 0));
      register rtx op1 = copy_all_regs (XEXP (x, 1));
      if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
	x = gen_rtx (GET_CODE (x), Pmode, op0, op1);
    }
  return x;
}

/* Return something equivalent to X but valid as a memory address
   for something of mode MODE.  When X is not itself valid, this
   works by copying X or subexpressions of it into registers.  */

rtx
memory_address (mode, x)
     enum machine_mode mode;
     register rtx x;
{
  register rtx oldx;

  /* By passing constant addresses thru registers
     we get a chance to cse them.  */
  if (! cse_not_expected && CONSTANT_P (x) && LEGITIMATE_CONSTANT_P (x))
    return force_reg (Pmode, x);

  /* Accept a QUEUED that refers to a REG
     even though that isn't a valid address.
     On attempting to put this in an insn we will call protect_from_queue
     which will turn it into a REG, which is valid.  */
  if (GET_CODE (x) == QUEUED
      && GET_CODE (QUEUED_VAR (x)) == REG)
    return x;

  /* We get better cse by rejecting indirect addressing at this stage.
     Let the combiner create indirect addresses where appropriate.
     For now, generate the code so that the subexpressions useful to share
     are visible.  But not if cse won't be done!  */
  oldx = x;
  if (! cse_not_expected && GET_CODE (x) != REG)
    x = break_out_memory_refs (x);

  /* At this point, any valid address is accepted.  */
  GO_IF_LEGITIMATE_ADDRESS (mode, x, win);

  /* If it was valid before but breaking out memory refs invalidated it,
     use it the old way.  */
  if (memory_address_p (mode, oldx))
    goto win2;

  /* Perform machine-dependent transformations on X
     in certain cases.  This is not necessary since the code
     below can handle all possible cases, but machine-dependent
     transformations can make better code.  */
  LEGITIMIZE_ADDRESS (x, oldx, mode, win);

  /* PLUS and MULT can appear in special ways
     as the result of attempts to make an address usable for indexing.
     Usually they are dealt with by calling force_operand, below.
     But a sum containing constant terms is special
     if removing them makes the sum a valid address:
     then we generate that address in a register
     and index off of it.  We do this because it often makes
     shorter code, and because the addresses thus generated
     in registers often become common subexpressions.  */
  if (GET_CODE (x) == PLUS)
    {
      rtx constant_term = const0_rtx;
      rtx y = eliminate_constant_term (x, &constant_term);
      if (constant_term == const0_rtx
	  || ! memory_address_p (mode, y))
	return force_operand (x, 0);

      y = gen_rtx (PLUS, GET_MODE (x), copy_to_reg (y), constant_term);
      if (! memory_address_p (mode, y))
	return force_operand (x, 0);
      return y;
    }
  if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
    return force_operand (x, 0);

  /* If we have a register that's an invalid address,
     it must be a hard reg of the wrong class.  Copy it to a pseudo.  */
  if (GET_CODE (x) == REG)
    return copy_to_reg (x);

  /* Last resort: copy the value to a register, since
     the register is a valid address.  */
  return force_reg (Pmode, x);

 win2:
  x = oldx;
 win:
  if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
      /* Don't copy an addr via a reg if it is one of our stack slots.  */
      && ! (GET_CODE (x) == PLUS
	    && (XEXP (x, 0) == virtual_stack_vars_rtx
		|| XEXP (x, 0) == virtual_incoming_args_rtx)))
    {
      if (general_operand (x, Pmode))
	return force_reg (Pmode, x);
      else
	return force_operand (x, 0);
    }
  return x;
}

/* Like `memory_address' but pretend `flag_force_addr' is 0.  */

rtx
memory_address_noforce (mode, x)
     enum machine_mode mode;
     rtx x;
{
  int ambient_force_addr = flag_force_addr;
  rtx val;

  flag_force_addr = 0;
  val = memory_address (mode, x);
  flag_force_addr = ambient_force_addr;
  return val;
}

/* Convert a mem ref into one with a valid memory address.
   Pass through anything else unchanged.  */

rtx
validize_mem (ref)
     rtx ref;
{
  if (GET_CODE (ref) != MEM)
    return ref;
  if (memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
    return ref;
  /* Don't alter REF itself, since that is probably a stack slot.  */
  return change_address (ref, GET_MODE (ref), XEXP (ref, 0));
}

/* Return a modified copy of X with its memory address copied
   into a temporary register to protect it from side effects.
   If X is not a MEM, it is returned unchanged (and not copied).
   Perhaps even if it is a MEM, if there is no need to change it.  */

rtx
stabilize (x)
     rtx x;
{
  register rtx addr;
  if (GET_CODE (x) != MEM)
    return x;
  addr = XEXP (x, 0);
  if (rtx_unstable_p (addr))
    {
      rtx temp = copy_all_regs (addr);
      rtx mem;
      if (GET_CODE (temp) != REG)
	temp = copy_to_reg (temp);
      mem = gen_rtx (MEM, GET_MODE (x), temp);

      /* Mark returned memref with in_struct if it's in an array or
	 structure.  Copy const and volatile from original memref.  */

      MEM_IN_STRUCT_P (mem) = MEM_IN_STRUCT_P (x) || GET_CODE (addr) == PLUS;
      RTX_UNCHANGING_P (mem) = RTX_UNCHANGING_P (x);
      MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (x);
      return mem;
    }
  return x;
}

/* Copy the value or contents of X to a new temp reg and return that reg.  */

rtx
copy_to_reg (x)
     rtx x;
{
  register rtx temp = gen_reg_rtx (GET_MODE (x));
 
  /* If not an operand, must be an address with PLUS and MULT so
     do the computation.  */ 
  if (! general_operand (x, VOIDmode))
    x = force_operand (x, temp);
  
  if (x != temp)
    emit_move_insn (temp, x);

  return temp;
}

/* Like copy_to_reg but always give the new register mode Pmode
   in case X is a constant.  */

rtx
copy_addr_to_reg (x)
     rtx x;
{
  return copy_to_mode_reg (Pmode, x);
}

/* Like copy_to_reg but always give the new register mode MODE
   in case X is a constant.  */

rtx
copy_to_mode_reg (mode, x)
     enum machine_mode mode;
     rtx x;
{
  register rtx temp = gen_reg_rtx (mode);
  
  /* If not an operand, must be an address with PLUS and MULT so
     do the computation.  */ 
  if (! general_operand (x, VOIDmode))
    x = force_operand (x, temp);

  if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
    abort ();
  if (x != temp)
    emit_move_insn (temp, x);
  return temp;
}

/* Load X into a register if it is not already one.
   Use mode MODE for the register.
   X should be valid for mode MODE, but it may be a constant which
   is valid for all integer modes; that's why caller must specify MODE.

   The caller must not alter the value in the register we return,
   since we mark it as a "constant" register.  */

rtx
force_reg (mode, x)
     enum machine_mode mode;
     rtx x;
{
  register rtx temp, insn;

  if (GET_CODE (x) == REG)
    return x;
  temp = gen_reg_rtx (mode);
  insn = emit_move_insn (temp, x);
  /* Let optimizers know that TEMP's value never changes
     and that X can be substituted for it.  */
  if (CONSTANT_P (x))
    {
      rtx note = find_reg_note (insn, REG_EQUAL, 0);

      if (note)
	XEXP (note, 0) = x;
      else
	REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, x, REG_NOTES (insn));
    }
  return temp;
}

/* If X is a memory ref, copy its contents to a new temp reg and return
   that reg.  Otherwise, return X.  */

rtx
force_not_mem (x)
     rtx x;
{
  register rtx temp;
  if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
    return x;
  temp = gen_reg_rtx (GET_MODE (x));
  emit_move_insn (temp, x);
  return temp;
}

/* Copy X to TARGET (if it's nonzero and a reg)
   or to a new temp reg and return that reg.
   MODE is the mode to use for X in case it is a constant.  */

rtx
copy_to_suggested_reg (x, target, mode)
     rtx x, target;
     enum machine_mode mode;
{
  register rtx temp;

  if (target && GET_CODE (target) == REG)
    temp = target;
  else
    temp = gen_reg_rtx (mode);

  emit_move_insn (temp, x);
  return temp;
}

/* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
   This pops when ADJUST is positive.  ADJUST need not be constant.  */

void
adjust_stack (adjust)
     rtx adjust;
{
  rtx temp;
  adjust = protect_from_queue (adjust, 0);

  if (adjust == const0_rtx)
    return;

  temp = expand_binop (Pmode,
#ifdef STACK_GROWS_DOWNWARD
		       add_optab,
#else
		       sub_optab,
#endif
		       stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
		       OPTAB_LIB_WIDEN);

  if (temp != stack_pointer_rtx)
    emit_move_insn (stack_pointer_rtx, temp);
}

/* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
   This pushes when ADJUST is positive.  ADJUST need not be constant.  */

void
anti_adjust_stack (adjust)
     rtx adjust;
{
  rtx temp;
  adjust = protect_from_queue (adjust, 0);

  if (adjust == const0_rtx)
    return;

  temp = expand_binop (Pmode,
#ifdef STACK_GROWS_DOWNWARD
		       sub_optab,
#else
		       add_optab,
#endif
		       stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
		       OPTAB_LIB_WIDEN);

  if (temp != stack_pointer_rtx)
    emit_move_insn (stack_pointer_rtx, temp);
}

/* Round the size of a block to be pushed up to the boundary required
   by this machine.  SIZE is the desired size, which need not be constant.  */

rtx
round_push (size)
     rtx size;
{
#ifdef STACK_BOUNDARY
  int align = STACK_BOUNDARY / BITS_PER_UNIT;
  if (align == 1)
    return size;
  if (GET_CODE (size) == CONST_INT)
    {
      int new = (INTVAL (size) + align - 1) / align * align;
      if (INTVAL (size) != new)
	size = gen_rtx (CONST_INT, VOIDmode, new);
    }
  else
    {
      size = expand_divmod (0, CEIL_DIV_EXPR, Pmode, size,
			    gen_rtx (CONST_INT, VOIDmode, align),
			    0, 1);
      size = expand_mult (Pmode, size,
			  gen_rtx (CONST_INT, VOIDmode, align),
			  0, 1);
    }
#endif /* STACK_BOUNDARY */
  return size;
}

/* Return an rtx representing the address of an area of memory dynamically
   pushed on the stack.  This region of memory is always aligned to
   a multiple of BIGGEST_ALIGNMENT.

   Any required stack pointer alignment is preserved.

   SIZE is an rtx representing the size of the area.
   TARGET is a place in which the address can be placed.

   KNOWN_ALIGN is the alignment (in bits) that we know SIZE has.  */

rtx
allocate_dynamic_stack_space (size, target, known_align)
     rtx size;
     rtx target;
     int known_align;
{
  /* Ensure the size is in the proper mode.  */
  if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
    size = convert_to_mode (Pmode, size, 1);

  /* We will need to ensure that the address we return is aligned to
     BIGGEST_ALIGNMENT.  If STACK_DYNAMIC_OFFSET is defined, we don't
     always know its final value at this point in the compilation (it 
     might depend on the size of the outgoing parameter lists, for
     example), so we must align the value to be returned in that case.
     (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
     STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
     We must also do an alignment operation on the returned value if
     the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.

     If we have to align, we must leave space in SIZE for the hole
     that might result from the alignment operation.  */

#if defined (STACK_DYNAMIC_OFFSET) || defined(STACK_POINTER_OFFSET) || defined (ALLOCATE_OUTGOING_ARGS)
#define MUST_ALIGN
#endif

#if ! defined (MUST_ALIGN) && (!defined(STACK_BOUNDARY) || STACK_BOUNDARY < BIGGEST_ALIGNMENT)
#define MUST_ALIGN
#endif

#ifdef MUST_ALIGN

  if (GET_CODE (size) == CONST_INT)
    size = gen_rtx (CONST_INT, VOIDmode,
		    INTVAL (size) + (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1));
  else
    size = expand_binop (Pmode, add_optab, size,
			 gen_rtx (CONST_INT, VOIDmode,
				  BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
			 0, 1, OPTAB_LIB_WIDEN);
#endif

#ifdef SETJMP_VIA_SAVE_AREA
  /* If setjmp restores regs from a save area in the stack frame,
     avoid clobbering the reg save area.  Note that the offset of
     virtual_incoming_args_rtx includes the preallocated stack args space.
     It would be no problem to clobber that, but it's on the wrong side
     of the old save area.  */
  {
    rtx dynamic_offset
      = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
		      stack_pointer_rtx, 0, 1, OPTAB_LIB_WIDEN);
    size = expand_binop (Pmode, add_optab, size, dynamic_offset,
			 0, 1, OPTAB_LIB_WIDEN);
  }
#endif /* SETJMP_VIA_SAVE_AREA */

  /* Round the size to a multiple of the required stack alignment.
     Since the stack if presumed to be rounded before this allocation,
     this will maintain the required alignment.

     If the stack grows downward, we could save an insn by subtracting
     SIZE from the stack pointer and then aligning the stack pointer.
     The problem with this is that the stack pointer may be unaligned
     between the execution of the subtraction and alignment insns and
     some machines do not allow this.  Even on those that do, some
     signal handlers malfunction if a signal should occur between those
     insns.  Since this is an extremely rare event, we have no reliable
     way of knowing which systems have this problem.  So we avoid even
     momentarily mis-aligning the stack.  */

#ifdef STACK_BOUNDARY
  if (known_align % STACK_BOUNDARY != 0)
    size = round_push (size);
#endif

  do_pending_stack_adjust ();

  /* Don't use a TARGET that isn't a pseudo.  */
  if (target == 0 || GET_CODE (target) != REG
      || REGNO (target) < FIRST_PSEUDO_REGISTER)
    target = gen_reg_rtx (Pmode);

#ifndef STACK_GROWS_DOWNWARD
  emit_move_insn (target, virtual_stack_dynamic_rtx);
#endif

  /* Perform the required allocation from the stack.  Some systems do
     this differently than simply incrementing/decrementing from the
     stack pointer.  */
#ifdef HAVE_allocate_stack
  if (HAVE_allocate_stack)
    {
      enum machine_mode mode
	= insn_operand_mode[(int) CODE_FOR_allocate_stack][0];

      if (insn_operand_predicate[(int) CODE_FOR_allocate_stack][0]
	  && ! ((*insn_operand_predicate[(int) CODE_FOR_allocate_stack][0])
		(size, mode)))
	size = copy_to_mode_reg (mode, size);

      emit_insn (gen_allocate_stack (size));
    }
  else
#endif
    anti_adjust_stack (size);

#ifdef STACK_GROWS_DOWNWARD
  emit_move_insn (target, virtual_stack_dynamic_rtx);
#endif

#ifdef MUST_ALIGN
  if (known_align % BIGGEST_ALIGNMENT != 0)
    {
      target = expand_divmod (0, CEIL_DIV_EXPR, Pmode, target,
			      gen_rtx (CONST_INT, VOIDmode,
				       BIGGEST_ALIGNMENT / BITS_PER_UNIT),
			      0, 1);

      target = expand_mult (Pmode, target,
			    gen_rtx (CONST_INT, VOIDmode,
				     BIGGEST_ALIGNMENT / BITS_PER_UNIT),
			    0, 1);
    }
#endif
  
  /* Some systems require a particular insn to refer to the stack
     to make the pages exist.  */
#ifdef HAVE_probe
  if (HAVE_probe)
    emit_insn (gen_probe ());
#endif

  return target;
}

/* Return an rtx representing the register or memory location
   in which a scalar value of data type VALTYPE
   was returned by a function call to function FUNC.
   FUNC is a FUNCTION_DECL node if the precise function is known,
   otherwise 0.  */

rtx
hard_function_value (valtype, func)
     tree valtype;
     tree func;
{
  return FUNCTION_VALUE (valtype, func);
}

/* Return an rtx representing the register or memory location
   in which a scalar value of mode MODE was returned by a library call.  */

rtx
hard_libcall_value (mode)
     enum machine_mode mode;
{
  return LIBCALL_VALUE (mode);
}