aboutsummaryrefslogtreecommitdiff
path: root/gcc/crc-verification.cc
blob: e4521df01ede31b9b9f4d81d00bd29bda3e9e2a0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
/* Execute symbolically all paths of the loop.
   Calculate the value of the polynomial by executing loop with real values to
   create LFSR state.
   After each iteration check that final states of calculated CRC values match
   determined LFSR.
   Copyright (C) 2022-2024 Free Software Foundation, Inc.
   Contributed by Mariam Arutunian <mariamarutunian@gmail.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.   */

#include "crc-verification.h"
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "ssa.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "cfganal.h"
#include "tree-ssa-loop.h"

/* Check whether defined variable is used outside the loop, only
   CRC's definition is allowed to be used outside the loop.  */

bool
crc_symbolic_execution::is_used_outside_the_loop (tree def)
{
  imm_use_iterator imm_iter;
  gimple *use_stmt;
  FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
    {
      if (!flow_bb_inside_loop_p (m_crc_loop, use_stmt->bb))
	{
	  if (is_a<gphi *> (use_stmt)
	      && as_a<gphi *> (use_stmt) == m_output_crc)
	    return false;
	  if (dump_file)
	    fprintf (dump_file, "Defined variable is used outside the loop.\n");
	  return true;
	}
    }
  return false;
}

/* Calculate value of the rhs operation of GS assigment statement
   and assign it to lhs variable.  */

bool
crc_symbolic_execution::execute_assign_statement (const gassign *gs)
{
  enum tree_code rhs_code = gimple_assign_rhs_code (gs);
  tree lhs = gimple_assign_lhs (gs);
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "lhs type : %s \n",
	     get_tree_code_name (TREE_CODE (lhs)));

  /* This will filter some normal cases too.  Ex.  usage of array.  */
  if (TREE_CODE (lhs) != SSA_NAME)
    return false;

  /* Check uses only when m_output_crc is known.  */
  if (m_output_crc)
    if (is_used_outside_the_loop (lhs))
      return false;

  if (gimple_num_ops (gs) != 2 && gimple_num_ops (gs) != 3)
    {
      if (dump_file)
	fprintf (dump_file,
		 "Warning, encountered unsupported operation, "
		 "with %s code while executing assign statement!\n",
		 get_tree_code_name (rhs_code));
      return false;
    }

  tree op1 = gimple_assign_rhs1 (gs);
  tree op2 = nullptr;

  if (gimple_num_ops (gs) == 3)
    op2 = gimple_assign_rhs2 (gs);

  state *current_state = m_states.last ();
  return current_state->do_operation (rhs_code, op1, op2, lhs);
}

/* Add E edge into the STACK if it doesn't have an immediate
   successor edge going to the loop header.

   When loop counter is checked in the if condition,
   we mustn't continue on real path as we want to stop the execution before
   the second iteration.  */

bool
crc_symbolic_execution::add_edge (edge e, auto_vec<edge> &stack)
{
  if (EDGE_COUNT (e->dest->succs) == 0)
    return false;

  edge next_bb_edge = EDGE_SUCC (e->dest, 0);
  if (next_bb_edge && next_bb_edge->dest == m_crc_loop->header)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Completed one iteration.  "
			    "Won't iterate loop once more, yet.\n");

      return keep_states ();
    }
  else
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Adding the edge into the stack.\n");

      /* If the result of the condition is true/false,
	 continue execution only by the true/false branch.  */
      stack.quick_push (e);
    }
  return true;
}

/* Add next basic blocks of the conditional block COND_BB
   for the execution path into the STACK.
   If the condition depends on symbolic values, keep both edges.
   If the condition is true, keep true edge, else - false edge.
   Returns true if addition succeeds.  Otherwise - false.  */

bool
crc_symbolic_execution::add_next_bbs (basic_block cond_bb,
				      state *new_branch_state,
				      auto_vec<edge> &stack)
{
  edge true_edge;
  edge false_edge;
  extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);

  /* When the condition depends on symbolic values.  */
  if (new_branch_state->get_last_cond_status () == CS_SYM)
    {
      /* Supported CRC cases may have only two states.  */
      if (m_states.length () == 2)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "Going to add a new state, "
				"but there's already two states.\n");
	  return false;
	}
      /* Add true branch's state into the states.
	 False branch's state will be kept in the current state.  */
      m_states.quick_push (new_branch_state);

      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Adding true and false edges into the stack.\n");

      /* Add outgoing edges to the stack.  */
      stack.quick_push (false_edge);
      stack.quick_push (true_edge);

      return true;
    }
  /* When the condition evaluates to true.  */
  else if (new_branch_state->get_last_cond_status () == CS_TRUE)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Condition is true.\n");
      add_edge (true_edge, stack);
    }
  /* When the condition evaluates to false.  */
  else if (new_branch_state->get_last_cond_status () == CS_FALSE)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Condition is false.\n");
      add_edge (false_edge, stack);
    }
  else
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Something went wrong "
			    "during handling conditional statement.\n");
      return false;
    }

  /* When we continue execution of only one path,
     there's no need of new state.  */
  delete new_branch_state;
  return true;
}

/* Add conditions depending on symbolic variables in the states.

   Keep conditions of each branch execution in its state.
     Ex.
       if (a == 0)  // a's value is unknown

       new_branch_state.keep (a==0)
       current_state.keep (a!=0)

     The condition is kept in the bit level.
     For ex.
     If a's size is 8 and its value is {symb_a, 0, 0, 0, 0, 0, 0, 0},
     then for a == 0 we'll have symb_a == 0 condition.  */

bool
crc_symbolic_execution::add_condition (const gcond *cond,
				       state *current_state,
				       state *new_branch_state)
{
  tree lhs = gimple_cond_lhs (cond);
  tree rhs = gimple_cond_rhs (cond);
  switch (gimple_cond_code (cond))
    {
      case EQ_EXPR:
	{
	  new_branch_state->add_equal_cond (lhs, rhs);
	  if (new_branch_state->get_last_cond_status () == CS_SYM)
	    current_state->add_not_equal_cond (lhs, rhs);
	  return true;
	}
      case NE_EXPR:
	{
	  new_branch_state->add_not_equal_cond (lhs, rhs);
	  if (new_branch_state->get_last_cond_status () == CS_SYM)
	    current_state->add_equal_cond (lhs, rhs);
	  return true;
	}
      case GT_EXPR:
	{
	  new_branch_state->add_greater_than_cond (lhs, rhs);
	  if (new_branch_state->get_last_cond_status () == CS_SYM)
	    current_state->add_less_or_equal_cond (lhs, rhs);
	  return true;
	}
      case LT_EXPR:
	{
	  new_branch_state->add_less_than_cond (lhs, rhs);
	  if (new_branch_state->get_last_cond_status () == CS_SYM)
	    current_state->add_greater_or_equal_cond (lhs, rhs);
	  return true;
	}
      case GE_EXPR:
	{
	  new_branch_state->add_greater_or_equal_cond (lhs, rhs);
	  if (new_branch_state->get_last_cond_status () == CS_SYM)
	    current_state->add_less_than_cond (lhs, rhs);
	  return true;
	}
      case LE_EXPR:
	{
	  new_branch_state->add_less_or_equal_cond (lhs, rhs);
	  if (new_branch_state->get_last_cond_status () == CS_SYM)
	    current_state->add_greater_than_cond (lhs, rhs);
	  return true;
	}
      default:
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "Unsupported condition.\n");
	  return false;
	}
    }
}

/* Create new states for true and false branches.
   Keep conditions in new created states.  */

bool
crc_symbolic_execution::resolve_condition (const gcond *cond,
					   auto_vec<edge> &stack)
{
  state *current_state = m_states.last ();
  state *new_branch_state = new state (*current_state);

  /* Create new states and for true and false branches keep corresponding
     conditions.  */
  if (!add_condition (cond, current_state, new_branch_state))
    return false;

  /* Add true and false edges to the stack.  */
  return add_next_bbs (cond->bb, new_branch_state, stack);
}

/* If final states are less than two, add new FINAL_STATE and return true.
   Otherwise, return false.
   Supported CRC cases may not have more than two final states.  */
bool crc_symbolic_execution::add_final_state (state *final_state)
{
  if (m_final_states.length () < 2)
      m_final_states.quick_push (final_state);
  else
    {
      if (dump_file)
	fprintf (dump_file,
		 "There are already two final states\n");
      return false;
    }
    return true;
}

/* Keep the state of the executed path in final states.  */

bool crc_symbolic_execution::keep_states ()
{
  if (m_states.is_empty ())
    return false;

  if (!add_final_state (m_states.last ()))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Couldn't add final state.\n");
      return false;
    }

  m_states.pop ();
  return true;
}

/* Execute gimple statements of BB.
   Keeping values of variables in the state.  */

bool
crc_symbolic_execution::execute_bb_gimple_statements (basic_block bb,
						      auto_vec<edge> &stack)
{
  for (gimple_stmt_iterator bsi = gsi_start_bb (bb);
       !gsi_end_p (bsi); gsi_next (&bsi))
    {
      gimple *gs = gsi_stmt (bsi);
      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Executing ");
	  print_gimple_stmt (dump_file, gs, dump_flags);
	}
      switch (gimple_code (gs))
	{
	  case GIMPLE_ASSIGN:
	    {
	      if (!execute_assign_statement (as_a<const gassign *> (gs)))
		return false;
	      break;
	    }
	  case GIMPLE_COND:
	    {
	      return resolve_condition (as_a<const gcond *> (gs), stack);
	    }
	  /* Just skip debug statements.  */
	  case GIMPLE_DEBUG:
	    break;
	  default:
	    {
	      if (dump_file)
		fprintf (dump_file,
			 "Warning, encountered unsupported statement, "
			 "while executing gimple statements!\n");
	      return false;
	    }
	}
    }

  /* Add each outgoing edge of the current block to the stack,
     despite the edges going to the loop header.
     This code isn't reachable if the last statement of the basic block
     is a conditional statement or return statement.
     Those cases are handled separately.
     We mustn't encounter edges going to the CRC loop header.  */

  edge out_edge;
  edge_iterator ei;
  FOR_EACH_EDGE (out_edge, ei, bb->succs)
    if (out_edge->dest != m_crc_loop->header)
      stack.quick_push (out_edge);
    else
      return false;

  return true;
}

/* Assign values of phi instruction to its result.
   Keep updated values in the state.  */

bool
crc_symbolic_execution::execute_bb_phi_statements (basic_block bb,
						   edge incoming_edge)
{
  for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
       gsi_next (&gsi))
    {
      gphi *phi = gsi.phi ();
      tree lhs = gimple_phi_result (phi);

      /* Check uses only when m_output_crc is known.  */
      if (m_output_crc)
	if (is_used_outside_the_loop (lhs))
	  return false;

      /* Don't consider virtual operands.  */
      if (virtual_operand_p (lhs))
	continue;

      if (dump_file && (dump_flags & TDF_DETAILS))
	{
	  fprintf (dump_file, "Determining the value "
			      "for the following phi.\n");
	  print_gimple_stmt (dump_file, phi, dump_flags);
	}

      tree rhs = PHI_ARG_DEF_FROM_EDGE (phi, incoming_edge);

      state *current_state = m_states.last ();
      if (!current_state->do_operation (VAR_DECL, rhs, nullptr, lhs))
	return false;
    }
  return true;
}

/* Execute all statements of BB.
   Keeping values of variables in the state.  */

bool
crc_symbolic_execution::execute_bb_statements (basic_block bb,
					       edge incoming_edge,
					       auto_vec<edge> &stack)
{
  if (!execute_bb_phi_statements (bb, incoming_edge))
    return false;

  return execute_bb_gimple_statements (bb, stack);
}

/* If the phi statements' result variables have initial constant value in the
   beginning of the loop, initialize those variables.  */

void
assign_known_vals_to_header_phis (state *state, class loop *crc_loop)
{
  basic_block bb = crc_loop->header;
  for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
       gsi_next (&gsi))
    {

      gphi *phi = gsi.phi ();
      tree lhs = gimple_phi_result (phi);

      /* Don't consider virtual operands.  */
      if (virtual_operand_p (lhs))
	continue;

      tree inital_val = PHI_ARG_DEF_FROM_EDGE (phi,
					       loop_preheader_edge (crc_loop));
      if (TREE_CODE (inital_val) == INTEGER_CST)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "First value of phi is a constant, "
				  "assigning the number to ");
	      print_generic_expr (dump_file, lhs, dump_flags);
	      fprintf (dump_file, " variable.\n");
	    }
	  state->do_operation (VAR_DECL, inital_val,
			       nullptr, lhs);
	}
    }
}

/* If the phi statements' result variables have initial constant value in the
   beginning of the loop, initialize those variables with
   the value calculated during the previous iteration.  */

bool
assign_calc_vals_to_header_phis (const vec<state *> &prev_states,
				 state *curr_state,
				 class loop *crc_loop)
{
  basic_block bb = crc_loop->header;
  for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
       gsi_next (&gsi))
    {
      gphi *phi = gsi.phi ();
      tree lhs = gimple_phi_result (phi);

      /* Don't consider virtual operands.  */
      if (virtual_operand_p (lhs))
	continue;
      tree inital_val = PHI_ARG_DEF_FROM_EDGE (phi,
					       loop_preheader_edge (crc_loop));
      if (TREE_CODE (inital_val) == INTEGER_CST)
	{
	  tree input_tree = PHI_ARG_DEF_FROM_EDGE (phi,
						   loop_latch_edge (crc_loop));
	  value * val_st1 = prev_states[0]->get_value (input_tree),
	      *val_st2 = prev_states[1]->get_value (input_tree);
	  if (!state::is_bit_vector (val_st1)
	      || !state::is_bit_vector (val_st2))
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
		  fprintf (dump_file, "The calculated values of  ");
		  print_generic_expr (dump_file, input_tree, dump_flags);
		  fprintf (dump_file, " variable is not constant.\n");
		}
	      return false;
	    }
	  else if (!state::check_const_value_equality (val_st1, val_st2))
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
		  fprintf (dump_file, "The calculated values of  ");
		  print_generic_expr (dump_file, input_tree, dump_flags);
		  fprintf (dump_file, " variable is different in the previous "
				      "iteration paths.\n");
		}
	      return false;
	    }
	  else
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
		  fprintf (dump_file, "Assigning calculated number to ");
		  print_generic_expr (dump_file, lhs, dump_flags);
		  fprintf (dump_file, " variable.\n");
		}
	      unsigned HOST_WIDE_INT calc_number
		  = state::make_number (val_st1);
	      tree calc_num_tree = build_int_cstu (TREE_TYPE (lhs),
						   calc_number);
	      curr_state->do_operation (VAR_DECL, calc_num_tree, nullptr, lhs);
	    }
	}
    }
  return true;
}

/* Create initial state of the CRC_LOOP's header BB variables which have
   constant values.
   If it is the first iteration of the loop, initialise variables with the
   initial values, otherwise initialise the variable with the value calculated
   during the previous execution.  */

state *
crc_symbolic_execution::create_initial_state (class loop *crc_loop)
{
  state *curr_state = new state;
  if (!m_final_states.is_empty ())
    {
      if (!assign_calc_vals_to_header_phis (m_final_states, curr_state,
					    crc_loop))
	return nullptr;
      state::remove_states (&m_final_states);
    }
  else
    assign_known_vals_to_header_phis (curr_state, crc_loop);
  return curr_state;
}

/* Symbolically execute the CRC loop, doing one iteration.  */

bool
crc_symbolic_execution::symb_execute_crc_loop ()
{
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\n\nExecuting the loop with symbolic values.\n\n");

  state *curr_state = create_initial_state (m_crc_loop);
  if (!curr_state)
    return false;

  m_states.quick_push (curr_state);

  auto_vec<edge> stack (m_crc_loop->num_nodes);

  basic_block header_bb = m_crc_loop->header;
  if (!execute_bb_gimple_statements (header_bb, stack))
    return false;

  /* Successor BB's are added into the stack
     from the execute_bb_gimple_statements function.  */
  while (!stack.is_empty ())
    {
      /* Look at the edge on the top of the stack.  */
      edge e = stack.last ();
      stack.pop ();

      /* Get destination block of the edge.  */
      basic_block dest_bb = e->dest;

      /* Execute only basic blocks of the m_crc_loop.
	 At the end of the execution path save states in final states.  */
      if (!flow_bb_inside_loop_p (m_crc_loop, dest_bb))
	{
	  m_is_last_iteration = true;
	  if (!keep_states ())
	    return false;
	  continue;
	}

      /* Execute statements.  */
      if (!execute_bb_statements (dest_bb, e, stack))
	return false;
    }
  return true;
}

/* Determine which bit of the DATA must be 1.
   We assume that last bit must be 1.  */

unsigned HOST_WIDE_INT
determine_index (tree data, bool is_shift_left)
{
  if (is_shift_left)
   /* This won't work correctly in the case when data's size is larger,
      but MSB is checked for the middle bit.  */
    return tree_to_uhwi (TYPE_SIZE (TREE_TYPE (data))) - 1;
  return 0;
}

/* Assign appropriate values to data, CRC
   and other phi results to calculate the polynomial.  */

void
assign_vals_to_header_phis (state *polynomial_state, class loop *crc_loop,
			    gphi *crc_phi, gphi *data_phi,
			    bool is_shift_left)
{
  basic_block bb = crc_loop->header;
  for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
       gsi_next (&gsi))
    {

      gphi *phi = gsi.phi ();
      tree lhs = gimple_phi_result (phi);

      /* Don't consider virtual operands.  */
      if (virtual_operand_p (lhs))
	continue;

      if ((data_phi && phi == data_phi) || (!data_phi && phi == crc_phi))
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "Assigning the required value to ");
	      print_generic_expr (dump_file, lhs, dump_flags);
	      fprintf (dump_file, " variable.\n");
	    }
	  polynomial_state->do_assign_pow2 (lhs,
					    determine_index (lhs,
							     is_shift_left));
	}
      else if (phi == crc_phi)
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    {
	      fprintf (dump_file, "Assigning 0 value to ");
	      print_generic_expr (dump_file, lhs, dump_flags);
	      fprintf (dump_file, " variable.\n");
	    }
	  polynomial_state->do_operation (VAR_DECL,
					  build_zero_cst (TREE_TYPE (lhs)),
					  nullptr, lhs);
	}
      else
	{
	  edge loop_preheader = loop_preheader_edge (crc_loop);
	  tree inital_val = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader);
	  if (TREE_CODE (inital_val) == INTEGER_CST)
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
		  fprintf (dump_file, "First value of phi is a constant, "
				      "assigning the number to ");
		  print_generic_expr (dump_file, lhs, dump_flags);
		  fprintf (dump_file, " variable.\n");
		}
	      polynomial_state->do_operation (VAR_DECL, inital_val,
					      nullptr, lhs);
	    }
	  else
	    {
	      if (dump_file && (dump_flags & TDF_DETAILS))
		{
		  fprintf (dump_file, "First value of phi isn't constant, "
				      "assigning to ");
		  print_generic_expr (dump_file, lhs, dump_flags);
		  fprintf (dump_file, " variable.\n");
		}
	      polynomial_state->do_operation (VAR_DECL,
					      build_zero_cst (TREE_TYPE (lhs)),
					      nullptr, lhs);
	    }
	}
    }
}

/* Execute the loop, which calculates CRC with initial values,
   to calculate the polynomial.  */

bool
crc_symbolic_execution::execute_crc_loop (gphi *crc_phi,
					  gphi *data_phi,
					  bool is_shift_left)
{
  if (dump_file && (dump_flags & TDF_DETAILS))
    fprintf (dump_file, "\n\nTrying to calculate the polynomial.\n\n");

  m_states.quick_push (new state);

  basic_block bb = m_crc_loop->header;
  assign_vals_to_header_phis (m_states.last (), m_crc_loop, crc_phi, data_phi,
			      is_shift_left);

  auto_vec<edge> stack (m_crc_loop->num_nodes);

  if (!execute_bb_gimple_statements (bb, stack))
    return false;

  /* stack may not be empty.  Successor BB's are added into the stack
     from the execute_bb_gimple_statements function.  */
  while (!stack.is_empty ())
    {
      /* Look at the edge on the top of the stack.  */
      edge e = stack.last ();
      stack.pop ();

      /* Get dest block of the edge.  */
      basic_block bb = e->dest;

      /* Execute only basic blocks of the m_crc_loop.  */
      if (!flow_bb_inside_loop_p (m_crc_loop, bb))
	continue;

      /* Execute statements.  */
      if (!execute_bb_statements (bb, e, stack))
	return false;
    }

  if (m_final_states.length () != 1)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "The number of states is not one when executed "
			    "the loop for calculating the polynomial.\n");
      return false;
    }
  return true;
}

/* Return true if all bits of the POLYNOMIAL are constants (0 or 1).
   Otherwise return false.  */

bool
polynomial_is_known (const value *polynomial)
{
  for (size_t i = 0; i < polynomial->length (); i++)
    {
      if (!is_a<bit *> ((*polynomial)[i]))
	return false;
    }
  return true;
}

/* Execute the loop, which is expected to calculate CRC,
   to extract polynomial, assigning real numbers to CRC and data.
   Returns a pair, first value of the pair is the tree containing
   the value of the polynomial, second is the calculated polynomial.
   The pair may contain nullptr.  */

std::pair <tree, value *>
crc_symbolic_execution::extract_polynomial (gphi *crc_phi, gphi *data_phi,
					    tree calculated_crc,
					    bool is_shift_left)
{
  if (!execute_crc_loop (crc_phi, data_phi, is_shift_left))
    return std::make_pair (nullptr, nullptr);

  if (m_final_states.length () != 1)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "The number of states isn't one "
			    "after executing the loop.\n");
      return std::make_pair (nullptr, nullptr);
    }
  state *polynomial_state = m_final_states.last ();

  /* CALCULATED_CRC contains the value of the polynomial
     after one iteration of the loop.  */
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Getting the value of ");
      print_generic_expr (dump_file, calculated_crc, dump_flags);
      fprintf (dump_file, " variable.\n");
    }

  /* Get the value (bit vector) of the tree (it may be the polynomial).  */
  value *polynomial = polynomial_state->get_value (calculated_crc);
  if (!polynomial)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Polynomial's value is null.\n");
      return std::make_pair (nullptr, nullptr);
    }

  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      /* Note: It may not be the real polynomial.
	 If it's a bit reflected CRC,
	 then to get a real polynomial,
	 it must be reflected and 1 bit added.  */
      fprintf (dump_file, "Polynomial's value is ");
      state::print_value (polynomial);
    }

  /* Check that polynomial's all bits are constants.  */
  if (!polynomial_is_known (polynomial))
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Polynomial's value is not constant.\n");
      return std::make_pair (nullptr, nullptr);
    }

  return std::make_pair (calculated_crc, polynomial);
}


/**************************** LFSR MATCHING *********************************/


/* Return true if CONST_BIT value equals to 1.
   Otherwise, return false.  */

bool
is_one (value_bit *const_bit)
{
  return is_a<bit *> (const_bit)
	 && (as_a<bit *> (const_bit))->get_val () == 1;
}

/* Return true if BIT is symbolic,
   its index is same as LFSR bit's index (LFSR_BIT_INDEX)
   and the origin is same as CRC_ORIGIN.  */

bool
is_a_valid_symb (value_bit *bit, tree crc_origin, size_t lfsr_bit_index)
{
  if (!is_a<symbolic_bit *> (bit))
    return false;

  symbolic_bit *sym_bit = as_a<symbolic_bit *> (bit);
  bool is_correct_index = (sym_bit->get_index () == lfsr_bit_index);
  bool is_same_crc_origin = (sym_bit->get_origin () == crc_origin);
  return is_correct_index && is_same_crc_origin;
}

/* Return true if the BIT is a valid crc[LFSR_BIT_INDEX] ^ 1,
   where i is a whole number and left part's origin is same as CRC_ORIGIN.
   LFSR_BIT_INDEX is the index of the LFSR bit from the same position as in CRC.

   If there is lfsr[8] at LFSR value vectors' 9-th bit,
   when in the CRC vectors' 9-th bit's value must be
   crc[8].

   Otherwise, return false.  */

bool
is_a_valid_xor_one (value_bit *bit, tree crc_origin, size_t lfsr_bit_index)
{
  if (is_a<bit_xor_expression *> (bit))
    {
      bit_xor_expression *xor_exp = as_a<bit_xor_expression *> (bit);
      if (is_one (xor_exp->get_right ()))
	return is_a_valid_symb (xor_exp->get_left (), crc_origin,
				lfsr_bit_index);
      return false;
    }
  return false;
}

/* Return true, if CONDITION_EXP checks CRC's MSB/LSB value
   (under which xor is/not done).
   Otherwise, return false.  */

bool
may_be_xors_condition (tree crc_origin, value_bit *condition_exp,
		       size_t sb_index)
{
  if (!crc_origin)
    return false;

  if (!condition_exp)
    return false;

  /* The CONDITION_EXP of CRC may be a symbolic bit, if CRC is xor-ed with
     the data, and updated CRC's significant bit is checked.
     So, the CONDITION_EXP will be CRC's condition if it's origin is the same as
     CRC_ORIGIN, and it's index equals to checked significant bit's index.  */
  if (is_a<symbolic_bit *> (condition_exp))
    {
      symbolic_bit *condition_symbolic = as_a<symbolic_bit *> (condition_exp);
      return crc_origin == condition_symbolic->get_origin ()
	     && sb_index == condition_symbolic->get_index ();
    }
    /* The CONDITION_EXP of CRC may be a bit_xor_expression,
       if CRC and data are xor-ed only for significant bit's check.
       I.e.  CONDITION_EXP in this case may be crc[]^data[].
       So, the CONDITION_EXP will be CRC's condition if it's left or right
       part's origin is the same as CRC_ORIGIN, and it's index equals to checked
       significant bit's index.  */
  else if (is_a<bit_xor_expression *> (condition_exp))
    {
      bit_xor_expression *condition_xor_exp = as_a<bit_xor_expression *>
	  (condition_exp);
      if (!(is_a<symbolic_bit *> (condition_xor_exp->get_left ())
	    && is_a<symbolic_bit *> (condition_xor_exp->get_right ())))
	return false;

      symbolic_bit *cond_left
	  = as_a<symbolic_bit *> (condition_xor_exp->get_left ());
      symbolic_bit *cond_right
	  = as_a<symbolic_bit *> (condition_xor_exp->get_right ());
      bool cond_left_is_crc = (crc_origin == cond_left->get_origin ()
			       && sb_index == cond_left->get_index ());
      bool cond_right_is_crc = (crc_origin == cond_right->get_origin ()
				&& sb_index == cond_right->get_index ());
      return cond_left_is_crc || cond_right_is_crc;
    }
  return false;
}

/* Check whether the condition is checked for significant bit being 0 or 1.
   If IS_ONE is 1, when check whether the significant bit is 1 (xor branch),
   if 0, whether the significant bit is 0 (not xor branch).  */

bool
is_crc_xor_condition (tree crc_origin, unsigned char is_one,
		      size_t sb_index, state *final_state)
{
  /* The CRC cases we detect must contain only one condition related to CRC.  */
  if (final_state->get_conditions ().elements () != 1)
    return false;

  auto condition_iter = final_state->get_conditions ().begin ();
  if (!is_a<bit_condition *> (*condition_iter))
    return false;

  /* If the condition is for checking MSB/LSB, then
     if is_one is 1 and the condition is for checking MSB/LSB being one, or
     if is_one is 0 and condition is for checking MSB/LSB being 0
     return true, otherwise - false.  */
  value_bit *cond_exp = (*condition_iter)->get_left ();
  if (may_be_xors_condition (crc_origin, cond_exp, sb_index))
    {
      if (!is_a<bit *> ((*condition_iter)->get_right ()))
	return false;

      bit_condition *condition = as_a<bit_condition *> (*condition_iter);
      unsigned char comparison_val
	  = as_a<bit *> ((*condition_iter)->get_right ())->get_val ();
      if (condition->get_code () == EQ_EXPR)
	return comparison_val == is_one;
      if (condition->get_code () == NE_EXPR)
	return comparison_val != is_one;
      return false;
    }
  return false;
}

/* Check whether LSB/MSB of LFSR and calculated (maybe)CRC match.
   If MSB is checked in the CRC loop, then here we check LSB, or vice versa.
   CHECKED_SB_VALUE indicates which state of CRC value is checked.
   If the CHECKED_SB_VALUE is 1 - then xor-ed CRC value is checked,
   otherwise, not xor-ed is checked.  */

bool
given_sb_match (value_bit *crc, value_bit *lfsr,
		unsigned short checked_sb_value)
{
  /* If LFSR's MSB/LSB value is a constant (0 or 1),
     then CRC's MSB/LSB must have the same value.  */
  if (is_a<bit *> (lfsr))
    {
      if (!((is_a<bit *> (crc)
	     && as_a<bit *> (crc)->get_val ()
		== as_a<bit *> (lfsr)->get_val ())))
	return false;
      return true;
    }
    /* If LFSR's MSB/LSB value is a symbolic_bit
       (that means MSB/LSB of the polynomial is 1),
       then CRC's MSB/LSB must be equal to CHECKED_SB_VALUE.  */
  else if (is_a<symbolic_bit *> (lfsr))
    {
      if (!(is_a<bit *> (crc)
	    && (as_a<bit *> (crc)->get_val () == checked_sb_value)))
	return false;
      return true;
    }
  return false;
}

/* Check whether significant bit of LFSR and calculated (maybe)CRC match.  */

bool
sb_match (const value *lfsr, const value *crc_value, size_t sb_index,
	  size_t it_end, unsigned short value)
{
  /* If it's bit-forward CRC, check 0 bit's value.  */
  if (sb_index == it_end - 1)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Checking 0 bit.\n");

      if (!given_sb_match ((*crc_value)[0], (*lfsr)[0], value))
	return false;
    }
    /* If it's bit-reversed CRC, check last bit's value.  */
  else if (sb_index == 0)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Checking %zu bit.\n", it_end);

      if (!given_sb_match ((*crc_value)[it_end], (*lfsr)[it_end], value))
	return false;
    }
  else
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Significant bit index is incorrect.\n");
    }
  return true;
}

/* Match the CRC to the LFSR, where CRC's all bit values are
   symbolic_bit or symbolic_bit ^ 1, besides MSB/LSB (it may be constant).  */

bool
lfsr_and_crc_bits_match (const value *lfsr, const value *crc_state,
			 tree crc_origin, size_t i, size_t it_end,
			 size_t sb_index, unsigned short checked_sb_value)
{

  /* Check whether significant bits of LFSR and CRC match.  */
  if (!sb_match (lfsr, crc_state, sb_index, it_end, checked_sb_value))
    return false;

  for (; i < it_end; i++)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Checking %zu bit.\n", i);

      /* Check the case when in lfsr we have LFSR (i)^LFSR (SBi),
	 where 0<i<LFSR_size and SBi is the index of MSB/LSB (LFSR_size-1/0).
	 In that case in crc_state (resulting CRC)
	 we must have crc (i) ^ 1 case, when condition is true
	 and crc (i) when condition is false,
	 (as CRC is xor-ed with the polynomial only if the LSB/MSB is one)
	 where k is a whole number.  */
      if (is_a<bit_xor_expression *> ((*lfsr)[i]))
	{
	  size_t index = (as_a<bit_xor_expression *> ((*lfsr)[i]))->get_left ()
	      ->get_index ();
	  /* Check CRC value of xor branch.  */
	  if (checked_sb_value == 1)
	    {
	      if (!(is_a_valid_xor_one ((*crc_state)[i], crc_origin, index)))
		return false;
	    }
	  else /* Check CRC value of not xor branch.  */
	    {
	      if (!(is_a_valid_symb ((*crc_state)[i], crc_origin, index)))
		return false;
	    }
	}
	/* Check the case when in LFSR we have LFSR (i), where 0<i<LFSR_size.
	   In that case in resulting CRC we must have crc (i) case,
	   when condition is true or condition is false.
	   If we have just LFSR (i), that means polynomial's i ± 1 bit is 0,
	   so despite CRC is xor-ed or not, we will have crc (i).  */
      else if (is_a<symbolic_bit *> ((*lfsr)[i]))
	{
	  size_t index = (as_a<symbolic_bit *> ((*lfsr)[i]))->get_index ();
	  if (!(is_a_valid_symb ((*crc_state)[i], crc_origin, index)))
	    return false;
	}
      else
	{
	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file, "Not expected expression in LFSR.\n");
	  return false;
	}
    }
  return true;
}

/* Return origin of CRC_BIT.
   The first tree in loop, from which CRC's calculation is started.  */

tree
get_origin_of_crc_from_symb_bit (value_bit *crc_bit)
{
  if (is_a<symbolic_bit *> (crc_bit))
    return as_a<symbolic_bit *> (crc_bit)->get_origin ();
  return nullptr;
}

/* Return origin of CRC_BIT.  The first tree in loop, from which CRC's
   calculation is started.  If the CRC_BIT is symbolic value, return its origin,
   otherwise return its left part's origin (right must be 1 if its CRC's
   value). */

tree
get_origin_of_crc (value_bit *crc_bit)
{
  tree origin = get_origin_of_crc_from_symb_bit (crc_bit);
  if (origin)
    return origin;
  else if (is_a<bit_xor_expression *> (crc_bit))
    {
      value_bit *crc_bit_left
	  = as_a<bit_xor_expression *> (crc_bit)->get_left ();
      return get_origin_of_crc_from_symb_bit (crc_bit_left);
    }
  return nullptr;
}

/* Determine and initialize significant bit index
   (if MSB is checked for CRC, then it's LSB index, and vice versa)
   and the remaining part's begin and end.
   SB_INDEX is the significant bit index.
   IT_BEG is the beginning of the remaining part.
   IT_END is the end of the remaining part.  */

void
init_sb_index_and_other_part_begin_end (size_t &it_beg, size_t &it_end,
					size_t &sb_index, size_t crc_size,
					bool is_bit_forward)
{
  it_end = crc_size;
  if (is_bit_forward)
    {
      sb_index = it_end - 1;
      it_beg = 1;
    }
  else
    {
      it_beg = 0;
      sb_index = 0;
      --it_end;
    }
}

/* Return true if CRC_STATE matches the LFSR, otherwise - false.
   LFSR - is created LFSR value for the given polynomial and CRC size.
   CRC_STATE - contains CRC's calculated value and execution path condition.
   IT_BEG and IT_END - are the border indexes of the value to be matched.
   SB_INDEX - is the significant bit index of the CRC value,
	      which will be checked separately.
	      IF MSB is checked for CRC, when sb_index will be the index of LSB.
	      Otherwise, will be the index of MSB.
   CHECKED_SB_VALUE - is the significant bit's value (used for CRC's condition).
	      If CHECKED_SB_VALUE is 1, it indicates that CRC_STATE is
	      xor-ed path's state.
	      If CHECKED_SB_VALUE is 0, then CRC_STATE is the state of the
	      not xor branch.  */

bool
lfsr_matches_crc_state (const value *lfsr, state *crc_state, value *crc_value,
			size_t it_beg, size_t it_end, size_t sb_index,
			unsigned short checked_sb_value)
{
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      fprintf (dump_file, "Starting to match the following CRC value: ");
      state::print_value (crc_value);
    }

  /* Get the origin (name) of the calculated CRC value.
     All bits must have the same origin.  */
  tree crc_origin = get_origin_of_crc ((*crc_value)[it_beg]);
  if (!crc_origin)
    return false;

  if (!is_crc_xor_condition (crc_origin, checked_sb_value, sb_index, crc_state))
    return false;

  /* Check whether CRC_VALUE and LFSR bits match.  */
  return lfsr_and_crc_bits_match (lfsr, crc_value, crc_origin,
				  it_beg, it_end, sb_index, checked_sb_value);
}

/* Return true if in the CRC_VALUE exists xor expression.
   Otherwise, return false.  */

bool
is_xor_state (value *crc_value, size_t it_beg, size_t it_end)
{
   for (unsigned j = it_beg; j < it_end; ++j)
     if ((*crc_value)[j]->get_type () == BIT_XOR_EXPRESSION)
       return true;
   return false;
}

/* Keep the value of calculated CRC.  */

value *
get_crc_val (tree calculated_crc, state *curr_state)
{
  if (!calculated_crc)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Couldn't get the potential CRC variable.\n");
      return nullptr;
    }

  /* When the calculated CRC is constant, it's not possible to determine
     whether the CRC has been calculated.  */
  if (TREE_CODE (calculated_crc) == INTEGER_CST)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "Calculated CRC is a constant.\n");
      return nullptr;
    }

  /* Get calculated return value.  */
  value * crc_value = curr_state->get_value (calculated_crc);

  if (!crc_value)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "CRC is not in the state.\n");
      return nullptr;
    }
  return crc_value;
}

/* Return true if all states from the FINAL_STATES match the LFSR,
   otherwise - false.  */

bool
all_states_match_lfsr (value *lfsr, bool is_bit_forward, tree calculated_crc,
		       const vec<state *> &final_states)
{
  if (final_states.length () != 2)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file, "The final states count isn't two.\n");
      return false;
    }

  value *crc_xor_value = get_crc_val (calculated_crc, final_states[0]);
  value *crc_not_xor_value = get_crc_val (calculated_crc, final_states[1]);

  /* LFSR's size must be equal to CRC's size.  */
  if ((crc_xor_value->length () != lfsr->length ())
      || (crc_not_xor_value->length () != lfsr->length ()))
    return false;

  /* Depending on whether it is bit-forward or reversed CRC,
     determine in which significant bit new value is added,
     to examine that bit separately.
     If in the CRC algorithm MSB (sb_index) is checked to be one for xor,
     then here we check LSB separately (marginal bit).
     If LSB (sb_index) is checked, then we separate MSB (marginal bit).  */
  size_t it_beg, it_end, sb_index;
  init_sb_index_and_other_part_begin_end (it_beg, it_end, sb_index,
					  crc_xor_value->length (),
					  is_bit_forward);

    size_t xor_st_index = 0, not_xor_st_index = 1;
  /* If first is not xor's state,
     then the second state is assumed to be xor's state.  */
  if (!is_xor_state (crc_xor_value, it_beg, it_end))
    {
      std::swap (crc_xor_value, crc_not_xor_value);
      xor_st_index = 1;
      not_xor_st_index = 0;
    }

  /*  If xor-ed CRC value doesn't match the LFSR value, return false.  */
  if (!lfsr_matches_crc_state (lfsr, final_states[xor_st_index], crc_xor_value,
			       it_beg, it_end, sb_index, 1))
    return false;

  /*  If not xor-ed CRC value doesn't match the LFSR value, return false.  */
  if (!lfsr_matches_crc_state (lfsr, final_states[not_xor_st_index],
			       crc_not_xor_value, it_beg, it_end, sb_index, 0))
    return false;

  return true;
}