aboutsummaryrefslogtreecommitdiff
path: root/gcc/df.c
blob: f4173c6ac8170dcd8d54c795c2eebee60caa5920 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
/* Dataflow support routines.
   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
   Free Software Foundation, Inc.
   Contributed by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz,
                                    mhayes@redhat.com)

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.


OVERVIEW:

This file provides some dataflow routines for computing reaching defs,
upward exposed uses, live variables, def-use chains, and use-def
chains.  The global dataflow is performed using simple iterative
methods with a worklist and could be sped up by ordering the blocks
with a depth first search order.

A `struct ref' data structure (ref) is allocated for every register
reference (def or use) and this records the insn and bb the ref is
found within.  The refs are linked together in chains of uses and defs
for each insn and for each register.  Each ref also has a chain field
that links all the use refs for a def or all the def refs for a use.
This is used to create use-def or def-use chains.


USAGE:

Here's an example of using the dataflow routines.

      struct df *df;

      df = df_init ();

      df_analyze (df, 0, DF_ALL);

      df_dump (df, DF_ALL, stderr);

      df_finish (df);


df_init simply creates a poor man's object (df) that needs to be
passed to all the dataflow routines.  df_finish destroys this
object and frees up any allocated memory.   DF_ALL says to analyze
everything.

df_analyze performs the following:

1. Records defs and uses by scanning the insns in each basic block
   or by scanning the insns queued by df_insn_modify.
2. Links defs and uses into insn-def and insn-use chains.
3. Links defs and uses into reg-def and reg-use chains.
4. Assigns LUIDs to each insn (for modified blocks).
5. Calculates local reaching definitions.
6. Calculates global reaching definitions.
7. Creates use-def chains.
8. Calculates local reaching uses (upwards exposed uses).
9. Calculates global reaching uses.
10. Creates def-use chains.
11. Calculates local live registers.
12. Calculates global live registers.
13. Calculates register lifetimes and determines local registers.


PHILOSOPHY:

Note that the dataflow information is not updated for every newly
deleted or created insn.  If the dataflow information requires
updating then all the changed, new, or deleted insns needs to be
marked with df_insn_modify (or df_insns_modify) either directly or
indirectly (say through calling df_insn_delete).  df_insn_modify
marks all the modified insns to get processed the next time df_analyze
 is called.

Beware that tinkering with insns may invalidate the dataflow information.
The philosophy behind these routines is that once the dataflow
information has been gathered, the user should store what they require
before they tinker with any insn.  Once a reg is replaced, for example,
then the reg-def/reg-use chains will point to the wrong place.  Once a
whole lot of changes have been made, df_analyze can be called again
to update the dataflow information.  Currently, this is not very smart
with regard to propagating changes to the dataflow so it should not
be called very often.


DATA STRUCTURES:

The basic object is a REF (reference) and this may either be a DEF
(definition) or a USE of a register.

These are linked into a variety of lists; namely reg-def, reg-use,
  insn-def, insn-use, def-use, and use-def lists.  For example,
the reg-def lists contain all the refs that define a given register
while the insn-use lists contain all the refs used by an insn.

Note that the reg-def and reg-use chains are generally short (except for the
hard registers) and thus it is much faster to search these chains
rather than searching the def or use bitmaps.

If the insns are in SSA form then the reg-def and use-def lists
should only contain the single defining ref.


TODO:

1) Incremental dataflow analysis.

Note that if a loop invariant insn is hoisted (or sunk), we do not
need to change the def-use or use-def chains.  All we have to do is to
change the bb field for all the associated defs and uses and to
renumber the LUIDs for the original and new basic blocks of the insn.

When shadowing loop mems we create new uses and defs for new pseudos
so we do not affect the existing dataflow information.

My current strategy is to queue up all modified, created, or deleted
insns so when df_analyze is called we can easily determine all the new
or deleted refs.  Currently the global dataflow information is
recomputed from scratch but this could be propagated more efficiently.

2) Reduced memory requirements.

We could operate a pool of ref structures.  When a ref is deleted it
gets returned to the pool (say by linking on to a chain of free refs).
This will require a pair of bitmaps for defs and uses so that we can
tell which ones have been changed.  Alternatively, we could
periodically squeeze the def and use tables and associated bitmaps and
renumber the def and use ids.

3) Ordering of reg-def and reg-use lists.

Should the first entry in the def list be the first def (within a BB)?
Similarly, should the first entry in the use list be the last use
(within a BB)?

4) Working with a sub-CFG.

Often the whole CFG does not need to be analyzed, for example,
when optimizing a loop, only certain registers are of interest.
Perhaps there should be a bitmap argument to df_analyze to specify
which registers should be analyzed?


NOTES:

Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
both a use and a def.  These are both marked read/write to show that they
are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
will generate a use of reg 42 followed by a def of reg 42 (both marked
read/write).  Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
generates a use of reg 41 then a def of reg 41 (both marked read/write),
even though reg 41 is decremented before it is used for the memory
address in this second example.

A set to a REG inside a ZERO_EXTRACT, SIGN_EXTRACT, or SUBREG invokes
a read-modify write operation.  We generate both a use and a def
and again mark them read/write.
*/

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tm_p.h"
#include "insn-config.h"
#include "recog.h"
#include "function.h"
#include "regs.h"
#include "alloc-pool.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "sbitmap.h"
#include "bitmap.h"
#include "df.h"

#define FOR_EACH_BB_IN_BITMAP(BITMAP, MIN, BB, CODE)	\
  do							\
    {							\
      unsigned int node_;				\
      EXECUTE_IF_SET_IN_BITMAP (BITMAP, MIN, node_,	\
      {(BB) = BASIC_BLOCK (node_); CODE;});		\
    }							\
  while (0)

static alloc_pool df_ref_pool;
static alloc_pool df_link_pool;
static struct df *ddf;

static void df_reg_table_realloc (struct df *, int);
static void df_insn_table_realloc (struct df *, unsigned int);
static void df_bb_table_realloc (struct df *, unsigned int);
static void df_bitmaps_alloc (struct df *, bitmap, int);
static void df_bitmaps_free (struct df *, int);
static void df_free (struct df *);
static void df_alloc (struct df *, int);

static rtx df_reg_use_gen (unsigned int);

static inline struct df_link *df_link_create (struct ref *, struct df_link *);
static struct df_link *df_ref_unlink (struct df_link **, struct ref *);
static void df_def_unlink (struct df *, struct ref *);
static void df_use_unlink (struct df *, struct ref *);
static void df_insn_refs_unlink (struct df *, basic_block, rtx);
#if 0
static void df_bb_refs_unlink (struct df *, basic_block);
static void df_refs_unlink (struct df *, bitmap);
#endif

static struct ref *df_ref_create (struct df *, rtx, rtx *, rtx,
				  enum df_ref_type, enum df_ref_flags);
static void df_ref_record_1 (struct df *, rtx, rtx *, rtx, enum df_ref_type,
			     enum df_ref_flags);
static void df_ref_record (struct df *, rtx, rtx *, rtx, enum df_ref_type,
			   enum df_ref_flags);
static void df_def_record_1 (struct df *, rtx, basic_block, rtx);
static void df_defs_record (struct df *, rtx, basic_block, rtx);
static void df_uses_record (struct df *, rtx *, enum df_ref_type,
			    basic_block, rtx, enum df_ref_flags);
static void df_insn_refs_record (struct df *, basic_block, rtx);
static void df_bb_refs_record (struct df *, basic_block);
static void df_refs_record (struct df *, bitmap);

static void df_bb_reg_def_chain_create (struct df *, basic_block);
static void df_reg_def_chain_create (struct df *, bitmap, bool);
static void df_bb_reg_use_chain_create (struct df *, basic_block);
static void df_reg_use_chain_create (struct df *, bitmap, bool);
static void df_bb_du_chain_create (struct df *, basic_block, bitmap);
static void df_du_chain_create (struct df *, bitmap);
static void df_bb_ud_chain_create (struct df *, basic_block);
static void df_ud_chain_create (struct df *, bitmap);
static void df_bb_rd_local_compute (struct df *, basic_block, bitmap);
static void df_rd_local_compute (struct df *, bitmap);
static void df_bb_ru_local_compute (struct df *, basic_block);
static void df_ru_local_compute (struct df *, bitmap);
static void df_bb_lr_local_compute (struct df *, basic_block);
static void df_lr_local_compute (struct df *, bitmap);
static void df_bb_reg_info_compute (struct df *, basic_block, bitmap);
static void df_reg_info_compute (struct df *, bitmap);

static int df_bb_luids_set (struct df *df, basic_block);
static int df_luids_set (struct df *df, bitmap);

static int df_modified_p (struct df *, bitmap);
static int df_refs_queue (struct df *);
static int df_refs_process (struct df *);
static int df_bb_refs_update (struct df *, basic_block);
static int df_refs_update (struct df *, bitmap);
static void df_analyze_1 (struct df *, bitmap, int, int);

static void df_insns_modify (struct df *, basic_block, rtx, rtx);
static int df_rtx_mem_replace (rtx *, void *);
static int df_rtx_reg_replace (rtx *, void *);
void df_refs_reg_replace (struct df *, bitmap, struct df_link *, rtx, rtx);

static int df_def_dominates_all_uses_p (struct df *, struct ref *def);
static int df_def_dominates_uses_p (struct df *, struct ref *def, bitmap);
static struct ref *df_bb_insn_regno_last_use_find (struct df *, basic_block,
						   rtx, unsigned int);
static struct ref *df_bb_insn_regno_first_def_find (struct df *, basic_block,
						    rtx, unsigned int);

static void df_chain_dump (struct df_link *, FILE *file);
static void df_chain_dump_regno (struct df_link *, FILE *file);
static void df_regno_debug (struct df *, unsigned int, FILE *);
static void df_ref_debug (struct df *, struct ref *, FILE *);
static void df_rd_transfer_function (int, int *, void *, void *, void *,
				     void *, void *);
static void df_ru_transfer_function (int, int *, void *, void *, void *,
				     void *, void *);
static void df_lr_transfer_function (int, int *, void *, void *, void *,
				     void *, void *);
static void hybrid_search (basic_block, struct dataflow *,
			   sbitmap, sbitmap, sbitmap);


/* Local memory allocation/deallocation routines.  */


/* Increase the insn info table to have space for at least SIZE + 1
   elements.  */
static void
df_insn_table_realloc (struct df *df, unsigned int size)
{
  size++;
  if (size <= df->insn_size)
    return;

  /* Make the table a little larger than requested, so we do not need
     to enlarge it so often.  */
  size += df->insn_size / 4;

  df->insns = xrealloc (df->insns, size * sizeof (struct insn_info));

  memset (df->insns + df->insn_size, 0,
	  (size - df->insn_size) * sizeof (struct insn_info));

  df->insn_size = size;

  if (! df->insns_modified)
    {
      df->insns_modified = BITMAP_XMALLOC ();
      bitmap_zero (df->insns_modified);
    }
}

/* Increase the bb info table to have space for at least SIZE + 1
   elements.  */

static void
df_bb_table_realloc (struct df *df, unsigned int size)
{
  size++;
  if (size <= df->n_bbs)
    return;

  /* Make the table a little larger than requested, so we do not need
     to enlarge it so often.  */
  size += df->n_bbs / 4;

  df->bbs = xrealloc (df->bbs, size * sizeof (struct bb_info));

  memset (df->bbs + df->n_bbs, 0, (size - df->n_bbs) * sizeof (struct bb_info));

  df->n_bbs = size;
}

/* Increase the reg info table by SIZE more elements.  */
static void
df_reg_table_realloc (struct df *df, int size)
{
  /* Make table 25 percent larger by default.  */
  if (! size)
    size = df->reg_size / 4;

  size += df->reg_size;
  if (size < max_reg_num ())
    size = max_reg_num ();

  df->regs = xrealloc (df->regs, size * sizeof (struct reg_info));
  df->reg_def_last = xrealloc (df->reg_def_last,
			       size * sizeof (struct ref *));

  /* Zero the new entries.  */
  memset (df->regs + df->reg_size, 0,
	  (size - df->reg_size) * sizeof (struct reg_info));

  df->reg_size = size;
}


/* Allocate bitmaps for each basic block.  */

static void
df_bitmaps_alloc (struct df *df, bitmap blocks, int flags)
{
  basic_block bb;

  df->n_defs = df->def_id;
  df->n_uses = df->use_id;

  if (!blocks)
    blocks = df->all_blocks;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
    {
      struct bb_info *bb_info = DF_BB_INFO (df, bb);

      if (flags & DF_RD)
	{
	  if (!bb_info->rd_in)
	    {
	      /* Allocate bitmaps for reaching definitions.  */
	      bb_info->rd_kill = BITMAP_XMALLOC ();
	      bb_info->rd_gen = BITMAP_XMALLOC ();
	      bb_info->rd_in = BITMAP_XMALLOC ();
	      bb_info->rd_out = BITMAP_XMALLOC ();
	    }
	  else
	    {
	      bitmap_clear (bb_info->rd_kill);
	      bitmap_clear (bb_info->rd_gen);
	      bitmap_clear (bb_info->rd_in);
	      bitmap_clear (bb_info->rd_out);
	    }
	}

      if (flags & DF_RU)
	{
	  if (!bb_info->ru_in)
	    {
	      /* Allocate bitmaps for upward exposed uses.  */
	      bb_info->ru_kill = BITMAP_XMALLOC ();
	      bb_info->ru_gen = BITMAP_XMALLOC ();
	      bb_info->ru_in = BITMAP_XMALLOC ();
	      bb_info->ru_out = BITMAP_XMALLOC ();
	    }
	  else
	    {
	      bitmap_clear (bb_info->ru_kill);
	      bitmap_clear (bb_info->ru_gen);
	      bitmap_clear (bb_info->ru_in);
	      bitmap_clear (bb_info->ru_out);
	    }
	}

      if (flags & DF_LR)
	{
	  if (!bb_info->lr_in)
	    {
	      /* Allocate bitmaps for live variables.  */
	      bb_info->lr_def = BITMAP_XMALLOC ();
	      bb_info->lr_use = BITMAP_XMALLOC ();
	      bb_info->lr_in = BITMAP_XMALLOC ();
	      bb_info->lr_out = BITMAP_XMALLOC ();
	    }
	  else
	    {
	      bitmap_clear (bb_info->lr_def);
	      bitmap_clear (bb_info->lr_use);
	      bitmap_clear (bb_info->lr_in);
	      bitmap_clear (bb_info->lr_out);
	    }
	}
    });
}


/* Free bitmaps for each basic block.  */
static void
df_bitmaps_free (struct df *df, int flags)
{
  basic_block bb;

  FOR_EACH_BB (bb)
    {
      struct bb_info *bb_info = DF_BB_INFO (df, bb);

      if (!bb_info)
	continue;

      if ((flags & DF_RD) && bb_info->rd_in)
	{
	  /* Free bitmaps for reaching definitions.  */
	  BITMAP_XFREE (bb_info->rd_kill);
	  bb_info->rd_kill = NULL;
	  BITMAP_XFREE (bb_info->rd_gen);
	  bb_info->rd_gen = NULL;
	  BITMAP_XFREE (bb_info->rd_in);
	  bb_info->rd_in = NULL;
	  BITMAP_XFREE (bb_info->rd_out);
	  bb_info->rd_out = NULL;
	}

      if ((flags & DF_RU) && bb_info->ru_in)
	{
	  /* Free bitmaps for upward exposed uses.  */
	  BITMAP_XFREE (bb_info->ru_kill);
	  bb_info->ru_kill = NULL;
	  BITMAP_XFREE (bb_info->ru_gen);
	  bb_info->ru_gen = NULL;
	  BITMAP_XFREE (bb_info->ru_in);
	  bb_info->ru_in = NULL;
	  BITMAP_XFREE (bb_info->ru_out);
	  bb_info->ru_out = NULL;
	}

      if ((flags & DF_LR) && bb_info->lr_in)
	{
	  /* Free bitmaps for live variables.  */
	  BITMAP_XFREE (bb_info->lr_def);
	  bb_info->lr_def = NULL;
	  BITMAP_XFREE (bb_info->lr_use);
	  bb_info->lr_use = NULL;
	  BITMAP_XFREE (bb_info->lr_in);
	  bb_info->lr_in = NULL;
	  BITMAP_XFREE (bb_info->lr_out);
	  bb_info->lr_out = NULL;
	}
    }
  df->flags &= ~(flags & (DF_RD | DF_RU | DF_LR));
}


/* Allocate and initialize dataflow memory.  */
static void
df_alloc (struct df *df, int n_regs)
{
  int n_insns;
  basic_block bb;

  df_link_pool = create_alloc_pool ("df_link pool", sizeof (struct df_link),
				    100);
  df_ref_pool  = create_alloc_pool ("df_ref pool", sizeof (struct ref), 100);

  /* Perhaps we should use LUIDs to save memory for the insn_refs
     table.  This is only a small saving; a few pointers.  */
  n_insns = get_max_uid () + 1;

  df->def_id = 0;
  df->n_defs = 0;
  /* Approximate number of defs by number of insns.  */
  df->def_size = n_insns;
  df->defs = xmalloc (df->def_size * sizeof (*df->defs));

  df->use_id = 0;
  df->n_uses = 0;
  /* Approximate number of uses by twice number of insns.  */
  df->use_size = n_insns * 2;
  df->uses = xmalloc (df->use_size * sizeof (*df->uses));

  df->n_regs = n_regs;
  df->n_bbs = last_basic_block;

  /* Allocate temporary working array used during local dataflow analysis.  */
  df_insn_table_realloc (df, n_insns);

  df_reg_table_realloc (df, df->n_regs);

  df->bbs_modified = BITMAP_XMALLOC ();
  bitmap_zero (df->bbs_modified);

  df->flags = 0;

  df->bbs = xcalloc (last_basic_block, sizeof (struct bb_info));

  df->all_blocks = BITMAP_XMALLOC ();
  FOR_EACH_BB (bb)
    bitmap_set_bit (df->all_blocks, bb->index);
}


/* Free all the dataflow info.  */
static void
df_free (struct df *df)
{
  df_bitmaps_free (df, DF_ALL);

  if (df->bbs)
    free (df->bbs);
  df->bbs = 0;

  if (df->insns)
    free (df->insns);
  df->insns = 0;
  df->insn_size = 0;

  if (df->defs)
    free (df->defs);
  df->defs = 0;
  df->def_size = 0;
  df->def_id = 0;

  if (df->uses)
    free (df->uses);
  df->uses = 0;
  df->use_size = 0;
  df->use_id = 0;

  if (df->regs)
    free (df->regs);
  df->regs = 0;
  df->reg_size = 0;

  if (df->bbs_modified)
    BITMAP_XFREE (df->bbs_modified);
  df->bbs_modified = 0;

  if (df->insns_modified)
    BITMAP_XFREE (df->insns_modified);
  df->insns_modified = 0;

  BITMAP_XFREE (df->all_blocks);
  df->all_blocks = 0;

  free_alloc_pool (df_ref_pool);
  free_alloc_pool (df_link_pool);
}

/* Local miscellaneous routines.  */

/* Return a USE for register REGNO.  */
static rtx df_reg_use_gen (unsigned int regno)
{
  rtx reg;
  rtx use;

  reg = regno_reg_rtx[regno];

  use = gen_rtx_USE (GET_MODE (reg), reg);
  return use;
}

/* Local chain manipulation routines.  */

/* Create a link in a def-use or use-def chain.  */
static inline struct df_link *
df_link_create (struct ref *ref, struct df_link *next)
{
  struct df_link *link;

  link = pool_alloc (df_link_pool);
  link->next = next;
  link->ref = ref;
  return link;
}

/* Releases members of the CHAIN.  */

static void
free_reg_ref_chain (struct df_link **chain)
{
  struct df_link *act, *next;

  for (act = *chain; act; act = next)
    {
      next = act->next;
      pool_free (df_link_pool, act);
    }

  *chain = NULL;
}

/* Add REF to chain head pointed to by PHEAD.  */
static struct df_link *
df_ref_unlink (struct df_link **phead, struct ref *ref)
{
  struct df_link *link = *phead;

  if (link)
    {
      if (! link->next)
	{
	  /* Only a single ref.  It must be the one we want.
	     If not, the def-use and use-def chains are likely to
	     be inconsistent.  */
	  gcc_assert (link->ref == ref);
	  
	  /* Now have an empty chain.  */
	  *phead = NULL;
	}
      else
	{
	  /* Multiple refs.  One of them must be us.  */
	  if (link->ref == ref)
	    *phead = link->next;
	  else
	    {
	      /* Follow chain.  */
	      for (; link->next; link = link->next)
		{
		  if (link->next->ref == ref)
		    {
		      /* Unlink from list.  */
		      link->next = link->next->next;
		      return link->next;
		    }
		}
	    }
	}
    }
  return link;
}


/* Unlink REF from all def-use/use-def chains, etc.  */
int
df_ref_remove (struct df *df, struct ref *ref)
{
  if (DF_REF_REG_DEF_P (ref))
    {
      df_def_unlink (df, ref);
      df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].defs, ref);
    }
  else
    {
      df_use_unlink (df, ref);
      df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].uses, ref);
    }
  return 1;
}


/* Unlink DEF from use-def and reg-def chains.  */
static void
df_def_unlink (struct df *df ATTRIBUTE_UNUSED, struct ref *def)
{
  struct df_link *du_link;
  unsigned int dregno = DF_REF_REGNO (def);

  /* Follow def-use chain to find all the uses of this def.  */
  for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
    {
      struct ref *use = du_link->ref;

      /* Unlink this def from the use-def chain.  */
      df_ref_unlink (&DF_REF_CHAIN (use), def);
    }
  DF_REF_CHAIN (def) = 0;

  /* Unlink def from reg-def chain.  */
  df_ref_unlink (&df->regs[dregno].defs, def);

  df->defs[DF_REF_ID (def)] = 0;
}


/* Unlink use from def-use and reg-use chains.  */
static void
df_use_unlink (struct df *df ATTRIBUTE_UNUSED, struct ref *use)
{
  struct df_link *ud_link;
  unsigned int uregno = DF_REF_REGNO (use);

  /* Follow use-def chain to find all the defs of this use.  */
  for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
    {
      struct ref *def = ud_link->ref;

      /* Unlink this use from the def-use chain.  */
      df_ref_unlink (&DF_REF_CHAIN (def), use);
    }
  DF_REF_CHAIN (use) = 0;

  /* Unlink use from reg-use chain.  */
  df_ref_unlink (&df->regs[uregno].uses, use);

  df->uses[DF_REF_ID (use)] = 0;
}

/* Local routines for recording refs.  */


/* Create a new ref of type DF_REF_TYPE for register REG at address
   LOC within INSN of BB.  */
static struct ref *
df_ref_create (struct df *df, rtx reg, rtx *loc, rtx insn,
	       enum df_ref_type ref_type, enum df_ref_flags ref_flags)
{
  struct ref *this_ref;

  this_ref = pool_alloc (df_ref_pool);
  DF_REF_REG (this_ref) = reg;
  DF_REF_LOC (this_ref) = loc;
  DF_REF_INSN (this_ref) = insn;
  DF_REF_CHAIN (this_ref) = 0;
  DF_REF_TYPE (this_ref) = ref_type;
  DF_REF_FLAGS (this_ref) = ref_flags;
  DF_REF_DATA (this_ref) = NULL;

  if (ref_type == DF_REF_REG_DEF)
    {
      if (df->def_id >= df->def_size)
	{
	  /* Make table 25 percent larger.  */
	  df->def_size += (df->def_size / 4);
	  df->defs = xrealloc (df->defs,
			       df->def_size * sizeof (*df->defs));
	}
      DF_REF_ID (this_ref) = df->def_id;
      df->defs[df->def_id++] = this_ref;
    }
  else
    {
      if (df->use_id >= df->use_size)
	{
	  /* Make table 25 percent larger.  */
	  df->use_size += (df->use_size / 4);
	  df->uses = xrealloc (df->uses,
			       df->use_size * sizeof (*df->uses));
	}
      DF_REF_ID (this_ref) = df->use_id;
      df->uses[df->use_id++] = this_ref;
    }
  return this_ref;
}


/* Create a new reference of type DF_REF_TYPE for a single register REG,
   used inside the LOC rtx of INSN.  */
static void
df_ref_record_1 (struct df *df, rtx reg, rtx *loc, rtx insn,
		 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
{
  df_ref_create (df, reg, loc, insn, ref_type, ref_flags);
}


/* Create new references of type DF_REF_TYPE for each part of register REG
   at address LOC within INSN of BB.  */
static void
df_ref_record (struct df *df, rtx reg, rtx *loc, rtx insn,
	       enum df_ref_type ref_type, enum df_ref_flags ref_flags)
{
  unsigned int regno;

  gcc_assert (REG_P (reg) || GET_CODE (reg) == SUBREG);

  /* For the reg allocator we are interested in some SUBREG rtx's, but not
     all.  Notably only those representing a word extraction from a multi-word
     reg.  As written in the docu those should have the form
     (subreg:SI (reg:M A) N), with size(SImode) > size(Mmode).
     XXX Is that true?  We could also use the global word_mode variable.  */
  if (GET_CODE (reg) == SUBREG
      && (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (word_mode)
	  || GET_MODE_SIZE (GET_MODE (reg))
	       >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (reg)))))
    {
      loc = &SUBREG_REG (reg);
      reg = *loc;
      ref_flags |= DF_REF_STRIPPED;
    }

  regno = REGNO (GET_CODE (reg) == SUBREG ? SUBREG_REG (reg) : reg);
  if (regno < FIRST_PSEUDO_REGISTER)
    {
      int i;
      int endregno;

      if (! (df->flags & DF_HARD_REGS))
	return;

      /* GET_MODE (reg) is correct here.  We do not want to go into a SUBREG
         for the mode, because we only want to add references to regs, which
	 are really referenced.  E.g., a (subreg:SI (reg:DI 0) 0) does _not_
	 reference the whole reg 0 in DI mode (which would also include
	 reg 1, at least, if 0 and 1 are SImode registers).  */
      endregno = hard_regno_nregs[regno][GET_MODE (reg)];
      if (GET_CODE (reg) == SUBREG)
        regno += subreg_regno_offset (regno, GET_MODE (SUBREG_REG (reg)),
				      SUBREG_BYTE (reg), GET_MODE (reg));
      endregno += regno;

      for (i = regno; i < endregno; i++)
	df_ref_record_1 (df, regno_reg_rtx[i],
			 loc, insn, ref_type, ref_flags);
    }
  else
    {
      df_ref_record_1 (df, reg, loc, insn, ref_type, ref_flags);
    }
}


/* Return nonzero if writes to paradoxical SUBREGs, or SUBREGs which
   are too narrow, are read-modify-write.  */
bool
read_modify_subreg_p (rtx x)
{
  unsigned int isize, osize;
  if (GET_CODE (x) != SUBREG)
    return false;
  isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
  osize = GET_MODE_SIZE (GET_MODE (x));
  /* Paradoxical subreg writes don't leave a trace of the old content.  */
  return (isize > osize && isize > UNITS_PER_WORD);
}


/* Process all the registers defined in the rtx, X.  */
static void
df_def_record_1 (struct df *df, rtx x, basic_block bb, rtx insn)
{
  rtx *loc;
  rtx dst;
  enum df_ref_flags flags = 0;

 /* We may recursively call ourselves on EXPR_LIST when dealing with PARALLEL
     construct.  */
  if (GET_CODE (x) == EXPR_LIST || GET_CODE (x) == CLOBBER)
    loc = &XEXP (x, 0);
  else
    loc = &SET_DEST (x);
  dst = *loc;

  /* Some targets place small structures in registers for
     return values of functions.  */
  if (GET_CODE (dst) == PARALLEL && GET_MODE (dst) == BLKmode)
    {
      int i;

      for (i = XVECLEN (dst, 0) - 1; i >= 0; i--)
	{
	  rtx temp = XVECEXP (dst, 0, i);
	  if (GET_CODE (temp) == EXPR_LIST || GET_CODE (temp) == CLOBBER
	      || GET_CODE (temp) == SET)
	    df_def_record_1 (df, temp, bb, insn);
	}
      return;
    }

  /* Maybe, we should flag the use of STRICT_LOW_PART somehow.  It might
     be handy for the reg allocator.  */
  while (GET_CODE (dst) == STRICT_LOW_PART
	 || GET_CODE (dst) == ZERO_EXTRACT
	 || GET_CODE (dst) == SIGN_EXTRACT
	 || ((df->flags & DF_FOR_REGALLOC) == 0
             && read_modify_subreg_p (dst)))
    {
      /* Strict low part always contains SUBREG, but we do not want to make
	 it appear outside, as whole register is always considered.  */
      if (GET_CODE (dst) == STRICT_LOW_PART)
	{
	  loc = &XEXP (dst, 0);
	  dst = *loc;
	}
      loc = &XEXP (dst, 0);
      dst = *loc;
      flags |= DF_REF_READ_WRITE;
    }

  if (REG_P (dst)
      || (GET_CODE (dst) == SUBREG && REG_P (SUBREG_REG (dst))))
    df_ref_record (df, dst, loc, insn, DF_REF_REG_DEF, flags);
}


/* Process all the registers defined in the pattern rtx, X.  */
static void
df_defs_record (struct df *df, rtx x, basic_block bb, rtx insn)
{
  RTX_CODE code = GET_CODE (x);

  if (code == SET || code == CLOBBER)
    {
      /* Mark the single def within the pattern.  */
      df_def_record_1 (df, x, bb, insn);
    }
  else if (code == PARALLEL)
    {
      int i;

      /* Mark the multiple defs within the pattern.  */
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	{
	  code = GET_CODE (XVECEXP (x, 0, i));
	  if (code == SET || code == CLOBBER)
	    df_def_record_1 (df, XVECEXP (x, 0, i), bb, insn);
	}
    }
}


/* Process all the registers used in the rtx at address LOC.  */
static void
df_uses_record (struct df *df, rtx *loc, enum df_ref_type ref_type,
		basic_block bb, rtx insn, enum df_ref_flags flags)
{
  RTX_CODE code;
  rtx x;
 retry:
  x = *loc;
  if (!x)
    return;
  code = GET_CODE (x);
  switch (code)
    {
    case LABEL_REF:
    case SYMBOL_REF:
    case CONST_INT:
    case CONST:
    case CONST_DOUBLE:
    case CONST_VECTOR:
    case PC:
    case CC0:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return;

    case CLOBBER:
      /* If we are clobbering a MEM, mark any registers inside the address
	 as being used.  */
      if (MEM_P (XEXP (x, 0)))
	df_uses_record (df, &XEXP (XEXP (x, 0), 0),
			DF_REF_REG_MEM_STORE, bb, insn, flags);

      /* If we're clobbering a REG then we have a def so ignore.  */
      return;

    case MEM:
      df_uses_record (df, &XEXP (x, 0), DF_REF_REG_MEM_LOAD, bb, insn, 0);
      return;

    case SUBREG:
      /* While we're here, optimize this case.  */

      /* In case the SUBREG is not of a REG, do not optimize.  */
      if (!REG_P (SUBREG_REG (x)))
	{
	  loc = &SUBREG_REG (x);
	  df_uses_record (df, loc, ref_type, bb, insn, flags);
	  return;
	}
      /* ... Fall through ...  */

    case REG:
      df_ref_record (df, x, loc, insn, ref_type, flags);
      return;

    case SET:
      {
	rtx dst = SET_DEST (x);

	df_uses_record (df, &SET_SRC (x), DF_REF_REG_USE, bb, insn, 0);

	switch (GET_CODE (dst))
	  {
	    case SUBREG:
	      if ((df->flags & DF_FOR_REGALLOC) == 0
                  && read_modify_subreg_p (dst))
		{
		  df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
				  insn, DF_REF_READ_WRITE);
		  break;
		}
	      /* Fall through.  */
	    case REG:
	    case PARALLEL:
	    case PC:
	    case CC0:
		break;
	    case MEM:
	      df_uses_record (df, &XEXP (dst, 0),
			      DF_REF_REG_MEM_STORE,
			      bb, insn, 0);
	      break;
	    case STRICT_LOW_PART:
	      /* A strict_low_part uses the whole REG and not just the
		 SUBREG.  */
	      dst = XEXP (dst, 0);
	      gcc_assert (GET_CODE (dst) == SUBREG);
	      df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
			     insn, DF_REF_READ_WRITE);
	      break;
	    case ZERO_EXTRACT:
	    case SIGN_EXTRACT:
	      df_uses_record (df, &XEXP (dst, 0), DF_REF_REG_USE, bb, insn,
			      DF_REF_READ_WRITE);
	      df_uses_record (df, &XEXP (dst, 1), DF_REF_REG_USE, bb, insn, 0);
	      df_uses_record (df, &XEXP (dst, 2), DF_REF_REG_USE, bb, insn, 0);
	      dst = XEXP (dst, 0);
	      break;
	    default:
	      gcc_unreachable ();
	  }
	return;
      }

    case RETURN:
      break;

    case ASM_OPERANDS:
    case UNSPEC_VOLATILE:
    case TRAP_IF:
    case ASM_INPUT:
      {
	/* Traditional and volatile asm instructions must be considered to use
	   and clobber all hard registers, all pseudo-registers and all of
	   memory.  So must TRAP_IF and UNSPEC_VOLATILE operations.

	   Consider for instance a volatile asm that changes the fpu rounding
	   mode.  An insn should not be moved across this even if it only uses
	   pseudo-regs because it might give an incorrectly rounded result.

	   For now, just mark any regs we can find in ASM_OPERANDS as
	   used.  */

	/* For all ASM_OPERANDS, we must traverse the vector of input operands.
	   We can not just fall through here since then we would be confused
	   by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
	   traditional asms unlike their normal usage.  */
	if (code == ASM_OPERANDS)
	  {
	    int j;

	    for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
	      df_uses_record (df, &ASM_OPERANDS_INPUT (x, j),
			      DF_REF_REG_USE, bb, insn, 0);
	    return;
	  }
	break;
      }

    case PRE_DEC:
    case POST_DEC:
    case PRE_INC:
    case POST_INC:
    case PRE_MODIFY:
    case POST_MODIFY:
      /* Catch the def of the register being modified.  */
      df_ref_record (df, XEXP (x, 0), &XEXP (x, 0), insn, DF_REF_REG_DEF, DF_REF_READ_WRITE);

      /* ... Fall through to handle uses ...  */

    default:
      break;
    }

  /* Recursively scan the operands of this expression.  */
  {
    const char *fmt = GET_RTX_FORMAT (code);
    int i;

    for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
      {
	if (fmt[i] == 'e')
	  {
	    /* Tail recursive case: save a function call level.  */
	    if (i == 0)
	      {
		loc = &XEXP (x, 0);
		goto retry;
	      }
	    df_uses_record (df, &XEXP (x, i), ref_type, bb, insn, flags);
	  }
	else if (fmt[i] == 'E')
	  {
	    int j;
	    for (j = 0; j < XVECLEN (x, i); j++)
	      df_uses_record (df, &XVECEXP (x, i, j), ref_type,
			      bb, insn, flags);
	  }
      }
  }
}


/* Record all the df within INSN of basic block BB.  */
static void
df_insn_refs_record (struct df *df, basic_block bb, rtx insn)
{
  int i;

  if (INSN_P (insn))
    {
      rtx note;

      /* Record register defs.  */
      df_defs_record (df, PATTERN (insn), bb, insn);

      if (df->flags & DF_EQUIV_NOTES)
	for (note = REG_NOTES (insn); note;
	     note = XEXP (note, 1))
	  {
	    switch (REG_NOTE_KIND (note))
	      {
	      case REG_EQUIV:
	      case REG_EQUAL:
		df_uses_record (df, &XEXP (note, 0), DF_REF_REG_USE,
				bb, insn, 0);
	      default:
		break;
	      }
	  }

      if (CALL_P (insn))
	{
	  rtx note;
	  rtx x;

	  /* Record the registers used to pass arguments.  */
	  for (note = CALL_INSN_FUNCTION_USAGE (insn); note;
	       note = XEXP (note, 1))
	    {
	      if (GET_CODE (XEXP (note, 0)) == USE)
		df_uses_record (df, &XEXP (XEXP (note, 0), 0), DF_REF_REG_USE,
				bb, insn, 0);
	    }

	  /* The stack ptr is used (honorarily) by a CALL insn.  */
	  x = df_reg_use_gen (STACK_POINTER_REGNUM);
	  df_uses_record (df, &XEXP (x, 0), DF_REF_REG_USE, bb, insn, 0);

	  if (df->flags & DF_HARD_REGS)
	    {
	      /* Calls may also reference any of the global registers,
		 so they are recorded as used.  */
	      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
		if (global_regs[i])
		  {
		    x = df_reg_use_gen (i);
		    df_uses_record (df, &SET_DEST (x),
				    DF_REF_REG_USE, bb, insn, 0);
		  }
	    }
	}

      /* Record the register uses.  */
      df_uses_record (df, &PATTERN (insn),
		      DF_REF_REG_USE, bb, insn, 0);

      if (CALL_P (insn))
	{
	  rtx note;

	  /* We do not record hard registers clobbered by the call,
	     since there are awfully many of them and "defs" created
	     through them are not interesting (since no use can be legally
	     reached by them).  So we must just make sure we include them when
	     computing kill bitmaps.  */

	  /* There may be extra registers to be clobbered.  */
	  for (note = CALL_INSN_FUNCTION_USAGE (insn);
	       note;
	       note = XEXP (note, 1))
	    if (GET_CODE (XEXP (note, 0)) == CLOBBER)
	      df_defs_record (df, XEXP (note, 0), bb, insn);
	}
    }
}


/* Record all the refs within the basic block BB.  */
static void
df_bb_refs_record (struct df *df, basic_block bb)
{
  rtx insn;

  /* Scan the block an insn at a time from beginning to end.  */
  FOR_BB_INSNS (bb, insn)
    {
      if (INSN_P (insn))
	{
	  /* Record defs within INSN.  */
	  df_insn_refs_record (df, bb, insn);
	}
    }
}


/* Record all the refs in the basic blocks specified by BLOCKS.  */
static void
df_refs_record (struct df *df, bitmap blocks)
{
  basic_block bb;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
    {
      df_bb_refs_record (df, bb);
    });
}

/* Dataflow analysis routines.  */

/* Create reg-def chains for basic block BB.  These are a list of
   definitions for each register.  */

static void
df_bb_reg_def_chain_create (struct df *df, basic_block bb)
{
  rtx insn;

  /* Perhaps the defs should be sorted using a depth first search
     of the CFG (or possibly a breadth first search).  */

  FOR_BB_INSNS_REVERSE (bb, insn)
    {
      struct df_link *link;
      unsigned int uid = INSN_UID (insn);

      if (! INSN_P (insn))
	continue;

      for (link = df->insns[uid].defs; link; link = link->next)
	{
	  struct ref *def = link->ref;
	  unsigned int dregno = DF_REF_REGNO (def);

          /* Do not add ref's to the chain twice, i.e., only add new
             refs.  XXX the same could be done by testing if the
             current insn is a modified (or a new) one.  This would be
             faster.  */
          if (DF_REF_ID (def) < df->def_id_save)
            continue;

	  df->regs[dregno].defs = df_link_create (def, df->regs[dregno].defs);
	}
    }
}


/* Create reg-def chains for each basic block within BLOCKS.  These
   are a list of definitions for each register.  If REDO is true, add
   all defs, otherwise just add the new defs.  */

static void
df_reg_def_chain_create (struct df *df, bitmap blocks, bool redo)
{
  basic_block bb;
#ifdef ENABLE_CHECKING
  unsigned regno;
#endif
  unsigned old_def_id_save = df->def_id_save;

  if (redo)
    {
#ifdef ENABLE_CHECKING
      for (regno = 0; regno < df->n_regs; regno++)
	gcc_assert (!df->regs[regno].defs);
#endif

      /* Pretend that all defs are new.  */
      df->def_id_save = 0;
    }

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
    {
      df_bb_reg_def_chain_create (df, bb);
    });

  df->def_id_save = old_def_id_save;
}

/* Remove all reg-def chains stored in the dataflow object DF.  */

static void
df_reg_def_chain_clean (struct df *df)
{
  unsigned regno;

  for (regno = 0; regno < df->n_regs; regno++)
    free_reg_ref_chain (&df->regs[regno].defs);
}

/* Create reg-use chains for basic block BB.  These are a list of uses
   for each register.  */

static void
df_bb_reg_use_chain_create (struct df *df, basic_block bb)
{
  rtx insn;

  /* Scan in forward order so that the last uses appear at the start
     of the chain.  */

  FOR_BB_INSNS (bb, insn)
    {
      struct df_link *link;
      unsigned int uid = INSN_UID (insn);

      if (! INSN_P (insn))
	continue;

      for (link = df->insns[uid].uses; link; link = link->next)
	{
	  struct ref *use = link->ref;
	  unsigned int uregno = DF_REF_REGNO (use);

          /* Do not add ref's to the chain twice, i.e., only add new
             refs.  XXX the same could be done by testing if the
             current insn is a modified (or a new) one.  This would be
             faster.  */
          if (DF_REF_ID (use) < df->use_id_save)
            continue;

	  df->regs[uregno].uses
	    = df_link_create (use, df->regs[uregno].uses);
	}
    }
}


/* Create reg-use chains for each basic block within BLOCKS.  These
   are a list of uses for each register.  If REDO is true, remove the
   old reg-use chains first, otherwise just add new uses to them.  */

static void
df_reg_use_chain_create (struct df *df, bitmap blocks, bool redo)
{
  basic_block bb;
#ifdef ENABLE_CHECKING
  unsigned regno;
#endif
  unsigned old_use_id_save = df->use_id_save;

  if (redo)
    {
#ifdef ENABLE_CHECKING
      for (regno = 0; regno < df->n_regs; regno++)
	gcc_assert (!df->regs[regno].uses);
#endif

      /* Pretend that all uses are new.  */
      df->use_id_save = 0;
    }

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
    {
      df_bb_reg_use_chain_create (df, bb);
    });

  df->use_id_save = old_use_id_save;
}

/* Remove all reg-use chains stored in the dataflow object DF.  */

static void
df_reg_use_chain_clean (struct df *df)
{
  unsigned regno;

  for (regno = 0; regno < df->n_regs; regno++)
    free_reg_ref_chain (&df->regs[regno].uses);
}

/* Create def-use chains from reaching use bitmaps for basic block BB.  */
static void
df_bb_du_chain_create (struct df *df, basic_block bb, bitmap ru)
{
  struct bb_info *bb_info = DF_BB_INFO (df, bb);
  rtx insn;

  bitmap_copy (ru, bb_info->ru_out);

  /* For each def in BB create a linked list (chain) of uses
     reached from the def.  */
  FOR_BB_INSNS_REVERSE (bb, insn)
    {
      struct df_link *def_link;
      struct df_link *use_link;
      unsigned int uid = INSN_UID (insn);

      if (! INSN_P (insn))
	continue;

      /* For each def in insn...  */
      for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
	{
	  struct ref *def = def_link->ref;
	  unsigned int dregno = DF_REF_REGNO (def);

	  DF_REF_CHAIN (def) = 0;

	  /* While the reg-use chains are not essential, it
	     is _much_ faster to search these short lists rather
	     than all the reaching uses, especially for large functions.  */
	  for (use_link = df->regs[dregno].uses; use_link;
	       use_link = use_link->next)
	    {
	      struct ref *use = use_link->ref;

	      if (bitmap_bit_p (ru, DF_REF_ID (use)))
		{
		  DF_REF_CHAIN (def)
		    = df_link_create (use, DF_REF_CHAIN (def));

		  bitmap_clear_bit (ru, DF_REF_ID (use));
		}
	    }
	}

      /* For each use in insn...  */
      for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
	{
	  struct ref *use = use_link->ref;
	  bitmap_set_bit (ru, DF_REF_ID (use));
	}
    }
}


/* Create def-use chains from reaching use bitmaps for basic blocks
   in BLOCKS.  */
static void
df_du_chain_create (struct df *df, bitmap blocks)
{
  bitmap ru;
  basic_block bb;

  ru = BITMAP_XMALLOC ();

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
    {
      df_bb_du_chain_create (df, bb, ru);
    });

  BITMAP_XFREE (ru);
}


/* Create use-def chains from reaching def bitmaps for basic block BB.  */
static void
df_bb_ud_chain_create (struct df *df, basic_block bb)
{
  struct bb_info *bb_info = DF_BB_INFO (df, bb);
  struct ref **reg_def_last = df->reg_def_last;
  rtx insn;

  memset (reg_def_last, 0, df->n_regs * sizeof (struct ref *));

  /* For each use in BB create a linked list (chain) of defs
     that reach the use.  */
  FOR_BB_INSNS (bb, insn)
    {
      unsigned int uid = INSN_UID (insn);
      struct df_link *use_link;
      struct df_link *def_link;

      if (! INSN_P (insn))
	continue;

      /* For each use in insn...  */
      for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
	{
	  struct ref *use = use_link->ref;
	  unsigned int regno = DF_REF_REGNO (use);

	  DF_REF_CHAIN (use) = 0;

	  /* Has regno been defined in this BB yet?  If so, use
	     the last def as the single entry for the use-def
	     chain for this use.  Otherwise, we need to add all
	     the defs using this regno that reach the start of
	     this BB.  */
	  if (reg_def_last[regno])
	    {
	      DF_REF_CHAIN (use)
		= df_link_create (reg_def_last[regno], 0);
	    }
	  else
	    {
	      /* While the reg-def chains are not essential, it is
		 _much_ faster to search these short lists rather than
		 all the reaching defs, especially for large
		 functions.  */
	      for (def_link = df->regs[regno].defs; def_link;
		   def_link = def_link->next)
		{
		  struct ref *def = def_link->ref;

		  if (bitmap_bit_p (bb_info->rd_in, DF_REF_ID (def)))
		    {
		      DF_REF_CHAIN (use)
			= df_link_create (def, DF_REF_CHAIN (use));
		    }
		}
	    }
	}


      /* For each def in insn... record the last def of each reg.  */
      for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
	{
	  struct ref *def = def_link->ref;
	  int dregno = DF_REF_REGNO (def);

	  reg_def_last[dregno] = def;
	}
    }
}


/* Create use-def chains from reaching def bitmaps for basic blocks
   within BLOCKS.  */
static void
df_ud_chain_create (struct df *df, bitmap blocks)
{
  basic_block bb;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
    {
      df_bb_ud_chain_create (df, bb);
    });
}



static void
df_rd_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
			 void *out, void *gen, void *kill,
			 void *data ATTRIBUTE_UNUSED)
{
  *changed = bitmap_union_of_diff (out, gen, in, kill);
}


static void
df_ru_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
			 void *out, void *gen, void *kill,
			 void *data ATTRIBUTE_UNUSED)
{
  *changed = bitmap_union_of_diff (in, gen, out, kill);
}


static void
df_lr_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
			 void *out, void *use, void *def,
			 void *data ATTRIBUTE_UNUSED)
{
  *changed = bitmap_union_of_diff (in, use, out, def);
}


/* Compute local reaching def info for basic block BB.  */
static void
df_bb_rd_local_compute (struct df *df, basic_block bb, bitmap call_killed_defs)
{
  struct bb_info *bb_info = DF_BB_INFO (df, bb);
  rtx insn;
  bitmap seen = BITMAP_XMALLOC ();
  bool call_seen = false;

  FOR_BB_INSNS_REVERSE (bb, insn)
    {
      unsigned int uid = INSN_UID (insn);
      struct df_link *def_link;

      if (! INSN_P (insn))
	continue;

      for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
	{
	  struct ref *def = def_link->ref;
	  unsigned int regno = DF_REF_REGNO (def);
	  struct df_link *def2_link;

	  if (bitmap_bit_p (seen, regno)
	      || (call_seen
		  && regno < FIRST_PSEUDO_REGISTER
		  && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)))
	    continue;

	  for (def2_link = df->regs[regno].defs; def2_link;
	       def2_link = def2_link->next)
	    {
	      struct ref *def2 = def2_link->ref;

	      /* Add all defs of this reg to the set of kills.  This
		 is greedy since many of these defs will not actually
		 be killed by this BB but it keeps things a lot
		 simpler.  */
	      bitmap_set_bit (bb_info->rd_kill, DF_REF_ID (def2));
	    }

	  bitmap_set_bit (bb_info->rd_gen, DF_REF_ID (def));
	  bitmap_set_bit (seen, regno);
	}

      if (CALL_P (insn) && (df->flags & DF_HARD_REGS))
	{
	  bitmap_operation (bb_info->rd_kill, bb_info->rd_kill,
			    call_killed_defs, BITMAP_IOR);
	  call_seen = 1;
	}
    }

  BITMAP_XFREE (seen);
}


/* Compute local reaching def info for each basic block within BLOCKS.  */
static void
df_rd_local_compute (struct df *df, bitmap blocks)
{
  basic_block bb;
  bitmap killed_by_call = NULL;
  unsigned regno;
  struct df_link *def_link;

  if (df->flags & DF_HARD_REGS)
    {
      killed_by_call = BITMAP_XMALLOC ();
      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
	{
	  if (!TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
	    continue;
	  
	  for (def_link = df->regs[regno].defs;
	       def_link;
	       def_link = def_link->next)
	    bitmap_set_bit (killed_by_call, DF_REF_ID (def_link->ref));
	}
    }

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
  {
    df_bb_rd_local_compute (df, bb, killed_by_call);
  });

  if (df->flags & DF_HARD_REGS)
    BITMAP_XFREE (killed_by_call);
}


/* Compute local reaching use (upward exposed use) info for basic
   block BB.  */
static void
df_bb_ru_local_compute (struct df *df, basic_block bb)
{
  /* This is much more tricky than computing reaching defs.  With
     reaching defs, defs get killed by other defs.  With upwards
     exposed uses, these get killed by defs with the same regno.  */

  struct bb_info *bb_info = DF_BB_INFO (df, bb);
  rtx insn;


  FOR_BB_INSNS_REVERSE (bb, insn)
    {
      unsigned int uid = INSN_UID (insn);
      struct df_link *def_link;
      struct df_link *use_link;

      if (! INSN_P (insn))
	continue;

      for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
	{
	  struct ref *def = def_link->ref;
	  unsigned int dregno = DF_REF_REGNO (def);

	  for (use_link = df->regs[dregno].uses; use_link;
	       use_link = use_link->next)
	    {
	      struct ref *use = use_link->ref;

	      /* Add all uses of this reg to the set of kills.  This
		 is greedy since many of these uses will not actually
		 be killed by this BB but it keeps things a lot
		 simpler.  */
	      bitmap_set_bit (bb_info->ru_kill, DF_REF_ID (use));

	      /* Zap from the set of gens for this BB.  */
	      bitmap_clear_bit (bb_info->ru_gen, DF_REF_ID (use));
	    }
	}

      for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
	{
	  struct ref *use = use_link->ref;
	  /* Add use to set of gens in this BB.  */
	  bitmap_set_bit (bb_info->ru_gen, DF_REF_ID (use));
	}
    }
}


/* Compute local reaching use (upward exposed use) info for each basic
   block within BLOCKS.  */
static void
df_ru_local_compute (struct df *df, bitmap blocks)
{
  basic_block bb;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
  {
    df_bb_ru_local_compute (df, bb);
  });
}


/* Compute local live variable info for basic block BB.  */
static void
df_bb_lr_local_compute (struct df *df, basic_block bb)
{
  struct bb_info *bb_info = DF_BB_INFO (df, bb);
  rtx insn;

  FOR_BB_INSNS_REVERSE (bb, insn)
    {
      unsigned int uid = INSN_UID (insn);
      struct df_link *link;

      if (! INSN_P (insn))
	continue;

      for (link = df->insns[uid].defs; link; link = link->next)
	{
	  struct ref *def = link->ref;
	  unsigned int dregno = DF_REF_REGNO (def);

	  /* Add def to set of defs in this BB.  */
	  bitmap_set_bit (bb_info->lr_def, dregno);

	  bitmap_clear_bit (bb_info->lr_use, dregno);
	}

      for (link = df->insns[uid].uses; link; link = link->next)
	{
	  struct ref *use = link->ref;
	  /* Add use to set of uses in this BB.  */
	  bitmap_set_bit (bb_info->lr_use, DF_REF_REGNO (use));
	}
    }
}


/* Compute local live variable info for each basic block within BLOCKS.  */
static void
df_lr_local_compute (struct df *df, bitmap blocks)
{
  basic_block bb;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
  {
    df_bb_lr_local_compute (df, bb);
  });
}


/* Compute register info: lifetime, bb, and number of defs and uses
   for basic block BB.  */
static void
df_bb_reg_info_compute (struct df *df, basic_block bb, bitmap live)
{
  struct reg_info *reg_info = df->regs;
  struct bb_info *bb_info = DF_BB_INFO (df, bb);
  rtx insn;

  bitmap_copy (live, bb_info->lr_out);

  FOR_BB_INSNS_REVERSE (bb, insn)
    {
      unsigned int uid = INSN_UID (insn);
      unsigned int regno;
      struct df_link *link;

      if (! INSN_P (insn))
	continue;

      for (link = df->insns[uid].defs; link; link = link->next)
	{
	  struct ref *def = link->ref;
	  unsigned int dregno = DF_REF_REGNO (def);

	  /* Kill this register.  */
	  bitmap_clear_bit (live, dregno);
	  reg_info[dregno].n_defs++;
	}

      for (link = df->insns[uid].uses; link; link = link->next)
	{
	  struct ref *use = link->ref;
	  unsigned int uregno = DF_REF_REGNO (use);

	  /* This register is now live.  */
	  bitmap_set_bit (live, uregno);
	  reg_info[uregno].n_uses++;
	}

      /* Increment lifetimes of all live registers.  */
      EXECUTE_IF_SET_IN_BITMAP (live, 0, regno,
      {
	reg_info[regno].lifetime++;
      });
    }
}


/* Compute register info: lifetime, bb, and number of defs and uses.  */
static void
df_reg_info_compute (struct df *df, bitmap blocks)
{
  basic_block bb;
  bitmap live;

  live = BITMAP_XMALLOC ();

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
  {
    df_bb_reg_info_compute (df, bb, live);
  });

  BITMAP_XFREE (live);
}


/* Assign LUIDs for BB.  */
static int
df_bb_luids_set (struct df *df, basic_block bb)
{
  rtx insn;
  int luid = 0;

  /* The LUIDs are monotonically increasing for each basic block.  */

  FOR_BB_INSNS (bb, insn)
    {
      if (INSN_P (insn))
	DF_INSN_LUID (df, insn) = luid++;
      DF_INSN_LUID (df, insn) = luid;
    }
  return luid;
}


/* Assign LUIDs for each basic block within BLOCKS.  */
static int
df_luids_set (struct df *df, bitmap blocks)
{
  basic_block bb;
  int total = 0;

  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
    {
      total += df_bb_luids_set (df, bb);
    });
  return total;
}


/* Perform dataflow analysis using existing DF structure for blocks
   within BLOCKS.  If BLOCKS is zero, use all basic blocks in the CFG.  */
static void
df_analyze_1 (struct df *df, bitmap blocks, int flags, int update)
{
  int aflags;
  int dflags;
  int i;
  basic_block bb;
  struct dataflow dflow;

  dflags = 0;
  aflags = flags;
  if (flags & DF_UD_CHAIN)
    aflags |= DF_RD | DF_RD_CHAIN;

  if (flags & DF_DU_CHAIN)
    aflags |= DF_RU;

  if (flags & DF_RU)
    aflags |= DF_RU_CHAIN;

  if (flags & DF_REG_INFO)
    aflags |= DF_LR;

  if (! blocks)
    blocks = df->all_blocks;

  df->flags = flags;
  if (update)
    {
      df_refs_update (df, NULL);
      /* More fine grained incremental dataflow analysis would be
	 nice.  For now recompute the whole shebang for the
	 modified blocks.  */
#if 0
      df_refs_unlink (df, blocks);
#endif
      /* All the def-use, use-def chains can be potentially
	 modified by changes in one block.  The size of the
	 bitmaps can also change.  */
    }
  else
    {
      /* Scan the function for all register defs and uses.  */
      df_refs_queue (df);
      df_refs_record (df, blocks);

      /* Link all the new defs and uses to the insns.  */
      df_refs_process (df);
    }

  /* Allocate the bitmaps now the total number of defs and uses are
     known.  If the number of defs or uses have changed, then
     these bitmaps need to be reallocated.  */
  df_bitmaps_alloc (df, NULL, aflags);

  /* Set the LUIDs for each specified basic block.  */
  df_luids_set (df, blocks);

  /* Recreate reg-def and reg-use chains from scratch so that first
     def is at the head of the reg-def chain and the last use is at
     the head of the reg-use chain.  This is only important for
     regs local to a basic block as it speeds up searching.  */
  if (aflags & DF_RD_CHAIN)
    {
      df_reg_def_chain_create (df, blocks, false);
    }

  if (aflags & DF_RU_CHAIN)
    {
      df_reg_use_chain_create (df, blocks, false);
    }

  df->dfs_order = xmalloc (sizeof (int) * n_basic_blocks);
  df->rc_order = xmalloc (sizeof (int) * n_basic_blocks);
  df->rts_order = xmalloc (sizeof (int) * n_basic_blocks);
  df->inverse_dfs_map = xmalloc (sizeof (int) * last_basic_block);
  df->inverse_rc_map = xmalloc (sizeof (int) * last_basic_block);
  df->inverse_rts_map = xmalloc (sizeof (int) * last_basic_block);

  flow_depth_first_order_compute (df->dfs_order, df->rc_order);
  flow_reverse_top_sort_order_compute (df->rts_order);
  for (i = 0; i < n_basic_blocks; i++)
    {
      df->inverse_dfs_map[df->dfs_order[i]] = i;
      df->inverse_rc_map[df->rc_order[i]] = i;
      df->inverse_rts_map[df->rts_order[i]] = i;
    }
  if (aflags & DF_RD)
    {
      /* Compute the sets of gens and kills for the defs of each bb.  */
      dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
      dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
      dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
      dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);

      df_rd_local_compute (df, df->flags & DF_RD ? blocks : df->all_blocks);
      FOR_EACH_BB (bb)
	{
	  dflow.in[bb->index] = DF_BB_INFO (df, bb)->rd_in;
	  dflow.out[bb->index] = DF_BB_INFO (df, bb)->rd_out;
	  dflow.gen[bb->index] = DF_BB_INFO (df, bb)->rd_gen;
	  dflow.kill[bb->index] = DF_BB_INFO (df, bb)->rd_kill;
	}

      dflow.repr = SR_BITMAP;
      dflow.dir = DF_FORWARD;
      dflow.conf_op = DF_UNION;
      dflow.transfun = df_rd_transfer_function;
      dflow.n_blocks = n_basic_blocks;
      dflow.order = df->rc_order;
      dflow.data = NULL;

      iterative_dataflow (&dflow);
      free (dflow.in);
      free (dflow.out);
      free (dflow.gen);
      free (dflow.kill);
    }

  if (aflags & DF_UD_CHAIN)
    {
      /* Create use-def chains.  */
      df_ud_chain_create (df, df->all_blocks);

      if (! (flags & DF_RD))
	dflags |= DF_RD;
    }

  if (aflags & DF_RU)
    {
      /* Compute the sets of gens and kills for the upwards exposed
	 uses in each bb.  */
      dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
      dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
      dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
      dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);

      df_ru_local_compute (df, df->flags & DF_RU ? blocks : df->all_blocks);

      FOR_EACH_BB (bb)
	{
	  dflow.in[bb->index] = DF_BB_INFO (df, bb)->ru_in;
	  dflow.out[bb->index] = DF_BB_INFO (df, bb)->ru_out;
	  dflow.gen[bb->index] = DF_BB_INFO (df, bb)->ru_gen;
	  dflow.kill[bb->index] = DF_BB_INFO (df, bb)->ru_kill;
	}

      dflow.repr = SR_BITMAP;
      dflow.dir = DF_BACKWARD;
      dflow.conf_op = DF_UNION;
      dflow.transfun = df_ru_transfer_function;
      dflow.n_blocks = n_basic_blocks;
      dflow.order = df->rts_order;
      dflow.data = NULL;

      iterative_dataflow (&dflow);
      free (dflow.in);
      free (dflow.out);
      free (dflow.gen);
      free (dflow.kill);
    }

  if (aflags & DF_DU_CHAIN)
    {
      /* Create def-use chains.  */
      df_du_chain_create (df, df->all_blocks);

      if (! (flags & DF_RU))
	dflags |= DF_RU;
    }

  /* Free up bitmaps that are no longer required.  */
  if (dflags)
    df_bitmaps_free (df, dflags);

  if (aflags & DF_LR)
    {
      /* Compute the sets of defs and uses of live variables.  */
      dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
      dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
      dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
      dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);

      df_lr_local_compute (df, df->flags & DF_LR ? blocks : df->all_blocks);

      FOR_EACH_BB (bb)
	{
	  dflow.in[bb->index] = DF_BB_INFO (df, bb)->lr_in;
	  dflow.out[bb->index] = DF_BB_INFO (df, bb)->lr_out;
	  dflow.gen[bb->index] = DF_BB_INFO (df, bb)->lr_use;
	  dflow.kill[bb->index] = DF_BB_INFO (df, bb)->lr_def;
	}

      dflow.repr = SR_BITMAP;
      dflow.dir = DF_BACKWARD;
      dflow.conf_op = DF_UNION;
      dflow.transfun = df_lr_transfer_function;
      dflow.n_blocks = n_basic_blocks;
      dflow.order = df->rts_order;
      dflow.data = NULL;

      iterative_dataflow (&dflow);
      free (dflow.in);
      free (dflow.out);
      free (dflow.gen);
      free (dflow.kill);
    }

  if (aflags & DF_REG_INFO)
    {
      df_reg_info_compute (df, df->all_blocks);
    }

  free (df->dfs_order);
  free (df->rc_order);
  free (df->rts_order);
  free (df->inverse_rc_map);
  free (df->inverse_dfs_map);
  free (df->inverse_rts_map);
}


/* Initialize dataflow analysis.  */
struct df *
df_init (void)
{
  struct df *df;

  df = xcalloc (1, sizeof (struct df));

  /* Squirrel away a global for debugging.  */
  ddf = df;

  return df;
}


/* Start queuing refs.  */
static int
df_refs_queue (struct df *df)
{
  df->def_id_save = df->def_id;
  df->use_id_save = df->use_id;
  /* ???? Perhaps we should save current obstack state so that we can
     unwind it.  */
  return 0;
}


/* Process queued refs.  */
static int
df_refs_process (struct df *df)
{
  unsigned int i;

  /* Build new insn-def chains.  */
  for (i = df->def_id_save; i != df->def_id; i++)
    {
      struct ref *def = df->defs[i];
      unsigned int uid = DF_REF_INSN_UID (def);

      /* Add def to head of def list for INSN.  */
      df->insns[uid].defs
	= df_link_create (def, df->insns[uid].defs);
    }

  /* Build new insn-use chains.  */
  for (i = df->use_id_save; i != df->use_id; i++)
    {
      struct ref *use = df->uses[i];
      unsigned int uid = DF_REF_INSN_UID (use);

      /* Add use to head of use list for INSN.  */
      df->insns[uid].uses
	= df_link_create (use, df->insns[uid].uses);
    }
  return 0;
}


/* Update refs for basic block BB.  */
static int
df_bb_refs_update (struct df *df, basic_block bb)
{
  rtx insn;
  int count = 0;

  /* While we have to scan the chain of insns for this BB, we do not
     need to allocate and queue a long chain of BB/INSN pairs.  Using
     a bitmap for insns_modified saves memory and avoids queuing
     duplicates.  */

  FOR_BB_INSNS (bb, insn)
    {
      unsigned int uid;

      uid = INSN_UID (insn);

      if (bitmap_bit_p (df->insns_modified, uid))
	{
	  /* Delete any allocated refs of this insn.  MPH,  FIXME.  */
	  df_insn_refs_unlink (df, bb, insn);

	  /* Scan the insn for refs.  */
	  df_insn_refs_record (df, bb, insn);

	  count++;
	}
    }
  return count;
}


/* Process all the modified/deleted insns that were queued.  */
static int
df_refs_update (struct df *df, bitmap blocks)
{
  basic_block bb;
  int count = 0, bbno;

  df->n_regs = max_reg_num ();
  if (df->n_regs >= df->reg_size)
    df_reg_table_realloc (df, 0);

  df_refs_queue (df);

  if (!blocks)
    {
      FOR_EACH_BB_IN_BITMAP (df->bbs_modified, 0, bb,
	{
	  count += df_bb_refs_update (df, bb);
	});
    }
  else
    {
      EXECUTE_IF_AND_IN_BITMAP (df->bbs_modified, blocks, 0, bbno,
	{
	  count += df_bb_refs_update (df, BASIC_BLOCK (bbno));
	});
    }

  df_refs_process (df);
  return count;
}


/* Return nonzero if any of the requested blocks in the bitmap
   BLOCKS have been modified.  */
static int
df_modified_p (struct df *df, bitmap blocks)
{
  int update = 0;
  basic_block bb;

  if (!df->n_bbs)
    return 0;

  FOR_EACH_BB (bb)
    if (bitmap_bit_p (df->bbs_modified, bb->index)
	&& (! blocks || (blocks == (bitmap) -1) || bitmap_bit_p (blocks, bb->index)))
    {
      update = 1;
      break;
    }

  return update;
}

/* Analyze dataflow info for the basic blocks specified by the bitmap
   BLOCKS, or for the whole CFG if BLOCKS is zero, or just for the
   modified blocks if BLOCKS is -1.  */

int
df_analyze (struct df *df, bitmap blocks, int flags)
{
  int update;

  /* We could deal with additional basic blocks being created by
     rescanning everything again.  */
  gcc_assert (!df->n_bbs || df->n_bbs == (unsigned int) last_basic_block);

  update = df_modified_p (df, blocks);
  if (update || (flags != df->flags))
    {
      if (! blocks)
	{
	  if (df->n_bbs)
	    {
	      /* Recompute everything from scratch.  */
	      df_free (df);
	    }
	  /* Allocate and initialize data structures.  */
	  df_alloc (df, max_reg_num ());
	  df_analyze_1 (df, 0, flags, 0);
	  update = 1;
	}
      else
	{
	  if (blocks == (bitmap) -1)
	    blocks = df->bbs_modified;

	  gcc_assert (df->n_bbs);

	  df_analyze_1 (df, blocks, flags, 1);
	  bitmap_zero (df->bbs_modified);
	  bitmap_zero (df->insns_modified);
	}
    }
  return update;
}

/* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
   the order of the remaining entries.  Returns the length of the resulting
   list.  */

static unsigned
prune_to_subcfg (int list[], unsigned len, bitmap blocks)
{
  unsigned act, last;

  for (act = 0, last = 0; act < len; act++)
    if (bitmap_bit_p (blocks, list[act]))
      list[last++] = list[act];

  return last;
}

/* Alternative entry point to the analysis.  Analyze just the part of the cfg
   graph induced by BLOCKS.
   
   TODO I am not quite sure how to avoid code duplication with df_analyze_1
   here, and simultaneously not make even greater chaos in it.  We behave
   slightly differently in some details, especially in handling modified
   insns.  */

void
df_analyze_subcfg (struct df *df, bitmap blocks, int flags)
{
  rtx insn;
  basic_block bb;
  struct dataflow dflow;
  unsigned n_blocks;

  if (flags & DF_UD_CHAIN)
    flags |= DF_RD | DF_RD_CHAIN;
  if (flags & DF_DU_CHAIN)
    flags |= DF_RU;
  if (flags & DF_RU)
    flags |= DF_RU_CHAIN;
  if (flags & DF_REG_INFO)
    flags |= DF_LR;

  if (!df->n_bbs)
    {
      df_alloc (df, max_reg_num ());

      /* Mark all insns as modified.  */

      FOR_EACH_BB (bb)
	{
	  FOR_BB_INSNS (bb, insn)
	    {
	      df_insn_modify (df, bb, insn);
	    }
	}
    }
  
  df->flags = flags;

  df_reg_def_chain_clean (df);
  df_reg_use_chain_clean (df);

  df_refs_update (df, blocks);

  /* Clear the updated stuff from ``modified'' bitmaps.  */
  FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
    {
      if (bitmap_bit_p (df->bbs_modified, bb->index))
	{
	  FOR_BB_INSNS (bb, insn)
	    {
	      bitmap_clear_bit (df->insns_modified, INSN_UID (insn));
	    }

	  bitmap_clear_bit (df->bbs_modified, bb->index);
	}
    });

  /* Allocate the bitmaps now the total number of defs and uses are
     known.  If the number of defs or uses have changed, then
     these bitmaps need to be reallocated.  */
  df_bitmaps_alloc (df, blocks, flags);

  /* Set the LUIDs for each specified basic block.  */
  df_luids_set (df, blocks);

  /* Recreate reg-def and reg-use chains from scratch so that first
     def is at the head of the reg-def chain and the last use is at
     the head of the reg-use chain.  This is only important for
     regs local to a basic block as it speeds up searching.  */
  if (flags & DF_RD_CHAIN)
    {
      df_reg_def_chain_create (df, blocks, true);
    }

  if (flags & DF_RU_CHAIN)
    {
      df_reg_use_chain_create (df, blocks, true);
    }

  df->dfs_order = xmalloc (sizeof (int) * n_basic_blocks);
  df->rc_order = xmalloc (sizeof (int) * n_basic_blocks);
  df->rts_order = xmalloc (sizeof (int) * n_basic_blocks);

  flow_depth_first_order_compute (df->dfs_order, df->rc_order);
  flow_reverse_top_sort_order_compute (df->rts_order);

  n_blocks = prune_to_subcfg (df->dfs_order, n_basic_blocks, blocks);
  prune_to_subcfg (df->rc_order, n_basic_blocks, blocks);
  prune_to_subcfg (df->rts_order, n_basic_blocks, blocks);

  dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
  dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
  dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
  dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);

  if (flags & DF_RD)
    {
      /* Compute the sets of gens and kills for the defs of each bb.  */
      df_rd_local_compute (df, blocks);

      FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
	{
	  dflow.in[bb->index] = DF_BB_INFO (df, bb)->rd_in;
	  dflow.out[bb->index] = DF_BB_INFO (df, bb)->rd_out;
	  dflow.gen[bb->index] = DF_BB_INFO (df, bb)->rd_gen;
	  dflow.kill[bb->index] = DF_BB_INFO (df, bb)->rd_kill;
	});

      dflow.repr = SR_BITMAP;
      dflow.dir = DF_FORWARD;
      dflow.conf_op = DF_UNION;
      dflow.transfun = df_rd_transfer_function;
      dflow.n_blocks = n_blocks;
      dflow.order = df->rc_order;
      dflow.data = NULL;

      iterative_dataflow (&dflow);
    }

  if (flags & DF_UD_CHAIN)
    {
      /* Create use-def chains.  */
      df_ud_chain_create (df, blocks);
    }

  if (flags & DF_RU)
    {
      /* Compute the sets of gens and kills for the upwards exposed
	 uses in each bb.  */
      df_ru_local_compute (df, blocks);

      FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
	{
	  dflow.in[bb->index] = DF_BB_INFO (df, bb)->ru_in;
	  dflow.out[bb->index] = DF_BB_INFO (df, bb)->ru_out;
	  dflow.gen[bb->index] = DF_BB_INFO (df, bb)->ru_gen;
	  dflow.kill[bb->index] = DF_BB_INFO (df, bb)->ru_kill;
	});

      dflow.repr = SR_BITMAP;
      dflow.dir = DF_BACKWARD;
      dflow.conf_op = DF_UNION;
      dflow.transfun = df_ru_transfer_function;
      dflow.n_blocks = n_blocks;
      dflow.order = df->rts_order;
      dflow.data = NULL;

      iterative_dataflow (&dflow);
    }

  if (flags & DF_DU_CHAIN)
    {
      /* Create def-use chains.  */
      df_du_chain_create (df, blocks);
    }

  if (flags & DF_LR)
    {
      /* Compute the sets of defs and uses of live variables.  */
      df_lr_local_compute (df, blocks);

      FOR_EACH_BB (bb)
	{
	  dflow.in[bb->index] = DF_BB_INFO (df, bb)->lr_in;
	  dflow.out[bb->index] = DF_BB_INFO (df, bb)->lr_out;
	  dflow.gen[bb->index] = DF_BB_INFO (df, bb)->lr_use;
	  dflow.kill[bb->index] = DF_BB_INFO (df, bb)->lr_def;
	}

      dflow.repr = SR_BITMAP;
      dflow.dir = DF_BACKWARD;
      dflow.conf_op = DF_UNION;
      dflow.transfun = df_lr_transfer_function;
      dflow.n_blocks = n_blocks;
      dflow.order = df->rts_order;
      dflow.data = NULL;

      iterative_dataflow (&dflow);
    }

  if (flags & DF_REG_INFO)
    {
      df_reg_info_compute (df, blocks);
    }

  free (dflow.in);
  free (dflow.out);
  free (dflow.gen);
  free (dflow.kill);

  free (df->dfs_order);
  free (df->rc_order);
  free (df->rts_order);
}

/* Free all the dataflow info and the DF structure.  */
void
df_finish (struct df *df)
{
  df_free (df);
  free (df);
}

/* Unlink INSN from its reference information.  */
static void
df_insn_refs_unlink (struct df *df, basic_block bb ATTRIBUTE_UNUSED, rtx insn)
{
  struct df_link *link;
  unsigned int uid;

  uid = INSN_UID (insn);

  /* Unlink all refs defined by this insn.  */
  for (link = df->insns[uid].defs; link; link = link->next)
    df_def_unlink (df, link->ref);

  /* Unlink all refs used by this insn.  */
  for (link = df->insns[uid].uses; link; link = link->next)
    df_use_unlink (df, link->ref);

  df->insns[uid].defs = 0;
  df->insns[uid].uses = 0;
}


#if 0
/* Unlink all the insns within BB from their reference information.  */
static void
df_bb_refs_unlink (struct df *df, basic_block bb)
{
  rtx insn;

  /* Scan the block an insn at a time from beginning to end.  */
  for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
    {
      if (INSN_P (insn))
	{
	  /* Unlink refs for INSN.  */
	  df_insn_refs_unlink (df, bb, insn);
	}
      if (insn == BB_END (bb))
	break;
    }
}


/* Unlink all the refs in the basic blocks specified by BLOCKS.
   Not currently used.  */
static void
df_refs_unlink (struct df *df, bitmap blocks)
{
  basic_block bb;

  if (blocks)
    {
      FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
      {
	df_bb_refs_unlink (df, bb);
      });
    }
  else
    {
      FOR_EACH_BB (bb)
	df_bb_refs_unlink (df, bb);
    }
}
#endif

/* Functions to modify insns.  */


/* Delete INSN and all its reference information.  */
rtx
df_insn_delete (struct df *df, basic_block bb ATTRIBUTE_UNUSED, rtx insn)
{
  /* If the insn is a jump, we should perhaps call delete_insn to
     handle the JUMP_LABEL?  */

  /* We should not be deleting the NOTE_INSN_BASIC_BLOCK or label.  */
  gcc_assert (insn != BB_HEAD (bb));

  /* Delete the insn.  */
  delete_insn (insn);

  df_insn_modify (df, bb, insn);

  return NEXT_INSN (insn);
}

/* Mark that basic block BB was modified.  */

static void
df_bb_modify (struct df *df, basic_block bb)
{
  if ((unsigned) bb->index >= df->n_bbs)
    df_bb_table_realloc (df, df->n_bbs);

  bitmap_set_bit (df->bbs_modified, bb->index);
}

/* Mark that INSN within BB may have changed  (created/modified/deleted).
   This may be called multiple times for the same insn.  There is no
   harm calling this function if the insn wasn't changed; it will just
   slow down the rescanning of refs.  */
void
df_insn_modify (struct df *df, basic_block bb, rtx insn)
{
  unsigned int uid;

  uid = INSN_UID (insn);
  if (uid >= df->insn_size)
    df_insn_table_realloc (df, uid);

  df_bb_modify (df, bb);
  bitmap_set_bit (df->insns_modified, uid);

  /* For incremental updating on the fly, perhaps we could make a copy
     of all the refs of the original insn and turn them into
     anti-refs.  When df_refs_update finds these anti-refs, it annihilates
     the original refs.  If validate_change fails then these anti-refs
     will just get ignored.  */
}

typedef struct replace_args
{
  rtx match;
  rtx replacement;
  rtx insn;
  int modified;
} replace_args;


/* Replace mem pointed to by PX with its associated pseudo register.
   DATA is actually a pointer to a structure describing the
   instruction currently being scanned and the MEM we are currently
   replacing.  */
static int
df_rtx_mem_replace (rtx *px, void *data)
{
  replace_args *args = (replace_args *) data;
  rtx mem = *px;

  if (mem == NULL_RTX)
    return 0;

  switch (GET_CODE (mem))
    {
    case MEM:
      break;

    case CONST_DOUBLE:
      /* We're not interested in the MEM associated with a
	 CONST_DOUBLE, so there's no need to traverse into one.  */
      return -1;

    default:
      /* This is not a MEM.  */
      return 0;
    }

  if (!rtx_equal_p (args->match, mem))
    /* This is not the MEM we are currently replacing.  */
    return 0;

  /* Actually replace the MEM.  */
  validate_change (args->insn, px, args->replacement, 1);
  args->modified++;

  return 0;
}


int
df_insn_mem_replace (struct df *df, basic_block bb, rtx insn, rtx mem, rtx reg)
{
  replace_args args;

  args.insn = insn;
  args.match = mem;
  args.replacement = reg;
  args.modified = 0;

  /* Search and replace all matching mems within insn.  */
  for_each_rtx (&insn, df_rtx_mem_replace, &args);

  if (args.modified)
    df_insn_modify (df, bb, insn);

  /* ???? FIXME.  We may have a new def or one or more new uses of REG
     in INSN.  REG should be a new pseudo so it won't affect the
     dataflow information that we currently have.  We should add
     the new uses and defs to INSN and then recreate the chains
     when df_analyze is called.  */
  return args.modified;
}


/* Replace one register with another.  Called through for_each_rtx; PX
   points to the rtx being scanned.  DATA is actually a pointer to a
   structure of arguments.  */
static int
df_rtx_reg_replace (rtx *px, void *data)
{
  rtx x = *px;
  replace_args *args = (replace_args *) data;

  if (x == NULL_RTX)
    return 0;

  if (x == args->match)
    {
      validate_change (args->insn, px, args->replacement, 1);
      args->modified++;
    }

  return 0;
}


/* Replace the reg within every ref on CHAIN that is within the set
   BLOCKS of basic blocks with NEWREG.  Also update the regs within
   REG_NOTES.  */
void
df_refs_reg_replace (struct df *df, bitmap blocks, struct df_link *chain, rtx oldreg, rtx newreg)
{
  struct df_link *link;
  replace_args args;

  if (! blocks)
    blocks = df->all_blocks;

  args.match = oldreg;
  args.replacement = newreg;
  args.modified = 0;

  for (link = chain; link; link = link->next)
    {
      struct ref *ref = link->ref;
      rtx insn = DF_REF_INSN (ref);

      if (! INSN_P (insn))
	continue;

      gcc_assert (bitmap_bit_p (blocks, DF_REF_BBNO (ref)));
      
      df_ref_reg_replace (df, ref, oldreg, newreg);

      /* Replace occurrences of the reg within the REG_NOTES.  */
      if ((! link->next || DF_REF_INSN (ref)
	   != DF_REF_INSN (link->next->ref))
	  && REG_NOTES (insn))
	{
	  args.insn = insn;
	  for_each_rtx (&REG_NOTES (insn), df_rtx_reg_replace, &args);
	}
    }
}


/* Replace all occurrences of register OLDREG with register NEWREG in
   blocks defined by bitmap BLOCKS.  This also replaces occurrences of
   OLDREG in the REG_NOTES but only for insns containing OLDREG.  This
   routine expects the reg-use and reg-def chains to be valid.  */
int
df_reg_replace (struct df *df, bitmap blocks, rtx oldreg, rtx newreg)
{
  unsigned int oldregno = REGNO (oldreg);

  df_refs_reg_replace (df, blocks, df->regs[oldregno].defs, oldreg, newreg);
  df_refs_reg_replace (df, blocks, df->regs[oldregno].uses, oldreg, newreg);
  return 1;
}


/* Try replacing the reg within REF with NEWREG.  Do not modify
   def-use/use-def chains.  */
int
df_ref_reg_replace (struct df *df, struct ref *ref, rtx oldreg, rtx newreg)
{
  /* Check that insn was deleted by being converted into a NOTE.  If
   so ignore this insn.  */
  if (! INSN_P (DF_REF_INSN (ref)))
    return 0;

  gcc_assert (!oldreg || oldreg == DF_REF_REG (ref));

  if (! validate_change (DF_REF_INSN (ref), DF_REF_LOC (ref), newreg, 1))
    return 0;

  df_insn_modify (df, DF_REF_BB (ref), DF_REF_INSN (ref));
  return 1;
}


struct ref*
df_bb_def_use_swap (struct df *df, basic_block bb, rtx def_insn, rtx use_insn, unsigned int regno)
{
  struct ref *def;
  struct ref *use;
  int def_uid;
  int use_uid;
  struct df_link *link;

  def = df_bb_insn_regno_first_def_find (df, bb, def_insn, regno);
  if (! def)
    return 0;

  use = df_bb_insn_regno_last_use_find (df, bb, use_insn, regno);
  if (! use)
    return 0;

  /* The USE no longer exists.  */
  use_uid = INSN_UID (use_insn);
  df_use_unlink (df, use);
  df_ref_unlink (&df->insns[use_uid].uses, use);

  /* The DEF requires shifting so remove it from DEF_INSN
     and add it to USE_INSN by reusing LINK.  */
  def_uid = INSN_UID (def_insn);
  link = df_ref_unlink (&df->insns[def_uid].defs, def);
  link->ref = def;
  link->next = df->insns[use_uid].defs;
  df->insns[use_uid].defs = link;

#if 0
  link = df_ref_unlink (&df->regs[regno].defs, def);
  link->ref = def;
  link->next = df->regs[regno].defs;
  df->insns[regno].defs = link;
#endif

  DF_REF_INSN (def) = use_insn;
  return def;
}


/* Record df between FIRST_INSN and LAST_INSN inclusive.  All new
   insns must be processed by this routine.  */
static void
df_insns_modify (struct df *df, basic_block bb, rtx first_insn, rtx last_insn)
{
  rtx insn;

  for (insn = first_insn; ; insn = NEXT_INSN (insn))
    {
      unsigned int uid;

      /* A non-const call should not have slipped through the net.  If
	 it does, we need to create a new basic block.  Ouch.  The
	 same applies for a label.  */
      gcc_assert ((!CALL_P (insn) || CONST_OR_PURE_CALL_P (insn))
		  && !LABEL_P (insn));

      uid = INSN_UID (insn);

      if (uid >= df->insn_size)
	df_insn_table_realloc (df, uid);

      df_insn_modify (df, bb, insn);

      if (insn == last_insn)
	break;
    }
}


/* Emit PATTERN before INSN within BB.  */
rtx
df_pattern_emit_before (struct df *df, rtx pattern, basic_block bb, rtx insn)
{
  rtx ret_insn;
  rtx prev_insn = PREV_INSN (insn);

  /* We should not be inserting before the start of the block.  */
  gcc_assert (insn != BB_HEAD (bb));
  ret_insn = emit_insn_before (pattern, insn);
  if (ret_insn == insn)
    return ret_insn;

  df_insns_modify (df, bb, NEXT_INSN (prev_insn), ret_insn);
  return ret_insn;
}


/* Emit PATTERN after INSN within BB.  */
rtx
df_pattern_emit_after (struct df *df, rtx pattern, basic_block bb, rtx insn)
{
  rtx ret_insn;

  ret_insn = emit_insn_after (pattern, insn);
  if (ret_insn == insn)
    return ret_insn;

  df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
  return ret_insn;
}


/* Emit jump PATTERN after INSN within BB.  */
rtx
df_jump_pattern_emit_after (struct df *df, rtx pattern, basic_block bb, rtx insn)
{
  rtx ret_insn;

  ret_insn = emit_jump_insn_after (pattern, insn);
  if (ret_insn == insn)
    return ret_insn;

  df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
  return ret_insn;
}


/* Move INSN within BB before BEFORE_INSN within BEFORE_BB.

   This function should only be used to move loop invariant insns
   out of a loop where it has been proven that the def-use info
   will still be valid.  */
rtx
df_insn_move_before (struct df *df, basic_block bb, rtx insn, basic_block before_bb, rtx before_insn)
{
  struct df_link *link;
  unsigned int uid;

  if (! bb)
    return df_pattern_emit_before (df, insn, before_bb, before_insn);

  uid = INSN_UID (insn);

  /* Change bb for all df defined and used by this insn.  */
  for (link = df->insns[uid].defs; link; link = link->next)
    DF_REF_BB (link->ref) = before_bb;
  for (link = df->insns[uid].uses; link; link = link->next)
    DF_REF_BB (link->ref) = before_bb;

  /* The lifetimes of the registers used in this insn will be reduced
     while the lifetimes of the registers defined in this insn
     are likely to be increased.  */

  /* ???? Perhaps all the insns moved should be stored on a list
     which df_analyze removes when it recalculates data flow.  */

  return emit_insn_before (insn, before_insn);
}

/* Functions to query dataflow information.  */


int
df_insn_regno_def_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
		     rtx insn, unsigned int regno)
{
  unsigned int uid;
  struct df_link *link;

  uid = INSN_UID (insn);

  for (link = df->insns[uid].defs; link; link = link->next)
    {
      struct ref *def = link->ref;

      if (DF_REF_REGNO (def) == regno)
	return 1;
    }

  return 0;
}

/* Finds the reference corresponding to the definition of REG in INSN.
   DF is the dataflow object.  */

struct ref *
df_find_def (struct df *df, rtx insn, rtx reg)
{
  struct df_link *defs;

  for (defs = DF_INSN_DEFS (df, insn); defs; defs = defs->next)
    if (rtx_equal_p (DF_REF_REG (defs->ref), reg))
      return defs->ref;

  return NULL;
}

/* Return 1 if REG is referenced in INSN, zero otherwise.  */ 

int
df_reg_used (struct df *df, rtx insn, rtx reg)
{
  struct df_link *uses;

  for (uses = DF_INSN_USES (df, insn); uses; uses = uses->next)
    if (rtx_equal_p (DF_REF_REG (uses->ref), reg))
      return 1; 

  return 0;
}

static int
df_def_dominates_all_uses_p (struct df *df ATTRIBUTE_UNUSED, struct ref *def)
{
  struct df_link *du_link;

  /* Follow def-use chain to find all the uses of this def.  */
  for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
    {
      struct ref *use = du_link->ref;
      struct df_link *ud_link;

      /* Follow use-def chain to check all the defs for this use.  */
      for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
	if (ud_link->ref != def)
	  return 0;
    }
  return 1;
}


int
df_insn_dominates_all_uses_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
			      rtx insn)
{
  unsigned int uid;
  struct df_link *link;

  uid = INSN_UID (insn);

  for (link = df->insns[uid].defs; link; link = link->next)
    {
      struct ref *def = link->ref;

      if (! df_def_dominates_all_uses_p (df, def))
	return 0;
    }

  return 1;
}


/* Return nonzero if all DF dominates all the uses within the bitmap
   BLOCKS.  */
static int
df_def_dominates_uses_p (struct df *df ATTRIBUTE_UNUSED, struct ref *def,
			 bitmap blocks)
{
  struct df_link *du_link;

  /* Follow def-use chain to find all the uses of this def.  */
  for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
    {
      struct ref *use = du_link->ref;
      struct df_link *ud_link;

      /* Only worry about the uses within BLOCKS.  For example,
      consider a register defined within a loop that is live at the
      loop exits.  */
      if (bitmap_bit_p (blocks, DF_REF_BBNO (use)))
	{
	  /* Follow use-def chain to check all the defs for this use.  */
	  for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
	    if (ud_link->ref != def)
	      return 0;
	}
    }
  return 1;
}


/* Return nonzero if all the defs of INSN within BB dominates
   all the corresponding uses.  */
int
df_insn_dominates_uses_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
			  rtx insn, bitmap blocks)
{
  unsigned int uid;
  struct df_link *link;

  uid = INSN_UID (insn);

  for (link = df->insns[uid].defs; link; link = link->next)
    {
      struct ref *def = link->ref;

      /* Only consider the defs within BLOCKS.  */
      if (bitmap_bit_p (blocks, DF_REF_BBNO (def))
	  && ! df_def_dominates_uses_p (df, def, blocks))
	return 0;
    }
  return 1;
}


/* Return the basic block that REG referenced in or NULL if referenced
   in multiple basic blocks.  */
basic_block
df_regno_bb (struct df *df, unsigned int regno)
{
  struct df_link *defs = df->regs[regno].defs;
  struct df_link *uses = df->regs[regno].uses;
  struct ref *def = defs ? defs->ref : 0;
  struct ref *use = uses ? uses->ref : 0;
  basic_block bb_def = def ? DF_REF_BB (def) : 0;
  basic_block bb_use = use ? DF_REF_BB (use) : 0;

  /* Compare blocks of first def and last use.  ???? FIXME.  What if
     the reg-def and reg-use lists are not correctly ordered.  */
  return bb_def == bb_use ? bb_def : 0;
}


/* Return nonzero if REG used in multiple basic blocks.  */
int
df_reg_global_p (struct df *df, rtx reg)
{
  return df_regno_bb (df, REGNO (reg)) != 0;
}


/* Return total lifetime (in insns) of REG.  */
int
df_reg_lifetime (struct df *df, rtx reg)
{
  return df->regs[REGNO (reg)].lifetime;
}


/* Return nonzero if REG live at start of BB.  */
int
df_bb_reg_live_start_p (struct df *df, basic_block bb, rtx reg)
{
  struct bb_info *bb_info = DF_BB_INFO (df, bb);

  gcc_assert (bb_info->lr_in);

  return bitmap_bit_p (bb_info->lr_in, REGNO (reg));
}


/* Return nonzero if REG live at end of BB.  */
int
df_bb_reg_live_end_p (struct df *df, basic_block bb, rtx reg)
{
  struct bb_info *bb_info = DF_BB_INFO (df, bb);

  gcc_assert (bb_info->lr_in);

  return bitmap_bit_p (bb_info->lr_out, REGNO (reg));
}


/* Return -1 if life of REG1 before life of REG2, 1 if life of REG1
   after life of REG2, or 0, if the lives overlap.  */
int
df_bb_regs_lives_compare (struct df *df, basic_block bb, rtx reg1, rtx reg2)
{
  unsigned int regno1 = REGNO (reg1);
  unsigned int regno2 = REGNO (reg2);
  struct ref *def1;
  struct ref *use1;
  struct ref *def2;
  struct ref *use2;


  /* The regs must be local to BB.  */
  gcc_assert (df_regno_bb (df, regno1) == bb
	      && df_regno_bb (df, regno2) == bb);

  def2 = df_bb_regno_first_def_find (df, bb, regno2);
  use1 = df_bb_regno_last_use_find (df, bb, regno1);

  if (DF_INSN_LUID (df, DF_REF_INSN (def2))
      > DF_INSN_LUID (df, DF_REF_INSN (use1)))
    return -1;

  def1 = df_bb_regno_first_def_find (df, bb, regno1);
  use2 = df_bb_regno_last_use_find (df, bb, regno2);

  if (DF_INSN_LUID (df, DF_REF_INSN (def1))
      > DF_INSN_LUID (df, DF_REF_INSN (use2)))
    return 1;

  return 0;
}


/* Return last use of REGNO within BB.  */
struct ref *
df_bb_regno_last_use_find (struct df *df, basic_block bb, unsigned int regno)
{
  struct df_link *link;

  /* This assumes that the reg-use list is ordered such that for any
     BB, the last use is found first.  However, since the BBs are not
     ordered, the first use in the chain is not necessarily the last
     use in the function.  */
  for (link = df->regs[regno].uses; link; link = link->next)
    {
      struct ref *use = link->ref;

      if (DF_REF_BB (use) == bb)
	return use;
    }
  return 0;
}


/* Return first def of REGNO within BB.  */
struct ref *
df_bb_regno_first_def_find (struct df *df, basic_block bb, unsigned int regno)
{
  struct df_link *link;

  /* This assumes that the reg-def list is ordered such that for any
     BB, the first def is found first.  However, since the BBs are not
     ordered, the first def in the chain is not necessarily the first
     def in the function.  */
  for (link = df->regs[regno].defs; link; link = link->next)
    {
      struct ref *def = link->ref;

      if (DF_REF_BB (def) == bb)
	return def;
    }
  return 0;
}

/* Return last def of REGNO within BB.  */
struct ref *
df_bb_regno_last_def_find (struct df *df, basic_block bb, unsigned int regno)
{
  struct df_link *link;
  struct ref *last_def = NULL;
  int in_bb = 0;

  /* This assumes that the reg-def list is ordered such that for any
     BB, the first def is found first.  However, since the BBs are not
     ordered, the first def in the chain is not necessarily the first
     def in the function.  */
  for (link = df->regs[regno].defs; link; link = link->next)
    {
      struct ref *def = link->ref;
      /* The first time in the desired block.  */ 
      if (DF_REF_BB (def) == bb)
	  in_bb = 1;
      /* The last def in the desired block.  */
      else if (in_bb)
        return last_def;
      last_def = def;
    }
  return last_def;
}

/* Return first use of REGNO inside INSN within BB.  */
static struct ref *
df_bb_insn_regno_last_use_find (struct df *df,
				basic_block bb ATTRIBUTE_UNUSED, rtx insn,
				unsigned int regno)
{
  unsigned int uid;
  struct df_link *link;

  uid = INSN_UID (insn);

  for (link = df->insns[uid].uses; link; link = link->next)
    {
      struct ref *use = link->ref;

      if (DF_REF_REGNO (use) == regno)
	return use;
    }

  return 0;
}


/* Return first def of REGNO inside INSN within BB.  */
static struct ref *
df_bb_insn_regno_first_def_find (struct df *df,
				 basic_block bb ATTRIBUTE_UNUSED, rtx insn,
				 unsigned int regno)
{
  unsigned int uid;
  struct df_link *link;

  uid = INSN_UID (insn);

  for (link = df->insns[uid].defs; link; link = link->next)
    {
      struct ref *def = link->ref;

      if (DF_REF_REGNO (def) == regno)
	return def;
    }

  return 0;
}


/* Return insn using REG if the BB contains only a single
   use and def of REG.  */
rtx
df_bb_single_def_use_insn_find (struct df *df, basic_block bb, rtx insn, rtx reg)
{
  struct ref *def;
  struct ref *use;
  struct df_link *du_link;

  def = df_bb_insn_regno_first_def_find (df, bb, insn, REGNO (reg));

  gcc_assert (def);

  du_link = DF_REF_CHAIN (def);

  if (! du_link)
    return NULL_RTX;

  use = du_link->ref;

  /* Check if def is dead.  */
  if (! use)
    return NULL_RTX;

  /* Check for multiple uses.  */
  if (du_link->next)
    return NULL_RTX;

  return DF_REF_INSN (use);
}

/* Functions for debugging/dumping dataflow information.  */


/* Dump a def-use or use-def chain for REF to FILE.  */
static void
df_chain_dump (struct df_link *link, FILE *file)
{
  fprintf (file, "{ ");
  for (; link; link = link->next)
    {
      fprintf (file, "%c%d ",
	       DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
	       DF_REF_ID (link->ref));
    }
  fprintf (file, "}");
}


/* Dump a chain of refs with the associated regno.  */
static void
df_chain_dump_regno (struct df_link *link, FILE *file)
{
  fprintf (file, "{ ");
  for (; link; link = link->next)
    {
      fprintf (file, "%c%d(%d) ",
	       DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
	       DF_REF_ID (link->ref),
	       DF_REF_REGNO (link->ref));
    }
  fprintf (file, "}");
}


/* Dump dataflow info.  */
void
df_dump (struct df *df, int flags, FILE *file)
{
  unsigned int j;
  basic_block bb;

  if (! df || ! file)
    return;

  fprintf (file, "\nDataflow summary:\n");
  fprintf (file, "n_regs = %d, n_defs = %d, n_uses = %d, n_bbs = %d\n",
	   df->n_regs, df->n_defs, df->n_uses, df->n_bbs);

  if (flags & DF_RD)
    {
      basic_block bb;

      fprintf (file, "Reaching defs:\n");
      FOR_EACH_BB (bb)
	{
	  struct bb_info *bb_info = DF_BB_INFO (df, bb);

	  if (! bb_info->rd_in)
	    continue;

	  fprintf (file, "bb %d in  \t", bb->index);
	  dump_bitmap (file, bb_info->rd_in);
	  fprintf (file, "bb %d gen \t", bb->index);
	  dump_bitmap (file, bb_info->rd_gen);
	  fprintf (file, "bb %d kill\t", bb->index);
	  dump_bitmap (file, bb_info->rd_kill);
	  fprintf (file, "bb %d out \t", bb->index);
	  dump_bitmap (file, bb_info->rd_out);
	}
    }

  if (flags & DF_UD_CHAIN)
    {
      fprintf (file, "Use-def chains:\n");
      for (j = 0; j < df->n_defs; j++)
	{
	  if (df->defs[j])
	    {
	      fprintf (file, "d%d bb %d luid %d insn %d reg %d ",
		       j, DF_REF_BBNO (df->defs[j]),
		       DF_INSN_LUID (df, DF_REF_INSN (df->defs[j])),
		       DF_REF_INSN_UID (df->defs[j]),
		       DF_REF_REGNO (df->defs[j]));
	      if (df->defs[j]->flags & DF_REF_READ_WRITE)
		fprintf (file, "read/write ");
	      df_chain_dump (DF_REF_CHAIN (df->defs[j]), file);
	      fprintf (file, "\n");
	    }
	}
    }

  if (flags & DF_RU)
    {
      fprintf (file, "Reaching uses:\n");
      FOR_EACH_BB (bb)
	{
	  struct bb_info *bb_info = DF_BB_INFO (df, bb);

	  if (! bb_info->ru_in)
	    continue;

	  fprintf (file, "bb %d in  \t", bb->index);
	  dump_bitmap (file, bb_info->ru_in);
	  fprintf (file, "bb %d gen \t", bb->index);
	  dump_bitmap (file, bb_info->ru_gen);
	  fprintf (file, "bb %d kill\t", bb->index);
	  dump_bitmap (file, bb_info->ru_kill);
	  fprintf (file, "bb %d out \t", bb->index);
	  dump_bitmap (file, bb_info->ru_out);
	}
    }

  if (flags & DF_DU_CHAIN)
    {
      fprintf (file, "Def-use chains:\n");
      for (j = 0; j < df->n_uses; j++)
	{
	  if (df->uses[j])
	    {
	      fprintf (file, "u%d bb %d luid %d insn %d reg %d ",
		       j, DF_REF_BBNO (df->uses[j]),
		       DF_INSN_LUID (df, DF_REF_INSN (df->uses[j])),
		       DF_REF_INSN_UID (df->uses[j]),
		       DF_REF_REGNO (df->uses[j]));
	      if (df->uses[j]->flags & DF_REF_READ_WRITE)
		fprintf (file, "read/write ");
	      df_chain_dump (DF_REF_CHAIN (df->uses[j]), file);
	      fprintf (file, "\n");
	    }
	}
    }

  if (flags & DF_LR)
    {
      fprintf (file, "Live regs:\n");
      FOR_EACH_BB (bb)
	{
	  struct bb_info *bb_info = DF_BB_INFO (df, bb);

	  if (! bb_info->lr_in)
	    continue;

	  fprintf (file, "bb %d in  \t", bb->index);
	  dump_bitmap (file, bb_info->lr_in);
	  fprintf (file, "bb %d use \t", bb->index);
	  dump_bitmap (file, bb_info->lr_use);
	  fprintf (file, "bb %d def \t", bb->index);
	  dump_bitmap (file, bb_info->lr_def);
	  fprintf (file, "bb %d out \t", bb->index);
	  dump_bitmap (file, bb_info->lr_out);
	}
    }

  if (flags & (DF_REG_INFO | DF_RD_CHAIN | DF_RU_CHAIN))
    {
      struct reg_info *reg_info = df->regs;

      fprintf (file, "Register info:\n");
      for (j = 0; j < df->n_regs; j++)
	{
	  if (((flags & DF_REG_INFO)
	       && (reg_info[j].n_uses || reg_info[j].n_defs))
	      || ((flags & DF_RD_CHAIN) && reg_info[j].defs)
	      || ((flags & DF_RU_CHAIN) && reg_info[j].uses))
	    {
	      fprintf (file, "reg %d", j);
	      if ((flags & DF_RD_CHAIN) && (flags & DF_RU_CHAIN))
		{
		  basic_block bb = df_regno_bb (df, j);

		  if (bb)
		    fprintf (file, " bb %d", bb->index);
		  else
		    fprintf (file, " bb ?");
		}
	      if (flags & DF_REG_INFO)
		{
		  fprintf (file, " life %d", reg_info[j].lifetime);
		}

	      if ((flags & DF_REG_INFO) || (flags & DF_RD_CHAIN))
		{
		  fprintf (file, " defs ");
		  if (flags & DF_REG_INFO)
		    fprintf (file, "%d ", reg_info[j].n_defs);
		  if (flags & DF_RD_CHAIN)
		    df_chain_dump (reg_info[j].defs, file);
		}

	      if ((flags & DF_REG_INFO) || (flags & DF_RU_CHAIN))
		{
		  fprintf (file, " uses ");
		  if (flags & DF_REG_INFO)
		    fprintf (file, "%d ", reg_info[j].n_uses);
		  if (flags & DF_RU_CHAIN)
		    df_chain_dump (reg_info[j].uses, file);
		}

	      fprintf (file, "\n");
	    }
	}
    }
  fprintf (file, "\n");
}


void
df_insn_debug (struct df *df, rtx insn, FILE *file)
{
  unsigned int uid;
  int bbi;

  uid = INSN_UID (insn);
  if (uid >= df->insn_size)
    return;

  if (df->insns[uid].defs)
    bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
  else if (df->insns[uid].uses)
    bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
  else
    bbi = -1;

  fprintf (file, "insn %d bb %d luid %d defs ",
	   uid, bbi, DF_INSN_LUID (df, insn));
  df_chain_dump (df->insns[uid].defs, file);
  fprintf (file, " uses ");
  df_chain_dump (df->insns[uid].uses, file);
  fprintf (file, "\n");
}


void
df_insn_debug_regno (struct df *df, rtx insn, FILE *file)
{
  unsigned int uid;
  int bbi;

  uid = INSN_UID (insn);
  if (uid >= df->insn_size)
    return;

  if (df->insns[uid].defs)
    bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
  else if (df->insns[uid].uses)
    bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
  else
    bbi = -1;

  fprintf (file, "insn %d bb %d luid %d defs ",
	   uid, bbi, DF_INSN_LUID (df, insn));
  df_chain_dump_regno (df->insns[uid].defs, file);
  fprintf (file, " uses ");
  df_chain_dump_regno (df->insns[uid].uses, file);
  fprintf (file, "\n");
}


static void
df_regno_debug (struct df *df, unsigned int regno, FILE *file)
{
  if (regno >= df->reg_size)
    return;

  fprintf (file, "reg %d life %d defs ",
	   regno, df->regs[regno].lifetime);
  df_chain_dump (df->regs[regno].defs, file);
  fprintf (file, " uses ");
  df_chain_dump (df->regs[regno].uses, file);
  fprintf (file, "\n");
}


static void
df_ref_debug (struct df *df, struct ref *ref, FILE *file)
{
  fprintf (file, "%c%d ",
	   DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
	   DF_REF_ID (ref));
  fprintf (file, "reg %d bb %d luid %d insn %d chain ",
	   DF_REF_REGNO (ref),
	   DF_REF_BBNO (ref),
	   DF_INSN_LUID (df, DF_REF_INSN (ref)),
	   INSN_UID (DF_REF_INSN (ref)));
  df_chain_dump (DF_REF_CHAIN (ref), file);
  fprintf (file, "\n");
}

/* Functions for debugging from GDB.  */

void
debug_df_insn (rtx insn)
{
  df_insn_debug (ddf, insn, stderr);
  debug_rtx (insn);
}


void
debug_df_reg (rtx reg)
{
  df_regno_debug (ddf, REGNO (reg), stderr);
}


void
debug_df_regno (unsigned int regno)
{
  df_regno_debug (ddf, regno, stderr);
}


void
debug_df_ref (struct ref *ref)
{
  df_ref_debug (ddf, ref, stderr);
}


void
debug_df_defno (unsigned int defno)
{
  df_ref_debug (ddf, ddf->defs[defno], stderr);
}


void
debug_df_useno (unsigned int defno)
{
  df_ref_debug (ddf, ddf->uses[defno], stderr);
}


void
debug_df_chain (struct df_link *link)
{
  df_chain_dump (link, stderr);
  fputc ('\n', stderr);
}


static void
dataflow_set_a_op_b (enum set_representation repr,
		     enum df_confluence_op op,
		     void *rslt, void *op1, void *op2)
{
  switch (repr)
    {
    case SR_SBITMAP:
      switch (op)
	{
	case DF_UNION:
	  sbitmap_a_or_b (rslt, op1, op2);
	  break;

	case DF_INTERSECTION:
	  sbitmap_a_and_b (rslt, op1, op2);
	  break;

    	default:
	  gcc_unreachable ();
	}
      break;

    case SR_BITMAP:
      switch (op)
	{
	case DF_UNION:
	  bitmap_a_or_b (rslt, op1, op2);
	  break;

	case DF_INTERSECTION:
	  bitmap_a_and_b (rslt, op1, op2);
	  break;

    	default:
	  gcc_unreachable ();
	}
      break;

    default:
      gcc_unreachable ();
    }
}

static void
dataflow_set_copy (enum set_representation repr, void *dest, void *src)
{
  switch (repr)
    {
    case SR_SBITMAP:
      sbitmap_copy (dest, src);
      break;

    case SR_BITMAP:
      bitmap_copy (dest, src);
      break;

    default:
      gcc_unreachable ();
    }
}

/* Hybrid search algorithm from "Implementation Techniques for
   Efficient Data-Flow Analysis of Large Programs".  */

static void
hybrid_search (basic_block bb, struct dataflow *dataflow,
	       sbitmap visited, sbitmap pending, sbitmap considered)
{
  int changed;
  int i = bb->index;
  edge e;

  SET_BIT (visited, bb->index);
  gcc_assert (TEST_BIT (pending, bb->index));
  RESET_BIT (pending, i);

#define HS(E_ANTI, E_ANTI_NEXT, E_ANTI_BB, E_ANTI_START_BB, IN_SET,	\
	   E, E_NEXT, E_BB, E_START_BB, OUT_SET)			\
  do									\
    {									\
      /*  Calculate <conf_op> of predecessor_outs.  */			\
      bitmap_zero (IN_SET[i]);						\
      for (e = bb->E_ANTI; e; e = e->E_ANTI_NEXT)			\
	{								\
	  if (e->E_ANTI_BB == E_ANTI_START_BB)				\
	    continue;							\
	  if (!TEST_BIT (considered, e->E_ANTI_BB->index))		\
	    continue;							\
									\
	  dataflow_set_a_op_b (dataflow->repr, dataflow->conf_op,	\
			       IN_SET[i], IN_SET[i],			\
			       OUT_SET[e->E_ANTI_BB->index]);		\
	}								\
									\
      (*dataflow->transfun)(i, &changed,				\
			    dataflow->in[i], dataflow->out[i],		\
			    dataflow->gen[i], dataflow->kill[i],	\
			    dataflow->data);				\
									\
      if (!changed)							\
	break;								\
									\
      for (e = bb->E; e; e = e->E_NEXT)					\
	{								\
	  if (e->E_BB == E_START_BB || e->E_BB->index == i)		\
	    continue;							\
									\
	  if (!TEST_BIT (considered, e->E_BB->index))			\
	    continue;							\
									\
	  SET_BIT (pending, e->E_BB->index);				\
      	}								\
									\
      for (e = bb->E; e; e = e->E_NEXT)					\
	{								\
	  if (e->E_BB == E_START_BB || e->E_BB->index == i)		\
	    continue;							\
									\
	  if (!TEST_BIT (considered, e->E_BB->index))			\
	    continue;							\
									\
	  if (!TEST_BIT (visited, e->E_BB->index))			\
	    hybrid_search (e->E_BB, dataflow, visited, pending, considered); \
	}								\
    } while (0)

  if (dataflow->dir == DF_FORWARD)
    HS (pred, pred_next, src, ENTRY_BLOCK_PTR, dataflow->in,
	succ, succ_next, dest, EXIT_BLOCK_PTR, dataflow->out);
  else
    HS (succ, succ_next, dest, EXIT_BLOCK_PTR, dataflow->out,
	pred, pred_next, src, ENTRY_BLOCK_PTR, dataflow->in);
}

/* This function will perform iterative bitvector dataflow described by
   DATAFLOW, producing the in and out sets.  Only the part of the cfg
   induced by blocks in DATAFLOW->order is taken into account.

   For forward problems, you probably want to pass in a mapping of
   block number to rc_order (like df->inverse_rc_map).  */

void
iterative_dataflow (struct dataflow *dataflow)
{
  unsigned i, idx;
  sbitmap visited, pending, considered;

  pending = sbitmap_alloc (last_basic_block);
  visited = sbitmap_alloc (last_basic_block);
  considered = sbitmap_alloc (last_basic_block);
  sbitmap_zero (pending);
  sbitmap_zero (visited);
  sbitmap_zero (considered);

  for (i = 0; i < dataflow->n_blocks; i++)
    {
      idx = dataflow->order[i];
      SET_BIT (pending, idx);
      SET_BIT (considered, idx);
      if (dataflow->dir == DF_FORWARD)
	dataflow_set_copy (dataflow->repr,
			   dataflow->out[idx], dataflow->gen[idx]);
      else
	dataflow_set_copy (dataflow->repr,
			   dataflow->in[idx], dataflow->gen[idx]);
    };

  while (1)
    {
      for (i = 0; i < dataflow->n_blocks; i++)
	{
	  idx = dataflow->order[i];

	  if (TEST_BIT (pending, idx) && !TEST_BIT (visited, idx))
	    hybrid_search (BASIC_BLOCK (idx), dataflow,
			   visited, pending, considered);
	}

      if (sbitmap_first_set_bit (pending) == -1)
	break;

      sbitmap_zero (visited);
    }

  sbitmap_free (pending);
  sbitmap_free (visited);
  sbitmap_free (considered);
}