aboutsummaryrefslogtreecommitdiff
path: root/gcc/cp/search.c
blob: 1b8c8c8afe46e83450111db5394821d673d9c978 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
/* Breadth-first and depth-first routines for
   searching multiple-inheritance lattice for GNU C++.
   Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2002, 2003, 2004 Free Software Foundation, Inc.
   Contributed by Michael Tiemann (tiemann@cygnus.com)

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* High-level class interface.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "cp-tree.h"
#include "obstack.h"
#include "flags.h"
#include "rtl.h"
#include "output.h"
#include "toplev.h"
#include "stack.h"

/* Obstack used for remembering decision points of breadth-first.  */

static struct obstack search_obstack;

/* Methods for pushing and popping objects to and from obstacks.  */

struct stack_level *
push_stack_level (struct obstack *obstack, char *tp,/* Sony NewsOS 5.0 compiler doesn't like void * here.  */
		  int size)
{
  struct stack_level *stack;
  obstack_grow (obstack, tp, size);
  stack = (struct stack_level *) ((char*)obstack_next_free (obstack) - size);
  obstack_finish (obstack);
  stack->obstack = obstack;
  stack->first = (tree *) obstack_base (obstack);
  stack->limit = obstack_room (obstack) / sizeof (tree *);
  return stack;
}

struct stack_level *
pop_stack_level (struct stack_level *stack)
{
  struct stack_level *tem = stack;
  struct obstack *obstack = tem->obstack;
  stack = tem->prev;
  obstack_free (obstack, tem);
  return stack;
}

#define search_level stack_level
static struct search_level *search_stack;

struct vbase_info 
{
  /* The class dominating the hierarchy.  */
  tree type;
  /* A pointer to a complete object of the indicated TYPE.  */
  tree decl_ptr;
  tree inits;
};

static tree dfs_check_overlap (tree, void *);
static tree dfs_no_overlap_yet (tree, int, void *);
static base_kind lookup_base_r (tree, tree, base_access, bool, tree *);
static int dynamic_cast_base_recurse (tree, tree, bool, tree *);
static tree marked_pushdecls_p (tree, int, void *);
static tree unmarked_pushdecls_p (tree, int, void *);
static tree dfs_debug_unmarkedp (tree, int, void *);
static tree dfs_debug_mark (tree, void *);
static tree dfs_push_type_decls (tree, void *);
static tree dfs_push_decls (tree, void *);
static tree dfs_unuse_fields (tree, void *);
static tree add_conversions (tree, void *);
static int look_for_overrides_r (tree, tree);
static struct search_level *push_search_level (struct stack_level *,
					       struct obstack *);
static struct search_level *pop_search_level (struct stack_level *);
static tree bfs_walk (tree, tree (*) (tree, void *),
		      tree (*) (tree, int, void *), void *);
static tree lookup_field_queue_p (tree, int, void *);
static int shared_member_p (tree);
static tree lookup_field_r (tree, void *);
static tree dfs_accessible_queue_p (tree, int, void *);
static tree dfs_accessible_p (tree, void *);
static tree dfs_access_in_type (tree, void *);
static access_kind access_in_type (tree, tree);
static int protected_accessible_p (tree, tree, tree);
static int friend_accessible_p (tree, tree, tree);
static void setup_class_bindings (tree, int);
static int template_self_reference_p (tree, tree);
static tree dfs_get_pure_virtuals (tree, void *);

/* Allocate a level of searching.  */

static struct search_level *
push_search_level (struct stack_level *stack, struct obstack *obstack)
{
  struct search_level tem;

  tem.prev = stack;
  return push_stack_level (obstack, (char *)&tem, sizeof (tem));
}

/* Discard a level of search allocation.  */

static struct search_level *
pop_search_level (struct stack_level *obstack)
{
  struct search_level *stack = pop_stack_level (obstack);

  return stack;
}

/* Variables for gathering statistics.  */
#ifdef GATHER_STATISTICS
static int n_fields_searched;
static int n_calls_lookup_field, n_calls_lookup_field_1;
static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
static int n_calls_get_base_type;
static int n_outer_fields_searched;
static int n_contexts_saved;
#endif /* GATHER_STATISTICS */


/* Worker for lookup_base.  BINFO is the binfo we are searching at,
   BASE is the RECORD_TYPE we are searching for.  ACCESS is the
   required access checks.  IS_VIRTUAL indicates if BINFO is morally
   virtual.

   If BINFO is of the required type, then *BINFO_PTR is examined to
   compare with any other instance of BASE we might have already
   discovered. *BINFO_PTR is initialized and a base_kind return value
   indicates what kind of base was located.

   Otherwise BINFO's bases are searched.  */

static base_kind
lookup_base_r (tree binfo, tree base, base_access access,
	       bool is_virtual,			/* inside a virtual part */
	       tree *binfo_ptr)
{
  int i;
  tree bases, accesses;
  base_kind found = bk_not_base;
  
  if (same_type_p (BINFO_TYPE (binfo), base))
    {
      /* We have found a base. Check against what we have found
         already.  */
      found = bk_same_type;
      if (is_virtual)
	found = bk_via_virtual;
      
      if (!*binfo_ptr)
	*binfo_ptr = binfo;
      else if (binfo != *binfo_ptr)
	{
	  if (access != ba_any)
	    *binfo_ptr = NULL;
	  else if (!is_virtual)
	    /* Prefer a non-virtual base.  */
	    *binfo_ptr = binfo;
	  found = bk_ambig;
	}
      
      return found;
    }
  
  bases = BINFO_BASETYPES (binfo);
  accesses = BINFO_BASEACCESSES (binfo);
  if (!bases)
    return bk_not_base;
  
  for (i = TREE_VEC_LENGTH (bases); i--;)
    {
      tree base_binfo = TREE_VEC_ELT (bases, i);
      base_kind bk;

      bk = lookup_base_r (base_binfo, base,
		    	  access,
			  is_virtual || TREE_VIA_VIRTUAL (base_binfo),
			  binfo_ptr);

      switch (bk)
	{
	case bk_ambig:
	  if (access != ba_any)
	    return bk;
	  found = bk;
	  break;
	  
	case bk_same_type:
	  bk = bk_proper_base;
	  /* Fall through.  */
	case bk_proper_base:
	  my_friendly_assert (found == bk_not_base, 20010723);
	  found = bk;
	  break;
	  
	case bk_via_virtual:
	  if (found != bk_ambig)
	    found = bk;
	  break;
	  
	case bk_not_base:
	  break;

	default:
	  abort ();
	}
    }
  return found;
}

/* Returns true if type BASE is accessible in T.  (BASE is known to be
   a base class of T.)  */

bool
accessible_base_p (tree t, tree base)
{
  tree decl;

  /* [class.access.base]

     A base class is said to be accessible if an invented public
     member of the base class is accessible.  */
  /* Rather than inventing a public member, we use the implicit
     public typedef created in the scope of every class.  */
  decl = TYPE_FIELDS (base);
  while (!DECL_SELF_REFERENCE_P (decl))
    decl = TREE_CHAIN (decl);
  while (ANON_AGGR_TYPE_P (t))
    t = TYPE_CONTEXT (t);
  return accessible_p (t, decl);
}

/* Lookup BASE in the hierarchy dominated by T.  Do access checking as
   ACCESS specifies.  Return the binfo we discover.  If KIND_PTR is
   non-NULL, fill with information about what kind of base we
   discovered.

   If the base is inaccessible, or ambiguous, and the ba_quiet bit is
   not set in ACCESS, then an error is issued and error_mark_node is
   returned.  If the ba_quiet bit is set, then no error is issued and
   NULL_TREE is returned.  */

tree
lookup_base (tree t, tree base, base_access access, base_kind *kind_ptr)
{
  tree binfo = NULL;		/* The binfo we've found so far.  */
  tree t_binfo = NULL;
  base_kind bk;
  
  if (t == error_mark_node || base == error_mark_node)
    {
      if (kind_ptr)
	*kind_ptr = bk_not_base;
      return error_mark_node;
    }
  my_friendly_assert (TYPE_P (base), 20011127);
  
  if (!TYPE_P (t))
    {
      t_binfo = t;
      t = BINFO_TYPE (t);
    }
  else 
    t_binfo = TYPE_BINFO (t);

  /* Ensure that the types are instantiated.  */
  t = complete_type (TYPE_MAIN_VARIANT (t));
  base = complete_type (TYPE_MAIN_VARIANT (base));
  
  bk = lookup_base_r (t_binfo, base, access, 0, &binfo);

  /* Check that the base is unambiguous and accessible.  */
  if (access != ba_any)
    switch (bk)
      {
      case bk_not_base:
	break;

      case bk_ambig:
	binfo = NULL_TREE;
	if (!(access & ba_quiet))
	  {
	    error ("`%T' is an ambiguous base of `%T'", base, t);
	    binfo = error_mark_node;
	  }
	break;

      default:
	if ((access & ~ba_quiet) != ba_ignore
	    /* If BASE is incomplete, then BASE and TYPE are probably
	       the same, in which case BASE is accessible.  If they
	       are not the same, then TYPE is invalid.  In that case,
	       there's no need to issue another error here, and
	       there's no implicit typedef to use in the code that
	       follows, so we skip the check.  */
	    && COMPLETE_TYPE_P (base)
	    && !accessible_base_p (t, base))
	  {
	    if (!(access & ba_quiet))
	      {
		error ("`%T' is an inaccessible base of `%T'", base, t);
		binfo = error_mark_node;
	      }
	    else
	      binfo = NULL_TREE;
	    bk = bk_inaccessible;
	  }
	break;
      }

  if (kind_ptr)
    *kind_ptr = bk;
  
  return binfo;
}

/* Worker function for get_dynamic_cast_base_type.  */

static int
dynamic_cast_base_recurse (tree subtype, tree binfo, bool is_via_virtual,
			   tree *offset_ptr)
{
  tree binfos, accesses;
  int i, n_baselinks;
  int worst = -2;
  
  if (BINFO_TYPE (binfo) == subtype)
    {
      if (is_via_virtual)
        return -1;
      else
        {
          *offset_ptr = BINFO_OFFSET (binfo);
          return 0;
        }
    }
  
  binfos = BINFO_BASETYPES (binfo);
  accesses = BINFO_BASEACCESSES (binfo);
  n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
  for (i = 0; i < n_baselinks; i++)
    {
      tree base_binfo = TREE_VEC_ELT (binfos, i);
      tree base_access = TREE_VEC_ELT (accesses, i);
      int rval;
      
      if (base_access != access_public_node)
        continue;
      rval = dynamic_cast_base_recurse
             (subtype, base_binfo,
              is_via_virtual || TREE_VIA_VIRTUAL (base_binfo), offset_ptr);
      if (worst == -2)
        worst = rval;
      else if (rval >= 0)
        worst = worst >= 0 ? -3 : worst;
      else if (rval == -1)
        worst = -1;
      else if (rval == -3 && worst != -1)
        worst = -3;
    }
  return worst;
}

/* The dynamic cast runtime needs a hint about how the static SUBTYPE type
   started from is related to the required TARGET type, in order to optimize
   the inheritance graph search. This information is independent of the
   current context, and ignores private paths, hence get_base_distance is
   inappropriate. Return a TREE specifying the base offset, BOFF.
   BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
      and there are no public virtual SUBTYPE bases.
   BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
   BOFF == -2, SUBTYPE is not a public base.
   BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases.  */

tree
get_dynamic_cast_base_type (tree subtype, tree target)
{
  tree offset = NULL_TREE;
  int boff = dynamic_cast_base_recurse (subtype, TYPE_BINFO (target),
                                        false, &offset);
  
  if (!boff)
    return offset;
  offset = build_int_2 (boff, -1);
  TREE_TYPE (offset) = ssizetype;
  return offset;
}

/* Search for a member with name NAME in a multiple inheritance
   lattice specified by TYPE.  If it does not exist, return NULL_TREE.
   If the member is ambiguously referenced, return `error_mark_node'.
   Otherwise, return a DECL with the indicated name.  If WANT_TYPE is
   true, type declarations are preferred.  */

/* Do a 1-level search for NAME as a member of TYPE.  The caller must
   figure out whether it can access this field.  (Since it is only one
   level, this is reasonable.)  */

tree
lookup_field_1 (tree type, tree name, bool want_type)
{
  tree field;

  if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
      || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
      || TREE_CODE (type) == TYPENAME_TYPE)
    /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and 
       BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
       instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX.  (Miraculously,
       the code often worked even when we treated the index as a list
       of fields!)
       The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME.  */
    return NULL_TREE;

  if (TYPE_NAME (type)
      && DECL_LANG_SPECIFIC (TYPE_NAME (type))
      && DECL_SORTED_FIELDS (TYPE_NAME (type)))
    {
      tree *fields = &DECL_SORTED_FIELDS (TYPE_NAME (type))->elts[0];
      int lo = 0, hi = DECL_SORTED_FIELDS (TYPE_NAME (type))->len;
      int i;

      while (lo < hi)
	{
	  i = (lo + hi) / 2;

#ifdef GATHER_STATISTICS
	  n_fields_searched++;
#endif /* GATHER_STATISTICS */

	  if (DECL_NAME (fields[i]) > name)
	    hi = i;
	  else if (DECL_NAME (fields[i]) < name)
	    lo = i + 1;
	  else
	    {
	      field = NULL_TREE;

	      /* We might have a nested class and a field with the
		 same name; we sorted them appropriately via
		 field_decl_cmp, so just look for the first or last
		 field with this name.  */
	      if (want_type)
		{
		  do
		    field = fields[i--];
		  while (i >= lo && DECL_NAME (fields[i]) == name);
		  if (TREE_CODE (field) != TYPE_DECL
		      && !DECL_CLASS_TEMPLATE_P (field))
		    field = NULL_TREE;
		}
	      else
		{
		  do
		    field = fields[i++];
		  while (i < hi && DECL_NAME (fields[i]) == name);
		}
	      return field;
	    }
	}
      return NULL_TREE;
    }

  field = TYPE_FIELDS (type);

#ifdef GATHER_STATISTICS
  n_calls_lookup_field_1++;
#endif /* GATHER_STATISTICS */
  for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
    {
#ifdef GATHER_STATISTICS
      n_fields_searched++;
#endif /* GATHER_STATISTICS */
      my_friendly_assert (DECL_P (field), 0);
      if (DECL_NAME (field) == NULL_TREE
	  && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
	{
	  tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
	  if (temp)
	    return temp;
	}
      if (TREE_CODE (field) == USING_DECL)
	/* For now, we're just treating member using declarations as
	   old ARM-style access declarations.  Thus, there's no reason
	   to return a USING_DECL, and the rest of the compiler can't
	   handle it.  Once the class is defined, these are purged
	   from TYPE_FIELDS anyhow; see handle_using_decl.  */
	continue;

      if (DECL_NAME (field) == name
	  && (!want_type 
	      || TREE_CODE (field) == TYPE_DECL
	      || DECL_CLASS_TEMPLATE_P (field)))
	return field;
    }
  /* Not found.  */
  if (name == vptr_identifier)
    {
      /* Give the user what s/he thinks s/he wants.  */
      if (TYPE_POLYMORPHIC_P (type))
	return TYPE_VFIELD (type);
    }
  return NULL_TREE;
}

/* There are a number of cases we need to be aware of here:
			 current_class_type	current_function_decl
     global			NULL			NULL
     fn-local			NULL			SET
     class-local		SET			NULL
     class->fn			SET			SET
     fn->class			SET			SET

   Those last two make life interesting.  If we're in a function which is
   itself inside a class, we need decls to go into the fn's decls (our
   second case below).  But if we're in a class and the class itself is
   inside a function, we need decls to go into the decls for the class.  To
   achieve this last goal, we must see if, when both current_class_ptr and
   current_function_decl are set, the class was declared inside that
   function.  If so, we know to put the decls into the class's scope.  */

tree
current_scope (void)
{
  if (current_function_decl == NULL_TREE)
    return current_class_type;
  if (current_class_type == NULL_TREE)
    return current_function_decl;
  if ((DECL_FUNCTION_MEMBER_P (current_function_decl)
       && same_type_p (DECL_CONTEXT (current_function_decl),
		       current_class_type))
      || (DECL_FRIEND_CONTEXT (current_function_decl)
	  && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
			  current_class_type)))
    return current_function_decl;

  return current_class_type;
}

/* Returns nonzero if we are currently in a function scope.  Note
   that this function returns zero if we are within a local class, but
   not within a member function body of the local class.  */

int
at_function_scope_p (void)
{
  tree cs = current_scope ();
  return cs && TREE_CODE (cs) == FUNCTION_DECL;
}

/* Returns true if the innermost active scope is a class scope.  */

bool
at_class_scope_p (void)
{
  tree cs = current_scope ();
  return cs && TYPE_P (cs);
}

/* Returns true if the innermost active scope is a namespace scope.  */

bool
at_namespace_scope_p (void)
{
  /* We are in a namespace scope if we are not it a class scope or a
     function scope.  */
  return !current_scope();
}

/* Return the scope of DECL, as appropriate when doing name-lookup.  */

tree
context_for_name_lookup (tree decl)
{
  /* [class.union]
     
     For the purposes of name lookup, after the anonymous union
     definition, the members of the anonymous union are considered to
     have been defined in the scope in which the anonymous union is
     declared.  */ 
  tree context = DECL_CONTEXT (decl);

  while (context && TYPE_P (context) && ANON_AGGR_TYPE_P (context))
    context = TYPE_CONTEXT (context);
  if (!context)
    context = global_namespace;

  return context;
}

/* The accessibility routines use BINFO_ACCESS for scratch space
   during the computation of the accessibility of some declaration.  */

#define BINFO_ACCESS(NODE) \
  ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))

/* Set the access associated with NODE to ACCESS.  */

#define SET_BINFO_ACCESS(NODE, ACCESS)			\
  ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0),	\
   (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))

/* Called from access_in_type via dfs_walk.  Calculate the access to
   DATA (which is really a DECL) in BINFO.  */

static tree
dfs_access_in_type (tree binfo, void *data)
{
  tree decl = (tree) data;
  tree type = BINFO_TYPE (binfo);
  access_kind access = ak_none;

  if (context_for_name_lookup (decl) == type)
    {
      /* If we have descended to the scope of DECL, just note the
	 appropriate access.  */
      if (TREE_PRIVATE (decl))
	access = ak_private;
      else if (TREE_PROTECTED (decl))
	access = ak_protected;
      else
	access = ak_public;
    }
  else 
    {
      /* First, check for an access-declaration that gives us more
	 access to the DECL.  The CONST_DECL for an enumeration
	 constant will not have DECL_LANG_SPECIFIC, and thus no
	 DECL_ACCESS.  */
      if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
	{
	  tree decl_access = purpose_member (type, DECL_ACCESS (decl));
	  
	  if (decl_access)
	    {
	      decl_access = TREE_VALUE (decl_access);
	      
	      if (decl_access == access_public_node)
		access = ak_public;
	      else if (decl_access == access_protected_node)
		access = ak_protected;
	      else if (decl_access == access_private_node)
		access = ak_private;
	      else
		my_friendly_assert (false, 20030217);
	    }
	}

      if (!access)
	{
	  int i;
	  int n_baselinks;
	  tree binfos, accesses;
	  
	  /* Otherwise, scan our baseclasses, and pick the most favorable
	     access.  */
	  binfos = BINFO_BASETYPES (binfo);
	  accesses = BINFO_BASEACCESSES (binfo);
	  n_baselinks = binfos ? TREE_VEC_LENGTH (binfos) : 0;
	  for (i = 0; i < n_baselinks; ++i)
	    {
	      tree base_binfo = TREE_VEC_ELT (binfos, i);
	      tree base_access = TREE_VEC_ELT (accesses, i);
	      access_kind base_access_now = BINFO_ACCESS (base_binfo);

	      if (base_access_now == ak_none || base_access_now == ak_private)
		/* If it was not accessible in the base, or only
		   accessible as a private member, we can't access it
		   all.  */
		base_access_now = ak_none;
	      else if (base_access == access_protected_node)
		/* Public and protected members in the base become
		   protected here.  */
		base_access_now = ak_protected;
	      else if (base_access == access_private_node)
		/* Public and protected members in the base become
		   private here.  */
		base_access_now = ak_private;

	      /* See if the new access, via this base, gives more
		 access than our previous best access.  */
	      if (base_access_now != ak_none
		  && (access == ak_none || base_access_now < access))
		{
		  access = base_access_now;

		  /* If the new access is public, we can't do better.  */
		  if (access == ak_public)
		    break;
		}
	    }
	}
    }

  /* Note the access to DECL in TYPE.  */
  SET_BINFO_ACCESS (binfo, access);

  /* Mark TYPE as visited so that if we reach it again we do not
     duplicate our efforts here.  */
  BINFO_MARKED (binfo) = 1;

  return NULL_TREE;
}

/* Return the access to DECL in TYPE.  */

static access_kind
access_in_type (tree type, tree decl)
{
  tree binfo = TYPE_BINFO (type);

  /* We must take into account

       [class.paths]

       If a name can be reached by several paths through a multiple
       inheritance graph, the access is that of the path that gives
       most access.  

    The algorithm we use is to make a post-order depth-first traversal
    of the base-class hierarchy.  As we come up the tree, we annotate
    each node with the most lenient access.  */
  dfs_walk_real (binfo, 0, dfs_access_in_type, unmarkedp, decl);
  dfs_walk (binfo, dfs_unmark, markedp,  0);

  return BINFO_ACCESS (binfo);
}

/* Called from accessible_p via dfs_walk.  */

static tree
dfs_accessible_queue_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
{
  tree binfo = BINFO_BASETYPE (derived, ix);
  
  if (BINFO_MARKED (binfo))
    return NULL_TREE;

  /* If this class is inherited via private or protected inheritance,
     then we can't see it, unless we are a friend of the derived class.  */
  if (BINFO_BASEACCESS (derived, ix) != access_public_node
      && !is_friend (BINFO_TYPE (derived), current_scope ()))
    return NULL_TREE;

  return binfo;
}

/* Called from accessible_p via dfs_walk.  */

static tree
dfs_accessible_p (tree binfo, void *data ATTRIBUTE_UNUSED)
{
  access_kind access;

  BINFO_MARKED (binfo) = 1;
  access = BINFO_ACCESS (binfo);
  if (access != ak_none
      && is_friend (BINFO_TYPE (binfo), current_scope ()))
    return binfo;

  return NULL_TREE;
}

/* Returns nonzero if it is OK to access DECL through an object
   indicated by BINFO in the context of DERIVED.  */

static int
protected_accessible_p (tree decl, tree derived, tree binfo)
{
  access_kind access;

  /* We're checking this clause from [class.access.base]

       m as a member of N is protected, and the reference occurs in a
       member or friend of class N, or in a member or friend of a
       class P derived from N, where m as a member of P is private or
       protected.  

    Here DERIVED is a possible P and DECL is m.  accessible_p will
    iterate over various values of N, but the access to m in DERIVED
    does not change.

    Note that I believe that the passage above is wrong, and should read
    "...is private or protected or public"; otherwise you get bizarre results
    whereby a public using-decl can prevent you from accessing a protected
    member of a base.  (jason 2000/02/28)  */

  /* If DERIVED isn't derived from m's class, then it can't be a P.  */
  if (!DERIVED_FROM_P (context_for_name_lookup (decl), derived))
    return 0;

  access = access_in_type (derived, decl);

  /* If m is inaccessible in DERIVED, then it's not a P.  */
  if (access == ak_none)
    return 0;
  
  /* [class.protected]

     When a friend or a member function of a derived class references
     a protected nonstatic member of a base class, an access check
     applies in addition to those described earlier in clause
     _class.access_) Except when forming a pointer to member
     (_expr.unary.op_), the access must be through a pointer to,
     reference to, or object of the derived class itself (or any class
     derived from that class) (_expr.ref_).  If the access is to form
     a pointer to member, the nested-name-specifier shall name the
     derived class (or any class derived from that class).  */
  if (DECL_NONSTATIC_MEMBER_P (decl))
    {
      /* We can tell through what the reference is occurring by
	 chasing BINFO up to the root.  */
      tree t = binfo;
      while (BINFO_INHERITANCE_CHAIN (t))
	t = BINFO_INHERITANCE_CHAIN (t);
      
      if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
	return 0;
    }

  return 1;
}

/* Returns nonzero if SCOPE is a friend of a type which would be able
   to access DECL through the object indicated by BINFO.  */

static int
friend_accessible_p (tree scope, tree decl, tree binfo)
{
  tree befriending_classes;
  tree t;

  if (!scope)
    return 0;

  if (TREE_CODE (scope) == FUNCTION_DECL
      || DECL_FUNCTION_TEMPLATE_P (scope))
    befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
  else if (TYPE_P (scope))
    befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
  else
    return 0;

  for (t = befriending_classes; t; t = TREE_CHAIN (t))
    if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
      return 1;

  /* Nested classes are implicitly friends of their enclosing types, as
     per core issue 45 (this is a change from the standard).  */
  if (TYPE_P (scope))
    for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
      if (protected_accessible_p (decl, t, binfo))
	return 1;

  if (TREE_CODE (scope) == FUNCTION_DECL
      || DECL_FUNCTION_TEMPLATE_P (scope))
    {
      /* Perhaps this SCOPE is a member of a class which is a 
	 friend.  */ 
      if (DECL_CLASS_SCOPE_P (decl)
	  && friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
	return 1;

      /* Or an instantiation of something which is a friend.  */
      if (DECL_TEMPLATE_INFO (scope))
	return friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
    }
  else if (CLASSTYPE_TEMPLATE_INFO (scope))
    return friend_accessible_p (CLASSTYPE_TI_TEMPLATE (scope), decl, binfo);

  return 0;
}

/* DECL is a declaration from a base class of TYPE, which was the
   class used to name DECL.  Return nonzero if, in the current
   context, DECL is accessible.  If TYPE is actually a BINFO node,
   then we can tell in what context the access is occurring by looking
   at the most derived class along the path indicated by BINFO.  */

int 
accessible_p (tree type, tree decl)
{
  tree binfo;
  tree t;
  tree scope;
  access_kind access;

  /* Nonzero if it's OK to access DECL if it has protected
     accessibility in TYPE.  */
  int protected_ok = 0;

  /* If this declaration is in a block or namespace scope, there's no
     access control.  */
  if (!TYPE_P (context_for_name_lookup (decl)))
    return 1;

  /* There is no need to perform access checks inside a thunk.  */
  scope = current_scope ();
  if (scope && DECL_THUNK_P (scope))
    return 1;

  /* In a template declaration, we cannot be sure whether the
     particular specialization that is instantiated will be a friend
     or not.  Therefore, all access checks are deferred until
     instantiation.  */
  if (processing_template_decl)
    return 1;

  if (!TYPE_P (type))
    {
      binfo = type;
      type = BINFO_TYPE (type);
    }
  else
    binfo = TYPE_BINFO (type);

  /* [class.access.base]

     A member m is accessible when named in class N if

     --m as a member of N is public, or

     --m as a member of N is private, and the reference occurs in a
       member or friend of class N, or

     --m as a member of N is protected, and the reference occurs in a
       member or friend of class N, or in a member or friend of a
       class P derived from N, where m as a member of P is private or
       protected, or

     --there exists a base class B of N that is accessible at the point
       of reference, and m is accessible when named in class B.  

    We walk the base class hierarchy, checking these conditions.  */

  /* Figure out where the reference is occurring.  Check to see if
     DECL is private or protected in this scope, since that will
     determine whether protected access is allowed.  */
  if (current_class_type)
    protected_ok = protected_accessible_p (decl, current_class_type, binfo);

  /* Now, loop through the classes of which we are a friend.  */
  if (!protected_ok)
    protected_ok = friend_accessible_p (scope, decl, binfo);

  /* Standardize the binfo that access_in_type will use.  We don't
     need to know what path was chosen from this point onwards.  */
  binfo = TYPE_BINFO (type);

  /* Compute the accessibility of DECL in the class hierarchy
     dominated by type.  */
  access = access_in_type (type, decl);
  if (access == ak_public
      || (access == ak_protected && protected_ok))
    return 1;
  else
    {
      /* Walk the hierarchy again, looking for a base class that allows
	 access.  */
      t = dfs_walk (binfo, dfs_accessible_p, dfs_accessible_queue_p, 0);
      /* Clear any mark bits.  Note that we have to walk the whole tree
	 here, since we have aborted the previous walk from some point
	 deep in the tree.  */
      dfs_walk (binfo, dfs_unmark, 0,  0);

      return t != NULL_TREE;
    }
}

struct lookup_field_info {
  /* The type in which we're looking.  */
  tree type;
  /* The name of the field for which we're looking.  */
  tree name;
  /* If non-NULL, the current result of the lookup.  */
  tree rval;
  /* The path to RVAL.  */
  tree rval_binfo;
  /* If non-NULL, the lookup was ambiguous, and this is a list of the
     candidates.  */
  tree ambiguous;
  /* If nonzero, we are looking for types, not data members.  */
  int want_type;
  /* If something went wrong, a message indicating what.  */
  const char *errstr;
};

/* Returns nonzero if BINFO is not hidden by the value found by the
   lookup so far.  If BINFO is hidden, then there's no need to look in
   it.  DATA is really a struct lookup_field_info.  Called from
   lookup_field via breadth_first_search.  */

static tree
lookup_field_queue_p (tree derived, int ix, void *data)
{
  tree binfo = BINFO_BASETYPE (derived, ix);
  struct lookup_field_info *lfi = (struct lookup_field_info *) data;

  /* Don't look for constructors or destructors in base classes.  */
  if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
    return NULL_TREE;

  /* If this base class is hidden by the best-known value so far, we
     don't need to look.  */
  if (lfi->rval_binfo && original_binfo (binfo, lfi->rval_binfo))
    return NULL_TREE;

  /* If this is a dependent base, don't look in it.  */
  if (BINFO_DEPENDENT_BASE_P (binfo))
    return NULL_TREE;
  
  return binfo;
}

/* Within the scope of a template class, you can refer to the to the
   current specialization with the name of the template itself.  For
   example:
   
     template <typename T> struct S { S* sp; }

   Returns nonzero if DECL is such a declaration in a class TYPE.  */

static int
template_self_reference_p (tree type, tree decl)
{
  return  (CLASSTYPE_USE_TEMPLATE (type)
	   && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (type))
	   && TREE_CODE (decl) == TYPE_DECL
	   && DECL_ARTIFICIAL (decl)
	   && DECL_NAME (decl) == constructor_name (type));
}


/* Nonzero for a class member means that it is shared between all objects
   of that class.

   [class.member.lookup]:If the resulting set of declarations are not all
   from sub-objects of the same type, or the set has a  nonstatic  member
   and  includes members from distinct sub-objects, there is an ambiguity
   and the program is ill-formed.

   This function checks that T contains no nonstatic members.  */

static int
shared_member_p (tree t)
{
  if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
      || TREE_CODE (t) == CONST_DECL)
    return 1;
  if (is_overloaded_fn (t))
    {
      for (; t; t = OVL_NEXT (t))
	{
	  tree fn = OVL_CURRENT (t);
	  if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
	    return 0;
	}
      return 1;
    }
  return 0;
}

/* DATA is really a struct lookup_field_info.  Look for a field with
   the name indicated there in BINFO.  If this function returns a
   non-NULL value it is the result of the lookup.  Called from
   lookup_field via breadth_first_search.  */

static tree
lookup_field_r (tree binfo, void *data)
{
  struct lookup_field_info *lfi = (struct lookup_field_info *) data;
  tree type = BINFO_TYPE (binfo);
  tree nval = NULL_TREE;

  /* First, look for a function.  There can't be a function and a data
     member with the same name, and if there's a function and a type
     with the same name, the type is hidden by the function.  */
  if (!lfi->want_type)
    {
      int idx = lookup_fnfields_1 (type, lfi->name);
      if (idx >= 0)
	nval = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), idx);
    }

  if (!nval)
    /* Look for a data member or type.  */
    nval = lookup_field_1 (type, lfi->name, lfi->want_type);

  /* If there is no declaration with the indicated name in this type,
     then there's nothing to do.  */
  if (!nval)
    return NULL_TREE;

  /* If we're looking up a type (as with an elaborated type specifier)
     we ignore all non-types we find.  */
  if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
      && !DECL_CLASS_TEMPLATE_P (nval))
    {
      if (lfi->name == TYPE_IDENTIFIER (type))
	{
	  /* If the aggregate has no user defined constructors, we allow
	     it to have fields with the same name as the enclosing type.
	     If we are looking for that name, find the corresponding
	     TYPE_DECL.  */
	  for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
	    if (DECL_NAME (nval) == lfi->name
		&& TREE_CODE (nval) == TYPE_DECL)
	      break;
	}
      else
	nval = NULL_TREE;
      if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
	{
          binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
                                                lfi->name);
	  if (e != NULL)
	    nval = TYPE_MAIN_DECL (e->type);
	  else 
	    return NULL_TREE;
	}
    }

  /* You must name a template base class with a template-id.  */
  if (!same_type_p (type, lfi->type) 
      && template_self_reference_p (type, nval))
    return NULL_TREE;

  /* If the lookup already found a match, and the new value doesn't
     hide the old one, we might have an ambiguity.  */
  if (lfi->rval_binfo && !original_binfo (lfi->rval_binfo, binfo))
    {
      if (nval == lfi->rval && shared_member_p (nval))
	/* The two things are really the same.  */
	;
      else if (original_binfo (binfo, lfi->rval_binfo))
	/* The previous value hides the new one.  */
	;
      else
	{
	  /* We have a real ambiguity.  We keep a chain of all the
	     candidates.  */
	  if (!lfi->ambiguous && lfi->rval)
	    {
	      /* This is the first time we noticed an ambiguity.  Add
		 what we previously thought was a reasonable candidate
		 to the list.  */
	      lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
	      TREE_TYPE (lfi->ambiguous) = error_mark_node;
	    }

	  /* Add the new value.  */
	  lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
	  TREE_TYPE (lfi->ambiguous) = error_mark_node;
	  lfi->errstr = "request for member `%D' is ambiguous";
	}
    }
  else
    {
      lfi->rval = nval;
      lfi->rval_binfo = binfo;
    }

  return NULL_TREE;
}

/* Return a "baselink" which BASELINK_BINFO, BASELINK_ACCESS_BINFO,
   BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
   FUNCTIONS, and OPTYPE respectively.  */

tree
build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
{
  tree baselink;

  my_friendly_assert (TREE_CODE (functions) == FUNCTION_DECL
		      || TREE_CODE (functions) == TEMPLATE_DECL
		      || TREE_CODE (functions) == TEMPLATE_ID_EXPR
		      || TREE_CODE (functions) == OVERLOAD,
		      20020730);
  my_friendly_assert (!optype || TYPE_P (optype), 20020730);
  my_friendly_assert (TREE_TYPE (functions), 20020805);

  baselink = make_node (BASELINK);
  TREE_TYPE (baselink) = TREE_TYPE (functions);
  BASELINK_BINFO (baselink) = binfo;
  BASELINK_ACCESS_BINFO (baselink) = access_binfo;
  BASELINK_FUNCTIONS (baselink) = functions;
  BASELINK_OPTYPE (baselink) = optype;

  return baselink;
}

/* Look for a member named NAME in an inheritance lattice dominated by
   XBASETYPE.  If PROTECT is 0 or two, we do not check access.  If it
   is 1, we enforce accessibility.  If PROTECT is zero, then, for an
   ambiguous lookup, we return NULL.  If PROTECT is 1, we issue error
   messages about inaccessible or ambiguous lookup.  If PROTECT is 2,
   we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
   TREE_VALUEs are the list of ambiguous candidates.

   WANT_TYPE is 1 when we should only return TYPE_DECLs.

   If nothing can be found return NULL_TREE and do not issue an error.  */

tree
lookup_member (tree xbasetype, tree name, int protect, bool want_type)
{
  tree rval, rval_binfo = NULL_TREE;
  tree type = NULL_TREE, basetype_path = NULL_TREE;
  struct lookup_field_info lfi;

  /* rval_binfo is the binfo associated with the found member, note,
     this can be set with useful information, even when rval is not
     set, because it must deal with ALL members, not just non-function
     members.  It is used for ambiguity checking and the hidden
     checks.  Whereas rval is only set if a proper (not hidden)
     non-function member is found.  */

  const char *errstr = 0;

  my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 20030624);

  if (TREE_CODE (xbasetype) == TREE_VEC)
    {
      type = BINFO_TYPE (xbasetype);
      basetype_path = xbasetype;
    }
  else
    {
      my_friendly_assert (IS_AGGR_TYPE_CODE (TREE_CODE (xbasetype)), 20030624);
      type = xbasetype;
      basetype_path = TYPE_BINFO (type);
      my_friendly_assert (!BINFO_INHERITANCE_CHAIN (basetype_path), 980827);
    }

  if (type == current_class_type && TYPE_BEING_DEFINED (type)
      && IDENTIFIER_CLASS_VALUE (name))
    {
      tree field = IDENTIFIER_CLASS_VALUE (name);
      if (! is_overloaded_fn (field)
	  && ! (want_type && TREE_CODE (field) != TYPE_DECL))
	/* We're in the scope of this class, and the value has already
	   been looked up.  Just return the cached value.  */
	return field;
    }

  complete_type (type);

#ifdef GATHER_STATISTICS
  n_calls_lookup_field++;
#endif /* GATHER_STATISTICS */

  memset (&lfi, 0, sizeof (lfi));
  lfi.type = type;
  lfi.name = name;
  lfi.want_type = want_type;
  bfs_walk (basetype_path, &lookup_field_r, &lookup_field_queue_p, &lfi);
  rval = lfi.rval;
  rval_binfo = lfi.rval_binfo;
  if (rval_binfo)
    type = BINFO_TYPE (rval_binfo);
  errstr = lfi.errstr;

  /* If we are not interested in ambiguities, don't report them;
     just return NULL_TREE.  */
  if (!protect && lfi.ambiguous)
    return NULL_TREE;
  
  if (protect == 2) 
    {
      if (lfi.ambiguous)
	return lfi.ambiguous;
      else
	protect = 0;
    }

  /* [class.access]

     In the case of overloaded function names, access control is
     applied to the function selected by overloaded resolution.  */
  if (rval && protect && !is_overloaded_fn (rval))
    perform_or_defer_access_check (basetype_path, rval);

  if (errstr && protect)
    {
      error (errstr, name, type);
      if (lfi.ambiguous)
        print_candidates (lfi.ambiguous);
      rval = error_mark_node;
    }

  if (rval && is_overloaded_fn (rval)) 
    rval = build_baselink (rval_binfo, basetype_path, rval,
			   (IDENTIFIER_TYPENAME_P (name)
			   ? TREE_TYPE (name): NULL_TREE));
  return rval;
}

/* Like lookup_member, except that if we find a function member we
   return NULL_TREE.  */

tree
lookup_field (tree xbasetype, tree name, int protect, bool want_type)
{
  tree rval = lookup_member (xbasetype, name, protect, want_type);
  
  /* Ignore functions.  */
  if (rval && BASELINK_P (rval))
    return NULL_TREE;

  return rval;
}

/* Like lookup_member, except that if we find a non-function member we
   return NULL_TREE.  */

tree
lookup_fnfields (tree xbasetype, tree name, int protect)
{
  tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false);

  /* Ignore non-functions.  */
  if (rval && !BASELINK_P (rval))
    return NULL_TREE;

  return rval;
}

/* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
   corresponding to "operator TYPE ()", or -1 if there is no such
   operator.  Only CLASS_TYPE itself is searched; this routine does
   not scan the base classes of CLASS_TYPE.  */

static int
lookup_conversion_operator (tree class_type, tree type)
{
  int pass;
  int i;

  tree methods = CLASSTYPE_METHOD_VEC (class_type);

  for (pass = 0; pass < 2; ++pass)
    for (i = CLASSTYPE_FIRST_CONVERSION_SLOT; 
	 i < TREE_VEC_LENGTH (methods);
	 ++i)
      {
	tree fn = TREE_VEC_ELT (methods, i);
	/* The size of the vector may have some unused slots at the
	   end.  */
	if (!fn)
	  break;

	/* All the conversion operators come near the beginning of the
	   class.  Therefore, if FN is not a conversion operator, there
	   is no matching conversion operator in CLASS_TYPE.  */
	fn = OVL_CURRENT (fn);
	if (!DECL_CONV_FN_P (fn))
	  break;
	
	if (pass == 0)
	  {
	    /* On the first pass we only consider exact matches.  If
	       the types match, this slot is the one where the right
	       conversion operators can be found.  */
	    if (TREE_CODE (fn) != TEMPLATE_DECL
		&& same_type_p (DECL_CONV_FN_TYPE (fn), type))
	      return i;
	  }
	else
	  {
	    /* On the second pass we look for template conversion
	       operators.  It may be possible to instantiate the
	       template to get the type desired.  All of the template
	       conversion operators share a slot.  By looking for
	       templates second we ensure that specializations are
	       preferred over templates.  */
	    if (TREE_CODE (fn) == TEMPLATE_DECL)
	      return i;
	  }
      }

  return -1;
}

/* TYPE is a class type. Return the index of the fields within
   the method vector with name NAME, or -1 is no such field exists.  */

int
lookup_fnfields_1 (tree type, tree name)
{
  tree method_vec;
  tree *methods;
  tree tmp;
  int i;
  int len;

  if (!CLASS_TYPE_P (type))
    return -1;

  method_vec = CLASSTYPE_METHOD_VEC (type);

  if (!method_vec)
    return -1;

  methods = &TREE_VEC_ELT (method_vec, 0);
  len = TREE_VEC_LENGTH (method_vec);

#ifdef GATHER_STATISTICS
  n_calls_lookup_fnfields_1++;
#endif /* GATHER_STATISTICS */

  /* Constructors are first...  */
  if (name == ctor_identifier)
    return (methods[CLASSTYPE_CONSTRUCTOR_SLOT] 
	    ? CLASSTYPE_CONSTRUCTOR_SLOT : -1);
  /* and destructors are second.  */
  if (name == dtor_identifier)
    return (methods[CLASSTYPE_DESTRUCTOR_SLOT]
	    ? CLASSTYPE_DESTRUCTOR_SLOT : -1);
  if (IDENTIFIER_TYPENAME_P (name))
    return lookup_conversion_operator (type, TREE_TYPE (name));

  /* Skip the conversion operators.  */
  i = CLASSTYPE_FIRST_CONVERSION_SLOT;
  while (i < len && methods[i] && DECL_CONV_FN_P (OVL_CURRENT (methods[i])))
    i++;

  /* If the type is complete, use binary search.  */
  if (COMPLETE_TYPE_P (type))
    {
      int lo = i;
      int hi = len;

      while (lo < hi)
	{
	  i = (lo + hi) / 2;

#ifdef GATHER_STATISTICS
	  n_outer_fields_searched++;
#endif /* GATHER_STATISTICS */

	  tmp = methods[i];
	  /* This slot may be empty; we allocate more slots than we
	     need.  In that case, the entry we're looking for is
	     closer to the beginning of the list.  */
	  if (tmp)
	    tmp = DECL_NAME (OVL_CURRENT (tmp));
	  if (!tmp || tmp > name)
	    hi = i;
	  else if (tmp < name)
	    lo = i + 1;
	  else
	    return i;
	}
    }
  else
    for (; i < len && methods[i]; ++i)
      {
#ifdef GATHER_STATISTICS
	n_outer_fields_searched++;
#endif /* GATHER_STATISTICS */
	
	tmp = OVL_CURRENT (methods[i]);
	if (DECL_NAME (tmp) == name)
	  return i;
      }

  return -1;
}

/* DECL is the result of a qualified name lookup.  QUALIFYING_SCOPE is
   the class or namespace used to qualify the name.  CONTEXT_CLASS is
   the class corresponding to the object in which DECL will be used.
   Return a possibly modified version of DECL that takes into account
   the CONTEXT_CLASS.

   In particular, consider an expression like `B::m' in the context of
   a derived class `D'.  If `B::m' has been resolved to a BASELINK,
   then the most derived class indicated by the BASELINK_BINFO will be
   `B', not `D'.  This function makes that adjustment.  */

tree
adjust_result_of_qualified_name_lookup (tree decl, 
					tree qualifying_scope,
					tree context_class)
{
  if (context_class && CLASS_TYPE_P (qualifying_scope) 
      && DERIVED_FROM_P (qualifying_scope, context_class)
      && BASELINK_P (decl))
    {
      tree base;

      my_friendly_assert (CLASS_TYPE_P (context_class), 20020808);

      /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
	 Because we do not yet know which function will be chosen by
	 overload resolution, we cannot yet check either accessibility
	 or ambiguity -- in either case, the choice of a static member
	 function might make the usage valid.  */
      base = lookup_base (context_class, qualifying_scope,
			  ba_ignore | ba_quiet, NULL);
      if (base)
	{
	  BASELINK_ACCESS_BINFO (decl) = base;
	  BASELINK_BINFO (decl) 
	    = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
			   ba_ignore | ba_quiet,
			   NULL);
	}
    }

  return decl;
}


/* Walk the class hierarchy dominated by TYPE.  FN is called for each
   type in the hierarchy, in a breadth-first preorder traversal.
   If it ever returns a non-NULL value, that value is immediately
   returned and the walk is terminated.  At each node, FN is passed a
   BINFO indicating the path from the currently visited base-class to
   TYPE.  Before each base-class is walked QFN is called.  If the
   value returned is nonzero, the base-class is walked; otherwise it
   is not.  If QFN is NULL, it is treated as a function which always
   returns 1.  Both FN and QFN are passed the DATA whenever they are
   called.

   Implementation notes: Uses a circular queue, which starts off on
   the stack but gets moved to the malloc arena if it needs to be
   enlarged.  The underflow and overflow conditions are
   indistinguishable except by context: if head == tail and we just
   moved the head pointer, the queue is empty, but if we just moved
   the tail pointer, the queue is full.  
   Start with enough room for ten concurrent base classes.  That
   will be enough for most hierarchies.  */
#define BFS_WALK_INITIAL_QUEUE_SIZE 10

static tree
bfs_walk (tree binfo,
	  tree (*fn) (tree, void *),
	  tree (*qfn) (tree, int, void *),
	  void *data)
{
  tree rval = NULL_TREE;

  tree bases_initial[BFS_WALK_INITIAL_QUEUE_SIZE];
  /* A circular queue of the base classes of BINFO.  These will be
     built up in breadth-first order, except where QFN prunes the
     search.  */
  size_t head, tail;
  size_t base_buffer_size = BFS_WALK_INITIAL_QUEUE_SIZE;
  tree *base_buffer = bases_initial;

  head = tail = 0;
  base_buffer[tail++] = binfo;

  while (head != tail)
    {
      int n_bases, ix;
      tree binfo = base_buffer[head++];
      if (head == base_buffer_size)
	head = 0;

      /* Is this the one we're looking for?  If so, we're done.  */
      rval = fn (binfo, data);
      if (rval)
	goto done;

      n_bases = BINFO_N_BASETYPES (binfo);
      for (ix = 0; ix != n_bases; ix++)
	{
	  tree base_binfo;
	  
	  if (qfn)
	    base_binfo = (*qfn) (binfo, ix, data);
	  else
	    base_binfo = BINFO_BASETYPE (binfo, ix);
	  
 	  if (base_binfo)
	    {
	      base_buffer[tail++] = base_binfo;
	      if (tail == base_buffer_size)
		tail = 0;
	      if (tail == head)
		{
		  tree *new_buffer = xmalloc (2 * base_buffer_size
					      * sizeof (tree));
		  memcpy (&new_buffer[0], &base_buffer[0],
			  tail * sizeof (tree));
		  memcpy (&new_buffer[head + base_buffer_size],
			  &base_buffer[head],
			  (base_buffer_size - head) * sizeof (tree));
		  if (base_buffer_size != BFS_WALK_INITIAL_QUEUE_SIZE)
		    free (base_buffer);
		  base_buffer = new_buffer;
		  head += base_buffer_size;
		  base_buffer_size *= 2;
		}
	    }
	}
    }

 done:
  if (base_buffer_size != BFS_WALK_INITIAL_QUEUE_SIZE)
    free (base_buffer);
  return rval;
}

/* Exactly like bfs_walk, except that a depth-first traversal is
   performed, and PREFN is called in preorder, while POSTFN is called
   in postorder.  */

tree
dfs_walk_real (tree binfo,
	       tree (*prefn) (tree, void *),
	       tree (*postfn) (tree, void *),
	       tree (*qfn) (tree, int, void *),
	       void *data)
{
  tree rval = NULL_TREE;

  /* Call the pre-order walking function.  */
  if (prefn)
    {
      rval = (*prefn) (binfo, data);
      if (rval)
	return rval;
    }

  /* Process the basetypes.  */
  if (BINFO_BASETYPES (binfo))
    {
      int i, n = TREE_VEC_LENGTH (BINFO_BASETYPES (binfo));
      for (i = 0; i != n; i++)
	{
	  tree base_binfo;
      
	  if (qfn)
	    base_binfo = (*qfn) (binfo, i, data);
	  else
	    base_binfo = BINFO_BASETYPE (binfo, i);
	  
	  if (base_binfo)
	    {
	      rval = dfs_walk_real (base_binfo, prefn, postfn, qfn, data);
	      if (rval)
		return rval;
	    }
	}
    }

  /* Call the post-order walking function.  */
  if (postfn)
    rval = (*postfn) (binfo, data);
  
  return rval;
}

/* Exactly like bfs_walk, except that a depth-first post-order traversal is
   performed.  */

tree
dfs_walk (tree binfo,
	  tree (*fn) (tree, void *),
	  tree (*qfn) (tree, int, void *),
	  void *data)
{
  return dfs_walk_real (binfo, 0, fn, qfn, data);
}

/* Check that virtual overrider OVERRIDER is acceptable for base function
   BASEFN. Issue diagnostic, and return zero, if unacceptable.  */

int
check_final_overrider (tree overrider, tree basefn)
{
  tree over_type = TREE_TYPE (overrider);
  tree base_type = TREE_TYPE (basefn);
  tree over_return = TREE_TYPE (over_type);
  tree base_return = TREE_TYPE (base_type);
  tree over_throw = TYPE_RAISES_EXCEPTIONS (over_type);
  tree base_throw = TYPE_RAISES_EXCEPTIONS (base_type);
  int fail = 0;
  
  if (same_type_p (base_return, over_return))
    /* OK */;
  else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
	   || (TREE_CODE (base_return) == TREE_CODE (over_return)
	       && POINTER_TYPE_P (base_return)))
    {
      /* Potentially covariant.  */
      unsigned base_quals, over_quals;
      
      fail = !POINTER_TYPE_P (base_return);
      if (!fail)
	{
	  fail = cp_type_quals (base_return) != cp_type_quals (over_return);
	  
	  base_return = TREE_TYPE (base_return);
	  over_return = TREE_TYPE (over_return);
	}
      base_quals = cp_type_quals (base_return);
      over_quals = cp_type_quals (over_return);

      if ((base_quals & over_quals) != over_quals)
	fail = 1;
      
      if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
	{
	  tree binfo = lookup_base (over_return, base_return,
				    ba_check | ba_quiet, NULL);

	  if (!binfo)
	    fail = 1;
	}
      else if (!pedantic
	       && can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type)))
	/* GNU extension, allow trivial pointer conversions such as
	   converting to void *, or qualification conversion.  */
	{
	  /* can_convert will permit user defined conversion from a
	     (reference to) class type. We must reject them.  */
	  over_return = non_reference (TREE_TYPE (over_type));
	  if (CLASS_TYPE_P (over_return))
	    fail = 2;
	}
      else
	fail = 2;
    }
  else
    fail = 2;
  if (!fail)
    /* OK */;
  else if (IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider)))
    return 0;
  else
    {
      if (fail == 1)
	{
	  cp_error_at ("invalid covariant return type for `%#D'", overrider);
	  cp_error_at ("  overriding `%#D'", basefn);
	}
      else
	{
	  cp_error_at ("conflicting return type specified for `%#D'",
		       overrider);
	  cp_error_at ("  overriding `%#D'", basefn);
	}
      SET_IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider),
                                  DECL_CONTEXT (overrider));
      return 0;
    }
  
  /* Check throw specifier is at least as strict.  */
  if (!comp_except_specs (base_throw, over_throw, 0))
    {
      if (!IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider)))
	{
	  cp_error_at ("looser throw specifier for `%#F'", overrider);
	  cp_error_at ("  overriding `%#F'", basefn);
	  SET_IDENTIFIER_ERROR_LOCUS (DECL_ASSEMBLER_NAME (overrider),
				      DECL_CONTEXT (overrider));
	}
      return 0;
    }
  
  return 1;
}

/* Given a class TYPE, and a function decl FNDECL, look for
   virtual functions in TYPE's hierarchy which FNDECL overrides.
   We do not look in TYPE itself, only its bases.
   
   Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
   find that it overrides anything.
   
   We check that every function which is overridden, is correctly
   overridden.  */

int
look_for_overrides (tree type, tree fndecl)
{
  tree binfo = TYPE_BINFO (type);
  tree basebinfos = BINFO_BASETYPES (binfo);
  int nbasebinfos = basebinfos ? TREE_VEC_LENGTH (basebinfos) : 0;
  int ix;
  int found = 0;

  for (ix = 0; ix != nbasebinfos; ix++)
    {
      tree basetype = BINFO_TYPE (TREE_VEC_ELT (basebinfos, ix));
      
      if (TYPE_POLYMORPHIC_P (basetype))
        found += look_for_overrides_r (basetype, fndecl);
    }
  return found;
}

/* Look in TYPE for virtual functions with the same signature as
   FNDECL.  */

tree
look_for_overrides_here (tree type, tree fndecl)
{
  int ix;

  if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
    ix = CLASSTYPE_DESTRUCTOR_SLOT;
  else
    ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
  if (ix >= 0)
    {
      tree fns = TREE_VEC_ELT (CLASSTYPE_METHOD_VEC (type), ix);
  
      for (; fns; fns = OVL_NEXT (fns))
        {
          tree fn = OVL_CURRENT (fns);

          if (!DECL_VIRTUAL_P (fn))
            /* Not a virtual.  */;
          else if (DECL_CONTEXT (fn) != type)
            /* Introduced with a using declaration.  */;
	  else if (DECL_STATIC_FUNCTION_P (fndecl))
	    {
	      tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
	      tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
  	      if (compparms (TREE_CHAIN (btypes), dtypes))
		return fn;
            }
          else if (same_signature_p (fndecl, fn))
	    return fn;
	}
    }
  return NULL_TREE;
}

/* Look in TYPE for virtual functions overridden by FNDECL. Check both
   TYPE itself and its bases.  */

static int
look_for_overrides_r (tree type, tree fndecl)
{
  tree fn = look_for_overrides_here (type, fndecl);
  if (fn)
    {
      if (DECL_STATIC_FUNCTION_P (fndecl))
	{
	  /* A static member function cannot match an inherited
	     virtual member function.  */
	  cp_error_at ("`%#D' cannot be declared", fndecl);
	  cp_error_at ("  since `%#D' declared in base class", fn);
	}
      else
	{
	  /* It's definitely virtual, even if not explicitly set.  */
	  DECL_VIRTUAL_P (fndecl) = 1;
	  check_final_overrider (fndecl, fn);
	}
      return 1;
    }

  /* We failed to find one declared in this class. Look in its bases.  */
  return look_for_overrides (type, fndecl);
}

/* Called via dfs_walk from dfs_get_pure_virtuals.  */

static tree
dfs_get_pure_virtuals (tree binfo, void *data)
{
  tree type = (tree) data;

  /* We're not interested in primary base classes; the derived class
     of which they are a primary base will contain the information we
     need.  */
  if (!BINFO_PRIMARY_P (binfo))
    {
      tree virtuals;
      
      for (virtuals = BINFO_VIRTUALS (binfo);
	   virtuals;
	   virtuals = TREE_CHAIN (virtuals))
	if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
	  CLASSTYPE_PURE_VIRTUALS (type) 
	    = tree_cons (NULL_TREE, BV_FN (virtuals),
			 CLASSTYPE_PURE_VIRTUALS (type));
    }
  
  BINFO_MARKED (binfo) = 1;

  return NULL_TREE;
}

/* Set CLASSTYPE_PURE_VIRTUALS for TYPE.  */

void
get_pure_virtuals (tree type)
{
  tree vbases;

  /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
     is going to be overridden.  */
  CLASSTYPE_PURE_VIRTUALS (type) = NULL_TREE;
  /* Now, run through all the bases which are not primary bases, and
     collect the pure virtual functions.  We look at the vtable in
     each class to determine what pure virtual functions are present.
     (A primary base is not interesting because the derived class of
     which it is a primary base will contain vtable entries for the
     pure virtuals in the base class.  */
  dfs_walk (TYPE_BINFO (type), dfs_get_pure_virtuals, unmarkedp, type);
  dfs_walk (TYPE_BINFO (type), dfs_unmark, markedp, type);

  /* Put the pure virtuals in dfs order.  */
  CLASSTYPE_PURE_VIRTUALS (type) = nreverse (CLASSTYPE_PURE_VIRTUALS (type));

  for (vbases = CLASSTYPE_VBASECLASSES (type); 
       vbases; 
       vbases = TREE_CHAIN (vbases))
    {
      tree virtuals;

      for (virtuals = BINFO_VIRTUALS (TREE_VALUE (vbases));
	   virtuals;
	   virtuals = TREE_CHAIN (virtuals))
	{
	  tree base_fndecl = BV_FN (virtuals);
	  if (DECL_NEEDS_FINAL_OVERRIDER_P (base_fndecl))
	    error ("`%#D' needs a final overrider", base_fndecl);
	}
    }
}

/* DEPTH-FIRST SEARCH ROUTINES.  */

tree 
markedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED) 
{
  tree binfo = BINFO_BASETYPE (derived, ix);
  
  return BINFO_MARKED (binfo) ? binfo : NULL_TREE; 
}

tree
unmarkedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED) 
{
  tree binfo = BINFO_BASETYPE (derived, ix);
  
  return !BINFO_MARKED (binfo) ? binfo : NULL_TREE; 
}

static tree
marked_pushdecls_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
{
  tree binfo = BINFO_BASETYPE (derived, ix);
  
  return (!BINFO_DEPENDENT_BASE_P (binfo)
	  && BINFO_PUSHDECLS_MARKED (binfo)) ? binfo : NULL_TREE; 
}

static tree
unmarked_pushdecls_p (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
{ 
  tree binfo = BINFO_BASETYPE (derived, ix);
  
  return (!BINFO_DEPENDENT_BASE_P (binfo)
	  && !BINFO_PUSHDECLS_MARKED (binfo)) ? binfo : NULL_TREE;
}

/* The worker functions for `dfs_walk'.  These do not need to
   test anything (vis a vis marking) if they are paired with
   a predicate function (above).  */

tree
dfs_unmark (tree binfo, void *data ATTRIBUTE_UNUSED)
{
  BINFO_MARKED (binfo) = 0;
  return NULL_TREE;
}


/* Debug info for C++ classes can get very large; try to avoid
   emitting it everywhere.

   Note that this optimization wins even when the target supports
   BINCL (if only slightly), and reduces the amount of work for the
   linker.  */

void
maybe_suppress_debug_info (tree t)
{
  /* We can't do the usual TYPE_DECL_SUPPRESS_DEBUG thing with DWARF, which
     does not support name references between translation units.  It supports
     symbolic references between translation units, but only within a single
     executable or shared library.

     For DWARF 2, we handle TYPE_DECL_SUPPRESS_DEBUG by pretending
     that the type was never defined, so we only get the members we
     actually define.  */
  if (write_symbols == DWARF_DEBUG || write_symbols == NO_DEBUG)
    return;

  /* We might have set this earlier in cp_finish_decl.  */
  TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;

  /* If we already know how we're handling this class, handle debug info
     the same way.  */
  if (CLASSTYPE_INTERFACE_KNOWN (t))
    {
      if (CLASSTYPE_INTERFACE_ONLY (t))
	TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
      /* else don't set it.  */
    }
  /* If the class has a vtable, write out the debug info along with
     the vtable.  */
  else if (TYPE_CONTAINS_VPTR_P (t))
    TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;

  /* Otherwise, just emit the debug info normally.  */
}

/* Note that we want debugging information for a base class of a class
   whose vtable is being emitted.  Normally, this would happen because
   calling the constructor for a derived class implies calling the
   constructors for all bases, which involve initializing the
   appropriate vptr with the vtable for the base class; but in the
   presence of optimization, this initialization may be optimized
   away, so we tell finish_vtable_vardecl that we want the debugging
   information anyway.  */

static tree
dfs_debug_mark (tree binfo, void *data ATTRIBUTE_UNUSED)
{
  tree t = BINFO_TYPE (binfo);

  CLASSTYPE_DEBUG_REQUESTED (t) = 1;

  return NULL_TREE;
}

/* Returns BINFO if we haven't already noted that we want debugging
   info for this base class.  */

static tree 
dfs_debug_unmarkedp (tree derived, int ix, void *data ATTRIBUTE_UNUSED)
{
  tree binfo = BINFO_BASETYPE (derived, ix);
  
  return (!CLASSTYPE_DEBUG_REQUESTED (BINFO_TYPE (binfo)) 
	  ? binfo : NULL_TREE);
}

/* Write out the debugging information for TYPE, whose vtable is being
   emitted.  Also walk through our bases and note that we want to
   write out information for them.  This avoids the problem of not
   writing any debug info for intermediate basetypes whose
   constructors, and thus the references to their vtables, and thus
   the vtables themselves, were optimized away.  */

void
note_debug_info_needed (tree type)
{
  if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
    {
      TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
      rest_of_type_compilation (type, toplevel_bindings_p ());
    }

  dfs_walk (TYPE_BINFO (type), dfs_debug_mark, dfs_debug_unmarkedp, 0);
}

/* Subroutines of push_class_decls ().  */

static void
setup_class_bindings (tree name, int type_binding_p)
{
  tree type_binding = NULL_TREE;
  tree value_binding;

  /* If we've already done the lookup for this declaration, we're
     done.  */
  if (IDENTIFIER_CLASS_VALUE (name))
    return;

  /* First, deal with the type binding.  */
  if (type_binding_p)
    {
      type_binding = lookup_member (current_class_type, name,
				    /*protect=*/2, /*want_type=*/true);
      if (TREE_CODE (type_binding) == TREE_LIST 
	  && TREE_TYPE (type_binding) == error_mark_node)
	/* NAME is ambiguous.  */
	push_class_level_binding (name, type_binding);
      else
	pushdecl_class_level (type_binding);
    }

  /* Now, do the value binding.  */
  value_binding = lookup_member (current_class_type, name,
				 /*protect=*/2, /*want_type=*/false);

  if (type_binding_p
      && (TREE_CODE (value_binding) == TYPE_DECL
	  || DECL_CLASS_TEMPLATE_P (value_binding)
	  || (TREE_CODE (value_binding) == TREE_LIST
	      && TREE_TYPE (value_binding) == error_mark_node
	      && (TREE_CODE (TREE_VALUE (value_binding))
		  == TYPE_DECL))))
    /* We found a type-binding, even when looking for a non-type
       binding.  This means that we already processed this binding
       above.  */;
  else if (value_binding)
    {
      if (TREE_CODE (value_binding) == TREE_LIST 
	  && TREE_TYPE (value_binding) == error_mark_node)
	/* NAME is ambiguous.  */
	push_class_level_binding (name, value_binding);
      else
	{
	  if (BASELINK_P (value_binding))
	    /* NAME is some overloaded functions.  */
	    value_binding = BASELINK_FUNCTIONS (value_binding);
	  /* Two conversion operators that convert to the same type
	     may have different names.  (See
	     mangle_conv_op_name_for_type.)  To avoid recording the
	     same conversion operator declaration more than once we
	     must check to see that the same operator was not already
	     found under another name.  */
	  if (IDENTIFIER_TYPENAME_P (name)
	      && is_overloaded_fn (value_binding))
	    {
	      tree fns;
	      for (fns = value_binding; fns; fns = OVL_NEXT (fns))
		if (IDENTIFIER_CLASS_VALUE (DECL_NAME (OVL_CURRENT (fns))))
		  return;
	    }
	  pushdecl_class_level (value_binding);
	}
    }
}

/* Push class-level declarations for any names appearing in BINFO that
   are TYPE_DECLS.  */

static tree
dfs_push_type_decls (tree binfo, void *data ATTRIBUTE_UNUSED)
{
  tree type;
  tree fields;

  type = BINFO_TYPE (binfo);
  for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
    if (DECL_NAME (fields) && TREE_CODE (fields) == TYPE_DECL
	&& !(!same_type_p (type, current_class_type)
	     && template_self_reference_p (type, fields)))
      setup_class_bindings (DECL_NAME (fields), /*type_binding_p=*/1);

  /* We can't just use BINFO_MARKED because envelope_add_decl uses
     DERIVED_FROM_P, which calls get_base_distance.  */
  BINFO_PUSHDECLS_MARKED (binfo) = 1;

  return NULL_TREE;
}

/* Push class-level declarations for any names appearing in BINFO that
   are not TYPE_DECLS.  */

static tree
dfs_push_decls (tree binfo, void *data)
{
  tree type = BINFO_TYPE (binfo);
  tree method_vec;
  tree fields;
  
  for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
    if (DECL_NAME (fields) 
	&& TREE_CODE (fields) != TYPE_DECL
	&& TREE_CODE (fields) != USING_DECL
	&& !DECL_ARTIFICIAL (fields))
      setup_class_bindings (DECL_NAME (fields), /*type_binding_p=*/0);
    else if (TREE_CODE (fields) == FIELD_DECL
	     && ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
      dfs_push_decls (TYPE_BINFO (TREE_TYPE (fields)), data);
  
  method_vec = (CLASS_TYPE_P (type) 
		? CLASSTYPE_METHOD_VEC (type) : NULL_TREE);
  
  if (method_vec && TREE_VEC_LENGTH (method_vec) >= 3)
    {
      tree *methods;
      tree *end;
      
      /* Farm out constructors and destructors.  */
      end = TREE_VEC_END (method_vec);
      
      for (methods = &TREE_VEC_ELT (method_vec, 2);
	   methods < end && *methods;
	   methods++)
	setup_class_bindings (DECL_NAME (OVL_CURRENT (*methods)), 
			      /*type_binding_p=*/0);
    }

  BINFO_PUSHDECLS_MARKED (binfo) = 0;

  return NULL_TREE;
}

/* When entering the scope of a class, we cache all of the
   fields that that class provides within its inheritance
   lattice.  Where ambiguities result, we mark them
   with `error_mark_node' so that if they are encountered
   without explicit qualification, we can emit an error
   message.  */

void
push_class_decls (tree type)
{
  search_stack = push_search_level (search_stack, &search_obstack);

  /* Enter type declarations and mark.  */
  dfs_walk (TYPE_BINFO (type), dfs_push_type_decls, unmarked_pushdecls_p, 0);

  /* Enter non-type declarations and unmark.  */
  dfs_walk (TYPE_BINFO (type), dfs_push_decls, marked_pushdecls_p, 0);
}

/* Here's a subroutine we need because C lacks lambdas.  */

static tree
dfs_unuse_fields (tree binfo, void *data ATTRIBUTE_UNUSED)
{
  tree type = TREE_TYPE (binfo);
  tree fields;

  for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
    {
      if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
	continue;

      TREE_USED (fields) = 0;
      if (DECL_NAME (fields) == NULL_TREE
	  && ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
	unuse_fields (TREE_TYPE (fields));
    }

  return NULL_TREE;
}

void
unuse_fields (tree type)
{
  dfs_walk (TYPE_BINFO (type), dfs_unuse_fields, unmarkedp, 0);
}

void
pop_class_decls (void)
{
  /* We haven't pushed a search level when dealing with cached classes,
     so we'd better not try to pop it.  */
  if (search_stack)
    search_stack = pop_search_level (search_stack);
}

void
print_search_statistics (void)
{
#ifdef GATHER_STATISTICS
  fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
	   n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
  fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
	   n_outer_fields_searched, n_calls_lookup_fnfields);
  fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
#else /* GATHER_STATISTICS */
  fprintf (stderr, "no search statistics\n");
#endif /* GATHER_STATISTICS */
}

void
init_search_processing (void)
{
  gcc_obstack_init (&search_obstack);
}

void
reinit_search_statistics (void)
{
#ifdef GATHER_STATISTICS
  n_fields_searched = 0;
  n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
  n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
  n_calls_get_base_type = 0;
  n_outer_fields_searched = 0;
  n_contexts_saved = 0;
#endif /* GATHER_STATISTICS */
}

static tree
add_conversions (tree binfo, void *data)
{
  int i;
  tree method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
  tree *conversions = (tree *) data;

  /* Some builtin types have no method vector, not even an empty one.  */
  if (!method_vec)
    return NULL_TREE;

  for (i = 2; i < TREE_VEC_LENGTH (method_vec); ++i)
    {
      tree tmp = TREE_VEC_ELT (method_vec, i);
      tree name;

      if (!tmp || ! DECL_CONV_FN_P (OVL_CURRENT (tmp)))
	break;

      name = DECL_NAME (OVL_CURRENT (tmp));

      /* Make sure we don't already have this conversion.  */
      if (! IDENTIFIER_MARKED (name))
	{
	  tree t;

	  /* Make sure that we do not already have a conversion
	     operator for this type.  Merely checking the NAME is not
	     enough because two conversion operators to the same type
	     may not have the same NAME.  */
	  for (t = *conversions; t; t = TREE_CHAIN (t))
	    {
	      tree fn;
	      for (fn = TREE_VALUE (t); fn; fn = OVL_NEXT (fn))
		if (same_type_p (TREE_TYPE (name),
				 DECL_CONV_FN_TYPE (OVL_CURRENT (fn))))
		  break;
	      if (fn)
		break;
	    }
	  if (!t)
	    {
	      *conversions = tree_cons (binfo, tmp, *conversions);
	      IDENTIFIER_MARKED (name) = 1;
	    }
	}
    }
  return NULL_TREE;
}

/* Return a TREE_LIST containing all the non-hidden user-defined
   conversion functions for TYPE (and its base-classes).  The
   TREE_VALUE of each node is a FUNCTION_DECL or an OVERLOAD
   containing the conversion functions.  The TREE_PURPOSE is the BINFO
   from which the conversion functions in this node were selected.  */

tree
lookup_conversions (tree type)
{
  tree t;
  tree conversions = NULL_TREE;

  complete_type (type);
  bfs_walk (TYPE_BINFO (type), add_conversions, 0, &conversions);

  for (t = conversions; t; t = TREE_CHAIN (t))
    IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (t)))) = 0;

  return conversions;
}

struct overlap_info 
{
  tree compare_type;
  int found_overlap;
};

/* Check whether the empty class indicated by EMPTY_BINFO is also present
   at offset 0 in COMPARE_TYPE, and set found_overlap if so.  */

static tree
dfs_check_overlap (tree empty_binfo, void *data)
{
  struct overlap_info *oi = (struct overlap_info *) data;
  tree binfo;
  for (binfo = TYPE_BINFO (oi->compare_type); 
       ; 
       binfo = BINFO_BASETYPE (binfo, 0))
    {
      if (BINFO_TYPE (binfo) == BINFO_TYPE (empty_binfo))
	{
	  oi->found_overlap = 1;
	  break;
	}
      else if (BINFO_BASETYPES (binfo) == NULL_TREE)
	break;
    }

  return NULL_TREE;
}

/* Trivial function to stop base traversal when we find something.  */

static tree
dfs_no_overlap_yet (tree derived, int ix, void *data)
{
  tree binfo = BINFO_BASETYPE (derived, ix);
  struct overlap_info *oi = (struct overlap_info *) data;
  
  return !oi->found_overlap ? binfo : NULL_TREE;
}

/* Returns nonzero if EMPTY_TYPE or any of its bases can also be found at
   offset 0 in NEXT_TYPE.  Used in laying out empty base class subobjects.  */

int
types_overlap_p (tree empty_type, tree next_type)
{
  struct overlap_info oi;

  if (! IS_AGGR_TYPE (next_type))
    return 0;
  oi.compare_type = next_type;
  oi.found_overlap = 0;
  dfs_walk (TYPE_BINFO (empty_type), dfs_check_overlap,
	    dfs_no_overlap_yet, &oi);
  return oi.found_overlap;
}

/* Given a vtable VAR, determine which of the inherited classes the vtable
   inherits (in a loose sense) functions from.

   FIXME: This does not work with the new ABI.  */

tree
binfo_for_vtable (tree var)
{
  tree main_binfo = TYPE_BINFO (DECL_CONTEXT (var));
  tree binfos = TYPE_BINFO_BASETYPES (BINFO_TYPE (main_binfo));
  int n_baseclasses = CLASSTYPE_N_BASECLASSES (BINFO_TYPE (main_binfo));
  int i;

  for (i = 0; i < n_baseclasses; i++)
    {
      tree base_binfo = TREE_VEC_ELT (binfos, i);
      if (base_binfo != NULL_TREE && BINFO_VTABLE (base_binfo) == var)
	return base_binfo;
    }

  /* If no secondary base classes matched, return the primary base, if
     there is one.  */
  if (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (main_binfo)))
    return get_primary_binfo (main_binfo);

  return main_binfo;
}

/* Returns the binfo of the first direct or indirect virtual base derived
   from BINFO, or NULL if binfo is not via virtual.  */

tree
binfo_from_vbase (tree binfo)
{
  for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
    {
      if (TREE_VIA_VIRTUAL (binfo))
	return binfo;
    }
  return NULL_TREE;
}

/* Returns the binfo of the first direct or indirect virtual base derived
   from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
   via virtual.  */

tree
binfo_via_virtual (tree binfo, tree limit)
{
  for (; binfo && (!limit || !same_type_p (BINFO_TYPE (binfo), limit));
       binfo = BINFO_INHERITANCE_CHAIN (binfo))
    {
      if (TREE_VIA_VIRTUAL (binfo))
	return binfo;
    }
  return NULL_TREE;
}

/* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
   Find the equivalent binfo within whatever graph HERE is located.
   This is the inverse of original_binfo.  */

tree
copied_binfo (tree binfo, tree here)
{
  tree result = NULL_TREE;
  
  if (TREE_VIA_VIRTUAL (binfo))
    {
      tree t;

      for (t = here; BINFO_INHERITANCE_CHAIN (t);
	   t = BINFO_INHERITANCE_CHAIN (t))
	continue;
      
      result = purpose_member (BINFO_TYPE (binfo),
			       CLASSTYPE_VBASECLASSES (BINFO_TYPE (t)));
      result = TREE_VALUE (result);
    }
  else if (BINFO_INHERITANCE_CHAIN (binfo))
    {
      tree base_binfos;
      int ix, n;
      
      base_binfos = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
      base_binfos = BINFO_BASETYPES (base_binfos);
      n = TREE_VEC_LENGTH (base_binfos);
      for (ix = 0; ix != n; ix++)
	{
	  tree base = TREE_VEC_ELT (base_binfos, ix);
	  
	  if (BINFO_TYPE (base) == BINFO_TYPE (binfo))
	    {
	      result = base;
	      break;
	    }
	}
    }
  else
    {
      my_friendly_assert (BINFO_TYPE (here) == BINFO_TYPE (binfo), 20030202);
      result = here;
    }

  my_friendly_assert (result, 20030202);
  return result;
}

/* BINFO is some base binfo of HERE, within some other
   hierarchy. Return the equivalent binfo, but in the hierarchy
   dominated by HERE.  This is the inverse of copied_binfo.  If BINFO
   is not a base binfo of HERE, returns NULL_TREE.  */

tree
original_binfo (tree binfo, tree here)
{
  tree result = NULL;
  
  if (BINFO_TYPE (binfo) == BINFO_TYPE (here))
    result = here;
  else if (TREE_VIA_VIRTUAL (binfo))
    {
      result = purpose_member (BINFO_TYPE (binfo),
			       CLASSTYPE_VBASECLASSES (BINFO_TYPE (here)));
      if (result)
	result = TREE_VALUE (result);
    }
  else if (BINFO_INHERITANCE_CHAIN (binfo))
    {
      tree base_binfos;
      
      base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
      if (base_binfos)
	{
	  int ix, n;
	  
	  base_binfos = BINFO_BASETYPES (base_binfos);
	  n = TREE_VEC_LENGTH (base_binfos);
	  for (ix = 0; ix != n; ix++)
	    {
	      tree base = TREE_VEC_ELT (base_binfos, ix);
	      
	      if (BINFO_TYPE (base) == BINFO_TYPE (binfo))
		{
		  result = base;
		  break;
		}
	    }
	}
    }
  
  return result;
}