1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
|
/* Specialized bits of code needed to support construction and
destruction of file-scope objects in C++ code.
Copyright (C) 1991, 1994, 1995, 1996 Free Software Foundation, Inc.
Contributed by Ron Guilmette (rfg@monkeys.com).
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* As a special exception, if you link this library with files
compiled with GCC to produce an executable, this does not cause
the resulting executable to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why
the executable file might be covered by the GNU General Public License. */
/* This file is a bit like libgcc1.c/libgcc2.c in that it is compiled
multiple times and yields multiple .o files.
This file is useful on target machines where the object file format
supports multiple "user-defined" sections (e.g. COFF, ELF, ROSE). On
such systems, this file allows us to avoid running collect (or any
other such slow and painful kludge). Additionally, if the target
system supports a .init section, this file allows us to support the
linking of C++ code with a non-C++ main program.
Note that if INIT_SECTION_ASM_OP is defined in the tm.h file, then
this file *will* make use of the .init section. If that symbol is
not defined however, then the .init section will not be used.
Currently, only ELF and COFF are supported. It is likely however that
ROSE could also be supported, if someone was willing to do the work to
make whatever (small?) adaptations are needed. (Some work may be
needed on the ROSE assembler and linker also.)
This file must be compiled with gcc. */
/* It is incorrect to include config.h here, because this file is being
compiled for the target, and hence definitions concerning only the host
do not apply. */
#include "tm.h"
/* Provide default definitions for the pseudo-ops used to switch to the
.ctors and .dtors sections.
Note that we want to give these sections the SHF_WRITE attribute
because these sections will actually contain data (i.e. tables of
addresses of functions in the current root executable or shared library
file) and, in the case of a shared library, the relocatable addresses
will have to be properly resolved/relocated (and then written into) by
the dynamic linker when it actually attaches the given shared library
to the executing process. (Note that on SVR4, you may wish to use the
`-z text' option to the ELF linker, when building a shared library, as
an additional check that you are doing everything right. But if you do
use the `-z text' option when building a shared library, you will get
errors unless the .ctors and .dtors sections are marked as writable
via the SHF_WRITE attribute.) */
#ifndef CTORS_SECTION_ASM_OP
#define CTORS_SECTION_ASM_OP ".section\t.ctors,\"aw\""
#endif
#ifndef DTORS_SECTION_ASM_OP
#define DTORS_SECTION_ASM_OP ".section\t.dtors,\"aw\""
#endif
#ifdef OBJECT_FORMAT_ELF
/* Declare a pointer to void function type. */
typedef void (*func_ptr) (void);
#define STATIC static
#else /* OBJECT_FORMAT_ELF */
#include "gbl-ctors.h"
#ifndef ON_EXIT
#define ON_EXIT(a, b)
#endif
#define STATIC
#endif /* OBJECT_FORMAT_ELF */
#ifdef CRT_BEGIN
#ifdef INIT_SECTION_ASM_OP
#ifdef OBJECT_FORMAT_ELF
/* Run all the global destructors on exit from the program. */
/* Some systems place the number of pointers in the first word of the
table. On SVR4 however, that word is -1. In all cases, the table is
null-terminated. On SVR4, we start from the beginning of the list and
invoke each per-compilation-unit destructor routine in order
until we find that null.
Note that this function MUST be static. There will be one of these
functions in each root executable and one in each shared library, but
although they all have the same code, each one is unique in that it
refers to one particular associated `__DTOR_LIST__' which belongs to the
same particular root executable or shared library file.
On some systems, this routine is run more than once from the .fini,
when exit is called recursively, so we arrange to remember where in
the list we left off processing, and we resume at that point,
should we be re-invoked. */
static func_ptr __DTOR_LIST__[];
static void
__do_global_dtors_aux ()
{
static func_ptr *p = __DTOR_LIST__ + 1;
while (*p)
{
p++;
(*(p-1)) ();
}
}
/* Stick a call to __do_global_dtors_aux into the .fini section. */
static void
fini_dummy ()
{
asm (FINI_SECTION_ASM_OP);
__do_global_dtors_aux ();
#ifdef FORCE_FINI_SECTION_ALIGN
FORCE_FINI_SECTION_ALIGN;
#endif
asm (TEXT_SECTION_ASM_OP);
}
#else /* OBJECT_FORMAT_ELF */
/* The function __do_global_ctors_aux is compiled twice (once in crtbegin.o
and once in crtend.o). It must be declared static to avoid a link
error. Here, we define __do_global_ctors as an externally callable
function. It is externally callable so that __main can invoke it when
INVOKE__main is defined. This has the additional effect of forcing cc1
to switch to the .text section. */
static void __do_global_ctors_aux ();
void __do_global_ctors ()
{
#ifdef INVOKE__main /* If __main won't actually call __do_global_ctors
then it doesn't matter what's inside the function.
The inside of __do_global_ctors_aux is called
automatically in that case.
And the Alliant fx2800 linker crashes
on this reference. So prevent the crash. */
__do_global_ctors_aux ();
#endif
}
asm (INIT_SECTION_ASM_OP); /* cc1 doesn't know that we are switching! */
/* On some svr4 systems, the initial .init section preamble code provided in
crti.o may do something, such as bump the stack, which we have to
undo before we reach the function prologue code for __do_global_ctors
(directly below). For such systems, define the macro INIT_SECTION_PREAMBLE
to expand into the code needed to undo the actions of the crti.o file. */
#ifdef INIT_SECTION_PREAMBLE
INIT_SECTION_PREAMBLE;
#endif
/* A routine to invoke all of the global constructors upon entry to the
program. We put this into the .init section (for systems that have
such a thing) so that we can properly perform the construction of
file-scope static-storage C++ objects within shared libraries. */
static void
__do_global_ctors_aux () /* prologue goes in .init section */
{
#ifdef FORCE_INIT_SECTION_ALIGN
FORCE_INIT_SECTION_ALIGN; /* Explicit align before switch to .text */
#endif
asm (TEXT_SECTION_ASM_OP); /* don't put epilogue and body in .init */
DO_GLOBAL_CTORS_BODY;
ON_EXIT (__do_global_dtors, 0);
}
#endif /* OBJECT_FORMAT_ELF */
#else /* defined(INIT_SECTION_ASM_OP) */
#ifdef HAS_INIT_SECTION
/* This case is used by the Irix 6 port, which supports named sections but
not an SVR4-style .fini section. __do_global_dtors can be non-static
in this case because the -fini switch to ld binds strongly. */
static func_ptr __DTOR_LIST__[];
void
__do_global_dtors ()
{
func_ptr *p;
for (p = __DTOR_LIST__ + 1; *p; p++)
(*p) ();
}
#endif
#endif /* defined(INIT_SECTION_ASM_OP) */
/* Force cc1 to switch to .data section. */
static func_ptr force_to_data[0] = { };
/* NOTE: In order to be able to support SVR4 shared libraries, we arrange
to have one set of symbols { __CTOR_LIST__, __DTOR_LIST__, __CTOR_END__,
__DTOR_END__ } per root executable and also one set of these symbols
per shared library. So in any given whole process image, we may have
multiple definitions of each of these symbols. In order to prevent
these definitions from conflicting with one another, and in order to
ensure that the proper lists are used for the initialization/finalization
of each individual shared library (respectively), we give these symbols
only internal (i.e. `static') linkage, and we also make it a point to
refer to only the __CTOR_END__ symbol in crtend.o and the __DTOR_LIST__
symbol in crtbegin.o, where they are defined. */
/* The -1 is a flag to __do_global_[cd]tors
indicating that this table does not start with a count of elements. */
#ifdef CTOR_LIST_BEGIN
CTOR_LIST_BEGIN;
#else
asm (CTORS_SECTION_ASM_OP); /* cc1 doesn't know that we are switching! */
STATIC func_ptr __CTOR_LIST__[1] = { (func_ptr) (-1) };
#endif
#ifdef DTOR_LIST_BEGIN
DTOR_LIST_BEGIN;
#else
asm (DTORS_SECTION_ASM_OP); /* cc1 doesn't know that we are switching! */
STATIC func_ptr __DTOR_LIST__[1] = { (func_ptr) (-1) };
#endif
#endif /* defined(CRT_BEGIN) */
#ifdef CRT_END
#ifdef INIT_SECTION_ASM_OP
#ifdef OBJECT_FORMAT_ELF
static func_ptr __CTOR_END__[];
static void
__do_global_ctors_aux ()
{
func_ptr *p;
for (p = __CTOR_END__ - 1; *p != (func_ptr) -1; p--)
(*p) ();
}
/* Stick a call to __do_global_ctors_aux into the .init section. */
static void
init_dummy ()
{
asm (INIT_SECTION_ASM_OP);
__do_global_ctors_aux ();
#ifdef FORCE_INIT_SECTION_ALIGN
FORCE_INIT_SECTION_ALIGN;
#endif
asm (TEXT_SECTION_ASM_OP);
/* This is a kludge. The i386 Linux dynamic linker needs ___brk_addr,
__environ and atexit (). We have to make sure they are in the .dynsym
section. We accomplish it by making a dummy call here. This
code is never reached. */
#if defined(__linux__) && defined(__PIC__) && defined(__i386__)
{
extern void *___brk_addr;
extern char **__environ;
___brk_addr = __environ;
atexit ();
}
#endif
}
#else /* OBJECT_FORMAT_ELF */
/* Stick the real initialization code, followed by a normal sort of
function epilogue at the very end of the .init section for this
entire root executable file or for this entire shared library file.
Note that we use some tricks here to get *just* the body and just
a function epilogue (but no function prologue) into the .init
section of the crtend.o file. Specifically, we switch to the .text
section, start to define a function, and then we switch to the .init
section just before the body code.
Earlier on, we put the corresponding function prologue into the .init
section of the crtbegin.o file (which will be linked in first).
Note that we want to invoke all constructors for C++ file-scope static-
storage objects AFTER any other possible initialization actions which
may be performed by the code in the .init section contributions made by
other libraries, etc. That's because those other initializations may
include setup operations for very primitive things (e.g. initializing
the state of the floating-point coprocessor, etc.) which should be done
before we start to execute any of the user's code. */
static void
__do_global_ctors_aux () /* prologue goes in .text section */
{
asm (INIT_SECTION_ASM_OP);
DO_GLOBAL_CTORS_BODY;
ON_EXIT (__do_global_dtors, 0);
} /* epilogue and body go in .init section */
#endif /* OBJECT_FORMAT_ELF */
#else /* defined(INIT_SECTION_ASM_OP) */
#ifdef HAS_INIT_SECTION
/* This case is used by the Irix 6 port, which supports named sections but
not an SVR4-style .init section. __do_global_ctors can be non-static
in this case because the -init switch to ld binds strongly. */
static func_ptr __CTOR_END__[];
void
__do_global_ctors ()
{
func_ptr *p;
for (p = __CTOR_END__ - 1; *p != (func_ptr) -1; p--)
(*p) ();
}
#endif
#endif /* defined(INIT_SECTION_ASM_OP) */
/* Force cc1 to switch to .data section. */
static func_ptr force_to_data[0] = { };
/* Put a word containing zero at the end of each of our two lists of function
addresses. Note that the words defined here go into the .ctors and .dtors
sections of the crtend.o file, and since that file is always linked in
last, these words naturally end up at the very ends of the two lists
contained in these two sections. */
#ifdef CTOR_LIST_END
CTOR_LIST_END;
#else
asm (CTORS_SECTION_ASM_OP); /* cc1 doesn't know that we are switching! */
STATIC func_ptr __CTOR_END__[1] = { (func_ptr) 0 };
#endif
#ifdef DTOR_LIST_END
DTOR_LIST_END;
#else
asm (DTORS_SECTION_ASM_OP); /* cc1 doesn't know that we are switching! */
STATIC func_ptr __DTOR_END__[1] = { (func_ptr) 0 };
#endif
#endif /* defined(CRT_END) */
|