1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
|
/**
* Manage flow analysis for constructors.
*
* Copyright: Copyright (C) 1999-2024 by The D Language Foundation, All Rights Reserved
* Authors: $(LINK2 https://www.digitalmars.com, Walter Bright)
* License: $(LINK2 https://www.boost.org/LICENSE_1_0.txt, Boost License 1.0)
* Source: $(LINK2 https://github.com/dlang/dmd/blob/master/src/dmd/ctorflow.d, _ctorflow.d)
* Documentation: https://dlang.org/phobos/dmd_ctorflow.html
* Coverage: https://codecov.io/gh/dlang/dmd/src/master/src/dmd/ctorflow.d
*/
module dmd.ctorflow;
import core.stdc.stdio;
import dmd.root.rmem;
import dmd.location;
enum CSX : ushort
{
none = 0,
this_ctor = 0x01, /// called this()
super_ctor = 0x02, /// called super()
label = 0x04, /// seen a label
return_ = 0x08, /// seen a return statement
any_ctor = 0x10, /// either this() or super() was called
halt = 0x20, /// assert(0)
}
/// Individual field in the Ctor with information about its callees and location.
struct FieldInit
{
CSX csx; /// information about the field's callees
Loc loc; /// location of the field initialization
}
/***********
* Primitive flow analysis for constructors
*/
struct CtorFlow
{
CSX callSuper; /// state of calling other constructors
FieldInit[] fieldinit; /// state of field initializations
void allocFieldinit(size_t dim)
{
fieldinit = (cast(FieldInit*)mem.xcalloc(FieldInit.sizeof, dim))[0 .. dim];
}
void freeFieldinit()
{
if (fieldinit.ptr)
mem.xfree(fieldinit.ptr);
fieldinit = null;
}
/***********************
* Create a deep copy of `this`
* Returns:
* a copy
*/
CtorFlow clone()
{
return CtorFlow(callSuper, fieldinit.arraydup);
}
/**********************************
* Set CSX bits in flow analysis state
* Params:
* csx = bits to set
*/
void orCSX(CSX csx) nothrow pure @safe
{
callSuper |= csx;
foreach (ref u; fieldinit)
u.csx |= csx;
}
/******************************
* OR CSX bits to `this`
* Params:
* ctorflow = bits to OR in
*/
void OR(const ref CtorFlow ctorflow) pure nothrow @safe
{
callSuper |= ctorflow.callSuper;
if (fieldinit.length && ctorflow.fieldinit.length)
{
assert(fieldinit.length == ctorflow.fieldinit.length);
foreach (i, u; ctorflow.fieldinit)
{
auto fi = &fieldinit[i];
fi.csx |= u.csx;
if (fi.loc is Loc.init)
fi.loc = u.loc;
}
}
}
}
/****************************************
* Merge `b` flow analysis results into `a`.
* Params:
* a = the path to merge `b` into
* b = the other path
* Returns:
* false means one of the paths skips construction
*/
bool mergeCallSuper(ref CSX a, const CSX b) pure nothrow @safe
{
// This does a primitive flow analysis to support the restrictions
// regarding when and how constructors can appear.
// It merges the results of two paths.
// The two paths are `a` and `b`; the result is merged into `a`.
if (b == a)
return true;
// Have ALL branches called a constructor?
const aAll = (a & (CSX.this_ctor | CSX.super_ctor)) != 0;
const bAll = (b & (CSX.this_ctor | CSX.super_ctor)) != 0;
// Have ANY branches called a constructor?
const aAny = (a & CSX.any_ctor) != 0;
const bAny = (b & CSX.any_ctor) != 0;
// Have any branches returned?
const aRet = (a & CSX.return_) != 0;
const bRet = (b & CSX.return_) != 0;
// Have any branches halted?
const aHalt = (a & CSX.halt) != 0;
const bHalt = (b & CSX.halt) != 0;
if (aHalt && bHalt)
{
a = CSX.halt;
}
else if ((!bHalt && bRet && !bAny && aAny) || (!aHalt && aRet && !aAny && bAny))
{
// If one has returned without a constructor call, there must not
// be ctor calls in the other.
return false;
}
else if (bHalt || bRet && bAll)
{
// If one branch has called a ctor and then exited, anything the
// other branch has done is OK (except returning without a
// ctor call, but we already checked that).
a |= b & (CSX.any_ctor | CSX.label);
}
else if (aHalt || aRet && aAll)
{
a = cast(CSX)(b | (a & (CSX.any_ctor | CSX.label)));
}
else if (aAll != bAll) // both branches must have called ctors, or both not
return false;
else
{
// If one returned without a ctor, remember that
if (bRet && !bAny)
a |= CSX.return_;
a |= b & (CSX.any_ctor | CSX.label);
}
return true;
}
/****************************************
* Merge `b` flow analysis results into `a`.
* Params:
* a = the path to merge `b` into
* b = the other path
* Returns:
* false means either `a` or `b` skips initialization
*/
bool mergeFieldInit(ref CSX a, const CSX b) pure nothrow @safe
{
if (b == a)
return true;
// Have any branches returned?
const aRet = (a & CSX.return_) != 0;
const bRet = (b & CSX.return_) != 0;
// Have any branches halted?
const aHalt = (a & CSX.halt) != 0;
const bHalt = (b & CSX.halt) != 0;
if (aHalt && bHalt)
{
a = CSX.halt;
return true;
}
// The logic here is to prefer the branch that neither halts nor returns.
bool ok;
if (!bHalt && bRet)
{
// Branch b returns, no merging required.
ok = (b & CSX.this_ctor);
}
else if (!aHalt && aRet)
{
// Branch a returns, but b doesn't, b takes precedence.
ok = (a & CSX.this_ctor);
a = b;
}
else if (bHalt)
{
// Branch b halts, no merging required.
ok = (a & CSX.this_ctor);
}
else if (aHalt)
{
// Branch a halts, but b doesn't, b takes precedence.
ok = (b & CSX.this_ctor);
a = b;
}
else
{
// Neither branch returns nor halts, merge flags.
ok = !((a ^ b) & CSX.this_ctor);
a |= b;
}
return ok;
}
|