1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
|
/* Derivation and subsumption rules for constraints.
Copyright (C) 2013-2018 Free Software Foundation, Inc.
Contributed by Andrew Sutton (andrew.n.sutton@gmail.com)
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#define INCLUDE_LIST
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "timevar.h"
#include "hash-set.h"
#include "machmode.h"
#include "vec.h"
#include "double-int.h"
#include "input.h"
#include "alias.h"
#include "symtab.h"
#include "wide-int.h"
#include "inchash.h"
#include "tree.h"
#include "stringpool.h"
#include "attribs.h"
#include "intl.h"
#include "flags.h"
#include "cp-tree.h"
#include "c-family/c-common.h"
#include "c-family/c-objc.h"
#include "cp-objcp-common.h"
#include "tree-inline.h"
#include "decl.h"
#include "toplev.h"
#include "type-utils.h"
namespace {
// Helper algorithms
template<typename I>
inline I
next (I iter)
{
return ++iter;
}
template<typename I, typename P>
inline bool
any_p (I first, I last, P pred)
{
while (first != last)
{
if (pred(*first))
return true;
++first;
}
return false;
}
bool prove_implication (tree, tree);
/*---------------------------------------------------------------------------
Proof state
---------------------------------------------------------------------------*/
struct term_entry
{
tree t;
};
/* Hashing function and equality for constraint entries. */
struct term_hasher : ggc_ptr_hash<term_entry>
{
static hashval_t hash (term_entry *e)
{
return iterative_hash_template_arg (e->t, 0);
}
static bool equal (term_entry *e1, term_entry *e2)
{
return cp_tree_equal (e1->t, e2->t);
}
};
/* A term list is a list of atomic constraints. It is used
to maintain the lists of assumptions and conclusions in a
proof goal.
Each term list maintains an iterator that refers to the current
term. This can be used by various tactics to support iteration
and stateful manipulation of the list. */
struct term_list
{
typedef std::list<tree>::iterator iterator;
term_list ();
term_list (tree);
bool includes (tree);
iterator insert (iterator, tree);
iterator push_back (tree);
iterator erase (iterator);
iterator replace (iterator, tree);
iterator replace (iterator, tree, tree);
iterator begin() { return seq.begin(); }
iterator end() { return seq.end(); }
std::list<tree> seq;
hash_table<term_hasher> tab;
};
inline
term_list::term_list ()
: seq(), tab (11)
{
}
/* Initialize a term list with an initial term. */
inline
term_list::term_list (tree t)
: seq (), tab (11)
{
push_back (t);
}
/* Returns true if T is the in the tree. */
inline bool
term_list::includes (tree t)
{
term_entry ent = {t};
return tab.find (&ent);
}
/* Append a term to the list. */
inline term_list::iterator
term_list::push_back (tree t)
{
return insert (end(), t);
}
/* Insert a new (unseen) term T into the list before the proposition
indicated by ITER. Returns the iterator to the newly inserted
element. */
term_list::iterator
term_list::insert (iterator iter, tree t)
{
gcc_assert (!includes (t));
iter = seq.insert (iter, t);
term_entry ent = {t};
term_entry** slot = tab.find_slot (&ent, INSERT);
term_entry* ptr = ggc_alloc<term_entry> ();
*ptr = ent;
*slot = ptr;
return iter;
}
/* Remove an existing term from the list. Returns an iterator referring
to the element after the removed term. This may be end(). */
term_list::iterator
term_list::erase (iterator iter)
{
gcc_assert (includes (*iter));
term_entry ent = {*iter};
tab.remove_elt (&ent);
iter = seq.erase (iter);
return iter;
}
/* Replace the given term with that specified. If the term has
been previously seen, do not insert the term. Returns the
first iterator past the current term. */
term_list::iterator
term_list::replace (iterator iter, tree t)
{
iter = erase (iter);
if (!includes (t))
insert (iter, t);
return iter;
}
/* Replace the term at the given position by the supplied T1
followed by t2. This is used in certain logical operators to
load a list of assumptions or conclusions. */
term_list::iterator
term_list::replace (iterator iter, tree t1, tree t2)
{
iter = erase (iter);
if (!includes (t1))
insert (iter, t1);
if (!includes (t2))
insert (iter, t2);
return iter;
}
/* A goal (or subgoal) models a sequent of the form
'A |- C' where A and C are lists of assumptions and
conclusions written as propositions in the constraint
language (i.e., lists of trees). */
struct proof_goal
{
term_list assumptions;
term_list conclusions;
};
/* A proof state owns a list of goals and tracks the
current sub-goal. The class also provides facilities
for managing subgoals and constructing term lists. */
struct proof_state : std::list<proof_goal>
{
proof_state ();
iterator branch (iterator i);
iterator discharge (iterator i);
};
/* Initialize the state with a single empty goal, and set that goal
as the current subgoal. */
inline
proof_state::proof_state ()
: std::list<proof_goal> (1)
{ }
/* Branch the current goal by creating a new subgoal, returning a
reference to the new object. This does not update the current goal. */
inline proof_state::iterator
proof_state::branch (iterator i)
{
gcc_assert (i != end());
proof_goal& g = *i;
return insert (++i, g);
}
/* Discharge the current goal, setting it equal to the
next non-satisfied goal. */
inline proof_state::iterator
proof_state::discharge (iterator i)
{
gcc_assert (i != end());
return erase (i);
}
/*---------------------------------------------------------------------------
Debugging
---------------------------------------------------------------------------*/
// void
// debug (term_list& ts)
// {
// for (term_list::iterator i = ts.begin(); i != ts.end(); ++i)
// verbatim (" # %E", *i);
// }
//
// void
// debug (proof_goal& g)
// {
// debug (g.assumptions);
// verbatim (" |-");
// debug (g.conclusions);
// }
/*---------------------------------------------------------------------------
Atomicity of constraints
---------------------------------------------------------------------------*/
/* Returns true if T is not an atomic constraint. */
bool
non_atomic_constraint_p (tree t)
{
switch (TREE_CODE (t))
{
case PRED_CONSTR:
case EXPR_CONSTR:
case TYPE_CONSTR:
case ICONV_CONSTR:
case DEDUCT_CONSTR:
case EXCEPT_CONSTR:
/* A pack expansion isn't atomic, but it can't decompose to prove an
atom, so it shouldn't cause analyze_atom to return undecided. */
case EXPR_PACK_EXPANSION:
return false;
case CHECK_CONSTR:
case PARM_CONSTR:
case CONJ_CONSTR:
case DISJ_CONSTR:
return true;
default:
gcc_unreachable ();
}
}
/* Returns true if any constraints in T are not atomic. */
bool
any_non_atomic_constraints_p (term_list& t)
{
return any_p (t.begin(), t.end(), non_atomic_constraint_p);
}
/*---------------------------------------------------------------------------
Proof validations
---------------------------------------------------------------------------*/
enum proof_result
{
invalid,
valid,
undecided
};
proof_result check_term (term_list&, tree);
proof_result
analyze_atom (term_list& ts, tree t)
{
/* FIXME: Hook into special cases, if any. */
/*
term_list::iterator iter = ts.begin();
term_list::iterator end = ts.end();
while (iter != end)
{
++iter;
}
*/
if (non_atomic_constraint_p (t))
return undecided;
if (any_non_atomic_constraints_p (ts))
return undecided;
return invalid;
}
/* Search for a pack expansion in the list of assumptions that would
make this expansion valid. */
proof_result
analyze_pack (term_list& ts, tree t)
{
tree c1 = normalize_expression (PACK_EXPANSION_PATTERN (t));
term_list::iterator iter = ts.begin();
term_list::iterator end = ts.end();
while (iter != end)
{
if (TREE_CODE (*iter) == TREE_CODE (t))
{
tree c2 = normalize_expression (PACK_EXPANSION_PATTERN (*iter));
if (prove_implication (c2, c1))
return valid;
else
return invalid;
}
++iter;
}
return invalid;
}
/* Search for concept checks in TS that we know subsume T. */
proof_result
search_known_subsumptions (term_list& ts, tree t)
{
for (term_list::iterator i = ts.begin(); i != ts.end(); ++i)
if (TREE_CODE (*i) == CHECK_CONSTR)
{
if (bool* b = lookup_subsumption_result (*i, t))
return *b ? valid : invalid;
}
return undecided;
}
/* Determine if the terms in TS provide sufficient support for proving
the proposition T. If any term in TS is a concept check that is known
to subsume T, then the proof is valid. Otherwise, we have to expand T
and continue searching for support. */
proof_result
analyze_check (term_list& ts, tree t)
{
proof_result r = search_known_subsumptions (ts, t);
if (r != undecided)
return r;
tree tmpl = CHECK_CONSTR_CONCEPT (t);
tree args = CHECK_CONSTR_ARGS (t);
tree c = expand_concept (tmpl, args);
return check_term (ts, c);
}
/* Recursively check constraints of the parameterized constraint. */
proof_result
analyze_parameterized (term_list& ts, tree t)
{
return check_term (ts, PARM_CONSTR_OPERAND (t));
}
proof_result
analyze_conjunction (term_list& ts, tree t)
{
proof_result r = check_term (ts, TREE_OPERAND (t, 0));
if (r == invalid || r == undecided)
return r;
return check_term (ts, TREE_OPERAND (t, 1));
}
proof_result
analyze_disjunction (term_list& ts, tree t)
{
proof_result r = check_term (ts, TREE_OPERAND (t, 0));
if (r == valid)
return r;
return check_term (ts, TREE_OPERAND (t, 1));
}
proof_result
analyze_term (term_list& ts, tree t)
{
switch (TREE_CODE (t))
{
case CHECK_CONSTR:
return analyze_check (ts, t);
case PARM_CONSTR:
return analyze_parameterized (ts, t);
case CONJ_CONSTR:
return analyze_conjunction (ts, t);
case DISJ_CONSTR:
return analyze_disjunction (ts, t);
case PRED_CONSTR:
case EXPR_CONSTR:
case TYPE_CONSTR:
case ICONV_CONSTR:
case DEDUCT_CONSTR:
case EXCEPT_CONSTR:
return analyze_atom (ts, t);
case EXPR_PACK_EXPANSION:
return analyze_pack (ts, t);
case ERROR_MARK:
/* Encountering an error anywhere in a constraint invalidates
the proof, since the constraint is ill-formed. */
return invalid;
default:
gcc_unreachable ();
}
}
/* Check if a single term can be proven from a set of assumptions.
If the proof is not valid, then it is incomplete when either
the given term is non-atomic or any term in the list of assumptions
is not-atomic. */
proof_result
check_term (term_list& ts, tree t)
{
/* Try the easy way; search for an equivalent term. */
if (ts.includes (t))
return valid;
/* The hard way; actually consider what the term means. */
return analyze_term (ts, t);
}
/* Check to see if any term is proven by the assumptions in the
proof goal. The proof is valid if the proof of any term is valid.
If validity cannot be determined, but any particular
check was undecided, then this goal is undecided. */
proof_result
check_goal (proof_goal& g)
{
term_list::iterator iter = g.conclusions.begin ();
term_list::iterator end = g.conclusions.end ();
bool incomplete = false;
while (iter != end)
{
proof_result r = check_term (g.assumptions, *iter);
if (r == valid)
return r;
if (r == undecided)
incomplete = true;
++iter;
}
/* Was the proof complete? */
if (incomplete)
return undecided;
else
return invalid;
}
/* Check if the the proof is valid. This is the case when all
goals can be discharged. If any goal is invalid, then the
entire proof is invalid. Otherwise, the proof is undecided. */
proof_result
check_proof (proof_state& p)
{
proof_state::iterator iter = p.begin();
proof_state::iterator end = p.end();
while (iter != end)
{
proof_result r = check_goal (*iter);
if (r == invalid)
return r;
if (r == valid)
iter = p.discharge (iter);
else
++iter;
}
/* If all goals are discharged, then the proof is valid. */
if (p.empty())
return valid;
else
return undecided;
}
/*---------------------------------------------------------------------------
Left logical rules
---------------------------------------------------------------------------*/
term_list::iterator
load_check_assumption (term_list& ts, term_list::iterator i)
{
tree decl = CHECK_CONSTR_CONCEPT (*i);
tree tmpl = DECL_TI_TEMPLATE (decl);
tree args = CHECK_CONSTR_ARGS (*i);
return ts.replace(i, expand_concept (tmpl, args));
}
term_list::iterator
load_parameterized_assumption (term_list& ts, term_list::iterator i)
{
return ts.replace(i, PARM_CONSTR_OPERAND(*i));
}
term_list::iterator
load_conjunction_assumption (term_list& ts, term_list::iterator i)
{
tree t1 = TREE_OPERAND (*i, 0);
tree t2 = TREE_OPERAND (*i, 1);
return ts.replace(i, t1, t2);
}
/* Examine the terms in the list, and apply left-logical rules to move
terms into the set of assumptions. */
void
load_assumptions (proof_goal& g)
{
term_list::iterator iter = g.assumptions.begin();
term_list::iterator end = g.assumptions.end();
while (iter != end)
{
switch (TREE_CODE (*iter))
{
case CHECK_CONSTR:
iter = load_check_assumption (g.assumptions, iter);
break;
case PARM_CONSTR:
iter = load_parameterized_assumption (g.assumptions, iter);
break;
case CONJ_CONSTR:
iter = load_conjunction_assumption (g.assumptions, iter);
break;
default:
++iter;
break;
}
}
}
/* In each subgoal, load constraints into the assumption set. */
void
load_assumptions(proof_state& p)
{
proof_state::iterator iter = p.begin();
while (iter != p.end())
{
load_assumptions (*iter);
++iter;
}
}
void
explode_disjunction (proof_state& p, proof_state::iterator gi, term_list::iterator ti1)
{
tree t1 = TREE_OPERAND (*ti1, 0);
tree t2 = TREE_OPERAND (*ti1, 1);
/* Erase the current term from the goal. */
proof_goal& g1 = *gi;
proof_goal& g2 = *p.branch (gi);
/* Get an iterator to the equivalent position in th enew goal. */
int n = std::distance (g1.assumptions.begin (), ti1);
term_list::iterator ti2 = g2.assumptions.begin ();
std::advance (ti2, n);
/* Replace the disjunction in both branches. */
g1.assumptions.replace (ti1, t1);
g2.assumptions.replace (ti2, t2);
}
/* Search the assumptions of the goal for the first disjunction. */
bool
explode_goal (proof_state& p, proof_state::iterator gi)
{
term_list& ts = gi->assumptions;
term_list::iterator ti = ts.begin();
term_list::iterator end = ts.end();
while (ti != end)
{
if (TREE_CODE (*ti) == DISJ_CONSTR)
{
explode_disjunction (p, gi, ti);
return true;
}
else ++ti;
}
return false;
}
/* Search for the first goal with a disjunction, and then branch
creating a clone of that subgoal. */
void
explode_assumptions (proof_state& p)
{
proof_state::iterator iter = p.begin();
proof_state::iterator end = p.end();
while (iter != end)
{
if (explode_goal (p, iter))
return;
++iter;
}
}
/*---------------------------------------------------------------------------
Right logical rules
---------------------------------------------------------------------------*/
term_list::iterator
load_disjunction_conclusion (term_list& g, term_list::iterator i)
{
tree t1 = TREE_OPERAND (*i, 0);
tree t2 = TREE_OPERAND (*i, 1);
return g.replace(i, t1, t2);
}
/* Apply logical rules to the right hand side. This will load the
conclusion set with all tpp-level disjunctions. */
void
load_conclusions (proof_goal& g)
{
term_list::iterator iter = g.conclusions.begin();
term_list::iterator end = g.conclusions.end();
while (iter != end)
{
if (TREE_CODE (*iter) == DISJ_CONSTR)
iter = load_disjunction_conclusion (g.conclusions, iter);
else
++iter;
}
}
void
load_conclusions (proof_state& p)
{
proof_state::iterator iter = p.begin();
while (iter != p.end())
{
load_conclusions (*iter);
++iter;
}
}
/*---------------------------------------------------------------------------
High-level proof tactics
---------------------------------------------------------------------------*/
/* Given two constraints A and C, try to derive a proof that
A implies C. */
bool
prove_implication (tree a, tree c)
{
/* Quick accept. */
if (cp_tree_equal (a, c))
return true;
/* Build the initial proof state. */
proof_state proof;
proof_goal& goal = proof.front();
goal.assumptions.push_back(a);
goal.conclusions.push_back(c);
/* Perform an initial right-expansion in the off-chance that the right
hand side contains disjunctions. */
load_conclusions (proof);
int step_max = 1 << 10;
int step_count = 0; /* FIXME: We shouldn't have this. */
std::size_t branch_limit = 1024; /* FIXME: This needs to be configurable. */
while (step_count < step_max && proof.size() < branch_limit)
{
/* Determine if we can prove that the assumptions entail the
conclusions. If so, we're done. */
load_assumptions (proof);
/* Can we solve the proof based on this? */
proof_result r = check_proof (proof);
if (r != undecided)
return r == valid;
/* If not, then we need to dig into disjunctions. */
explode_assumptions (proof);
++step_count;
}
if (step_count == step_max)
error ("subsumption failed to resolve");
if (proof.size() == branch_limit)
error ("exceeded maximum number of branches");
return false;
}
/* Returns true if the LEFT constraint subsume the RIGHT constraints.
This is done by deriving a proof of the conclusions on the RIGHT
from the assumptions on the LEFT assumptions. */
bool
subsumes_constraints_nonnull (tree left, tree right)
{
gcc_assert (check_constraint_info (left));
gcc_assert (check_constraint_info (right));
auto_timevar time (TV_CONSTRAINT_SUB);
tree a = CI_ASSOCIATED_CONSTRAINTS (left);
tree c = CI_ASSOCIATED_CONSTRAINTS (right);
return prove_implication (a, c);
}
} /* namespace */
/* Returns true if the LEFT constraints subsume the RIGHT
constraints. */
bool
subsumes (tree left, tree right)
{
if (left == right)
return true;
if (!left)
return false;
if (!right)
return true;
return subsumes_constraints_nonnull (left, right);
}
|