aboutsummaryrefslogtreecommitdiff
path: root/gcc/doc/gm2.texi
blob: 18cb798c6cd758bdcf27876cc1ae8e525e2a5873 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
\input texinfo
@c -*-texinfo-*-
@c Copyright (C) 2001-2022 Free Software Foundation, Inc.
@c This is part of the GM2 manual.

@c User level documentation for GNU Modula-2
@c
@c header

@setfilename gm2.info
@settitle The GNU Modula-2 Compiler

@set version-python  3.5

@include gcc-common.texi

@c Copyright years for this manual.
@set copyrights-gm2 1999-2022

@copying
@c man begin COPYRIGHT
Copyright @copyright{} @value{copyrights-gm2} Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the
@c man end
section entitled ``GNU Free Documentation License''.
@ignore
@c man begin COPYRIGHT
man page gfdl(7).
@c man end
@end ignore
@end copying

@ifinfo
@format
@dircategory Software development
@direntry
* gm2: (gm2).               A GCC-based compiler for the Modula-2 language
@end direntry
@end format

@insertcopying
@end ifinfo

@titlepage
@title The GNU Modula-2 Compiler
@versionsubtitle
@author Gaius Mulley

@page
@vskip 0pt plus 1filll
Published by the Free Software Foundation @*
51 Franklin Street, Fifth Floor@*
Boston, MA 02110-1301, USA@*
@sp 1
@insertcopying
@end titlepage
@contents
@page

@c `Top' Node and Master Menu

@node Top, Overview, (dir), (dir)
@top Introduction

@menu
* Overview::         What is GNU Modula-2.
* Using::            Using GNU Modula-2.
* License::          License of GNU Modula-2
* Copying::          GNU Public License V3.
* Contributing::     Contributing to GNU Modula-2
* Internals::        GNU Modula-2 internals.
* EBNF::             EBNF of GNU Modula-2
* Libraries::        PIM and ISO library definitions.
* Indices::          Document and function indices.
@end menu

@node Overview, Using, Top, Top
@chapter Overview of GNU Modula-2

@menu
* What is GNU Modula-2::  Brief description of GNU Modula-2.
* Why use GNU Modula-2::  Advantages of GNU Modula-2.
* Development::           How to get source code using git.
* Features::              GNU Modula-2 Features
@end menu

@node What is GNU Modula-2, Why use GNU Modula-2, , Using
@section What is GNU Modula-2

GNU Modula-2 is a @uref{http://gcc.gnu.org/frontends.html, front end}
for the GNU Compiler Collection (@uref{http://gcc.gnu.org/, GCC}).
The GNU Modula-2 compiler is compliant with the PIM2, PIM3, PIM4 and
ISO dialects.  Also implemented are a complete set of free ISO
libraries and PIM libraries.

@footnote{The four Modula-2 dialects supported are defined in the following
references:

PIM2: 'Programming in Modula-2', 2nd Edition, Springer Verlag, 1982,
1983 by Niklaus Wirth (PIM2).

PIM3: 'Programming in Modula-2', 3rd Corrected Edition, Springer Verlag,
1985 (PIM3).

PIM4: 'Programming in Modula-2', 4th Edition, Springer Verlag, 1988
(@uref{http://freepages.modula2.org/report4/modula-2.html, PIM4}).

ISO: the ISO Modula-2 language as defined in 'ISO/IEC Information
technology - programming languages - part 1: Modula-2 Language,
ISO/IEC 10514-1 (1996)'
}

@node Why use GNU Modula-2, Release map, What is GNU Modula-2, Using
@section Why use GNU Modula-2

There are a number of advantages of using GNU Modula-2 rather than
translate an existing project into another language.

The first advantage is of maintainability of the original sources
and the ability to debug the original project source code using a
combination of gm2 and gdb.

The second advantage is that gcc runs on many processors and
platforms.  gm2 builds and runs on powerpc64le, amd64, i386, aarch64
to name but a few processors.

gm2 can produce swig interface headers to allow access from Python and
other scripting languages.  It can also be used with C/C++ and
generate shared libraries.

The compiler provides semantic analysis and run time checking (full ISO
Modula-2 checking is implemented) and there is a plugin which can,
under certain conditions, detect run time errors at compile time.

The compiler supports PIM2, PIM3, PIM4 and ISO dialects of Modula-2,
work is underway to implement M2R10.  Many of the GCC builtins are
available and access to assembly programming is achieved using the
same syntax as that used by GCC.

The gm2 driver allows third party libraries to be installed alongside
gm2 libraries.  For example if the user specifies library @code{foo}
using @code{-flibs=foo} the driver will check the standard GCC install
directory for a sub directory @code{foo} containing the library
contents.  The library module search path is altered accordingly
for compile and link.

@node Release map, Development, Why use GNU Modula-2, Using
@section Release map

GNU Modula-2 is now part of GCC and therefore will adopt the GCC
release schedule.  It is intended that GNU Modula-2 implement more of
the GCC builtins (vararg access) and GCC features.

There is an intention to implement the ISO generics and the M2R10
dialect of Modula-2.  It will also implement all language changes.  If
you wish to see something different please email
@email{gm2@@nongnu.org} with your ideas.

@node Development, Features, Release map, Using
@section How to get source code using git

GNU Modula-2 is now in the @url{https://gcc.gnu.org/git.html, GCC git
tree}.

@node Features, Documentation, Development, Using
@section GNU Modula-2 Features

@itemize @bullet

@item
the compiler currently complies with Programming in Modula-2 Edition
2, 3, 4 and ISO Modula-2.  Users can switch on specific language
features by using: @samp{-fpim}, @samp{-fpim2}, @samp{-fpim3},
@samp{-fpim4} or @samp{-fiso}.

@item
the option @samp{-fswig} will automatically create a swig interface
file which corresponds to the definition module of the file being
compiled.

@item
exception handling is compatible with C++ and swig.  Modula-2 code can
be used with C or C++ code.

@item
Python can call GNU Modula-2 modules via swig.

@item
shared libraries can be built.

@item
fixed sized types are now available from @samp{SYSTEM}.

@c @item
@c support for dynamic @code{ARRAY}s has been added into @samp{gdb}.

@item
variables can be declared at addresses.

@item
much better dwarf-2 debugging support and when used with
@samp{gdb} the programmer can display @code{RECORD}s,
@code{ARRAY}s, @code{SET}s, subranges and constant char literals
in Modula-2 syntax.

@item
supports sets of any ordinal size (memory permitting).

@item
easy interface to C, and varargs can be passed to C routines.

@item
many Logitech libraries have been implemented and can be accessed via:
@samp{-flibs=m2log,m2pim,m2iso}.

@item
coroutines have been implemented in the PIM style and these are
accessible from SYSTEM.  A number of supporting libraries (executive
and file descriptor mapping to interrupt vector libraries are
available through the @samp{-flibs=m2iso,m2pim} switch).

@item
can be built as a cross compiler (for embedded microprocessors
such as the AVR and the ARM).

@end itemize

@node Documentation, Regression tests, Features, Using
@section Documentation

The GNU Modula-2 documentation is available on line
@url{https://www.nongnu.org/gm2/homepage.html,at the gm2 homepage}
or in the pdf, info, html file format.

@node Regression tests, Limitations, Documentation, Using
@section Regression tests for gm2 in the repository

The regression testsuite can be run from the gcc build directory:

@example
$ cd build-gcc
$ make check -j 24
@end example

which runs the complete testsuite for all compilers using 24 parallel
invocations of the compiler.  Individual language testsuites can be
run by specifying the language, for example the Modula-2 testsuite can
be run using:

@example
$ cd build-gcc
$ make check-m2 -j 24
@end example

Finally the results of the testsuite can be emailed to the
@url{https://gcc.gnu.org/lists.html, gcc-testresults} list using the
@file{test_summary} script found in the gcc source tree:

@example
$ @samp{directory to the sources}/contrib/test_summary
@end example

@node Limitations, Objectives, Regression tests, Using
@section Limitations

Logitech compatibility library is incomplete.  The principle modules
for this platform exist however for a comprehensive list of completed
modules please check the documentation
@url{gm2.html}.

@node Objectives, FAQ, , Using
@section Objectives

@itemize @bullet

@item
The intention of GNU Modula-2 is to provide a production Modula-2
front end to GCC.

@item
It should support all Niklaus Wirth PIM Dialects [234] and also ISO
Modula-2 including a re-implementation of all the ISO modules.

@item
There should be an easy interface to C.

@item
Exploit the features of GCC.

@item
Listen to the requests of the users.
@end itemize

@node FAQ, Community, Objectives, Using
@section FAQ

@subsection Why use the C++ exception mechanism in GCC, rather than a bespoke Modula-2 mechanism?

The C++ mechanism is tried and tested, it also provides GNU Modula-2
with the ability to link with C++ modules and via swig it can raise
Python exceptions.

@node Community, Other languages, FAQ, Using
@section Community

You can subscribe to the GNU Modula-2 mailing by sending an
email to:
@email{gm2-subscribe@@nongnu.org}
or by
@url{http://lists.nongnu.org/mailman/listinfo/gm2}.
The mailing list contents can be viewed
@url{http://lists.gnu.org/archive/html/gm2}.

@node Other languages, , Community, Using
@section Other languages for GCC

These exist and can be found on the frontends web page on the
@uref{http://gcc.gnu.org/frontends.html, gcc web site}.

@node Using, , Community, Top
@chapter Using GNU Modula-2

@menu
* Example usage::         Example compile and link.
* Compiler options::      GNU Modula-2 compiler options.
* Linking::               Linking options in more detail.
* Elementary data types:: Data types supported by GNU Modula-2.
* Standard procedures::   Permanently accessible base procedures.
* Dialect::               GNU Modula-2 supported dialects.
* Exceptions::            Exception implementation
* Semantic checking::     How to detect run time problems at compile time.
* Extensions::            GNU Modula-2 language extensions.
* Type compatibility::    Data type compatibility.
* Unbounded by reference::Explanation of a language optimization.
* Building a shared library:: How to build a shared library.
* Interface for Python::  How to produce swig interface files.
* Producing a Python module::  How to produce a Python module.
* Interface to C::        Interfacing GNU Modula-2 to C.
* Assembly language::     Interface to assembly language.
* Alignment::             Data type alignment.
* Packed::                Packing data types.
* Built-ins::             Accessing GNU Modula-2 Built-ins.
* The PIM system module:: SYSTEM data types and procedures.
* The ISO system module:: SYSTEM data types, procedures and run time.
* Other languages::       Other languages for GCC.
* What is GNU Modula-2::  Brief description of GNU Modula-2.
* Why use GNU Modula-2::  Advantages of GNU Modula-2.
@ifnothtml
@c omit these nodes if generating gm2 webpage as these are hand written.
* Release map:: Release map.
* Development:: Development.
* Features:: Features of the implementation.
* Documentation:: Placeholder for how to access the documentation online.
* Regression tests:: How to run the testsuite.
* Limitations:: Current limitations.
* Objectives:: Objectives of the implementation.
* FAQ:: Frequently asked questions.
* Community:: How to join the community.
@end ifnothtml
@end menu

This document contains the user and design issues relevant to the
Modula-2 front end to gcc.

@node Example usage, Compiler options, Using, Using
@section Example compile and link

@ignore
@c man begin SYNOPSIS gm2
gm2 [@option{-c}|@option{-S}] [@option{-g}] [@option{-pg}]
    [@option{-O}@var{level}] [@option{-W}@var{warn}@dots{}]
    [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
    [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
    [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}

Only the most useful options are listed here; see below for the
remainder.
@c man end
@c man begin SEEALSO
gpl(7), gfdl(7), fsf-funding(7), gcc(1)
and the Info entries for @file{gm2} and @file{gcc}.
@c man end
@end ignore

@c man begin DESCRIPTION gm2

The @command{gm2} command is the GNU compiler for the Modula-2 language and
supports many of the same options as @command{gcc}.  @xref{Option Summary, ,
Option Summary, gcc, Using the GNU Compiler Collection (GCC)}.
This manual only documents the options specific to @command{gm2}.

@c man end

This section describes how to compile and link a simple hello world
program.  It provides a few examples of using the different options
mentioned in @pxref{Compiler options, , ,gm2}.  Assuming that you have
a file called @file{hello.mod} in your current directory which
contains:

@example
MODULE hello ;

FROM StrIO IMPORT WriteString, WriteLn ;

BEGIN
   WriteString ('hello world') ; WriteLn
END hello.
@end example

You can compile and link it by: @samp{gm2 -g hello.mod}.
The result will be an @samp{a.out} file created in your directory.

You can split this command into two steps if you prefer.  The compile
step can be achieved by: @samp{gm2 -g -c -fscaffold-main hello.mod}
and the link via: @samp{gm2 -g hello.o}.

@footnote{To see all the compile actions taken by @samp{gm2} users can also
add the @samp{-v} flag at the command line, for example:

@samp{gm2 -v -g -I. hello.mod}

This displays the sub processes initiated by @samp{gm2} which can be useful
when trouble shooting.}

@node Compiler options, Elementary data types, Example usage, Using
@section Compiler options

This section describes the compiler options specific to GNU Modula-2
for generic flags details @xref{Invoking GCC, , ,gcc}.

@c man begin OPTIONS

For any given input file, the file name suffix determines what kind of
compilation is done.  The following kinds of input file names are supported:

@table @gcctabopt
@item @var{file}.mod
Modula-2 implementation or program source files.  See the
@samp{-fmod=} option if you wish to compile a project which uses a
different source file extension.
@item @var{file}.def
Modula-2 definition module source files.  Definition modules are not
compiled separately, in GNU Modula-2 definition modules are parsed as
required when program or implementation modules are compiled.  See the
@samp{-fdef=} option if you wish to compile a project which uses a
different source file extension.
@end table

You can specify more than one input file on the @command{gm2} command line,

@table @code

@item -g
create debugging information so that debuggers such as @file{gdb}
can inspect and control executable.

@item -I
used to specify the search path for definition and implementation
modules.  An example is:  @code{gm2 -g -c -I.:../../libs foo.mod}.
If this option is not specified then the default path is added
which consists of the current directory followed by the appropriate
language dialect library directories.

@c ordered list of options from here.

@item -fauto-init
turns on auto initialization of pointers to NIL.  Whenever a block is
created all pointers declared within this scope will have their
addresses assigned to NIL.

@item -fbounds
turns on run time subrange, array index and indirection via @code{NIL}
pointer checking.

@item -fcase
turns on compile time checking to check whether a @code{CASE}
statement requires an @code{ELSE} clause when on was not specified.

@item -fcpp
preprocess the source with @samp{cpp -lang-asm -traditional-cpp}
For further details about these options @xref{Invocation, , ,cpp}.
If @samp{-fcpp} is supplied then all definition modules and
implementation modules which are parsed will be prepossessed by
@samp{cpp}.

@c fcpp-end
@c Modula-2
@c passed to the preprocessor if -fcpp is used (internal switch)

@c fcpp-begin
@c Modula-2
@c passed to the preprocessor if -fcpp is used (internal switch)

@item -fdebug-builtins
call a real function, rather than the builtin equivalent.  This can
be useful for debugging parameter values to a builtin function as
it allows users to single step code into a real function.

@c fd
@c Modula-2
@c turn on internal debugging of the compiler (internal switch)

@c fdebug-trace-quad
@c Modula-2
@c turn on quadruple tracing (internal switch)

@c fdebug-trace-api
@c Modula-2
@c turn on the Modula-2 api tracing (internal switch)

@c fdebug-function-line-numbers
@c Modula-2
@c turn on the Modula-2 function line number generation (internal switch)

@item -fdef=
recognize the specified suffix as a definition module filename.
The default implementation and module filename suffix is @file{.def}.
If this option is used GNU Modula-2 will still fall back to this
default if a requested definition module is not found.

@item -fdump-system-exports
display all inbuilt system items.
This is an internal command line option.

@item -fexceptions
turn on exception handling code.  By default this option is on.
Exception handling can be disabled by @samp{-fno-exceptions}
and no references are made to the run time exception libraries.

@item -fextended-opaque
allows opaque types to be implemented as any type.  This is a GNU
Modula-2 extension and it requires that the implementation module
defining the opaque type is available so that it can be resolved when
compiling the module which imports the opaque type.

@item -ffloatvalue
turns on run time checking to check whether a floating point number is
about to exceed range.

@item -fgen-module-list=@file{filename}
attempt to find all modules when linking and generate a module list.
If the @file{filename} is @samp{-} then the contents are not written
and only used to force the linking of all module ctors.
This option cannot be used if @samp{-fuse-list=} is enabled.

@item -findex
generate code to check whether array index values are out of bounds.
Array index checking can be disabled via @samp{-fno-index}.

@item -fiso
turn on ISO standard features.  Currently this enables the ISO
@code{SYSTEM} module and alters the default library search path so
that the ISO libraries are searched before the PIM libraries.  It also
effects the behavior of @code{DIV} and @code{MOD} operators.
@xref{Dialect, , ,gm2}.

@item -flibs=
modifies the default library search path.  The libraries supplied are:
m2pim, m2iso, m2min, m2log and m2cor.  These map onto the
Programming in Modula-2 base libraries, ISO standard libraries, minimal
library support, Logitech compatible library and Programming in
Modula-2 with coroutines.
Multiple libraries can be specified and are comma separated with precedence
going to the first in the list.  It is not necessary to use -flibs=m2pim or
-flibs=m2iso if you also specify -fpim, -fpim2, -fpim3, -fpim4 or
-fiso.  Unless you are using -flibs=m2min you should include m2pim as
the they provide the base modules which all other dialects utilize.
The option @samp{-fno-libs=-} disables the @samp{gm2} driver from
modifying the search and library paths.

@item -static-libgm2
On systems that provide the m2 runtimes as both shared and static libraries,
this option forces the use of the static version.

@c flocation=
@c Modula-2 Joined
@c set all location values to a specific value (internal switch)

@item -fm2-g
improve the debugging experience for new programmers at the expense
of generating @code{nop} instructions if necessary to ensure single
stepping precision over all code related keywords.  An example
of this is in termination of a list of nested @code{IF} statements
where multiple @code{END} keywords are mapped onto a sequence of
@code{nop} instructions.

@item -fm2-lower-case
render keywords in error messages using lower case.

@item -fm2-plugin
insert plugin to identify run time errors at compile time (default on).

@item -fm2-statistics
generates quadruple information: number of quadruples generated,
number of quadruples remaining after optimization and number of source
lines compiled.

@item -fm2-strict-type
experimental flag to turn on the new strict type checker.

@item -fm2-whole-program
compile all implementation modules and program module at once.  Notice
that you need to take care if you are compiling different dialect
modules (particularly with the negative operands to modulus).  But
this option, when coupled together with @code{-O3}, can deliver huge
performance improvements.

@item -fmod=
recognize the specified suffix as implementation and module filenames.
The default implementation and module filename suffix is @file{.mod}.
If this option is used GNU Modula-2 will still fall back to this
default if it needs to read an implementation module and the specified
suffixed filename does not exist.

@item -fnil
generate code to detect accessing data through a @code{NIL} value
pointer.  Dereferencing checking through a @code{NIL} pointer can be
disabled by @samp{-fno-nil}.

@item -fpim
turn on PIM standard features.  Currently this enables the PIM
@code{SYSTEM} module and determines which identifiers are pervasive
(declared in the base module).  If no other @samp{-fpim[234]} switch is
used then division and modulus operators behave as defined in PIM4.
@xref{Dialect, , ,gm2}.

@item -fpim2
turn on PIM-2 standard features.  Currently this removes @code{SIZE}
from being a pervasive identifier (declared in the base module).  It
places @code{SIZE} in the @code{SYSTEM} module.  It also effects the
behavior of @code{DIV} and @code{MOD} operators.
@xref{Dialect, , ,gm2}.

@item -fpim3
turn on PIM-3 standard features.  Currently this only effects the
behavior of @code{DIV} and @code{MOD} operators.
@xref{Dialect, , ,gm2}.

@item -fpim4
turn on PIM-4 standard features.  Currently this only effects the
behavior of @code{DIV} and @code{MOD} operators.
@xref{Dialect, , ,gm2}.

@item -fpositive-mod-floor-div
forces the @code{DIV} and @code{MOD} operators to behave as defined by PIM4.
All modulus results are positive and the results from the division are
rounded to the floor.
@xref{Dialect, , ,gm2}.

@item -fpthread
link against the pthread library.  By default this option is on.  It
can be disabled by @samp{-fno-pthread}.  GNU Modula-2 uses the GCC
pthread libraries to implement coroutines (see the SYSTEM
implementation module).

@c -fq
@c -Modula-2
@c -internal compiler debugging information, dump the list of quadruples

@item -frange
generate code to check the assignment range, return value range
set range and constructor range.  Range checking can be disabled
via @samp{-fno-range}.

@item -freturn
generate code to check that functions always exit with a @code{RETURN}
and do not fall out at the end.  Return checking can be disabled
via @samp{-fno-return}.

@item -fruntime-modules=
specify, using a comma separated list, the run time modules and their
order.  These modules will initialized first before any other modules
in the application dependency.  By default the run time modules list is
set to @code{Storage,SYSTEM,M2RTS,RTExceptions,IOLink}.  Note that
these modules will only be linked into your executable if they are
required.  So adding a long list of dependent modules will not effect
the size of the executable it merely states the initialization order
should they be required.

@item -fscaffold-dynamic
the option ensures that @samp{gm2} will generate a dynamic scaffold
infrastructure when compiling implementation and program modules.
By default this option is on.  Use @samp{-fno-scaffold-dynamic}
to turn it off or select @samp{-fno-scaffold-static}.

@item -fscaffold-c
generate a C source scaffold for the current module being compiled.

@item -fscaffold-c++
generate a C++ source scaffold for the current module being compiled.

@item -fscaffold-main
force the generation of the @samp{main} function.  This is not
necessary if the @samp{-c} is omitted.

@item -fscaffold-static
the option ensures that @samp{gm2} will generate a static scaffold
within the program module.  The static scaffold consists of sequences
of calls to all dependent module initialization and finalization
procedures.  The static scaffold is useful for debugging and single
stepping the initialization blocks of implementation modules.

@item -fshared
generate a shared library from the module.

@item -fsoft-check-all
turns on all run time checks.  This is the same as invoking
GNU Modula-2 using the command options
@code{-fnil} @code{-frange} @code{-findex}
@code{-fwholevalue}
@code{-fwholediv} @code{-fcase} @code{-freturn}.

@item -fsources
displays the path to the source of each module.  This option
can be used at compile time to check the correct definition module
is being used.

@item -fswig
generate a swig interface file.

@item -funbounded-by-reference
enable optimization of unbounded parameters by attempting to pass non
@code{VAR} unbounded parameters by reference.  This optimization
avoids the implicit copy inside the callee procedure.  GNU Modula-2
will only allow unbounded parameters to be passed by reference if,
inside the callee procedure, they are not written to, no address is
calculated on the array and it is not passed as a @code{VAR}
parameter.  Note that it is possible to write code to break this
optimization, therefore this option should be used carefully.
For example it would be possible to take the address of an array, pass
the address and the array to a procedure, read from the array in
the procedure and write to the location using the address parameter.

Due to the dangerous nature of this option it is not enabled
when the @samp{-O} option is specified.

@item -fuse-list=@file{filename}
if @samp{-fscaffold-static} is enabled then use the file
@file{filename} for the initialization order of modules.  Whereas if
@samp{-fscaffold-dynamic} is enabled then use this file to force
linking of all module ctors.
This option cannot be used if @samp{-fgen-module-list=} is enabled.

@item -fwholediv
generate code to detect whole number division by zero or modulus by
zero.

@item -fwholevalue
generate code to detect whole number overflow and underflow.

@c the following warning options are complete but need to be
@c regression tested against all other front ends
@c to ensure the options do not conflict.

@c @item -Wall
@c turn on all Modula-2 warnings.

@c @item -Wpedantic
@c forces the compiler to reject nested @code{WITH} statements
@c referencing the same record type.  Does not allow multiple imports of
@c the same item from a module.  It also checks that: procedure variables
@c are written to before being read; variables are not only written to
@c but read from; variables are declared and used.  If the compiler
@c encounters a variable being read before written it will terminate with
@c a message.  It will check that @code{FOR} loop indices are not used
@c outside the end of this loop without being reset.

@c @item -Wpedantic-cast
@c warns if the ISO system function is used and if the size of
@c the variable is different from that of the type.  This is legal
@c in ISO Modula-2, however it can be dangerous.  Some users may prefer
@c to use @code{VAL} instead in these situations and use @code{CAST}
@c exclusively for changes in type on objects which have the same size.

@c @item -Wpedantic-param-names
@c procedure parameter names are checked in the definition module
@c against their implementation module counterpart.  This is not
@c necessary in ISO or PIM versions of Modula-2.

@c @item -Wstyle
@c checks for poor programming style.  This option is aimed at new users of
@c Modula-2 in that it checks for situations which might cause confusion
@c and thus mistakes.  It checks whether variables of the same name are
@c declared in different scopes and whether variables look like keywords.
@c Experienced users might find this option too aggressive.

@c @item -Wunused-variable
@c warns if a variable has been declared and it not used.

@c @item -Wunused-parameter
@c warns if a parameter has been declared and it not used.

@c @item -Wverbose-unbounded
@c inform the user which non @code{VAR} unbounded parameters will be
@c passed by reference.  This only produces output if the option
@c @samp{-funbounded-by-reference} is also supplied on the command line.

@end table

@c man end

@node Elementary data types, Standard procedures, Compiler options, Using
@section Elementary data types

This section describes the elementary data types supported by GNU
Modula-2.  It also describes the relationship between these data types
and the equivalent C data types.

The following data types are supported: @code{INTEGER},
@code{LONGINT}, @code{SHORTINT}, @code{CARDINAL}, @code{LONGCARD},
@code{SHORTCARD}, @code{BOOLEAN}, @code{REAL}, @code{LONGREAL},
@code{SHORTREAL}, @code{COMPLEX}, @code{LONGCOMPLEX},
@code{SHORTCOMPLEX} and @code{CHAR}.

An equivalence table is given below:

@example
GNU Modula-2              GNU C
======================================
INTEGER                   int
LONGINT                   long long int
SHORTINT                  short int
CARDINAL                  unsigned int
LONGCARD                  long long unsigned int
SHORTCARD                 short unsigned int
BOOLEAN                   int
REAL                      double
LONGREAL                  long double
SHORTREAL                 float
CHAR                      char
SHORTCOMPLEX              complex float
COMPLEX                   complex double
LONGCOMPLEX               complex long double
@end example

Note that GNU Modula-2 also supports fixed sized data types which are
exported from the @code{SYSTEM} module.
@xref{The PIM system module, , ,gm2}.
@xref{The ISO system module, , ,gm2}.

@node Standard procedures, Dialect, Elementary data types, Using
@section Permanently accessible base procedures.

This section describes the procedures and functions which are
always visible.

@subsection Standard procedures and functions common to PIM and ISO

The following procedures are implemented and conform with Programming
in Modula-2 and ISO Modula-2: @code{NEW}, @code{DISPOSE}, @code{INC},
@code{DEC}, @code{INCL}, @code{EXCL} and @code{HALT}.  The standard
functions are: @code{ABS}, @code{CAP}, @code{CHR}, @code{FLOAT},
@code{HIGH}, @code{LFLOAT}, @code{LTRUNC}, @code{MIN}, @code{MAX},
@code{ODD}, @code{SFLOAT}, @code{STRUNC} @code{TRUNC} and
@code{VAL}.  All these functions and procedures (except @code{HALT},
@code{NEW}, @code{DISPOSE} and, under non constant conditions,
@code{LENGTH}) generate in-line code for efficiency.

@example

(*
   ABS - returns the positive value of i.
*)

@findex ABS
PROCEDURE ABS (i: <any signed type>) : <any signed type> ;

@end example

@example

(*
   CAP - returns the capital of character ch providing
         ch lies within the range 'a'..'z'.  Otherwise ch
         is returned unaltered.
*)

@findex CAP
PROCEDURE CAP (ch: CHAR) : CHAR ;

@end example

@example

(*
   CHR - converts a value of a <whole number type> into a CHAR.
         CHR(x) is shorthand for VAL(CHAR, x).
*)

@findex CHR
PROCEDURE CHR (x: <whole number type>) : CHAR ;

@end example

@example

(*
   DISPOSE - the procedure DISPOSE is replaced by:
             DEALLOCATE(p, TSIZE(p^)) ;
             The user is expected to import the procedure DEALLOCATE
             (normally found in the module, Storage.)

             In:  a variable p: of any pointer type which has been
                  initialized by a call to NEW.
             Out: the area of memory
                  holding p^ is returned to the system.
                  Note that the underlying procedure DEALLOCATE
                  procedure in module Storage will assign p to NIL.
*)

@findex DISPOSE
PROCEDURE DISPOSE (VAR p:<any pointer type>) ;
@end example

@example

(*
   DEC - can either take one or two parameters.  If supplied
         with one parameter then on the completion of the call to
         DEC, v will have its predecessor value.  If two
         parameters are supplied then the value v will have its
         n'th predecessor.  For these reasons the value of n
         must be >=0.
*)

@findex DEC
PROCEDURE DEC (VAR v: <any base type>; [n: <any base type> = 1]) ;
@end example

@example

(*
   EXCL - excludes bit element e from a set type s.
*)

@findex EXCL
PROCEDURE EXCL (VAR s: <any set type>; e: <element of set type s>) ;
@end example

@example

(*
   FLOAT - will return a REAL number whose value is the same as o.
*)

@findex FLOAT
PROCEDURE FLOAT (o: <any whole number type>) : REAL ;
@end example

@example

(*
   FLOATS - will return a SHORTREAL number whose value is the same as o.
*)

@findex FLOATS
PROCEDURE FLOATS (o: <any whole number type>) : REAL ;
@end example

@example

(*
   FLOATL - will return a LONGREAL number whose value is the same as o.
*)

@findex FLOATL
PROCEDURE FLOATL (o: <any whole number type>) : REAL ;
@end example

@example

(*
   HALT - will call the HALT procedure inside the module M2RTS.
          Users can replace M2RTS.
*)

@findex HALT
PROCEDURE HALT ;
@end example

@example

(*
   HIGH - returns the last accessible index of an parameter declared as
          ARRAY OF CHAR.  Thus

          PROCEDURE foo (a: ARRAY OF CHAR) ;
          VAR
             c: CARDINAL ;
          BEGIN
             c := HIGH(a)
          END foo ;

          BEGIN
             foo('hello')
          END

          will cause the local variable c to contain the value 4
*)

@findex HIGH
PROCEDURE HIGH (a: ARRAY OF CHAR) : CARDINAL ;
@end example

@example

(*
   INC - can either take one or two parameters.  If supplied
         with one parameter then on the completion of the call to
         INC, v will have its successor value.  If two
         parameters are supplied then the value v will have its
         n'th successor.  For these reasons the value of n
         must be >=0.
*)

@findex INC
PROCEDURE INC (VAR v: <any base type>; [n: <any base type> = 1]) ;
@end example

@example

(*
   INCL - includes bit element e to a set type s.
*)

@findex INCL
PROCEDURE INCL (VAR s: <any set type>; e: <element of set type s>) ;
@end example

@example

(*
   LFLOAT - will return a LONGREAL number whose value is the same as o.
*)

@findex LFLOAT
PROCEDURE LFLOAT (o: <any whole number type>) : LONGREAL ;
@end example

@example

(*
   LTRUNC - will return a LONG<type> number whose value is the
            same as o.  PIM2, PIM3 and ISO Modula-2 will return
            a LONGCARD whereas PIM4 returns LONGINT.
*)

@findex LTRUNC
PROCEDURE LTRUNC (o: <any floating point type>) : LONG<type> ;
@end example

@example

(*
   MIN - returns the lowest legal value of an ordinal type.
*)

@findex MIN
PROCEDURE MIN (t: <ordinal type>) : <ordinal type> ;

@end example

@example

(*
   MAX - returns the largest legal value of an ordinal type.
*)

@findex MAX
PROCEDURE MAX (t: <ordinal type>) : <ordinal type> ;

@end example

@example

(*
   NEW - the procedure NEW is replaced by:
         ALLOCATE(p, TSIZE(p^)) ;
         The user is expected to import the procedure ALLOCATE
         (normally found in the module, Storage.)

         In:  a variable p: of any pointer type.
         Out: variable p is set to some allocated memory
              which is large enough to hold all the contents of p^.
*)

@findex NEW
PROCEDURE NEW (VAR p:<any pointer type>) ;
@end example

@example

(*
   ODD - returns TRUE if the value is not divisible by 2.
*)

@findex ODD
PROCEDURE ODD (x: <whole number type>) : BOOLEAN ;

@end example

@example

(*
   SFLOAT - will return a SHORTREAL number whose value is the same
            as o.
*)

@findex SFLOAT
PROCEDURE SFLOAT (o: <any whole number type>) : SHORTREAL ;
@end example

@example

(*
   STRUNC - will return a SHORT<type> number whose value is the same
            as o.  PIM2, PIM3 and ISO Modula-2 will return a
            SHORTCARD whereas PIM4 returns SHORTINT.
*)

@findex STRUNC
PROCEDURE STRUNC (o: <any floating point type>) : SHORT<type> ;
@end example

@example

(*
   TRUNC - will return a <type> number whose value is the same as o.
           PIM2, PIM3 and ISO Modula-2 will return a CARDINAL
           whereas PIM4 returns INTEGER.
*)

@findex TRUNC
PROCEDURE TRUNC (o: <any floating point type>) : <type> ;
@end example

@example

(*
   TRUNCS - will return a <type> number whose value is the same
            as o.  PIM2, PIM3 and ISO Modula-2 will return a
            SHORTCARD whereas PIM4 returns SHORTINT.
*)

@findex TRUNCS
PROCEDURE TRUNCS (o: <any floating point type>) : <type> ;
@end example

@example

(*
   TRUNCL - will return a <type> number whose value is the same
            as o.  PIM2, PIM3 and ISO Modula-2 will return a
            LONGCARD whereas PIM4 returns LONGINT.
*)

@findex TRUNCL
PROCEDURE TRUNCL (o: <any floating point type>) : <type> ;
@end example

@example

(*
   VAL - converts data i of <any simple data type 2> to
         <any simple data type 1> and returns this value.
         No range checking is performed during this conversion.
*)

@findex VAL
PROCEDURE VAL (<any simple data type 1>,
               i: <any simple data type 2>) : <any simple data type 1> ;

@end example

@subsection ISO specific standard procedures and functions

The standard function @code{LENGTH} is specific to ISO Modula-2 and
is defined as:

@example

(*
   IM - returns the imaginary component of a complex type.
        The return value will the same type as the imaginary field
        within the complex type.
*)

@findex IM
PROCEDURE IM (c: <any complex type>) : <floating point type> ;
@end example

@example

(*
   INT - returns an INTEGER value which has the same value as v.
         This function is equivalent to: VAL(INTEGER, v).
*)

@findex INT
PROCEDURE INT (v: <any ordinal type>) : INTEGER ;
@end example

@example

(*
   LENGTH - returns the length of string a.
*)

@findex LENGTH
PROCEDURE LENGTH (a: ARRAY OF CHAR) : CARDINAL ;
@end example

This function is evaluated at compile time, providing that string
@code{a} is a constant.  If @code{a} cannot be evaluated then a call is
made to @code{M2RTS.Length}.

@example

(*
   ODD - returns a BOOLEAN indicating whether the whole number
         value, v, is odd.
*)

@findex ODD
PROCEDURE ODD (v: <any whole number type>) : BOOLEAN ;
@end example

@example

(*
   RE - returns the real component of a complex type.
        The return value will the same type as the real field
        within the complex type.
*)

@findex RE
PROCEDURE RE (c: <any complex type>) : <floating point type> ;
@end example

@node Dialect, Exceptions, Standard procedures, Using
@section GNU Modula-2 supported dialects

This section describes the dialects understood by GNU Modula-2.
It also describes the differences between the dialects and
any command line switches which determine dialect behaviour.

The GNU Modula-2 compiler is compliant with four dialects of Modula-2.
The language as defined in 'Programming in Modula-2' 2nd Edition,
Springer Verlag, 1982, 1983 by Niklaus Wirth (PIM2), 'Programming in
Modula-2', 3rd Corrected Edition, Springer Verlag, 1985 (PIM3) and
'Programming in Modula-2', 4th Edition, Springer Verlag, 1988 (PIM4)
@uref{http://freepages.modula2.org/report4/modula-2.html} and the ISO
Modula-2 language as defined in ISO/IEC Information technology -
programming languages - part 1: Modula-2 Language, ISO/IEC 10514-1
(1996) (ISO).

The command line switches @samp{-fpim2}, @samp{-fpim3}, @samp{-fpim4}
and @samp{-fiso} can be used to force mutually exclusive
features.  However by default the compiler will not aggressively fail
if a non mutually exclusive feature is used from another dialect.  For
example it is possible to specify @samp{-fpim2} and still utilize
@samp{DEFINITION} @samp{MODULES} which have no export list.

Some dialect differences will force a compile time error, for example
in PIM2 the user must @code{IMPORT} @code{SIZE} from the module
@code{SYSTEM}, whereas in PIM3 and PIM4 @code{SIZE} is a pervasive
function.  Thus compiling PIM4 source code with the @samp{-fpim2}
switch will cause a compile time error.  This can be fixed quickly
with an additional @code{IMPORT} or alternatively by compiling with
the @samp{-fpim4} switch.

However there are some very important differences between the dialects
which are mutually exclusive and therefore it is vital that users
choose the dialects with care when these language features are used.

@subsection Integer division, remainder and modulus

The most dangerous set of mutually exclusive features found in the
four dialects supported by GNU Modula-2 are the @code{INTEGER}
division, remainder and modulus arithmetic operators.  It is important
to note that the same source code can be compiled to give different
run time results depending upon these switches!  The reference manual
for the various dialects of Modula-2 are quite clear about this
behavior and sadly there are three distinct definitions.

The table below illustrates the problem when a negative operand is
used.

@example
                  Pim2/3          Pim4                ISO
               -----------    -----------    ----------------------
lval    rval   DIV     MOD    DIV     MOD    DIV    MOD    /    REM
 31      10      3       1      3       1      3      1     3     1
-31      10     -3      -1     -4       9     -4      9    -3    -1
 31     -10     -3       1     -3       1     Exception    -3     1
-31     -10      3      -1      4       9     Exception     3    -1
@end example

See also P24 of PIM2, P27 of PIM3, P29 of PIM4 and P201 of the ISO
Standard.  At present all dialect division, remainder and modulus are
implemented as above, apart from the exception calling in the ISO
dialect.  Instead of exception handling the results are the same as the
PIM4 dialect.  This is a temporary implementation situation.

@node Exceptions, Semantic checking, Dialect, Using
@section Exception implementation

This section describes how exceptions are implemented in GNU Modula-2
and how command line switches affect their behavior.  The option
@samp{-fsoft-check-all} enables all software checking of nil
dereferences, division by zero etc.  Additional code is produced to
check these conditions and exception handlers are invoked if the
conditions prevail.

Without @samp{-fsoft-check-all} these exceptions will be caught by
hardware (assuming the hardware support exists) and a signal handler
is invoked.  The signal handler will in turn @code{THROW} an exception
which will be caught by the appropriate Modula-2 handler.  However the
action of throwing an exception from within a signal handler is
implementation defined (according to the C++ documentation).  For
example on the x86_64 architecture this works whereas on the i686
architecture it does not.  Therefore to ensure portability it is
recommended to use @samp{-fsoft-check-all}.

@footnote{@samp{-fsoft-check-all} can be effectively combined with
@samp{-O2} to semantically analyze source code for possible run time
errors at compile time.}

@node Semantic checking, Extensions, Exceptions, Using
@section How to detect run time problems at compile time

Consider the following program:

@example
MODULE assignvalue ;  (*!m2iso+gm2*)

PROCEDURE bad () : INTEGER ;
VAR
   i: INTEGER ;
BEGIN
   i := -1 ;
   RETURN i
END bad ;

VAR
   foo: CARDINAL ;
BEGIN
   (* The m2rte plugin will detect this as an error, post
      optimization.  *)
   foo := bad ()
END assignvalue.
@end example

here we see that the programmer has overlooked that the return value
from @samp{bad} will cause an overflow to @samp{foo}.  If we compile
the code with the following options:

@example
$ gm2 -g -fsoft-check-all -O2 -c assignvalue.mod
assignvalue.mod:16:0:inevitable that this error will occur at run time,
assignment will result in an overflow
@end example

The gm2 semantic plugin is automatically run and will generate a
warning message for every exception call which is known as reachable.
It is highly advised to run the optimizer (@samp{-O2} or @samp{-O3})
with @samp{-fsoft-check-all} so that the compiler is able to run the
optimizer and perform variable and flow analysis before the semantic
plugin is invoked.

@node Extensions, Type compatibility, Semantic checking, Using
@section GNU Modula-2 language extensions

This section introduces the GNU Modula-2 language extensions.
The GNU Modula-2 compiler allows abstract data types to be any type,
not just restricted to a pointer type providing the
@samp{-fextended-opaque} option is supplied
@xref{Compiler options, , ,gm2}.

Declarations can be made in any order, whether they are
types, constants, procedures, nested modules or variables.
@c (@xref{Passes, , ,}.)

GNU Modula-2 also allows programmers to interface to @code{C} and
assembly language.

GNU Modula-2 provides support for the special tokens @code{__LINE__},
@code{__FILE__}, @code{__FUNCTION__} and @code{__DATE__}.  Support for
these tokens will occur even if the @samp{-fcpp} option is not
supplied.  A table of these identifiers and their data type and values
is given below:

@example
Scope       GNU Modula-2 token      Data type and example value

anywhere    __LINE__                Constant Literal compatible
                                    with CARDINAL, INTEGER and WORD.
                                    Example 1234

anywhere    __FILE__                Constant string compatible
                                    with parameter ARRAY OF CHAR or
                                    an ARRAY whose SIZE is >= string
                                    length.  Example
                                    "hello.mod"

procedure   __FUNCTION__            Constant string compatible
                                    with parameter ARRAY OF CHAR or
                                    an ARRAY whose SIZE is >= string
                                    length.  Example
                                    "calc"

module      __FUNCTION__            Example
                                    "module hello initialization"

anywhere    __DATE__                Constant string compatible
                                    with parameter ARRAY OF CHAR or
                                    an ARRAY whose SIZE is >= string
                                    length.  Example
                                    "Thu Apr 29 10:07:16 BST 2004"

anywhere   __COLUMN__               Gives a constant literal number
                                    determining the left hand column
                                    where the first _ appears in
                                    __COLUMN__.  The left most column
                                    is 1.

@end example

The preprocessor @samp{cpp} can be invoked via the @samp{-fcpp}
command line option.  This in turn invokes @samp{cpp} with the
following arguments @samp{-traditional -lang-asm}.  These options
preserve comments and all quotations.  @samp{gm2} treats a @samp{#}
character in the first column as a preprocessor directive.

For example here is a module which calls @code{FatalError}
via the macro @code{ERROR}.

@example
MODULE cpp ;

FROM SYSTEM IMPORT ADR, SIZE ;
FROM libc IMPORT exit, printf, malloc ;

PROCEDURE FatalError (a, file: ARRAY OF CHAR;
                         line: CARDINAL;
                         func: ARRAY OF CHAR) ;
BEGIN
   printf ("%s:%d:fatal error, %s, in %s\n",
            ADR (file), line, ADR (a), ADR (func)) ;
   exit (1)
END FatalError ;

#define ERROR(X)  FatalError(X, __FILE__, __LINE__, __FUNCTION__)

VAR
   pc: POINTER TO CARDINAL;
BEGIN
   pc := malloc (SIZE (CARDINAL)) ;
   IF pc = NIL
   THEN
      ERROR ('out of memory')
   END
END cpp.
@end example

Another use for the C preprocessor in Modula-2 might be to turn on
debugging code.  For example the library module
@file{FormatStrings.mod} uses procedures from @file{DynamicStrings.mod}
and to track down memory leaks it was useful to track the source file
and line where each string was created.  Here is a section of
@file{FormatStrings.mod} which shows how the debugging code was
enabled and disabled by adding @code{-fcpp} to the command line.

@example
FROM DynamicStrings IMPORT String, InitString, InitStringChar, Mark,
                           ConCat, Slice, Index, char,
                           Assign, Length, Mult, Dup, ConCatChar,
                           PushAllocation, PopAllocationExemption,
                           InitStringDB, InitStringCharStarDB,
                           InitStringCharDB, MultDB, DupDB, SliceDB ;

(*
#define InitString(X) InitStringDB(X, __FILE__, __LINE__)
#define InitStringCharStar(X) InitStringCharStarDB(X, __FILE__, \
                                                   __LINE__)
#define InitStringChar(X) InitStringCharDB(X, __FILE__, __LINE__)
#define Mult(X,Y) MultDB(X, Y, __FILE__, __LINE__)
#define Dup(X) DupDB(X, __FILE__, __LINE__)
#define Slice(X,Y,Z) SliceDB(X, Y, Z, __FILE__, __LINE__)
*)

PROCEDURE doDSdbEnter ;
BEGIN
   PushAllocation
END doDSdbEnter ;

PROCEDURE doDSdbExit (s: String) ;
BEGIN
   s := PopAllocationExemption (TRUE, s)
END doDSdbExit ;

PROCEDURE DSdbEnter ;
BEGIN
END DSdbEnter ;

PROCEDURE DSdbExit (s: String) ;
BEGIN
END DSdbExit ;

(*
#define DBsbEnter doDBsbEnter
#define DBsbExit  doDBsbExit
*)

PROCEDURE Sprintf1 (s: String; w: ARRAY OF BYTE) : String ;
BEGIN
   DSdbEnter ;
   s := FormatString (HandleEscape (s), w) ;
   DSdbExit (s) ;
   RETURN s
END Sprintf1 ;
@end example

It is worth noting that the overhead of this code once @code{-fcpp} is
not present and -O2 is used will be zero since the local empty
procedures @code{DSdbEnter} and @code{DSdbExit} will be thrown away by
the optimization passes of the GCC backend.

@subsection Optional procedure parameter

GNU Modula-2 allows the last parameter to a procedure or function
parameter to be optional.  For example in the ISO library
@file{COROUTINES.def} the procedure @code{NEWCOROUTINE} is defined as
having an optional fifth argument (@code{initProtection}) which, if
absent, is automatically replaced by @code{NIL}.

@example
@findex NEWCOROUTINE
PROCEDURE NEWCOROUTINE (procBody: PROC; workspace: SYSTEM.ADDRESS;
                        size: CARDINAL; VAR cr: COROUTINE;
                        [initProtection: PROTECTION = NIL]);

  (* Creates a new coroutine whose body is given by procBody,
     and returns the identity of the coroutine in cr.
     workspace is a pointer to the work space allocated to
     the coroutine; size specifies the size of this workspace
     in terms of SYSTEM.LOC.

     The optional fifth argument may contain a single parameter
     which specifies the initial protection level of the coroutine.
  *)
@end example

The implementation module @file{COROUTINES.mod} implements this
procedure using the following syntax:

@example
PROCEDURE NEWCOROUTINE (procBody: PROC; workspace: SYSTEM.ADDRESS;
                        size: CARDINAL; VAR cr: COROUTINE;
                        [initProtection: PROTECTION]);
BEGIN

END NEWCOROUTINE ;
@end example

Note that it is illegal for this declaration to contain an initializer
value for @code{initProtection}.  However it is necessary to surround
this parameter with the brackets @code{[} and @code{]}.  This serves to
remind the programmer that the last parameter was declared as optional
in the definition module.

Local procedures can be declared to have an optional final parameter
in which case the initializer is mandatory in the implementation or
program module.

GNU Modula-2 also provides additional fixed sized data types which
are all exported from the @code{SYSTEM} module.
@xref{The PIM system module, , ,gm2}.
@xref{The ISO system module, , ,gm2}.

@node Type compatibility, Unbounded by reference, Extensions, Using
@section Type compatibility

This section discuss the issues surrounding assignment, expression
and parameter compatibility, their effect of the additional
fixed sized datatypes and also their effect of run time checking.
The data types supported by the compiler are:

@example
GNU Modula-2              scope      switches
=============================================
INTEGER                   pervasive
LONGINT                   pervasive
SHORTINT                  pervasive
CARDINAL                  pervasive
LONGCARD                  pervasive
SHORTCARD                 pervasive
BOOLEAN                   pervasive
BITSET                    pervasive
REAL                      pervasive
LONGREAL                  pervasive
SHORTREAL                 pervasive
CHAR                      pervasive
SHORTCOMPLEX              pervasive
COMPLEX                   pervasive
LONGCOMPLEX               pervasive

LOC                       SYSTEM     -fiso
BYTE                      SYSTEM
WORD                      SYSTEM
ADDRESS                   SYSTEM

The following extensions are supported for
most architectures (please check SYSTEM.def).
=============================================
INTEGER8                  SYSTEM
INTEGER16                 SYSTEM
INTEGER32                 SYSTEM
INTEGER64                 SYSTEM
CARDINAL8                 SYSTEM
CARDINAL16                SYSTEM
CARDINAL32                SYSTEM
CARDINAL64                SYSTEM
BITSET8                   SYSTEM
BITSET16                  SYSTEM
BITSET32                  SYSTEM
WORD16                    SYSTEM
WORD32                    SYSTEM
WORD64                    SYSTEM
REAL32                    SYSTEM
REAL64                    SYSTEM
REAL96                    SYSTEM
REAL128                   SYSTEM
COMPLEX32                 SYSTEM
COMPLEX64                 SYSTEM
COMPLEX96                 SYSTEM
COMPLEX128                SYSTEM
@end example

The Modula-2 language categorizes compatibility between entities of
possibly differing types into three sub components: expressions,
assignments, and parameters.  Parameter compatibility is further
divided into two sections for pass by reference and pass by value
compatibility.

For more detail on the Modula-2 type compatibility see the Modula-2
ISO standard BS ISO/IEC 10514-1:1996 page 121-125.  For detail on the
PIM type compatibility see Programming in Modula-2 Edition 4 page 29,
(Elementary Data Types).

@subsection Expression compatibility

Modula-2 restricts the types of expressions to the same type.
Expression compatibility is a symmetric relation.

For example two sub expressions of @code{INTEGER} and @code{CARDINAL}
are not expression compatible
(@uref{http://freepages.modula2.org/report4/modula-2.html} and ISO
Modula-2).

In GNU Modula-2 this rule is also extended across all fixed sized data
types (imported from SYSTEM).

@subsection Assignment compatibility

This section discusses the assignment issues surrounding assignment
compatibility of elementary types (@code{INTEGER}, @code{CARDINAL},
@code{REAL} and @code{CHAR} for example).  The information here is
found in more detail in the Modula-2 ISO standard BS ISO/IEC
10514-1:1996 page 122.

Assignment compatibility exists between the same sized elementary
types.

Same type family of different sizes are
also compatible as long as the @code{MAX(}type@code{)} and
@code{MIN(}type@code{)} is known.  So for example this includes the
@code{INTEGER} family, @code{CARDINAL} family and the @code{REAL}
family.

The reason for this is that when the assignment is performed
the compiler will check to see that the expression (on the right of
the @code{:=}) lies within the range of the designator type (on the
left hand side of the @code{:=}).  Thus these ordinal types can be
assignment compatible.  However it does mean that @code{WORD32} is not
compatible with @code{WORD16} as @code{WORD32} does not have a minimum
or maximum value and therefore cannot be checked.  The compiler does
not know which of the two bytes from @code{WORD32} should be copied
into @code{WORD16} and which two should be ignored.  Currently the
types @code{BITSET8}, @code{BITSET16} and @code{BITSET32} are
assignment incompatible.  However this restriction maybe lifted when
further run time checking is achieved.

Modula-2 does allow @code{INTEGER} to be assignment compatible with
@code{WORD} as they are the same size.  Likewise GNU Modula-2 allows
@code{INTEGER16} to be compatible with @code{WORD16} and the same for
the other fixed sized types and their sized equivalent in either
@code{WORD}n, @code{BYTE} or @code{LOC} types.  However it prohibits
assignment between @code{WORD} and @code{WORD32} even though on many
systems these sizes will be the same.  The reasoning behind this rule
is that the extended fixed sized types are meant to be used by
applications requiring fixed sized data types and it is more portable
to forbid the blurring of the boundaries between fixed sized and
machine dependent sized types.

Intermediate code run time checking is always generated by the front
end.  However this intermediate code is only translated into actual
code if the appropriate command line switches are specified.  This
allows the compiler to perform limited range checking at compile time.
In the future it will allow the extensive GCC optimizations to
propagate constant values through to the range checks which if they
are found to exceed the type range will result in a compile time
error message.

@subsection Parameter compatibility

Parameter compatibility is divided into two areas, pass by value and
pass by reference (@code{VAR}).  In the case of pass by value the
rules are exactly the same as assignment.  However in the second case,
pass by reference, the actual parameter and formal parameter must be
the same size and family.  Furthermore @code{INTEGER} and
@code{CARDINAL}s are not treated as compatible in the pass by
reference case.

The types @code{BYTE}, @code{LOC}, @code{WORD} and @code{WORD}n
derivatives are assignment and parameter compatible with any data type
of the same size.

@node Unbounded by reference, Building a shared library, Type compatibility, Using
@section Unbounded by reference

This section documents a GNU Modula-2 compiler switch which implements
a language optimization surrounding the implementation of unbounded
arrays.  In GNU Modula-2 the unbounded array is implemented by
utilizing an internal structure @code{struct @{dataType *address,
unsigned int high@}}.  So given the Modula-2 procedure declaration:

@example
PROCEDURE foo (VAR a: ARRAY OF dataType) ;
BEGIN
   IF a[2]= (* etc *)
END foo ;
@end example

it is translated into GCC @code{tree}s, which can be represented
in their C form thus:

@example
void foo (struct @{dataType *address, unsigned int high@} a)
@{
   if (a.address[2] == /* etc */
@}
@end example

Whereas if the procedure @code{foo} was declared as:

@example
PROCEDURE foo (a: ARRAY OF dataType) ;
BEGIN
   IF a[2]= (* etc *)
END foo ;
@end example

then it is implemented by being translated into the following
GCC @code{tree}s, which can be represented in their C form thus:

@example
void foo (struct @{dataType *address, unsigned int high@} a)
@{
   dataType *copyContents = (dataType *)alloca (a.high+1);
   memcpy(copyContents, a.address, a.high+1);
   a.address = copyContents;

   if (a.address[2] == /* etc */
@}
@end example

This implementation works, but it makes a copy of each non VAR
unbounded array when a procedure is entered.  If the unbounded array
is not changed during procedure @code{foo} then this implementation
will be very inefficient.  In effect Modula-2 lacks the @code{REF}
keyword of Ada.  Consequently the programmer maybe tempted to
sacrifice semantic clarity for greater efficiency by declaring the
parameter using the @code{VAR} keyword in place of @code{REF}.

The @code{-funbounded-by-reference} switch instructs the compiler to
check and see if the programmer is modifying the content of any
unbounded array.  If it is modified then a copy will be made upon
entry into the procedure.  Conversely if the content is only read and
never modified then this non @code{VAR} unbounded array is a candidate
for being passed by reference.  It is only a candidate as it is still
possible that passing this parameter by reference could alter the
meaning of the source code.  For example consider the following case:

@example
PROCEDURE StrConCat (VAR a: ARRAY OF CHAR; b, c: ARRAY OF CHAR) ;
BEGIN
   (* code which performs string a := b + c *)
END StrConCat ;

PROCEDURE foo ;
VAR
   a: ARRAY [0..3] OF CHAR ;
BEGIN
   a := 'q' ;
   StrConCat(a, a, a)
END foo ;
@end example

In the code above we see that the same parameter, @code{a}, is being
passed three times to @code{StrConCat}.  Clearly even though parameters
@code{b} and @code{c} are never modified it would be incorrect to
implement them as pass by reference.  Therefore the compiler checks to
see if any non @code{VAR} parameter is type compatible with any
@code{VAR} parameter and if so it generates run time procedure entry
checks to determine whether the contents of parameters @code{b} or
@code{c} matches the contents of @code{a}.  If a match is detected
then a copy is made and the @code{address} in the unbounded
@code{struct}ure is modified.

The compiler will check the address range of each candidate against
the address range of any @code{VAR} parameter, providing they are type
compatible.  For example consider:

@example
PROCEDURE foo (a: ARRAY OF BYTE; VAR f: REAL) ;
BEGIN
   f := 3.14 ;
   IF a[0]=BYTE(0)
   THEN
      (* etc *)
   END
END foo ;

PROCEDURE bar ;
BEGIN
   r := 2.0 ;
   foo(r, r)
END bar ;
@end example

Here we see that although parameter, @code{a}, is a candidate for the
passing by reference, it would be incorrect to use this
transformation.  Thus the compiler detects that parameters, @code{a}
and @code{f} are type compatible and will produce run time checking
code to test whether the address range of their respective contents
intersect.

@node Linking, Building a shared library, Unbounded by reference, Using

This section describes the linking related options.  There are three
linking strategies available which are dynamic scaffold, static
scaffold and user defined.  The dynamic scaffold is enabled by default
and each module will register itself to the run time @samp{M2RTS} via
a constructor.  The static scaffold mechanism will invoke each modules
@samp{_init} and @samp{_finish} function in turn via a sequence of
calls from within @samp{main}.  Lastly the user defined strategy
can be implemented by turning off the dynamic and static options via
@samp{-fno-scaffold-dynamic} and @samp{-fno-scaffold-static}.

In the simple test below:

@example
$ gm2 hello.mod
@end example

the driver will add the options @samp{-fscaffold-dynamic} and
@samp{-fgen-module-list=-} which generate a list of application
modules and also creates the @samp{main} function with calls to
@samp{M2RTS}.  It can be useful to add the option @samp{-fsources}
which displays the source files as they are parsed and summarizes
whether the source file is required for compilation or linking.

If you wish to split the above command line into a compile and link
then you could use these steps:

@example
$ gm2 -c -fscaffold-main hello.mod
$ gm2 hello.o
@end example

The @samp{-fscaffold-main} informs the compiler to generate the
@samp{main} function and scaffold.  You can enable the environment
variable @samp{GCC_M2LINK_RTFLAG} to trace the construction and
destruction of the application.  The values for
@samp{GCC_M2LINK_RTFLAG} are shown in the table below:

@example
value   | meaning
=================
all     | turn on all flags below
module  | trace modules as they register themselves
pre     | generate module list prior to dependency resolution
dep     | trace module dependency resolution
post    | generate module list after dependency resolution
force   | generate a module list after dependency and forced
        | ordering is complete
@end example

The values can be combined using a comma separated list.

One of the advantages of the dynamic scaffold is that the driver
behaves in a similar way to the other front end drivers.
For example consider a small project consisting of 4 definition
implementation modules (@samp{a.def}, @samp{a.mod}, @samp{b.def},
@samp{b.mod}, @samp{c.def}, @samp{c.mod}, @samp{d.def}, @samp{d.mod})
and a program module @samp{program.mod}.

To link this project we could:

@example
$ gm2 -g -c a.mod
$ gm2 -g -c b.mod
$ gm2 -g -c c.mod
$ gm2 -g -c d.mod
$ gm2 -g program.mod a.o b.o c.o d.o
@end example

The module initialization sequence is defined by the ISO standard to
follow the import graph traversal.  The initialization order is the
order in which the corresponding separate modules finish the
processing of their import lists.

However, if required, you can override this using
@samp{-fruntime-modules=a,b,c,d} for example which forces the
initialization sequence to @samp{a}, @samp{b}, @samp{c} and @samp{d}.

@node Building a shared library, Interface for Python, Unbounded by reference, Using
@section Building a shared library

This section describes building a tiny shared library implemented in
Modula-2 and built with @file{libtool}.  Suppose a project consists of
two definition modules and two implementation modules and a program
module @file{a.def}, @file{a.mod}, @file{b.def}, @file{b.mod} and
@file{c.mod}.  The first step is to compile the modules using position
independent code.  This can be achieved by the following three
commands:

@example
libtool --tag=CC --mode=compile gm2 -g -c a.mod -o a.lo
libtool --tag=CC --mode=compile gm2 -g -c b.mod -o b.lo
libtool --tag=CC --mode=compile gm2 -g -c c.mod -o c.lo
@end example

The second step is to generate the shared library initialization and
finalization routines.  We can do this by asking gm2 to generate a
list of dependent modules and then use this to generate the scaffold.
We also must compile the scaffold.

@example
gm2 -c -g -fmakelist c.mod
gm2 -c -g -fmakeinit -fshared c.mod
libtool --tag=CC --mode=compile g++ -g -c c_m2.cpp -o c_m2.lo
@end example

The third step is to link all these @file{.lo} files.

@example
libtool --mode=link gcc -g c_m2.lo a.lo b.lo c.lo \
        -L$(prefix)/lib64 \
        -rpath `pwd` -lgm2 -lstdc++ -lm -o libabc.la
@end example

At this point the shared library @file{libabc.so} will have been
created inside the directory @file{.libs}.

@node Interface for Python, Producing a Python module, Building a shared library, Using
@section How to produce swig interface files

This section describes how Modula-2 implementation modules can be
called from Python (and other scripting languages such as TCL and
Perl).  GNU Modula-2 can be instructed to create a swig interface when
it is compiling an implementation module.  Swig then uses the
interface file to generate all the necessary wrapping to that the
desired scripting language may access the implementation module.

Here is an example of how you might call upon the services of the
Modula-2 library module @code{NumberIO} from Python3.

The following commands can be used to generate the Python3 module:

@example
export src=@samp{directory to the sources}
export prefix=@samp{directory to where the compiler is installed}
gm2 -I$@{src@} -c -g -fswig $@{src@}/../../../gm2-libs/NumberIO.mod
gm2 -I$@{src@} -c -g -fmakelist $@{src@}/../../../gm2-libs/NumberIO.mod

gm2 -I$@{src@} -c -g -fmakeinit -fshared \
   $@{src@}/../../../gm2-libs/NumberIO.mod

swig -c++ -python3 NumberIO.i

libtool --mode=compile g++ -g -c -I$@{src@} NumberIO_m2.cpp \
  -o NumberIO_m2.lo

libtool --tag=CC --mode=compile gm2 -g -c \
  -I$@{src@}../../../gm2-libs \
  $@{src@}/../../../gm2-libs/NumberIO.mod -o NumberIO.lo

libtool --tag=CC --mode=compile g++ -g -c NumberIO_wrap.cxx \
  -I/usr/include/python3 -o NumberIO_wrap.lo

libtool --mode=link gcc -g NumberIO_m2.lo NumberIO_wrap.lo \
   -L$@{prefix@}/lib64 \
   -rpath `pwd` -lgm2 -lstdc++ -lm -o libNumberIO.la

cp .libs/libNumberIO.so _NumberIO.so
@end example

The first four commands, generate the swig interface file
@file{NumberIO.i} and python wrap files @file{NumberIO_wrap.cxx} and
@file{NumberIO.py}.  The next three @file{libtool} commnads compile
the C++ and Modula-2 source code into @file{.lo} objects.  The last
@file{libtool} command links all the @file{.lo} files into a
@file{.la} file and includes all shared library dependencies.

Now it is possible to run the following Python script
(called @file{testnum.py}):

@example
import NumberIO

print ("1234 x 2 =", NumberIO.NumberIO_StrToInt("1234")*2)
@end example

like this:

@example
$ python3 testnum.py
1234 x 2 = 2468
@end example

@xref{Producing a Python module, , ,gm2} for another example which
uses the @code{UNQUALIFIED} keyword to reduce the module name clutter
from the viewport of Python3.

@subsection Limitations of automatic generated of Swig files

This section discusses the limitations of automatically generating
swig files.  From the previous example we see that the module
@code{NumberIO} had a swig interface file @file{NumberIO.i}
automatically generated by the compiler.  If we consider three of the
procedure definitions in @file{NumberIO.def} we can see the
success and limitations of the automatic interface generation.

@example
PROCEDURE StrToHex (a: ARRAY OF CHAR; VAR x: CARDINAL) ;
PROCEDURE StrToInt (a: ARRAY OF CHAR; VAR x: INTEGER) ;
PROCEDURE ReadInt (VAR x: CARDINAL) ;
@end example

Below are the swig interface prototypes:

@example
extern void NumberIO_StrToHex (char *_m2_address_a,
                               int _m2_high_a, unsigned int *OUTPUT);
/*  parameters: x is known to be an OUTPUT */
extern void NumberIO_StrToInt (char *_m2_address_a,
                               int _m2_high_a, int *OUTPUT);
/*  parameters: x is guessed to be an OUTPUT */
extern void NumberIO_ReadInt (int *x);
/*  parameters: x is unknown */
@end example

In the case of @code{StrToHex} it can be seen that the compiler
detects that the last parameter is an output.  It explicitly tells
swig this by using the parameter name @code{OUTPUT} and in the
following comment it informs the user that it knows this to be an
output parameter.  In the second procedure @code{StrToInt} it marks
the final parameter as an output, but it tells the user that this is
only a guess.  Finally in @code{ReadInt} it informs the user that
it does not know whether the parameter, @code{x}, is an output, input
or an inout parameter.

The compiler decides whether to mark a parameter as either:
@code{INPUT}, @code{OUTPUT} or @code{INOUT} if it is read before
written or visa versa in the first basic block.  At this point
it will write output that the parameter is known.  If it is not
read or written in the first basic block then subsequent basic blocks
are searched and the result is commented as a guess.  Finally if
no read or write occurs then the parameter is commented as unknown.
However, clearly it is possible to fool this mechanism.  Nevertheless
automatic generation of implementation module into swig interface files
was thought sufficiently useful despite these limitations.

In conclusion it would be wise to check all parameters in any
automatically generated swig interface file.  Furthermore you can
force the automatic mechanism to generate correct interface files by
reading or writing to the @code{VAR} parameter in the first basic
block of a procedure.

@node Producing a Python module, Interface to C, Interface for Python, Using
@section How to produce a Python module

This section describes how it is possible to produce a Python module
from Modula-2 code.  There are a number of advantages to this
approach, it ensures your code reaches a wider audience, maybe it is
easier to initialize your application in Python.

The example application here is a pedagogical two dimensional gravity
next event simulation.  The Python module needs to have a clear API
which should be placed in a single definition module.  Furthermore the
API should only use fundamental pervasive data types and strings.
Below the API is contained in the file @file{twoDsim.def}:

@example
DEFINITION MODULE twoDsim ;

EXPORT UNQUALIFIED gravity, box, poly3, poly5, poly6, mass,
                   fix, circle, pivot, velocity, accel, fps,
                   replayRate, simulateFor ;
(*
   gravity - turn on gravity at: g m^2
*)

PROCEDURE gravity (g: REAL) ;


(*
   box - place a box in the world at (x0,y0),(x0+i,y0+j)
*)

PROCEDURE box (x0, y0, i, j: REAL) : CARDINAL ;


(*
   poly3 - place a triangle in the world at:
           (x0,y0),(x1,y1),(x2,y2)
*)

PROCEDURE poly3 (x0, y0, x1, y1, x2, y2: REAL) : CARDINAL ;


(*
   poly5 - place a pentagon in the world at:
           (x0,y0),(x1,y1),(x2,y2),(x3,y3),(x4,y4)
*)

PROCEDURE poly5 (x0, y0, x1, y1,
                 x2, y2, x3, y3, x4, y4: REAL) : CARDINAL ;


(*
   poly6 - place a hexagon in the world at:
           (x0,y0),(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5)
*)

PROCEDURE poly6 (x0, y0, x1, y1,
                 x2, y2, x3, y3,
                 x4, y4, x5, y5: REAL) : CARDINAL ;


(*
   mass - specify the mass of an object and return the, id.
*)

PROCEDURE mass (id: CARDINAL; m: REAL) : CARDINAL ;


(*
   fix - fix the object to the world.
*)

PROCEDURE fix (id: CARDINAL) : CARDINAL ;


(*
   circle - adds a circle to the world.  Center
            defined by: x0, y0 radius, r.
*)

PROCEDURE circle (x0, y0, r: REAL) : CARDINAL ;


(*
   velocity - give an object, id, a velocity, vx, vy.
*)

PROCEDURE velocity (id: CARDINAL; vx, vy: REAL) : CARDINAL ;


(*
   accel - give an object, id, an acceleration, ax, ay.
*)

PROCEDURE accel (id: CARDINAL; ax, ay: REAL) : CARDINAL ;


(*
   fps - set frames per second.
*)

PROCEDURE fps (f: REAL) ;


(*
   replayRate - set frames per second during replay.
*)

PROCEDURE replayRate (f: REAL) ;


(*
   simulateFor - render for, t, seconds.
*)

PROCEDURE simulateFor (t: REAL) ;


END twoDsim.
@end example

The keyword @code{UNQUALIFIED} can be used to ensure that the
compiler will provide externally accessible functions
@code{gravity}, @code{box}, @code{poly3}, @code{poly5}, @code{poly6},
@code{mass}, @code{fix}, @code{circle}, @code{pivot}, @code{velocity},
@code{accel}, @code{fps}, @code{replayRate}, @code{simulateFor}
rather than name mangled alternatives.
Hence in our Python3 application we could write:

@example
#!/usr/bin/env python3

from twoDsim import *

b = box (0.0, 0.0, 1.0, 1.0)
b = fix (b)
c1 = circle (0.7, 0.7, 0.05)
c1 = mass (c1, 0.01)
c2 = circle (0.7, 0.1, 0.05)
c2 = mass (c2, 0.01)
c2 = fix (c2)
gravity (-9.81)
fps (24.0*4.0)
replayRate (24.0)
print ("creating frames")
try:
    simulateFor (1.0)
    print ("all done")
except:
    print ("exception raised")
@end example

which accesses the various functions defined and implemented by the
module @code{twoDsim}.  The Modula-2 source code is compiled via:

@example
$ gm2 -g -fiso -c -fswig twoDsim.mod
$ gm2 -g -fiso -c -fmakelist twoDsim.mod
$ gm2 -g -fiso -c -fmakeinit twoDsim.mod
@end example

The first command both compiles the source file creating
@file{twoDsim.o} and produces a swig interface file @file{swig.i}.  We
now use @code{swig} and @code{g++} to produce and compile the
interface wrappers:

@example
$ libtool --mode=compile g++ -g -c twoDsim_m2.cpp -o twoDsim_m2.lo
$ swig -c++ -python3 twoDsim.i
$ libtool --mode=compile g++ -c -fPIC twoDsim_wrap.cxx \
   -I/usr/include/python3 -o twoDsim_wrap.lo
$ libtool --mode=compile gm2 -g -fPIC -fiso -c deviceGnuPic.mod
$ libtool --mode=compile gm2 -g -fPIC -fiso -c roots.mod
$ libtool --mode=compile gm2 -g -fPIC -fiso -c -fswig \
   twoDsim.mod -o twoDsim.lo
@end example

Finally the application is linked into a shared library:

@example
$ libtool --mode=link gcc -g twoDsim_m2.lo twoDsim_wrap.lo \
  roots.lo deviceGnuPic.lo \
   -L$@{prefix@}/lib64 \
   -rpath `pwd` -lgm2 -lstdc++ -lm -o libtwoDsim.la
cp .libs/libtwoDsim.so _twoDsim.so
@end example

The library name must start with @code{_} to comply with the Python3
module naming scheme.

@node Interface to C, Assembly language, Producing a Python module, Using
@section Interfacing GNU Modula-2 to C

The GNU Modula-2 compiler tries to use the C calling convention
wherever possible however some parameters have no C equivalent and
thus a language specific method is used.  For example unbounded arrays
are passed as a @code{struct @{void *address, unsigned int high@}} and
the contents of these arrays are copied by callee functions when they
are declared as non @code{VAR} parameters.  The @code{VAR} equivalent
unbounded array parameters need no copy, but still use the
@code{struct} representation.

The recommended method of interfacing GNU Modula-2 to C is by telling
the definition module that the implementation is in the C language.
This is achieved by using the tokens @code{DEFINITION MODULE FOR "C"}.
Here is an example @file{libprintf.def}.

@example
DEFINITION MODULE FOR "C" libprintf ;

EXPORT UNQUALIFIED printf ;

PROCEDURE printf (a: ARRAY OF CHAR; ...) : [ INTEGER ] ;

END libprintf.
@end example

the @code{UNQUALIFIED} keyword in the definition module informs
GNU Modula-2 not to prefix the module name to exported references
in the object file.

The @code{printf} declaration states that the first parameter
semantically matches @code{ARRAY OF CHAR} but since the module is for
the C language it will be mapped onto @code{char *}.  The token
@code{...} indicates a variable number of arguments (varargs) and all
parameters passed here are mapped onto their C equivalents.  Arrays and
constant strings are passed as pointers.  Lastly @code{[ INTEGER ]}
states that the caller can ignore the function return result if desired.

The hello world program can be rewritten as:

@example
MODULE hello ;

FROM libprintf IMPORT printf ;

BEGIN
   printf ("hello world\n")
END hello.
@end example

and it can be compiled by:

@samp{gm2 -g hello.mod -lc}

In reality the @samp{-lc} is redundant as libc is always included in the
linking process.  It is shown here to emphasize that the C library or
object file containing @code{printf} must be present.  The search path
for modules can be changed by using @samp{-I}.

If a procedure function is declared using varargs then some parameter
values are converted.  The table below summarizes the default conversions
and default types used.

@example
Actual Parameter       |  Default conversion  |   Type of actual
                       |                      |   value passed
===============================================================
123                    |  none                |   long long int
"hello world"          |  none                |   const char *
a: ARRAY OF CHAR       |  ADR (a)             |   char *
a: ARRAY [0..5] OF CHAR|  ADR (a)             |   char *
3.14                   |  none                |   long double
@end example

If you wish to pass @code{int} values then you should explicitly
convert the constants using one of the conversion mechanisms.
For example:  @code{INTEGER(10)} or @code{VAL(INTEGER, 10)} or
@code{CAST(INTEGER, 10)}.

@node Assembly language, Alignment, Interface to C, Using
@section Interface to assembly language

The interface for GNU Modula-2 to assembly language is almost
identical to GNU C.  The only alterations are that the keywords
@code{asm} and @code{volatile} are in capitals, following the Modula-2
convention.

A simple, but highly non optimal, example is given below.  Here we want
to add the two @code{CARDINAL}s @code{foo} and @code{bar} together and
return the result.  The target processor is assumed to be executing
the x86_64 instruction set.

@example
PROCEDURE Example (foo, bar: CARDINAL) : CARDINAL ;
VAR
   myout: CARDINAL ;
BEGIN
   ASM VOLATILE ("movq %1,%%rax; addq %2,%%rax; movq %%rax,%0"
      : "=rm" (myout)            (* outputs *)
      : "rm" (foo), "rm" (bar)   (* inputs  *)
      : "rax") ;                 (* we trash *)
   RETURN( myout )
END Example ;
@end example

For a full description of this interface we refer the reader to the GNU C manual.

@xref{Extended Asm, ,Extensions to the C Language Family,gcc}.

The same example can be written using the newer extensions of naming
the operands rather than using numbered arguments.

@example
PROCEDURE Example (foo, bar: CARDINAL) : CARDINAL ;
VAR
   myout: CARDINAL ;
BEGIN
   ASM VOLATILE (
    "movq %[left],%%rax; addq %[right],%%rax; movq %%rax,%[output]"
      : [output] "=rm" (myout)                  (* outputs *)
      : [left] "rm" (foo), [right] "rm" (bar)   (* inputs  *)
      : "rax") ;                                (* we trash *)
   RETURN( myout )
END Example ;
@end example

Both examples generate exactly the same code.  It is worth noting that
the specifier ``rm'' indicates that the operand can be either a
register or memory.  Of course you must choose an instruction which
can take either, but this allows the compiler to take make more
efficient choices depending upon the optimization level given to the
compiler.

@node Alignment, Packed, Assembly language, Using
@section Data type alignment

GNU Modula-2 allows you to specify alignment for types and variables.
The syntax for alignment is to use the ISO pragma directives @code{<*}
@code{bytealignment (} expression @code{)} and @code{*>}.  These directives
can be used after type and variable declarations.

The ebnf of the alignment production is:

@example
Alignment := [ ByteAlignment ] =:
ByteAlignment := '<*' AttributeExpression '*>' =:
AlignmentExpression := "(" ConstExpression ")" =:
@end example

The @code{Alignment} ebnf statement may be used during construction of
types, records, record fields, arrays, pointers and variables.  Below
is an example of aligning a type so that the variable @code{bar} is
aligned on a 1024 address.

@example
MODULE align ;

TYPE
   foo = INTEGER <* bytealignment(1024) *> ;

VAR
   z  : INTEGER ;
   bar: foo ;
BEGIN
END align.
@end example

The next example aligns a variable on a 1024 byte boundary.

@example
MODULE align2 ;

VAR
   x  : CHAR ;
   z  : ARRAY [0..255] OF INTEGER <* bytealignment(1024) *> ;
BEGIN
END align2.
@end example

Here the example aligns a pointer on a 1024 byte boundary.

@example
MODULE align4 ;

FROM SYSTEM IMPORT ADR ;
FROM libc IMPORT exit ;

VAR
   x  : CHAR ;
   z  : POINTER TO INTEGER <* bytealignment(1024) *> ;
BEGIN
   IF ADR(z) MOD 1024=0
   THEN
      exit(0)
   ELSE
      exit(1)
   END
END align4.
@end example

In example @code{align5} record field @code{y} is aligned on a 1024
byte boundary.

@example
MODULE align5 ;

FROM SYSTEM IMPORT ADR ;
FROM libc IMPORT exit ;

TYPE
   rec = RECORD
            x: CHAR ;
            y: CHAR <* bytealignment(1024) *> ;
         END ;
VAR
   r: rec ;
BEGIN
   IF ADR(r.y) MOD 1024=0
   THEN
      exit(0)
   ELSE
      exit(1)
   END
END align5.
@end example

In the example below module @code{align6} declares @code{foo} as an
array of 256 @code{INTEGER}s.  The array @code{foo} is aligned on a
1024 byte boundary.

@example
MODULE align6 ;

FROM SYSTEM IMPORT ADR ;
FROM libc IMPORT exit ;

TYPE
   foo = ARRAY [0..255] OF INTEGER <* bytealignment(1024) *> ;

VAR
   x  : CHAR ;
   z  : foo ;
BEGIN
   IF ADR(z) MOD 1024=0
   THEN
      exit(0)
   ELSE
      exit(1)
   END
END align6.
@end example

@node Packed, Built-ins, Alignment, Using
@section Packing data types

The pragma @code{<* bytealignment(0) *>} can be used to specify that
the fields within a @code{RECORD} are to be packed.  Currently this
only applies to fields which are declared as subranges, ordinal types
and enumerated types.  Here is an example of how two subranges might
be packed into a byte.

@example
TYPE
   bits3c =  [0..7] ;
   bits3i = [-4..3] ;

   byte = RECORD
              <* bytealignment(0) *>
              x: bits3c ;
              <* bitsunused(2) *>
              y: bits3i ;
          END ;
@end example

Notice that the user has specified that in between fields @code{x} and
@code{y} there are two bits unused.

Now the user wishes to create a record with byte numbers zero and one
occupied and then an @code{INTEGER32} field which is four byte
aligned.  In this case byte numbers two and three will be unused.  The
pragma @code{bytealignment} can be issued at the start of the record
indicating the default alignment for the whole record and this can be
overridden by individual fields if necessary.

@example
   rec = RECORD
            <* bytealignment (1) *> ;
            a, b: byte ;
            x: INTEGER32 <* bytealignment(4) *> ;
         END ;
@end example

In the following example the user has specified that a record has two
fields @code{p} and @code{q} but that there are three bytes unused between
these fields.

@example
   header = RECORD
               <* bytealignment(1) *>
               p: byte ;
               <* bytesunused(3) *>
               q: byte ;
            END ;
@end example

The pragma @code{<* bytesunused(x) *>} can only be used if the current
field is on a byte boundary.  There is also a @code{SYSTEM} pseudo
procedure function @code{TBITSIZE(T)} which returns the minimum number of
bits necessary to represent type @code{T}.

Another example of packing record bit fields is given below:

@example
MODULE align21 ;

FROM libc IMPORT exit ;

TYPE
   colour = (red, blue, green, purple, white, black) ;

   soc = PACKEDSET OF colour ;

   rec = RECORD
            <* bytealignment(0) *>
            x: soc ;
            y: [-1..1] ;
         END ;

VAR
   r: rec ;
   v: CARDINAL ;
BEGIN
   v := SIZE(r) ;
   IF SIZE(r)#1
   THEN
      exit(1)
   END ;
   r.x := soc@{blue@} ;
   IF r.x#soc@{blue@}
   THEN
      exit(2)
   END
END align21.
@end example

Here we see that the total size of this record is one byte and consists
of a six bit set type followed by a 2 bit integer subrange.

@node Built-ins, The PIM system module, Packed, Using
@section Accessing GNU Modula-2 Built-ins

This section describes the built-in constants and functions defined in
GNU Modula-2.  The following compiler constants can be accessed using
the @code{__ATTRIBUTE__} @code{__BUILTIN__} keywords.  These are not
part of the Modula-2 language and they may differ depending upon the
target architecture but they provide a method whereby common
libraries can interface to a different underlying architecture.

The built-in constants are: @code{BITS_PER_UNIT}, @code{BITS_PER_WORD},
@code{BITS_PER_CHAR} and @code{UNITS_PER_WORD}.  They are integrated into
GNU Modula-2 by an extension to the @code{ConstFactor} rule:

@example
ConstFactor := ConstQualidentOrSet | Number | ConstString |
               "(" ConstExpression ")" | "NOT" ConstFactor |
               ConstAttribute =:

ConstAttribute := "__ATTRIBUTE__" "__BUILTIN__" "(" "(" Ident ")" ")" =:
@end example

Here is an example taken from the ISO library @code{SYSTEM.def}:

@example
CONST
   BITSPERLOC    = __ATTRIBUTE__ __BUILTIN__ ((BITS_PER_UNIT)) ;
   LOCSPERWORD   = __ATTRIBUTE__ __BUILTIN__ ((UNITS_PER_WORD)) ;
@end example

Built-in functions are transparent to the end user.  All built-in
functions are declared in @code{DEFINITION MODULE}s and are imported
as and when required.  Built-in functions are declared in definition
modules by using the @code{__BUILTIN__} keyword.  Here is a section of
the ISO library @code{LongMath.def} which demonstrates this feature.

@example
PROCEDURE __BUILTIN__ sqrt (x: LONGREAL): LONGREAL;
  (* Returns the square root of x *)
@end example

This indicates that the function @code{sqrt} will be implemented using
the gcc built-in maths library.  If gcc cannot utilize the built-in
function (for example if the programmer requested the address of
@code{sqrt}) then code is generated to call the alternative function
implemented in the @code{IMPLEMENTATION} @code{MODULE}.

Sometimes a function exported from the @code{DEFINITION} @code{MODULE}
will have a different name from the built-in function within gcc.  In
such cases the mapping between the GNU Modula-2 function name and the
gcc name is expressed using the keywords @code{__ATTRIBUTE__}
@code{__BUILTIN__} @code{((Ident))}.  For example the function
@code{sqrt} in @code{LongMath.def} maps onto the gcc built-in function
@code{sqrtl} and this is expressed as:

@example
PROCEDURE __ATTRIBUTE__ __BUILTIN__ ((sqrtl)) sqrt
                                    (x: LONGREAL) : LONGREAL;
  (* Returns the positive square root of x *)
@end example

The following module @code{Builtins.def} enumerates the list of
built-in functions which can be accessed in GNU Modula-2.  It also
serves to define the parameter and return value for each function:

@include m2/Builtins.texi

Although this module exists and will result in the generation of
in-line code if optimization flags are passed to GNU Modula-2, users
are advised to utilize the same functions from more generic libraries.
The built-in mechanism will be applied to these generic
libraries where appropriate.  Note for the mathematical routines to
be in-lined you need to specify the @samp{-ffast-math -O} options.

@node The PIM system module, The ISO system module, Built-ins, Using
@section The PIM system module

@include m2/SYSTEM-pim.texi

The different dialects of Modula-2 PIM-[234] and ISO Modula-2 declare
the function @code{SIZE} in different places.  PIM-[34] and ISO
Modula-2 declare @code{SIZE} as a pervasive function (declared in the
base module).  PIM-2 defined @code{SIZE} in the @code{SYSTEM} module
(as shown above).

GNU Modula-2 allows users to specify the dialect of Modula-2 by using
the @code{-fiso} and @code{-fpim2} command line switches.

The data types @code{CSIZE_T} and @code{CSSIZE_T} are also exported from
the @code{SYSTEM} module.  The type @code{CSIZE_T} is unsigned and is
mapped onto the target C data type @code{size_t} whereas the type
@code{CSSIZE_T} is mapped onto the signed C data type @code{ssize_t}.

It is anticipated that these should only be used to provide cross
platform definition modules for C libraries.

There are also a variety of fixed sized @code{INTEGER} and
@code{CARDINAL} types.  The variety of the fixed sized types will
depend upon the target architecture.

@node The ISO system module, , The PIM system module, Using
@section The ISO system module

@include m2/SYSTEM-iso.texi

The data types @code{CSIZE_T} and @code{CSSIZE_T} are also exported from
the @code{SYSTEM} module.  The type @code{CSIZE_T} is unsigned and is
mapped onto the target C data type @code{size_t} whereas the type
@code{CSSIZE_T} is mapped onto the signed C data type @code{ssize_t}.

It is anticipated that these should only be used to provide cross
platform definition modules for C libraries.

There are also a variety of fixed sized @code{INTEGER} and
@code{CARDINAL} types.  The variety of the fixed sized types will
depend upon the target architecture.

@node License, Copying, The ISO system module, Top
@section License of GNU Modula-2

GNU Modula-2 is free software, the compiler is held under the GPL v3
@uref{http://www.gnu.org/licenses/gpl.txt},
its libraries (pim, iso and Logitech compatible) are under the
GPL v3 with the GCC run time library exception clause.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.

More information on how these licenses work is available
@uref{http://www.gnu.org/licenses/licenses.html} on the GNU web site.

@c Copying node is inside the gpl_v3.texi
@include gpl_v3.texi

@node Contributing, Internals, Copying, Top
@section Contributing to GNU Modula-2

Please do and please read the GNU Emacs info under

@example
* Standards: (standards).       GNU coding standards.
* Intellectual Property::       Keeping Free Software Free
* Reading Non-Free Code::       Referring to Proprietary Programs
* Contributions::               Accepting Contributions
@end example

You might consider joining the GM2 Mailing list before you start
coding.  The mailing list may be subscribed via a web interface
@uref{http://lists.nongnu.org/mailman/listinfo/gm2} or via email
@email{gm2-subscribe@@nongnu.org}.

Many thanks and enjoy your coding!

@node Internals, EBNF, Contributing, Top

This section is still being written.
@c @include gm2-internals.texi

@node EBNF, Libraries, Internals, Top
@chapter EBNF of GNU Modula-2

This chapter contains the EBNF of GNU Modula-2.  This grammar currently
supports both PIM and ISO dialects.  The rules here are automatically
extracted from the crammer files in GNU Modula-2 and serve to document
the syntax of the extensions described earlier and how they fit in
with the base language.

Note that the first six productions are built into the lexical analysis
phase.

@include m2/gm2-ebnf.texi

@node Libraries, Indices, EBNF, Top
@chapter PIM and ISO library definitions

This chapter contains M2F, PIM and ISO libraries.

@include m2/gm2-libs.texi

@node Indices, , Libraries, Top
@section Indices

@ifhtml
@menu
* Contents::    Section and subsections.
* Functions::   Function, constants, types, ebnf indices.
@end menu

@node Contents, Functions, ,
@section Section and subsections
@printindex cp

@node Functions, , Contents,
@section Function, constants, types, ebnf indices.
@end ifhtml

@printindex fn

@summarycontents
@contents
@bye