aboutsummaryrefslogtreecommitdiff
path: root/gcc/cse.c
blob: a304bc605d5314fd56edcfb552e40128fcac3a1c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
/* Common subexpression elimination for GNU compiler.
   Copyright (C) 1987, 88, 89, 92-7, 1998, 1999 Free Software Foundation, Inc.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */


#include "config.h"
/* stdio.h must precede rtl.h for FFS.  */
#include "system.h"
#include <setjmp.h>

#include "rtl.h"
#include "tm_p.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "flags.h"
#include "real.h"
#include "insn-config.h"
#include "recog.h"
#include "function.h"
#include "expr.h"
#include "toplev.h"
#include "output.h"
#include "hashtab.h"
#include "ggc.h"

/* The basic idea of common subexpression elimination is to go
   through the code, keeping a record of expressions that would
   have the same value at the current scan point, and replacing
   expressions encountered with the cheapest equivalent expression.

   It is too complicated to keep track of the different possibilities
   when control paths merge in this code; so, at each label, we forget all
   that is known and start fresh.  This can be described as processing each
   extended basic block separately.  We have a separate pass to perform
   global CSE.

   Note CSE can turn a conditional or computed jump into a nop or
   an unconditional jump.  When this occurs we arrange to run the jump
   optimizer after CSE to delete the unreachable code.

   We use two data structures to record the equivalent expressions:
   a hash table for most expressions, and several vectors together
   with "quantity numbers" to record equivalent (pseudo) registers.

   The use of the special data structure for registers is desirable
   because it is faster.  It is possible because registers references
   contain a fairly small number, the register number, taken from
   a contiguously allocated series, and two register references are
   identical if they have the same number.  General expressions
   do not have any such thing, so the only way to retrieve the
   information recorded on an expression other than a register
   is to keep it in a hash table.

Registers and "quantity numbers":
   
   At the start of each basic block, all of the (hardware and pseudo)
   registers used in the function are given distinct quantity
   numbers to indicate their contents.  During scan, when the code
   copies one register into another, we copy the quantity number.
   When a register is loaded in any other way, we allocate a new
   quantity number to describe the value generated by this operation.
   `reg_qty' records what quantity a register is currently thought
   of as containing.

   All real quantity numbers are greater than or equal to `max_reg'.
   If register N has not been assigned a quantity, reg_qty[N] will equal N.

   Quantity numbers below `max_reg' do not exist and none of the `qty_...'
   variables should be referenced with an index below `max_reg'.

   We also maintain a bidirectional chain of registers for each
   quantity number.  `qty_first_reg', `qty_last_reg',
   `reg_next_eqv' and `reg_prev_eqv' hold these chains.

   The first register in a chain is the one whose lifespan is least local.
   Among equals, it is the one that was seen first.
   We replace any equivalent register with that one.

   If two registers have the same quantity number, it must be true that
   REG expressions with `qty_mode' must be in the hash table for both
   registers and must be in the same class.

   The converse is not true.  Since hard registers may be referenced in
   any mode, two REG expressions might be equivalent in the hash table
   but not have the same quantity number if the quantity number of one
   of the registers is not the same mode as those expressions.
   
Constants and quantity numbers

   When a quantity has a known constant value, that value is stored
   in the appropriate element of qty_const.  This is in addition to
   putting the constant in the hash table as is usual for non-regs.

   Whether a reg or a constant is preferred is determined by the configuration
   macro CONST_COSTS and will often depend on the constant value.  In any
   event, expressions containing constants can be simplified, by fold_rtx.

   When a quantity has a known nearly constant value (such as an address
   of a stack slot), that value is stored in the appropriate element
   of qty_const.

   Integer constants don't have a machine mode.  However, cse
   determines the intended machine mode from the destination
   of the instruction that moves the constant.  The machine mode
   is recorded in the hash table along with the actual RTL
   constant expression so that different modes are kept separate.

Other expressions:

   To record known equivalences among expressions in general
   we use a hash table called `table'.  It has a fixed number of buckets
   that contain chains of `struct table_elt' elements for expressions.
   These chains connect the elements whose expressions have the same
   hash codes.

   Other chains through the same elements connect the elements which
   currently have equivalent values.

   Register references in an expression are canonicalized before hashing
   the expression.  This is done using `reg_qty' and `qty_first_reg'.
   The hash code of a register reference is computed using the quantity
   number, not the register number.

   When the value of an expression changes, it is necessary to remove from the
   hash table not just that expression but all expressions whose values
   could be different as a result.

     1. If the value changing is in memory, except in special cases
     ANYTHING referring to memory could be changed.  That is because
     nobody knows where a pointer does not point.
     The function `invalidate_memory' removes what is necessary.

     The special cases are when the address is constant or is
     a constant plus a fixed register such as the frame pointer
     or a static chain pointer.  When such addresses are stored in,
     we can tell exactly which other such addresses must be invalidated
     due to overlap.  `invalidate' does this.
     All expressions that refer to non-constant
     memory addresses are also invalidated.  `invalidate_memory' does this.

     2. If the value changing is a register, all expressions
     containing references to that register, and only those,
     must be removed.

   Because searching the entire hash table for expressions that contain
   a register is very slow, we try to figure out when it isn't necessary.
   Precisely, this is necessary only when expressions have been
   entered in the hash table using this register, and then the value has
   changed, and then another expression wants to be added to refer to
   the register's new value.  This sequence of circumstances is rare
   within any one basic block.

   The vectors `reg_tick' and `reg_in_table' are used to detect this case.
   reg_tick[i] is incremented whenever a value is stored in register i.
   reg_in_table[i] holds -1 if no references to register i have been
   entered in the table; otherwise, it contains the value reg_tick[i] had
   when the references were entered.  If we want to enter a reference
   and reg_in_table[i] != reg_tick[i], we must scan and remove old references.
   Until we want to enter a new entry, the mere fact that the two vectors
   don't match makes the entries be ignored if anyone tries to match them.

   Registers themselves are entered in the hash table as well as in
   the equivalent-register chains.  However, the vectors `reg_tick'
   and `reg_in_table' do not apply to expressions which are simple
   register references.  These expressions are removed from the table
   immediately when they become invalid, and this can be done even if
   we do not immediately search for all the expressions that refer to
   the register.

   A CLOBBER rtx in an instruction invalidates its operand for further
   reuse.  A CLOBBER or SET rtx whose operand is a MEM:BLK
   invalidates everything that resides in memory.

Related expressions:

   Constant expressions that differ only by an additive integer
   are called related.  When a constant expression is put in
   the table, the related expression with no constant term
   is also entered.  These are made to point at each other
   so that it is possible to find out if there exists any
   register equivalent to an expression related to a given expression.  */
   
/* One plus largest register number used in this function.  */

static int max_reg;

/* One plus largest instruction UID used in this function at time of
   cse_main call.  */

static int max_insn_uid;

/* Length of vectors indexed by quantity number.
   We know in advance we will not need a quantity number this big.  */

static int max_qty;

/* Next quantity number to be allocated.
   This is 1 + the largest number needed so far.  */

static int next_qty;

/* Indexed by quantity number, gives the first (or last) register 
   in the chain of registers that currently contain this quantity.  */

static int *qty_first_reg;
static int *qty_last_reg;

/* Index by quantity number, gives the mode of the quantity.  */

static enum machine_mode *qty_mode;

/* Indexed by quantity number, gives the rtx of the constant value of the
   quantity, or zero if it does not have a known value.
   A sum of the frame pointer (or arg pointer) plus a constant
   can also be entered here.  */

static rtx *qty_const;

/* Indexed by qty number, gives the insn that stored the constant value
   recorded in `qty_const'.  */

static rtx *qty_const_insn;

/* The next three variables are used to track when a comparison between a
   quantity and some constant or register has been passed.  In that case, we
   know the results of the comparison in case we see it again.  These variables
   record a comparison that is known to be true.  */

/* Indexed by qty number, gives the rtx code of a comparison with a known
   result involving this quantity.  If none, it is UNKNOWN.  */
static enum rtx_code *qty_comparison_code;

/* Indexed by qty number, gives the constant being compared against in a
   comparison of known result.  If no such comparison, it is undefined.
   If the comparison is not with a constant, it is zero.  */

static rtx *qty_comparison_const;

/* Indexed by qty number, gives the quantity being compared against in a
   comparison of known result.  If no such comparison, if it undefined.
   If the comparison is not with a register, it is -1.  */

static int *qty_comparison_qty;

#ifdef HAVE_cc0
/* For machines that have a CC0, we do not record its value in the hash
   table since its use is guaranteed to be the insn immediately following
   its definition and any other insn is presumed to invalidate it.

   Instead, we store below the value last assigned to CC0.  If it should
   happen to be a constant, it is stored in preference to the actual
   assigned value.  In case it is a constant, we store the mode in which
   the constant should be interpreted.  */

static rtx prev_insn_cc0;
static enum machine_mode prev_insn_cc0_mode;
#endif

/* Previous actual insn.  0 if at first insn of basic block.  */

static rtx prev_insn;

/* Insn being scanned.  */

static rtx this_insn;

/* Index by register number, gives the number of the next (or
   previous) register in the chain of registers sharing the same
   value.

   Or -1 if this register is at the end of the chain.

   If reg_qty[N] == N, reg_next_eqv[N] is undefined.  */

static int *reg_next_eqv;
static int *reg_prev_eqv;

struct cse_reg_info {
  /* The number of times the register has been altered in the current
     basic block.  */
  int reg_tick;

  /* The next cse_reg_info structure in the free or used list.  */
  struct cse_reg_info* next;

  /* The REG_TICK value at which rtx's containing this register are
     valid in the hash table.  If this does not equal the current
     reg_tick value, such expressions existing in the hash table are
     invalid.  */
  int reg_in_table;

  /* The quantity number of the register's current contents.  */
  int reg_qty;

  /* Search key */
  int regno;
};

/* A free list of cse_reg_info entries.  */
static struct cse_reg_info *cse_reg_info_free_list;

/* A used list of cse_reg_info entries.  */
static struct cse_reg_info *cse_reg_info_used_list;
static struct cse_reg_info *cse_reg_info_used_list_end;

/* A mapping from registers to cse_reg_info data structures.  */
static hash_table_t cse_reg_info_tree;

/* The last lookup we did into the cse_reg_info_tree.  This allows us
   to cache repeated lookups.  */
static int cached_regno;
static struct cse_reg_info *cached_cse_reg_info;

/* A HARD_REG_SET containing all the hard registers for which there is 
   currently a REG expression in the hash table.  Note the difference
   from the above variables, which indicate if the REG is mentioned in some
   expression in the table.  */

static HARD_REG_SET hard_regs_in_table;

/* A HARD_REG_SET containing all the hard registers that are invalidated
   by a CALL_INSN.  */

static HARD_REG_SET regs_invalidated_by_call;

/* CUID of insn that starts the basic block currently being cse-processed.  */

static int cse_basic_block_start;

/* CUID of insn that ends the basic block currently being cse-processed.  */

static int cse_basic_block_end;

/* Vector mapping INSN_UIDs to cuids.
   The cuids are like uids but increase monotonically always.
   We use them to see whether a reg is used outside a given basic block.  */

static int *uid_cuid;

/* Highest UID in UID_CUID.  */
static int max_uid;

/* Get the cuid of an insn.  */

#define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])

/* Nonzero if cse has altered conditional jump insns
   in such a way that jump optimization should be redone.  */

static int cse_jumps_altered;

/* Nonzero if we put a LABEL_REF into the hash table.  Since we may have put
   it into an INSN without a REG_LABEL, we have to rerun jump after CSE
   to put in the note.  */
static int recorded_label_ref;

/* canon_hash stores 1 in do_not_record
   if it notices a reference to CC0, PC, or some other volatile
   subexpression.  */

static int do_not_record;

#ifdef LOAD_EXTEND_OP

/* Scratch rtl used when looking for load-extended copy of a MEM.  */
static rtx memory_extend_rtx;
#endif

/* canon_hash stores 1 in hash_arg_in_memory
   if it notices a reference to memory within the expression being hashed.  */

static int hash_arg_in_memory;

/* canon_hash stores 1 in hash_arg_in_struct
   if it notices a reference to memory that's part of a structure.  */

static int hash_arg_in_struct;

/* The hash table contains buckets which are chains of `struct table_elt's,
   each recording one expression's information.
   That expression is in the `exp' field.

   Those elements with the same hash code are chained in both directions
   through the `next_same_hash' and `prev_same_hash' fields.

   Each set of expressions with equivalent values
   are on a two-way chain through the `next_same_value'
   and `prev_same_value' fields, and all point with
   the `first_same_value' field at the first element in
   that chain.  The chain is in order of increasing cost.
   Each element's cost value is in its `cost' field.

   The `in_memory' field is nonzero for elements that
   involve any reference to memory.  These elements are removed
   whenever a write is done to an unidentified location in memory.
   To be safe, we assume that a memory address is unidentified unless
   the address is either a symbol constant or a constant plus
   the frame pointer or argument pointer.

   The `in_struct' field is nonzero for elements that
   involve any reference to memory inside a structure or array.

   The `related_value' field is used to connect related expressions
   (that differ by adding an integer).
   The related expressions are chained in a circular fashion.
   `related_value' is zero for expressions for which this
   chain is not useful.

   The `cost' field stores the cost of this element's expression.

   The `is_const' flag is set if the element is a constant (including
   a fixed address).

   The `flag' field is used as a temporary during some search routines.

   The `mode' field is usually the same as GET_MODE (`exp'), but
   if `exp' is a CONST_INT and has no machine mode then the `mode'
   field is the mode it was being used as.  Each constant is
   recorded separately for each mode it is used with.  */


struct table_elt
{
  rtx exp;
  struct table_elt *next_same_hash;
  struct table_elt *prev_same_hash;
  struct table_elt *next_same_value;
  struct table_elt *prev_same_value;
  struct table_elt *first_same_value;
  struct table_elt *related_value;
  int cost;
  enum machine_mode mode;
  char in_memory;
  char in_struct;
  char is_const;
  char flag;
};

/* We don't want a lot of buckets, because we rarely have very many
   things stored in the hash table, and a lot of buckets slows
   down a lot of loops that happen frequently.  */
#define NBUCKETS 31

/* Compute hash code of X in mode M.  Special-case case where X is a pseudo
   register (hard registers may require `do_not_record' to be set).  */

#define HASH(X, M)	\
 (GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER	\
  ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) % NBUCKETS	\
  : canon_hash (X, M) % NBUCKETS)

/* Determine whether register number N is considered a fixed register for CSE.
   It is desirable to replace other regs with fixed regs, to reduce need for
   non-fixed hard regs.
   A reg wins if it is either the frame pointer or designated as fixed,
   but not if it is an overlapping register.  */
#ifdef OVERLAPPING_REGNO_P
#define FIXED_REGNO_P(N)  \
  (((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
    || fixed_regs[N] || global_regs[N])	  \
   && ! OVERLAPPING_REGNO_P ((N)))
#else
#define FIXED_REGNO_P(N)  \
  ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
   || fixed_regs[N] || global_regs[N])
#endif

/* Compute cost of X, as stored in the `cost' field of a table_elt.  Fixed
   hard registers and pointers into the frame are the cheapest with a cost
   of 0.  Next come pseudos with a cost of one and other hard registers with
   a cost of 2.  Aside from these special cases, call `rtx_cost'.  */

#define CHEAP_REGNO(N) \
  ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM 	\
   || (N) == STACK_POINTER_REGNUM || (N) == ARG_POINTER_REGNUM	     	\
   || ((N) >= FIRST_VIRTUAL_REGISTER && (N) <= LAST_VIRTUAL_REGISTER) 	\
   || ((N) < FIRST_PSEUDO_REGISTER					\
       && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))

/* A register is cheap if it is a user variable assigned to the register
   or if its register number always corresponds to a cheap register.  */

#define CHEAP_REG(N) \
  ((REG_USERVAR_P (N) && REGNO (N) < FIRST_PSEUDO_REGISTER)	\
   || CHEAP_REGNO (REGNO (N)))

#define COST(X)								\
  (GET_CODE (X) == REG							\
   ? (CHEAP_REG (X) ? 0							\
      : REGNO (X) >= FIRST_PSEUDO_REGISTER ? 1				\
      : 2)								\
   : notreg_cost(X))

/* Get the info associated with register N.  */

#define GET_CSE_REG_INFO(N) 			\
  (((N) == cached_regno && cached_cse_reg_info)	\
   ? cached_cse_reg_info : get_cse_reg_info ((N)))

/* Get the number of times this register has been updated in this
   basic block.  */

#define REG_TICK(N) ((GET_CSE_REG_INFO (N))->reg_tick)

/* Get the point at which REG was recorded in the table.  */

#define REG_IN_TABLE(N) ((GET_CSE_REG_INFO (N))->reg_in_table)

/* Get the quantity number for REG.  */

#define REG_QTY(N) ((GET_CSE_REG_INFO (N))->reg_qty)

/* Determine if the quantity number for register X represents a valid index
   into the `qty_...' variables.  */

#define REGNO_QTY_VALID_P(N) (REG_QTY (N) != (N))

#ifdef ADDRESS_COST
/* The ADDRESS_COST macro does not deal with ADDRESSOF nodes.  But,
   during CSE, such nodes are present.  Using an ADDRESSOF node which
   refers to the address of a REG is a good thing because we can then
   turn (MEM (ADDRESSSOF (REG))) into just plain REG.  */
#define CSE_ADDRESS_COST(RTX)					\
  ((GET_CODE (RTX) == ADDRESSOF && REG_P (XEXP ((RTX), 0)))	\
   ? -1 : ADDRESS_COST(RTX))
#endif 

static struct table_elt *table[NBUCKETS];

/* Chain of `struct table_elt's made so far for this function
   but currently removed from the table.  */

static struct table_elt *free_element_chain;

/* Number of `struct table_elt' structures made so far for this function.  */

static int n_elements_made;

/* Maximum value `n_elements_made' has had so far in this compilation
   for functions previously processed.  */

static int max_elements_made;

/* Surviving equivalence class when two equivalence classes are merged 
   by recording the effects of a jump in the last insn.  Zero if the
   last insn was not a conditional jump.  */

static struct table_elt *last_jump_equiv_class;

/* Set to the cost of a constant pool reference if one was found for a
   symbolic constant.  If this was found, it means we should try to
   convert constants into constant pool entries if they don't fit in
   the insn.  */

static int constant_pool_entries_cost;

/* Define maximum length of a branch path.  */

#define PATHLENGTH	10

/* This data describes a block that will be processed by cse_basic_block.  */

struct cse_basic_block_data {
  /* Lowest CUID value of insns in block.  */
  int low_cuid;
  /* Highest CUID value of insns in block.  */
  int high_cuid;
  /* Total number of SETs in block.  */
  int nsets;
  /* Last insn in the block.  */
  rtx last;
  /* Size of current branch path, if any.  */
  int path_size;
  /* Current branch path, indicating which branches will be taken.  */
  struct branch_path {
    /* The branch insn.  */
    rtx branch;
    /* Whether it should be taken or not.  AROUND is the same as taken
       except that it is used when the destination label is not preceded
       by a BARRIER.  */
    enum taken {TAKEN, NOT_TAKEN, AROUND} status;
  } path[PATHLENGTH];
};

/* Nonzero if X has the form (PLUS frame-pointer integer).  We check for
   virtual regs here because the simplify_*_operation routines are called
   by integrate.c, which is called before virtual register instantiation.  */

#define FIXED_BASE_PLUS_P(X)					\
  ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx	\
   || ((X) == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])\
   || (X) == virtual_stack_vars_rtx				\
   || (X) == virtual_incoming_args_rtx				\
   || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
       && (XEXP (X, 0) == frame_pointer_rtx			\
	   || XEXP (X, 0) == hard_frame_pointer_rtx		\
	   || ((X) == arg_pointer_rtx				\
	       && fixed_regs[ARG_POINTER_REGNUM])		\
	   || XEXP (X, 0) == virtual_stack_vars_rtx		\
	   || XEXP (X, 0) == virtual_incoming_args_rtx))	\
   || GET_CODE (X) == ADDRESSOF)

/* Similar, but also allows reference to the stack pointer.

   This used to include FIXED_BASE_PLUS_P, however, we can't assume that
   arg_pointer_rtx by itself is nonzero, because on at least one machine,
   the i960, the arg pointer is zero when it is unused.  */

#define NONZERO_BASE_PLUS_P(X)					\
  ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx	\
   || (X) == virtual_stack_vars_rtx				\
   || (X) == virtual_incoming_args_rtx				\
   || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
       && (XEXP (X, 0) == frame_pointer_rtx			\
	   || XEXP (X, 0) == hard_frame_pointer_rtx		\
	   || ((X) == arg_pointer_rtx				\
	       && fixed_regs[ARG_POINTER_REGNUM])		\
	   || XEXP (X, 0) == virtual_stack_vars_rtx		\
	   || XEXP (X, 0) == virtual_incoming_args_rtx))	\
   || (X) == stack_pointer_rtx					\
   || (X) == virtual_stack_dynamic_rtx				\
   || (X) == virtual_outgoing_args_rtx				\
   || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
       && (XEXP (X, 0) == stack_pointer_rtx			\
	   || XEXP (X, 0) == virtual_stack_dynamic_rtx		\
	   || XEXP (X, 0) == virtual_outgoing_args_rtx))	\
   || GET_CODE (X) == ADDRESSOF)

static int notreg_cost		PROTO((rtx));
static void new_basic_block	PROTO((void));
static void make_new_qty	PROTO((int));
static void make_regs_eqv	PROTO((int, int));
static void delete_reg_equiv	PROTO((int));
static int mention_regs		PROTO((rtx));
static int insert_regs		PROTO((rtx, struct table_elt *, int));
static void free_element	PROTO((struct table_elt *));
static void remove_from_table	PROTO((struct table_elt *, unsigned));
static struct table_elt *get_element PROTO((void));
static struct table_elt *lookup	PROTO((rtx, unsigned, enum machine_mode)),
       *lookup_for_remove PROTO((rtx, unsigned, enum machine_mode));
static rtx lookup_as_function	PROTO((rtx, enum rtx_code));
static struct table_elt *insert PROTO((rtx, struct table_elt *, unsigned,
				       enum machine_mode));
static void merge_equiv_classes PROTO((struct table_elt *,
				       struct table_elt *));
static void invalidate		PROTO((rtx, enum machine_mode));
static int cse_rtx_varies_p	PROTO((rtx));
static void remove_invalid_refs	PROTO((int));
static void remove_invalid_subreg_refs	PROTO((int, int, enum machine_mode));
static void rehash_using_reg	PROTO((rtx));
static void invalidate_memory	PROTO((void));
static void invalidate_for_call	PROTO((void));
static rtx use_related_value	PROTO((rtx, struct table_elt *));
static unsigned canon_hash	PROTO((rtx, enum machine_mode));
static unsigned safe_hash	PROTO((rtx, enum machine_mode));
static int exp_equiv_p		PROTO((rtx, rtx, int, int));
static void set_nonvarying_address_components PROTO((rtx, int, rtx *,
						     HOST_WIDE_INT *,
						     HOST_WIDE_INT *));
static int refers_to_p		PROTO((rtx, rtx));
static rtx canon_reg		PROTO((rtx, rtx));
static void find_best_addr	PROTO((rtx, rtx *));
static enum rtx_code find_comparison_args PROTO((enum rtx_code, rtx *, rtx *,
						 enum machine_mode *,
						 enum machine_mode *));
static rtx cse_gen_binary	PROTO((enum rtx_code, enum machine_mode,
				       rtx, rtx));
static rtx simplify_plus_minus	PROTO((enum rtx_code, enum machine_mode,
				       rtx, rtx));
static rtx fold_rtx		PROTO((rtx, rtx));
static rtx equiv_constant	PROTO((rtx));
static void record_jump_equiv	PROTO((rtx, int));
static void record_jump_cond	PROTO((enum rtx_code, enum machine_mode,
				       rtx, rtx, int));
static void cse_insn		PROTO((rtx, rtx));
static int note_mem_written	PROTO((rtx));
static void invalidate_from_clobbers PROTO((rtx));
static rtx cse_process_notes	PROTO((rtx, rtx));
static void cse_around_loop	PROTO((rtx));
static void invalidate_skipped_set PROTO((rtx, rtx));
static void invalidate_skipped_block PROTO((rtx));
static void cse_check_loop_start PROTO((rtx, rtx));
static void cse_set_around_loop	PROTO((rtx, rtx, rtx));
static rtx cse_basic_block	PROTO((rtx, rtx, struct branch_path *, int));
static void count_reg_usage	PROTO((rtx, int *, rtx, int));
extern void dump_class          PROTO((struct table_elt*));
static void check_fold_consts	PROTO((PTR));
static struct cse_reg_info* get_cse_reg_info PROTO((int));
static unsigned int hash_cse_reg_info PROTO((hash_table_entry_t));
static int cse_reg_info_equal_p	PROTO((hash_table_entry_t,
				       hash_table_entry_t));

static void flush_hash_table	PROTO((void));

/* Dump the expressions in the equivalence class indicated by CLASSP.
   This function is used only for debugging.  */
void
dump_class (classp)
     struct table_elt *classp;
{
  struct table_elt *elt;

  fprintf (stderr, "Equivalence chain for ");
  print_rtl (stderr, classp->exp);
  fprintf (stderr, ": \n");
  
  for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
    {
      print_rtl (stderr, elt->exp);
      fprintf (stderr, "\n");
    }
}

/* Return an estimate of the cost of computing rtx X.
   One use is in cse, to decide which expression to keep in the hash table.
   Another is in rtl generation, to pick the cheapest way to multiply.
   Other uses like the latter are expected in the future.  */

/* Internal function, to compute cost when X is not a register; called
   from COST macro to keep it simple.  */

static int
notreg_cost (x)
     rtx x;
{
  return ((GET_CODE (x) == SUBREG
	   && GET_CODE (SUBREG_REG (x)) == REG
	   && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
	   && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
	   && (GET_MODE_SIZE (GET_MODE (x))
	       < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
	   && subreg_lowpart_p (x)
	   && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
				     GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
	  ? (CHEAP_REG (SUBREG_REG (x)) ? 0
	     : (REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER ? 1
		: 2))
	  : rtx_cost (x, SET) * 2);
}

/* Return the right cost to give to an operation
   to make the cost of the corresponding register-to-register instruction
   N times that of a fast register-to-register instruction.  */

#define COSTS_N_INSNS(N) ((N) * 4 - 2)

int
rtx_cost (x, outer_code)
     rtx x;
     enum rtx_code outer_code ATTRIBUTE_UNUSED;
{
  register int i, j;
  register enum rtx_code code;
  register const char *fmt;
  register int total;

  if (x == 0)
    return 0;

  /* Compute the default costs of certain things.
     Note that RTX_COSTS can override the defaults.  */

  code = GET_CODE (x);
  switch (code)
    {
    case MULT:
      /* Count multiplication by 2**n as a shift,
	 because if we are considering it, we would output it as a shift.  */
      if (GET_CODE (XEXP (x, 1)) == CONST_INT
	  && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)
	total = 2;
      else
	total = COSTS_N_INSNS (5);
      break;
    case DIV:
    case UDIV:
    case MOD:
    case UMOD:
      total = COSTS_N_INSNS (7);
      break;
    case USE:
      /* Used in loop.c and combine.c as a marker.  */
      total = 0;
      break;
    case ASM_OPERANDS:
      /* We don't want these to be used in substitutions because
	 we have no way of validating the resulting insn.  So assign
	 anything containing an ASM_OPERANDS a very high cost.  */
      total = 1000;
      break;
    default:
      total = 2;
    }

  switch (code)
    {
    case REG:
      return ! CHEAP_REG (x);

    case SUBREG:
      /* If we can't tie these modes, make this expensive.  The larger
	 the mode, the more expensive it is.  */
      if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
	return COSTS_N_INSNS (2
			      + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
      return 2;
#ifdef RTX_COSTS
      RTX_COSTS (x, code, outer_code);
#endif 
#ifdef CONST_COSTS
      CONST_COSTS (x, code, outer_code);
#endif

    default:
#ifdef DEFAULT_RTX_COSTS
      DEFAULT_RTX_COSTS(x, code, outer_code);
#endif
      break;
    }

  /* Sum the costs of the sub-rtx's, plus cost of this operation,
     which is already in total.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
      total += rtx_cost (XEXP (x, i), code);
    else if (fmt[i] == 'E')
      for (j = 0; j < XVECLEN (x, i); j++)
	total += rtx_cost (XVECEXP (x, i, j), code);

  return total;
}

static struct cse_reg_info *
get_cse_reg_info (regno)
     int regno;
{
  struct cse_reg_info *cri;
  struct cse_reg_info **entry;
  struct cse_reg_info temp;

  /* See if we already have this entry.  */
  temp.regno = regno;
  entry = (struct cse_reg_info **) find_hash_table_entry (cse_reg_info_tree,
							  &temp, TRUE);

  if (*entry)
    cri = *entry;
  else 
    {
      /* Get a new cse_reg_info structure.  */
      if (cse_reg_info_free_list) 
	{
	  cri = cse_reg_info_free_list;
	  cse_reg_info_free_list = cri->next;
	}
      else
	cri = (struct cse_reg_info *) xmalloc (sizeof (struct cse_reg_info));

      /* Initialize it.  */
      cri->reg_tick = 0;
      cri->reg_in_table = -1;
      cri->reg_qty = regno;
      cri->regno = regno;
      cri->next = cse_reg_info_used_list;
      cse_reg_info_used_list = cri;
      if (!cse_reg_info_used_list_end)
	cse_reg_info_used_list_end = cri;
      
      *entry = cri;
    }

  /* Cache this lookup; we tend to be looking up information about the
     same register several times in a row.  */
  cached_regno = regno;
  cached_cse_reg_info = cri;

  return cri;
}

static unsigned int
hash_cse_reg_info (el_ptr)
     hash_table_entry_t el_ptr;
{
  return ((struct cse_reg_info *) el_ptr)->regno;
}

static int
cse_reg_info_equal_p (el_ptr1, el_ptr2)
     hash_table_entry_t el_ptr1;
     hash_table_entry_t el_ptr2;
{
  return (((struct cse_reg_info *) el_ptr1)->regno
	  == ((struct cse_reg_info *) el_ptr2)->regno);
}

/* Clear the hash table and initialize each register with its own quantity,
   for a new basic block.  */

static void
new_basic_block ()
{
  register int i;

  next_qty = max_reg;

  if (cse_reg_info_tree) 
    {
      delete_hash_table (cse_reg_info_tree);
      if (cse_reg_info_used_list)
	{
	  cse_reg_info_used_list_end->next = cse_reg_info_free_list;
	  cse_reg_info_free_list = cse_reg_info_used_list;
	  cse_reg_info_used_list = cse_reg_info_used_list_end = 0;
	}
      cached_cse_reg_info = 0;
    }

  cse_reg_info_tree = create_hash_table (0, hash_cse_reg_info,
					 cse_reg_info_equal_p);

  CLEAR_HARD_REG_SET (hard_regs_in_table);

  /* The per-quantity values used to be initialized here, but it is
     much faster to initialize each as it is made in `make_new_qty'.  */

  for (i = 0; i < NBUCKETS; i++)
    {
      register struct table_elt *this, *next;
      for (this = table[i]; this; this = next)
	{
	  next = this->next_same_hash;
	  free_element (this);
	}
    }

  bzero ((char *) table, sizeof table);

  prev_insn = 0;

#ifdef HAVE_cc0
  prev_insn_cc0 = 0;
#endif
}

/* Say that register REG contains a quantity not in any register before
   and initialize that quantity.  */

static void
make_new_qty (reg)
     register int reg;
{
  register int q;

  if (next_qty >= max_qty)
    abort ();

  q = REG_QTY (reg) = next_qty++;
  qty_first_reg[q] = reg;
  qty_last_reg[q] = reg;
  qty_const[q] = qty_const_insn[q] = 0;
  qty_comparison_code[q] = UNKNOWN;

  reg_next_eqv[reg] = reg_prev_eqv[reg] = -1;
}

/* Make reg NEW equivalent to reg OLD.
   OLD is not changing; NEW is.  */

static void
make_regs_eqv (new, old)
     register int new, old;
{
  register int lastr, firstr;
  register int q = REG_QTY (old);

  /* Nothing should become eqv until it has a "non-invalid" qty number.  */
  if (! REGNO_QTY_VALID_P (old))
    abort ();

  REG_QTY (new) = q;
  firstr = qty_first_reg[q];
  lastr = qty_last_reg[q];

  /* Prefer fixed hard registers to anything.  Prefer pseudo regs to other
     hard regs.  Among pseudos, if NEW will live longer than any other reg
     of the same qty, and that is beyond the current basic block,
     make it the new canonical replacement for this qty.  */
  if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
      /* Certain fixed registers might be of the class NO_REGS.  This means
	 that not only can they not be allocated by the compiler, but
	 they cannot be used in substitutions or canonicalizations
	 either.  */
      && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
      && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
	  || (new >= FIRST_PSEUDO_REGISTER
	      && (firstr < FIRST_PSEUDO_REGISTER
		  || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
		       || (uid_cuid[REGNO_FIRST_UID (new)]
			   < cse_basic_block_start))
		      && (uid_cuid[REGNO_LAST_UID (new)]
			  > uid_cuid[REGNO_LAST_UID (firstr)]))))))
    {
      reg_prev_eqv[firstr] = new;
      reg_next_eqv[new] = firstr;
      reg_prev_eqv[new] = -1;
      qty_first_reg[q] = new;
    }
  else
    {
      /* If NEW is a hard reg (known to be non-fixed), insert at end.
	 Otherwise, insert before any non-fixed hard regs that are at the
	 end.  Registers of class NO_REGS cannot be used as an
	 equivalent for anything.  */
      while (lastr < FIRST_PSEUDO_REGISTER && reg_prev_eqv[lastr] >= 0
	     && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
	     && new >= FIRST_PSEUDO_REGISTER)
	lastr = reg_prev_eqv[lastr];
      reg_next_eqv[new] = reg_next_eqv[lastr];
      if (reg_next_eqv[lastr] >= 0)
	reg_prev_eqv[reg_next_eqv[lastr]] = new;
      else
	qty_last_reg[q] = new;
      reg_next_eqv[lastr] = new;
      reg_prev_eqv[new] = lastr;
    }
}

/* Remove REG from its equivalence class.  */

static void
delete_reg_equiv (reg)
     register int reg;
{
  register int q = REG_QTY (reg);
  register int p, n;

  /* If invalid, do nothing.  */
  if (q == reg)
    return;

  p = reg_prev_eqv[reg];
  n = reg_next_eqv[reg];

  if (n != -1)
    reg_prev_eqv[n] = p;
  else
    qty_last_reg[q] = p;
  if (p != -1)
    reg_next_eqv[p] = n;
  else
    qty_first_reg[q] = n;

  REG_QTY (reg) = reg;
}

/* Remove any invalid expressions from the hash table
   that refer to any of the registers contained in expression X.

   Make sure that newly inserted references to those registers
   as subexpressions will be considered valid.

   mention_regs is not called when a register itself
   is being stored in the table.

   Return 1 if we have done something that may have changed the hash code
   of X.  */

static int
mention_regs (x)
     rtx x;
{
  register enum rtx_code code;
  register int i, j;
  register const char *fmt;
  register int changed = 0;

  if (x == 0)
    return 0;

  code = GET_CODE (x);
  if (code == REG)
    {
      register int regno = REGNO (x);
      register int endregno
	= regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
		   : HARD_REGNO_NREGS (regno, GET_MODE (x)));
      int i;

      for (i = regno; i < endregno; i++)
	{
	  if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
	    remove_invalid_refs (i);

	  REG_IN_TABLE (i) = REG_TICK (i);
	}

      return 0;
    }

  /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
     pseudo if they don't use overlapping words.  We handle only pseudos
     here for simplicity.  */
  if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
      && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
    {
      int i = REGNO (SUBREG_REG (x));

      if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
	{
	  /* If reg_tick has been incremented more than once since
	     reg_in_table was last set, that means that the entire
	     register has been set before, so discard anything memorized
	     for the entrire register, including all SUBREG expressions.  */
	  if (REG_IN_TABLE (i) != REG_TICK (i) - 1)
	    remove_invalid_refs (i);
	  else
	    remove_invalid_subreg_refs (i, SUBREG_WORD (x), GET_MODE (x));
	}

      REG_IN_TABLE (i) = REG_TICK (i);
      return 0;
    }

  /* If X is a comparison or a COMPARE and either operand is a register
     that does not have a quantity, give it one.  This is so that a later
     call to record_jump_equiv won't cause X to be assigned a different
     hash code and not found in the table after that call.

     It is not necessary to do this here, since rehash_using_reg can
     fix up the table later, but doing this here eliminates the need to
     call that expensive function in the most common case where the only
     use of the register is in the comparison.  */

  if (code == COMPARE || GET_RTX_CLASS (code) == '<')
    {
      if (GET_CODE (XEXP (x, 0)) == REG
	  && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
	if (insert_regs (XEXP (x, 0), NULL_PTR, 0))
	  {
	    rehash_using_reg (XEXP (x, 0));
	    changed = 1;
	  }

      if (GET_CODE (XEXP (x, 1)) == REG
	  && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
	if (insert_regs (XEXP (x, 1), NULL_PTR, 0))
	  {
	    rehash_using_reg (XEXP (x, 1));
	    changed = 1;
	  }
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
      changed |= mention_regs (XEXP (x, i));
    else if (fmt[i] == 'E')
      for (j = 0; j < XVECLEN (x, i); j++)
	changed |= mention_regs (XVECEXP (x, i, j));

  return changed;
}

/* Update the register quantities for inserting X into the hash table
   with a value equivalent to CLASSP.
   (If the class does not contain a REG, it is irrelevant.)
   If MODIFIED is nonzero, X is a destination; it is being modified.
   Note that delete_reg_equiv should be called on a register
   before insert_regs is done on that register with MODIFIED != 0.

   Nonzero value means that elements of reg_qty have changed
   so X's hash code may be different.  */

static int
insert_regs (x, classp, modified)
     rtx x;
     struct table_elt *classp;
     int modified;
{
  if (GET_CODE (x) == REG)
    {
      register int regno = REGNO (x);

      /* If REGNO is in the equivalence table already but is of the
	 wrong mode for that equivalence, don't do anything here.  */

      if (REGNO_QTY_VALID_P (regno)
	  && qty_mode[REG_QTY (regno)] != GET_MODE (x))
	return 0;

      if (modified || ! REGNO_QTY_VALID_P (regno))
	{
	  if (classp)
	    for (classp = classp->first_same_value;
		 classp != 0;
		 classp = classp->next_same_value)
	      if (GET_CODE (classp->exp) == REG
		  && GET_MODE (classp->exp) == GET_MODE (x))
		{
		  make_regs_eqv (regno, REGNO (classp->exp));
		  return 1;
		}

	  make_new_qty (regno);
	  qty_mode[REG_QTY (regno)] = GET_MODE (x);
	  return 1;
	}

      return 0;
    }

  /* If X is a SUBREG, we will likely be inserting the inner register in the
     table.  If that register doesn't have an assigned quantity number at
     this point but does later, the insertion that we will be doing now will
     not be accessible because its hash code will have changed.  So assign
     a quantity number now.  */

  else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
	   && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
    {
      int regno = REGNO (SUBREG_REG (x));

      insert_regs (SUBREG_REG (x), NULL_PTR, 0);
      /* Mention_regs checks if REG_TICK is exactly one larger than
	 REG_IN_TABLE to find out if there was only a single preceding
	 invalidation - for the SUBREG - or another one, which would be
	 for the full register.  Since we don't invalidate the SUBREG
	 here first, we might have to bump up REG_TICK so that mention_regs
	 will do the right thing.  */
      if (REG_IN_TABLE (regno) >= 0
	  && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
	REG_TICK (regno)++;
      mention_regs (x);
      return 1;
    }
  else
    return mention_regs (x);
}

/* Look in or update the hash table.  */

/* Put the element ELT on the list of free elements.  */

static void
free_element (elt)
     struct table_elt *elt;
{
  elt->next_same_hash = free_element_chain;
  free_element_chain = elt;
}

/* Return an element that is free for use.  */

static struct table_elt *
get_element ()
{
  struct table_elt *elt = free_element_chain;
  if (elt)
    {
      free_element_chain = elt->next_same_hash;
      return elt;
    }
  n_elements_made++;
  return (struct table_elt *) oballoc (sizeof (struct table_elt));
}

/* Remove table element ELT from use in the table.
   HASH is its hash code, made using the HASH macro.
   It's an argument because often that is known in advance
   and we save much time not recomputing it.  */

static void
remove_from_table (elt, hash)
     register struct table_elt *elt;
     unsigned hash;
{
  if (elt == 0)
    return;

  /* Mark this element as removed.  See cse_insn.  */
  elt->first_same_value = 0;

  /* Remove the table element from its equivalence class.  */
     
  {
    register struct table_elt *prev = elt->prev_same_value;
    register struct table_elt *next = elt->next_same_value;

    if (next) next->prev_same_value = prev;

    if (prev)
      prev->next_same_value = next;
    else
      {
	register struct table_elt *newfirst = next;
	while (next)
	  {
	    next->first_same_value = newfirst;
	    next = next->next_same_value;
	  }
      }
  }

  /* Remove the table element from its hash bucket.  */

  {
    register struct table_elt *prev = elt->prev_same_hash;
    register struct table_elt *next = elt->next_same_hash;

    if (next) next->prev_same_hash = prev;

    if (prev)
      prev->next_same_hash = next;
    else if (table[hash] == elt)
      table[hash] = next;
    else
      {
	/* This entry is not in the proper hash bucket.  This can happen
	   when two classes were merged by `merge_equiv_classes'.  Search
	   for the hash bucket that it heads.  This happens only very
	   rarely, so the cost is acceptable.  */
	for (hash = 0; hash < NBUCKETS; hash++)
	  if (table[hash] == elt)
	    table[hash] = next;
      }
  }

  /* Remove the table element from its related-value circular chain.  */

  if (elt->related_value != 0 && elt->related_value != elt)
    {
      register struct table_elt *p = elt->related_value;
      while (p->related_value != elt)
	p = p->related_value;
      p->related_value = elt->related_value;
      if (p->related_value == p)
	p->related_value = 0;
    }

  free_element (elt);
}

/* Look up X in the hash table and return its table element,
   or 0 if X is not in the table.

   MODE is the machine-mode of X, or if X is an integer constant
   with VOIDmode then MODE is the mode with which X will be used.

   Here we are satisfied to find an expression whose tree structure
   looks like X.  */

static struct table_elt *
lookup (x, hash, mode)
     rtx x;
     unsigned hash;
     enum machine_mode mode;
{
  register struct table_elt *p;

  for (p = table[hash]; p; p = p->next_same_hash)
    if (mode == p->mode && ((x == p->exp && GET_CODE (x) == REG)
			    || exp_equiv_p (x, p->exp, GET_CODE (x) != REG, 0)))
      return p;

  return 0;
}

/* Like `lookup' but don't care whether the table element uses invalid regs.
   Also ignore discrepancies in the machine mode of a register.  */

static struct table_elt *
lookup_for_remove (x, hash, mode)
     rtx x;
     unsigned hash;
     enum machine_mode mode;
{
  register struct table_elt *p;

  if (GET_CODE (x) == REG)
    {
      int regno = REGNO (x);
      /* Don't check the machine mode when comparing registers;
	 invalidating (REG:SI 0) also invalidates (REG:DF 0).  */
      for (p = table[hash]; p; p = p->next_same_hash)
	if (GET_CODE (p->exp) == REG
	    && REGNO (p->exp) == regno)
	  return p;
    }
  else
    {
      for (p = table[hash]; p; p = p->next_same_hash)
	if (mode == p->mode && (x == p->exp || exp_equiv_p (x, p->exp, 0, 0)))
	  return p;
    }

  return 0;
}

/* Look for an expression equivalent to X and with code CODE.
   If one is found, return that expression.  */

static rtx
lookup_as_function (x, code)
     rtx x;
     enum rtx_code code;
{
  register struct table_elt *p = lookup (x, safe_hash (x, VOIDmode) % NBUCKETS,
					 GET_MODE (x));
  /* If we are looking for a CONST_INT, the mode doesn't really matter, as
     long as we are narrowing.  So if we looked in vain for a mode narrower
     than word_mode before, look for word_mode now.  */
  if (p == 0 && code == CONST_INT
      && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
    {
      x = copy_rtx (x);
      PUT_MODE (x, word_mode);
      p = lookup (x, safe_hash (x, VOIDmode) % NBUCKETS, word_mode);
    }

  if (p == 0)
    return 0;

  for (p = p->first_same_value; p; p = p->next_same_value)
    {
      if (GET_CODE (p->exp) == code
	  /* Make sure this is a valid entry in the table.  */
	  && exp_equiv_p (p->exp, p->exp, 1, 0))
	return p->exp;
    }
  
  return 0;
}

/* Insert X in the hash table, assuming HASH is its hash code
   and CLASSP is an element of the class it should go in
   (or 0 if a new class should be made).
   It is inserted at the proper position to keep the class in
   the order cheapest first.

   MODE is the machine-mode of X, or if X is an integer constant
   with VOIDmode then MODE is the mode with which X will be used.

   For elements of equal cheapness, the most recent one
   goes in front, except that the first element in the list
   remains first unless a cheaper element is added.  The order of
   pseudo-registers does not matter, as canon_reg will be called to
   find the cheapest when a register is retrieved from the table.

   The in_memory field in the hash table element is set to 0.
   The caller must set it nonzero if appropriate.

   You should call insert_regs (X, CLASSP, MODIFY) before calling here,
   and if insert_regs returns a nonzero value
   you must then recompute its hash code before calling here.

   If necessary, update table showing constant values of quantities.  */

#define CHEAPER(X,Y)   ((X)->cost < (Y)->cost)

static struct table_elt *
insert (x, classp, hash, mode)
     register rtx x;
     register struct table_elt *classp;
     unsigned hash;
     enum machine_mode mode;
{
  register struct table_elt *elt;

  /* If X is a register and we haven't made a quantity for it,
     something is wrong.  */
  if (GET_CODE (x) == REG && ! REGNO_QTY_VALID_P (REGNO (x)))
    abort ();

  /* If X is a hard register, show it is being put in the table.  */
  if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
    {
      int regno = REGNO (x);
      int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
      int i;

      for (i = regno; i < endregno; i++)
	    SET_HARD_REG_BIT (hard_regs_in_table, i);
    }

  /* If X is a label, show we recorded it.  */
  if (GET_CODE (x) == LABEL_REF
      || (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS
	  && GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF))
    recorded_label_ref = 1;

  /* Put an element for X into the right hash bucket.  */

  elt = get_element ();
  elt->exp = x;
  elt->cost = COST (x);
  elt->next_same_value = 0;
  elt->prev_same_value = 0;
  elt->next_same_hash = table[hash];
  elt->prev_same_hash = 0;
  elt->related_value = 0;
  elt->in_memory = 0;
  elt->mode = mode;
  elt->is_const = (CONSTANT_P (x)
		   /* GNU C++ takes advantage of this for `this'
		      (and other const values).  */
		   || (RTX_UNCHANGING_P (x)
		       && GET_CODE (x) == REG
		       && REGNO (x) >= FIRST_PSEUDO_REGISTER)
		   || FIXED_BASE_PLUS_P (x));

  if (table[hash])
    table[hash]->prev_same_hash = elt;
  table[hash] = elt;

  /* Put it into the proper value-class.  */
  if (classp)
    {
      classp = classp->first_same_value;
      if (CHEAPER (elt, classp))
	/* Insert at the head of the class */
	{
	  register struct table_elt *p;
	  elt->next_same_value = classp;
	  classp->prev_same_value = elt;
	  elt->first_same_value = elt;

	  for (p = classp; p; p = p->next_same_value)
	    p->first_same_value = elt;
	}
      else
	{
	  /* Insert not at head of the class.  */
	  /* Put it after the last element cheaper than X.  */
	  register struct table_elt *p, *next;
	  for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
	       p = next);
	  /* Put it after P and before NEXT.  */
	  elt->next_same_value = next;
	  if (next)
	    next->prev_same_value = elt;
	  elt->prev_same_value = p;
	  p->next_same_value = elt;
	  elt->first_same_value = classp;
	}
    }
  else
    elt->first_same_value = elt;

  /* If this is a constant being set equivalent to a register or a register
     being set equivalent to a constant, note the constant equivalence.

     If this is a constant, it cannot be equivalent to a different constant,
     and a constant is the only thing that can be cheaper than a register.  So
     we know the register is the head of the class (before the constant was
     inserted).

     If this is a register that is not already known equivalent to a
     constant, we must check the entire class.

     If this is a register that is already known equivalent to an insn,
     update `qty_const_insn' to show that `this_insn' is the latest
     insn making that quantity equivalent to the constant.  */

  if (elt->is_const && classp && GET_CODE (classp->exp) == REG
      && GET_CODE (x) != REG)
    {
      qty_const[REG_QTY (REGNO (classp->exp))]
	= gen_lowpart_if_possible (qty_mode[REG_QTY (REGNO (classp->exp))], x);
      qty_const_insn[REG_QTY (REGNO (classp->exp))] = this_insn;
    }

  else if (GET_CODE (x) == REG && classp && ! qty_const[REG_QTY (REGNO (x))]
	   && ! elt->is_const)
    {
      register struct table_elt *p;

      for (p = classp; p != 0; p = p->next_same_value)
	{
	  if (p->is_const && GET_CODE (p->exp) != REG)
	    {
	      qty_const[REG_QTY (REGNO (x))]
		= gen_lowpart_if_possible (GET_MODE (x), p->exp);
	      qty_const_insn[REG_QTY (REGNO (x))] = this_insn;
	      break;
	    }
	}
    }

  else if (GET_CODE (x) == REG && qty_const[REG_QTY (REGNO (x))]
	   && GET_MODE (x) == qty_mode[REG_QTY (REGNO (x))])
    qty_const_insn[REG_QTY (REGNO (x))] = this_insn;

  /* If this is a constant with symbolic value,
     and it has a term with an explicit integer value,
     link it up with related expressions.  */
  if (GET_CODE (x) == CONST)
    {
      rtx subexp = get_related_value (x);
      unsigned subhash;
      struct table_elt *subelt, *subelt_prev;

      if (subexp != 0)
	{
	  /* Get the integer-free subexpression in the hash table.  */
	  subhash = safe_hash (subexp, mode) % NBUCKETS;
	  subelt = lookup (subexp, subhash, mode);
	  if (subelt == 0)
	    subelt = insert (subexp, NULL_PTR, subhash, mode);
	  /* Initialize SUBELT's circular chain if it has none.  */
	  if (subelt->related_value == 0)
	    subelt->related_value = subelt;
	  /* Find the element in the circular chain that precedes SUBELT.  */
	  subelt_prev = subelt;
	  while (subelt_prev->related_value != subelt)
	    subelt_prev = subelt_prev->related_value;
	  /* Put new ELT into SUBELT's circular chain just before SUBELT.
	     This way the element that follows SUBELT is the oldest one.  */
	  elt->related_value = subelt_prev->related_value;
	  subelt_prev->related_value = elt;
	}
    }

  return elt;
}

/* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
   CLASS2 into CLASS1.  This is done when we have reached an insn which makes
   the two classes equivalent.

   CLASS1 will be the surviving class; CLASS2 should not be used after this
   call.

   Any invalid entries in CLASS2 will not be copied.  */

static void
merge_equiv_classes (class1, class2)
     struct table_elt *class1, *class2;
{
  struct table_elt *elt, *next, *new;

  /* Ensure we start with the head of the classes.  */
  class1 = class1->first_same_value;
  class2 = class2->first_same_value;

  /* If they were already equal, forget it.  */
  if (class1 == class2)
    return;

  for (elt = class2; elt; elt = next)
    {
      unsigned hash;
      rtx exp = elt->exp;
      enum machine_mode mode = elt->mode;

      next = elt->next_same_value;

      /* Remove old entry, make a new one in CLASS1's class.
	 Don't do this for invalid entries as we cannot find their
	 hash code (it also isn't necessary).  */
      if (GET_CODE (exp) == REG || exp_equiv_p (exp, exp, 1, 0))
	{
	  hash_arg_in_memory = 0;
	  hash_arg_in_struct = 0;
	  hash = HASH (exp, mode);
	      
	  if (GET_CODE (exp) == REG)
	    delete_reg_equiv (REGNO (exp));
	      
	  remove_from_table (elt, hash);

	  if (insert_regs (exp, class1, 0))
	    {
	      rehash_using_reg (exp);
	      hash = HASH (exp, mode);
	    }
	  new = insert (exp, class1, hash, mode);
	  new->in_memory = hash_arg_in_memory;
	  new->in_struct = hash_arg_in_struct;
	}
    }
}


/* Flush the entire hash table.  */

static void
flush_hash_table ()
{
  int i;
  struct table_elt *p;

  for (i = 0; i < NBUCKETS; i++)
    for (p = table[i]; p; p = table[i])
      {
	/* Note that invalidate can remove elements
	   after P in the current hash chain.  */
	if (GET_CODE (p->exp) == REG)
	  invalidate (p->exp, p->mode);
	else
	  remove_from_table (p, i);
      }
}


/* Remove from the hash table, or mark as invalid,
   all expressions whose values could be altered by storing in X.
   X is a register, a subreg, or a memory reference with nonvarying address
   (because, when a memory reference with a varying address is stored in,
   all memory references are removed by invalidate_memory
   so specific invalidation is superfluous).
   FULL_MODE, if not VOIDmode, indicates that this much should be invalidated
   instead of just the amount indicated by the mode of X.  This is only used
   for bitfield stores into memory.

   A nonvarying address may be just a register or just
   a symbol reference, or it may be either of those plus
   a numeric offset.  */

static void
invalidate (x, full_mode)
     rtx x;
     enum machine_mode full_mode;
{
  register int i;
  register struct table_elt *p;

  /* If X is a register, dependencies on its contents
     are recorded through the qty number mechanism.
     Just change the qty number of the register,
     mark it as invalid for expressions that refer to it,
     and remove it itself.  */

  if (GET_CODE (x) == REG)
    {
      register int regno = REGNO (x);
      register unsigned hash = HASH (x, GET_MODE (x));

      /* Remove REGNO from any quantity list it might be on and indicate
	 that its value might have changed.  If it is a pseudo, remove its
	 entry from the hash table.

	 For a hard register, we do the first two actions above for any
	 additional hard registers corresponding to X.  Then, if any of these
	 registers are in the table, we must remove any REG entries that
	 overlap these registers.  */

      delete_reg_equiv (regno);
      REG_TICK (regno)++;

      if (regno >= FIRST_PSEUDO_REGISTER)
	{
	  /* Because a register can be referenced in more than one mode,
	     we might have to remove more than one table entry.  */

	  struct table_elt *elt;

	  while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
	    remove_from_table (elt, hash);
	}
      else
	{
	  HOST_WIDE_INT in_table
	    = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
	  int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
	  int tregno, tendregno;
	  register struct table_elt *p, *next;

	  CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);

	  for (i = regno + 1; i < endregno; i++)
	    {
	      in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, i);
	      CLEAR_HARD_REG_BIT (hard_regs_in_table, i);
	      delete_reg_equiv (i);
	      REG_TICK (i)++;
	    }

	  if (in_table)
	    for (hash = 0; hash < NBUCKETS; hash++)
	      for (p = table[hash]; p; p = next)
		{
		  next = p->next_same_hash;

		  if (GET_CODE (p->exp) != REG
		      || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
		    continue;

		  tregno = REGNO (p->exp);
		  tendregno
		    = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (p->exp));
		  if (tendregno > regno && tregno < endregno)
		    remove_from_table (p, hash);
		}
	}

      return;
    }

  if (GET_CODE (x) == SUBREG)
    {
      if (GET_CODE (SUBREG_REG (x)) != REG)
	abort ();
      invalidate (SUBREG_REG (x), VOIDmode);
      return;
    }

  /* If X is a parallel, invalidate all of its elements.  */

  if (GET_CODE (x) == PARALLEL)
    {
      for (i = XVECLEN (x, 0) - 1; i >= 0 ; --i)
	invalidate (XVECEXP (x, 0, i), VOIDmode);
      return;
    }

  /* If X is an expr_list, this is part of a disjoint return value;
     extract the location in question ignoring the offset.  */

  if (GET_CODE (x) == EXPR_LIST)
    {
      invalidate (XEXP (x, 0), VOIDmode);
      return;
    }

  /* X is not a register; it must be a memory reference with
     a nonvarying address.  Remove all hash table elements
     that refer to overlapping pieces of memory.  */

  if (GET_CODE (x) != MEM)
    abort ();

  if (full_mode == VOIDmode)
    full_mode = GET_MODE (x);

  for (i = 0; i < NBUCKETS; i++)
    {
      register struct table_elt *next;
      for (p = table[i]; p; p = next)
	{
	  next = p->next_same_hash;
	  /* Invalidate ASM_OPERANDS which reference memory (this is easier
	     than checking all the aliases).  */
	  if (p->in_memory
	      && (GET_CODE (p->exp) != MEM
		  || true_dependence (x, full_mode, p->exp, cse_rtx_varies_p)))
	    remove_from_table (p, i);
	}
    }
}

/* Remove all expressions that refer to register REGNO,
   since they are already invalid, and we are about to
   mark that register valid again and don't want the old
   expressions to reappear as valid.  */

static void
remove_invalid_refs (regno)
     int regno;
{
  register int i;
  register struct table_elt *p, *next;

  for (i = 0; i < NBUCKETS; i++)
    for (p = table[i]; p; p = next)
      {
	next = p->next_same_hash;
	if (GET_CODE (p->exp) != REG
	    && refers_to_regno_p (regno, regno + 1, p->exp, NULL_PTR))
	  remove_from_table (p, i);
      }
}

/* Likewise for a subreg with subreg_reg WORD and mode MODE.  */
static void
remove_invalid_subreg_refs (regno, word, mode)
     int regno;
     int word;
     enum machine_mode mode;
{
  register int i;
  register struct table_elt *p, *next;
  int end = word + (GET_MODE_SIZE (mode) - 1) / UNITS_PER_WORD;

  for (i = 0; i < NBUCKETS; i++)
    for (p = table[i]; p; p = next)
      {
	rtx exp;
	next = p->next_same_hash;
	
	exp = p->exp;
	if (GET_CODE (p->exp) != REG
	    && (GET_CODE (exp) != SUBREG
		|| GET_CODE (SUBREG_REG (exp)) != REG
		|| REGNO (SUBREG_REG (exp)) != regno
		|| (((SUBREG_WORD (exp)
		      + (GET_MODE_SIZE (GET_MODE (exp)) - 1) / UNITS_PER_WORD)
		     >= word)
		 && SUBREG_WORD (exp) <= end))
	    && refers_to_regno_p (regno, regno + 1, p->exp, NULL_PTR))
	  remove_from_table (p, i);
      }
}

/* Recompute the hash codes of any valid entries in the hash table that
   reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.

   This is called when we make a jump equivalence.  */

static void
rehash_using_reg (x)
     rtx x;
{
  unsigned int i;
  struct table_elt *p, *next;
  unsigned hash;

  if (GET_CODE (x) == SUBREG)
    x = SUBREG_REG (x);

  /* If X is not a register or if the register is known not to be in any
     valid entries in the table, we have no work to do.  */

  if (GET_CODE (x) != REG
      || REG_IN_TABLE (REGNO (x)) < 0
      || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
    return;

  /* Scan all hash chains looking for valid entries that mention X.
     If we find one and it is in the wrong hash chain, move it.  We can skip
     objects that are registers, since they are handled specially.  */

  for (i = 0; i < NBUCKETS; i++)
    for (p = table[i]; p; p = next)
      {
	next = p->next_same_hash;
	if (GET_CODE (p->exp) != REG && reg_mentioned_p (x, p->exp)
	    && exp_equiv_p (p->exp, p->exp, 1, 0)
	    && i != (hash = safe_hash (p->exp, p->mode) % NBUCKETS))
	  {
	    if (p->next_same_hash)
	      p->next_same_hash->prev_same_hash = p->prev_same_hash;

	    if (p->prev_same_hash)
	      p->prev_same_hash->next_same_hash = p->next_same_hash;
	    else
	      table[i] = p->next_same_hash;

	    p->next_same_hash = table[hash];
	    p->prev_same_hash = 0;
	    if (table[hash])
	      table[hash]->prev_same_hash = p;
	    table[hash] = p;
	  }
      }
}

/* Remove from the hash table any expression that is a call-clobbered
   register.  Also update their TICK values.  */

static void
invalidate_for_call ()
{
  int regno, endregno;
  int i;
  unsigned hash;
  struct table_elt *p, *next;
  int in_table = 0;

  /* Go through all the hard registers.  For each that is clobbered in
     a CALL_INSN, remove the register from quantity chains and update
     reg_tick if defined.  Also see if any of these registers is currently
     in the table.  */

  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
    if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
      {
	delete_reg_equiv (regno);
	if (REG_TICK (regno) >= 0)
	  REG_TICK (regno)++;

	in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
      }

  /* In the case where we have no call-clobbered hard registers in the
     table, we are done.  Otherwise, scan the table and remove any
     entry that overlaps a call-clobbered register.  */

  if (in_table)
    for (hash = 0; hash < NBUCKETS; hash++)
      for (p = table[hash]; p; p = next)
	{
	  next = p->next_same_hash;

	  if (GET_CODE (p->exp) != REG
	      || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
	    continue;

	  regno = REGNO (p->exp);
	  endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (p->exp));

	  for (i = regno; i < endregno; i++)
	    if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
	      {
		remove_from_table (p, hash);
		break;
	      }
	}
}

/* Given an expression X of type CONST,
   and ELT which is its table entry (or 0 if it
   is not in the hash table),
   return an alternate expression for X as a register plus integer.
   If none can be found, return 0.  */

static rtx
use_related_value (x, elt)
     rtx x;
     struct table_elt *elt;
{
  register struct table_elt *relt = 0;
  register struct table_elt *p, *q;
  HOST_WIDE_INT offset;

  /* First, is there anything related known?
     If we have a table element, we can tell from that.
     Otherwise, must look it up.  */

  if (elt != 0 && elt->related_value != 0)
    relt = elt;
  else if (elt == 0 && GET_CODE (x) == CONST)
    {
      rtx subexp = get_related_value (x);
      if (subexp != 0)
	relt = lookup (subexp,
		       safe_hash (subexp, GET_MODE (subexp)) % NBUCKETS,
		       GET_MODE (subexp));
    }

  if (relt == 0)
    return 0;

  /* Search all related table entries for one that has an
     equivalent register.  */

  p = relt;
  while (1)
    {
      /* This loop is strange in that it is executed in two different cases.
	 The first is when X is already in the table.  Then it is searching
	 the RELATED_VALUE list of X's class (RELT).  The second case is when
	 X is not in the table.  Then RELT points to a class for the related
	 value.

	 Ensure that, whatever case we are in, that we ignore classes that have
	 the same value as X.  */

      if (rtx_equal_p (x, p->exp))
	q = 0;
      else
	for (q = p->first_same_value; q; q = q->next_same_value)
	  if (GET_CODE (q->exp) == REG)
	    break;

      if (q)
	break;

      p = p->related_value;

      /* We went all the way around, so there is nothing to be found.
	 Alternatively, perhaps RELT was in the table for some other reason
	 and it has no related values recorded.  */
      if (p == relt || p == 0)
	break;
    }

  if (q == 0)
    return 0;

  offset = (get_integer_term (x) - get_integer_term (p->exp));
  /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity.  */
  return plus_constant (q->exp, offset);
}

/* Hash an rtx.  We are careful to make sure the value is never negative.
   Equivalent registers hash identically.
   MODE is used in hashing for CONST_INTs only;
   otherwise the mode of X is used.

   Store 1 in do_not_record if any subexpression is volatile.

   Store 1 in hash_arg_in_memory if X contains a MEM rtx
   which does not have the RTX_UNCHANGING_P bit set.
   In this case, also store 1 in hash_arg_in_struct
   if there is a MEM rtx which has the MEM_IN_STRUCT_P bit set.

   Note that cse_insn knows that the hash code of a MEM expression
   is just (int) MEM plus the hash code of the address.  */

static unsigned
canon_hash (x, mode)
     rtx x;
     enum machine_mode mode;
{
  register int i, j;
  register unsigned hash = 0;
  register enum rtx_code code;
  register const char *fmt;

  /* repeat is used to turn tail-recursion into iteration.  */
 repeat:
  if (x == 0)
    return hash;

  code = GET_CODE (x);
  switch (code)
    {
    case REG:
      {
	register int regno = REGNO (x);

	/* On some machines, we can't record any non-fixed hard register,
	   because extending its life will cause reload problems.  We
	   consider ap, fp, and sp to be fixed for this purpose. 

	   We also consider CCmode registers to be fixed for this purpose;
	   failure to do so leads to failure to simplify 0<100 type of
	   conditionals.

	   On all machines, we can't record any global registers.  */

	if (regno < FIRST_PSEUDO_REGISTER
	    && (global_regs[regno]
		|| (SMALL_REGISTER_CLASSES
		    && ! fixed_regs[regno]
		    && regno != FRAME_POINTER_REGNUM
		    && regno != HARD_FRAME_POINTER_REGNUM
		    && regno != ARG_POINTER_REGNUM
		    && regno != STACK_POINTER_REGNUM
		    && GET_MODE_CLASS (GET_MODE (x)) != MODE_CC)))
	  {
	    do_not_record = 1;
	    return 0;
	  }
	hash += ((unsigned) REG << 7) + (unsigned) REG_QTY (regno);
	return hash;
      }

    /* We handle SUBREG of a REG specially because the underlying
       reg changes its hash value with every value change; we don't
       want to have to forget unrelated subregs when one subreg changes.  */
    case SUBREG:
      {
	if (GET_CODE (SUBREG_REG (x)) == REG)
	  {
	    hash += (((unsigned) SUBREG << 7)
		     + REGNO (SUBREG_REG (x)) + SUBREG_WORD (x));
	    return hash;
	  }
	break;
      }

    case CONST_INT:
      {
	unsigned HOST_WIDE_INT tem = INTVAL (x);
	hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + tem;
	return hash;
      }

    case CONST_DOUBLE:
      /* This is like the general case, except that it only counts
	 the integers representing the constant.  */
      hash += (unsigned) code + (unsigned) GET_MODE (x);
      if (GET_MODE (x) != VOIDmode)
	for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
	  {
	    unsigned HOST_WIDE_INT tem = XWINT (x, i);
	    hash += tem;
	  }
      else
	hash += ((unsigned) CONST_DOUBLE_LOW (x)
		 + (unsigned) CONST_DOUBLE_HIGH (x));
      return hash;

      /* Assume there is only one rtx object for any given label.  */
    case LABEL_REF:
      hash
	+= ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0);
      return hash;

    case SYMBOL_REF:
      hash
	+= ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0);
      return hash;

    case MEM:
      if (MEM_VOLATILE_P (x))
	{
	  do_not_record = 1;
	  return 0;
	}
      if (! RTX_UNCHANGING_P (x) || FIXED_BASE_PLUS_P (XEXP (x, 0)))
	{
	  hash_arg_in_memory = 1;
	  if (MEM_IN_STRUCT_P (x)) hash_arg_in_struct = 1;
	}
      /* Now that we have already found this special case,
	 might as well speed it up as much as possible.  */
      hash += (unsigned) MEM;
      x = XEXP (x, 0);
      goto repeat;

    case PRE_DEC:
    case PRE_INC:
    case POST_DEC:
    case POST_INC:
    case PC:
    case CC0:
    case CALL:
    case UNSPEC_VOLATILE:
      do_not_record = 1;
      return 0;

    case ASM_OPERANDS:
      if (MEM_VOLATILE_P (x))
	{
	  do_not_record = 1;
	  return 0;
	}
      break;
      
    default:
      break;
    }

  i = GET_RTX_LENGTH (code) - 1;
  hash += (unsigned) code + (unsigned) GET_MODE (x);
  fmt = GET_RTX_FORMAT (code);
  for (; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	{
	  rtx tem = XEXP (x, i);

	  /* If we are about to do the last recursive call
	     needed at this level, change it into iteration.
	     This function  is called enough to be worth it.  */
	  if (i == 0)
	    {
	      x = tem;
	      goto repeat;
	    }
	  hash += canon_hash (tem, 0);
	}
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  hash += canon_hash (XVECEXP (x, i, j), 0);
      else if (fmt[i] == 's')
	{
	  register unsigned char *p = (unsigned char *) XSTR (x, i);
	  if (p)
	    while (*p)
	      hash += *p++;
	}
      else if (fmt[i] == 'i')
	{
	  register unsigned tem = XINT (x, i);
	  hash += tem;
	}
      else if (fmt[i] == '0' || fmt[i] == 't')
	/* unused */;
      else
	abort ();
    }
  return hash;
}

/* Like canon_hash but with no side effects.  */

static unsigned
safe_hash (x, mode)
     rtx x;
     enum machine_mode mode;
{
  int save_do_not_record = do_not_record;
  int save_hash_arg_in_memory = hash_arg_in_memory;
  int save_hash_arg_in_struct = hash_arg_in_struct;
  unsigned hash = canon_hash (x, mode);
  hash_arg_in_memory = save_hash_arg_in_memory;
  hash_arg_in_struct = save_hash_arg_in_struct;
  do_not_record = save_do_not_record;
  return hash;
}

/* Return 1 iff X and Y would canonicalize into the same thing,
   without actually constructing the canonicalization of either one.
   If VALIDATE is nonzero,
   we assume X is an expression being processed from the rtl
   and Y was found in the hash table.  We check register refs
   in Y for being marked as valid.

   If EQUAL_VALUES is nonzero, we allow a register to match a constant value
   that is known to be in the register.  Ordinarily, we don't allow them
   to match, because letting them match would cause unpredictable results
   in all the places that search a hash table chain for an equivalent
   for a given value.  A possible equivalent that has different structure
   has its hash code computed from different data.  Whether the hash code
   is the same as that of the given value is pure luck.  */

static int
exp_equiv_p (x, y, validate, equal_values)
     rtx x, y;
     int validate;
     int equal_values;
{
  register int i, j;
  register enum rtx_code code;
  register const char *fmt;

  /* Note: it is incorrect to assume an expression is equivalent to itself
     if VALIDATE is nonzero.  */
  if (x == y && !validate)
    return 1;
  if (x == 0 || y == 0)
    return x == y;

  code = GET_CODE (x);
  if (code != GET_CODE (y))
    {
      if (!equal_values)
	return 0;

      /* If X is a constant and Y is a register or vice versa, they may be
	 equivalent.  We only have to validate if Y is a register.  */
      if (CONSTANT_P (x) && GET_CODE (y) == REG
	  && REGNO_QTY_VALID_P (REGNO (y))
	  && GET_MODE (y) == qty_mode[REG_QTY (REGNO (y))]
	  && rtx_equal_p (x, qty_const[REG_QTY (REGNO (y))])
	  && (! validate || REG_IN_TABLE (REGNO (y)) == REG_TICK (REGNO (y))))
	return 1;

      if (CONSTANT_P (y) && code == REG
	  && REGNO_QTY_VALID_P (REGNO (x))
	  && GET_MODE (x) == qty_mode[REG_QTY (REGNO (x))]
	  && rtx_equal_p (y, qty_const[REG_QTY (REGNO (x))]))
	return 1;

      return 0;
    }

  /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.  */
  if (GET_MODE (x) != GET_MODE (y))
    return 0;

  switch (code)
    {
    case PC:
    case CC0:
      return x == y;

    case CONST_INT:
      return INTVAL (x) == INTVAL (y);

    case LABEL_REF:
      return XEXP (x, 0) == XEXP (y, 0);

    case SYMBOL_REF:
      return XSTR (x, 0) == XSTR (y, 0);

    case REG:
      {
	int regno = REGNO (y);
	int endregno
	  = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
		     : HARD_REGNO_NREGS (regno, GET_MODE (y)));
	int i;

	/* If the quantities are not the same, the expressions are not
	   equivalent.  If there are and we are not to validate, they
	   are equivalent.  Otherwise, ensure all regs are up-to-date.  */

	if (REG_QTY (REGNO (x)) != REG_QTY (regno))
	  return 0;

	if (! validate)
	  return 1;

	for (i = regno; i < endregno; i++)
	  if (REG_IN_TABLE (i) != REG_TICK (i))
	    return 0;

	return 1;
      }

    /*  For commutative operations, check both orders.  */
    case PLUS:
    case MULT:
    case AND:
    case IOR:
    case XOR:
    case NE:
    case EQ:
      return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0), validate, equal_values)
	       && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
			       validate, equal_values))
	      || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
			       validate, equal_values)
		  && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
				  validate, equal_values)));
      
    default:
      break;
    }

  /* Compare the elements.  If any pair of corresponding elements
     fail to match, return 0 for the whole things.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      switch (fmt[i])
	{
	case 'e':
	  if (! exp_equiv_p (XEXP (x, i), XEXP (y, i), validate, equal_values))
	    return 0;
	  break;

	case 'E':
	  if (XVECLEN (x, i) != XVECLEN (y, i))
	    return 0;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
			       validate, equal_values))
	      return 0;
	  break;

	case 's':
	  if (strcmp (XSTR (x, i), XSTR (y, i)))
	    return 0;
	  break;

	case 'i':
	  if (XINT (x, i) != XINT (y, i))
	    return 0;
	  break;

	case 'w':
	  if (XWINT (x, i) != XWINT (y, i))
	    return 0;
	break;

	case '0':
	case 't':
	  break;

	default:
	  abort ();
	}
      }

  return 1;
}

/* Return 1 iff any subexpression of X matches Y.
   Here we do not require that X or Y be valid (for registers referred to)
   for being in the hash table.  */

static int
refers_to_p (x, y)
     rtx x, y;
{
  register int i;
  register enum rtx_code code;
  register const char *fmt;

 repeat:
  if (x == y)
    return 1;
  if (x == 0 || y == 0)
    return 0;

  code = GET_CODE (x);
  /* If X as a whole has the same code as Y, they may match.
     If so, return 1.  */
  if (code == GET_CODE (y))
    {
      if (exp_equiv_p (x, y, 0, 1))
	return 1;
    }

  /* X does not match, so try its subexpressions.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
      {
	if (i == 0)
	  {
	    x = XEXP (x, 0);
	    goto repeat;
	  }
	else
	  if (refers_to_p (XEXP (x, i), y))
	    return 1;
      }
    else if (fmt[i] == 'E')
      {
	int j;
	for (j = 0; j < XVECLEN (x, i); j++)
	  if (refers_to_p (XVECEXP (x, i, j), y))
	    return 1;
      }

  return 0;
}

/* Given ADDR and SIZE (a memory address, and the size of the memory reference),
   set PBASE, PSTART, and PEND which correspond to the base of the address,
   the starting offset, and ending offset respectively.

   ADDR is known to be a nonvarying address.  */

/* ??? Despite what the comments say, this function is in fact frequently
   passed varying addresses.  This does not appear to cause any problems.  */

static void
set_nonvarying_address_components (addr, size, pbase, pstart, pend)
     rtx addr;
     int size;
     rtx *pbase;
     HOST_WIDE_INT *pstart, *pend;
{
  rtx base;
  HOST_WIDE_INT start, end;

  base = addr;
  start = 0;
  end = 0;

  if (flag_pic && GET_CODE (base) == PLUS
      && XEXP (base, 0) == pic_offset_table_rtx)
    base = XEXP (base, 1);

  /* Registers with nonvarying addresses usually have constant equivalents;
     but the frame pointer register is also possible.  */
  if (GET_CODE (base) == REG
      && qty_const != 0
      && REGNO_QTY_VALID_P (REGNO (base))
      && qty_mode[REG_QTY (REGNO (base))] == GET_MODE (base)
      && qty_const[REG_QTY (REGNO (base))] != 0)
    base = qty_const[REG_QTY (REGNO (base))];
  else if (GET_CODE (base) == PLUS
	   && GET_CODE (XEXP (base, 1)) == CONST_INT
	   && GET_CODE (XEXP (base, 0)) == REG
	   && qty_const != 0
	   && REGNO_QTY_VALID_P (REGNO (XEXP (base, 0)))
	   && (qty_mode[REG_QTY (REGNO (XEXP (base, 0)))]
	       == GET_MODE (XEXP (base, 0)))
	   && qty_const[REG_QTY (REGNO (XEXP (base, 0)))])
    {
      start = INTVAL (XEXP (base, 1));
      base = qty_const[REG_QTY (REGNO (XEXP (base, 0)))];
    }
  /* This can happen as the result of virtual register instantiation,
     if the initial offset is too large to be a valid address.  */
  else if (GET_CODE (base) == PLUS
	   && GET_CODE (XEXP (base, 0)) == REG
	   && GET_CODE (XEXP (base, 1)) == REG
	   && qty_const != 0
	   && REGNO_QTY_VALID_P (REGNO (XEXP (base, 0)))
	   && (qty_mode[REG_QTY (REGNO (XEXP (base, 0)))]
	       == GET_MODE (XEXP (base, 0)))
	   && qty_const[REG_QTY (REGNO (XEXP (base, 0)))]
	   && REGNO_QTY_VALID_P (REGNO (XEXP (base, 1)))
	   && (qty_mode[REG_QTY (REGNO (XEXP (base, 1)))]
	       == GET_MODE (XEXP (base, 1)))
	   && qty_const[REG_QTY (REGNO (XEXP (base, 1)))])
    {
      rtx tem = qty_const[REG_QTY (REGNO (XEXP (base, 1)))];
      base = qty_const[REG_QTY (REGNO (XEXP (base, 0)))];

      /* One of the two values must be a constant.  */
      if (GET_CODE (base) != CONST_INT)
	{
	  if (GET_CODE (tem) != CONST_INT)
	    abort ();
	  start = INTVAL (tem);
	}
      else
	{
	  start = INTVAL (base);
	  base = tem;
	}
    }

  /* Handle everything that we can find inside an address that has been
     viewed as constant.  */

  while (1)
    {
      /* If no part of this switch does a "continue", the code outside
	 will exit this loop.  */

      switch (GET_CODE (base))
	{
	case LO_SUM:
	  /* By definition, operand1 of a LO_SUM is the associated constant
	     address.  Use the associated constant address as the base
	     instead.  */
	  base = XEXP (base, 1);
	  continue;

	case CONST:
	  /* Strip off CONST.  */
	  base = XEXP (base, 0);
	  continue;

	case PLUS:
	  if (GET_CODE (XEXP (base, 1)) == CONST_INT)
	    {
	      start += INTVAL (XEXP (base, 1));
	      base = XEXP (base, 0);
	      continue;
	    }
	  break;

	case AND:
	  /* Handle the case of an AND which is the negative of a power of
	     two.  This is used to represent unaligned memory operations.  */
	  if (GET_CODE (XEXP (base, 1)) == CONST_INT
	      && exact_log2 (- INTVAL (XEXP (base, 1))) > 0)
	    {
	      set_nonvarying_address_components (XEXP (base, 0), size,
						 pbase, pstart, pend);

	      /* Assume the worst misalignment.  START is affected, but not
		 END, so compensate but adjusting SIZE.  Don't lose any
		 constant we already had.  */

	      size = *pend - *pstart - INTVAL (XEXP (base, 1)) - 1;
	      start += *pstart + INTVAL (XEXP (base, 1)) + 1;
	      end += *pend;
	      base = *pbase;
	    }
	  break;

	default:
	  break;
	}

      break;
    }

  if (GET_CODE (base) == CONST_INT)
    {
      start += INTVAL (base);
      base = const0_rtx;
    }

  end = start + size;

  /* Set the return values.  */
  *pbase = base;
  *pstart = start;
  *pend = end;
}

/* Return 1 if X has a value that can vary even between two
   executions of the program.  0 means X can be compared reliably
   against certain constants or near-constants.  */

static int
cse_rtx_varies_p (x)
     register rtx x;
{
  /* We need not check for X and the equivalence class being of the same
     mode because if X is equivalent to a constant in some mode, it
     doesn't vary in any mode.  */

  if (GET_CODE (x) == REG
      && REGNO_QTY_VALID_P (REGNO (x))
      && GET_MODE (x) == qty_mode[REG_QTY (REGNO (x))]
      && qty_const[REG_QTY (REGNO (x))] != 0)
    return 0;

  if (GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 1)) == CONST_INT
      && GET_CODE (XEXP (x, 0)) == REG
      && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
      && (GET_MODE (XEXP (x, 0))
	  == qty_mode[REG_QTY (REGNO (XEXP (x, 0)))])
      && qty_const[REG_QTY (REGNO (XEXP (x, 0)))])
    return 0;

  /* This can happen as the result of virtual register instantiation, if
     the initial constant is too large to be a valid address.  This gives
     us a three instruction sequence, load large offset into a register,
     load fp minus a constant into a register, then a MEM which is the
     sum of the two `constant' registers.  */
  if (GET_CODE (x) == PLUS
      && GET_CODE (XEXP (x, 0)) == REG
      && GET_CODE (XEXP (x, 1)) == REG
      && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
      && (GET_MODE (XEXP (x, 0))
	  == qty_mode[REG_QTY (REGNO (XEXP (x, 0)))])
      && qty_const[REG_QTY (REGNO (XEXP (x, 0)))]
      && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1)))
      && (GET_MODE (XEXP (x, 1))
	  == qty_mode[REG_QTY (REGNO (XEXP (x, 1)))])
      && qty_const[REG_QTY (REGNO (XEXP (x, 1)))])
    return 0;

  return rtx_varies_p (x);
}

/* Canonicalize an expression:
   replace each register reference inside it
   with the "oldest" equivalent register.

   If INSN is non-zero and we are replacing a pseudo with a hard register
   or vice versa, validate_change is used to ensure that INSN remains valid
   after we make our substitution.  The calls are made with IN_GROUP non-zero
   so apply_change_group must be called upon the outermost return from this
   function (unless INSN is zero).  The result of apply_change_group can
   generally be discarded since the changes we are making are optional.  */

static rtx
canon_reg (x, insn)
     rtx x;
     rtx insn;
{
  register int i;
  register enum rtx_code code;
  register const char *fmt;

  if (x == 0)
    return x;

  code = GET_CODE (x);
  switch (code)
    {
    case PC:
    case CC0:
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case SYMBOL_REF:
    case LABEL_REF:
    case ADDR_VEC:
    case ADDR_DIFF_VEC:
      return x;

    case REG:
      {
	register int first;

	/* Never replace a hard reg, because hard regs can appear
	   in more than one machine mode, and we must preserve the mode
	   of each occurrence.  Also, some hard regs appear in
	   MEMs that are shared and mustn't be altered.  Don't try to
	   replace any reg that maps to a reg of class NO_REGS.  */
	if (REGNO (x) < FIRST_PSEUDO_REGISTER
	    || ! REGNO_QTY_VALID_P (REGNO (x)))
	  return x;

	first = qty_first_reg[REG_QTY (REGNO (x))];
	return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
		: REGNO_REG_CLASS (first) == NO_REGS ? x
		: gen_rtx_REG (qty_mode[REG_QTY (REGNO (x))], first));
      }
      
    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      register int j;

      if (fmt[i] == 'e')
	{
	  rtx new = canon_reg (XEXP (x, i), insn);
	  int insn_code;

	  /* If replacing pseudo with hard reg or vice versa, ensure the
	     insn remains valid.  Likewise if the insn has MATCH_DUPs.  */
	  if (insn != 0 && new != 0
	      && GET_CODE (new) == REG && GET_CODE (XEXP (x, i)) == REG
	      && (((REGNO (new) < FIRST_PSEUDO_REGISTER)
		   != (REGNO (XEXP (x, i)) < FIRST_PSEUDO_REGISTER))
		  || (insn_code = recog_memoized (insn)) < 0
		  || insn_data[insn_code].n_dups > 0))
	    validate_change (insn, &XEXP (x, i), new, 1);
	  else
	    XEXP (x, i) = new;
	}
      else if (fmt[i] == 'E')
	for (j = 0; j < XVECLEN (x, i); j++)
	  XVECEXP (x, i, j) = canon_reg (XVECEXP (x, i, j), insn);
    }

  return x;
}

/* LOC is a location within INSN that is an operand address (the contents of
   a MEM).  Find the best equivalent address to use that is valid for this
   insn.

   On most CISC machines, complicated address modes are costly, and rtx_cost
   is a good approximation for that cost.  However, most RISC machines have
   only a few (usually only one) memory reference formats.  If an address is
   valid at all, it is often just as cheap as any other address.  Hence, for
   RISC machines, we use the configuration macro `ADDRESS_COST' to compare the
   costs of various addresses.  For two addresses of equal cost, choose the one
   with the highest `rtx_cost' value as that has the potential of eliminating
   the most insns.  For equal costs, we choose the first in the equivalence
   class.  Note that we ignore the fact that pseudo registers are cheaper
   than hard registers here because we would also prefer the pseudo registers.
  */

static void
find_best_addr (insn, loc)
     rtx insn;
     rtx *loc;
{
  struct table_elt *elt;
  rtx addr = *loc;
#ifdef ADDRESS_COST
  struct table_elt *p;
  int found_better = 1;
#endif
  int save_do_not_record = do_not_record;
  int save_hash_arg_in_memory = hash_arg_in_memory;
  int save_hash_arg_in_struct = hash_arg_in_struct;
  int addr_volatile;
  int regno;
  unsigned hash;

  /* Do not try to replace constant addresses or addresses of local and
     argument slots.  These MEM expressions are made only once and inserted
     in many instructions, as well as being used to control symbol table
     output.  It is not safe to clobber them.

     There are some uncommon cases where the address is already in a register
     for some reason, but we cannot take advantage of that because we have
     no easy way to unshare the MEM.  In addition, looking up all stack
     addresses is costly.  */
  if ((GET_CODE (addr) == PLUS
       && GET_CODE (XEXP (addr, 0)) == REG
       && GET_CODE (XEXP (addr, 1)) == CONST_INT
       && (regno = REGNO (XEXP (addr, 0)),
	   regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM
	   || regno == ARG_POINTER_REGNUM))
      || (GET_CODE (addr) == REG
	  && (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
	      || regno == HARD_FRAME_POINTER_REGNUM
	      || regno == ARG_POINTER_REGNUM))
      || GET_CODE (addr) == ADDRESSOF
      || CONSTANT_ADDRESS_P (addr))
    return;

  /* If this address is not simply a register, try to fold it.  This will
     sometimes simplify the expression.  Many simplifications
     will not be valid, but some, usually applying the associative rule, will
     be valid and produce better code.  */
  if (GET_CODE (addr) != REG)
    {
      rtx folded = fold_rtx (copy_rtx (addr), NULL_RTX);

      if (1
#ifdef ADDRESS_COST
	  && (CSE_ADDRESS_COST (folded) < CSE_ADDRESS_COST (addr)
	      || (CSE_ADDRESS_COST (folded) == CSE_ADDRESS_COST (addr)
		  && rtx_cost (folded, MEM) > rtx_cost (addr, MEM)))
#else
	  && rtx_cost (folded, MEM) < rtx_cost (addr, MEM)
#endif
	  && validate_change (insn, loc, folded, 0))
	addr = folded;
    }
	
  /* If this address is not in the hash table, we can't look for equivalences
     of the whole address.  Also, ignore if volatile.  */

  do_not_record = 0;
  hash = HASH (addr, Pmode);
  addr_volatile = do_not_record;
  do_not_record = save_do_not_record;
  hash_arg_in_memory = save_hash_arg_in_memory;
  hash_arg_in_struct = save_hash_arg_in_struct;

  if (addr_volatile)
    return;

  elt = lookup (addr, hash, Pmode);

#ifndef ADDRESS_COST
  if (elt)
    {
      int our_cost = elt->cost;

      /* Find the lowest cost below ours that works.  */
      for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
	if (elt->cost < our_cost
	    && (GET_CODE (elt->exp) == REG
		|| exp_equiv_p (elt->exp, elt->exp, 1, 0))
	    && validate_change (insn, loc,
				canon_reg (copy_rtx (elt->exp), NULL_RTX), 0))
	  return;
    }
#else

  if (elt)
    {
      /* We need to find the best (under the criteria documented above) entry
	 in the class that is valid.  We use the `flag' field to indicate
	 choices that were invalid and iterate until we can't find a better
	 one that hasn't already been tried.  */

      for (p = elt->first_same_value; p; p = p->next_same_value)
	p->flag = 0;

      while (found_better)
	{
	  int best_addr_cost = CSE_ADDRESS_COST (*loc);
	  int best_rtx_cost = (elt->cost + 1) >> 1;
	  struct table_elt *best_elt = elt; 

	  found_better = 0;
	  for (p = elt->first_same_value; p; p = p->next_same_value)
	    if (! p->flag)
	      {
		if ((GET_CODE (p->exp) == REG
		     || exp_equiv_p (p->exp, p->exp, 1, 0))
		    && (CSE_ADDRESS_COST (p->exp) < best_addr_cost
			|| (CSE_ADDRESS_COST (p->exp) == best_addr_cost
			    && (p->cost + 1) >> 1 > best_rtx_cost)))
		  {
		    found_better = 1;
		    best_addr_cost = CSE_ADDRESS_COST (p->exp);
		    best_rtx_cost = (p->cost + 1) >> 1;
		    best_elt = p;
		  }
	      }

	  if (found_better)
	    {
	      if (validate_change (insn, loc,
				   canon_reg (copy_rtx (best_elt->exp),
					      NULL_RTX), 0))
		return;
	      else
		best_elt->flag = 1;
	    }
	}
    }

  /* If the address is a binary operation with the first operand a register
     and the second a constant, do the same as above, but looking for
     equivalences of the register.  Then try to simplify before checking for
     the best address to use.  This catches a few cases:  First is when we
     have REG+const and the register is another REG+const.  We can often merge
     the constants and eliminate one insn and one register.  It may also be
     that a machine has a cheap REG+REG+const.  Finally, this improves the
     code on the Alpha for unaligned byte stores.  */

  if (flag_expensive_optimizations
      && (GET_RTX_CLASS (GET_CODE (*loc)) == '2'
	  || GET_RTX_CLASS (GET_CODE (*loc)) == 'c')
      && GET_CODE (XEXP (*loc, 0)) == REG
      && GET_CODE (XEXP (*loc, 1)) == CONST_INT)
    {
      rtx c = XEXP (*loc, 1);

      do_not_record = 0;
      hash = HASH (XEXP (*loc, 0), Pmode);
      do_not_record = save_do_not_record;
      hash_arg_in_memory = save_hash_arg_in_memory;
      hash_arg_in_struct = save_hash_arg_in_struct;

      elt = lookup (XEXP (*loc, 0), hash, Pmode);
      if (elt == 0)
	return;

      /* We need to find the best (under the criteria documented above) entry
	 in the class that is valid.  We use the `flag' field to indicate
	 choices that were invalid and iterate until we can't find a better
	 one that hasn't already been tried.  */

      for (p = elt->first_same_value; p; p = p->next_same_value)
	p->flag = 0;

      while (found_better)
	{
	  int best_addr_cost = CSE_ADDRESS_COST (*loc);
	  int best_rtx_cost = (COST (*loc) + 1) >> 1;
	  struct table_elt *best_elt = elt; 
	  rtx best_rtx = *loc;
	  int count;

	  /* This is at worst case an O(n^2) algorithm, so limit our search
	     to the first 32 elements on the list.  This avoids trouble
	     compiling code with very long basic blocks that can easily
	     call cse_gen_binary so many times that we run out of memory.  */

	  found_better = 0;
	  for (p = elt->first_same_value, count = 0;
	       p && count < 32;
	       p = p->next_same_value, count++)
	    if (! p->flag
		&& (GET_CODE (p->exp) == REG
		    || exp_equiv_p (p->exp, p->exp, 1, 0)))
	      {
		rtx new = cse_gen_binary (GET_CODE (*loc), Pmode, p->exp, c);

		if ((CSE_ADDRESS_COST (new) < best_addr_cost
		    || (CSE_ADDRESS_COST (new) == best_addr_cost
			&& (COST (new) + 1) >> 1 > best_rtx_cost)))
		  {
		    found_better = 1;
		    best_addr_cost = CSE_ADDRESS_COST (new);
		    best_rtx_cost = (COST (new) + 1) >> 1;
		    best_elt = p;
		    best_rtx = new;
		  }
	      }

	  if (found_better)
	    {
	      if (validate_change (insn, loc,
				   canon_reg (copy_rtx (best_rtx),
					      NULL_RTX), 0))
		return;
	      else
		best_elt->flag = 1;
	    }
	}
    }
#endif
}

/* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
   operation (EQ, NE, GT, etc.), follow it back through the hash table and
   what values are being compared.

   *PARG1 and *PARG2 are updated to contain the rtx representing the values
   actually being compared.  For example, if *PARG1 was (cc0) and *PARG2
   was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
   compared to produce cc0.

   The return value is the comparison operator and is either the code of
   A or the code corresponding to the inverse of the comparison.  */

static enum rtx_code
find_comparison_args (code, parg1, parg2, pmode1, pmode2)
     enum rtx_code code;
     rtx *parg1, *parg2;
     enum machine_mode *pmode1, *pmode2;
{
  rtx arg1, arg2;

  arg1 = *parg1, arg2 = *parg2;

  /* If ARG2 is const0_rtx, see what ARG1 is equivalent to.  */

  while (arg2 == CONST0_RTX (GET_MODE (arg1)))
    {
      /* Set non-zero when we find something of interest.  */
      rtx x = 0;
      int reverse_code = 0;
      struct table_elt *p = 0;

      /* If arg1 is a COMPARE, extract the comparison arguments from it.
	 On machines with CC0, this is the only case that can occur, since
	 fold_rtx will return the COMPARE or item being compared with zero
	 when given CC0.  */

      if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
	x = arg1;

      /* If ARG1 is a comparison operator and CODE is testing for
	 STORE_FLAG_VALUE, get the inner arguments.  */

      else if (GET_RTX_CLASS (GET_CODE (arg1)) == '<')
	{
	  if (code == NE
	      || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
		  && code == LT && STORE_FLAG_VALUE == -1)
#ifdef FLOAT_STORE_FLAG_VALUE
	      || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
		  && FLOAT_STORE_FLAG_VALUE < 0)
#endif
	      )
	    x = arg1;
	  else if (code == EQ
		   || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
		       && code == GE && STORE_FLAG_VALUE == -1)
#ifdef FLOAT_STORE_FLAG_VALUE
		   || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
		       && FLOAT_STORE_FLAG_VALUE < 0)
#endif
		   )
	    x = arg1, reverse_code = 1;
	}

      /* ??? We could also check for

	 (ne (and (eq (...) (const_int 1))) (const_int 0))

	 and related forms, but let's wait until we see them occurring.  */

      if (x == 0)
	/* Look up ARG1 in the hash table and see if it has an equivalence
	   that lets us see what is being compared.  */
	p = lookup (arg1, safe_hash (arg1, GET_MODE (arg1)) % NBUCKETS,
		    GET_MODE (arg1));
      if (p) p = p->first_same_value;

      for (; p; p = p->next_same_value)
	{
	  enum machine_mode inner_mode = GET_MODE (p->exp);

	  /* If the entry isn't valid, skip it.  */
	  if (! exp_equiv_p (p->exp, p->exp, 1, 0))
	    continue;

	  if (GET_CODE (p->exp) == COMPARE
	      /* Another possibility is that this machine has a compare insn
		 that includes the comparison code.  In that case, ARG1 would
		 be equivalent to a comparison operation that would set ARG1 to
		 either STORE_FLAG_VALUE or zero.  If this is an NE operation,
		 ORIG_CODE is the actual comparison being done; if it is an EQ,
		 we must reverse ORIG_CODE.  On machine with a negative value
		 for STORE_FLAG_VALUE, also look at LT and GE operations.  */
	      || ((code == NE
		   || (code == LT
		       && GET_MODE_CLASS (inner_mode) == MODE_INT
		       && (GET_MODE_BITSIZE (inner_mode)
			   <= HOST_BITS_PER_WIDE_INT)
		       && (STORE_FLAG_VALUE
			   & ((HOST_WIDE_INT) 1
			      << (GET_MODE_BITSIZE (inner_mode) - 1))))
#ifdef FLOAT_STORE_FLAG_VALUE
		   || (code == LT
		       && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
		       && FLOAT_STORE_FLAG_VALUE < 0)
#endif
		   )
		  && GET_RTX_CLASS (GET_CODE (p->exp)) == '<'))
	    {
	      x = p->exp;
	      break;
	    }
	  else if ((code == EQ
		    || (code == GE
			&& GET_MODE_CLASS (inner_mode) == MODE_INT
			&& (GET_MODE_BITSIZE (inner_mode)
			    <= HOST_BITS_PER_WIDE_INT)
			&& (STORE_FLAG_VALUE
			    & ((HOST_WIDE_INT) 1
			       << (GET_MODE_BITSIZE (inner_mode) - 1))))
#ifdef FLOAT_STORE_FLAG_VALUE
		    || (code == GE
			&& GET_MODE_CLASS (inner_mode) == MODE_FLOAT
			&& FLOAT_STORE_FLAG_VALUE < 0)
#endif
		    )
		   && GET_RTX_CLASS (GET_CODE (p->exp)) == '<')
	    {
	      reverse_code = 1;
	      x = p->exp;
	      break;
	    }

	  /* If this is fp + constant, the equivalent is a better operand since
	     it may let us predict the value of the comparison.  */
	  else if (NONZERO_BASE_PLUS_P (p->exp))
	    {
	      arg1 = p->exp;
	      continue;
	    }
	}

      /* If we didn't find a useful equivalence for ARG1, we are done.
	 Otherwise, set up for the next iteration.  */
      if (x == 0)
	break;

      arg1 = XEXP (x, 0),  arg2 = XEXP (x, 1);
      if (GET_RTX_CLASS (GET_CODE (x)) == '<')
	code = GET_CODE (x);

      if (reverse_code)
	code = reverse_condition (code);
    }

  /* Return our results.  Return the modes from before fold_rtx
     because fold_rtx might produce const_int, and then it's too late.  */
  *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
  *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);

  return code;
}

/* Try to simplify a unary operation CODE whose output mode is to be
   MODE with input operand OP whose mode was originally OP_MODE.
   Return zero if no simplification can be made.  */

rtx
simplify_unary_operation (code, mode, op, op_mode)
     enum rtx_code code;
     enum machine_mode mode;
     rtx op;
     enum machine_mode op_mode;
{
  register int width = GET_MODE_BITSIZE (mode);

  /* The order of these tests is critical so that, for example, we don't
     check the wrong mode (input vs. output) for a conversion operation,
     such as FIX.  At some point, this should be simplified.  */

#if !defined(REAL_IS_NOT_DOUBLE) || defined(REAL_ARITHMETIC)

  if (code == FLOAT && GET_MODE (op) == VOIDmode
      && (GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT))
    {
      HOST_WIDE_INT hv, lv;
      REAL_VALUE_TYPE d;

      if (GET_CODE (op) == CONST_INT)
	lv = INTVAL (op), hv = INTVAL (op) < 0 ? -1 : 0;
      else
	lv = CONST_DOUBLE_LOW (op),  hv = CONST_DOUBLE_HIGH (op);

#ifdef REAL_ARITHMETIC
      REAL_VALUE_FROM_INT (d, lv, hv, mode);
#else
      if (hv < 0)
	{
	  d = (double) (~ hv);
	  d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
		* (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
	  d += (double) (unsigned HOST_WIDE_INT) (~ lv);
	  d = (- d - 1.0);
	}
      else
	{
	  d = (double) hv;
	  d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
		* (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
	  d += (double) (unsigned HOST_WIDE_INT) lv;
	}
#endif  /* REAL_ARITHMETIC */
      d = real_value_truncate (mode, d);
      return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
    }
  else if (code == UNSIGNED_FLOAT && GET_MODE (op) == VOIDmode
	   && (GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT))
    {
      HOST_WIDE_INT hv, lv;
      REAL_VALUE_TYPE d;

      if (GET_CODE (op) == CONST_INT)
	lv = INTVAL (op), hv = INTVAL (op) < 0 ? -1 : 0;
      else
	lv = CONST_DOUBLE_LOW (op),  hv = CONST_DOUBLE_HIGH (op);

      if (op_mode == VOIDmode)
	{
	  /* We don't know how to interpret negative-looking numbers in
	     this case, so don't try to fold those.  */
	  if (hv < 0)
	    return 0;
	}
      else if (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT * 2)
	;
      else
	hv = 0, lv &= GET_MODE_MASK (op_mode);

#ifdef REAL_ARITHMETIC
      REAL_VALUE_FROM_UNSIGNED_INT (d, lv, hv, mode);
#else

      d = (double) (unsigned HOST_WIDE_INT) hv;
      d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
	    * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
      d += (double) (unsigned HOST_WIDE_INT) lv;
#endif  /* REAL_ARITHMETIC */
      d = real_value_truncate (mode, d);
      return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
    }
#endif

  if (GET_CODE (op) == CONST_INT
      && width <= HOST_BITS_PER_WIDE_INT && width > 0)
    {
      register HOST_WIDE_INT arg0 = INTVAL (op);
      register HOST_WIDE_INT val;

      switch (code)
	{
	case NOT:
	  val = ~ arg0;
	  break;

	case NEG:
	  val = - arg0;
	  break;

	case ABS:
	  val = (arg0 >= 0 ? arg0 : - arg0);
	  break;

	case FFS:
	  /* Don't use ffs here.  Instead, get low order bit and then its
	     number.  If arg0 is zero, this will return 0, as desired.  */
	  arg0 &= GET_MODE_MASK (mode);
	  val = exact_log2 (arg0 & (- arg0)) + 1;
	  break;

	case TRUNCATE:
	  val = arg0;
	  break;

	case ZERO_EXTEND:
	  if (op_mode == VOIDmode)
	    op_mode = mode;
	  if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
	    {
	      /* If we were really extending the mode,
		 we would have to distinguish between zero-extension
		 and sign-extension.  */
	      if (width != GET_MODE_BITSIZE (op_mode))
		abort ();
	      val = arg0;
	    }
	  else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
	    val = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
	  else
	    return 0;
	  break;

	case SIGN_EXTEND:
	  if (op_mode == VOIDmode)
	    op_mode = mode;
	  if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
	    {
	      /* If we were really extending the mode,
		 we would have to distinguish between zero-extension
		 and sign-extension.  */
	      if (width != GET_MODE_BITSIZE (op_mode))
		abort ();
	      val = arg0;
	    }
	  else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
	    {
	      val
		= arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
	      if (val
		  & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (op_mode) - 1)))
		val -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
	    }
	  else
	    return 0;
	  break;

	case SQRT:
	  return 0;

	default:
	  abort ();
	}

      val = trunc_int_for_mode (val, mode);

      return GEN_INT (val);
    }

  /* We can do some operations on integer CONST_DOUBLEs.  Also allow
     for a DImode operation on a CONST_INT.  */
  else if (GET_MODE (op) == VOIDmode && width <= HOST_BITS_PER_INT * 2
	   && (GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT))
    {
      HOST_WIDE_INT l1, h1, lv, hv;

      if (GET_CODE (op) == CONST_DOUBLE)
	l1 = CONST_DOUBLE_LOW (op), h1 = CONST_DOUBLE_HIGH (op);
      else
	l1 = INTVAL (op), h1 = l1 < 0 ? -1 : 0;

      switch (code)
	{
	case NOT:
	  lv = ~ l1;
	  hv = ~ h1;
	  break;

	case NEG:
	  neg_double (l1, h1, &lv, &hv);
	  break;

	case ABS:
	  if (h1 < 0)
	    neg_double (l1, h1, &lv, &hv);
	  else
	    lv = l1, hv = h1;
	  break;

	case FFS:
	  hv = 0;
	  if (l1 == 0)
	    lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & (-h1)) + 1;
	  else
	    lv = exact_log2 (l1 & (-l1)) + 1;
	  break;

	case TRUNCATE:
	  /* This is just a change-of-mode, so do nothing.  */
	  lv = l1, hv = h1;
	  break;

	case ZERO_EXTEND:
	  if (op_mode == VOIDmode
	      || GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
	    return 0;

	  hv = 0;
	  lv = l1 & GET_MODE_MASK (op_mode);
	  break;

	case SIGN_EXTEND:
	  if (op_mode == VOIDmode
	      || GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
	    return 0;
	  else
	    {
	      lv = l1 & GET_MODE_MASK (op_mode);
	      if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT
		  && (lv & ((HOST_WIDE_INT) 1
			    << (GET_MODE_BITSIZE (op_mode) - 1))) != 0)
		lv -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);

	      hv = (lv < 0) ? ~ (HOST_WIDE_INT) 0 : 0;
	    }
	  break;

	case SQRT:
	  return 0;

	default:
	  return 0;
	}

      return immed_double_const (lv, hv, mode);
    }

#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
  else if (GET_CODE (op) == CONST_DOUBLE
	   && GET_MODE_CLASS (mode) == MODE_FLOAT)
    {
      REAL_VALUE_TYPE d;
      jmp_buf handler;
      rtx x;

      if (setjmp (handler))
	/* There used to be a warning here, but that is inadvisable.
	   People may want to cause traps, and the natural way
	   to do it should not get a warning.  */
	return 0;

      set_float_handler (handler);

      REAL_VALUE_FROM_CONST_DOUBLE (d, op);

      switch (code)
	{
	case NEG:
	  d = REAL_VALUE_NEGATE (d);
	  break;

	case ABS:
	  if (REAL_VALUE_NEGATIVE (d))
	    d = REAL_VALUE_NEGATE (d);
	  break;

	case FLOAT_TRUNCATE:
	  d = real_value_truncate (mode, d);
	  break;

	case FLOAT_EXTEND:
	  /* All this does is change the mode.  */
	  break;

	case FIX:
	  d = REAL_VALUE_RNDZINT (d);
	  break;

	case UNSIGNED_FIX:
	  d = REAL_VALUE_UNSIGNED_RNDZINT (d);
	  break;

	case SQRT:
	  return 0;

	default:
	  abort ();
	}

      x = CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
      set_float_handler (NULL_PTR);
      return x;
    }

  else if (GET_CODE (op) == CONST_DOUBLE
	   && GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
	   && GET_MODE_CLASS (mode) == MODE_INT
	   && width <= HOST_BITS_PER_WIDE_INT && width > 0)
    {
      REAL_VALUE_TYPE d;
      jmp_buf handler;
      HOST_WIDE_INT val;

      if (setjmp (handler))
	return 0;

      set_float_handler (handler);

      REAL_VALUE_FROM_CONST_DOUBLE (d, op);

      switch (code)
	{
	case FIX:
	  val = REAL_VALUE_FIX (d);
	  break;

	case UNSIGNED_FIX:
	  val = REAL_VALUE_UNSIGNED_FIX (d);
	  break;

	default:
	  abort ();
	}

      set_float_handler (NULL_PTR);

      val = trunc_int_for_mode (val, mode);

      return GEN_INT (val);
    }
#endif
  /* This was formerly used only for non-IEEE float.
     eggert@twinsun.com says it is safe for IEEE also.  */
  else
    {
      /* There are some simplifications we can do even if the operands
	 aren't constant.  */
      switch (code)
	{
	case NEG:
	case NOT:
	  /* (not (not X)) == X, similarly for NEG.  */
	  if (GET_CODE (op) == code)
	    return XEXP (op, 0);
	  break;

	case SIGN_EXTEND:
	  /* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
	     becomes just the MINUS if its mode is MODE.  This allows
	     folding switch statements on machines using casesi (such as
	     the Vax).  */
	  if (GET_CODE (op) == TRUNCATE
	      && GET_MODE (XEXP (op, 0)) == mode
	      && GET_CODE (XEXP (op, 0)) == MINUS
	      && GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF
	      && GET_CODE (XEXP (XEXP (op, 0), 1)) == LABEL_REF)
	    return XEXP (op, 0);

#ifdef POINTERS_EXTEND_UNSIGNED
	  if (! POINTERS_EXTEND_UNSIGNED
	      && mode == Pmode && GET_MODE (op) == ptr_mode
	      && CONSTANT_P (op))
	    return convert_memory_address (Pmode, op);
#endif
	  break;

#ifdef POINTERS_EXTEND_UNSIGNED
	case ZERO_EXTEND:
	  if (POINTERS_EXTEND_UNSIGNED
	      && mode == Pmode && GET_MODE (op) == ptr_mode
	      && CONSTANT_P (op))
	    return convert_memory_address (Pmode, op);
	  break;
#endif
	  
	default:
	  break;
	}

      return 0;
    }
}

/* Simplify a binary operation CODE with result mode MODE, operating on OP0
   and OP1.  Return 0 if no simplification is possible.

   Don't use this for relational operations such as EQ or LT.
   Use simplify_relational_operation instead.  */

rtx
simplify_binary_operation (code, mode, op0, op1)
     enum rtx_code code;
     enum machine_mode mode;
     rtx op0, op1;
{
  register HOST_WIDE_INT arg0, arg1, arg0s, arg1s;
  HOST_WIDE_INT val;
  int width = GET_MODE_BITSIZE (mode);
  rtx tem;

  /* Relational operations don't work here.  We must know the mode
     of the operands in order to do the comparison correctly.
     Assuming a full word can give incorrect results.
     Consider comparing 128 with -128 in QImode.  */

  if (GET_RTX_CLASS (code) == '<')
    abort ();

#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
  if (GET_MODE_CLASS (mode) == MODE_FLOAT
      && GET_CODE (op0) == CONST_DOUBLE && GET_CODE (op1) == CONST_DOUBLE
      && mode == GET_MODE (op0) && mode == GET_MODE (op1))
    {
      REAL_VALUE_TYPE f0, f1, value;
      jmp_buf handler;

      if (setjmp (handler))
	return 0;

      set_float_handler (handler);

      REAL_VALUE_FROM_CONST_DOUBLE (f0, op0);
      REAL_VALUE_FROM_CONST_DOUBLE (f1, op1);
      f0 = real_value_truncate (mode, f0);
      f1 = real_value_truncate (mode, f1);

#ifdef REAL_ARITHMETIC
#ifndef REAL_INFINITY
      if (code == DIV && REAL_VALUES_EQUAL (f1, dconst0))
	return 0;
#endif
      REAL_ARITHMETIC (value, rtx_to_tree_code (code), f0, f1);
#else
      switch (code)
	{
	case PLUS:
	  value = f0 + f1;
	  break;
	case MINUS:
	  value = f0 - f1;
	  break;
	case MULT:
	  value = f0 * f1;
	  break;
	case DIV:
#ifndef REAL_INFINITY
	  if (f1 == 0)
	    return 0;
#endif
	  value = f0 / f1;
	  break;
	case SMIN:
	  value = MIN (f0, f1);
	  break;
	case SMAX:
	  value = MAX (f0, f1);
	  break;
	default:
	  abort ();
	}
#endif

      value = real_value_truncate (mode, value);
      set_float_handler (NULL_PTR);
      return CONST_DOUBLE_FROM_REAL_VALUE (value, mode);
    }
#endif  /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */

  /* We can fold some multi-word operations.  */
  if (GET_MODE_CLASS (mode) == MODE_INT
      && width == HOST_BITS_PER_WIDE_INT * 2
      && (GET_CODE (op0) == CONST_DOUBLE || GET_CODE (op0) == CONST_INT)
      && (GET_CODE (op1) == CONST_DOUBLE || GET_CODE (op1) == CONST_INT))
    {
      HOST_WIDE_INT l1, l2, h1, h2, lv, hv;

      if (GET_CODE (op0) == CONST_DOUBLE)
	l1 = CONST_DOUBLE_LOW (op0), h1 = CONST_DOUBLE_HIGH (op0);
      else
	l1 = INTVAL (op0), h1 = l1 < 0 ? -1 : 0;

      if (GET_CODE (op1) == CONST_DOUBLE)
	l2 = CONST_DOUBLE_LOW (op1), h2 = CONST_DOUBLE_HIGH (op1);
      else
	l2 = INTVAL (op1), h2 = l2 < 0 ? -1 : 0;

      switch (code)
	{
	case MINUS:
	  /* A - B == A + (-B).  */
	  neg_double (l2, h2, &lv, &hv);
	  l2 = lv, h2 = hv;

	  /* .. fall through ...  */

	case PLUS:
	  add_double (l1, h1, l2, h2, &lv, &hv);
	  break;

	case MULT:
	  mul_double (l1, h1, l2, h2, &lv, &hv);
	  break;

	case DIV:  case MOD:   case UDIV:  case UMOD:
	  /* We'd need to include tree.h to do this and it doesn't seem worth
	     it.  */
	  return 0;

	case AND:
	  lv = l1 & l2, hv = h1 & h2;
	  break;

	case IOR:
	  lv = l1 | l2, hv = h1 | h2;
	  break;

	case XOR:
	  lv = l1 ^ l2, hv = h1 ^ h2;
	  break;

	case SMIN:
	  if (h1 < h2
	      || (h1 == h2
		  && ((unsigned HOST_WIDE_INT) l1
		      < (unsigned HOST_WIDE_INT) l2)))
	    lv = l1, hv = h1;
	  else
	    lv = l2, hv = h2;
	  break;

	case SMAX:
	  if (h1 > h2
	      || (h1 == h2
		  && ((unsigned HOST_WIDE_INT) l1
		      > (unsigned HOST_WIDE_INT) l2)))
	    lv = l1, hv = h1;
	  else
	    lv = l2, hv = h2;
	  break;

	case UMIN:
	  if ((unsigned HOST_WIDE_INT) h1 < (unsigned HOST_WIDE_INT) h2
	      || (h1 == h2
		  && ((unsigned HOST_WIDE_INT) l1
		      < (unsigned HOST_WIDE_INT) l2)))
	    lv = l1, hv = h1;
	  else
	    lv = l2, hv = h2;
	  break;

	case UMAX:
	  if ((unsigned HOST_WIDE_INT) h1 > (unsigned HOST_WIDE_INT) h2
	      || (h1 == h2
		  && ((unsigned HOST_WIDE_INT) l1
		      > (unsigned HOST_WIDE_INT) l2)))
	    lv = l1, hv = h1;
	  else
	    lv = l2, hv = h2;
	  break;

	case LSHIFTRT:   case ASHIFTRT:
	case ASHIFT:
	case ROTATE:     case ROTATERT:
#ifdef SHIFT_COUNT_TRUNCATED
	  if (SHIFT_COUNT_TRUNCATED)
	    l2 &= (GET_MODE_BITSIZE (mode) - 1), h2 = 0;
#endif

	  if (h2 != 0 || l2 < 0 || l2 >= GET_MODE_BITSIZE (mode))
	    return 0;

	  if (code == LSHIFTRT || code == ASHIFTRT)
	    rshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv,
			   code == ASHIFTRT);
	  else if (code == ASHIFT)
	    lshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv, 1);
	  else if (code == ROTATE)
	    lrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
	  else /* code == ROTATERT */
	    rrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
	  break;

	default:
	  return 0;
	}

      return immed_double_const (lv, hv, mode);
    }

  if (GET_CODE (op0) != CONST_INT || GET_CODE (op1) != CONST_INT
      || width > HOST_BITS_PER_WIDE_INT || width == 0)
    {
      /* Even if we can't compute a constant result,
	 there are some cases worth simplifying.  */

      switch (code)
	{
	case PLUS:
	  /* In IEEE floating point, x+0 is not the same as x.  Similarly
	     for the other optimizations below.  */
	  if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
	      && FLOAT_MODE_P (mode) && ! flag_fast_math)
	    break;

	  if (op1 == CONST0_RTX (mode))
	    return op0;

	  /* ((-a) + b) -> (b - a) and similarly for (a + (-b)) */
	  if (GET_CODE (op0) == NEG)
	    return cse_gen_binary (MINUS, mode, op1, XEXP (op0, 0));
	  else if (GET_CODE (op1) == NEG)
	    return cse_gen_binary (MINUS, mode, op0, XEXP (op1, 0));

	  /* Handle both-operands-constant cases.  We can only add
	     CONST_INTs to constants since the sum of relocatable symbols
	     can't be handled by most assemblers.  Don't add CONST_INT
	     to CONST_INT since overflow won't be computed properly if wider
	     than HOST_BITS_PER_WIDE_INT.  */

	  if (CONSTANT_P (op0) && GET_MODE (op0) != VOIDmode
	      && GET_CODE (op1) == CONST_INT)
	    return plus_constant (op0, INTVAL (op1));
	  else if (CONSTANT_P (op1) && GET_MODE (op1) != VOIDmode
		   && GET_CODE (op0) == CONST_INT)
	    return plus_constant (op1, INTVAL (op0));

	  /* See if this is something like X * C - X or vice versa or
	     if the multiplication is written as a shift.  If so, we can
	     distribute and make a new multiply, shift, or maybe just
	     have X (if C is 2 in the example above).  But don't make
	     real multiply if we didn't have one before.  */

	  if (! FLOAT_MODE_P (mode))
	    {
	      HOST_WIDE_INT coeff0 = 1, coeff1 = 1;
	      rtx lhs = op0, rhs = op1;
	      int had_mult = 0;

	      if (GET_CODE (lhs) == NEG)
		coeff0 = -1, lhs = XEXP (lhs, 0);
	      else if (GET_CODE (lhs) == MULT
		       && GET_CODE (XEXP (lhs, 1)) == CONST_INT)
		{
		  coeff0 = INTVAL (XEXP (lhs, 1)), lhs = XEXP (lhs, 0);
		  had_mult = 1;
		}
	      else if (GET_CODE (lhs) == ASHIFT
		       && GET_CODE (XEXP (lhs, 1)) == CONST_INT
		       && INTVAL (XEXP (lhs, 1)) >= 0
		       && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
		{
		  coeff0 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
		  lhs = XEXP (lhs, 0);
		}

	      if (GET_CODE (rhs) == NEG)
		coeff1 = -1, rhs = XEXP (rhs, 0);
	      else if (GET_CODE (rhs) == MULT
		       && GET_CODE (XEXP (rhs, 1)) == CONST_INT)
		{
		  coeff1 = INTVAL (XEXP (rhs, 1)), rhs = XEXP (rhs, 0);
		  had_mult = 1;
		}
	      else if (GET_CODE (rhs) == ASHIFT
		       && GET_CODE (XEXP (rhs, 1)) == CONST_INT
		       && INTVAL (XEXP (rhs, 1)) >= 0
		       && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
		{
		  coeff1 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
		  rhs = XEXP (rhs, 0);
		}

	      if (rtx_equal_p (lhs, rhs))
		{
		  tem = cse_gen_binary (MULT, mode, lhs,
					GEN_INT (coeff0 + coeff1));
		  return (GET_CODE (tem) == MULT && ! had_mult) ? 0 : tem;
		}
	    }

	  /* If one of the operands is a PLUS or a MINUS, see if we can
	     simplify this by the associative law. 
	     Don't use the associative law for floating point.
	     The inaccuracy makes it nonassociative,
	     and subtle programs can break if operations are associated.  */

	  if (INTEGRAL_MODE_P (mode)
	      && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
		  || GET_CODE (op1) == PLUS || GET_CODE (op1) == MINUS)
	      && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
	    return tem;
	  break;

	case COMPARE:
#ifdef HAVE_cc0
	  /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
	     using cc0, in which case we want to leave it as a COMPARE
	     so we can distinguish it from a register-register-copy.

	     In IEEE floating point, x-0 is not the same as x.  */

	  if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
	       || ! FLOAT_MODE_P (mode) || flag_fast_math)
	      && op1 == CONST0_RTX (mode))
	    return op0;
#else
	  /* Do nothing here.  */
#endif
	  break;
	      
	case MINUS:
	  /* None of these optimizations can be done for IEEE
	     floating point.  */
	  if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
	      && FLOAT_MODE_P (mode) && ! flag_fast_math)
	    break;

	  /* We can't assume x-x is 0 even with non-IEEE floating point,
	     but since it is zero except in very strange circumstances, we
	     will treat it as zero with -ffast-math.  */
	  if (rtx_equal_p (op0, op1)
	      && ! side_effects_p (op0)
	      && (! FLOAT_MODE_P (mode) || flag_fast_math))
	    return CONST0_RTX (mode);

	  /* Change subtraction from zero into negation.  */
	  if (op0 == CONST0_RTX (mode))
	    return gen_rtx_NEG (mode, op1);

	  /* (-1 - a) is ~a.  */
	  if (op0 == constm1_rtx)
	    return gen_rtx_NOT (mode, op1);

	  /* Subtracting 0 has no effect.  */
	  if (op1 == CONST0_RTX (mode))
	    return op0;

	  /* See if this is something like X * C - X or vice versa or
	     if the multiplication is written as a shift.  If so, we can
	     distribute and make a new multiply, shift, or maybe just
	     have X (if C is 2 in the example above).  But don't make
	     real multiply if we didn't have one before.  */

	  if (! FLOAT_MODE_P (mode))
	    {
	      HOST_WIDE_INT coeff0 = 1, coeff1 = 1;
	      rtx lhs = op0, rhs = op1;
	      int had_mult = 0;

	      if (GET_CODE (lhs) == NEG)
		coeff0 = -1, lhs = XEXP (lhs, 0);
	      else if (GET_CODE (lhs) == MULT
		       && GET_CODE (XEXP (lhs, 1)) == CONST_INT)
		{
		  coeff0 = INTVAL (XEXP (lhs, 1)), lhs = XEXP (lhs, 0);
		  had_mult = 1;
		}
	      else if (GET_CODE (lhs) == ASHIFT
		       && GET_CODE (XEXP (lhs, 1)) == CONST_INT
		       && INTVAL (XEXP (lhs, 1)) >= 0
		       && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
		{
		  coeff0 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
		  lhs = XEXP (lhs, 0);
		}

	      if (GET_CODE (rhs) == NEG)
		coeff1 = - 1, rhs = XEXP (rhs, 0);
	      else if (GET_CODE (rhs) == MULT
		       && GET_CODE (XEXP (rhs, 1)) == CONST_INT)
		{
		  coeff1 = INTVAL (XEXP (rhs, 1)), rhs = XEXP (rhs, 0);
		  had_mult = 1;
		}
	      else if (GET_CODE (rhs) == ASHIFT
		       && GET_CODE (XEXP (rhs, 1)) == CONST_INT
		       && INTVAL (XEXP (rhs, 1)) >= 0
		       && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
		{
		  coeff1 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
		  rhs = XEXP (rhs, 0);
		}

	      if (rtx_equal_p (lhs, rhs))
		{
		  tem = cse_gen_binary (MULT, mode, lhs,
					GEN_INT (coeff0 - coeff1));
		  return (GET_CODE (tem) == MULT && ! had_mult) ? 0 : tem;
		}
	    }

	  /* (a - (-b)) -> (a + b).  */
	  if (GET_CODE (op1) == NEG)
	    return cse_gen_binary (PLUS, mode, op0, XEXP (op1, 0));

	  /* If one of the operands is a PLUS or a MINUS, see if we can
	     simplify this by the associative law. 
	     Don't use the associative law for floating point.
	     The inaccuracy makes it nonassociative,
	     and subtle programs can break if operations are associated.  */

	  if (INTEGRAL_MODE_P (mode)
	      && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
		  || GET_CODE (op1) == PLUS || GET_CODE (op1) == MINUS)
	      && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
	    return tem;

	  /* Don't let a relocatable value get a negative coeff.  */
	  if (GET_CODE (op1) == CONST_INT && GET_MODE (op0) != VOIDmode)
	    return plus_constant (op0, - INTVAL (op1));

	  /* (x - (x & y)) -> (x & ~y) */
	  if (GET_CODE (op1) == AND)
	    {
	     if (rtx_equal_p (op0, XEXP (op1, 0)))
	       return cse_gen_binary (AND, mode, op0,
				      gen_rtx_NOT (mode, XEXP (op1, 1)));
	     if (rtx_equal_p (op0, XEXP (op1, 1)))
	       return cse_gen_binary (AND, mode, op0,
				      gen_rtx_NOT (mode, XEXP (op1, 0)));
	   }
	  break;

	case MULT:
	  if (op1 == constm1_rtx)
	    {
	      tem = simplify_unary_operation (NEG, mode, op0, mode);

	      return tem ? tem : gen_rtx_NEG (mode, op0);
	    }

	  /* In IEEE floating point, x*0 is not always 0.  */
	  if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
	       || ! FLOAT_MODE_P (mode) || flag_fast_math)
	      && op1 == CONST0_RTX (mode)
	      && ! side_effects_p (op0))
	    return op1;

	  /* In IEEE floating point, x*1 is not equivalent to x for nans.
	     However, ANSI says we can drop signals,
	     so we can do this anyway.  */
	  if (op1 == CONST1_RTX (mode))
	    return op0;

	  /* Convert multiply by constant power of two into shift unless
	     we are still generating RTL.  This test is a kludge.  */
	  if (GET_CODE (op1) == CONST_INT
	      && (val = exact_log2 (INTVAL (op1))) >= 0
	      /* If the mode is larger than the host word size, and the
		 uppermost bit is set, then this isn't a power of two due
		 to implicit sign extension.  */
	      && (width <= HOST_BITS_PER_WIDE_INT
		  || val != HOST_BITS_PER_WIDE_INT - 1)
	      && ! rtx_equal_function_value_matters)
	    return gen_rtx_ASHIFT (mode, op0, GEN_INT (val));

	  if (GET_CODE (op1) == CONST_DOUBLE
	      && GET_MODE_CLASS (GET_MODE (op1)) == MODE_FLOAT)
	    {
	      REAL_VALUE_TYPE d;
	      jmp_buf handler;
	      int op1is2, op1ism1;

	      if (setjmp (handler))
		return 0;

	      set_float_handler (handler);
	      REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
	      op1is2 = REAL_VALUES_EQUAL (d, dconst2);
	      op1ism1 = REAL_VALUES_EQUAL (d, dconstm1);
	      set_float_handler (NULL_PTR);

	      /* x*2 is x+x and x*(-1) is -x */
	      if (op1is2 && GET_MODE (op0) == mode)
		return gen_rtx_PLUS (mode, op0, copy_rtx (op0));

	      else if (op1ism1 && GET_MODE (op0) == mode)
		return gen_rtx_NEG (mode, op0);
	    }
	  break;

	case IOR:
	  if (op1 == const0_rtx)
	    return op0;
	  if (GET_CODE (op1) == CONST_INT
	      && (INTVAL (op1) & GET_MODE_MASK (mode)) == GET_MODE_MASK (mode))
	    return op1;
	  if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
	    return op0;
	  /* A | (~A) -> -1 */
	  if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
	       || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
	      && ! side_effects_p (op0)
	      && GET_MODE_CLASS (mode) != MODE_CC)
	    return constm1_rtx;
	  break;

	case XOR:
	  if (op1 == const0_rtx)
	    return op0;
	  if (GET_CODE (op1) == CONST_INT
	      && (INTVAL (op1) & GET_MODE_MASK (mode)) == GET_MODE_MASK (mode))
	    return gen_rtx_NOT (mode, op0);
	  if (op0 == op1 && ! side_effects_p (op0)
	      && GET_MODE_CLASS (mode) != MODE_CC)
	    return const0_rtx;
	  break;

	case AND:
	  if (op1 == const0_rtx && ! side_effects_p (op0))
	    return const0_rtx;
	  if (GET_CODE (op1) == CONST_INT
	      && (INTVAL (op1) & GET_MODE_MASK (mode)) == GET_MODE_MASK (mode))
	    return op0;
	  if (op0 == op1 && ! side_effects_p (op0)
	      && GET_MODE_CLASS (mode) != MODE_CC)
	    return op0;
	  /* A & (~A) -> 0 */
	  if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
	       || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
	      && ! side_effects_p (op0)
	      && GET_MODE_CLASS (mode) != MODE_CC)
	    return const0_rtx;
	  break;

	case UDIV:
	  /* Convert divide by power of two into shift (divide by 1 handled
	     below).  */
	  if (GET_CODE (op1) == CONST_INT
	      && (arg1 = exact_log2 (INTVAL (op1))) > 0)
	    return gen_rtx_LSHIFTRT (mode, op0, GEN_INT (arg1));

	  /* ... fall through ...  */

	case DIV:
	  if (op1 == CONST1_RTX (mode))
	    return op0;

	  /* In IEEE floating point, 0/x is not always 0.  */
	  if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
	       || ! FLOAT_MODE_P (mode) || flag_fast_math)
	      && op0 == CONST0_RTX (mode)
	      && ! side_effects_p (op1))
	    return op0;

#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
	  /* Change division by a constant into multiplication.  Only do
	     this with -ffast-math until an expert says it is safe in
	     general.  */
	  else if (GET_CODE (op1) == CONST_DOUBLE
		   && GET_MODE_CLASS (GET_MODE (op1)) == MODE_FLOAT
		   && op1 != CONST0_RTX (mode)
		   && flag_fast_math)
	    {
	      REAL_VALUE_TYPE d;
	      REAL_VALUE_FROM_CONST_DOUBLE (d, op1);

	      if (! REAL_VALUES_EQUAL (d, dconst0))
		{
#if defined (REAL_ARITHMETIC)
		  REAL_ARITHMETIC (d, rtx_to_tree_code (DIV), dconst1, d);
		  return gen_rtx_MULT (mode, op0, 
				       CONST_DOUBLE_FROM_REAL_VALUE (d, mode));
#else
		  return
		    gen_rtx_MULT (mode, op0, 
				  CONST_DOUBLE_FROM_REAL_VALUE (1./d, mode));
#endif
		}
	    }
#endif
	  break;

	case UMOD:
	  /* Handle modulus by power of two (mod with 1 handled below).  */
	  if (GET_CODE (op1) == CONST_INT
	      && exact_log2 (INTVAL (op1)) > 0)
	    return gen_rtx_AND (mode, op0, GEN_INT (INTVAL (op1) - 1));

	  /* ... fall through ...  */

	case MOD:
	  if ((op0 == const0_rtx || op1 == const1_rtx)
	      && ! side_effects_p (op0) && ! side_effects_p (op1))
	    return const0_rtx;
	  break;

	case ROTATERT:
	case ROTATE:
	  /* Rotating ~0 always results in ~0.  */
	  if (GET_CODE (op0) == CONST_INT && width <= HOST_BITS_PER_WIDE_INT
	      && (unsigned HOST_WIDE_INT) INTVAL (op0) == GET_MODE_MASK (mode)
	      && ! side_effects_p (op1))
	    return op0;

	  /* ... fall through ...  */

	case ASHIFT:
	case ASHIFTRT:
	case LSHIFTRT:
	  if (op1 == const0_rtx)
	    return op0;
	  if (op0 == const0_rtx && ! side_effects_p (op1))
	    return op0;
	  break;

	case SMIN:
	  if (width <= HOST_BITS_PER_WIDE_INT && GET_CODE (op1) == CONST_INT 
	      && INTVAL (op1) == (HOST_WIDE_INT) 1 << (width -1)
	      && ! side_effects_p (op0))
	    return op1;
	  else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
	    return op0;
	  break;
	   
	case SMAX:
	  if (width <= HOST_BITS_PER_WIDE_INT && GET_CODE (op1) == CONST_INT
	      && ((unsigned HOST_WIDE_INT) INTVAL (op1)
		  == (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode) >> 1)
	      && ! side_effects_p (op0))
	    return op1;
	  else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
	    return op0;
	  break;

	case UMIN:
	  if (op1 == const0_rtx && ! side_effects_p (op0))
	    return op1;
	  else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
	    return op0;
	  break;
	    
	case UMAX:
	  if (op1 == constm1_rtx && ! side_effects_p (op0))
	    return op1;
	  else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
	    return op0;
	  break;

	default:
	  abort ();
	}
      
      return 0;
    }

  /* Get the integer argument values in two forms:
     zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S.  */

  arg0 = INTVAL (op0);
  arg1 = INTVAL (op1);

  if (width < HOST_BITS_PER_WIDE_INT)
    {
      arg0 &= ((HOST_WIDE_INT) 1 << width) - 1;
      arg1 &= ((HOST_WIDE_INT) 1 << width) - 1;

      arg0s = arg0;
      if (arg0s & ((HOST_WIDE_INT) 1 << (width - 1)))
	arg0s |= ((HOST_WIDE_INT) (-1) << width);

      arg1s = arg1;
      if (arg1s & ((HOST_WIDE_INT) 1 << (width - 1)))
	arg1s |= ((HOST_WIDE_INT) (-1) << width);
    }
  else
    {
      arg0s = arg0;
      arg1s = arg1;
    }

  /* Compute the value of the arithmetic.  */

  switch (code)
    {
    case PLUS:
      val = arg0s + arg1s;
      break;

    case MINUS:
      val = arg0s - arg1s;
      break;

    case MULT:
      val = arg0s * arg1s;
      break;

    case DIV:
      if (arg1s == 0)
	return 0;
      val = arg0s / arg1s;
      break;

    case MOD:
      if (arg1s == 0)
	return 0;
      val = arg0s % arg1s;
      break;

    case UDIV:
      if (arg1 == 0)
	return 0;
      val = (unsigned HOST_WIDE_INT) arg0 / arg1;
      break;

    case UMOD:
      if (arg1 == 0)
	return 0;
      val = (unsigned HOST_WIDE_INT) arg0 % arg1;
      break;

    case AND:
      val = arg0 & arg1;
      break;

    case IOR:
      val = arg0 | arg1;
      break;

    case XOR:
      val = arg0 ^ arg1;
      break;

    case LSHIFTRT:
      /* If shift count is undefined, don't fold it; let the machine do
	 what it wants.  But truncate it if the machine will do that.  */
      if (arg1 < 0)
	return 0;

#ifdef SHIFT_COUNT_TRUNCATED
      if (SHIFT_COUNT_TRUNCATED)
	arg1 %= width;
#endif

      val = ((unsigned HOST_WIDE_INT) arg0) >> arg1;
      break;

    case ASHIFT:
      if (arg1 < 0)
	return 0;

#ifdef SHIFT_COUNT_TRUNCATED
      if (SHIFT_COUNT_TRUNCATED)
	arg1 %= width;
#endif

      val = ((unsigned HOST_WIDE_INT) arg0) << arg1;
      break;

    case ASHIFTRT:
      if (arg1 < 0)
	return 0;

#ifdef SHIFT_COUNT_TRUNCATED
      if (SHIFT_COUNT_TRUNCATED)
	arg1 %= width;
#endif

      val = arg0s >> arg1;

      /* Bootstrap compiler may not have sign extended the right shift.
	 Manually extend the sign to insure bootstrap cc matches gcc.  */
      if (arg0s < 0 && arg1 > 0)
	val |= ((HOST_WIDE_INT) -1) << (HOST_BITS_PER_WIDE_INT - arg1);

      break;

    case ROTATERT:
      if (arg1 < 0)
	return 0;

      arg1 %= width;
      val = ((((unsigned HOST_WIDE_INT) arg0) << (width - arg1))
	     | (((unsigned HOST_WIDE_INT) arg0) >> arg1));
      break;

    case ROTATE:
      if (arg1 < 0)
	return 0;

      arg1 %= width;
      val = ((((unsigned HOST_WIDE_INT) arg0) << arg1)
	     | (((unsigned HOST_WIDE_INT) arg0) >> (width - arg1)));
      break;

    case COMPARE:
      /* Do nothing here.  */
      return 0;

    case SMIN:
      val = arg0s <= arg1s ? arg0s : arg1s;
      break;

    case UMIN:
      val = ((unsigned HOST_WIDE_INT) arg0
	     <= (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
      break;

    case SMAX:
      val = arg0s > arg1s ? arg0s : arg1s;
      break;

    case UMAX:
      val = ((unsigned HOST_WIDE_INT) arg0
	     > (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
      break;

    default:
      abort ();
    }

  val = trunc_int_for_mode (val, mode);

  return GEN_INT (val);
}

/* Simplify a PLUS or MINUS, at least one of whose operands may be another
   PLUS or MINUS.

   Rather than test for specific case, we do this by a brute-force method
   and do all possible simplifications until no more changes occur.  Then
   we rebuild the operation.  */

static rtx
simplify_plus_minus (code, mode, op0, op1)
     enum rtx_code code;
     enum machine_mode mode;
     rtx op0, op1;
{
  rtx ops[8];
  int negs[8];
  rtx result, tem;
  int n_ops = 2, input_ops = 2, input_consts = 0, n_consts = 0;
  int first = 1, negate = 0, changed;
  int i, j;

  bzero ((char *) ops, sizeof ops);
  
  /* Set up the two operands and then expand them until nothing has been
     changed.  If we run out of room in our array, give up; this should
     almost never happen.  */

  ops[0] = op0, ops[1] = op1, negs[0] = 0, negs[1] = (code == MINUS);

  changed = 1;
  while (changed)
    {
      changed = 0;

      for (i = 0; i < n_ops; i++)
	switch (GET_CODE (ops[i]))
	  {
	  case PLUS:
	  case MINUS:
	    if (n_ops == 7)
	      return 0;

	    ops[n_ops] = XEXP (ops[i], 1);
	    negs[n_ops++] = GET_CODE (ops[i]) == MINUS ? !negs[i] : negs[i];
	    ops[i] = XEXP (ops[i], 0);
	    input_ops++;
	    changed = 1;
	    break;

	  case NEG:
	    ops[i] = XEXP (ops[i], 0);
	    negs[i] = ! negs[i];
	    changed = 1;
	    break;

	  case CONST:
	    ops[i] = XEXP (ops[i], 0);
	    input_consts++;
	    changed = 1;
	    break;

	  case NOT:
	    /* ~a -> (-a - 1) */
	    if (n_ops != 7)
	      {
		ops[n_ops] = constm1_rtx;
		negs[n_ops++] = negs[i];
		ops[i] = XEXP (ops[i], 0);
		negs[i] = ! negs[i];
		changed = 1;
	      }
	    break;

	  case CONST_INT:
	    if (negs[i])
	      ops[i] = GEN_INT (- INTVAL (ops[i])), negs[i] = 0, changed = 1;
	    break;

	  default:
	    break;
	  }
    }

  /* If we only have two operands, we can't do anything.  */
  if (n_ops <= 2)
    return 0;

  /* Now simplify each pair of operands until nothing changes.  The first
     time through just simplify constants against each other.  */

  changed = 1;
  while (changed)
    {
      changed = first;

      for (i = 0; i < n_ops - 1; i++)
	for (j = i + 1; j < n_ops; j++)
	  if (ops[i] != 0 && ops[j] != 0
	      && (! first || (CONSTANT_P (ops[i]) && CONSTANT_P (ops[j]))))
	    {
	      rtx lhs = ops[i], rhs = ops[j];
	      enum rtx_code ncode = PLUS;

	      if (negs[i] && ! negs[j])
		lhs = ops[j], rhs = ops[i], ncode = MINUS;
	      else if (! negs[i] && negs[j])
		ncode = MINUS;

	      tem = simplify_binary_operation (ncode, mode, lhs, rhs);
	      if (tem)
		{
		  ops[i] = tem, ops[j] = 0;
		  negs[i] = negs[i] && negs[j];
		  if (GET_CODE (tem) == NEG)
		    ops[i] = XEXP (tem, 0), negs[i] = ! negs[i];

		  if (GET_CODE (ops[i]) == CONST_INT && negs[i])
		    ops[i] = GEN_INT (- INTVAL (ops[i])), negs[i] = 0;
		  changed = 1;
		}
	    }

      first = 0;
    }

  /* Pack all the operands to the lower-numbered entries and give up if
     we didn't reduce the number of operands we had.  Make sure we
     count a CONST as two operands.  If we have the same number of
     operands, but have made more CONSTs than we had, this is also
     an improvement, so accept it.  */

  for (i = 0, j = 0; j < n_ops; j++)
    if (ops[j] != 0)
      {
	ops[i] = ops[j], negs[i++] = negs[j];
	if (GET_CODE (ops[j]) == CONST)
	  n_consts++;
      }

  if (i + n_consts > input_ops
      || (i + n_consts == input_ops && n_consts <= input_consts))
    return 0;

  n_ops = i;

  /* If we have a CONST_INT, put it last.  */
  for (i = 0; i < n_ops - 1; i++)
    if (GET_CODE (ops[i]) == CONST_INT)
      {
	tem = ops[n_ops - 1], ops[n_ops - 1] = ops[i] , ops[i] = tem;
	j = negs[n_ops - 1], negs[n_ops - 1] = negs[i], negs[i] = j;
      }

  /* Put a non-negated operand first.  If there aren't any, make all
     operands positive and negate the whole thing later.  */
  for (i = 0; i < n_ops && negs[i]; i++)
    ;

  if (i == n_ops)
    {
      for (i = 0; i < n_ops; i++)
	negs[i] = 0;
      negate = 1;
    }
  else if (i != 0)
    {
      tem = ops[0], ops[0] = ops[i], ops[i] = tem;
      j = negs[0], negs[0] = negs[i], negs[i] = j;
    }

  /* Now make the result by performing the requested operations.  */
  result = ops[0];
  for (i = 1; i < n_ops; i++)
    result = cse_gen_binary (negs[i] ? MINUS : PLUS, mode, result, ops[i]);

  return negate ? gen_rtx_NEG (mode, result) : result;
}

/* Make a binary operation by properly ordering the operands and 
   seeing if the expression folds.  */

static rtx
cse_gen_binary (code, mode, op0, op1)
     enum rtx_code code;
     enum machine_mode mode;
     rtx op0, op1;
{
  rtx tem;

  /* Put complex operands first and constants second if commutative.  */
  if (GET_RTX_CLASS (code) == 'c'
      && ((CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
	  || (GET_RTX_CLASS (GET_CODE (op0)) == 'o'
	      && GET_RTX_CLASS (GET_CODE (op1)) != 'o')
	  || (GET_CODE (op0) == SUBREG
	      && GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0))) == 'o'
	      && GET_RTX_CLASS (GET_CODE (op1)) != 'o')))
    tem = op0, op0 = op1, op1 = tem;

  /* If this simplifies, do it.  */
  tem = simplify_binary_operation (code, mode, op0, op1);

  if (tem)
    return tem;

  /* Handle addition and subtraction of CONST_INT specially.  Otherwise,
     just form the operation.  */

  if (code == PLUS && GET_CODE (op1) == CONST_INT
      && GET_MODE (op0) != VOIDmode)
    return plus_constant (op0, INTVAL (op1));
  else if (code == MINUS && GET_CODE (op1) == CONST_INT
	   && GET_MODE (op0) != VOIDmode)
    return plus_constant (op0, - INTVAL (op1));
  else
    return gen_rtx_fmt_ee (code, mode, op0, op1);
}

struct cfc_args
{
  /* Input */
  rtx op0, op1;
  /* Output */
  int equal, op0lt, op1lt;
};

static void
check_fold_consts (data)
  PTR data;
{
  struct cfc_args * args = (struct cfc_args *) data;
  REAL_VALUE_TYPE d0, d1;

  REAL_VALUE_FROM_CONST_DOUBLE (d0, args->op0);
  REAL_VALUE_FROM_CONST_DOUBLE (d1, args->op1);
  args->equal = REAL_VALUES_EQUAL (d0, d1);
  args->op0lt = REAL_VALUES_LESS (d0, d1);
  args->op1lt = REAL_VALUES_LESS (d1, d0);
}

/* Like simplify_binary_operation except used for relational operators.
   MODE is the mode of the operands, not that of the result.  If MODE
   is VOIDmode, both operands must also be VOIDmode and we compare the
   operands in "infinite precision".

   If no simplification is possible, this function returns zero.  Otherwise,
   it returns either const_true_rtx or const0_rtx.  */

rtx
simplify_relational_operation (code, mode, op0, op1)
     enum rtx_code code;
     enum machine_mode mode;
     rtx op0, op1;
{
  int equal, op0lt, op0ltu, op1lt, op1ltu;
  rtx tem;

  /* If op0 is a compare, extract the comparison arguments from it.  */
  if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
    op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);

  /* We can't simplify MODE_CC values since we don't know what the
     actual comparison is.  */
  if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC
#ifdef HAVE_cc0
      || op0 == cc0_rtx
#endif
      )
    return 0;

  /* For integer comparisons of A and B maybe we can simplify A - B and can
     then simplify a comparison of that with zero.  If A and B are both either
     a register or a CONST_INT, this can't help; testing for these cases will
     prevent infinite recursion here and speed things up.

     If CODE is an unsigned comparison, then we can never do this optimization,
     because it gives an incorrect result if the subtraction wraps around zero.
     ANSI C defines unsigned operations such that they never overflow, and
     thus such cases can not be ignored.  */

  if (INTEGRAL_MODE_P (mode) && op1 != const0_rtx
      && ! ((GET_CODE (op0) == REG || GET_CODE (op0) == CONST_INT)
	    && (GET_CODE (op1) == REG || GET_CODE (op1) == CONST_INT))
      && 0 != (tem = simplify_binary_operation (MINUS, mode, op0, op1))
      && code != GTU && code != GEU && code != LTU && code != LEU)
    return simplify_relational_operation (signed_condition (code),
					  mode, tem, const0_rtx);

  /* For non-IEEE floating-point, if the two operands are equal, we know the
     result.  */
  if (rtx_equal_p (op0, op1)
      && (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
	  || ! FLOAT_MODE_P (GET_MODE (op0)) || flag_fast_math))
    equal = 1, op0lt = 0, op0ltu = 0, op1lt = 0, op1ltu = 0;

  /* If the operands are floating-point constants, see if we can fold
     the result.  */
#if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
  else if (GET_CODE (op0) == CONST_DOUBLE && GET_CODE (op1) == CONST_DOUBLE
	   && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
    {
      struct cfc_args args;

      /* Setup input for check_fold_consts() */
      args.op0 = op0;
      args.op1 = op1;
      
      if (do_float_handler(check_fold_consts, (PTR) &args) == 0)
	/* We got an exception from check_fold_consts() */
	return 0;

      /* Receive output from check_fold_consts() */
      equal = args.equal;
      op0lt = op0ltu = args.op0lt;
      op1lt = op1ltu = args.op1lt;
    }
#endif  /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */

  /* Otherwise, see if the operands are both integers.  */
  else if ((GET_MODE_CLASS (mode) == MODE_INT || mode == VOIDmode)
	   && (GET_CODE (op0) == CONST_DOUBLE || GET_CODE (op0) == CONST_INT)
	   && (GET_CODE (op1) == CONST_DOUBLE || GET_CODE (op1) == CONST_INT))
    {
      int width = GET_MODE_BITSIZE (mode);
      HOST_WIDE_INT l0s, h0s, l1s, h1s;
      unsigned HOST_WIDE_INT l0u, h0u, l1u, h1u;

      /* Get the two words comprising each integer constant.  */
      if (GET_CODE (op0) == CONST_DOUBLE)
	{
	  l0u = l0s = CONST_DOUBLE_LOW (op0);
	  h0u = h0s = CONST_DOUBLE_HIGH (op0);
	}
      else
	{
	  l0u = l0s = INTVAL (op0);
	  h0u = h0s = l0s < 0 ? -1 : 0;
	}
	  
      if (GET_CODE (op1) == CONST_DOUBLE)
	{
	  l1u = l1s = CONST_DOUBLE_LOW (op1);
	  h1u = h1s = CONST_DOUBLE_HIGH (op1);
	}
      else
	{
	  l1u = l1s = INTVAL (op1);
	  h1u = h1s = l1s < 0 ? -1 : 0;
	}

      /* If WIDTH is nonzero and smaller than HOST_BITS_PER_WIDE_INT,
	 we have to sign or zero-extend the values.  */
      if (width != 0 && width <= HOST_BITS_PER_WIDE_INT)
	h0u = h1u = 0, h0s = l0s < 0 ? -1 : 0, h1s = l1s < 0 ? -1 : 0;

      if (width != 0 && width < HOST_BITS_PER_WIDE_INT)
	{
	  l0u &= ((HOST_WIDE_INT) 1 << width) - 1;
	  l1u &= ((HOST_WIDE_INT) 1 << width) - 1;

	  if (l0s & ((HOST_WIDE_INT) 1 << (width - 1)))
	    l0s |= ((HOST_WIDE_INT) (-1) << width);

	  if (l1s & ((HOST_WIDE_INT) 1 << (width - 1)))
	    l1s |= ((HOST_WIDE_INT) (-1) << width);
	}

      equal = (h0u == h1u && l0u == l1u);
      op0lt = (h0s < h1s || (h0s == h1s && l0s < l1s));
      op1lt = (h1s < h0s || (h1s == h0s && l1s < l0s));
      op0ltu = (h0u < h1u || (h0u == h1u && l0u < l1u));
      op1ltu = (h1u < h0u || (h1u == h0u && l1u < l0u));
    }

  /* Otherwise, there are some code-specific tests we can make.  */
  else
    {
      switch (code)
	{
	case EQ:
	  /* References to the frame plus a constant or labels cannot
	     be zero, but a SYMBOL_REF can due to #pragma weak.  */
	  if (((NONZERO_BASE_PLUS_P (op0) && op1 == const0_rtx)
	       || GET_CODE (op0) == LABEL_REF)
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
	      /* On some machines, the ap reg can be 0 sometimes.  */
	      && op0 != arg_pointer_rtx
#endif
		)
	    return const0_rtx;
	  break;

	case NE:
	  if (((NONZERO_BASE_PLUS_P (op0) && op1 == const0_rtx)
	       || GET_CODE (op0) == LABEL_REF)
#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
	      && op0 != arg_pointer_rtx
#endif
	      )
	    return const_true_rtx;
	  break;

	case GEU:
	  /* Unsigned values are never negative.  */
	  if (op1 == const0_rtx)
	    return const_true_rtx;
	  break;

	case LTU:
	  if (op1 == const0_rtx)
	    return const0_rtx;
	  break;

	case LEU:
	  /* Unsigned values are never greater than the largest
	     unsigned value.  */
	  if (GET_CODE (op1) == CONST_INT
	      && (unsigned HOST_WIDE_INT) INTVAL (op1) == GET_MODE_MASK (mode)
	    && INTEGRAL_MODE_P (mode))
	  return const_true_rtx;
	  break;

	case GTU:
	  if (GET_CODE (op1) == CONST_INT
	      && (unsigned HOST_WIDE_INT) INTVAL (op1) == GET_MODE_MASK (mode)
	      && INTEGRAL_MODE_P (mode))
	    return const0_rtx;
	  break;
	  
	default:
	  break;
	}

      return 0;
    }

  /* If we reach here, EQUAL, OP0LT, OP0LTU, OP1LT, and OP1LTU are set
     as appropriate.  */
  switch (code)
    {
    case EQ:
      return equal ? const_true_rtx : const0_rtx;
    case NE:
      return ! equal ? const_true_rtx : const0_rtx;
    case LT:
      return op0lt ? const_true_rtx : const0_rtx;
    case GT:
      return op1lt ? const_true_rtx : const0_rtx;
    case LTU:
      return op0ltu ? const_true_rtx : const0_rtx;
    case GTU:
      return op1ltu ? const_true_rtx : const0_rtx;
    case LE:
      return equal || op0lt ? const_true_rtx : const0_rtx;
    case GE:
      return equal || op1lt ? const_true_rtx : const0_rtx;
    case LEU:
      return equal || op0ltu ? const_true_rtx : const0_rtx;
    case GEU:
      return equal || op1ltu ? const_true_rtx : const0_rtx;
    default:
      abort ();
    }
}

/* Simplify CODE, an operation with result mode MODE and three operands,
   OP0, OP1, and OP2.  OP0_MODE was the mode of OP0 before it became
   a constant.  Return 0 if no simplifications is possible.  */

rtx
simplify_ternary_operation (code, mode, op0_mode, op0, op1, op2)
     enum rtx_code code;
     enum machine_mode mode, op0_mode;
     rtx op0, op1, op2;
{
  int width = GET_MODE_BITSIZE (mode);

  /* VOIDmode means "infinite" precision.  */
  if (width == 0)
    width = HOST_BITS_PER_WIDE_INT;

  switch (code)
    {
    case SIGN_EXTRACT:
    case ZERO_EXTRACT:
      if (GET_CODE (op0) == CONST_INT
	  && GET_CODE (op1) == CONST_INT
	  && GET_CODE (op2) == CONST_INT
	  && INTVAL (op1) + INTVAL (op2) <= GET_MODE_BITSIZE (op0_mode)
	  && width <= HOST_BITS_PER_WIDE_INT)
	{
	  /* Extracting a bit-field from a constant */
	  HOST_WIDE_INT val = INTVAL (op0);

	  if (BITS_BIG_ENDIAN)
	    val >>= (GET_MODE_BITSIZE (op0_mode)
		     - INTVAL (op2) - INTVAL (op1));
	  else
	    val >>= INTVAL (op2);

	  if (HOST_BITS_PER_WIDE_INT != INTVAL (op1))
	    {
	      /* First zero-extend.  */
	      val &= ((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1;
	      /* If desired, propagate sign bit.  */
	      if (code == SIGN_EXTRACT
		  && (val & ((HOST_WIDE_INT) 1 << (INTVAL (op1) - 1))))
		val |= ~ (((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1);
	    }

	  /* Clear the bits that don't belong in our mode,
	     unless they and our sign bit are all one.
	     So we get either a reasonable negative value or a reasonable
	     unsigned value for this mode.  */
	  if (width < HOST_BITS_PER_WIDE_INT
	      && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
		  != ((HOST_WIDE_INT) (-1) << (width - 1))))
	    val &= ((HOST_WIDE_INT) 1 << width) - 1;

	  return GEN_INT (val);
	}
      break;

    case IF_THEN_ELSE:
      if (GET_CODE (op0) == CONST_INT)
	return op0 != const0_rtx ? op1 : op2;

      /* Convert a == b ? b : a to "a".  */
      if (GET_CODE (op0) == NE && ! side_effects_p (op0)
	  && rtx_equal_p (XEXP (op0, 0), op1)
	  && rtx_equal_p (XEXP (op0, 1), op2))
	return op1;
      else if (GET_CODE (op0) == EQ && ! side_effects_p (op0)
	  && rtx_equal_p (XEXP (op0, 1), op1)
	  && rtx_equal_p (XEXP (op0, 0), op2))
	return op2;
      else if (GET_RTX_CLASS (GET_CODE (op0)) == '<' && ! side_effects_p (op0))
	{
	  rtx temp;
	  temp = simplify_relational_operation (GET_CODE (op0), op0_mode,
						XEXP (op0, 0), XEXP (op0, 1));
	  /* See if any simplifications were possible.  */
	  if (temp == const0_rtx)
	    return op2;
	  else if (temp == const1_rtx)
	    return op1;
	}
      break;

    default:
      abort ();
    }

  return 0;
}

/* If X is a nontrivial arithmetic operation on an argument
   for which a constant value can be determined, return
   the result of operating on that value, as a constant.
   Otherwise, return X, possibly with one or more operands
   modified by recursive calls to this function.

   If X is a register whose contents are known, we do NOT
   return those contents here.  equiv_constant is called to
   perform that task.

   INSN is the insn that we may be modifying.  If it is 0, make a copy
   of X before modifying it.  */

static rtx
fold_rtx (x, insn)
     rtx x;
     rtx insn;    
{
  register enum rtx_code code;
  register enum machine_mode mode;
  register const char *fmt;
  register int i;
  rtx new = 0;
  int copied = 0;
  int must_swap = 0;

  /* Folded equivalents of first two operands of X.  */
  rtx folded_arg0;
  rtx folded_arg1;

  /* Constant equivalents of first three operands of X;
     0 when no such equivalent is known.  */
  rtx const_arg0;
  rtx const_arg1;
  rtx const_arg2;

  /* The mode of the first operand of X.  We need this for sign and zero
     extends.  */
  enum machine_mode mode_arg0;

  if (x == 0)
    return x;

  mode = GET_MODE (x);
  code = GET_CODE (x);
  switch (code)
    {
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case SYMBOL_REF:
    case LABEL_REF:
    case REG:
      /* No use simplifying an EXPR_LIST
	 since they are used only for lists of args
	 in a function call's REG_EQUAL note.  */
    case EXPR_LIST:
      /* Changing anything inside an ADDRESSOF is incorrect; we don't
	 want to (e.g.,) make (addressof (const_int 0)) just because
	 the location is known to be zero.  */
    case ADDRESSOF:
      return x;

#ifdef HAVE_cc0
    case CC0:
      return prev_insn_cc0;
#endif

    case PC:
      /* If the next insn is a CODE_LABEL followed by a jump table,
	 PC's value is a LABEL_REF pointing to that label.  That
	 lets us fold switch statements on the Vax.  */
      if (insn && GET_CODE (insn) == JUMP_INSN)
	{
	  rtx next = next_nonnote_insn (insn);

	  if (next && GET_CODE (next) == CODE_LABEL
	      && NEXT_INSN (next) != 0
	      && GET_CODE (NEXT_INSN (next)) == JUMP_INSN
	      && (GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_VEC
		  || GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_DIFF_VEC))
	    return gen_rtx_LABEL_REF (Pmode, next);
	}
      break;

    case SUBREG:
      /* See if we previously assigned a constant value to this SUBREG.  */
      if ((new = lookup_as_function (x, CONST_INT)) != 0
	  || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
	return new;

      /* If this is a paradoxical SUBREG, we have no idea what value the
	 extra bits would have.  However, if the operand is equivalent
	 to a SUBREG whose operand is the same as our mode, and all the
	 modes are within a word, we can just use the inner operand
	 because these SUBREGs just say how to treat the register.

	 Similarly if we find an integer constant.  */

      if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
	{
	  enum machine_mode imode = GET_MODE (SUBREG_REG (x));
	  struct table_elt *elt;

	  if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
	      && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
	      && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
				imode)) != 0)
	    for (elt = elt->first_same_value;
		 elt; elt = elt->next_same_value)
	      {
		if (CONSTANT_P (elt->exp)
		    && GET_MODE (elt->exp) == VOIDmode)
		  return elt->exp;

		if (GET_CODE (elt->exp) == SUBREG
		    && GET_MODE (SUBREG_REG (elt->exp)) == mode
		    && exp_equiv_p (elt->exp, elt->exp, 1, 0))
		  return copy_rtx (SUBREG_REG (elt->exp));
	    }

	  return x;
	}

      /* Fold SUBREG_REG.  If it changed, see if we can simplify the SUBREG.
	 We might be able to if the SUBREG is extracting a single word in an
	 integral mode or extracting the low part.  */

      folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
      const_arg0 = equiv_constant (folded_arg0);
      if (const_arg0)
	folded_arg0 = const_arg0;

      if (folded_arg0 != SUBREG_REG (x))
	{
	  new = 0;

	  if (GET_MODE_CLASS (mode) == MODE_INT
	      && GET_MODE_SIZE (mode) == UNITS_PER_WORD
	      && GET_MODE (SUBREG_REG (x)) != VOIDmode)
	    new = operand_subword (folded_arg0, SUBREG_WORD (x), 0,
				   GET_MODE (SUBREG_REG (x)));
	  if (new == 0 && subreg_lowpart_p (x))
	    new = gen_lowpart_if_possible (mode, folded_arg0);
	  if (new)
	    return new;
	}

      /* If this is a narrowing SUBREG and our operand is a REG, see if
	 we can find an equivalence for REG that is an arithmetic operation
	 in a wider mode where both operands are paradoxical SUBREGs
	 from objects of our result mode.  In that case, we couldn't report
	 an equivalent value for that operation, since we don't know what the
	 extra bits will be.  But we can find an equivalence for this SUBREG
	 by folding that operation is the narrow mode.  This allows us to
	 fold arithmetic in narrow modes when the machine only supports
	 word-sized arithmetic.  

	 Also look for a case where we have a SUBREG whose operand is the
	 same as our result.  If both modes are smaller than a word, we
	 are simply interpreting a register in different modes and we
	 can use the inner value.  */

      if (GET_CODE (folded_arg0) == REG
	  && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0))
	  && subreg_lowpart_p (x))
	{
	  struct table_elt *elt;

	  /* We can use HASH here since we know that canon_hash won't be
	     called.  */
	  elt = lookup (folded_arg0,
			HASH (folded_arg0, GET_MODE (folded_arg0)),
			GET_MODE (folded_arg0));

	  if (elt)
	    elt = elt->first_same_value;

	  for (; elt; elt = elt->next_same_value)
	    {
	      enum rtx_code eltcode = GET_CODE (elt->exp);

	      /* Just check for unary and binary operations.  */
	      if (GET_RTX_CLASS (GET_CODE (elt->exp)) == '1'
		  && GET_CODE (elt->exp) != SIGN_EXTEND
		  && GET_CODE (elt->exp) != ZERO_EXTEND
		  && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
		  && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode)
		{
		  rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));

		  if (GET_CODE (op0) != REG && ! CONSTANT_P (op0))
		    op0 = fold_rtx (op0, NULL_RTX);

		  op0 = equiv_constant (op0);
		  if (op0)
		    new = simplify_unary_operation (GET_CODE (elt->exp), mode,
						    op0, mode);
		}
	      else if ((GET_RTX_CLASS (GET_CODE (elt->exp)) == '2'
			|| GET_RTX_CLASS (GET_CODE (elt->exp)) == 'c')
		       && eltcode != DIV && eltcode != MOD
		       && eltcode != UDIV && eltcode != UMOD
		       && eltcode != ASHIFTRT && eltcode != LSHIFTRT
		       && eltcode != ROTATE && eltcode != ROTATERT
		       && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
			    && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
				== mode))
			   || CONSTANT_P (XEXP (elt->exp, 0)))
		       && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
			    && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
				== mode))
			   || CONSTANT_P (XEXP (elt->exp, 1))))
		{
		  rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
		  rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));

		  if (op0 && GET_CODE (op0) != REG && ! CONSTANT_P (op0))
		    op0 = fold_rtx (op0, NULL_RTX);

		  if (op0)
		    op0 = equiv_constant (op0);

		  if (op1 && GET_CODE (op1) != REG && ! CONSTANT_P (op1))
		    op1 = fold_rtx (op1, NULL_RTX);

		  if (op1)
		    op1 = equiv_constant (op1);

		  /* If we are looking for the low SImode part of 
		     (ashift:DI c (const_int 32)), it doesn't work
		     to compute that in SImode, because a 32-bit shift
		     in SImode is unpredictable.  We know the value is 0.  */
		  if (op0 && op1
		      && GET_CODE (elt->exp) == ASHIFT
		      && GET_CODE (op1) == CONST_INT
		      && INTVAL (op1) >= GET_MODE_BITSIZE (mode))
		    {
		      if (INTVAL (op1) < GET_MODE_BITSIZE (GET_MODE (elt->exp)))
			
			/* If the count fits in the inner mode's width,
			   but exceeds the outer mode's width,
			   the value will get truncated to 0
			   by the subreg.  */
			new = const0_rtx;
		      else
			/* If the count exceeds even the inner mode's width,
			   don't fold this expression.  */
			new = 0;
		    }
		  else if (op0 && op1)
		    new = simplify_binary_operation (GET_CODE (elt->exp), mode,
						     op0, op1);
		}

	      else if (GET_CODE (elt->exp) == SUBREG
		       && GET_MODE (SUBREG_REG (elt->exp)) == mode
		       && (GET_MODE_SIZE (GET_MODE (folded_arg0))
			   <= UNITS_PER_WORD)
		       && exp_equiv_p (elt->exp, elt->exp, 1, 0))
		new = copy_rtx (SUBREG_REG (elt->exp));

	      if (new)
		return new;
	    }
	}

      return x;

    case NOT:
    case NEG:
      /* If we have (NOT Y), see if Y is known to be (NOT Z).
	 If so, (NOT Y) simplifies to Z.  Similarly for NEG.  */
      new = lookup_as_function (XEXP (x, 0), code);
      if (new)
	return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
      break;

    case MEM:
      /* If we are not actually processing an insn, don't try to find the
	 best address.  Not only don't we care, but we could modify the
	 MEM in an invalid way since we have no insn to validate against.  */
      if (insn != 0)
	find_best_addr (insn, &XEXP (x, 0));

      {
	/* Even if we don't fold in the insn itself,
	   we can safely do so here, in hopes of getting a constant.  */
	rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
	rtx base = 0;
	HOST_WIDE_INT offset = 0;

	if (GET_CODE (addr) == REG
	    && REGNO_QTY_VALID_P (REGNO (addr))
	    && GET_MODE (addr) == qty_mode[REG_QTY (REGNO (addr))]
	    && qty_const[REG_QTY (REGNO (addr))] != 0)
	  addr = qty_const[REG_QTY (REGNO (addr))];

	/* If address is constant, split it into a base and integer offset.  */
	if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
	  base = addr;
	else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
		 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
	  {
	    base = XEXP (XEXP (addr, 0), 0);
	    offset = INTVAL (XEXP (XEXP (addr, 0), 1));
	  }
	else if (GET_CODE (addr) == LO_SUM
		 && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
	  base = XEXP (addr, 1);
	else if (GET_CODE (addr) == ADDRESSOF)
	  return change_address (x, VOIDmode, addr);

	/* If this is a constant pool reference, we can fold it into its
	   constant to allow better value tracking.  */
	if (base && GET_CODE (base) == SYMBOL_REF
	    && CONSTANT_POOL_ADDRESS_P (base))
	  {
	    rtx constant = get_pool_constant (base);
	    enum machine_mode const_mode = get_pool_mode (base);
	    rtx new;

	    if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
	      constant_pool_entries_cost = COST (constant);

	    /* If we are loading the full constant, we have an equivalence.  */
	    if (offset == 0 && mode == const_mode)
	      return constant;

	    /* If this actually isn't a constant (weird!), we can't do
	       anything.  Otherwise, handle the two most common cases:
	       extracting a word from a multi-word constant, and extracting
	       the low-order bits.  Other cases don't seem common enough to
	       worry about.  */
	    if (! CONSTANT_P (constant))
	      return x;

	    if (GET_MODE_CLASS (mode) == MODE_INT
		&& GET_MODE_SIZE (mode) == UNITS_PER_WORD
		&& offset % UNITS_PER_WORD == 0
		&& (new = operand_subword (constant,
					   offset / UNITS_PER_WORD,
					   0, const_mode)) != 0)
	      return new;

	    if (((BYTES_BIG_ENDIAN
		  && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
		 || (! BYTES_BIG_ENDIAN && offset == 0))
		&& (new = gen_lowpart_if_possible (mode, constant)) != 0)
	      return new;
	  }

	/* If this is a reference to a label at a known position in a jump
	   table, we also know its value.  */
	if (base && GET_CODE (base) == LABEL_REF)
	  {
	    rtx label = XEXP (base, 0);
	    rtx table_insn = NEXT_INSN (label);
	    
	    if (table_insn && GET_CODE (table_insn) == JUMP_INSN
		&& GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
	      {
		rtx table = PATTERN (table_insn);

		if (offset >= 0
		    && (offset / GET_MODE_SIZE (GET_MODE (table))
			< XVECLEN (table, 0)))
		  return XVECEXP (table, 0,
				  offset / GET_MODE_SIZE (GET_MODE (table)));
	      }
	    if (table_insn && GET_CODE (table_insn) == JUMP_INSN
		&& GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
	      {
		rtx table = PATTERN (table_insn);

		if (offset >= 0
		    && (offset / GET_MODE_SIZE (GET_MODE (table))
			< XVECLEN (table, 1)))
		  {
		    offset /= GET_MODE_SIZE (GET_MODE (table));
		    new = gen_rtx_MINUS (Pmode, XVECEXP (table, 1, offset),
					 XEXP (table, 0));

		    if (GET_MODE (table) != Pmode)
		      new = gen_rtx_TRUNCATE (GET_MODE (table), new);

		    /* Indicate this is a constant.  This isn't a 
		       valid form of CONST, but it will only be used
		       to fold the next insns and then discarded, so
		       it should be safe.

		       Note this expression must be explicitly discarded,
		       by cse_insn, else it may end up in a REG_EQUAL note
		       and "escape" to cause problems elsewhere.  */
		    return gen_rtx_CONST (GET_MODE (new), new);
		  }
	      }
	  }

	return x;
      }

    case ASM_OPERANDS:
      for (i = XVECLEN (x, 3) - 1; i >= 0; i--)
	validate_change (insn, &XVECEXP (x, 3, i),
			 fold_rtx (XVECEXP (x, 3, i), insn), 0);
      break;
      
    default:
      break;
    }

  const_arg0 = 0;
  const_arg1 = 0;
  const_arg2 = 0;
  mode_arg0 = VOIDmode;

  /* Try folding our operands.
     Then see which ones have constant values known.  */

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    if (fmt[i] == 'e')
      {
	rtx arg = XEXP (x, i);
	rtx folded_arg = arg, const_arg = 0;
	enum machine_mode mode_arg = GET_MODE (arg);
	rtx cheap_arg, expensive_arg;
	rtx replacements[2];
	int j;

	/* Most arguments are cheap, so handle them specially.  */
	switch (GET_CODE (arg))
	  {
	  case REG:
	    /* This is the same as calling equiv_constant; it is duplicated
	       here for speed.  */
	    if (REGNO_QTY_VALID_P (REGNO (arg))
		&& qty_const[REG_QTY (REGNO (arg))] != 0
		&& GET_CODE (qty_const[REG_QTY (REGNO (arg))]) != REG
		&& GET_CODE (qty_const[REG_QTY (REGNO (arg))]) != PLUS)
	      const_arg
		= gen_lowpart_if_possible (GET_MODE (arg),
					   qty_const[REG_QTY (REGNO (arg))]);
	    break;

	  case CONST:
	  case CONST_INT:
	  case SYMBOL_REF:
	  case LABEL_REF:
	  case CONST_DOUBLE:
	    const_arg = arg;
	    break;

#ifdef HAVE_cc0
	  case CC0:
	    folded_arg = prev_insn_cc0;
	    mode_arg = prev_insn_cc0_mode;
	    const_arg = equiv_constant (folded_arg);
	    break;
#endif

	  default:
	    folded_arg = fold_rtx (arg, insn);
	    const_arg = equiv_constant (folded_arg);
	  }

	/* For the first three operands, see if the operand
	   is constant or equivalent to a constant.  */
	switch (i)
	  {
	  case 0:
	    folded_arg0 = folded_arg;
	    const_arg0 = const_arg;
	    mode_arg0 = mode_arg;
	    break;
	  case 1:
	    folded_arg1 = folded_arg;
	    const_arg1 = const_arg;
	    break;
	  case 2:
	    const_arg2 = const_arg;
	    break;
	  }

	/* Pick the least expensive of the folded argument and an
	   equivalent constant argument.  */
	if (const_arg == 0 || const_arg == folded_arg
	    || COST (const_arg) > COST (folded_arg))
	  cheap_arg = folded_arg, expensive_arg = const_arg;
	else
	  cheap_arg = const_arg, expensive_arg = folded_arg;

	/* Try to replace the operand with the cheapest of the two
	   possibilities.  If it doesn't work and this is either of the first
	   two operands of a commutative operation, try swapping them.
	   If THAT fails, try the more expensive, provided it is cheaper
	   than what is already there.  */

	if (cheap_arg == XEXP (x, i))
	  continue;

	if (insn == 0 && ! copied)
	  {
	    x = copy_rtx (x);
	    copied = 1;
	  }

	replacements[0] = cheap_arg, replacements[1] = expensive_arg;
	for (j = 0;
	     j < 2 && replacements[j]
	     && COST (replacements[j]) < COST (XEXP (x, i));
	     j++)
	  {
	    if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
	      break;

	    if (code == NE || code == EQ || GET_RTX_CLASS (code) == 'c')
	      {
		validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
		validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);

		if (apply_change_group ())
		  {
		    /* Swap them back to be invalid so that this loop can
		       continue and flag them to be swapped back later.  */
		    rtx tem;

		    tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
				       XEXP (x, 1) = tem;
		    must_swap = 1;
		    break;
		  }
	      }
	  }
      }

    else
      {
	if (fmt[i] == 'E')
	  /* Don't try to fold inside of a vector of expressions.
	     Doing nothing is harmless.  */
	  {;}	
      }

  /* If a commutative operation, place a constant integer as the second
     operand unless the first operand is also a constant integer.  Otherwise,
     place any constant second unless the first operand is also a constant.  */

  if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
    {
      if (must_swap || (const_arg0
	  		&& (const_arg1 == 0
	      		    || (GET_CODE (const_arg0) == CONST_INT
			        && GET_CODE (const_arg1) != CONST_INT))))
	{
	  register rtx tem = XEXP (x, 0);

	  if (insn == 0 && ! copied)
	    {
	      x = copy_rtx (x);
	      copied = 1;
	    }

	  validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
	  validate_change (insn, &XEXP (x, 1), tem, 1);
	  if (apply_change_group ())
	    {
	      tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
	      tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
	    }
	}
    }

  /* If X is an arithmetic operation, see if we can simplify it.  */

  switch (GET_RTX_CLASS (code))
    {
    case '1':
      {
	int is_const = 0;

	/* We can't simplify extension ops unless we know the
	   original mode.  */
	if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
	    && mode_arg0 == VOIDmode)
	  break;

	/* If we had a CONST, strip it off and put it back later if we
	   fold.  */
	if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
	  is_const = 1, const_arg0 = XEXP (const_arg0, 0);

	new = simplify_unary_operation (code, mode,
					const_arg0 ? const_arg0 : folded_arg0,
					mode_arg0);
	if (new != 0 && is_const)
	  new = gen_rtx_CONST (mode, new);
      }
      break;
      
    case '<':
      /* See what items are actually being compared and set FOLDED_ARG[01]
	 to those values and CODE to the actual comparison code.  If any are
	 constant, set CONST_ARG0 and CONST_ARG1 appropriately.  We needn't
	 do anything if both operands are already known to be constant.  */

      if (const_arg0 == 0 || const_arg1 == 0)
	{
	  struct table_elt *p0, *p1;
	  rtx true = const_true_rtx, false = const0_rtx;
	  enum machine_mode mode_arg1;

#ifdef FLOAT_STORE_FLAG_VALUE
	  if (GET_MODE_CLASS (mode) == MODE_FLOAT)
	    {
	      true = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE,
						   mode);
	      false = CONST0_RTX (mode);
	    }
#endif

	  code = find_comparison_args (code, &folded_arg0, &folded_arg1,
				       &mode_arg0, &mode_arg1);
	  const_arg0 = equiv_constant (folded_arg0);
	  const_arg1 = equiv_constant (folded_arg1);

	  /* If the mode is VOIDmode or a MODE_CC mode, we don't know
	     what kinds of things are being compared, so we can't do
	     anything with this comparison.  */

	  if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
	    break;

	  /* If we do not now have two constants being compared, see
	     if we can nevertheless deduce some things about the
	     comparison.  */
	  if (const_arg0 == 0 || const_arg1 == 0)
	    {
	      /* Is FOLDED_ARG0 frame-pointer plus a constant?  Or
		 non-explicit constant?  These aren't zero, but we
		 don't know their sign.  */
	      if (const_arg1 == const0_rtx
		  && (NONZERO_BASE_PLUS_P (folded_arg0)
#if 0  /* Sad to say, on sysvr4, #pragma weak can make a symbol address
	  come out as 0.  */
		      || GET_CODE (folded_arg0) == SYMBOL_REF
#endif
		      || GET_CODE (folded_arg0) == LABEL_REF
		      || GET_CODE (folded_arg0) == CONST))
		{
		  if (code == EQ)
		    return false;
		  else if (code == NE)
		    return true;
		}

	      /* See if the two operands are the same.  We don't do this
		 for IEEE floating-point since we can't assume x == x
		 since x might be a NaN.  */

	      if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
		   || ! FLOAT_MODE_P (mode_arg0) || flag_fast_math)
		  && (folded_arg0 == folded_arg1
		      || (GET_CODE (folded_arg0) == REG
			  && GET_CODE (folded_arg1) == REG
			  && (REG_QTY (REGNO (folded_arg0))
			      == REG_QTY (REGNO (folded_arg1))))
		      || ((p0 = lookup (folded_arg0,
					(safe_hash (folded_arg0, mode_arg0)
					 % NBUCKETS), mode_arg0))
			  && (p1 = lookup (folded_arg1,
					   (safe_hash (folded_arg1, mode_arg0)
					    % NBUCKETS), mode_arg0))
			  && p0->first_same_value == p1->first_same_value)))
		return ((code == EQ || code == LE || code == GE
			 || code == LEU || code == GEU)
			? true : false);

	      /* If FOLDED_ARG0 is a register, see if the comparison we are
		 doing now is either the same as we did before or the reverse
		 (we only check the reverse if not floating-point).  */
	      else if (GET_CODE (folded_arg0) == REG)
		{
		  int qty = REG_QTY (REGNO (folded_arg0));

		  if (REGNO_QTY_VALID_P (REGNO (folded_arg0))
		      && (comparison_dominates_p (qty_comparison_code[qty], code)
			  || (comparison_dominates_p (qty_comparison_code[qty],
						      reverse_condition (code))
			      && ! FLOAT_MODE_P (mode_arg0)))
		      && (rtx_equal_p (qty_comparison_const[qty], folded_arg1)
			  || (const_arg1
			      && rtx_equal_p (qty_comparison_const[qty],
					      const_arg1))
			  || (GET_CODE (folded_arg1) == REG
			      && (REG_QTY (REGNO (folded_arg1))
				  == qty_comparison_qty[qty]))))
		    return (comparison_dominates_p (qty_comparison_code[qty],
						    code)
			    ? true : false);
		}
	    }
	}

      /* If we are comparing against zero, see if the first operand is
	 equivalent to an IOR with a constant.  If so, we may be able to
	 determine the result of this comparison.  */

      if (const_arg1 == const0_rtx)
	{
	  rtx y = lookup_as_function (folded_arg0, IOR);
	  rtx inner_const;

	  if (y != 0
	      && (inner_const = equiv_constant (XEXP (y, 1))) != 0
	      && GET_CODE (inner_const) == CONST_INT
	      && INTVAL (inner_const) != 0)
	    {
	      int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
	      int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
			      && (INTVAL (inner_const)
				  & ((HOST_WIDE_INT) 1 << sign_bitnum)));
	      rtx true = const_true_rtx, false = const0_rtx;

#ifdef FLOAT_STORE_FLAG_VALUE
	      if (GET_MODE_CLASS (mode) == MODE_FLOAT)
		{
		  true = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE,
						       mode);
		  false = CONST0_RTX (mode);
		}
#endif

	      switch (code)
		{
		case EQ:
		  return false;
		case NE:
		  return true;
		case LT:  case LE:
		  if (has_sign)
		    return true;
		  break;
		case GT:  case GE:
		  if (has_sign)
		    return false;
		  break;
		default:
		  break;
		}
	    }
	}

      new = simplify_relational_operation (code, mode_arg0,
					   const_arg0 ? const_arg0 : folded_arg0,
					   const_arg1 ? const_arg1 : folded_arg1);
#ifdef FLOAT_STORE_FLAG_VALUE
      if (new != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
	new = ((new == const0_rtx) ? CONST0_RTX (mode)
	       : CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE, mode));
#endif
      break;

    case '2':
    case 'c':
      switch (code)
	{
	case PLUS:
	  /* If the second operand is a LABEL_REF, see if the first is a MINUS
	     with that LABEL_REF as its second operand.  If so, the result is
	     the first operand of that MINUS.  This handles switches with an
	     ADDR_DIFF_VEC table.  */
	  if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
	    {
	      rtx y
		= GET_CODE (folded_arg0) == MINUS ? folded_arg0
		  : lookup_as_function (folded_arg0, MINUS);

	      if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
		  && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
		return XEXP (y, 0);

	      /* Now try for a CONST of a MINUS like the above.  */
	      if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
			: lookup_as_function (folded_arg0, CONST))) != 0
		  && GET_CODE (XEXP (y, 0)) == MINUS
		  && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
		  && XEXP (XEXP (XEXP (y, 0),1), 0) == XEXP (const_arg1, 0))
		return XEXP (XEXP (y, 0), 0);
	    }

	  /* Likewise if the operands are in the other order.  */
	  if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
	    {
	      rtx y
		= GET_CODE (folded_arg1) == MINUS ? folded_arg1
		  : lookup_as_function (folded_arg1, MINUS);

	      if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
		  && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
		return XEXP (y, 0);

	      /* Now try for a CONST of a MINUS like the above.  */
	      if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
			: lookup_as_function (folded_arg1, CONST))) != 0
		  && GET_CODE (XEXP (y, 0)) == MINUS
		  && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
		  && XEXP (XEXP (XEXP (y, 0),1), 0) == XEXP (const_arg0, 0))
		return XEXP (XEXP (y, 0), 0);
	    }

	  /* If second operand is a register equivalent to a negative
	     CONST_INT, see if we can find a register equivalent to the
	     positive constant.  Make a MINUS if so.  Don't do this for
	     a non-negative constant since we might then alternate between
	     chosing positive and negative constants.  Having the positive
	     constant previously-used is the more common case.  Be sure
	     the resulting constant is non-negative; if const_arg1 were
	     the smallest negative number this would overflow: depending
	     on the mode, this would either just be the same value (and
	     hence not save anything) or be incorrect.  */
	  if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
	      && INTVAL (const_arg1) < 0
	      /* This used to test

	         - INTVAL (const_arg1) >= 0

		 But The Sun V5.0 compilers mis-compiled that test.  So
		 instead we test for the problematic value in a more direct
		 manner and hope the Sun compilers get it correct.  */
	      && INTVAL (const_arg1) !=
	        ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
	      && GET_CODE (folded_arg1) == REG)
	    {
	      rtx new_const = GEN_INT (- INTVAL (const_arg1));
	      struct table_elt *p
		= lookup (new_const, safe_hash (new_const, mode) % NBUCKETS,
			  mode);

	      if (p)
		for (p = p->first_same_value; p; p = p->next_same_value)
		  if (GET_CODE (p->exp) == REG)
		    return cse_gen_binary (MINUS, mode, folded_arg0,
					   canon_reg (p->exp, NULL_RTX));
	    }
	  goto from_plus;

	case MINUS:
	  /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
	     If so, produce (PLUS Z C2-C).  */
	  if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
	    {
	      rtx y = lookup_as_function (XEXP (x, 0), PLUS);
	      if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
		return fold_rtx (plus_constant (copy_rtx (y),
						-INTVAL (const_arg1)),
				 NULL_RTX);
	    }

	  /* ... fall through ...  */

	from_plus:
	case SMIN:    case SMAX:      case UMIN:    case UMAX:
	case IOR:     case AND:       case XOR:
	case MULT:    case DIV:       case UDIV:
	case ASHIFT:  case LSHIFTRT:  case ASHIFTRT:
	  /* If we have (<op> <reg> <const_int>) for an associative OP and REG
	     is known to be of similar form, we may be able to replace the
	     operation with a combined operation.  This may eliminate the
	     intermediate operation if every use is simplified in this way.
	     Note that the similar optimization done by combine.c only works
	     if the intermediate operation's result has only one reference.  */

	  if (GET_CODE (folded_arg0) == REG
	      && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
	    {
	      int is_shift
		= (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
	      rtx y = lookup_as_function (folded_arg0, code);
	      rtx inner_const;
	      enum rtx_code associate_code;
	      rtx new_const;

	      if (y == 0
		  || 0 == (inner_const
			   = equiv_constant (fold_rtx (XEXP (y, 1), 0)))
		  || GET_CODE (inner_const) != CONST_INT
		  /* If we have compiled a statement like
		     "if (x == (x & mask1))", and now are looking at
		     "x & mask2", we will have a case where the first operand
		     of Y is the same as our first operand.  Unless we detect
		     this case, an infinite loop will result.  */
		  || XEXP (y, 0) == folded_arg0)
		break;

	      /* Don't associate these operations if they are a PLUS with the
		 same constant and it is a power of two.  These might be doable
		 with a pre- or post-increment.  Similarly for two subtracts of
		 identical powers of two with post decrement.  */

	      if (code == PLUS && INTVAL (const_arg1) == INTVAL (inner_const)
		  && ((HAVE_PRE_INCREMENT
			  && exact_log2 (INTVAL (const_arg1)) >= 0)
		      || (HAVE_POST_INCREMENT
			  && exact_log2 (INTVAL (const_arg1)) >= 0)
		      || (HAVE_PRE_DECREMENT
			  && exact_log2 (- INTVAL (const_arg1)) >= 0)
		      || (HAVE_POST_DECREMENT
			  && exact_log2 (- INTVAL (const_arg1)) >= 0)))
		break;

	      /* Compute the code used to compose the constants.  For example,
		 A/C1/C2 is A/(C1 * C2), so if CODE == DIV, we want MULT.  */

	      associate_code
		= (code == MULT || code == DIV || code == UDIV ? MULT
		   : is_shift || code == PLUS || code == MINUS ? PLUS : code);

	      new_const = simplify_binary_operation (associate_code, mode,
						     const_arg1, inner_const);

	      if (new_const == 0)
		break;

	      /* If we are associating shift operations, don't let this
		 produce a shift of the size of the object or larger.
		 This could occur when we follow a sign-extend by a right
		 shift on a machine that does a sign-extend as a pair
		 of shifts.  */

	      if (is_shift && GET_CODE (new_const) == CONST_INT
		  && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
		{
		  /* As an exception, we can turn an ASHIFTRT of this
		     form into a shift of the number of bits - 1.  */
		  if (code == ASHIFTRT)
		    new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
		  else
		    break;
		}

	      y = copy_rtx (XEXP (y, 0));

	      /* If Y contains our first operand (the most common way this
		 can happen is if Y is a MEM), we would do into an infinite
		 loop if we tried to fold it.  So don't in that case.  */

	      if (! reg_mentioned_p (folded_arg0, y))
		y = fold_rtx (y, insn);

	      return cse_gen_binary (code, mode, y, new_const);
	    }
	  break;

	default:
	  break;
	}

      new = simplify_binary_operation (code, mode,
				       const_arg0 ? const_arg0 : folded_arg0,
				       const_arg1 ? const_arg1 : folded_arg1);
      break;

    case 'o':
      /* (lo_sum (high X) X) is simply X.  */
      if (code == LO_SUM && const_arg0 != 0
	  && GET_CODE (const_arg0) == HIGH
	  && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
	return const_arg1;
      break;

    case '3':
    case 'b':
      new = simplify_ternary_operation (code, mode, mode_arg0,
					const_arg0 ? const_arg0 : folded_arg0,
					const_arg1 ? const_arg1 : folded_arg1,
					const_arg2 ? const_arg2 : XEXP (x, 2));
      break;

    case 'x':
      /* Always eliminate CONSTANT_P_RTX at this stage. */
      if (code == CONSTANT_P_RTX)
	return (const_arg0 ? const1_rtx : const0_rtx);
      break;
    }

  return new ? new : x;
}

/* Return a constant value currently equivalent to X.
   Return 0 if we don't know one.  */

static rtx
equiv_constant (x)
     rtx x;
{
  if (GET_CODE (x) == REG
      && REGNO_QTY_VALID_P (REGNO (x))
      && qty_const[REG_QTY (REGNO (x))])
    x = gen_lowpart_if_possible (GET_MODE (x), qty_const[REG_QTY (REGNO (x))]);

  if (x == 0 || CONSTANT_P (x))
    return x;

  /* If X is a MEM, try to fold it outside the context of any insn to see if
     it might be equivalent to a constant.  That handles the case where it
     is a constant-pool reference.  Then try to look it up in the hash table
     in case it is something whose value we have seen before.  */

  if (GET_CODE (x) == MEM)
    {
      struct table_elt *elt;

      x = fold_rtx (x, NULL_RTX);
      if (CONSTANT_P (x))
	return x;

      elt = lookup (x, safe_hash (x, GET_MODE (x)) % NBUCKETS, GET_MODE (x));
      if (elt == 0)
	return 0;

      for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
	if (elt->is_const && CONSTANT_P (elt->exp))
	  return elt->exp;
    }

  return 0;
}

/* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
   number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
   least-significant part of X.
   MODE specifies how big a part of X to return.  

   If the requested operation cannot be done, 0 is returned.

   This is similar to gen_lowpart in emit-rtl.c.  */

rtx
gen_lowpart_if_possible (mode, x)
     enum machine_mode mode;
     register rtx x;
{
  rtx result = gen_lowpart_common (mode, x);

  if (result)
    return result;
  else if (GET_CODE (x) == MEM)
    {
      /* This is the only other case we handle.  */
      register int offset = 0;
      rtx new;

      if (WORDS_BIG_ENDIAN)
	offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
		  - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
      if (BYTES_BIG_ENDIAN)
	/* Adjust the address so that the address-after-the-data is
	   unchanged.  */
	offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
		   - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
      new = gen_rtx_MEM (mode, plus_constant (XEXP (x, 0), offset));
      if (! memory_address_p (mode, XEXP (new, 0)))
	return 0;
      RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
      MEM_COPY_ATTRIBUTES (new, x);
      return new;
    }
  else
    return 0;
}

/* Given INSN, a jump insn, TAKEN indicates if we are following the "taken"
   branch.  It will be zero if not.

   In certain cases, this can cause us to add an equivalence.  For example,
   if we are following the taken case of 
   	if (i == 2)
   we can add the fact that `i' and '2' are now equivalent.

   In any case, we can record that this comparison was passed.  If the same
   comparison is seen later, we will know its value.  */

static void
record_jump_equiv (insn, taken)
     rtx insn;
     int taken;
{
  int cond_known_true;
  rtx op0, op1;
  enum machine_mode mode, mode0, mode1;
  int reversed_nonequality = 0;
  enum rtx_code code;

  /* Ensure this is the right kind of insn.  */
  if (! condjump_p (insn) || simplejump_p (insn))
    return;

  /* See if this jump condition is known true or false.  */
  if (taken)
    cond_known_true = (XEXP (SET_SRC (PATTERN (insn)), 2) == pc_rtx);
  else
    cond_known_true = (XEXP (SET_SRC (PATTERN (insn)), 1) == pc_rtx);

  /* Get the type of comparison being done and the operands being compared.
     If we had to reverse a non-equality condition, record that fact so we
     know that it isn't valid for floating-point.  */
  code = GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 0));
  op0 = fold_rtx (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 0), insn);
  op1 = fold_rtx (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 1), insn);

  code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
  if (! cond_known_true)
    {
      reversed_nonequality = (code != EQ && code != NE);
      code = reverse_condition (code);
    }

  /* The mode is the mode of the non-constant.  */
  mode = mode0;
  if (mode1 != VOIDmode)
    mode = mode1;

  record_jump_cond (code, mode, op0, op1, reversed_nonequality);
}

/* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
   REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
   Make any useful entries we can with that information.  Called from
   above function and called recursively.  */

static void
record_jump_cond (code, mode, op0, op1, reversed_nonequality)
     enum rtx_code code;
     enum machine_mode mode;
     rtx op0, op1;
     int reversed_nonequality;
{
  unsigned op0_hash, op1_hash;
  int op0_in_memory, op0_in_struct, op1_in_memory, op1_in_struct;
  struct table_elt *op0_elt, *op1_elt;

  /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
     we know that they are also equal in the smaller mode (this is also
     true for all smaller modes whether or not there is a SUBREG, but
     is not worth testing for with no SUBREG).  */

  /* Note that GET_MODE (op0) may not equal MODE.  */
  if (code == EQ && GET_CODE (op0) == SUBREG
      && (GET_MODE_SIZE (GET_MODE (op0))
	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
      rtx tem = gen_lowpart_if_possible (inner_mode, op1);

      record_jump_cond (code, mode, SUBREG_REG (op0),
			tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
			reversed_nonequality);
    }

  if (code == EQ && GET_CODE (op1) == SUBREG
      && (GET_MODE_SIZE (GET_MODE (op1))
	  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
      rtx tem = gen_lowpart_if_possible (inner_mode, op0);

      record_jump_cond (code, mode, SUBREG_REG (op1),
			tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
			reversed_nonequality);
    }

  /* Similarly, if this is an NE comparison, and either is a SUBREG 
     making a smaller mode, we know the whole thing is also NE.  */

  /* Note that GET_MODE (op0) may not equal MODE;
     if we test MODE instead, we can get an infinite recursion
     alternating between two modes each wider than MODE.  */

  if (code == NE && GET_CODE (op0) == SUBREG
      && subreg_lowpart_p (op0)
      && (GET_MODE_SIZE (GET_MODE (op0))
	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
      rtx tem = gen_lowpart_if_possible (inner_mode, op1);

      record_jump_cond (code, mode, SUBREG_REG (op0),
			tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
			reversed_nonequality);
    }

  if (code == NE && GET_CODE (op1) == SUBREG
      && subreg_lowpart_p (op1)
      && (GET_MODE_SIZE (GET_MODE (op1))
	  < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
    {
      enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
      rtx tem = gen_lowpart_if_possible (inner_mode, op0);

      record_jump_cond (code, mode, SUBREG_REG (op1),
			tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
			reversed_nonequality);
    }

  /* Hash both operands.  */

  do_not_record = 0;
  hash_arg_in_memory = 0;
  hash_arg_in_struct = 0;
  op0_hash = HASH (op0, mode);
  op0_in_memory = hash_arg_in_memory;
  op0_in_struct = hash_arg_in_struct;

  if (do_not_record)
    return;

  do_not_record = 0;
  hash_arg_in_memory = 0;
  hash_arg_in_struct = 0;
  op1_hash = HASH (op1, mode);
  op1_in_memory = hash_arg_in_memory;
  op1_in_struct = hash_arg_in_struct;
  
  if (do_not_record)
    return;

  /* Look up both operands.  */
  op0_elt = lookup (op0, op0_hash, mode);
  op1_elt = lookup (op1, op1_hash, mode);

  /* If both operands are already equivalent or if they are not in the
     table but are identical, do nothing.  */
  if ((op0_elt != 0 && op1_elt != 0
       && op0_elt->first_same_value == op1_elt->first_same_value)
      || op0 == op1 || rtx_equal_p (op0, op1))
    return;

  /* If we aren't setting two things equal all we can do is save this
     comparison.   Similarly if this is floating-point.  In the latter
     case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
     If we record the equality, we might inadvertently delete code
     whose intent was to change -0 to +0.  */

  if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
    {
      /* If we reversed a floating-point comparison, if OP0 is not a
	 register, or if OP1 is neither a register or constant, we can't
	 do anything.  */

      if (GET_CODE (op1) != REG)
	op1 = equiv_constant (op1);

      if ((reversed_nonequality && FLOAT_MODE_P (mode))
	  || GET_CODE (op0) != REG || op1 == 0)
	return;

      /* Put OP0 in the hash table if it isn't already.  This gives it a
	 new quantity number.  */
      if (op0_elt == 0)
	{
	  if (insert_regs (op0, NULL_PTR, 0))
	    {
	      rehash_using_reg (op0);
	      op0_hash = HASH (op0, mode);

	      /* If OP0 is contained in OP1, this changes its hash code
		 as well.  Faster to rehash than to check, except
		 for the simple case of a constant.  */
	      if (! CONSTANT_P (op1))
		op1_hash = HASH (op1,mode);
	    }

	  op0_elt = insert (op0, NULL_PTR, op0_hash, mode);
	  op0_elt->in_memory = op0_in_memory;
	  op0_elt->in_struct = op0_in_struct;
	}

      qty_comparison_code[REG_QTY (REGNO (op0))] = code;
      if (GET_CODE (op1) == REG)
	{
	  /* Look it up again--in case op0 and op1 are the same.  */
	  op1_elt = lookup (op1, op1_hash, mode);

	  /* Put OP1 in the hash table so it gets a new quantity number.  */
	  if (op1_elt == 0)
	    {
	      if (insert_regs (op1, NULL_PTR, 0))
		{
		  rehash_using_reg (op1);
		  op1_hash = HASH (op1, mode);
		}

	      op1_elt = insert (op1, NULL_PTR, op1_hash, mode);
	      op1_elt->in_memory = op1_in_memory;
	      op1_elt->in_struct = op1_in_struct;
	    }

	  qty_comparison_qty[REG_QTY (REGNO (op0))] = REG_QTY (REGNO (op1));
	  qty_comparison_const[REG_QTY (REGNO (op0))] = 0;
	}
      else
	{
	  qty_comparison_qty[REG_QTY (REGNO (op0))] = -1;
	  qty_comparison_const[REG_QTY (REGNO (op0))] = op1;
	}

      return;
    }

  /* If either side is still missing an equivalence, make it now,
     then merge the equivalences.  */

  if (op0_elt == 0)
    {
      if (insert_regs (op0, NULL_PTR, 0))
	{
	  rehash_using_reg (op0);
	  op0_hash = HASH (op0, mode);
	}

      op0_elt = insert (op0, NULL_PTR, op0_hash, mode);
      op0_elt->in_memory = op0_in_memory;
      op0_elt->in_struct = op0_in_struct;
    }

  if (op1_elt == 0)
    {
      if (insert_regs (op1, NULL_PTR, 0))
	{
	  rehash_using_reg (op1);
	  op1_hash = HASH (op1, mode);
	}

      op1_elt = insert (op1, NULL_PTR, op1_hash, mode);
      op1_elt->in_memory = op1_in_memory;
      op1_elt->in_struct = op1_in_struct;
    }

  merge_equiv_classes (op0_elt, op1_elt);
  last_jump_equiv_class = op0_elt;
}

/* CSE processing for one instruction.
   First simplify sources and addresses of all assignments
   in the instruction, using previously-computed equivalents values.
   Then install the new sources and destinations in the table
   of available values. 

   If LIBCALL_INSN is nonzero, don't record any equivalence made in
   the insn.  It means that INSN is inside libcall block.  In this
   case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */

/* Data on one SET contained in the instruction.  */

struct set
{
  /* The SET rtx itself.  */
  rtx rtl;
  /* The SET_SRC of the rtx (the original value, if it is changing).  */
  rtx src;
  /* The hash-table element for the SET_SRC of the SET.  */
  struct table_elt *src_elt;
  /* Hash value for the SET_SRC.  */
  unsigned src_hash;
  /* Hash value for the SET_DEST.  */
  unsigned dest_hash;
  /* The SET_DEST, with SUBREG, etc., stripped.  */
  rtx inner_dest;
  /* Nonzero if the SET_SRC is in memory.  */ 
  char src_in_memory;
  /* Nonzero if the SET_SRC is in a structure.  */ 
  char src_in_struct;
  /* Nonzero if the SET_SRC contains something
     whose value cannot be predicted and understood.  */
  char src_volatile;
  /* Original machine mode, in case it becomes a CONST_INT.  */
  enum machine_mode mode;
  /* A constant equivalent for SET_SRC, if any.  */
  rtx src_const;
  /* Hash value of constant equivalent for SET_SRC.  */
  unsigned src_const_hash;
  /* Table entry for constant equivalent for SET_SRC, if any.  */
  struct table_elt *src_const_elt;
};

static void
cse_insn (insn, libcall_insn)
     rtx insn;
     rtx libcall_insn;
{
  register rtx x = PATTERN (insn);
  register int i;
  rtx tem;
  register int n_sets = 0;

#ifdef HAVE_cc0
  /* Records what this insn does to set CC0.  */
  rtx this_insn_cc0 = 0;
  enum machine_mode this_insn_cc0_mode = VOIDmode;
#endif

  rtx src_eqv = 0;
  struct table_elt *src_eqv_elt = 0;
  int src_eqv_volatile = 0;
  int src_eqv_in_memory = 0;
  int src_eqv_in_struct = 0;
  unsigned src_eqv_hash = 0;

  struct set *sets = NULL_PTR;

  this_insn = insn;

  /* Find all the SETs and CLOBBERs in this instruction.
     Record all the SETs in the array `set' and count them.
     Also determine whether there is a CLOBBER that invalidates
     all memory references, or all references at varying addresses.  */

  if (GET_CODE (insn) == CALL_INSN)
    {
      for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
	if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
          invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
    }

  if (GET_CODE (x) == SET)
    {
      sets = (struct set *) alloca (sizeof (struct set));
      sets[0].rtl = x;

      /* Ignore SETs that are unconditional jumps.
	 They never need cse processing, so this does not hurt.
	 The reason is not efficiency but rather
	 so that we can test at the end for instructions
	 that have been simplified to unconditional jumps
	 and not be misled by unchanged instructions
	 that were unconditional jumps to begin with.  */
      if (SET_DEST (x) == pc_rtx
	  && GET_CODE (SET_SRC (x)) == LABEL_REF)
	;

      /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
	 The hard function value register is used only once, to copy to
	 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
	 Ensure we invalidate the destination register.  On the 80386 no
	 other code would invalidate it since it is a fixed_reg.
	 We need not check the return of apply_change_group; see canon_reg.  */

      else if (GET_CODE (SET_SRC (x)) == CALL)
	{
	  canon_reg (SET_SRC (x), insn);
	  apply_change_group ();
	  fold_rtx (SET_SRC (x), insn);
	  invalidate (SET_DEST (x), VOIDmode);
	}
      else
	n_sets = 1;
    }
  else if (GET_CODE (x) == PARALLEL)
    {
      register int lim = XVECLEN (x, 0);

      sets = (struct set *) alloca (lim * sizeof (struct set));

      /* Find all regs explicitly clobbered in this insn,
	 and ensure they are not replaced with any other regs
	 elsewhere in this insn.
	 When a reg that is clobbered is also used for input,
	 we should presume that that is for a reason,
	 and we should not substitute some other register
	 which is not supposed to be clobbered.
	 Therefore, this loop cannot be merged into the one below
	 because a CALL may precede a CLOBBER and refer to the
	 value clobbered.  We must not let a canonicalization do
	 anything in that case.  */
      for (i = 0; i < lim; i++)
	{
	  register rtx y = XVECEXP (x, 0, i);
	  if (GET_CODE (y) == CLOBBER)
	    {
	      rtx clobbered = XEXP (y, 0);

	      if (GET_CODE (clobbered) == REG
		  || GET_CODE (clobbered) == SUBREG)
		invalidate (clobbered, VOIDmode);
	      else if (GET_CODE (clobbered) == STRICT_LOW_PART
		       || GET_CODE (clobbered) == ZERO_EXTRACT)
		invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
	    }
	}
	    
      for (i = 0; i < lim; i++)
	{
	  register rtx y = XVECEXP (x, 0, i);
	  if (GET_CODE (y) == SET)
	    {
	      /* As above, we ignore unconditional jumps and call-insns and
		 ignore the result of apply_change_group.  */
	      if (GET_CODE (SET_SRC (y)) == CALL)
		{
		  canon_reg (SET_SRC (y), insn);
		  apply_change_group ();
		  fold_rtx (SET_SRC (y), insn);
		  invalidate (SET_DEST (y), VOIDmode);
		}
	      else if (SET_DEST (y) == pc_rtx
		       && GET_CODE (SET_SRC (y)) == LABEL_REF)
		;
	      else
		sets[n_sets++].rtl = y;
	    }
	  else if (GET_CODE (y) == CLOBBER)
	    {
	      /* If we clobber memory, canon the address.
		 This does nothing when a register is clobbered
		 because we have already invalidated the reg.  */
	      if (GET_CODE (XEXP (y, 0)) == MEM)
		canon_reg (XEXP (y, 0), NULL_RTX);
	    }
	  else if (GET_CODE (y) == USE
		   && ! (GET_CODE (XEXP (y, 0)) == REG
			 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
	    canon_reg (y, NULL_RTX);
	  else if (GET_CODE (y) == CALL)
	    {
	      /* The result of apply_change_group can be ignored; see
		 canon_reg.  */
	      canon_reg (y, insn);
	      apply_change_group ();
	      fold_rtx (y, insn);
	    }
	}
    }
  else if (GET_CODE (x) == CLOBBER)
    {
      if (GET_CODE (XEXP (x, 0)) == MEM)
	canon_reg (XEXP (x, 0), NULL_RTX);
    }

  /* Canonicalize a USE of a pseudo register or memory location.  */
  else if (GET_CODE (x) == USE
	   && ! (GET_CODE (XEXP (x, 0)) == REG
		 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
    canon_reg (XEXP (x, 0), NULL_RTX);
  else if (GET_CODE (x) == CALL)
    {
      /* The result of apply_change_group can be ignored; see canon_reg.  */
      canon_reg (x, insn);
      apply_change_group ();
      fold_rtx (x, insn);
    }

  /* Store the equivalent value in SRC_EQV, if different, or if the DEST
     is a STRICT_LOW_PART.  The latter condition is necessary because SRC_EQV
     is handled specially for this case, and if it isn't set, then there will
     be no equivalence for the destination.  */
  if (n_sets == 1 && REG_NOTES (insn) != 0
      && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
      && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
	  || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
    src_eqv = canon_reg (XEXP (tem, 0), NULL_RTX);

  /* Canonicalize sources and addresses of destinations.
     We do this in a separate pass to avoid problems when a MATCH_DUP is
     present in the insn pattern.  In that case, we want to ensure that
     we don't break the duplicate nature of the pattern.  So we will replace
     both operands at the same time.  Otherwise, we would fail to find an
     equivalent substitution in the loop calling validate_change below.

     We used to suppress canonicalization of DEST if it appears in SRC,
     but we don't do this any more.  */

  for (i = 0; i < n_sets; i++)
    {
      rtx dest = SET_DEST (sets[i].rtl);
      rtx src = SET_SRC (sets[i].rtl);
      rtx new = canon_reg (src, insn);
      int insn_code;

      if ((GET_CODE (new) == REG && GET_CODE (src) == REG
	   && ((REGNO (new) < FIRST_PSEUDO_REGISTER)
	       != (REGNO (src) < FIRST_PSEUDO_REGISTER)))
	  || (insn_code = recog_memoized (insn)) < 0
	  || insn_data[insn_code].n_dups > 0)
	validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
      else
	SET_SRC (sets[i].rtl) = new;

      if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
	{
	  validate_change (insn, &XEXP (dest, 1),
			   canon_reg (XEXP (dest, 1), insn), 1);
	  validate_change (insn, &XEXP (dest, 2),
			   canon_reg (XEXP (dest, 2), insn), 1);
	}

      while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
	     || GET_CODE (dest) == ZERO_EXTRACT
	     || GET_CODE (dest) == SIGN_EXTRACT)
	dest = XEXP (dest, 0);

      if (GET_CODE (dest) == MEM)
	canon_reg (dest, insn);
    }

  /* Now that we have done all the replacements, we can apply the change
     group and see if they all work.  Note that this will cause some
     canonicalizations that would have worked individually not to be applied
     because some other canonicalization didn't work, but this should not
     occur often. 

     The result of apply_change_group can be ignored; see canon_reg.  */

  apply_change_group ();

  /* Set sets[i].src_elt to the class each source belongs to.
     Detect assignments from or to volatile things
     and set set[i] to zero so they will be ignored
     in the rest of this function.

     Nothing in this loop changes the hash table or the register chains.  */

  for (i = 0; i < n_sets; i++)
    {
      register rtx src, dest;
      register rtx src_folded;
      register struct table_elt *elt = 0, *p;
      enum machine_mode mode;
      rtx src_eqv_here;
      rtx src_const = 0;
      rtx src_related = 0;
      struct table_elt *src_const_elt = 0;
      int src_cost = 10000, src_eqv_cost = 10000, src_folded_cost = 10000;
      int src_related_cost = 10000, src_elt_cost = 10000;
      /* Set non-zero if we need to call force_const_mem on with the
	 contents of src_folded before using it.  */
      int src_folded_force_flag = 0;

      dest = SET_DEST (sets[i].rtl);
      src = SET_SRC (sets[i].rtl);

      /* If SRC is a constant that has no machine mode,
	 hash it with the destination's machine mode.
	 This way we can keep different modes separate.  */

      mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
      sets[i].mode = mode;

      if (src_eqv)
	{
	  enum machine_mode eqvmode = mode;
	  if (GET_CODE (dest) == STRICT_LOW_PART)
	    eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
	  do_not_record = 0;
	  hash_arg_in_memory = 0;
	  hash_arg_in_struct = 0;
	  src_eqv = fold_rtx (src_eqv, insn);
	  src_eqv_hash = HASH (src_eqv, eqvmode);

	  /* Find the equivalence class for the equivalent expression.  */

	  if (!do_not_record)
	    src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);

	  src_eqv_volatile = do_not_record;
	  src_eqv_in_memory = hash_arg_in_memory;
	  src_eqv_in_struct = hash_arg_in_struct;
	}

      /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
	 value of the INNER register, not the destination.  So it is not
	 a valid substitution for the source.  But save it for later.  */
      if (GET_CODE (dest) == STRICT_LOW_PART)
	src_eqv_here = 0;
      else
	src_eqv_here = src_eqv;

      /* Simplify and foldable subexpressions in SRC.  Then get the fully-
	 simplified result, which may not necessarily be valid.  */
      src_folded = fold_rtx (src, insn);

#if 0
      /* ??? This caused bad code to be generated for the m68k port with -O2.
	 Suppose src is (CONST_INT -1), and that after truncation src_folded
	 is (CONST_INT 3).  Suppose src_folded is then used for src_const.
	 At the end we will add src and src_const to the same equivalence
	 class.  We now have 3 and -1 on the same equivalence class.  This
	 causes later instructions to be mis-optimized.  */
      /* If storing a constant in a bitfield, pre-truncate the constant
	 so we will be able to record it later.  */
      if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
	  || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
	{
	  rtx width = XEXP (SET_DEST (sets[i].rtl), 1);

	  if (GET_CODE (src) == CONST_INT
	      && GET_CODE (width) == CONST_INT
	      && INTVAL (width) < HOST_BITS_PER_WIDE_INT
	      && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
	    src_folded
	      = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
					  << INTVAL (width)) - 1));
	}
#endif

      /* Compute SRC's hash code, and also notice if it
	 should not be recorded at all.  In that case,
	 prevent any further processing of this assignment.  */
      do_not_record = 0;
      hash_arg_in_memory = 0;
      hash_arg_in_struct = 0;

      sets[i].src = src;
      sets[i].src_hash = HASH (src, mode);
      sets[i].src_volatile = do_not_record;
      sets[i].src_in_memory = hash_arg_in_memory;
      sets[i].src_in_struct = hash_arg_in_struct;

      /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
	 a pseudo that is set more than once, do not record SRC.  Using
	 SRC as a replacement for anything else will be incorrect in that
	 situation.  Note that this usually occurs only for stack slots,
	 in which case all the RTL would be referring to SRC, so we don't
	 lose any optimization opportunities by not having SRC in the
	 hash table.  */

      if (GET_CODE (src) == MEM
	  && find_reg_note (insn, REG_EQUIV, src) != 0
	  && GET_CODE (dest) == REG
	  && REGNO (dest) >= FIRST_PSEUDO_REGISTER
	  && REG_N_SETS (REGNO (dest)) != 1)
	sets[i].src_volatile = 1;

#if 0
      /* It is no longer clear why we used to do this, but it doesn't
	 appear to still be needed.  So let's try without it since this
	 code hurts cse'ing widened ops.  */
      /* If source is a perverse subreg (such as QI treated as an SI),
	 treat it as volatile.  It may do the work of an SI in one context
	 where the extra bits are not being used, but cannot replace an SI
	 in general.  */
      if (GET_CODE (src) == SUBREG
	  && (GET_MODE_SIZE (GET_MODE (src))
	      > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
	sets[i].src_volatile = 1;
#endif

      /* Locate all possible equivalent forms for SRC.  Try to replace
         SRC in the insn with each cheaper equivalent.

         We have the following types of equivalents: SRC itself, a folded
         version, a value given in a REG_EQUAL note, or a value related
	 to a constant.

         Each of these equivalents may be part of an additional class
         of equivalents (if more than one is in the table, they must be in
         the same class; we check for this).

	 If the source is volatile, we don't do any table lookups.

         We note any constant equivalent for possible later use in a
         REG_NOTE.  */

      if (!sets[i].src_volatile)
	elt = lookup (src, sets[i].src_hash, mode);

      sets[i].src_elt = elt;

      if (elt && src_eqv_here && src_eqv_elt)
        {
          if (elt->first_same_value != src_eqv_elt->first_same_value)
	    {
	      /* The REG_EQUAL is indicating that two formerly distinct
		 classes are now equivalent.  So merge them.  */
	      merge_equiv_classes (elt, src_eqv_elt);
	      src_eqv_hash = HASH (src_eqv, elt->mode);
	      src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
	    }

          src_eqv_here = 0;
        }

      else if (src_eqv_elt)
        elt = src_eqv_elt;

      /* Try to find a constant somewhere and record it in `src_const'.
	 Record its table element, if any, in `src_const_elt'.  Look in
	 any known equivalences first.  (If the constant is not in the
	 table, also set `sets[i].src_const_hash').  */
      if (elt)
        for (p = elt->first_same_value; p; p = p->next_same_value)
	  if (p->is_const)
	    {
	      src_const = p->exp;
	      src_const_elt = elt;
	      break;
	    }

      if (src_const == 0
	  && (CONSTANT_P (src_folded)
	      /* Consider (minus (label_ref L1) (label_ref L2)) as 
		 "constant" here so we will record it. This allows us
		 to fold switch statements when an ADDR_DIFF_VEC is used.  */
	      || (GET_CODE (src_folded) == MINUS
		  && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
		  && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
	src_const = src_folded, src_const_elt = elt;
      else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
	src_const = src_eqv_here, src_const_elt = src_eqv_elt;

      /* If we don't know if the constant is in the table, get its
	 hash code and look it up.  */
      if (src_const && src_const_elt == 0)
	{
	  sets[i].src_const_hash = HASH (src_const, mode);
	  src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
	}

      sets[i].src_const = src_const;
      sets[i].src_const_elt = src_const_elt;

      /* If the constant and our source are both in the table, mark them as
	 equivalent.  Otherwise, if a constant is in the table but the source
	 isn't, set ELT to it.  */
      if (src_const_elt && elt
	  && src_const_elt->first_same_value != elt->first_same_value)
	merge_equiv_classes (elt, src_const_elt);
      else if (src_const_elt && elt == 0)
	elt = src_const_elt;

      /* See if there is a register linearly related to a constant
         equivalent of SRC.  */
      if (src_const
	  && (GET_CODE (src_const) == CONST
	      || (src_const_elt && src_const_elt->related_value != 0)))
        {
          src_related = use_related_value (src_const, src_const_elt);
          if (src_related)
            {
	      struct table_elt *src_related_elt
		    = lookup (src_related, HASH (src_related, mode), mode);
	      if (src_related_elt && elt)
	        {
		  if (elt->first_same_value
		      != src_related_elt->first_same_value)
		    /* This can occur when we previously saw a CONST 
		       involving a SYMBOL_REF and then see the SYMBOL_REF
		       twice.  Merge the involved classes.  */
		    merge_equiv_classes (elt, src_related_elt);

	          src_related = 0;
		  src_related_elt = 0;
	        }
              else if (src_related_elt && elt == 0)
	        elt = src_related_elt;
	    }
        }

      /* See if we have a CONST_INT that is already in a register in a
	 wider mode.  */

      if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
	  && GET_MODE_CLASS (mode) == MODE_INT
	  && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
	{
	  enum machine_mode wider_mode;

	  for (wider_mode = GET_MODE_WIDER_MODE (mode);
	       GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
	       && src_related == 0;
	       wider_mode = GET_MODE_WIDER_MODE (wider_mode))
	    {
	      struct table_elt *const_elt
		= lookup (src_const, HASH (src_const, wider_mode), wider_mode);

	      if (const_elt == 0)
		continue;

	      for (const_elt = const_elt->first_same_value;
		   const_elt; const_elt = const_elt->next_same_value)
		if (GET_CODE (const_elt->exp) == REG)
		  {
		    src_related = gen_lowpart_if_possible (mode,
							   const_elt->exp);
		    break;
		  }
	    }
	}

      /* Another possibility is that we have an AND with a constant in
	 a mode narrower than a word.  If so, it might have been generated
	 as part of an "if" which would narrow the AND.  If we already
	 have done the AND in a wider mode, we can use a SUBREG of that
	 value.  */

      if (flag_expensive_optimizations && ! src_related
	  && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
	  && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
	{
	  enum machine_mode tmode;
	  rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));

	  for (tmode = GET_MODE_WIDER_MODE (mode);
	       GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
	       tmode = GET_MODE_WIDER_MODE (tmode))
	    {
	      rtx inner = gen_lowpart_if_possible (tmode, XEXP (src, 0));
	      struct table_elt *larger_elt;

	      if (inner)
		{
		  PUT_MODE (new_and, tmode);
		  XEXP (new_and, 0) = inner;
		  larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
		  if (larger_elt == 0)
		    continue;

		  for (larger_elt = larger_elt->first_same_value;
		       larger_elt; larger_elt = larger_elt->next_same_value)
		    if (GET_CODE (larger_elt->exp) == REG)
		      {
			src_related
			  = gen_lowpart_if_possible (mode, larger_elt->exp);
			break;
		      }

		  if (src_related)
		    break;
		}
	    }
	}

#ifdef LOAD_EXTEND_OP
      /* See if a MEM has already been loaded with a widening operation;
	 if it has, we can use a subreg of that.  Many CISC machines
	 also have such operations, but this is only likely to be
	 beneficial these machines.  */
      
      if (flag_expensive_optimizations &&  src_related == 0
	  && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
	  && GET_MODE_CLASS (mode) == MODE_INT
	  && GET_CODE (src) == MEM && ! do_not_record
	  && LOAD_EXTEND_OP (mode) != NIL)
	{
	  enum machine_mode tmode;
	  
	  /* Set what we are trying to extend and the operation it might
	     have been extended with.  */
	  PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
	  XEXP (memory_extend_rtx, 0) = src;
	  
	  for (tmode = GET_MODE_WIDER_MODE (mode);
	       GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
	       tmode = GET_MODE_WIDER_MODE (tmode))
	    {
	      struct table_elt *larger_elt;
	      
	      PUT_MODE (memory_extend_rtx, tmode);
	      larger_elt = lookup (memory_extend_rtx, 
				   HASH (memory_extend_rtx, tmode), tmode);
	      if (larger_elt == 0)
		continue;
	      
	      for (larger_elt = larger_elt->first_same_value;
		   larger_elt; larger_elt = larger_elt->next_same_value)
		if (GET_CODE (larger_elt->exp) == REG)
		  {
		    src_related = gen_lowpart_if_possible (mode, 
							   larger_elt->exp);
		    break;
		  }
	      
	      if (src_related)
		break;
	    }
	}
#endif /* LOAD_EXTEND_OP */
 
      if (src == src_folded)
        src_folded = 0;

      /* At this point, ELT, if non-zero, points to a class of expressions
         equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
	 and SRC_RELATED, if non-zero, each contain additional equivalent
	 expressions.  Prune these latter expressions by deleting expressions
	 already in the equivalence class.

	 Check for an equivalent identical to the destination.  If found,
	 this is the preferred equivalent since it will likely lead to
	 elimination of the insn.  Indicate this by placing it in
	 `src_related'.  */

      if (elt) elt = elt->first_same_value;
      for (p = elt; p; p = p->next_same_value)
        {
	  enum rtx_code code = GET_CODE (p->exp);

	  /* If the expression is not valid, ignore it.  Then we do not
	     have to check for validity below.  In most cases, we can use
	     `rtx_equal_p', since canonicalization has already been done.  */
	  if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, 0))
	    continue;

	  /* Also skip paradoxical subregs, unless that's what we're
	     looking for.  */
	  if (code == SUBREG
	      && (GET_MODE_SIZE (GET_MODE (p->exp))
		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
	      && ! (src != 0
		    && GET_CODE (src) == SUBREG
		    && GET_MODE (src) == GET_MODE (p->exp)
		    && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
			< GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
	    continue;

          if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
	    src = 0;
          else if (src_folded && GET_CODE (src_folded) == code
		   && rtx_equal_p (src_folded, p->exp))
	    src_folded = 0;
          else if (src_eqv_here && GET_CODE (src_eqv_here) == code
		   && rtx_equal_p (src_eqv_here, p->exp))
	    src_eqv_here = 0;
          else if (src_related && GET_CODE (src_related) == code
		   && rtx_equal_p (src_related, p->exp))
	    src_related = 0;

	  /* This is the same as the destination of the insns, we want
	     to prefer it.  Copy it to src_related.  The code below will
	     then give it a negative cost.  */
	  if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
	    src_related = dest;

        }

      /* Find the cheapest valid equivalent, trying all the available
         possibilities.  Prefer items not in the hash table to ones
         that are when they are equal cost.  Note that we can never
         worsen an insn as the current contents will also succeed.
	 If we find an equivalent identical to the destination, use it as best,
	 since this insn will probably be eliminated in that case.  */
      if (src)
	{
	  if (rtx_equal_p (src, dest))
	    src_cost = -1;
	  else
	    src_cost = COST (src);
	}

      if (src_eqv_here)
	{
	  if (rtx_equal_p (src_eqv_here, dest))
	    src_eqv_cost = -1;
	  else
	    src_eqv_cost = COST (src_eqv_here);
	}

      if (src_folded)
	{
	  if (rtx_equal_p (src_folded, dest))
	    src_folded_cost = -1;
	  else
	    src_folded_cost = COST (src_folded);
	}

      if (src_related)
	{
	  if (rtx_equal_p (src_related, dest))
	    src_related_cost = -1;
	  else
	    src_related_cost = COST (src_related);
	}

      /* If this was an indirect jump insn, a known label will really be
	 cheaper even though it looks more expensive.  */
      if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
	src_folded = src_const, src_folded_cost = -1;
	  
      /* Terminate loop when replacement made.  This must terminate since
         the current contents will be tested and will always be valid.  */
      while (1)
        {
          rtx trial, old_src;

          /* Skip invalid entries.  */
          while (elt && GET_CODE (elt->exp) != REG
	         && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
	    elt = elt->next_same_value;	     

	  /* A paradoxical subreg would be bad here: it'll be the right
	     size, but later may be adjusted so that the upper bits aren't
	     what we want.  So reject it.  */
	  if (elt != 0
	      && GET_CODE (elt->exp) == SUBREG
	      && (GET_MODE_SIZE (GET_MODE (elt->exp))
		  > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
	      /* It is okay, though, if the rtx we're trying to match
		 will ignore any of the bits we can't predict.  */
	      && ! (src != 0
		    && GET_CODE (src) == SUBREG
		    && GET_MODE (src) == GET_MODE (elt->exp)
		    && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
			< GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
	    {
	      elt = elt->next_same_value;
	      continue;
	    }
	      
          if (elt) src_elt_cost = elt->cost;

          /* Find cheapest and skip it for the next time.   For items
	     of equal cost, use this order:
	     src_folded, src, src_eqv, src_related and hash table entry.  */
          if (src_folded_cost <= src_cost
	      && src_folded_cost <= src_eqv_cost
	      && src_folded_cost <= src_related_cost
	      && src_folded_cost <= src_elt_cost)
	    {
	      trial = src_folded, src_folded_cost = 10000;
	      if (src_folded_force_flag)
		trial = force_const_mem (mode, trial);
	    }
          else if (src_cost <= src_eqv_cost
	           && src_cost <= src_related_cost
	           && src_cost <= src_elt_cost)
	    trial = src, src_cost = 10000;
          else if (src_eqv_cost <= src_related_cost
	           && src_eqv_cost <= src_elt_cost)
	    trial = copy_rtx (src_eqv_here), src_eqv_cost = 10000;
          else if (src_related_cost <= src_elt_cost)
	    trial = copy_rtx (src_related), src_related_cost = 10000;
          else
	    {
	      trial = copy_rtx (elt->exp);
	      elt = elt->next_same_value;
	      src_elt_cost = 10000;
	    }

	  /* We don't normally have an insn matching (set (pc) (pc)), so
	     check for this separately here.  We will delete such an
	     insn below.

	     Tablejump insns contain a USE of the table, so simply replacing
	     the operand with the constant won't match.  This is simply an
	     unconditional branch, however, and is therefore valid.  Just
	     insert the substitution here and we will delete and re-emit
	     the insn later.  */

	  /* Keep track of the original SET_SRC so that we can fix notes
	     on libcall instructions.  */
 	  old_src = SET_SRC (sets[i].rtl);

	  if (n_sets == 1 && dest == pc_rtx
	      && (trial == pc_rtx
		  || (GET_CODE (trial) == LABEL_REF
		      && ! condjump_p (insn))))
	    {
	      /* If TRIAL is a label in front of a jump table, we are
		 really falling through the switch (this is how casesi
		 insns work), so we must branch around the table.  */
	      if (GET_CODE (trial) == CODE_LABEL
		  && NEXT_INSN (trial) != 0
		  && GET_CODE (NEXT_INSN (trial)) == JUMP_INSN
		  && (GET_CODE (PATTERN (NEXT_INSN (trial))) == ADDR_DIFF_VEC
		      || GET_CODE (PATTERN (NEXT_INSN (trial))) == ADDR_VEC))

		trial = gen_rtx_LABEL_REF (Pmode, get_label_after (trial));

	      SET_SRC (sets[i].rtl) = trial;
 	      cse_jumps_altered = 1;
	      break;
	    }
	   
	  /* Look for a substitution that makes a valid insn.  */
          else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
	    {
	      /* If we just made a substitution inside a libcall, then we
		 need to make the same substitution in any notes attached
		 to the RETVAL insn.  */
	      if (libcall_insn
		  && (GET_CODE (old_src) == REG
		      || GET_CODE (old_src) == SUBREG
		      ||  GET_CODE (old_src) == MEM))
		replace_rtx (REG_NOTES (libcall_insn), old_src, 
			     canon_reg (SET_SRC (sets[i].rtl), insn));

	      /* The result of apply_change_group can be ignored; see
		 canon_reg.  */

	      validate_change (insn, &SET_SRC (sets[i].rtl),
			       canon_reg (SET_SRC (sets[i].rtl), insn),
			       1);
	      apply_change_group ();
	      break;
	    }

	  /* If we previously found constant pool entries for 
	     constants and this is a constant, try making a
	     pool entry.  Put it in src_folded unless we already have done
	     this since that is where it likely came from.  */

	  else if (constant_pool_entries_cost
		   && CONSTANT_P (trial)
		   && ! (GET_CODE (trial) == CONST
			 && GET_CODE (XEXP (trial, 0)) == TRUNCATE)
		   && (src_folded == 0
		       || (GET_CODE (src_folded) != MEM
			   && ! src_folded_force_flag))
		   && GET_MODE_CLASS (mode) != MODE_CC
		   && mode != VOIDmode)
	    {
	      src_folded_force_flag = 1;
	      src_folded = trial;
	      src_folded_cost = constant_pool_entries_cost;
	    }
        }

      src = SET_SRC (sets[i].rtl);

      /* In general, it is good to have a SET with SET_SRC == SET_DEST.
	 However, there is an important exception:  If both are registers
	 that are not the head of their equivalence class, replace SET_SRC
	 with the head of the class.  If we do not do this, we will have
	 both registers live over a portion of the basic block.  This way,
	 their lifetimes will likely abut instead of overlapping.  */
      if (GET_CODE (dest) == REG
	  && REGNO_QTY_VALID_P (REGNO (dest))
	  && qty_mode[REG_QTY (REGNO (dest))] == GET_MODE (dest)
	  && qty_first_reg[REG_QTY (REGNO (dest))] != REGNO (dest)
	  && GET_CODE (src) == REG && REGNO (src) == REGNO (dest)
	  /* Don't do this if the original insn had a hard reg as
	     SET_SRC or SET_DEST.  */
	  && (GET_CODE (sets[i].src) != REG
	      || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
	  && (GET_CODE (dest) != REG || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
	/* We can't call canon_reg here because it won't do anything if
	   SRC is a hard register.  */
	{
	  int first = qty_first_reg[REG_QTY (REGNO (src))];
	  rtx new_src
	    = (first >= FIRST_PSEUDO_REGISTER
	       ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));

	  /* We must use validate-change even for this, because this
	     might be a special no-op instruction, suitable only to
	     tag notes onto.  */
	  if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
	    {
	      src = new_src;
	      /* If we had a constant that is cheaper than what we are now
		 setting SRC to, use that constant.  We ignored it when we
		 thought we could make this into a no-op.  */
	      if (src_const && COST (src_const) < COST (src)
		  && validate_change (insn, &SET_SRC (sets[i].rtl), src_const,
				      0))
		src = src_const;
	    }
	}

      /* If we made a change, recompute SRC values.  */
      if (src != sets[i].src)
        {
          do_not_record = 0;
          hash_arg_in_memory = 0;
          hash_arg_in_struct = 0;
	  sets[i].src = src;
          sets[i].src_hash = HASH (src, mode);
          sets[i].src_volatile = do_not_record;
          sets[i].src_in_memory = hash_arg_in_memory;
          sets[i].src_in_struct = hash_arg_in_struct;
          sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
        }

      /* If this is a single SET, we are setting a register, and we have an
	 equivalent constant, we want to add a REG_NOTE.   We don't want
	 to write a REG_EQUAL note for a constant pseudo since verifying that
	 that pseudo hasn't been eliminated is a pain.  Such a note also
	 won't help anything. 

	 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
	 which can be created for a reference to a compile time computable
	 entry in a jump table.  */

      if (n_sets == 1 && src_const && GET_CODE (dest) == REG
	  && GET_CODE (src_const) != REG
	  && ! (GET_CODE (src_const) == CONST
		&& GET_CODE (XEXP (src_const, 0)) == MINUS
		&& GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
		&& GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
	{
	  tem = find_reg_note (insn, REG_EQUAL, NULL_RTX);
	  
	  /* Make sure that the rtx is not shared with any other insn.  */
	  src_const = copy_rtx (src_const);

	  /* Record the actual constant value in a REG_EQUAL note, making
	     a new one if one does not already exist.  */
	  if (tem)
	    XEXP (tem, 0) = src_const;
	  else
	    REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL,
						  src_const, REG_NOTES (insn));

          /* If storing a constant value in a register that
	     previously held the constant value 0,
	     record this fact with a REG_WAS_0 note on this insn.

	     Note that the *register* is required to have previously held 0,
	     not just any register in the quantity and we must point to the
	     insn that set that register to zero.

	     Rather than track each register individually, we just see if
	     the last set for this quantity was for this register.  */

	  if (REGNO_QTY_VALID_P (REGNO (dest))
	      && qty_const[REG_QTY (REGNO (dest))] == const0_rtx)
	    {
	      /* See if we previously had a REG_WAS_0 note.  */
	      rtx note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
	      rtx const_insn = qty_const_insn[REG_QTY (REGNO (dest))];

	      if ((tem = single_set (const_insn)) != 0
		  && rtx_equal_p (SET_DEST (tem), dest))
		{
		  if (note)
		    XEXP (note, 0) = const_insn;
		  else
		    REG_NOTES (insn)
		      = gen_rtx_INSN_LIST (REG_WAS_0, const_insn,
					   REG_NOTES (insn));
		}
	    }
	}

      /* Now deal with the destination.  */
      do_not_record = 0;

      /* Look within any SIGN_EXTRACT or ZERO_EXTRACT
	 to the MEM or REG within it.  */
      while (GET_CODE (dest) == SIGN_EXTRACT
	     || GET_CODE (dest) == ZERO_EXTRACT
	     || GET_CODE (dest) == SUBREG
	     || GET_CODE (dest) == STRICT_LOW_PART)
	dest = XEXP (dest, 0);

      sets[i].inner_dest = dest;

      if (GET_CODE (dest) == MEM)
	{
#ifdef PUSH_ROUNDING
	  /* Stack pushes invalidate the stack pointer.  */
	  rtx addr = XEXP (dest, 0);
	  if ((GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
	       || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
	      && XEXP (addr, 0) == stack_pointer_rtx)
	    invalidate (stack_pointer_rtx, Pmode);
#endif
	  dest = fold_rtx (dest, insn);
	}

      /* Compute the hash code of the destination now,
	 before the effects of this instruction are recorded,
	 since the register values used in the address computation
	 are those before this instruction.  */
      sets[i].dest_hash = HASH (dest, mode);

      /* Don't enter a bit-field in the hash table
	 because the value in it after the store
	 may not equal what was stored, due to truncation.  */

      if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
	  || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
	{
	  rtx width = XEXP (SET_DEST (sets[i].rtl), 1);

	  if (src_const != 0 && GET_CODE (src_const) == CONST_INT
	      && GET_CODE (width) == CONST_INT
	      && INTVAL (width) < HOST_BITS_PER_WIDE_INT
	      && ! (INTVAL (src_const)
		    & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
	    /* Exception: if the value is constant,
	       and it won't be truncated, record it.  */
	    ;
	  else
	    {
	      /* This is chosen so that the destination will be invalidated
		 but no new value will be recorded.
		 We must invalidate because sometimes constant
		 values can be recorded for bitfields.  */
	      sets[i].src_elt = 0;
	      sets[i].src_volatile = 1;
	      src_eqv = 0;
	      src_eqv_elt = 0;
	    }
	}

      /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
	 the insn.  */
      else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
	{
	  /* One less use of the label this insn used to jump to.  */
	  if (JUMP_LABEL (insn) != 0)
	    --LABEL_NUSES (JUMP_LABEL (insn));
	  PUT_CODE (insn, NOTE);
	  NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
	  NOTE_SOURCE_FILE (insn) = 0;
	  cse_jumps_altered = 1;
	  /* No more processing for this set.  */
	  sets[i].rtl = 0;
	}

      /* If this SET is now setting PC to a label, we know it used to
	 be a conditional or computed branch.  So we see if we can follow
	 it.  If it was a computed branch, delete it and re-emit.  */
      else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF)
	{
	  /* If this is not in the format for a simple branch and
	     we are the only SET in it, re-emit it.  */
	  if (! simplejump_p (insn) && n_sets == 1)
	    {
	      rtx new = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
	      JUMP_LABEL (new) = XEXP (src, 0);
	      LABEL_NUSES (XEXP (src, 0))++;
	      insn = new;
	    }
	  else
	    /* Otherwise, force rerecognition, since it probably had
	       a different pattern before.
	       This shouldn't really be necessary, since whatever
	       changed the source value above should have done this.
	       Until the right place is found, might as well do this here.  */
	    INSN_CODE (insn) = -1;

	  never_reached_warning (insn);

	  /* Now emit a BARRIER after the unconditional jump.  Do not bother
	     deleting any unreachable code, let jump/flow do that.  */
	  if (NEXT_INSN (insn) != 0
	      && GET_CODE (NEXT_INSN (insn)) != BARRIER)
	    emit_barrier_after (insn);

	  cse_jumps_altered = 1;
	  sets[i].rtl = 0;
	}

      /* If destination is volatile, invalidate it and then do no further
	 processing for this assignment.  */

      else if (do_not_record)
	{
	  if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG
	      || GET_CODE (dest) == MEM)
	    invalidate (dest, VOIDmode);
	  else if (GET_CODE (dest) == STRICT_LOW_PART
		   || GET_CODE (dest) == ZERO_EXTRACT)
	    invalidate (XEXP (dest, 0), GET_MODE (dest));
	  sets[i].rtl = 0;
	}

      if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
	sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);

#ifdef HAVE_cc0
      /* If setting CC0, record what it was set to, or a constant, if it
	 is equivalent to a constant.  If it is being set to a floating-point
	 value, make a COMPARE with the appropriate constant of 0.  If we
	 don't do this, later code can interpret this as a test against
	 const0_rtx, which can cause problems if we try to put it into an
	 insn as a floating-point operand.  */
      if (dest == cc0_rtx)
	{
	  this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
	  this_insn_cc0_mode = mode;
	  if (FLOAT_MODE_P (mode))
	    this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
					     CONST0_RTX (mode));
	}
#endif
    }

  /* Now enter all non-volatile source expressions in the hash table
     if they are not already present.
     Record their equivalence classes in src_elt.
     This way we can insert the corresponding destinations into
     the same classes even if the actual sources are no longer in them
     (having been invalidated).  */

  if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
      && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
    {
      register struct table_elt *elt;
      register struct table_elt *classp = sets[0].src_elt;
      rtx dest = SET_DEST (sets[0].rtl);
      enum machine_mode eqvmode = GET_MODE (dest);

      if (GET_CODE (dest) == STRICT_LOW_PART)
	{
	  eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
	  classp = 0;
	}
      if (insert_regs (src_eqv, classp, 0))
	{
	  rehash_using_reg (src_eqv);
	  src_eqv_hash = HASH (src_eqv, eqvmode);
	}
      elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
      elt->in_memory = src_eqv_in_memory;
      elt->in_struct = src_eqv_in_struct;
      src_eqv_elt = elt;

      /* Check to see if src_eqv_elt is the same as a set source which
	 does not yet have an elt, and if so set the elt of the set source
	 to src_eqv_elt.  */
      for (i = 0; i < n_sets; i++)
	if (sets[i].rtl && sets[i].src_elt == 0
	    && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
	  sets[i].src_elt = src_eqv_elt;
    }

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl && ! sets[i].src_volatile
	&& ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
      {
	if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
	  {
	    /* REG_EQUAL in setting a STRICT_LOW_PART
	       gives an equivalent for the entire destination register,
	       not just for the subreg being stored in now.
	       This is a more interesting equivalence, so we arrange later
	       to treat the entire reg as the destination.  */
	    sets[i].src_elt = src_eqv_elt;
	    sets[i].src_hash = src_eqv_hash;
	  }
	else
	  {
	    /* Insert source and constant equivalent into hash table, if not
	       already present.  */
	    register struct table_elt *classp = src_eqv_elt;
	    register rtx src = sets[i].src;
	    register rtx dest = SET_DEST (sets[i].rtl);
	    enum machine_mode mode
	      = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);

	    /* Don't put a hard register source into the table if this is
	       the last insn of a libcall.  */
	    if (sets[i].src_elt == 0
		&& (GET_CODE (src) != REG
		    || REGNO (src) >= FIRST_PSEUDO_REGISTER
		    || ! find_reg_note (insn, REG_RETVAL, NULL_RTX)))
	      {
		register struct table_elt *elt;

		/* Note that these insert_regs calls cannot remove
		   any of the src_elt's, because they would have failed to
		   match if not still valid.  */
		if (insert_regs (src, classp, 0))
		  {
		    rehash_using_reg (src);
		    sets[i].src_hash = HASH (src, mode);
		  }
		elt = insert (src, classp, sets[i].src_hash, mode);
		elt->in_memory = sets[i].src_in_memory;
		elt->in_struct = sets[i].src_in_struct;
		sets[i].src_elt = classp = elt;
	      }

	    if (sets[i].src_const && sets[i].src_const_elt == 0
		&& src != sets[i].src_const
		&& ! rtx_equal_p (sets[i].src_const, src))
	      sets[i].src_elt = insert (sets[i].src_const, classp,
					sets[i].src_const_hash, mode);
	  }
      }
    else if (sets[i].src_elt == 0)
      /* If we did not insert the source into the hash table (e.g., it was
	 volatile), note the equivalence class for the REG_EQUAL value, if any,
	 so that the destination goes into that class.  */
      sets[i].src_elt = src_eqv_elt;

  invalidate_from_clobbers (x);

  /* Some registers are invalidated by subroutine calls.  Memory is 
     invalidated by non-constant calls.  */

  if (GET_CODE (insn) == CALL_INSN)
    {
      if (! CONST_CALL_P (insn))
	invalidate_memory ();
      invalidate_for_call ();
    }

  /* Now invalidate everything set by this instruction.
     If a SUBREG or other funny destination is being set,
     sets[i].rtl is still nonzero, so here we invalidate the reg
     a part of which is being set.  */

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl)
      {
	/* We can't use the inner dest, because the mode associated with
	   a ZERO_EXTRACT is significant.  */
	register rtx dest = SET_DEST (sets[i].rtl);

	/* Needed for registers to remove the register from its
	   previous quantity's chain.
	   Needed for memory if this is a nonvarying address, unless
	   we have just done an invalidate_memory that covers even those.  */
	if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG
	    || GET_CODE (dest) == MEM)
	  invalidate (dest, VOIDmode);
	else if (GET_CODE (dest) == STRICT_LOW_PART
		 || GET_CODE (dest) == ZERO_EXTRACT)
	  invalidate (XEXP (dest, 0), GET_MODE (dest));
      }

  /* A volatile ASM invalidates everything.  */
  if (GET_CODE (insn) == INSN
      && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
      && MEM_VOLATILE_P (PATTERN (insn)))
    flush_hash_table ();

  /* Make sure registers mentioned in destinations
     are safe for use in an expression to be inserted.
     This removes from the hash table
     any invalid entry that refers to one of these registers.

     We don't care about the return value from mention_regs because
     we are going to hash the SET_DEST values unconditionally.  */

  for (i = 0; i < n_sets; i++)
    {
      if (sets[i].rtl)
	{
	  rtx x = SET_DEST (sets[i].rtl);

	  if (GET_CODE (x) != REG)
	    mention_regs (x);
	  else
	    {
	      /* We used to rely on all references to a register becoming
		 inaccessible when a register changes to a new quantity,
		 since that changes the hash code.  However, that is not
		 safe, since after NBUCKETS new quantities we get a
		 hash 'collision' of a register with its own invalid
		 entries.  And since SUBREGs have been changed not to
		 change their hash code with the hash code of the register,
		 it wouldn't work any longer at all.  So we have to check
		 for any invalid references lying around now.
		 This code is similar to the REG case in mention_regs,
		 but it knows that reg_tick has been incremented, and
		 it leaves reg_in_table as -1 .  */
	      register int regno = REGNO (x);
	      register int endregno
		= regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
			   : HARD_REGNO_NREGS (regno, GET_MODE (x)));
	      int i;

	      for (i = regno; i < endregno; i++)
		{
		  if (REG_IN_TABLE (i) >= 0)
		    {
		      remove_invalid_refs (i);
		      REG_IN_TABLE (i) = -1;
		    }
		}
	    }
	}
    }

  /* We may have just removed some of the src_elt's from the hash table.
     So replace each one with the current head of the same class.  */

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl)
      {
	if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
	  /* If elt was removed, find current head of same class,
	     or 0 if nothing remains of that class.  */
	  {
	    register struct table_elt *elt = sets[i].src_elt;

	    while (elt && elt->prev_same_value)
	      elt = elt->prev_same_value;

	    while (elt && elt->first_same_value == 0)
	      elt = elt->next_same_value;
	    sets[i].src_elt = elt ? elt->first_same_value : 0;
	  }
      }

  /* Now insert the destinations into their equivalence classes.  */

  for (i = 0; i < n_sets; i++)
    if (sets[i].rtl)
      {
	register rtx dest = SET_DEST (sets[i].rtl);
	rtx inner_dest = sets[i].inner_dest;
	register struct table_elt *elt;

	/* Don't record value if we are not supposed to risk allocating
	   floating-point values in registers that might be wider than
	   memory.  */
	if ((flag_float_store
	     && GET_CODE (dest) == MEM
	     && FLOAT_MODE_P (GET_MODE (dest)))
	    /* Don't record BLKmode values, because we don't know the
	       size of it, and can't be sure that other BLKmode values
	       have the same or smaller size.  */
	    || GET_MODE (dest) == BLKmode
	    /* Don't record values of destinations set inside a libcall block
	       since we might delete the libcall.  Things should have been set
	       up so we won't want to reuse such a value, but we play it safe
	       here.  */
	    || libcall_insn
	    /* If we didn't put a REG_EQUAL value or a source into the hash
	       table, there is no point is recording DEST.  */
	    || sets[i].src_elt == 0
	    /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
	       or SIGN_EXTEND, don't record DEST since it can cause
	       some tracking to be wrong.

	       ??? Think about this more later.  */
	    || (GET_CODE (dest) == SUBREG
		&& (GET_MODE_SIZE (GET_MODE (dest))
		    > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
		&& (GET_CODE (sets[i].src) == SIGN_EXTEND
		    || GET_CODE (sets[i].src) == ZERO_EXTEND)))
	  continue;

	/* STRICT_LOW_PART isn't part of the value BEING set,
	   and neither is the SUBREG inside it.
	   Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT.  */
	if (GET_CODE (dest) == STRICT_LOW_PART)
	  dest = SUBREG_REG (XEXP (dest, 0));

	if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
	  /* Registers must also be inserted into chains for quantities.  */
	  if (insert_regs (dest, sets[i].src_elt, 1))
	    {
	      /* If `insert_regs' changes something, the hash code must be
		 recalculated.  */
	      rehash_using_reg (dest);
	      sets[i].dest_hash = HASH (dest, GET_MODE (dest));
	    }

	if (GET_CODE (inner_dest) == MEM
	    && GET_CODE (XEXP (inner_dest, 0)) == ADDRESSOF)
	  /* Given (SET (MEM (ADDRESSOF (X))) Y) we don't want to say
	     that (MEM (ADDRESSOF (X))) is equivalent to Y. 
	     Consider the case in which the address of the MEM is
	     passed to a function, which alters the MEM.  Then, if we
	     later use Y instead of the MEM we'll miss the update.  */
	  elt = insert (dest, 0, sets[i].dest_hash, GET_MODE (dest));
	else
	  elt = insert (dest, sets[i].src_elt,
			sets[i].dest_hash, GET_MODE (dest));

	elt->in_memory = (GET_CODE (sets[i].inner_dest) == MEM
			  && (! RTX_UNCHANGING_P (sets[i].inner_dest)
			      || FIXED_BASE_PLUS_P (XEXP (sets[i].inner_dest,
							  0))));

	if (elt->in_memory)
	  {
	    /* This implicitly assumes a whole struct
	       need not have MEM_IN_STRUCT_P.
	       But a whole struct is *supposed* to have MEM_IN_STRUCT_P.  */
	    elt->in_struct = (MEM_IN_STRUCT_P (sets[i].inner_dest)
			      || sets[i].inner_dest != SET_DEST (sets[i].rtl));
	  }

	/* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
	   narrower than M2, and both M1 and M2 are the same number of words,
	   we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
	   make that equivalence as well.

	   However, BAR may have equivalences for which gen_lowpart_if_possible
	   will produce a simpler value than gen_lowpart_if_possible applied to
	   BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
	   BAR's equivalences.  If we don't get a simplified form, make 
	   the SUBREG.  It will not be used in an equivalence, but will
	   cause two similar assignments to be detected.

	   Note the loop below will find SUBREG_REG (DEST) since we have
	   already entered SRC and DEST of the SET in the table.  */

	if (GET_CODE (dest) == SUBREG
	    && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
		 / UNITS_PER_WORD)
		== (GET_MODE_SIZE (GET_MODE (dest)) - 1)/ UNITS_PER_WORD)
	    && (GET_MODE_SIZE (GET_MODE (dest))
		>= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
	    && sets[i].src_elt != 0)
	  {
	    enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
	    struct table_elt *elt, *classp = 0;

	    for (elt = sets[i].src_elt->first_same_value; elt;
		 elt = elt->next_same_value)
	      {
		rtx new_src = 0;
		unsigned src_hash;
		struct table_elt *src_elt;

		/* Ignore invalid entries.  */
		if (GET_CODE (elt->exp) != REG
		    && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
		  continue;

		new_src = gen_lowpart_if_possible (new_mode, elt->exp);
		if (new_src == 0)
		  new_src = gen_rtx_SUBREG (new_mode, elt->exp, 0);

		src_hash = HASH (new_src, new_mode);
		src_elt = lookup (new_src, src_hash, new_mode);

		/* Put the new source in the hash table is if isn't
		   already.  */
		if (src_elt == 0)
		  {
		    if (insert_regs (new_src, classp, 0))
		      {
			rehash_using_reg (new_src);
			src_hash = HASH (new_src, new_mode);
		      }
		    src_elt = insert (new_src, classp, src_hash, new_mode);
		    src_elt->in_memory = elt->in_memory;
		    src_elt->in_struct = elt->in_struct;
		  }
		else if (classp && classp != src_elt->first_same_value)
		  /* Show that two things that we've seen before are 
		     actually the same.  */
		  merge_equiv_classes (src_elt, classp);

		classp = src_elt->first_same_value;
		/* Ignore invalid entries.  */
		while (classp
		       && GET_CODE (classp->exp) != REG
		       && ! exp_equiv_p (classp->exp, classp->exp, 1, 0))
		  classp = classp->next_same_value;
	      }
	  }
      }

  /* Special handling for (set REG0 REG1)
     where REG0 is the "cheapest", cheaper than REG1.
     After cse, REG1 will probably not be used in the sequel, 
     so (if easily done) change this insn to (set REG1 REG0) and
     replace REG1 with REG0 in the previous insn that computed their value.
     Then REG1 will become a dead store and won't cloud the situation
     for later optimizations.

     Do not make this change if REG1 is a hard register, because it will
     then be used in the sequel and we may be changing a two-operand insn
     into a three-operand insn.

     Also do not do this if we are operating on a copy of INSN.

     Also don't do this if INSN ends a libcall; this would cause an unrelated
     register to be set in the middle of a libcall, and we then get bad code
     if the libcall is deleted.  */

  if (n_sets == 1 && sets[0].rtl && GET_CODE (SET_DEST (sets[0].rtl)) == REG
      && NEXT_INSN (PREV_INSN (insn)) == insn
      && GET_CODE (SET_SRC (sets[0].rtl)) == REG
      && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
      && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl)))
      && (qty_first_reg[REG_QTY (REGNO (SET_SRC (sets[0].rtl)))]
	  == REGNO (SET_DEST (sets[0].rtl)))
      && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
    {
      rtx prev = PREV_INSN (insn);
      while (prev && GET_CODE (prev) == NOTE)
	prev = PREV_INSN (prev);

      if (prev && GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SET
	  && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl))
	{
	  rtx dest = SET_DEST (sets[0].rtl);
	  rtx note = find_reg_note (prev, REG_EQUIV, NULL_RTX);

	  validate_change (prev, & SET_DEST (PATTERN (prev)), dest, 1);
	  validate_change (insn, & SET_DEST (sets[0].rtl),
			   SET_SRC (sets[0].rtl), 1);
	  validate_change (insn, & SET_SRC (sets[0].rtl), dest, 1);
	  apply_change_group ();

	  /* If REG1 was equivalent to a constant, REG0 is not.  */
	  if (note)
	    PUT_REG_NOTE_KIND (note, REG_EQUAL);

	  /* If there was a REG_WAS_0 note on PREV, remove it.  Move
	     any REG_WAS_0 note on INSN to PREV.  */
	  note = find_reg_note (prev, REG_WAS_0, NULL_RTX);
	  if (note)
	    remove_note (prev, note);

	  note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
	  if (note)
	    {
	      remove_note (insn, note);
	      XEXP (note, 1) = REG_NOTES (prev);
	      REG_NOTES (prev) = note;
	    }

	  /* If INSN has a REG_EQUAL note, and this note mentions REG0,
	     then we must delete it, because the value in REG0 has changed.  */
	  note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
	  if (note && reg_mentioned_p (dest, XEXP (note, 0)))
	    remove_note (insn, note);
	}
    }

  /* If this is a conditional jump insn, record any known equivalences due to
     the condition being tested.  */

  last_jump_equiv_class = 0;
  if (GET_CODE (insn) == JUMP_INSN
      && n_sets == 1 && GET_CODE (x) == SET
      && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
    record_jump_equiv (insn, 0);

#ifdef HAVE_cc0
  /* If the previous insn set CC0 and this insn no longer references CC0,
     delete the previous insn.  Here we use the fact that nothing expects CC0
     to be valid over an insn, which is true until the final pass.  */
  if (prev_insn && GET_CODE (prev_insn) == INSN
      && (tem = single_set (prev_insn)) != 0
      && SET_DEST (tem) == cc0_rtx
      && ! reg_mentioned_p (cc0_rtx, x))
    {
      PUT_CODE (prev_insn, NOTE);
      NOTE_LINE_NUMBER (prev_insn) = NOTE_INSN_DELETED;
      NOTE_SOURCE_FILE (prev_insn) = 0;
    }

  prev_insn_cc0 = this_insn_cc0;
  prev_insn_cc0_mode = this_insn_cc0_mode;
#endif

  prev_insn = insn;
}

/* Remove from the hash table all expressions that reference memory.  */
static void
invalidate_memory ()
{
  register int i;
  register struct table_elt *p, *next;

  for (i = 0; i < NBUCKETS; i++)
    for (p = table[i]; p; p = next)
      {
	next = p->next_same_hash;
	if (p->in_memory)
	  remove_from_table (p, i);
      }
}

/* XXX ??? The name of this function bears little resemblance to
   what this function actually does.  FIXME.  */
static int
note_mem_written (addr)
     register rtx addr;
{
  /* Pushing or popping the stack invalidates just the stack pointer.  */
  if ((GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
       || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
      && GET_CODE (XEXP (addr, 0)) == REG
      && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
    {
      if (REG_TICK (STACK_POINTER_REGNUM) >= 0)
	REG_TICK (STACK_POINTER_REGNUM)++;

      /* This should be *very* rare.  */
      if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
	invalidate (stack_pointer_rtx, VOIDmode);
      return 1;
    }
  return 0;
}

/* Perform invalidation on the basis of everything about an insn
   except for invalidating the actual places that are SET in it.
   This includes the places CLOBBERed, and anything that might
   alias with something that is SET or CLOBBERed.

   X is the pattern of the insn.  */

static void
invalidate_from_clobbers (x)
     rtx x;
{
  if (GET_CODE (x) == CLOBBER)
    {
      rtx ref = XEXP (x, 0);
      if (ref)
	{
	  if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
	      || GET_CODE (ref) == MEM)
	    invalidate (ref, VOIDmode);
	  else if (GET_CODE (ref) == STRICT_LOW_PART
		   || GET_CODE (ref) == ZERO_EXTRACT)
	    invalidate (XEXP (ref, 0), GET_MODE (ref));
	}
    }
  else if (GET_CODE (x) == PARALLEL)
    {
      register int i;
      for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
	{
	  register rtx y = XVECEXP (x, 0, i);
	  if (GET_CODE (y) == CLOBBER)
	    {
	      rtx ref = XEXP (y, 0);
	      if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
		  || GET_CODE (ref) == MEM)
		invalidate (ref, VOIDmode);
	      else if (GET_CODE (ref) == STRICT_LOW_PART
		       || GET_CODE (ref) == ZERO_EXTRACT)
		invalidate (XEXP (ref, 0), GET_MODE (ref));
	    }
	}
    }
}

/* Process X, part of the REG_NOTES of an insn.  Look at any REG_EQUAL notes
   and replace any registers in them with either an equivalent constant
   or the canonical form of the register.  If we are inside an address,
   only do this if the address remains valid.

   OBJECT is 0 except when within a MEM in which case it is the MEM.

   Return the replacement for X.  */

static rtx
cse_process_notes (x, object)
     rtx x;
     rtx object;
{
  enum rtx_code code = GET_CODE (x);
  const char *fmt = GET_RTX_FORMAT (code);
  int i;

  switch (code)
    {
    case CONST_INT:
    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
    case CONST_DOUBLE:
    case PC:
    case CC0:
    case LO_SUM:
      return x;

    case MEM:
      XEXP (x, 0) = cse_process_notes (XEXP (x, 0), x);
      return x;

    case EXPR_LIST:
    case INSN_LIST:
      if (REG_NOTE_KIND (x) == REG_EQUAL)
	XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
      if (XEXP (x, 1))
	XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
      return x;

    case SIGN_EXTEND:
    case ZERO_EXTEND:
    case SUBREG:
      {
	rtx new = cse_process_notes (XEXP (x, 0), object);
	/* We don't substitute VOIDmode constants into these rtx,
	   since they would impede folding.  */
	if (GET_MODE (new) != VOIDmode)
	  validate_change (object, &XEXP (x, 0), new, 0);
	return x;
      }

    case REG:
      i = REG_QTY (REGNO (x));

      /* Return a constant or a constant register.  */
      if (REGNO_QTY_VALID_P (REGNO (x))
	  && qty_const[i] != 0
	  && (CONSTANT_P (qty_const[i])
	      || GET_CODE (qty_const[i]) == REG))
	{
	  rtx new = gen_lowpart_if_possible (GET_MODE (x), qty_const[i]);
	  if (new)
	    return new;
	}

      /* Otherwise, canonicalize this register.  */
      return canon_reg (x, NULL_RTX);
      
    default:
      break;
    }

  for (i = 0; i < GET_RTX_LENGTH (code); i++)
    if (fmt[i] == 'e')
      validate_change (object, &XEXP (x, i),
		       cse_process_notes (XEXP (x, i), object), 0);

  return x;
}

/* Find common subexpressions between the end test of a loop and the beginning
   of the loop.  LOOP_START is the CODE_LABEL at the start of a loop.

   Often we have a loop where an expression in the exit test is used
   in the body of the loop.  For example "while (*p) *q++ = *p++;".
   Because of the way we duplicate the loop exit test in front of the loop,
   however, we don't detect that common subexpression.  This will be caught
   when global cse is implemented, but this is a quite common case.

   This function handles the most common cases of these common expressions.
   It is called after we have processed the basic block ending with the
   NOTE_INSN_LOOP_END note that ends a loop and the previous JUMP_INSN
   jumps to a label used only once.  */

static void
cse_around_loop (loop_start)
     rtx loop_start;
{
  rtx insn;
  int i;
  struct table_elt *p;

  /* If the jump at the end of the loop doesn't go to the start, we don't
     do anything.  */
  for (insn = PREV_INSN (loop_start);
       insn && (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) >= 0);
       insn = PREV_INSN (insn))
    ;

  if (insn == 0
      || GET_CODE (insn) != NOTE
      || NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG)
    return;

  /* If the last insn of the loop (the end test) was an NE comparison,
     we will interpret it as an EQ comparison, since we fell through
     the loop.  Any equivalences resulting from that comparison are
     therefore not valid and must be invalidated.  */
  if (last_jump_equiv_class)
    for (p = last_jump_equiv_class->first_same_value; p;
	 p = p->next_same_value)
      {
        if (GET_CODE (p->exp) == MEM || GET_CODE (p->exp) == REG
	    || (GET_CODE (p->exp) == SUBREG
	        && GET_CODE (SUBREG_REG (p->exp)) == REG))
	  invalidate (p->exp, VOIDmode);
        else if (GET_CODE (p->exp) == STRICT_LOW_PART
	         || GET_CODE (p->exp) == ZERO_EXTRACT)
	  invalidate (XEXP (p->exp, 0), GET_MODE (p->exp));
      }

  /* Process insns starting after LOOP_START until we hit a CALL_INSN or
     a CODE_LABEL (we could handle a CALL_INSN, but it isn't worth it).

     The only thing we do with SET_DEST is invalidate entries, so we
     can safely process each SET in order.  It is slightly less efficient
     to do so, but we only want to handle the most common cases.

     The gen_move_insn call in cse_set_around_loop may create new pseudos.
     These pseudos won't have valid entries in any of the tables indexed
     by register number, such as reg_qty.  We avoid out-of-range array
     accesses by not processing any instructions created after cse started.  */

  for (insn = NEXT_INSN (loop_start);
       GET_CODE (insn) != CALL_INSN && GET_CODE (insn) != CODE_LABEL
       && INSN_UID (insn) < max_insn_uid
       && ! (GET_CODE (insn) == NOTE
	     && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
       insn = NEXT_INSN (insn))
    {
      if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
	  && (GET_CODE (PATTERN (insn)) == SET
	      || GET_CODE (PATTERN (insn)) == CLOBBER))
	cse_set_around_loop (PATTERN (insn), insn, loop_start);
      else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
	       && GET_CODE (PATTERN (insn)) == PARALLEL)
	for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
	  if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET
	      || GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
	    cse_set_around_loop (XVECEXP (PATTERN (insn), 0, i), insn,
				 loop_start);
    }
}

/* Process one SET of an insn that was skipped.  We ignore CLOBBERs
   since they are done elsewhere.  This function is called via note_stores.  */

static void
invalidate_skipped_set (dest, set)
     rtx set;
     rtx dest;
{
  enum rtx_code code = GET_CODE (dest);

  if (code == MEM
      && ! note_mem_written (dest)	/* If this is not a stack push ... */
      /* There are times when an address can appear varying and be a PLUS
	 during this scan when it would be a fixed address were we to know
	 the proper equivalences.  So invalidate all memory if there is
	 a BLKmode or nonscalar memory reference or a reference to a
	 variable address.  */
      && (MEM_IN_STRUCT_P (dest) || GET_MODE (dest) == BLKmode
	  || cse_rtx_varies_p (XEXP (dest, 0))))
    {
      invalidate_memory ();
      return;
    }

  if (GET_CODE (set) == CLOBBER
#ifdef HAVE_cc0
      || dest == cc0_rtx
#endif
      || dest == pc_rtx)
    return;

  if (code == STRICT_LOW_PART || code == ZERO_EXTRACT)
    invalidate (XEXP (dest, 0), GET_MODE (dest));
  else if (code == REG || code == SUBREG || code == MEM)
    invalidate (dest, VOIDmode);
}

/* Invalidate all insns from START up to the end of the function or the
   next label.  This called when we wish to CSE around a block that is
   conditionally executed.  */

static void
invalidate_skipped_block (start)
     rtx start;
{
  rtx insn;

  for (insn = start; insn && GET_CODE (insn) != CODE_LABEL;
       insn = NEXT_INSN (insn))
    {
      if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
	continue;

      if (GET_CODE (insn) == CALL_INSN)
	{
	  if (! CONST_CALL_P (insn))
	    invalidate_memory ();
	  invalidate_for_call ();
	}

      invalidate_from_clobbers (PATTERN (insn));
      note_stores (PATTERN (insn), invalidate_skipped_set);
    }
}

/* Used for communication between the following two routines; contains a
   value to be checked for modification.  */

static rtx cse_check_loop_start_value;

/* If modifying X will modify the value in CSE_CHECK_LOOP_START_VALUE,
   indicate that fact by setting CSE_CHECK_LOOP_START_VALUE to 0.  */

static void
cse_check_loop_start (x, set)
     rtx x;
     rtx set ATTRIBUTE_UNUSED;
{
  if (cse_check_loop_start_value == 0
      || GET_CODE (x) == CC0 || GET_CODE (x) == PC)
    return;

  if ((GET_CODE (x) == MEM && GET_CODE (cse_check_loop_start_value) == MEM)
      || reg_overlap_mentioned_p (x, cse_check_loop_start_value))
    cse_check_loop_start_value = 0;
}

/* X is a SET or CLOBBER contained in INSN that was found near the start of
   a loop that starts with the label at LOOP_START.

   If X is a SET, we see if its SET_SRC is currently in our hash table.
   If so, we see if it has a value equal to some register used only in the
   loop exit code (as marked by jump.c).

   If those two conditions are true, we search backwards from the start of
   the loop to see if that same value was loaded into a register that still
   retains its value at the start of the loop.

   If so, we insert an insn after the load to copy the destination of that
   load into the equivalent register and (try to) replace our SET_SRC with that
   register.

   In any event, we invalidate whatever this SET or CLOBBER modifies.  */

static void
cse_set_around_loop (x, insn, loop_start)
     rtx x;
     rtx insn;
     rtx loop_start;
{
  struct table_elt *src_elt;

  /* If this is a SET, see if we can replace SET_SRC, but ignore SETs that
     are setting PC or CC0 or whose SET_SRC is already a register.  */
  if (GET_CODE (x) == SET
      && GET_CODE (SET_DEST (x)) != PC && GET_CODE (SET_DEST (x)) != CC0
      && GET_CODE (SET_SRC (x)) != REG)
    {
      src_elt = lookup (SET_SRC (x),
			HASH (SET_SRC (x), GET_MODE (SET_DEST (x))),
			GET_MODE (SET_DEST (x)));

      if (src_elt)
	for (src_elt = src_elt->first_same_value; src_elt;
	     src_elt = src_elt->next_same_value)
	  if (GET_CODE (src_elt->exp) == REG && REG_LOOP_TEST_P (src_elt->exp)
	      && COST (src_elt->exp) < COST (SET_SRC (x)))
	    {
	      rtx p, set;

	      /* Look for an insn in front of LOOP_START that sets
		 something in the desired mode to SET_SRC (x) before we hit
		 a label or CALL_INSN.  */

	      for (p = prev_nonnote_insn (loop_start);
		   p && GET_CODE (p) != CALL_INSN
		   && GET_CODE (p) != CODE_LABEL;
		   p = prev_nonnote_insn  (p))
		if ((set = single_set (p)) != 0
		    && GET_CODE (SET_DEST (set)) == REG
		    && GET_MODE (SET_DEST (set)) == src_elt->mode
		    && rtx_equal_p (SET_SRC (set), SET_SRC (x)))
		  {
		    /* We now have to ensure that nothing between P
		       and LOOP_START modified anything referenced in
		       SET_SRC (x).  We know that nothing within the loop
		       can modify it, or we would have invalidated it in
		       the hash table.  */
		    rtx q;

		    cse_check_loop_start_value = SET_SRC (x);
		    for (q = p; q != loop_start; q = NEXT_INSN (q))
		      if (GET_RTX_CLASS (GET_CODE (q)) == 'i')
			note_stores (PATTERN (q), cse_check_loop_start);

		    /* If nothing was changed and we can replace our
		       SET_SRC, add an insn after P to copy its destination
		       to what we will be replacing SET_SRC with.  */
		    if (cse_check_loop_start_value
			&& validate_change (insn, &SET_SRC (x),
					    src_elt->exp, 0))
		      {
			/* If this creates new pseudos, this is unsafe,
			   because the regno of new pseudo is unsuitable
			   to index into reg_qty when cse_insn processes
			   the new insn.  Therefore, if a new pseudo was
			   created, discard this optimization.  */
			int nregs = max_reg_num ();
			rtx move
			  = gen_move_insn (src_elt->exp, SET_DEST (set));
			if (nregs != max_reg_num ())
			  {
			    if (! validate_change (insn, &SET_SRC (x),
						   SET_SRC (set), 0))
			      abort ();
			  }
			else
			  emit_insn_after (move, p);
		      }
		    break;
		  }
	    }
    }

  /* Now invalidate anything modified by X.  */
  note_mem_written (SET_DEST (x));

  /* See comment on similar code in cse_insn for explanation of these tests.  */
  if (GET_CODE (SET_DEST (x)) == REG || GET_CODE (SET_DEST (x)) == SUBREG
      || GET_CODE (SET_DEST (x)) == MEM)
    invalidate (SET_DEST (x), VOIDmode);
  else if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
	   || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
    invalidate (XEXP (SET_DEST (x), 0), GET_MODE (SET_DEST (x)));
}

/* Find the end of INSN's basic block and return its range,
   the total number of SETs in all the insns of the block, the last insn of the
   block, and the branch path.

   The branch path indicates which branches should be followed.  If a non-zero
   path size is specified, the block should be rescanned and a different set
   of branches will be taken.  The branch path is only used if
   FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is non-zero.

   DATA is a pointer to a struct cse_basic_block_data, defined below, that is
   used to describe the block.  It is filled in with the information about
   the current block.  The incoming structure's branch path, if any, is used
   to construct the output branch path.  */

void
cse_end_of_basic_block (insn, data, follow_jumps, after_loop, skip_blocks)
     rtx insn;
     struct cse_basic_block_data *data;
     int follow_jumps;
     int after_loop;
     int skip_blocks;
{
  rtx p = insn, q;
  int nsets = 0;
  int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
  rtx next = GET_RTX_CLASS (GET_CODE (insn)) == 'i' ? insn : next_real_insn (insn);
  int path_size = data->path_size;
  int path_entry = 0;
  int i;

  /* Update the previous branch path, if any.  If the last branch was
     previously TAKEN, mark it NOT_TAKEN.  If it was previously NOT_TAKEN,
     shorten the path by one and look at the previous branch.  We know that
     at least one branch must have been taken if PATH_SIZE is non-zero.  */
  while (path_size > 0)
    {
      if (data->path[path_size - 1].status != NOT_TAKEN)
	{
	  data->path[path_size - 1].status = NOT_TAKEN;
	  break;
	}
      else
	path_size--;
    }

  /* If the first instruction is marked with QImode, that means we've
     already processed this block.  Our caller will look at DATA->LAST
     to figure out where to go next.  We want to return the next block
     in the instruction stream, not some branched-to block somewhere
     else.  We accomplish this by pretending our called forbid us to
     follow jumps, or skip blocks.  */
  if (GET_MODE (insn) == QImode)
    follow_jumps = skip_blocks = 0;

  /* Scan to end of this basic block.  */
  while (p && GET_CODE (p) != CODE_LABEL)
    {
      /* Don't cse out the end of a loop.  This makes a difference
	 only for the unusual loops that always execute at least once;
	 all other loops have labels there so we will stop in any case.
	 Cse'ing out the end of the loop is dangerous because it
	 might cause an invariant expression inside the loop
	 to be reused after the end of the loop.  This would make it
	 hard to move the expression out of the loop in loop.c,
	 especially if it is one of several equivalent expressions
	 and loop.c would like to eliminate it.

	 If we are running after loop.c has finished, we can ignore
	 the NOTE_INSN_LOOP_END.  */

      if (! after_loop && GET_CODE (p) == NOTE
	  && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
	break;

      /* Don't cse over a call to setjmp; on some machines (eg vax)
	 the regs restored by the longjmp come from
	 a later time than the setjmp.  */
      if (GET_CODE (p) == NOTE
	  && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
	break;

      /* A PARALLEL can have lots of SETs in it,
	 especially if it is really an ASM_OPERANDS.  */
      if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
	  && GET_CODE (PATTERN (p)) == PARALLEL)
	nsets += XVECLEN (PATTERN (p), 0);
      else if (GET_CODE (p) != NOTE)
	nsets += 1;
	
      /* Ignore insns made by CSE; they cannot affect the boundaries of
	 the basic block.  */

      if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
	high_cuid = INSN_CUID (p);
      if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
	low_cuid = INSN_CUID (p);

      /* See if this insn is in our branch path.  If it is and we are to
	 take it, do so.  */
      if (path_entry < path_size && data->path[path_entry].branch == p)
	{
	  if (data->path[path_entry].status != NOT_TAKEN)
	    p = JUMP_LABEL (p);
	  
	  /* Point to next entry in path, if any.  */
	  path_entry++;
	}

      /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
	 was specified, we haven't reached our maximum path length, there are
	 insns following the target of the jump, this is the only use of the
	 jump label, and the target label is preceded by a BARRIER.

	 Alternatively, we can follow the jump if it branches around a
	 block of code and there are no other branches into the block.
	 In this case invalidate_skipped_block will be called to invalidate any
	 registers set in the block when following the jump.  */

      else if ((follow_jumps || skip_blocks) && path_size < PATHLENGTH - 1
	       && GET_CODE (p) == JUMP_INSN
      	       && GET_CODE (PATTERN (p)) == SET
	       && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
	       && JUMP_LABEL (p) != 0
	       && LABEL_NUSES (JUMP_LABEL (p)) == 1
	       && NEXT_INSN (JUMP_LABEL (p)) != 0)
	{
	  for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
	    if ((GET_CODE (q) != NOTE
	         || NOTE_LINE_NUMBER (q) == NOTE_INSN_LOOP_END
	         || NOTE_LINE_NUMBER (q) == NOTE_INSN_SETJMP)
	        && (GET_CODE (q) != CODE_LABEL || LABEL_NUSES (q) != 0))
	      break;

	  /* If we ran into a BARRIER, this code is an extension of the
	     basic block when the branch is taken.  */
	  if (follow_jumps && q != 0 && GET_CODE (q) == BARRIER)
	    {
	      /* Don't allow ourself to keep walking around an
		 always-executed loop.  */
	      if (next_real_insn (q) == next)
		{
		  p = NEXT_INSN (p);
		  continue;
		}

	      /* Similarly, don't put a branch in our path more than once.  */
	      for (i = 0; i < path_entry; i++)
		if (data->path[i].branch == p)
		  break;

	      if (i != path_entry)
		break;

	      data->path[path_entry].branch = p;
	      data->path[path_entry++].status = TAKEN;

	      /* This branch now ends our path.  It was possible that we
		 didn't see this branch the last time around (when the
		 insn in front of the target was a JUMP_INSN that was
		 turned into a no-op).  */
	      path_size = path_entry;

	      p = JUMP_LABEL (p);
	      /* Mark block so we won't scan it again later.  */
	      PUT_MODE (NEXT_INSN (p), QImode);
	    }
	  /* Detect a branch around a block of code.  */
	  else if (skip_blocks && q != 0 && GET_CODE (q) != CODE_LABEL)
	    {
	      register rtx tmp;

	      if (next_real_insn (q) == next)
		{
		  p = NEXT_INSN (p);
		  continue;
		}

	      for (i = 0; i < path_entry; i++)
		if (data->path[i].branch == p)
		  break;

	      if (i != path_entry)
		break;

	      /* This is no_labels_between_p (p, q) with an added check for
		 reaching the end of a function (in case Q precedes P).  */
	      for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
		if (GET_CODE (tmp) == CODE_LABEL)
		  break;
	      
	      if (tmp == q)
		{
		  data->path[path_entry].branch = p;
		  data->path[path_entry++].status = AROUND;

		  path_size = path_entry;

		  p = JUMP_LABEL (p);
		  /* Mark block so we won't scan it again later.  */
		  PUT_MODE (NEXT_INSN (p), QImode);
		}
	    }
	}
      p = NEXT_INSN (p);
    }

  data->low_cuid = low_cuid;
  data->high_cuid = high_cuid;
  data->nsets = nsets;
  data->last = p;

  /* If all jumps in the path are not taken, set our path length to zero
     so a rescan won't be done.  */
  for (i = path_size - 1; i >= 0; i--)
    if (data->path[i].status != NOT_TAKEN)
      break;

  if (i == -1)
    data->path_size = 0;
  else
    data->path_size = path_size;

  /* End the current branch path.  */
  data->path[path_size].branch = 0;
}

/* Perform cse on the instructions of a function.
   F is the first instruction.
   NREGS is one plus the highest pseudo-reg number used in the instruction.

   AFTER_LOOP is 1 if this is the cse call done after loop optimization
   (only if -frerun-cse-after-loop).

   Returns 1 if jump_optimize should be redone due to simplifications
   in conditional jump instructions.  */

int
cse_main (f, nregs, after_loop, file)
     rtx f;
     int nregs;
     int after_loop;
     FILE *file;
{
  struct cse_basic_block_data val;
  register rtx insn = f;
  register int i;

  cse_jumps_altered = 0;
  recorded_label_ref = 0;
  constant_pool_entries_cost = 0;
  val.path_size = 0;

  init_recog ();
  init_alias_analysis ();

  max_reg = nregs;

  max_insn_uid = get_max_uid ();

  reg_next_eqv = (int *) alloca (nregs * sizeof (int));
  reg_prev_eqv = (int *) alloca (nregs * sizeof (int));

#ifdef LOAD_EXTEND_OP

  /* Allocate scratch rtl here.  cse_insn will fill in the memory reference
     and change the code and mode as appropriate.  */
  memory_extend_rtx = gen_rtx_ZERO_EXTEND (VOIDmode, NULL_RTX);
#endif

  /* Discard all the free elements of the previous function
     since they are allocated in the temporarily obstack.  */
  bzero ((char *) table, sizeof table);
  free_element_chain = 0;
  n_elements_made = 0;

  /* Find the largest uid.  */

  max_uid = get_max_uid ();
  uid_cuid = (int *) alloca ((max_uid + 1) * sizeof (int));
  bzero ((char *) uid_cuid, (max_uid + 1) * sizeof (int));

  /* Compute the mapping from uids to cuids.
     CUIDs are numbers assigned to insns, like uids,
     except that cuids increase monotonically through the code.
     Don't assign cuids to line-number NOTEs, so that the distance in cuids
     between two insns is not affected by -g.  */

  for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
    {
      if (GET_CODE (insn) != NOTE
	  || NOTE_LINE_NUMBER (insn) < 0)
	INSN_CUID (insn) = ++i;
      else
	/* Give a line number note the same cuid as preceding insn.  */
	INSN_CUID (insn) = i;
    }

  /* Initialize which registers are clobbered by calls.  */

  CLEAR_HARD_REG_SET (regs_invalidated_by_call);

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    if ((call_used_regs[i]
	 /* Used to check !fixed_regs[i] here, but that isn't safe;
	    fixed regs are still call-clobbered, and sched can get
	    confused if they can "live across calls".

	    The frame pointer is always preserved across calls.  The arg
	    pointer is if it is fixed.  The stack pointer usually is, unless
	    RETURN_POPS_ARGS, in which case an explicit CLOBBER
	    will be present.  If we are generating PIC code, the PIC offset
	    table register is preserved across calls.  */

	 && i != STACK_POINTER_REGNUM
	 && i != FRAME_POINTER_REGNUM
#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
	 && i != HARD_FRAME_POINTER_REGNUM
#endif
#if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
	 && ! (i == ARG_POINTER_REGNUM && fixed_regs[i])
#endif
#if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
	 && ! (i == PIC_OFFSET_TABLE_REGNUM && flag_pic)
#endif
	 )
	|| global_regs[i])
      SET_HARD_REG_BIT (regs_invalidated_by_call, i);

  if (ggc_p)
    ggc_push_context ();

  /* Loop over basic blocks.
     Compute the maximum number of qty's needed for each basic block
     (which is 2 for each SET).  */
  insn = f;
  while (insn)
    {
      cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps, after_loop,
			      flag_cse_skip_blocks);

      /* If this basic block was already processed or has no sets, skip it.  */
      if (val.nsets == 0 || GET_MODE (insn) == QImode)
	{
	  PUT_MODE (insn, VOIDmode);
	  insn = (val.last ? NEXT_INSN (val.last) : 0);
	  val.path_size = 0;
	  continue;
	}

      cse_basic_block_start = val.low_cuid;
      cse_basic_block_end = val.high_cuid;
      max_qty = val.nsets * 2;
      
      if (file)
	fnotice (file, ";; Processing block from %d to %d, %d sets.\n",
		 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
		 val.nsets);

      /* Make MAX_QTY bigger to give us room to optimize
	 past the end of this basic block, if that should prove useful.  */
      if (max_qty < 500)
	max_qty = 500;

      max_qty += max_reg;

      /* If this basic block is being extended by following certain jumps,
         (see `cse_end_of_basic_block'), we reprocess the code from the start.
         Otherwise, we start after this basic block.  */
      if (val.path_size > 0)
        cse_basic_block (insn, val.last, val.path, 0);
      else
	{
	  int old_cse_jumps_altered = cse_jumps_altered;
	  rtx temp;

	  /* When cse changes a conditional jump to an unconditional
	     jump, we want to reprocess the block, since it will give
	     us a new branch path to investigate.  */
	  cse_jumps_altered = 0;
	  temp = cse_basic_block (insn, val.last, val.path, ! after_loop);
	  if (cse_jumps_altered == 0
	      || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
	    insn = temp;

	  cse_jumps_altered |= old_cse_jumps_altered;
	}

      if (ggc_p)
	ggc_collect ();

#ifdef USE_C_ALLOCA
      alloca (0);
#endif
    }

  if (ggc_p)
    ggc_pop_context ();

  /* Tell refers_to_mem_p that qty_const info is not available.  */
  qty_const = 0;

  if (max_elements_made < n_elements_made)
    max_elements_made = n_elements_made;

  return cse_jumps_altered || recorded_label_ref;
}

/* Process a single basic block.  FROM and TO and the limits of the basic
   block.  NEXT_BRANCH points to the branch path when following jumps or
   a null path when not following jumps.

   AROUND_LOOP is non-zero if we are to try to cse around to the start of a
   loop.  This is true when we are being called for the last time on a
   block and this CSE pass is before loop.c.  */

static rtx
cse_basic_block (from, to, next_branch, around_loop)
     register rtx from, to;
     struct branch_path *next_branch;
     int around_loop;
{
  register rtx insn;
  int to_usage = 0;
  rtx libcall_insn = NULL_RTX;
  int num_insns = 0;

  /* Each of these arrays is undefined before max_reg, so only allocate
     the space actually needed and adjust the start below.  */

  qty_first_reg = (int *) alloca ((max_qty - max_reg) * sizeof (int));
  qty_last_reg = (int *) alloca ((max_qty - max_reg) * sizeof (int));
  qty_mode = (enum machine_mode *) alloca ((max_qty - max_reg)
					   * sizeof (enum machine_mode));
  qty_const = (rtx *) alloca ((max_qty - max_reg) * sizeof (rtx));
  qty_const_insn = (rtx *) alloca ((max_qty - max_reg) * sizeof (rtx));
  qty_comparison_code
    = (enum rtx_code *) alloca ((max_qty - max_reg) * sizeof (enum rtx_code));
  qty_comparison_qty = (int *) alloca ((max_qty - max_reg) * sizeof (int));
  qty_comparison_const = (rtx *) alloca ((max_qty - max_reg) * sizeof (rtx));

  qty_first_reg -= max_reg;
  qty_last_reg -= max_reg;
  qty_mode -= max_reg;
  qty_const -= max_reg;
  qty_const_insn -= max_reg;
  qty_comparison_code -= max_reg;
  qty_comparison_qty -= max_reg;
  qty_comparison_const -= max_reg;

  new_basic_block ();

  /* TO might be a label.  If so, protect it from being deleted.  */
  if (to != 0 && GET_CODE (to) == CODE_LABEL)
    ++LABEL_NUSES (to);

  for (insn = from; insn != to; insn = NEXT_INSN (insn))
    {
      register enum rtx_code code = GET_CODE (insn);

      /* If we have processed 1,000 insns, flush the hash table to
	 avoid extreme quadratic behavior.  We must not include NOTEs
	 in the count since there may be more or them when generating
	 debugging information.  If we clear the table at different
	 times, code generated with -g -O might be different than code
	 generated with -O but not -g.

	 ??? This is a real kludge and needs to be done some other way.
	 Perhaps for 2.9.  */
      if (code != NOTE && num_insns++ > 1000)
	{
	  flush_hash_table ();
	  num_insns = 0;
	}

      /* See if this is a branch that is part of the path.  If so, and it is
	 to be taken, do so.  */
      if (next_branch->branch == insn)
	{
	  enum taken status = next_branch++->status;
	  if (status != NOT_TAKEN)
	    {
	      if (status == TAKEN)
		record_jump_equiv (insn, 1);
	      else
		invalidate_skipped_block (NEXT_INSN (insn));

	      /* Set the last insn as the jump insn; it doesn't affect cc0.
		 Then follow this branch.  */
#ifdef HAVE_cc0
	      prev_insn_cc0 = 0;
#endif
	      prev_insn = insn;
	      insn = JUMP_LABEL (insn);
	      continue;
	    }
	}
        
      if (GET_MODE (insn) == QImode)
	PUT_MODE (insn, VOIDmode);

      if (GET_RTX_CLASS (code) == 'i')
	{
	  rtx p;

	  /* Process notes first so we have all notes in canonical forms when
	     looking for duplicate operations.  */

	  if (REG_NOTES (insn))
	    REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);

	  /* Track when we are inside in LIBCALL block.  Inside such a block,
	     we do not want to record destinations.  The last insn of a
	     LIBCALL block is not considered to be part of the block, since
	     its destination is the result of the block and hence should be
	     recorded.  */

	  if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
	    libcall_insn = XEXP (p, 0);
	  else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
	    libcall_insn = NULL_RTX;

	  cse_insn (insn, libcall_insn);
	}

      /* If INSN is now an unconditional jump, skip to the end of our
	 basic block by pretending that we just did the last insn in the
	 basic block.  If we are jumping to the end of our block, show
	 that we can have one usage of TO.  */

      if (simplejump_p (insn))
	{
	  if (to == 0)
	    return 0;

	  if (JUMP_LABEL (insn) == to)
	    to_usage = 1;

	  /* Maybe TO was deleted because the jump is unconditional.
	     If so, there is nothing left in this basic block.  */
	  /* ??? Perhaps it would be smarter to set TO
	     to whatever follows this insn, 
	     and pretend the basic block had always ended here.  */
	  if (INSN_DELETED_P (to))
	    break;

	  insn = PREV_INSN (to);
	}

      /* See if it is ok to keep on going past the label
	 which used to end our basic block.  Remember that we incremented
	 the count of that label, so we decrement it here.  If we made
	 a jump unconditional, TO_USAGE will be one; in that case, we don't
	 want to count the use in that jump.  */

      if (to != 0 && NEXT_INSN (insn) == to
	  && GET_CODE (to) == CODE_LABEL && --LABEL_NUSES (to) == to_usage)
	{
	  struct cse_basic_block_data val;
	  rtx prev;

	  insn = NEXT_INSN (to);

	  /* If TO was the last insn in the function, we are done.  */
	  if (insn == 0)
	    return 0;

	  /* If TO was preceded by a BARRIER we are done with this block
	     because it has no continuation.  */
	  prev = prev_nonnote_insn (to);
	  if (prev && GET_CODE (prev) == BARRIER)
	    return insn;

	  /* Find the end of the following block.  Note that we won't be
	     following branches in this case.  */
	  to_usage = 0;
	  val.path_size = 0;
	  cse_end_of_basic_block (insn, &val, 0, 0, 0);

	  /* If the tables we allocated have enough space left
	     to handle all the SETs in the next basic block,
	     continue through it.  Otherwise, return,
	     and that block will be scanned individually.  */
	  if (val.nsets * 2 + next_qty > max_qty)
	    break;

	  cse_basic_block_start = val.low_cuid;
	  cse_basic_block_end = val.high_cuid;
	  to = val.last;

	  /* Prevent TO from being deleted if it is a label.  */
	  if (to != 0 && GET_CODE (to) == CODE_LABEL)
	    ++LABEL_NUSES (to);

	  /* Back up so we process the first insn in the extension.  */
	  insn = PREV_INSN (insn);
	}
    }

  if (next_qty > max_qty)
    abort ();

  /* If we are running before loop.c, we stopped on a NOTE_INSN_LOOP_END, and
     the previous insn is the only insn that branches to the head of a loop,
     we can cse into the loop.  Don't do this if we changed the jump
     structure of a loop unless we aren't going to be following jumps.  */

  if ((cse_jumps_altered == 0
       || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
      && around_loop && to != 0
      && GET_CODE (to) == NOTE && NOTE_LINE_NUMBER (to) == NOTE_INSN_LOOP_END
      && GET_CODE (PREV_INSN (to)) == JUMP_INSN
      && JUMP_LABEL (PREV_INSN (to)) != 0
      && LABEL_NUSES (JUMP_LABEL (PREV_INSN (to))) == 1)
    cse_around_loop (JUMP_LABEL (PREV_INSN (to)));

  return to ? NEXT_INSN (to) : 0;
}

/* Count the number of times registers are used (not set) in X.
   COUNTS is an array in which we accumulate the count, INCR is how much
   we count each register usage.  

   Don't count a usage of DEST, which is the SET_DEST of a SET which 
   contains X in its SET_SRC.  This is because such a SET does not
   modify the liveness of DEST.  */

static void
count_reg_usage (x, counts, dest, incr)
     rtx x;
     int *counts;
     rtx dest;
     int incr;
{
  enum rtx_code code;
  const char *fmt;
  int i, j;

  if (x == 0)
    return;

  switch (code = GET_CODE (x))
    {
    case REG:
      if (x != dest)
	counts[REGNO (x)] += incr;
      return;

    case PC:
    case CC0:
    case CONST:
    case CONST_INT:
    case CONST_DOUBLE:
    case SYMBOL_REF:
    case LABEL_REF:
      return;

    case CLOBBER:                                                        
      /* If we are clobbering a MEM, mark any registers inside the address
         as being used.  */
      if (GET_CODE (XEXP (x, 0)) == MEM)
	count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
      return;

    case SET:
      /* Unless we are setting a REG, count everything in SET_DEST.  */
      if (GET_CODE (SET_DEST (x)) != REG)
	count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);

      /* If SRC has side-effects, then we can't delete this insn, so the
	 usage of SET_DEST inside SRC counts.

	 ??? Strictly-speaking, we might be preserving this insn
	 because some other SET has side-effects, but that's hard
	 to do and can't happen now.  */
      count_reg_usage (SET_SRC (x), counts,
		       side_effects_p (SET_SRC (x)) ? NULL_RTX : SET_DEST (x),
		       incr);
      return;

    case CALL_INSN:
      count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, NULL_RTX, incr);

      /* ... falls through ...  */
    case INSN:
    case JUMP_INSN:
      count_reg_usage (PATTERN (x), counts, NULL_RTX, incr);

      /* Things used in a REG_EQUAL note aren't dead since loop may try to
	 use them.  */

      count_reg_usage (REG_NOTES (x), counts, NULL_RTX, incr);
      return;

    case EXPR_LIST:
    case INSN_LIST:
      if (REG_NOTE_KIND (x) == REG_EQUAL
	  || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE))
	count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
      count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
      return;
      
    default:
      break;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	count_reg_usage (XEXP (x, i), counts, dest, incr);
      else if (fmt[i] == 'E')
	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
	  count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
    }
}

/* Scan all the insns and delete any that are dead; i.e., they store a register
   that is never used or they copy a register to itself.

   This is used to remove insns made obviously dead by cse, loop or other
   optimizations.  It improves the heuristics in loop since it won't try to
   move dead invariants out of loops or make givs for dead quantities.  The
   remaining passes of the compilation are also sped up.  */

void
delete_trivially_dead_insns (insns, nreg)
     rtx insns;
     int nreg;
{
  int *counts = (int *) alloca (nreg * sizeof (int));
  rtx insn, prev;
#ifdef HAVE_cc0
  rtx tem;
#endif
  int i;
  int in_libcall = 0, dead_libcall = 0;

  /* First count the number of times each register is used.  */
  bzero ((char *) counts, sizeof (int) * nreg);
  for (insn = next_real_insn (insns); insn; insn = next_real_insn (insn))
    count_reg_usage (insn, counts, NULL_RTX, 1);

  /* Go from the last insn to the first and delete insns that only set unused
     registers or copy a register to itself.  As we delete an insn, remove
     usage counts for registers it uses. 

     The first jump optimization pass may leave a real insn as the last
     insn in the function.   We must not skip that insn or we may end
     up deleting code that is not really dead.   */
  insn = get_last_insn ();
  if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
    insn = prev_real_insn (insn);

  for ( ; insn; insn = prev)
    {
      int live_insn = 0;
      rtx note;

      prev = prev_real_insn (insn);

      /* Don't delete any insns that are part of a libcall block unless
	 we can delete the whole libcall block.

	 Flow or loop might get confused if we did that.  Remember
	 that we are scanning backwards.  */
      if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
	{
	  in_libcall = 1;
	  live_insn = 1;
	  dead_libcall = 0;

	  /* See if there's a REG_EQUAL note on this insn and try to
	     replace the source with the REG_EQUAL expression.
	
	     We assume that insns with REG_RETVALs can only be reg->reg
	     copies at this point.  */
	  note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
	  if (note)
	    {
	      rtx set = single_set (insn);
	      if (set
		  && validate_change (insn, &SET_SRC (set), XEXP (note, 0), 0))
		{
		  remove_note (insn,
			       find_reg_note (insn, REG_RETVAL, NULL_RTX));
		  dead_libcall = 1;
		}
	    }
	}
      else if (in_libcall)
	live_insn = ! dead_libcall;
      else if (GET_CODE (PATTERN (insn)) == SET)
	{
	  if (GET_CODE (SET_DEST (PATTERN (insn))) == REG
	      && SET_DEST (PATTERN (insn)) == SET_SRC (PATTERN (insn)))
	    ;

#ifdef HAVE_cc0
	  else if (GET_CODE (SET_DEST (PATTERN (insn))) == CC0
		   && ! side_effects_p (SET_SRC (PATTERN (insn)))
		   && ((tem = next_nonnote_insn (insn)) == 0
		       || GET_RTX_CLASS (GET_CODE (tem)) != 'i'
		       || ! reg_referenced_p (cc0_rtx, PATTERN (tem))))
	    ;
#endif
	  else if (GET_CODE (SET_DEST (PATTERN (insn))) != REG
		   || REGNO (SET_DEST (PATTERN (insn))) < FIRST_PSEUDO_REGISTER
		   || counts[REGNO (SET_DEST (PATTERN (insn)))] != 0
		   || side_effects_p (SET_SRC (PATTERN (insn)))
		   /* An ADDRESSOF expression can turn into a use of the
		      internal arg pointer, so always consider the
		      internal arg pointer live.  If it is truly dead,
		      flow will delete the initializing insn.  */
		   || (SET_DEST (PATTERN (insn))
		       == current_function_internal_arg_pointer))
	    live_insn = 1;
	}
      else if (GET_CODE (PATTERN (insn)) == PARALLEL)
	for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
	  {
	    rtx elt = XVECEXP (PATTERN (insn), 0, i);

	    if (GET_CODE (elt) == SET)
	      {
		if (GET_CODE (SET_DEST (elt)) == REG
		    && SET_DEST (elt) == SET_SRC (elt))
		  ;

#ifdef HAVE_cc0
		else if (GET_CODE (SET_DEST (elt)) == CC0
			 && ! side_effects_p (SET_SRC (elt))
			 && ((tem = next_nonnote_insn (insn)) == 0
			     || GET_RTX_CLASS (GET_CODE (tem)) != 'i'
			     || ! reg_referenced_p (cc0_rtx, PATTERN (tem))))
		  ;
#endif
		else if (GET_CODE (SET_DEST (elt)) != REG
			 || REGNO (SET_DEST (elt)) < FIRST_PSEUDO_REGISTER
			 || counts[REGNO (SET_DEST (elt))] != 0
			 || side_effects_p (SET_SRC (elt))
			 /* An ADDRESSOF expression can turn into a use of the
			    internal arg pointer, so always consider the
			    internal arg pointer live.  If it is truly dead,
			    flow will delete the initializing insn.  */
			 || (SET_DEST (elt)
			     == current_function_internal_arg_pointer))
		  live_insn = 1;
	      }
	    else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
	      live_insn = 1;
	  }
      else
	live_insn = 1;

      /* If this is a dead insn, delete it and show registers in it aren't
	 being used.  */

      if (! live_insn)
	{
	  count_reg_usage (insn, counts, NULL_RTX, -1);
	  delete_insn (insn);
	}

      if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
	{
	  in_libcall = 0;
	  dead_libcall = 0;
	}
    }
}