aboutsummaryrefslogtreecommitdiff
path: root/gcc/dominance.cc
blob: bd087293409e8df465026cbbe2c090daaa2932b9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
/* Calculate (post)dominators in slightly super-linear time.
   Copyright (C) 2000-2024 Free Software Foundation, Inc.
   Contributed by Michael Matz (matz@ifh.de).

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   any later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
   or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
   License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

/* This file implements the well known algorithm from Lengauer and Tarjan
   to compute the dominators in a control flow graph.  A basic block D is said
   to dominate another block X, when all paths from the entry node of the CFG
   to X go also over D.  The dominance relation is a transitive reflexive
   relation and its minimal transitive reduction is a tree, called the
   dominator tree.  So for each block X besides the entry block exists a
   block I(X), called the immediate dominator of X, which is the parent of X
   in the dominator tree.

   The algorithm computes this dominator tree implicitly by computing for
   each block its immediate dominator.  We use tree balancing and path
   compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
   slowly growing functional inverse of the Ackerman function.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "timevar.h"
#include "diagnostic-core.h"
#include "cfganal.h"
#include "et-forest.h"
#include "graphds.h"

/* We name our nodes with integers, beginning with 1.  Zero is reserved for
   'undefined' or 'end of list'.  The name of each node is given by the dfs
   number of the corresponding basic block.  Please note, that we include the
   artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
   support multiple entry points.  Its dfs number is of course 1.  */

/* Type of Basic Block aka. TBB */
typedef unsigned int TBB;

namespace {

/* This class holds various arrays reflecting the (sub)structure of the
   flowgraph.  Most of them are of type TBB and are also indexed by TBB.  */

class dom_info
{
public:
  dom_info (function *, cdi_direction);
  dom_info (vec <basic_block>, cdi_direction);
  ~dom_info ();
  void calc_dfs_tree ();
  void calc_idoms ();

  inline basic_block get_idom (basic_block);
private:
  void calc_dfs_tree_nonrec (basic_block);
  void compress (TBB);
  void dom_init (void);
  TBB eval (TBB);
  void link_roots (TBB, TBB);

  /* The parent of a node in the DFS tree.  */
  TBB *m_dfs_parent;
  /* For a node x m_key[x] is roughly the node nearest to the root from which
     exists a way to x only over nodes behind x.  Such a node is also called
     semidominator.  */
  TBB *m_key;
  /* The value in m_path_min[x] is the node y on the path from x to the root of
     the tree x is in with the smallest m_key[y].  */
  TBB *m_path_min;
  /* m_bucket[x] points to the first node of the set of nodes having x as
     key.  */
  TBB *m_bucket;
  /* And m_next_bucket[x] points to the next node.  */
  TBB *m_next_bucket;
  /* After the algorithm is done, m_dom[x] contains the immediate dominator
     of x.  */
  TBB *m_dom;

  /* The following few fields implement the structures needed for disjoint
     sets.  */
  /* m_set_chain[x] is the next node on the path from x to the representative
     of the set containing x.  If m_set_chain[x]==0 then x is a root.  */
  TBB *m_set_chain;
  /* m_set_size[x] is the number of elements in the set named by x.  */
  unsigned int *m_set_size;
  /* m_set_child[x] is used for balancing the tree representing a set.  It can
     be understood as the next sibling of x.  */
  TBB *m_set_child;

  /* If b is the number of a basic block (BB->index), m_dfs_order[b] is the
     number of that node in DFS order counted from 1.  This is an index
     into most of the other arrays in this structure.  */
  TBB *m_dfs_order;
  /* Points to last element in m_dfs_order array.  */
  TBB *m_dfs_last;
  /* If x is the DFS-index of a node which corresponds with a basic block,
     m_dfs_to_bb[x] is that basic block.  Note, that in our structure there are
     more nodes that basic blocks, so only
     m_dfs_to_bb[m_dfs_order[bb->index]]==bb is true for every basic block bb,
     but not the opposite.  */
  basic_block *m_dfs_to_bb;

  /* This is the next free DFS number when creating the DFS tree.  */
  unsigned int m_dfsnum;
  /* The number of nodes in the DFS tree (==m_dfsnum-1).  */
  unsigned int m_nodes;

  /* Blocks with bits set here have a fake edge to EXIT.  These are used
     to turn a DFS forest into a proper tree.  */
  bitmap m_fake_exit_edge;

  /* Number of basic blocks in the function being compiled.  */
  unsigned m_n_basic_blocks;

  /* True, if we are computing postdominators (rather than dominators).  */
  bool m_reverse;

  /* Start block (the entry block for forward problem, exit block for backward
     problem).  */
  basic_block m_start_block;
  /* Ending block.  */
  basic_block m_end_block;
};

} // anonymous namespace

void debug_dominance_info (cdi_direction);
void debug_dominance_tree (cdi_direction, basic_block);

/* Allocate and zero-initialize NUM elements of type T (T must be a
   POD-type).  Note: after transition to C++11 or later,
   `x = new_zero_array <T> (num);' can be replaced with
   `x = new T[num] {};'.  */

template<typename T>
inline T *new_zero_array (unsigned num)
{
  T *result = new T[num];
  memset (result, 0, sizeof (T) * num);
  return result;
}

/* Helper function for constructors to initialize a part of class members.  */

void
dom_info::dom_init (void)
{
  unsigned num = m_n_basic_blocks;

  m_dfs_parent = new_zero_array <TBB> (num);
  m_dom = new_zero_array <TBB> (num);

  m_path_min = new TBB[num];
  m_key = new TBB[num];
  m_set_size = new unsigned int[num];
  for (unsigned i = 0; i < num; i++)
    {
      m_path_min[i] = m_key[i] = i;
      m_set_size[i] = 1;
    }

  m_bucket = new_zero_array <TBB> (num);
  m_next_bucket = new_zero_array <TBB> (num);

  m_set_chain = new_zero_array <TBB> (num);
  m_set_child = new_zero_array <TBB> (num);

  m_dfs_to_bb = new_zero_array <basic_block> (num);

  m_dfsnum = 1;
  m_nodes = 0;
}

/* Allocate all needed memory in a pessimistic fashion (so we round up).  */

dom_info::dom_info (function *fn, cdi_direction dir)
{
  m_n_basic_blocks = n_basic_blocks_for_fn (fn);

  dom_init ();

  unsigned last_bb_index = last_basic_block_for_fn (fn);
  m_dfs_order = new_zero_array <TBB> (last_bb_index + 1);
  m_dfs_last = &m_dfs_order[last_bb_index];

  switch (dir)
    {
      case CDI_DOMINATORS:
	m_reverse = false;
	m_fake_exit_edge = NULL;
	m_start_block = ENTRY_BLOCK_PTR_FOR_FN (fn);
	m_end_block = EXIT_BLOCK_PTR_FOR_FN (fn);
	break;
      case CDI_POST_DOMINATORS:
	m_reverse = true;
	m_fake_exit_edge = BITMAP_ALLOC (NULL);
	m_start_block = EXIT_BLOCK_PTR_FOR_FN (fn);
	m_end_block = ENTRY_BLOCK_PTR_FOR_FN (fn);
	break;
      default:
	gcc_unreachable ();
    }
}

/* Constructor for reducible region REGION.  */

dom_info::dom_info (vec<basic_block> region, cdi_direction dir)
{
  m_n_basic_blocks = region.length ();
  unsigned nm1 = m_n_basic_blocks - 1;

  dom_init ();

  /* Determine max basic block index in region.  */
  int max_index = region[0]->index;
  for (unsigned i = 1; i <= nm1; i++)
    if (region[i]->index > max_index)
      max_index = region[i]->index;
  max_index += 1;  /* set index on the first bb out of region.  */

  m_dfs_order = new_zero_array <TBB> (max_index + 1);
  m_dfs_last = &m_dfs_order[max_index];

  m_fake_exit_edge = NULL; /* Assume that region is reducible.  */

  switch (dir)
    {
      case CDI_DOMINATORS:
	m_reverse = false;
	m_start_block = region[0];
	m_end_block = region[nm1];
	break;
      case CDI_POST_DOMINATORS:
	m_reverse = true;
	m_start_block = region[nm1];
	m_end_block = region[0];
	break;
      default:
	gcc_unreachable ();
    }
}

inline basic_block
dom_info::get_idom (basic_block bb)
{
  TBB d = m_dom[m_dfs_order[bb->index]];
  return m_dfs_to_bb[d];
}

/* Map dominance calculation type to array index used for various
   dominance information arrays.  This version is simple -- it will need
   to be modified, obviously, if additional values are added to
   cdi_direction.  */

static inline unsigned int
dom_convert_dir_to_idx (cdi_direction dir)
{
  gcc_checking_assert (dir == CDI_DOMINATORS || dir == CDI_POST_DOMINATORS);
  return dir - 1;
}

/* Free all allocated memory in dom_info.  */

dom_info::~dom_info ()
{
  delete[] m_dfs_parent;
  delete[] m_path_min;
  delete[] m_key;
  delete[] m_dom;
  delete[] m_bucket;
  delete[] m_next_bucket;
  delete[] m_set_chain;
  delete[] m_set_size;
  delete[] m_set_child;
  delete[] m_dfs_order;
  delete[] m_dfs_to_bb;
  BITMAP_FREE (m_fake_exit_edge);
}

/* The nonrecursive variant of creating a DFS tree.  BB is the starting basic
   block for this tree and m_reverse is true, if predecessors should be visited
   instead of successors of a node.  After this is done all nodes reachable
   from BB were visited, have assigned their dfs number and are linked together
   to form a tree.  */

void
dom_info::calc_dfs_tree_nonrec (basic_block bb)
{
  edge_iterator *stack = new edge_iterator[m_n_basic_blocks + 1];
  int sp = 0;
  unsigned d_i = dom_convert_dir_to_idx (m_reverse ? CDI_POST_DOMINATORS
					 : CDI_DOMINATORS);

  /* Initialize the first edge.  */
  edge_iterator ei = m_reverse ? ei_start (bb->preds)
			       : ei_start (bb->succs);

  /* When the stack is empty we break out of this loop.  */
  while (1)
    {
      basic_block bn;
      edge_iterator einext;

      /* This loop traverses edges e in depth first manner, and fills the
         stack.  */
      while (!ei_end_p (ei))
	{
	  edge e = ei_edge (ei);

	  /* Deduce from E the current and the next block (BB and BN), and the
	     next edge.  */
	  if (m_reverse)
	    {
	      bn = e->src;

	      /* If the next node BN is either already visited or a border
		 block or out of region the current edge is useless, and simply
		 overwritten with the next edge out of the current node.  */
	      if (bn == m_end_block || bn->dom[d_i] == NULL
		  || m_dfs_order[bn->index])
		{
		  ei_next (&ei);
		  continue;
		}
	      bb = e->dest;
	      einext = ei_start (bn->preds);
	    }
	  else
	    {
	      bn = e->dest;
	      if (bn == m_end_block || bn->dom[d_i] == NULL
		  || m_dfs_order[bn->index])
		{
		  ei_next (&ei);
		  continue;
		}
	      bb = e->src;
	      einext = ei_start (bn->succs);
	    }

	  gcc_assert (bn != m_start_block);

	  /* Fill the DFS tree info calculatable _before_ recursing.  */
	  TBB my_i;
	  if (bb != m_start_block)
	    my_i = m_dfs_order[bb->index];
	  else
	    my_i = *m_dfs_last;
	  TBB child_i = m_dfs_order[bn->index] = m_dfsnum++;
	  m_dfs_to_bb[child_i] = bn;
	  m_dfs_parent[child_i] = my_i;

	  /* Save the current point in the CFG on the stack, and recurse.  */
	  stack[sp++] = ei;
	  ei = einext;
	}

      if (!sp)
	break;
      ei = stack[--sp];

      /* OK.  The edge-list was exhausted, meaning normally we would
         end the recursion.  After returning from the recursive call,
         there were (may be) other statements which were run after a
         child node was completely considered by DFS.  Here is the
         point to do it in the non-recursive variant.
         E.g. The block just completed is in e->dest for forward DFS,
         the block not yet completed (the parent of the one above)
         in e->src.  This could be used e.g. for computing the number of
         descendants or the tree depth.  */
      ei_next (&ei);
    }
  delete[] stack;
}

/* The main entry for calculating the DFS tree or forest.  m_reverse is true,
   if we are interested in the reverse flow graph.  In that case the result is
   not necessarily a tree but a forest, because there may be nodes from which
   the EXIT_BLOCK is unreachable.  */

void
dom_info::calc_dfs_tree ()
{
  *m_dfs_last = m_dfsnum;
  m_dfs_to_bb[m_dfsnum] = m_start_block;
  m_dfsnum++;

  calc_dfs_tree_nonrec (m_start_block);

  if (m_fake_exit_edge)
    {
      /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
         They are reverse-unreachable.  In the dom-case we disallow such
         nodes, but in post-dom we have to deal with them.

	 There are two situations in which this occurs.  First, noreturn
	 functions.  Second, infinite loops.  In the first case we need to
	 pretend that there is an edge to the exit block.  In the second
	 case, we wind up with a forest.  We need to process all noreturn
	 blocks before we know if we've got any infinite loops.  */

      basic_block b;
      bool saw_unconnected = false;

      FOR_BB_BETWEEN (b, m_start_block->prev_bb, m_end_block, prev_bb)
	{
	  if (EDGE_COUNT (b->succs) > 0)
	    {
	      if (m_dfs_order[b->index] == 0)
		saw_unconnected = true;
	      continue;
	    }
	  bitmap_set_bit (m_fake_exit_edge, b->index);
	  m_dfs_order[b->index] = m_dfsnum;
	  m_dfs_to_bb[m_dfsnum] = b;
	  m_dfs_parent[m_dfsnum] = *m_dfs_last;
	  m_dfsnum++;
	  calc_dfs_tree_nonrec (b);
	}

      if (saw_unconnected)
	{
	  FOR_BB_BETWEEN (b, m_start_block->prev_bb, m_end_block, prev_bb)
	    {
	      if (m_dfs_order[b->index])
		continue;
	      basic_block b2 = dfs_find_deadend (b);
	      gcc_checking_assert (m_dfs_order[b2->index] == 0);
	      bitmap_set_bit (m_fake_exit_edge, b2->index);
	      m_dfs_order[b2->index] = m_dfsnum;
	      m_dfs_to_bb[m_dfsnum] = b2;
	      m_dfs_parent[m_dfsnum] = *m_dfs_last;
	      m_dfsnum++;
	      calc_dfs_tree_nonrec (b2);
	      gcc_checking_assert (m_dfs_order[b->index]);
	    }
	}
    }

  m_nodes = m_dfsnum - 1;

  /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all.  */
  gcc_assert (m_nodes == (unsigned int) m_n_basic_blocks - 1);
}

/* Compress the path from V to the root of its set and update path_min at the
   same time.  After compress(di, V) set_chain[V] is the root of the set V is
   in and path_min[V] is the node with the smallest key[] value on the path
   from V to that root.  */

void
dom_info::compress (TBB v)
{
  /* Btw. It's not worth to unrecurse compress() as the depth is usually not
     greater than 5 even for huge graphs (I've not seen call depth > 4).
     Also performance wise compress() ranges _far_ behind eval().  */
  TBB parent = m_set_chain[v];
  if (m_set_chain[parent])
    {
      compress (parent);
      if (m_key[m_path_min[parent]] < m_key[m_path_min[v]])
	m_path_min[v] = m_path_min[parent];
      m_set_chain[v] = m_set_chain[parent];
    }
}

/* Compress the path from V to the set root of V if needed (when the root has
   changed since the last call).  Returns the node with the smallest key[]
   value on the path from V to the root.  */

inline TBB
dom_info::eval (TBB v)
{
  /* The representative of the set V is in, also called root (as the set
     representation is a tree).  */
  TBB rep = m_set_chain[v];

  /* V itself is the root.  */
  if (!rep)
    return m_path_min[v];

  /* Compress only if necessary.  */
  if (m_set_chain[rep])
    {
      compress (v);
      rep = m_set_chain[v];
    }

  if (m_key[m_path_min[rep]] >= m_key[m_path_min[v]])
    return m_path_min[v];
  else
    return m_path_min[rep];
}

/* This essentially merges the two sets of V and W, giving a single set with
   the new root V.  The internal representation of these disjoint sets is a
   balanced tree.  Currently link(V,W) is only used with V being the parent
   of W.  */

void
dom_info::link_roots (TBB v, TBB w)
{
  TBB s = w;

  /* Rebalance the tree.  */
  while (m_key[m_path_min[w]] < m_key[m_path_min[m_set_child[s]]])
    {
      if (m_set_size[s] + m_set_size[m_set_child[m_set_child[s]]]
	  >= 2 * m_set_size[m_set_child[s]])
	{
	  m_set_chain[m_set_child[s]] = s;
	  m_set_child[s] = m_set_child[m_set_child[s]];
	}
      else
	{
	  m_set_size[m_set_child[s]] = m_set_size[s];
	  s = m_set_chain[s] = m_set_child[s];
	}
    }

  m_path_min[s] = m_path_min[w];
  m_set_size[v] += m_set_size[w];
  if (m_set_size[v] < 2 * m_set_size[w])
    std::swap (m_set_child[v], s);

  /* Merge all subtrees.  */
  while (s)
    {
      m_set_chain[s] = v;
      s = m_set_child[s];
    }
}

/* This calculates the immediate dominators (or post-dominators). THIS is our
   working structure and should hold the DFS forest.
   On return the immediate dominator to node V is in m_dom[V].  */

void
dom_info::calc_idoms ()
{
  /* Go backwards in DFS order, to first look at the leafs.  */
  for (TBB v = m_nodes; v > 1; v--)
    {
      basic_block bb = m_dfs_to_bb[v];
      edge e;

      TBB par = m_dfs_parent[v];
      TBB k = v;

      edge_iterator ei = m_reverse ? ei_start (bb->succs)
				   : ei_start (bb->preds);
      edge_iterator einext;

      if (m_fake_exit_edge)
	{
	  /* If this block has a fake edge to exit, process that first.  */
	  if (bitmap_bit_p (m_fake_exit_edge, bb->index))
	    {
	      einext = ei;
	      einext.index = 0;
	      goto do_fake_exit_edge;
	    }
	}

      /* Search all direct predecessors for the smallest node with a path
         to them.  That way we have the smallest node with also a path to
         us only over nodes behind us.  In effect we search for our
         semidominator.  */
      while (!ei_end_p (ei))
	{
	  basic_block b;
	  TBB k1;

	  e = ei_edge (ei);
	  b = m_reverse ? e->dest : e->src;
	  einext = ei;
	  ei_next (&einext);

	  if (b == m_start_block)
	    {
	    do_fake_exit_edge:
	      k1 = *m_dfs_last;
	    }
	  else
	    k1 = m_dfs_order[b->index];

	  /* Call eval() only if really needed.  If k1 is above V in DFS tree,
	     then we know, that eval(k1) == k1 and key[k1] == k1.  */
	  if (k1 > v)
	    k1 = m_key[eval (k1)];
	  if (k1 < k)
	    k = k1;

	  ei = einext;
	}

      m_key[v] = k;
      link_roots (par, v);
      m_next_bucket[v] = m_bucket[k];
      m_bucket[k] = v;

      /* Transform semidominators into dominators.  */
      for (TBB w = m_bucket[par]; w; w = m_next_bucket[w])
	{
	  k = eval (w);
	  if (m_key[k] < m_key[w])
	    m_dom[w] = k;
	  else
	    m_dom[w] = par;
	}
      /* We don't need to cleanup next_bucket[].  */
      m_bucket[par] = 0;
    }

  /* Explicitly define the dominators.  */
  m_dom[1] = 0;
  for (TBB v = 2; v <= m_nodes; v++)
    if (m_dom[v] != m_key[v])
      m_dom[v] = m_dom[m_dom[v]];
}

/* Assign dfs numbers starting from NUM to NODE and its sons.  */

static void
assign_dfs_numbers (struct et_node *node, int *num)
{
  et_node *n = node;
  while (1)
    {
      n->dfs_num_in = (*num)++;
      if (n->son)
	n = n->son;
      else
	{
	  while (!n->right || n->right == n->father->son)
	    {
	      n->dfs_num_out = (*num)++;
	      if (n == node)
		return;
	      n = n->father;
	    }
	  n->dfs_num_out = (*num)++;
	  n = n->right;
	}
    }
}

/* Compute the data necessary for fast resolving of dominator queries in a
   static dominator tree.  */

static void
compute_dom_fast_query (enum cdi_direction dir)
{
  int num = 0;
  basic_block bb;
  unsigned int dir_index = dom_convert_dir_to_idx (dir);

  gcc_checking_assert (dom_info_available_p (dir));

  if (dom_computed[dir_index] == DOM_OK)
    return;

  FOR_ALL_BB_FN (bb, cfun)
    {
      if (!bb->dom[dir_index]->father)
	assign_dfs_numbers (bb->dom[dir_index], &num);
    }

  dom_computed[dir_index] = DOM_OK;
}

/* Analogous to the previous function but compute the data for reducible
   region REGION.  */

static void
compute_dom_fast_query_in_region (enum cdi_direction dir,
				  vec<basic_block> region)
{
  int num = 0;
  basic_block bb;
  unsigned int dir_index = dom_convert_dir_to_idx (dir);

  gcc_checking_assert (dom_info_available_p (dir));

  if (dom_computed[dir_index] == DOM_OK)
    return;

  /* Assign dfs numbers for region nodes except for entry and exit nodes.  */
  for (unsigned int i = 1; i < region.length () - 1; i++)
    {
      bb = region[i];
      if (!bb->dom[dir_index]->father)
	assign_dfs_numbers (bb->dom[dir_index], &num);
    }

  dom_computed[dir_index] = DOM_OK;
}

/* The main entry point into this module.  DIR is set depending on whether
   we want to compute dominators or postdominators.  If COMPUTE_FAST_QUERY
   is false then the DFS numbers allowing for a O(1) dominance query
   are not computed.  */

void
calculate_dominance_info (cdi_direction dir, bool compute_fast_query)
{
  unsigned int dir_index = dom_convert_dir_to_idx (dir);

  if (dom_computed[dir_index] == DOM_OK)
    {
      checking_verify_dominators (dir);
      return;
    }

  timevar_push (TV_DOMINANCE);
  if (!dom_info_available_p (dir))
    {
      gcc_assert (!n_bbs_in_dom_tree[dir_index]);

      basic_block b;
      FOR_ALL_BB_FN (b, cfun)
	{
	  b->dom[dir_index] = et_new_tree (b);
	}
      n_bbs_in_dom_tree[dir_index] = n_basic_blocks_for_fn (cfun);

      dom_info di (cfun, dir);
      di.calc_dfs_tree ();
      di.calc_idoms ();

      FOR_EACH_BB_FN (b, cfun)
	{
	  if (basic_block d = di.get_idom (b))
	    et_set_father (b->dom[dir_index], d->dom[dir_index]);
	}

      dom_computed[dir_index] = DOM_NO_FAST_QUERY;
    }
  else
    checking_verify_dominators (dir);

  if (compute_fast_query)
    compute_dom_fast_query (dir);

  timevar_pop (TV_DOMINANCE);
}

/* Analogous to the previous function but compute dominance info for regions
   which are single entry, multiple exit regions for CDI_DOMINATORs and
   multiple entry, single exit regions for CDI_POST_DOMINATORs.  */

void
calculate_dominance_info_for_region (cdi_direction dir,
				     vec<basic_block> region)
{
  unsigned int dir_index = dom_convert_dir_to_idx (dir);
  basic_block bb;
  unsigned int i;

  if (dom_computed[dir_index] == DOM_OK)
    return;

  timevar_push (TV_DOMINANCE);
  /* Assume that dom info is not partially computed.  */
  gcc_assert (!dom_info_available_p (dir));

  FOR_EACH_VEC_ELT (region, i, bb)
    {
      bb->dom[dir_index] = et_new_tree (bb);
    }
  dom_info di (region, dir);
  di.calc_dfs_tree ();
  di.calc_idoms ();

  FOR_EACH_VEC_ELT (region, i, bb)
    if (basic_block d = di.get_idom (bb))
      et_set_father (bb->dom[dir_index], d->dom[dir_index]);

  dom_computed[dir_index] = DOM_NO_FAST_QUERY;
  compute_dom_fast_query_in_region (dir, region);

  timevar_pop (TV_DOMINANCE);
}

/* Free dominance information for direction DIR.  */
void
free_dominance_info (function *fn, enum cdi_direction dir)
{
  basic_block bb;
  unsigned int dir_index = dom_convert_dir_to_idx (dir);

  if (!dom_info_available_p (fn, dir))
    return;

  FOR_ALL_BB_FN (bb, fn)
    {
      et_free_tree_force (bb->dom[dir_index]);
      bb->dom[dir_index] = NULL;
    }
  et_free_pools ();

  fn->cfg->x_n_bbs_in_dom_tree[dir_index] = 0;

  fn->cfg->x_dom_computed[dir_index] = DOM_NONE;
}

void
free_dominance_info (enum cdi_direction dir)
{
  free_dominance_info (cfun, dir);
}

/* Free dominance information for direction DIR in region REGION.  */

void
free_dominance_info_for_region (function *fn,
				enum cdi_direction dir,
				vec<basic_block> region)
{
  basic_block bb;
  unsigned int i;
  unsigned int dir_index = dom_convert_dir_to_idx (dir);

  if (!dom_info_available_p (dir))
    return;

  FOR_EACH_VEC_ELT (region, i, bb)
    {
      et_free_tree_force (bb->dom[dir_index]);
      bb->dom[dir_index] = NULL;
    }
  et_free_pools ();

  fn->cfg->x_dom_computed[dir_index] = DOM_NONE;

  fn->cfg->x_n_bbs_in_dom_tree[dir_index] = 0;
}

/* Return the immediate dominator of basic block BB.  */
basic_block
get_immediate_dominator (enum cdi_direction dir, basic_block bb)
{
  unsigned int dir_index = dom_convert_dir_to_idx (dir);
  struct et_node *node = bb->dom[dir_index];

  gcc_checking_assert (dom_computed[dir_index]);

  if (!node->father)
    return NULL;

  return (basic_block) node->father->data;
}

/* Set the immediate dominator of the block possibly removing
   existing edge.  NULL can be used to remove any edge.  */
void
set_immediate_dominator (enum cdi_direction dir, basic_block bb,
			 basic_block dominated_by)
{
  unsigned int dir_index = dom_convert_dir_to_idx (dir);
  struct et_node *node = bb->dom[dir_index];

  gcc_checking_assert (dom_computed[dir_index]);

  if (node->father)
    {
      if (node->father->data == dominated_by)
	return;
      et_split (node);
    }

  if (dominated_by)
    et_set_father (node, dominated_by->dom[dir_index]);

  if (dom_computed[dir_index] == DOM_OK)
    dom_computed[dir_index] = DOM_NO_FAST_QUERY;
}

/* Returns the list of basic blocks immediately dominated by BB, in the
   direction DIR.  */
auto_vec<basic_block>
get_dominated_by (enum cdi_direction dir, basic_block bb)
{
  unsigned int dir_index = dom_convert_dir_to_idx (dir);
  struct et_node *node = bb->dom[dir_index], *son = node->son, *ason;
  auto_vec<basic_block> bbs;

  gcc_checking_assert (dom_computed[dir_index]);

  if (!son)
    return bbs;

  bbs.safe_push ((basic_block) son->data);
  for (ason = son->right; ason != son; ason = ason->right)
    bbs.safe_push ((basic_block) ason->data);

  return bbs;
}

/* Returns the list of basic blocks that are immediately dominated (in
   direction DIR) by some block between N_REGION ones stored in REGION,
   except for blocks in the REGION itself.  */

auto_vec<basic_block>
get_dominated_by_region (enum cdi_direction dir, basic_block *region,
			 unsigned n_region)
{
  unsigned i;
  basic_block dom;
  auto_vec<basic_block> doms;

  for (i = 0; i < n_region; i++)
    region[i]->flags |= BB_DUPLICATED;
  for (i = 0; i < n_region; i++)
    for (dom = first_dom_son (dir, region[i]);
	 dom;
	 dom = next_dom_son (dir, dom))
      if (!(dom->flags & BB_DUPLICATED))
	doms.safe_push (dom);
  for (i = 0; i < n_region; i++)
    region[i]->flags &= ~BB_DUPLICATED;

  return doms;
}

/* Returns the list of basic blocks including BB dominated by BB, in the
   direction DIR up to DEPTH in the dominator tree.  The DEPTH of zero will
   produce a vector containing all dominated blocks.  The vector will be sorted
   in preorder.  */

auto_vec<basic_block>
get_dominated_to_depth (enum cdi_direction dir, basic_block bb, int depth)
{
  auto_vec<basic_block> bbs;
  unsigned i;
  unsigned next_level_start;

  i = 0;
  bbs.safe_push (bb);
  next_level_start = 1; /* = bbs.length (); */

  do
    {
      basic_block son;

      bb = bbs[i++];
      for (son = first_dom_son (dir, bb);
	   son;
	   son = next_dom_son (dir, son))
	bbs.safe_push (son);

      if (i == next_level_start && --depth)
	next_level_start = bbs.length ();
    }
  while (i < next_level_start);

  return bbs;
}

/* Returns the list of basic blocks including BB dominated by BB, in the
   direction DIR.  The vector will be sorted in preorder.  */

auto_vec<basic_block>
get_all_dominated_blocks (enum cdi_direction dir, basic_block bb)
{
  return get_dominated_to_depth (dir, bb, 0);
}

/* Redirect all edges pointing to BB to TO.  */
void
redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
			       basic_block to)
{
  unsigned int dir_index = dom_convert_dir_to_idx (dir);
  struct et_node *bb_node, *to_node, *son;

  bb_node = bb->dom[dir_index];
  to_node = to->dom[dir_index];

  gcc_checking_assert (dom_computed[dir_index]);

  if (!bb_node->son)
    return;

  while (bb_node->son)
    {
      son = bb_node->son;

      et_split (son);
      et_set_father (son, to_node);
    }

  if (dom_computed[dir_index] == DOM_OK)
    dom_computed[dir_index] = DOM_NO_FAST_QUERY;
}

/* Find first basic block in the tree dominating both BB1 and BB2.  */
basic_block
nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
{
  unsigned int dir_index = dom_convert_dir_to_idx (dir);

  gcc_checking_assert (dom_computed[dir_index]);

  if (!bb1)
    return bb2;
  if (!bb2)
    return bb1;

  return (basic_block) et_nca (bb1->dom[dir_index], bb2->dom[dir_index])->data;
}


/* Find the nearest common dominator for the basic blocks in BLOCKS,
   using dominance direction DIR.  */

basic_block
nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
{
  unsigned i, first;
  bitmap_iterator bi;
  basic_block dom;

  first = bitmap_first_set_bit (blocks);
  dom = BASIC_BLOCK_FOR_FN (cfun, first);
  EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
    if (dom != BASIC_BLOCK_FOR_FN (cfun, i))
      dom = nearest_common_dominator (dir, dom, BASIC_BLOCK_FOR_FN (cfun, i));

  return dom;
}

/*  Given a dominator tree, we can determine whether one thing
    dominates another in constant time by using two DFS numbers:

    1. The number for when we visit a node on the way down the tree
    2. The number for when we visit a node on the way back up the tree

    You can view these as bounds for the range of dfs numbers the
    nodes in the subtree of the dominator tree rooted at that node
    will contain.

    The dominator tree is always a simple acyclic tree, so there are
    only three possible relations two nodes in the dominator tree have
    to each other:

    1. Node A is above Node B (and thus, Node A dominates node B)

     A
     |
     C
    / \
   B   D


   In the above case, DFS_Number_In of A will be <= DFS_Number_In of
   B, and DFS_Number_Out of A will be >= DFS_Number_Out of B.  This is
   because we must hit A in the dominator tree *before* B on the walk
   down, and we will hit A *after* B on the walk back up

   2. Node A is below node B (and thus, node B dominates node A)


     B
     |
     A
    / \
   C   D

   In the above case, DFS_Number_In of A will be >= DFS_Number_In of
   B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.

   This is because we must hit A in the dominator tree *after* B on
   the walk down, and we will hit A *before* B on the walk back up

   3. Node A and B are siblings (and thus, neither dominates the other)

     C
     |
     D
    / \
   A   B

   In the above case, DFS_Number_In of A will *always* be <=
   DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
   DFS_Number_Out of B.  This is because we will always finish the dfs
   walk of one of the subtrees before the other, and thus, the dfs
   numbers for one subtree can't intersect with the range of dfs
   numbers for the other subtree.  If you swap A and B's position in
   the dominator tree, the comparison changes direction, but the point
   is that both comparisons will always go the same way if there is no
   dominance relationship.

   Thus, it is sufficient to write

   A_Dominates_B (node A, node B)
   {
     return DFS_Number_In(A) <= DFS_Number_In(B)
            && DFS_Number_Out (A) >= DFS_Number_Out(B);
   }

   A_Dominated_by_B (node A, node B)
   {
     return DFS_Number_In(A) >= DFS_Number_In(B)
            && DFS_Number_Out (A) <= DFS_Number_Out(B);
   }  */

/* Return TRUE in case BB1 is dominated by BB2.  */
bool
dominated_by_p (enum cdi_direction dir, const_basic_block bb1, const_basic_block bb2)
{
  unsigned int dir_index = dom_convert_dir_to_idx (dir);
  struct et_node *n1 = bb1->dom[dir_index], *n2 = bb2->dom[dir_index];

  gcc_checking_assert (dom_computed[dir_index]);

  if (dom_computed[dir_index] == DOM_OK)
    return (n1->dfs_num_in >= n2->dfs_num_in
  	    && n1->dfs_num_out <= n2->dfs_num_out);

  return et_below (n1, n2);
}

/* Returns the entry dfs number for basic block BB, in the direction DIR.  */

unsigned
bb_dom_dfs_in (enum cdi_direction dir, basic_block bb)
{
  unsigned int dir_index = dom_convert_dir_to_idx (dir);
  struct et_node *n = bb->dom[dir_index];

  gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
  return n->dfs_num_in;
}

/* Returns the exit dfs number for basic block BB, in the direction DIR.  */

unsigned
bb_dom_dfs_out (enum cdi_direction dir, basic_block bb)
{
  unsigned int dir_index = dom_convert_dir_to_idx (dir);
  struct et_node *n = bb->dom[dir_index];

  gcc_checking_assert (dom_computed[dir_index] == DOM_OK);
  return n->dfs_num_out;
}

/* Verify invariants of dominator structure.  */
DEBUG_FUNCTION void
verify_dominators (cdi_direction dir)
{
  gcc_assert (dom_info_available_p (dir));

  dom_info di (cfun, dir);
  di.calc_dfs_tree ();
  di.calc_idoms ();

  bool err = false;
  basic_block bb;
  FOR_EACH_BB_FN (bb, cfun)
    {
      basic_block imm_bb = get_immediate_dominator (dir, bb);
      if (!imm_bb)
	{
	  error ("dominator of %d status unknown", bb->index);
	  err = true;
	  continue;
	}

      basic_block imm_bb_correct = di.get_idom (bb);
      if (imm_bb != imm_bb_correct)
	{
	  error ("dominator of %d should be %d, not %d",
		 bb->index, imm_bb_correct->index, imm_bb->index);
	  err = true;
	}
    }

  gcc_assert (!err);
}

/* Determine immediate dominator (or postdominator, according to DIR) of BB,
   assuming that dominators of other blocks are correct.  We also use it to
   recompute the dominators in a restricted area, by iterating it until it
   reaches a fixed point.  */

basic_block
recompute_dominator (enum cdi_direction dir, basic_block bb)
{
  unsigned int dir_index = dom_convert_dir_to_idx (dir);
  basic_block dom_bb = NULL;
  edge e;
  edge_iterator ei;

  gcc_checking_assert (dom_computed[dir_index]);

  if (dir == CDI_DOMINATORS)
    {
      FOR_EACH_EDGE (e, ei, bb->preds)
	{
	  if (!dominated_by_p (dir, e->src, bb))
	    dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
	}
    }
  else
    {
      FOR_EACH_EDGE (e, ei, bb->succs)
	{
	  if (!dominated_by_p (dir, e->dest, bb))
	    dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
	}
    }

  return dom_bb;
}

/* Use simple heuristics (see iterate_fix_dominators) to determine dominators
   of BBS.  We assume that all the immediate dominators except for those of the
   blocks in BBS are correct.  If CONSERVATIVE is true, we also assume that the
   currently recorded immediate dominators of blocks in BBS really dominate the
   blocks.  The basic blocks for that we determine the dominator are removed
   from BBS.  */

static void
prune_bbs_to_update_dominators (vec<basic_block> &bbs,
				bool conservative)
{
  unsigned i;
  bool single;
  basic_block bb, dom = NULL;
  edge_iterator ei;
  edge e;

  for (i = 0; bbs.iterate (i, &bb);)
    {
      if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
	goto succeed;

      if (single_pred_p (bb))
	{
	  set_immediate_dominator (CDI_DOMINATORS, bb, single_pred (bb));
	  goto succeed;
	}

      if (!conservative)
	goto fail;

      single = true;
      dom = NULL;
      FOR_EACH_EDGE (e, ei, bb->preds)
	{
	  if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
	    continue;

	  if (!dom)
	    dom = e->src;
	  else
	    {
	      single = false;
	      dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
	    }
	}

      gcc_assert (dom != NULL);
      if (single
	  || find_edge (dom, bb))
	{
	  set_immediate_dominator (CDI_DOMINATORS, bb, dom);
	  goto succeed;
	}

fail:
      i++;
      continue;

succeed:
      bbs.unordered_remove (i);
    }
}

/* Returns root of the dominance tree in the direction DIR that contains
   BB.  */

static basic_block
root_of_dom_tree (enum cdi_direction dir, basic_block bb)
{
  return (basic_block) et_root (bb->dom[dom_convert_dir_to_idx (dir)])->data;
}

/* See the comment in iterate_fix_dominators.  Finds the immediate dominators
   for the sons of Y, found using the SON and BROTHER arrays representing
   the dominance tree of graph G.  BBS maps the vertices of G to the basic
   blocks.  */

static void
determine_dominators_for_sons (struct graph *g, vec<basic_block> bbs,
			       int y, int *son, int *brother)
{
  bitmap gprime;
  int i, a, nc;
  vec<int> *sccs;
  basic_block bb, dom, ybb;
  unsigned si;
  edge e;
  edge_iterator ei;

  if (son[y] == -1)
    return;
  if (y == (int) bbs.length ())
    ybb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
  else
    ybb = bbs[y];

  if (brother[son[y]] == -1)
    {
      /* Handle the common case Y has just one son specially.  */
      bb = bbs[son[y]];
      set_immediate_dominator (CDI_DOMINATORS, bb,
			       recompute_dominator (CDI_DOMINATORS, bb));
      identify_vertices (g, y, son[y]);
      return;
    }

  gprime = BITMAP_ALLOC (NULL);
  for (a = son[y]; a != -1; a = brother[a])
    bitmap_set_bit (gprime, a);

  nc = graphds_scc (g, gprime);
  BITMAP_FREE (gprime);

  /* ???  Needed to work around the pre-processor confusion with
     using a multi-argument template type as macro argument.  */
  typedef vec<int> vec_int_heap;
  sccs = XCNEWVEC (vec_int_heap, nc);
  for (a = son[y]; a != -1; a = brother[a])
    sccs[g->vertices[a].component].safe_push (a);

  for (i = nc - 1; i >= 0; i--)
    {
      dom = NULL;
      FOR_EACH_VEC_ELT (sccs[i], si, a)
	{
	  bb = bbs[a];
	  FOR_EACH_EDGE (e, ei, bb->preds)
	    {
	      if (root_of_dom_tree (CDI_DOMINATORS, e->src) != ybb)
		continue;

	      dom = nearest_common_dominator (CDI_DOMINATORS, dom, e->src);
	    }
	}

      gcc_assert (dom != NULL);
      FOR_EACH_VEC_ELT (sccs[i], si, a)
	{
	  bb = bbs[a];
	  set_immediate_dominator (CDI_DOMINATORS, bb, dom);
	}
    }

  for (i = 0; i < nc; i++)
    sccs[i].release ();
  free (sccs);

  for (a = son[y]; a != -1; a = brother[a])
    identify_vertices (g, y, a);
}

/* Recompute dominance information for basic blocks in the set BBS.  The
   function assumes that the immediate dominators of all the other blocks
   in CFG are correct, and that there are no unreachable blocks.

   If CONSERVATIVE is true, we additionally assume that all the ancestors of
   a block of BBS in the current dominance tree dominate it.  */

void
iterate_fix_dominators (enum cdi_direction dir, vec<basic_block> &bbs,
			bool conservative)
{
  unsigned i;
  basic_block bb, dom;
  struct graph *g;
  int n, y;
  size_t dom_i;
  edge e;
  edge_iterator ei;
  int *parent, *son, *brother;
  unsigned int dir_index = dom_convert_dir_to_idx (dir);

  /* We only support updating dominators.  There are some problems with
     updating postdominators (need to add fake edges from infinite loops
     and noreturn functions), and since we do not currently use
     iterate_fix_dominators for postdominators, any attempt to handle these
     problems would be unused, untested, and almost surely buggy.  We keep
     the DIR argument for consistency with the rest of the dominator analysis
     interface.  */
  gcc_checking_assert (dir == CDI_DOMINATORS && dom_computed[dir_index]);

  /* The algorithm we use takes inspiration from the following papers, although
     the details are quite different from any of them:

     [1] G. Ramalingam, T. Reps, An Incremental Algorithm for Maintaining the
	 Dominator Tree of a Reducible Flowgraph
     [2]  V. C. Sreedhar, G. R. Gao, Y.-F. Lee: Incremental computation of
	  dominator trees
     [3]  K. D. Cooper, T. J. Harvey and K. Kennedy: A Simple, Fast Dominance
	  Algorithm

     First, we use the following heuristics to decrease the size of the BBS
     set:
       a) if BB has a single predecessor, then its immediate dominator is this
	  predecessor
       additionally, if CONSERVATIVE is true:
       b) if all the predecessors of BB except for one (X) are dominated by BB,
	  then X is the immediate dominator of BB
       c) if the nearest common ancestor of the predecessors of BB is X and
	  X -> BB is an edge in CFG, then X is the immediate dominator of BB

     Then, we need to establish the dominance relation among the basic blocks
     in BBS.  We split the dominance tree by removing the immediate dominator
     edges from BBS, creating a forest F.  We form a graph G whose vertices
     are BBS and ENTRY and X -> Y is an edge of G if there exists an edge
     X' -> Y in CFG such that X' belongs to the tree of the dominance forest
     whose root is X.  We then determine dominance tree of G.  Note that
     for X, Y in BBS, X dominates Y in CFG if and only if X dominates Y in G.
     In this step, we can use arbitrary algorithm to determine dominators.
     We decided to prefer the algorithm [3] to the algorithm of
     Lengauer and Tarjan, since the set BBS is usually small (rarely exceeding
     10 during gcc bootstrap), and [3] should perform better in this case.

     Finally, we need to determine the immediate dominators for the basic
     blocks of BBS.  If the immediate dominator of X in G is Y, then
     the immediate dominator of X in CFG belongs to the tree of F rooted in
     Y.  We process the dominator tree T of G recursively, starting from leaves.
     Suppose that X_1, X_2, ..., X_k are the sons of Y in T, and that the
     subtrees of the dominance tree of CFG rooted in X_i are already correct.
     Let G' be the subgraph of G induced by {X_1, X_2, ..., X_k}.  We make
     the following observations:
       (i) the immediate dominator of all blocks in a strongly connected
	   component of G' is the same
       (ii) if X has no predecessors in G', then the immediate dominator of X
	    is the nearest common ancestor of the predecessors of X in the
	    subtree of F rooted in Y
     Therefore, it suffices to find the topological ordering of G', and
     process the nodes X_i in this order using the rules (i) and (ii).
     Then, we contract all the nodes X_i with Y in G, so that the further
     steps work correctly.  */

  if (!conservative)
    {
      /* Split the tree now.  If the idoms of blocks in BBS are not
	 conservatively correct, setting the dominators using the
	 heuristics in prune_bbs_to_update_dominators could
	 create cycles in the dominance "tree", and cause ICE.  */
      FOR_EACH_VEC_ELT (bbs, i, bb)
	set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
    }

  prune_bbs_to_update_dominators (bbs, conservative);
  n = bbs.length ();

  if (n == 0)
    return;

  if (n == 1)
    {
      bb = bbs[0];
      set_immediate_dominator (CDI_DOMINATORS, bb,
			       recompute_dominator (CDI_DOMINATORS, bb));
      return;
    }

  timevar_push (TV_DOMINANCE);

  /* Construct the graph G.  */
  hash_map<basic_block, int> map (251);
  FOR_EACH_VEC_ELT (bbs, i, bb)
    {
      /* If the dominance tree is conservatively correct, split it now.  */
      if (conservative)
	set_immediate_dominator (CDI_DOMINATORS, bb, NULL);
      map.put (bb, i);
    }
  map.put (ENTRY_BLOCK_PTR_FOR_FN (cfun), n);

  g = new_graph (n + 1);
  for (y = 0; y < g->n_vertices; y++)
    g->vertices[y].data = BITMAP_ALLOC (NULL);
  FOR_EACH_VEC_ELT (bbs, i, bb)
    {
      FOR_EACH_EDGE (e, ei, bb->preds)
	{
	  dom = root_of_dom_tree (CDI_DOMINATORS, e->src);
	  if (dom == bb)
	    continue;

	  dom_i = *map.get (dom);

	  /* Do not include parallel edges to G.  */
	  if (!bitmap_set_bit ((bitmap) g->vertices[dom_i].data, i))
	    continue;

	  add_edge (g, dom_i, i);
	}
    }
  for (y = 0; y < g->n_vertices; y++)
    BITMAP_FREE (g->vertices[y].data);

  /* Find the dominator tree of G.  */
  son = XNEWVEC (int, n + 1);
  brother = XNEWVEC (int, n + 1);
  parent = XNEWVEC (int, n + 1);
  graphds_domtree (g, n, parent, son, brother);

  /* Finally, traverse the tree and find the immediate dominators.  */
  for (y = n; son[y] != -1; y = son[y])
    continue;
  while (y != -1)
    {
      determine_dominators_for_sons (g, bbs, y, son, brother);

      if (brother[y] != -1)
	{
	  y = brother[y];
	  while (son[y] != -1)
	    y = son[y];
	}
      else
	y = parent[y];
    }

  free (son);
  free (brother);
  free (parent);

  free_graph (g);

  timevar_pop (TV_DOMINANCE);
}

void
add_to_dominance_info (enum cdi_direction dir, basic_block bb)
{
  unsigned int dir_index = dom_convert_dir_to_idx (dir);

  gcc_checking_assert (dom_computed[dir_index] && !bb->dom[dir_index]);

  n_bbs_in_dom_tree[dir_index]++;

  bb->dom[dir_index] = et_new_tree (bb);

  if (dom_computed[dir_index] == DOM_OK)
    dom_computed[dir_index] = DOM_NO_FAST_QUERY;
}

void
delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
{
  unsigned int dir_index = dom_convert_dir_to_idx (dir);

  gcc_checking_assert (dom_computed[dir_index]);

  et_free_tree (bb->dom[dir_index]);
  bb->dom[dir_index] = NULL;
  n_bbs_in_dom_tree[dir_index]--;

  if (dom_computed[dir_index] == DOM_OK)
    dom_computed[dir_index] = DOM_NO_FAST_QUERY;
}

/* Returns the first son of BB in the dominator or postdominator tree
   as determined by DIR.  */

basic_block
first_dom_son (enum cdi_direction dir, basic_block bb)
{
  unsigned int dir_index = dom_convert_dir_to_idx (dir);
  struct et_node *son = bb->dom[dir_index]->son;

  return (basic_block) (son ? son->data : NULL);
}

/* Returns the next dominance son after BB in the dominator or postdominator
   tree as determined by DIR, or NULL if it was the last one.  */

basic_block
next_dom_son (enum cdi_direction dir, basic_block bb)
{
  unsigned int dir_index = dom_convert_dir_to_idx (dir);
  struct et_node *next = bb->dom[dir_index]->right;

  return (basic_block) (next->father->son == next ? NULL : next->data);
}

/* Return dominance availability for dominance info DIR.  */

enum dom_state
dom_info_state (function *fn, enum cdi_direction dir)
{
  if (!fn->cfg)
    return DOM_NONE;

  unsigned int dir_index = dom_convert_dir_to_idx (dir);
  return fn->cfg->x_dom_computed[dir_index];
}

enum dom_state
dom_info_state (enum cdi_direction dir)
{
  return dom_info_state (cfun, dir);
}

/* Set the dominance availability for dominance info DIR to NEW_STATE.  */

void
set_dom_info_availability (enum cdi_direction dir, enum dom_state new_state)
{
  unsigned int dir_index = dom_convert_dir_to_idx (dir);

  dom_computed[dir_index] = new_state;
}

/* Returns true if dominance information for direction DIR is available.  */

bool
dom_info_available_p (function *fn, enum cdi_direction dir)
{
  return dom_info_state (fn, dir) != DOM_NONE;
}

bool
dom_info_available_p (enum cdi_direction dir)
{
  return dom_info_available_p (cfun, dir);
}

DEBUG_FUNCTION void
debug_dominance_info (enum cdi_direction dir)
{
  basic_block bb, bb2;
  FOR_EACH_BB_FN (bb, cfun)
    if ((bb2 = get_immediate_dominator (dir, bb)))
      fprintf (stderr, "%i %i\n", bb->index, bb2->index);
}

/* Dump the dominance tree in direction DIR to the file F in dot form.
   This allows easily visualizing the tree using graphviz.  */

DEBUG_FUNCTION void
dot_dominance_tree (FILE *f, enum cdi_direction dir)
{
  fprintf (f, "digraph {\n");
  basic_block bb, idom;
  FOR_EACH_BB_FN (bb, cfun)
    if ((idom = get_immediate_dominator (dir, bb)))
      fprintf (f, "%i -> %i;\n", idom->index, bb->index);
  fprintf (f, "}\n");
}

/* Convenience wrapper around the above that dumps the dominance tree in
   direction DIR to the file at path FNAME in dot form.  */

DEBUG_FUNCTION void
dot_dominance_tree (const char *fname, enum cdi_direction dir)
{
  FILE *f = fopen (fname, "w");
  if (f)
    {
      dot_dominance_tree (f, dir);
      fclose (f);
    }
  else
    fprintf (stderr, "failed to open %s: %s\n", fname, xstrerror (errno));
}

/* Prints to stderr representation of the dominance tree (for direction DIR)
   rooted in ROOT, indented by INDENT tabulators.  If INDENT_FIRST is false,
   the first line of the output is not indented.  */

static void
debug_dominance_tree_1 (enum cdi_direction dir, basic_block root,
			unsigned indent, bool indent_first)
{
  basic_block son;
  unsigned i;
  bool first = true;

  if (indent_first)
    for (i = 0; i < indent; i++)
      fprintf (stderr, "\t");
  fprintf (stderr, "%d\t", root->index);

  for (son = first_dom_son (dir, root);
       son;
       son = next_dom_son (dir, son))
    {
      debug_dominance_tree_1 (dir, son, indent + 1, !first);
      first = false;
    }

  if (first)
    fprintf (stderr, "\n");
}

/* Prints to stderr representation of the dominance tree (for direction DIR)
   rooted in ROOT.  */

DEBUG_FUNCTION void
debug_dominance_tree (enum cdi_direction dir, basic_block root)
{
  debug_dominance_tree_1 (dir, root, 0, false);
}