1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
|
/* Decimal floating point support.
Copyright (C) 2005-2020 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "dfp.h"
/* The order of the following headers is important for making sure
decNumber structure is large enough to hold decimal128 digits. */
#include "decimal128.h"
#include "decimal64.h"
#include "decimal32.h"
#ifndef WORDS_BIGENDIAN
#define WORDS_BIGENDIAN 0
#endif
/* Initialize R (a real with the decimal flag set) from DN. Can
utilize status passed in via CONTEXT, if a previous operation had
interesting status. */
static void
decimal_from_decnumber (REAL_VALUE_TYPE *r, decNumber *dn, decContext *context)
{
memset (r, 0, sizeof (REAL_VALUE_TYPE));
r->cl = rvc_normal;
if (decNumberIsNaN (dn))
r->cl = rvc_nan;
if (decNumberIsInfinite (dn))
r->cl = rvc_inf;
if (context->status & DEC_Overflow)
r->cl = rvc_inf;
if (decNumberIsNegative (dn))
r->sign = 1;
r->decimal = 1;
if (r->cl != rvc_normal)
return;
decContextDefault (context, DEC_INIT_DECIMAL128);
context->traps = 0;
decimal128FromNumber ((decimal128 *) r->sig, dn, context);
}
/* Create decimal encoded R from string S. */
void
decimal_real_from_string (REAL_VALUE_TYPE *r, const char *s)
{
decNumber dn;
decContext set;
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
decNumberFromString (&dn, s, &set);
/* It would be more efficient to store directly in decNumber format,
but that is impractical from current data structure size.
Encoding as a decimal128 is much more compact. */
decimal_from_decnumber (r, &dn, &set);
}
/* Initialize a decNumber from a REAL_VALUE_TYPE. */
static void
decimal_to_decnumber (const REAL_VALUE_TYPE *r, decNumber *dn)
{
decContext set;
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
switch (r->cl)
{
case rvc_zero:
decNumberZero (dn);
break;
case rvc_inf:
decNumberFromString (dn, "Infinity", &set);
break;
case rvc_nan:
if (r->signalling)
decNumberFromString (dn, "snan", &set);
else
decNumberFromString (dn, "nan", &set);
break;
case rvc_normal:
if (!r->decimal)
{
/* dconst{1,2,m1,half} are used in various places in
the middle-end and optimizers, allow them here
as an exception by converting them to decimal. */
if (memcmp (r, &dconst1, sizeof (*r)) == 0)
{
decNumberFromString (dn, "1", &set);
break;
}
if (memcmp (r, &dconst2, sizeof (*r)) == 0)
{
decNumberFromString (dn, "2", &set);
break;
}
if (memcmp (r, &dconstm1, sizeof (*r)) == 0)
{
decNumberFromString (dn, "-1", &set);
break;
}
if (memcmp (r, &dconsthalf, sizeof (*r)) == 0)
{
decNumberFromString (dn, "0.5", &set);
break;
}
gcc_unreachable ();
}
decimal128ToNumber ((const decimal128 *) r->sig, dn);
break;
default:
gcc_unreachable ();
}
/* Fix up sign bit. */
if (r->sign != decNumberIsNegative (dn))
dn->bits ^= DECNEG;
}
/* Encode a real into an IEEE 754 decimal32 type. */
void
encode_decimal32 (const struct real_format *fmt ATTRIBUTE_UNUSED,
long *buf, const REAL_VALUE_TYPE *r)
{
decNumber dn;
decimal32 d32;
decContext set;
int32_t image;
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
decimal_to_decnumber (r, &dn);
decimal32FromNumber (&d32, &dn, &set);
memcpy (&image, d32.bytes, sizeof (int32_t));
buf[0] = image;
}
/* Decode an IEEE 754 decimal32 type into a real. */
void
decode_decimal32 (const struct real_format *fmt ATTRIBUTE_UNUSED,
REAL_VALUE_TYPE *r, const long *buf)
{
decNumber dn;
decimal32 d32;
decContext set;
int32_t image;
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
image = buf[0];
memcpy (&d32.bytes, &image, sizeof (int32_t));
decimal32ToNumber (&d32, &dn);
decimal_from_decnumber (r, &dn, &set);
}
/* Encode a real into an IEEE 754 decimal64 type. */
void
encode_decimal64 (const struct real_format *fmt ATTRIBUTE_UNUSED,
long *buf, const REAL_VALUE_TYPE *r)
{
decNumber dn;
decimal64 d64;
decContext set;
int32_t image;
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
decimal_to_decnumber (r, &dn);
decimal64FromNumber (&d64, &dn, &set);
if (WORDS_BIGENDIAN == FLOAT_WORDS_BIG_ENDIAN)
{
memcpy (&image, &d64.bytes[0], sizeof (int32_t));
buf[0] = image;
memcpy (&image, &d64.bytes[4], sizeof (int32_t));
buf[1] = image;
}
else
{
memcpy (&image, &d64.bytes[4], sizeof (int32_t));
buf[0] = image;
memcpy (&image, &d64.bytes[0], sizeof (int32_t));
buf[1] = image;
}
}
/* Decode an IEEE 754 decimal64 type into a real. */
void
decode_decimal64 (const struct real_format *fmt ATTRIBUTE_UNUSED,
REAL_VALUE_TYPE *r, const long *buf)
{
decNumber dn;
decimal64 d64;
decContext set;
int32_t image;
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
if (WORDS_BIGENDIAN == FLOAT_WORDS_BIG_ENDIAN)
{
image = buf[0];
memcpy (&d64.bytes[0], &image, sizeof (int32_t));
image = buf[1];
memcpy (&d64.bytes[4], &image, sizeof (int32_t));
}
else
{
image = buf[1];
memcpy (&d64.bytes[0], &image, sizeof (int32_t));
image = buf[0];
memcpy (&d64.bytes[4], &image, sizeof (int32_t));
}
decimal64ToNumber (&d64, &dn);
decimal_from_decnumber (r, &dn, &set);
}
/* Encode a real into an IEEE 754 decimal128 type. */
void
encode_decimal128 (const struct real_format *fmt ATTRIBUTE_UNUSED,
long *buf, const REAL_VALUE_TYPE *r)
{
decNumber dn;
decContext set;
decimal128 d128;
int32_t image;
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
decimal_to_decnumber (r, &dn);
decimal128FromNumber (&d128, &dn, &set);
if (WORDS_BIGENDIAN == FLOAT_WORDS_BIG_ENDIAN)
{
memcpy (&image, &d128.bytes[0], sizeof (int32_t));
buf[0] = image;
memcpy (&image, &d128.bytes[4], sizeof (int32_t));
buf[1] = image;
memcpy (&image, &d128.bytes[8], sizeof (int32_t));
buf[2] = image;
memcpy (&image, &d128.bytes[12], sizeof (int32_t));
buf[3] = image;
}
else
{
memcpy (&image, &d128.bytes[12], sizeof (int32_t));
buf[0] = image;
memcpy (&image, &d128.bytes[8], sizeof (int32_t));
buf[1] = image;
memcpy (&image, &d128.bytes[4], sizeof (int32_t));
buf[2] = image;
memcpy (&image, &d128.bytes[0], sizeof (int32_t));
buf[3] = image;
}
}
/* Decode an IEEE 754 decimal128 type into a real. */
void
decode_decimal128 (const struct real_format *fmt ATTRIBUTE_UNUSED,
REAL_VALUE_TYPE *r, const long *buf)
{
decNumber dn;
decimal128 d128;
decContext set;
int32_t image;
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
if (WORDS_BIGENDIAN == FLOAT_WORDS_BIG_ENDIAN)
{
image = buf[0];
memcpy (&d128.bytes[0], &image, sizeof (int32_t));
image = buf[1];
memcpy (&d128.bytes[4], &image, sizeof (int32_t));
image = buf[2];
memcpy (&d128.bytes[8], &image, sizeof (int32_t));
image = buf[3];
memcpy (&d128.bytes[12], &image, sizeof (int32_t));
}
else
{
image = buf[3];
memcpy (&d128.bytes[0], &image, sizeof (int32_t));
image = buf[2];
memcpy (&d128.bytes[4], &image, sizeof (int32_t));
image = buf[1];
memcpy (&d128.bytes[8], &image, sizeof (int32_t));
image = buf[0];
memcpy (&d128.bytes[12], &image, sizeof (int32_t));
}
decimal128ToNumber (&d128, &dn);
decimal_from_decnumber (r, &dn, &set);
}
/* Helper function to convert from a binary real internal
representation. */
static void
decimal_to_binary (REAL_VALUE_TYPE *to, const REAL_VALUE_TYPE *from,
const real_format *fmt)
{
char string[256];
if (from->cl == rvc_normal)
{
const decimal128 *const d128 = (const decimal128 *) from->sig;
decimal128ToString (d128, string);
}
else
real_to_decimal (string, from, sizeof (string), 0, 1);
real_from_string3 (to, string, fmt);
}
/* Helper function to convert from a binary real internal
representation. */
static void
decimal_from_binary (REAL_VALUE_TYPE *to, const REAL_VALUE_TYPE *from)
{
char string[256];
/* We convert to string, then to decNumber then to decimal128. */
real_to_decimal (string, from, sizeof (string), 0, 1);
decimal_real_from_string (to, string);
}
/* Helper function to real.c:do_compare() to handle decimal internal
representation including when one of the operands is still in the
binary internal representation. */
int
decimal_do_compare (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b,
int nan_result)
{
decContext set;
decNumber dn, dn2, dn3;
REAL_VALUE_TYPE a1, b1;
/* If either operand is non-decimal, create temporary versions. */
if (!a->decimal)
{
decimal_from_binary (&a1, a);
a = &a1;
}
if (!b->decimal)
{
decimal_from_binary (&b1, b);
b = &b1;
}
/* Convert into decNumber form for comparison operation. */
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
decimal128ToNumber ((const decimal128 *) a->sig, &dn2);
decimal128ToNumber ((const decimal128 *) b->sig, &dn3);
/* Finally, do the comparison. */
decNumberCompare (&dn, &dn2, &dn3, &set);
/* Return the comparison result. */
if (decNumberIsNaN (&dn))
return nan_result;
else if (decNumberIsZero (&dn))
return 0;
else if (decNumberIsNegative (&dn))
return -1;
else
return 1;
}
/* Helper to round_for_format, handling decimal float types. */
void
decimal_round_for_format (const struct real_format *fmt, REAL_VALUE_TYPE *r)
{
decNumber dn;
decContext set;
/* Real encoding occurs later. */
if (r->cl != rvc_normal)
return;
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
decimal128ToNumber ((decimal128 *) r->sig, &dn);
if (fmt == &decimal_quad_format)
{
/* The internal format is already in this format. */
return;
}
else if (fmt == &decimal_single_format)
{
decimal32 d32;
decContextDefault (&set, DEC_INIT_DECIMAL32);
set.traps = 0;
decimal32FromNumber (&d32, &dn, &set);
decimal32ToNumber (&d32, &dn);
}
else if (fmt == &decimal_double_format)
{
decimal64 d64;
decContextDefault (&set, DEC_INIT_DECIMAL64);
set.traps = 0;
decimal64FromNumber (&d64, &dn, &set);
decimal64ToNumber (&d64, &dn);
}
else
gcc_unreachable ();
decimal_from_decnumber (r, &dn, &set);
}
/* Extend or truncate to a new mode. Handles conversions between
binary and decimal types. */
void
decimal_real_convert (REAL_VALUE_TYPE *r, const real_format *fmt,
const REAL_VALUE_TYPE *a)
{
if (a->decimal && fmt->b == 10)
return;
if (a->decimal)
decimal_to_binary (r, a, fmt);
else
decimal_from_binary (r, a);
}
/* Render R_ORIG as a decimal floating point constant. Emit DIGITS
significant digits in the result, bounded by BUF_SIZE. If DIGITS
is 0, choose the maximum for the representation. If
CROP_TRAILING_ZEROS, strip trailing zeros. Currently, not honoring
DIGITS or CROP_TRAILING_ZEROS. */
void
decimal_real_to_decimal (char *str, const REAL_VALUE_TYPE *r_orig,
size_t buf_size,
size_t digits ATTRIBUTE_UNUSED,
int crop_trailing_zeros ATTRIBUTE_UNUSED)
{
const decimal128 *const d128 = (const decimal128*) r_orig->sig;
/* decimal128ToString requires space for at least 24 characters;
Require two more for suffix. */
gcc_assert (buf_size >= 24);
decimal128ToString (d128, str);
}
static bool
decimal_do_add (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0,
const REAL_VALUE_TYPE *op1, int subtract_p)
{
decNumber dn;
decContext set;
decNumber dn2, dn3;
decimal_to_decnumber (op0, &dn2);
decimal_to_decnumber (op1, &dn3);
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
if (subtract_p)
decNumberSubtract (&dn, &dn2, &dn3, &set);
else
decNumberAdd (&dn, &dn2, &dn3, &set);
decimal_from_decnumber (r, &dn, &set);
/* Return true, if inexact. */
return (set.status & DEC_Inexact);
}
/* Compute R = OP0 * OP1. */
static bool
decimal_do_multiply (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0,
const REAL_VALUE_TYPE *op1)
{
decContext set;
decNumber dn, dn2, dn3;
decimal_to_decnumber (op0, &dn2);
decimal_to_decnumber (op1, &dn3);
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
decNumberMultiply (&dn, &dn2, &dn3, &set);
decimal_from_decnumber (r, &dn, &set);
/* Return true, if inexact. */
return (set.status & DEC_Inexact);
}
/* Compute R = OP0 / OP1. */
static bool
decimal_do_divide (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0,
const REAL_VALUE_TYPE *op1)
{
decContext set;
decNumber dn, dn2, dn3;
decimal_to_decnumber (op0, &dn2);
decimal_to_decnumber (op1, &dn3);
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
decNumberDivide (&dn, &dn2, &dn3, &set);
decimal_from_decnumber (r, &dn, &set);
/* Return true, if inexact. */
return (set.status & DEC_Inexact);
}
/* Set R to A truncated to an integral value toward zero (decimal
floating point). */
void
decimal_do_fix_trunc (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
{
decNumber dn, dn2;
decContext set;
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
set.round = DEC_ROUND_DOWN;
decimal128ToNumber ((const decimal128 *) a->sig, &dn2);
decNumberToIntegralValue (&dn, &dn2, &set);
decimal_from_decnumber (r, &dn, &set);
}
/* Render decimal float value R as an integer. */
HOST_WIDE_INT
decimal_real_to_integer (const REAL_VALUE_TYPE *r)
{
decContext set;
decNumber dn, dn2, dn3;
REAL_VALUE_TYPE to;
char string[256];
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
set.round = DEC_ROUND_DOWN;
decimal128ToNumber ((const decimal128 *) r->sig, &dn);
decNumberToIntegralValue (&dn2, &dn, &set);
decNumberZero (&dn3);
decNumberRescale (&dn, &dn2, &dn3, &set);
/* Convert to REAL_VALUE_TYPE and call appropriate conversion
function. */
decNumberToString (&dn, string);
real_from_string (&to, string);
return real_to_integer (&to);
}
/* Likewise, but returns a wide_int with PRECISION. *FAIL is set if the
value does not fit. */
wide_int
decimal_real_to_integer (const REAL_VALUE_TYPE *r, bool *fail, int precision)
{
decContext set;
decNumber dn, dn2, dn3;
REAL_VALUE_TYPE to;
char string[256];
decContextDefault (&set, DEC_INIT_DECIMAL128);
set.traps = 0;
set.round = DEC_ROUND_DOWN;
decimal128ToNumber ((const decimal128 *) r->sig, &dn);
decNumberToIntegralValue (&dn2, &dn, &set);
decNumberZero (&dn3);
decNumberRescale (&dn, &dn2, &dn3, &set);
/* Convert to REAL_VALUE_TYPE and call appropriate conversion
function. */
decNumberToString (&dn, string);
real_from_string (&to, string);
return real_to_integer (&to, fail, precision);
}
/* Perform the decimal floating point operation described by CODE.
For a unary operation, OP1 will be NULL. This function returns
true if the result may be inexact due to loss of precision. */
bool
decimal_real_arithmetic (REAL_VALUE_TYPE *r, enum tree_code code,
const REAL_VALUE_TYPE *op0,
const REAL_VALUE_TYPE *op1)
{
REAL_VALUE_TYPE a, b;
/* If either operand is non-decimal, create temporaries. */
if (!op0->decimal)
{
decimal_from_binary (&a, op0);
op0 = &a;
}
if (op1 && !op1->decimal)
{
decimal_from_binary (&b, op1);
op1 = &b;
}
switch (code)
{
case PLUS_EXPR:
return decimal_do_add (r, op0, op1, 0);
case MINUS_EXPR:
return decimal_do_add (r, op0, op1, 1);
case MULT_EXPR:
return decimal_do_multiply (r, op0, op1);
case RDIV_EXPR:
return decimal_do_divide (r, op0, op1);
case MIN_EXPR:
if (op1->cl == rvc_nan)
*r = *op1;
else if (real_compare (UNLT_EXPR, op0, op1))
*r = *op0;
else
*r = *op1;
return false;
case MAX_EXPR:
if (op1->cl == rvc_nan)
*r = *op1;
else if (real_compare (LT_EXPR, op0, op1))
*r = *op1;
else
*r = *op0;
return false;
case NEGATE_EXPR:
{
*r = *op0;
/* Flip sign bit. */
decimal128FlipSign ((decimal128 *) r->sig);
/* Keep sign field in sync. */
r->sign ^= 1;
}
return false;
case ABS_EXPR:
{
*r = *op0;
/* Clear sign bit. */
decimal128ClearSign ((decimal128 *) r->sig);
/* Keep sign field in sync. */
r->sign = 0;
}
return false;
case FIX_TRUNC_EXPR:
decimal_do_fix_trunc (r, op0);
return false;
default:
gcc_unreachable ();
}
}
/* Fills R with the largest finite value representable in mode MODE.
If SIGN is nonzero, R is set to the most negative finite value. */
void
decimal_real_maxval (REAL_VALUE_TYPE *r, int sign, machine_mode mode)
{
const char *max;
switch (mode)
{
case E_SDmode:
max = "9.999999E96";
break;
case E_DDmode:
max = "9.999999999999999E384";
break;
case E_TDmode:
max = "9.999999999999999999999999999999999E6144";
break;
default:
gcc_unreachable ();
}
decimal_real_from_string (r, max);
if (sign)
decimal128SetSign ((decimal128 *) r->sig, 1);
}
|