aboutsummaryrefslogtreecommitdiff
path: root/gcc/cp/constraint.cc
blob: cc4df4216ef0e2bb6bfa7c36c4e11770eff4e96e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
/* Processing rules for constraints.
   Copyright (C) 2013-2022 Free Software Foundation, Inc.
   Contributed by Andrew Sutton (andrew.n.sutton@gmail.com)

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "timevar.h"
#include "hash-set.h"
#include "machmode.h"
#include "vec.h"
#include "double-int.h"
#include "input.h"
#include "alias.h"
#include "symtab.h"
#include "wide-int.h"
#include "inchash.h"
#include "tree.h"
#include "stringpool.h"
#include "attribs.h"
#include "intl.h"
#include "flags.h"
#include "cp-tree.h"
#include "c-family/c-common.h"
#include "c-family/c-objc.h"
#include "cp-objcp-common.h"
#include "tree-inline.h"
#include "decl.h"
#include "toplev.h"
#include "type-utils.h"

static tree satisfaction_value (tree t);

/* When we're parsing or substuting a constraint expression, we have slightly
   different expression semantics.  In particular, we don't want to reduce a
   concept-id to a satisfaction value.  */

processing_constraint_expression_sentinel::
processing_constraint_expression_sentinel ()
{
  ++scope_chain->x_processing_constraint;
}

processing_constraint_expression_sentinel::
~processing_constraint_expression_sentinel ()
{
  --scope_chain->x_processing_constraint;
}

bool
processing_constraint_expression_p ()
{
  return scope_chain->x_processing_constraint != 0;
}

/*---------------------------------------------------------------------------
		       Constraint expressions
---------------------------------------------------------------------------*/

/* Information provided to substitution.  */

struct subst_info
{
  subst_info (tsubst_flags_t cmp, tree in)
    : complain (cmp), in_decl (in)
  { }

  /* True if we should not diagnose errors.  */
  bool quiet() const
  {
    return complain == tf_none;
  }

  /* True if we should diagnose errors.  */
  bool noisy() const
  {
    return !quiet ();
  }

  tsubst_flags_t complain;
  tree in_decl;
};

/* Provides additional context for satisfaction.

   During satisfaction:
    - The flag noisy() controls whether to diagnose ill-formed satisfaction,
      such as the satisfaction value of an atom being non-bool or non-constant.
    - The flag diagnose_unsatisfaction_p() controls whether to additionally
      explain why a constraint is not satisfied.
    - We enter satisfaction with noisy+unsat from diagnose_constraints.
    - We enter satisfaction with noisy-unsat from the replay inside
      constraint_satisfaction_value.
    - We enter satisfaction quietly (both flags cleared) from
      constraints_satisfied_p.

   During evaluation of a requires-expression:
    - The flag noisy() controls whether to diagnose ill-formed types and
      expressions inside its requirements.
    - The flag diagnose_unsatisfaction_p() controls whether to additionally
      explain why the requires-expression evaluates to false.
    - We enter tsubst_requires_expr with noisy+unsat from
      diagnose_atomic_constraint and potentially from
      satisfy_nondeclaration_constraints.
    - We enter tsubst_requires_expr with noisy-unsat from
      cp_parser_requires_expression when processing a requires-expression that
      appears outside a template.
    - We enter tsubst_requires_expr quietly (both flags cleared) when
      substituting through a requires-expression as part of template
      instantiation.  */

struct sat_info : subst_info
{
  sat_info (tsubst_flags_t cmp, tree in, bool diag_unsat = false)
    : subst_info (cmp, in), diagnose_unsatisfaction (diag_unsat)
  {
    if (diagnose_unsatisfaction_p ())
      gcc_checking_assert (noisy ());
  }

  /* True if we should diagnose the cause of satisfaction failure.
     Implies noisy().  */
  bool
  diagnose_unsatisfaction_p () const
  {
    return diagnose_unsatisfaction;
  }

  bool diagnose_unsatisfaction;
};

static tree constraint_satisfaction_value (tree, tree, sat_info);

/* True if T is known to be some type other than bool. Note that this
   is false for dependent types and errors.  */

static inline bool
known_non_bool_p (tree t)
{
  return (t && !WILDCARD_TYPE_P (t) && TREE_CODE (t) != BOOLEAN_TYPE);
}

static bool
check_constraint_atom (cp_expr expr)
{
  if (known_non_bool_p (TREE_TYPE (expr)))
    {
      error_at (expr.get_location (),
		"constraint expression does not have type %<bool%>");
      return false;
    }

  /* Check that we're using function concepts correctly.  */
  if (concept_check_p (expr))
    {
      tree id = unpack_concept_check (expr);
      tree tmpl = TREE_OPERAND (id, 0);
      if (OVL_P (tmpl) && TREE_CODE (expr) == TEMPLATE_ID_EXPR)
        {
	  error_at (EXPR_LOC_OR_LOC (expr, input_location),
		    "function concept must be called");
	  return false;
	}
    }

  return true;
}

static bool
check_constraint_operands (location_t, cp_expr lhs, cp_expr rhs)
{
  return check_constraint_atom (lhs) && check_constraint_atom (rhs);
}

/* Validate the semantic properties of the constraint expression.  */

static cp_expr
finish_constraint_binary_op (location_t loc,
			     tree_code code,
			     cp_expr lhs,
			     cp_expr rhs)
{
  gcc_assert (processing_constraint_expression_p ());
  if (lhs == error_mark_node || rhs == error_mark_node)
    return error_mark_node;
  if (!check_constraint_operands (loc, lhs, rhs))
    return error_mark_node;
  cp_expr expr
    = build_min_nt_loc (loc, code, lhs.get_value (), rhs.get_value ());
  expr.set_range (lhs.get_start (), rhs.get_finish ());
  return expr;
}

cp_expr
finish_constraint_or_expr (location_t loc, cp_expr lhs, cp_expr rhs)
{
  return finish_constraint_binary_op (loc, TRUTH_ORIF_EXPR, lhs, rhs);
}

cp_expr
finish_constraint_and_expr (location_t loc, cp_expr lhs, cp_expr rhs)
{
  return finish_constraint_binary_op (loc, TRUTH_ANDIF_EXPR, lhs, rhs);
}

cp_expr
finish_constraint_primary_expr (cp_expr expr)
{
  if (expr == error_mark_node)
    return error_mark_node;
  if (!check_constraint_atom (expr))
    return cp_expr (error_mark_node, expr.get_location ());
  return expr;
}

/* Combine two constraint-expressions with a logical-and.  */

tree
combine_constraint_expressions (tree lhs, tree rhs)
{
  processing_constraint_expression_sentinel pce;
  if (!lhs)
    return rhs;
  if (!rhs)
    return lhs;
  return finish_constraint_and_expr (input_location, lhs, rhs);
}

/* Extract the template-id from a concept check. For standard and variable
   checks, this is simply T. For function concept checks, this is the
   called function.  */

tree
unpack_concept_check (tree t)
{
  gcc_assert (concept_check_p (t));

  if (TREE_CODE (t) == CALL_EXPR)
    t = CALL_EXPR_FN (t);

  gcc_assert (TREE_CODE (t) == TEMPLATE_ID_EXPR);
  return t;
}

/* Extract the TEMPLATE_DECL from a concept check.  */

tree
get_concept_check_template (tree t)
{
  tree id = unpack_concept_check (t);
  tree tmpl = TREE_OPERAND (id, 0);
  if (OVL_P (tmpl))
    tmpl = OVL_FIRST (tmpl);
  return tmpl;
}

/*---------------------------------------------------------------------------
                    Resolution of qualified concept names
---------------------------------------------------------------------------*/

/* This facility is used to resolve constraint checks from requirement
   expressions. A constraint check is a call to a function template declared
   with the keyword 'concept'.

   The result of resolution is a pair (a TREE_LIST) whose value is the
   matched declaration, and whose purpose contains the coerced template
   arguments that can be substituted into the call.  */

/* Given an overload set OVL, try to find a unique definition that can be
   instantiated by the template arguments ARGS.

   This function is not called for arbitrary call expressions. In particular,
   the call expression must be written with explicit template arguments
   and no function arguments. For example:

        f<T, U>()

   If a single match is found, this returns a TREE_LIST whose VALUE
   is the constraint function (not the template), and its PURPOSE is
   the complete set of arguments substituted into the parameter list.  */

static tree
resolve_function_concept_overload (tree ovl, tree args)
{
  int nerrs = 0;
  tree cands = NULL_TREE;
  for (lkp_iterator iter (ovl); iter; ++iter)
    {
      tree tmpl = *iter;
      if (TREE_CODE (tmpl) != TEMPLATE_DECL)
        continue;

      /* Don't try to deduce checks for non-concepts. We often end up trying
         to resolve constraints in functional casts as part of a
         postfix-expression. We can save time and headaches by not
         instantiating those declarations.

         NOTE: This masks a potential error, caused by instantiating
         non-deduced contexts using placeholder arguments. */
      tree fn = DECL_TEMPLATE_RESULT (tmpl);
      if (DECL_ARGUMENTS (fn))
        continue;
      if (!DECL_DECLARED_CONCEPT_P (fn))
        continue;

      /* Remember the candidate if we can deduce a substitution.  */
      ++processing_template_decl;
      tree parms = TREE_VALUE (DECL_TEMPLATE_PARMS (tmpl));
      if (tree subst = coerce_template_parms (parms, args, tmpl))
        {
          if (subst == error_mark_node)
            ++nerrs;
          else
	    cands = tree_cons (subst, fn, cands);
        }
      --processing_template_decl;
    }

  if (!cands)
    /* We either had no candidates or failed deductions.  */
    return nerrs ? error_mark_node : NULL_TREE;
  else if (TREE_CHAIN (cands))
    /* There are multiple candidates.  */
    return error_mark_node;

  return cands;
}

/* Determine if the call expression CALL is a constraint check, and
   return the concept declaration and arguments being checked. If CALL
   does not denote a constraint check, return NULL.  */

tree
resolve_function_concept_check (tree call)
{
  gcc_assert (TREE_CODE (call) == CALL_EXPR);

  /* A constraint check must be only a template-id expression.
     If it's a call to a base-link, its function(s) should be a
     template-id expression. If this is not a template-id, then
     it cannot be a concept-check.  */
  tree target = CALL_EXPR_FN (call);
  if (BASELINK_P (target))
    target = BASELINK_FUNCTIONS (target);
  if (TREE_CODE (target) != TEMPLATE_ID_EXPR)
    return NULL_TREE;

  /* Get the overload set and template arguments and try to
     resolve the target.  */
  tree ovl = TREE_OPERAND (target, 0);

  /* This is a function call of a variable concept... ill-formed.  */
  if (TREE_CODE (ovl) == TEMPLATE_DECL)
    {
      error_at (location_of (call),
		"function call of variable concept %qE", call);
      return error_mark_node;
    }

  tree args = TREE_OPERAND (target, 1);
  return resolve_function_concept_overload (ovl, args);
}

/* Returns a pair containing the checked concept and its associated
   prototype parameter. The result is a TREE_LIST whose TREE_VALUE
   is the concept (non-template) and whose TREE_PURPOSE contains
   the converted template arguments, including the deduced prototype
   parameter (in position 0). */

tree
resolve_concept_check (tree check)
{
  gcc_assert (concept_check_p (check));
  tree id = unpack_concept_check (check);
  tree tmpl = TREE_OPERAND (id, 0);

  /* If this is an overloaded function concept, perform overload
     resolution (this only happens when deducing prototype parameters
     and template introductions).  */
  if (TREE_CODE (tmpl) == OVERLOAD)
    {
      if (OVL_CHAIN (tmpl))
	return resolve_function_concept_check (check);
      tmpl = OVL_FIRST (tmpl);
    }

  tree args = TREE_OPERAND (id, 1);
  tree parms = INNERMOST_TEMPLATE_PARMS (DECL_TEMPLATE_PARMS (tmpl));
  ++processing_template_decl;
  tree result = coerce_template_parms (parms, args, tmpl);
  --processing_template_decl;
  if (result == error_mark_node)
    return error_mark_node;
  return build_tree_list (result, DECL_TEMPLATE_RESULT (tmpl));
}

/* Given a call expression or template-id expression to a concept EXPR
   possibly including a wildcard, deduce the concept being checked and
   the prototype parameter. Returns true if the constraint and prototype
   can be deduced and false otherwise.  Note that the CHECK and PROTO
   arguments are set to NULL_TREE if this returns false.  */

bool
deduce_constrained_parameter (tree expr, tree& check, tree& proto)
{
  tree info = resolve_concept_check (expr);
  if (info && info != error_mark_node)
    {
      check = TREE_VALUE (info);
      tree arg = TREE_VEC_ELT (TREE_PURPOSE (info), 0);
      if (ARGUMENT_PACK_P (arg))
	arg = TREE_VEC_ELT (ARGUMENT_PACK_ARGS (arg), 0);
      proto = TREE_TYPE (arg);
      return true;
    }

  check = proto = NULL_TREE;
  return false;
}

/* Given a call expression or template-id expression to a concept, EXPR,
   deduce the concept being checked and return the template arguments.
   Returns NULL_TREE if deduction fails.  */
static tree
deduce_concept_introduction (tree check)
{
  tree info = resolve_concept_check (check);
  if (info && info != error_mark_node)
    return TREE_PURPOSE (info);
  return NULL_TREE;
}

/* Build a constrained placeholder type where SPEC is a type-constraint.
   SPEC can be anything were concept_definition_p is true.

   Returns a pair whose FIRST is the concept being checked and whose
   SECOND is the prototype parameter.  */

tree_pair
finish_type_constraints (tree spec, tree args, tsubst_flags_t complain)
{
  gcc_assert (concept_definition_p (spec));

  /* Build an initial concept check.  */
  tree check = build_type_constraint (spec, args, complain);
  if (check == error_mark_node)
    return std::make_pair (error_mark_node, NULL_TREE);

  /* Extract the concept and prototype parameter from the check. */
  tree con;
  tree proto;
  if (!deduce_constrained_parameter (check, con, proto))
    return std::make_pair (error_mark_node, NULL_TREE);

  return std::make_pair (con, proto);
}

/*---------------------------------------------------------------------------
                       Expansion of concept definitions
---------------------------------------------------------------------------*/

/* Returns the expression of a function concept. */

static tree
get_returned_expression (tree fn)
{
  /* Extract the body of the function minus the return expression.  */
  tree body = DECL_SAVED_TREE (fn);
  if (!body)
    return error_mark_node;
  if (TREE_CODE (body) == BIND_EXPR)
    body = BIND_EXPR_BODY (body);
  if (TREE_CODE (body) != RETURN_EXPR)
    return error_mark_node;

  return TREE_OPERAND (body, 0);
}

/* Returns the initializer of a variable concept. */

static tree
get_variable_initializer (tree var)
{
  tree init = DECL_INITIAL (var);
  if (!init)
    return error_mark_node;
  if (BRACE_ENCLOSED_INITIALIZER_P (init)
      && CONSTRUCTOR_NELTS (init) == 1)
    init = CONSTRUCTOR_ELT (init, 0)->value;
  return init;
}

/* Returns the definition of a variable or function concept.  */

static tree
get_concept_definition (tree decl)
{
  if (TREE_CODE (decl) == OVERLOAD)
    decl = OVL_FIRST (decl);

  if (TREE_CODE (decl) == TEMPLATE_DECL)
    decl = DECL_TEMPLATE_RESULT (decl);

  if (TREE_CODE (decl) == CONCEPT_DECL)
    return DECL_INITIAL (decl);
  if (VAR_P (decl))
    return get_variable_initializer (decl);
  if (TREE_CODE (decl) == FUNCTION_DECL)
    return get_returned_expression (decl);
  gcc_unreachable ();
}

/*---------------------------------------------------------------------------
		      Normalization of expressions

This set of functions will transform an expression into a constraint
in a sequence of steps.
---------------------------------------------------------------------------*/

void
debug_parameter_mapping (tree map)
{
  for (tree p = map; p; p = TREE_CHAIN (p))
    {
      tree parm = TREE_VALUE (p);
      tree arg = TREE_PURPOSE (p);
      if (TYPE_P (parm))
	verbatim ("MAP %qD TO %qT", TEMPLATE_TYPE_DECL (parm), arg);
      else
	verbatim ("MAP %qD TO %qE", TEMPLATE_PARM_DECL (parm), arg);
      // debug_tree (parm);
      // debug_tree (arg);
    }
}

void
debug_argument_list (tree args)
{
  for (int i = 0; i < TREE_VEC_LENGTH (args); ++i)
    {
      tree arg = TREE_VEC_ELT (args, i);
      if (TYPE_P (arg))
	verbatim ("argument %qT", arg);
      else
	verbatim ("argument %qE", arg);
    }
}

/* Associate each parameter in PARMS with its corresponding template
   argument in ARGS.  */

static tree
map_arguments (tree parms, tree args)
{
  for (tree p = parms; p; p = TREE_CHAIN (p))
    if (args)
      {
	int level;
	int index;
	template_parm_level_and_index (TREE_VALUE (p), &level, &index);
	TREE_PURPOSE (p) = TMPL_ARG (args, level, index);
      }
    else
      TREE_PURPOSE (p) = template_parm_to_arg (p);

  return parms;
}

/* Build the parameter mapping for EXPR using ARGS, where CTX_PARMS
   are the template parameters in scope for EXPR.  */

static tree
build_parameter_mapping (tree expr, tree args, tree ctx_parms)
{
  tree parms = find_template_parameters (expr, ctx_parms);
  tree map = map_arguments (parms, args);
  return map;
}

/* True if the parameter mappings of two atomic constraints formed
   from the same expression are equivalent.  */

static bool
parameter_mapping_equivalent_p (tree t1, tree t2)
{
  tree map1 = ATOMIC_CONSTR_MAP (t1);
  tree map2 = ATOMIC_CONSTR_MAP (t2);
  while (map1 && map2)
    {
      gcc_checking_assert (TREE_VALUE (map1) == TREE_VALUE (map2));
      tree arg1 = TREE_PURPOSE (map1);
      tree arg2 = TREE_PURPOSE (map2);
      if (!template_args_equal (arg1, arg2))
        return false;
      map1 = TREE_CHAIN (map1);
      map2 = TREE_CHAIN (map2);
    }
  gcc_checking_assert (!map1 && !map2);
  return true;
}

/* Provides additional context for normalization.  */

struct norm_info : subst_info
{
  explicit norm_info (tsubst_flags_t cmp)
    : norm_info (NULL_TREE, cmp)
  {}

  /* Construct a top-level context for DECL.  */

  norm_info (tree in_decl, tsubst_flags_t complain)
    : subst_info (tf_warning_or_error | complain, in_decl)
  {
    if (in_decl)
      {
	initial_parms = DECL_TEMPLATE_PARMS (in_decl);
	if (generate_diagnostics ())
	  context = build_tree_list (NULL_TREE, in_decl);
      }
    else
      initial_parms = current_template_parms;
  }

  bool generate_diagnostics() const
  {
    return complain & tf_norm;
  }

  void update_context(tree expr, tree args)
  {
    if (generate_diagnostics ())
      {
	tree map = build_parameter_mapping (expr, args, ctx_parms ());
	context = tree_cons (map, expr, context);
      }
    in_decl = get_concept_check_template (expr);
  }

  /* Returns the template parameters that are in scope for the current
     normalization context.  */

  tree ctx_parms()
  {
    if (in_decl)
      return DECL_TEMPLATE_PARMS (in_decl);
    else
      return initial_parms;
  }

  /* Provides information about the source of a constraint. This is a
     TREE_LIST whose VALUE is either a concept check or a constrained
     declaration. The PURPOSE, for concept checks is a parameter mapping
     for that check.  */

  tree context = NULL_TREE;

  /* The declaration whose constraints we're normalizing.  The targets
     of the parameter mapping of each atom will be in terms of the
     template parameters of ORIG_DECL.  */

  tree initial_parms = NULL_TREE;
};

static tree normalize_expression (tree, tree, norm_info);

/* Transform a logical-or or logical-and expression into either
   a conjunction or disjunction. */

static tree
normalize_logical_operation (tree t, tree args, tree_code c, norm_info info)
{
  tree t0 = normalize_expression (TREE_OPERAND (t, 0), args, info);
  tree t1 = normalize_expression (TREE_OPERAND (t, 1), args, info);

  /* Build a new info object for the constraint.  */
  tree ci = info.generate_diagnostics()
    ? build_tree_list (t, info.context)
    : NULL_TREE;

  return build2 (c, ci, t0, t1);
}

static tree
normalize_concept_check (tree check, tree args, norm_info info)
{
  tree id = unpack_concept_check (check);
  tree tmpl = TREE_OPERAND (id, 0);
  tree targs = TREE_OPERAND (id, 1);

  /* A function concept is wrapped in an overload.  */
  if (TREE_CODE (tmpl) == OVERLOAD)
    {
      /* TODO: Can we diagnose this error during parsing?  */
      if (TREE_CODE (check) == TEMPLATE_ID_EXPR)
	error_at (EXPR_LOC_OR_LOC (check, input_location),
		  "function concept must be called");
      tmpl = OVL_FIRST (tmpl);
    }

  /* Substitute through the arguments of the concept check. */
  if (args)
    targs = tsubst_template_args (targs, args, info.complain, info.in_decl);
  if (targs == error_mark_node)
    return error_mark_node;

  /* Build the substitution for the concept definition.  */
  tree parms = TREE_VALUE (DECL_TEMPLATE_PARMS (tmpl));
  /* Turn on template processing; coercing non-type template arguments
     will automatically assume they're non-dependent.  */
  ++processing_template_decl;
  tree subst = coerce_template_parms (parms, targs, tmpl);
  --processing_template_decl;
  if (subst == error_mark_node)
    return error_mark_node;

  /* The concept may have been ill-formed.  */
  tree def = get_concept_definition (DECL_TEMPLATE_RESULT (tmpl));
  if (def == error_mark_node)
    return error_mark_node;

  info.update_context (check, args);
  return normalize_expression (def, subst, info);
}

/* Used by normalize_atom to cache ATOMIC_CONSTRs.  */

static GTY((deletable)) hash_table<atom_hasher> *atom_cache;

/* The normal form of an atom depends on the expression. The normal
   form of a function call to a function concept is a check constraint
   for that concept. The normal form of a reference to a variable
   concept is a check constraint for that concept. Otherwise, the
   constraint is a predicate constraint.  */

static tree
normalize_atom (tree t, tree args, norm_info info)
{
  /* Concept checks are not atomic.  */
  if (concept_check_p (t))
    return normalize_concept_check (t, args, info);

  /* Build the parameter mapping for the atom.  */
  tree map = build_parameter_mapping (t, args, info.ctx_parms ());

  /* Build a new info object for the atom.  */
  tree ci = build_tree_list (t, info.context);

  tree atom = build1 (ATOMIC_CONSTR, ci, map);
  if (!info.generate_diagnostics ())
    {
      /* Cache the ATOMIC_CONSTRs that we return, so that sat_hasher::equal
	 later can cheaply compare two atoms using just pointer equality.  */
      if (!atom_cache)
	atom_cache = hash_table<atom_hasher>::create_ggc (31);
      tree *slot = atom_cache->find_slot (atom, INSERT);
      if (*slot)
	return *slot;

      /* Find all template parameters used in the targets of the parameter
	 mapping, and store a list of them in the TREE_TYPE of the mapping.
	 This list will be used by sat_hasher to determine the subset of
	 supplied template arguments that the satisfaction value of the atom
	 depends on.  */
      if (map)
	{
	  tree targets = make_tree_vec (list_length (map));
	  int i = 0;
	  for (tree node = map; node; node = TREE_CHAIN (node))
	    {
	      tree target = TREE_PURPOSE (node);
	      TREE_VEC_ELT (targets, i++) = target;
	    }
	  tree target_parms = find_template_parameters (targets,
							info.initial_parms);
	  TREE_TYPE (map) = target_parms;
	}

      *slot = atom;
    }
  return atom;
}

/* Returns the normal form of an expression. */

static tree
normalize_expression (tree t, tree args, norm_info info)
{
  if (!t)
    return NULL_TREE;

  if (t == error_mark_node)
    return error_mark_node;

  switch (TREE_CODE (t))
    {
    case TRUTH_ANDIF_EXPR:
      return normalize_logical_operation (t, args, CONJ_CONSTR, info);
    case TRUTH_ORIF_EXPR:
      return normalize_logical_operation (t, args, DISJ_CONSTR, info);
    default:
      return normalize_atom (t, args, info);
    }
}

/* Cache of the normalized form of constraints.  Marked as deletable because it
   can all be recalculated.  */
static GTY((deletable)) hash_map<tree,tree> *normalized_map;

static tree
get_normalized_constraints (tree t, norm_info info)
{
  auto_timevar time (TV_CONSTRAINT_NORM);
  return normalize_expression (t, NULL_TREE, info);
}

/* Returns the normalized constraints from a constraint-info object
   or NULL_TREE if the constraints are null. IN_DECL provides the
   declaration to which the constraints belong.  */

static tree
get_normalized_constraints_from_info (tree ci, tree in_decl, bool diag = false)
{
  if (ci == NULL_TREE)
    return NULL_TREE;

  /* Substitution errors during normalization are fatal.  */
  ++processing_template_decl;
  norm_info info (in_decl, diag ? tf_norm : tf_none);
  tree t = get_normalized_constraints (CI_ASSOCIATED_CONSTRAINTS (ci), info);
  --processing_template_decl;

  return t;
}

/* Returns the normalized constraints for the declaration D.  */

static tree
get_normalized_constraints_from_decl (tree d, bool diag = false)
{
  tree tmpl;
  tree decl;

  /* For inherited constructors, consider the original declaration;
     it has the correct template information attached. */
  d = strip_inheriting_ctors (d);

  if (regenerated_lambda_fn_p (d))
    {
      /* If this lambda was regenerated, DECL_TEMPLATE_PARMS doesn't contain
	 all in-scope template parameters, but the lambda from which it was
	 ultimately regenerated does, so use that instead.  */
      tree lambda = CLASSTYPE_LAMBDA_EXPR (DECL_CONTEXT (d));
      lambda = most_general_lambda (lambda);
      d = lambda_function (lambda);
    }

  if (TREE_CODE (d) == TEMPLATE_DECL)
    {
      tmpl = d;
      decl = DECL_TEMPLATE_RESULT (tmpl);
    }
  else
    {
      if (tree ti = DECL_TEMPLATE_INFO (d))
	tmpl = TI_TEMPLATE (ti);
      else
	tmpl = NULL_TREE;
      decl = d;
    }

  /* Get the most general template for the declaration, and compute
     arguments from that. This ensures that the arguments used for
     normalization are always template parameters and not arguments
     used for outer specializations.  For example:

        template<typename T>
        struct S {
	  template<typename U> requires C<T, U> void f(U);
        };

        S<int>::f(0);

     When we normalize the requirements for S<int>::f, we want the
     arguments to be {T, U}, not {int, U}. One reason for this is that
     accepting the latter causes the template parameter level of U
     to be reduced in a way that makes it overly difficult substitute
     concrete arguments (i.e., eventually {int, int} during satisfaction.  */
  if (tmpl)
  {
    if (DECL_LANG_SPECIFIC(tmpl) && !DECL_TEMPLATE_SPECIALIZATION (tmpl))
      tmpl = most_general_template (tmpl);
  }

  d = tmpl ? tmpl : decl;

  /* If we're not diagnosing errors, use cached constraints, if any.  */
  if (!diag)
    if (tree *p = hash_map_safe_get (normalized_map, d))
      return *p;

  tree norm = NULL_TREE;
  if (tree ci = get_constraints (d))
    {
      push_access_scope_guard pas (decl);
      norm = get_normalized_constraints_from_info (ci, tmpl, diag);
    }

  if (!diag)
    hash_map_safe_put<hm_ggc> (normalized_map, d, norm);

  return norm;
}

/* Returns the normal form of TMPL's definition.  */

static tree
normalize_concept_definition (tree tmpl, bool diag = false)
{
  if (!diag)
    if (tree *p = hash_map_safe_get (normalized_map, tmpl))
      return *p;

  gcc_assert (concept_definition_p (tmpl));
  if (OVL_P (tmpl))
    tmpl = OVL_FIRST (tmpl);
  gcc_assert (TREE_CODE (tmpl) == TEMPLATE_DECL);
  tree def = get_concept_definition (DECL_TEMPLATE_RESULT (tmpl));
  ++processing_template_decl;
  norm_info info (tmpl, diag ? tf_norm : tf_none);
  tree norm = get_normalized_constraints (def, info);
  --processing_template_decl;

  if (!diag)
    hash_map_safe_put<hm_ggc> (normalized_map, tmpl, norm);

  return norm;
}

/* Normalize an EXPR as a constraint.  */

static tree
normalize_constraint_expression (tree expr, norm_info info)
{
  if (!expr || expr == error_mark_node)
    return expr;

  if (!info.generate_diagnostics ())
    if (tree *p = hash_map_safe_get (normalized_map, expr))
      return *p;

  ++processing_template_decl;
  tree norm = get_normalized_constraints (expr, info);
  --processing_template_decl;

  if (!info.generate_diagnostics ())
    hash_map_safe_put<hm_ggc> (normalized_map, expr, norm);

  return norm;
}

/* 17.4.1.2p2. Two constraints are identical if they are formed
   from the same expression and the targets of the parameter mapping
   are equivalent.  */

bool
atomic_constraints_identical_p (tree t1, tree t2)
{
  gcc_assert (TREE_CODE (t1) == ATOMIC_CONSTR);
  gcc_assert (TREE_CODE (t2) == ATOMIC_CONSTR);

  if (ATOMIC_CONSTR_EXPR (t1) != ATOMIC_CONSTR_EXPR (t2))
    return false;

  if (!parameter_mapping_equivalent_p (t1, t2))
    return false;

  return true;
}

/* True if T1 and T2 are equivalent, meaning they have the same syntactic
   structure and all corresponding constraints are identical.  */

bool
constraints_equivalent_p (tree t1, tree t2)
{
  gcc_assert (CONSTR_P (t1));
  gcc_assert (CONSTR_P (t2));

  if (TREE_CODE (t1) != TREE_CODE (t2))
    return false;

  switch (TREE_CODE (t1))
  {
  case CONJ_CONSTR:
  case DISJ_CONSTR:
    if (!constraints_equivalent_p (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
      return false;
    if (!constraints_equivalent_p (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1)))
      return false;
    break;
  case ATOMIC_CONSTR:
    if (!atomic_constraints_identical_p(t1, t2))
      return false;
    break;
  default:
    gcc_unreachable ();
  }
  return true;
}

/* Compute the hash value for T.  */

hashval_t
hash_atomic_constraint (tree t)
{
  gcc_assert (TREE_CODE (t) == ATOMIC_CONSTR);

  /* Hash the identity of the expression.  */
  hashval_t val = htab_hash_pointer (ATOMIC_CONSTR_EXPR (t));

  /* Hash the targets of the parameter map.  */
  tree p = ATOMIC_CONSTR_MAP (t);
  while (p)
    {
      val = iterative_hash_template_arg (TREE_PURPOSE (p), val);
      p = TREE_CHAIN (p);
    }

  return val;
}

namespace inchash
{

static void
add_constraint (tree t, hash& h)
{
  h.add_int(TREE_CODE (t));
  switch (TREE_CODE (t))
  {
  case CONJ_CONSTR:
  case DISJ_CONSTR:
    add_constraint (TREE_OPERAND (t, 0), h);
    add_constraint (TREE_OPERAND (t, 1), h);
    break;
  case ATOMIC_CONSTR:
    h.merge_hash (hash_atomic_constraint (t));
    break;
  default:
    gcc_unreachable ();
  }
}

}

/* Computes a hash code for the constraint T.  */

hashval_t
iterative_hash_constraint (tree t, hashval_t val)
{
  gcc_assert (CONSTR_P (t));
  inchash::hash h (val);
  inchash::add_constraint (t, h);
  return h.end ();
}

// -------------------------------------------------------------------------- //
// Constraint Semantic Processing
//
// The following functions are called by the parser and substitution rules
// to create and evaluate constraint-related nodes.

// The constraints associated with the current template parameters.
tree
current_template_constraints (void)
{
  if (!current_template_parms)
    return NULL_TREE;
  tree tmpl_constr = TEMPLATE_PARMS_CONSTRAINTS (current_template_parms);
  return build_constraints (tmpl_constr, NULL_TREE);
}

/* If the recently parsed TYPE declares or defines a template or
   template specialization, get its corresponding constraints from the
   current template parameters and bind them to TYPE's declaration.  */

tree
associate_classtype_constraints (tree type)
{
  if (!type || type == error_mark_node || !CLASS_TYPE_P (type))
    return type;

  /* An explicit class template specialization has no template parameters.  */
  if (!current_template_parms)
    return type;

  if (CLASSTYPE_IS_TEMPLATE (type) || CLASSTYPE_TEMPLATE_SPECIALIZATION (type))
    {
      tree decl = TYPE_STUB_DECL (type);
      tree ci = current_template_constraints ();

      /* An implicitly instantiated member template declaration already
	 has associated constraints. If it is defined outside of its
	 class, then we need match these constraints against those of
	 original declaration.  */
      if (tree orig_ci = get_constraints (decl))
        {
	  if (int extra_levels = (TMPL_PARMS_DEPTH (current_template_parms)
				  - TMPL_ARGS_DEPTH (TYPE_TI_ARGS (type))))
	    {
	      /* If there is a discrepancy between the current template depth
		 and the template depth of the original declaration, then we
		 must be redeclaring a class template as part of a friend
		 declaration within another class template.  Before matching
		 constraints, we need to reduce the template parameter level
		 within the current constraints via substitution.  */
	      tree outer_gtargs = template_parms_to_args (current_template_parms);
	      TREE_VEC_LENGTH (outer_gtargs) = extra_levels;
	      ci = tsubst_constraint_info (ci, outer_gtargs, tf_none, NULL_TREE);
	    }
          if (!equivalent_constraints (ci, orig_ci))
            {
	      error ("%qT does not match original declaration", type);
	      tree tmpl = CLASSTYPE_TI_TEMPLATE (type);
	      location_t loc = DECL_SOURCE_LOCATION (tmpl);
	      inform (loc, "original template declaration here");
	      /* Fall through, so that we define the type anyway.  */
            }
          return type;
        }
      set_constraints (decl, ci);
    }
  return type;
}

/* Create an empty constraint info block.  */

static inline tree_constraint_info*
build_constraint_info ()
{
  return (tree_constraint_info *)make_node (CONSTRAINT_INFO);
}

/* Build a constraint-info object that contains the associated constraints
   of a declaration.  This also includes the declaration's template
   requirements (TREQS) and any trailing requirements for a function
   declarator (DREQS).  Note that both TREQS and DREQS must be constraints.

   If the declaration has neither template nor declaration requirements
   this returns NULL_TREE, indicating an unconstrained declaration.  */

tree
build_constraints (tree tr, tree dr)
{
  if (!tr && !dr)
    return NULL_TREE;

  tree_constraint_info* ci = build_constraint_info ();
  ci->template_reqs = tr;
  ci->declarator_reqs = dr;
  ci->associated_constr = combine_constraint_expressions (tr, dr);

  return (tree)ci;
}

/* Add constraint RHS to the end of CONSTRAINT_INFO ci.  */

tree
append_constraint (tree ci, tree rhs)
{
  tree tr = ci ? CI_TEMPLATE_REQS (ci) : NULL_TREE;
  tree dr = ci ? CI_DECLARATOR_REQS (ci) : NULL_TREE;
  dr = combine_constraint_expressions (dr, rhs);
  if (ci)
    {
      CI_DECLARATOR_REQS (ci) = dr;
      tree ac = combine_constraint_expressions (tr, dr);
      CI_ASSOCIATED_CONSTRAINTS (ci) = ac;
    }
  else
    ci = build_constraints (tr, dr);
  return ci;
}

/* A mapping from declarations to constraint information.  */

static GTY ((cache)) decl_tree_cache_map *decl_constraints;

/* Returns the template constraints of declaration T. If T is not
   constrained, return NULL_TREE. Note that T must be non-null. */

tree
get_constraints (const_tree t)
{
  if (!flag_concepts)
    return NULL_TREE;
  if (!decl_constraints)
    return NULL_TREE;

  gcc_assert (DECL_P (t));
  if (TREE_CODE (t) == TEMPLATE_DECL)
    t = DECL_TEMPLATE_RESULT (t);
  tree* found = decl_constraints->get (CONST_CAST_TREE (t));
  if (found)
    return *found;
  else
    return NULL_TREE;
}

/* Associate the given constraint information CI with the declaration
   T. If T is a template, then the constraints are associated with
   its underlying declaration. Don't build associations if CI is
   NULL_TREE.  */

void
set_constraints (tree t, tree ci)
{
  if (!ci)
    return;
  gcc_assert (t && flag_concepts);
  if (TREE_CODE (t) == TEMPLATE_DECL)
    t = DECL_TEMPLATE_RESULT (t);
  bool found = hash_map_safe_put<hm_ggc> (decl_constraints, t, ci);
  gcc_assert (!found);
}

/* Remove the associated constraints of the declaration T.  */

void
remove_constraints (tree t)
{
  gcc_checking_assert (DECL_P (t));
  if (TREE_CODE (t) == TEMPLATE_DECL)
    t = DECL_TEMPLATE_RESULT (t);

  if (decl_constraints)
    decl_constraints->remove (t);
}

/* If DECL is a friend, substitute into REQS to produce requirements suitable
   for declaration matching.  */

tree
maybe_substitute_reqs_for (tree reqs, const_tree decl_)
{
  if (reqs == NULL_TREE)
    return NULL_TREE;

  tree decl = CONST_CAST_TREE (decl_);
  tree result = STRIP_TEMPLATE (decl);

  if (DECL_UNIQUE_FRIEND_P (result))
    {
      tree tmpl = decl;
      if (TREE_CODE (decl) != TEMPLATE_DECL)
	tmpl = DECL_TI_TEMPLATE (result);

      tree gargs = generic_targs_for (tmpl);
      processing_template_decl_sentinel s;
      if (uses_template_parms (gargs))
	++processing_template_decl;
      reqs = tsubst_constraint (reqs, gargs,
				tf_warning_or_error, NULL_TREE);
    }
  return reqs;
}

/* Returns the trailing requires clause of the declarator of
   a template declaration T or NULL_TREE if none.  */

tree
get_trailing_function_requirements (tree t)
{
  tree ci = get_constraints (t);
  if (!ci)
    return NULL_TREE;
  return CI_DECLARATOR_REQS (ci);
}

/* Construct a sequence of template arguments by prepending
   ARG to REST. Either ARG or REST may be null. */
static tree
build_concept_check_arguments (tree arg, tree rest)
{
  gcc_assert (rest ? TREE_CODE (rest) == TREE_VEC : true);
  tree args;
  if (arg)
    {
      int n = rest ? TREE_VEC_LENGTH (rest) : 0;
      args = make_tree_vec (n + 1);
      TREE_VEC_ELT (args, 0) = arg;
      if (rest)
        for (int i = 0; i < n; ++i)
          TREE_VEC_ELT (args, i + 1) = TREE_VEC_ELT (rest, i);
      int def = rest ? GET_NON_DEFAULT_TEMPLATE_ARGS_COUNT (rest) : 0;
      SET_NON_DEFAULT_TEMPLATE_ARGS_COUNT (args, def + 1);
    }
  else
    {
      args = rest;
    }
  return args;
}

/* Builds an id-expression of the form `C<Args...>()` where C is a function
   concept.  */

static tree
build_function_check (tree tmpl, tree args, tsubst_flags_t /*complain*/)
{
  if (TREE_CODE (tmpl) == TEMPLATE_DECL)
    {
      /* If we just got a template, wrap it in an overload so it looks like any
	 other template-id. */
      tmpl = ovl_make (tmpl);
      TREE_TYPE (tmpl) = boolean_type_node;
    }

  /* Perform function concept resolution now so we always have a single
     function of the overload set (even if we started with only one; the
     resolution function converts template arguments). Note that we still
     wrap this in an overload set so we don't upset other parts of the
     compiler that expect template-ids referring to function concepts
     to have an overload set.  */
  tree info = resolve_function_concept_overload (tmpl, args);
  if (info == error_mark_node)
    return error_mark_node;
  if (!info)
    {
      error ("no matching concepts for %qE", tmpl);
      return error_mark_node;
    }
  args = TREE_PURPOSE (info);
  tmpl = DECL_TI_TEMPLATE (TREE_VALUE (info));

  /* Rebuild the singleton overload set; mark the type bool.  */
  tmpl = ovl_make (tmpl, NULL_TREE);
  TREE_TYPE (tmpl) = boolean_type_node;

  /* Build the id-expression around the overload set.  */
  tree id = build2 (TEMPLATE_ID_EXPR, boolean_type_node, tmpl, args);

  /* Finally, build the call expression around the overload.  */
  ++processing_template_decl;
  vec<tree, va_gc> *fargs = make_tree_vector ();
  tree call = build_min_nt_call_vec (id, fargs);
  TREE_TYPE (call) = boolean_type_node;
  release_tree_vector (fargs);
  --processing_template_decl;

  return call;
}

/* Builds an id-expression of the form `C<Args...>` where C is a variable
   concept.  */

static tree
build_variable_check (tree tmpl, tree args, tsubst_flags_t complain)
{
  gcc_assert (variable_concept_p (tmpl));
  gcc_assert (TREE_CODE (tmpl) == TEMPLATE_DECL);
  tree parms = INNERMOST_TEMPLATE_PARMS (DECL_TEMPLATE_PARMS (tmpl));
  args = coerce_template_parms (parms, args, tmpl, complain);
  if (args == error_mark_node)
    return error_mark_node;
  return build2 (TEMPLATE_ID_EXPR, boolean_type_node, tmpl, args);
}

/* Builds an id-expression of the form `C<Args...>` where C is a standard
   concept.  */

static tree
build_standard_check (tree tmpl, tree args, tsubst_flags_t complain)
{
  gcc_assert (standard_concept_p (tmpl));
  gcc_assert (TREE_CODE (tmpl) == TEMPLATE_DECL);
  tree parms = INNERMOST_TEMPLATE_PARMS (DECL_TEMPLATE_PARMS (tmpl));
  args = coerce_template_parms (parms, args, tmpl, complain);
  if (args == error_mark_node)
    return error_mark_node;
  return build2 (TEMPLATE_ID_EXPR, boolean_type_node, tmpl, args);
}

/* Construct an expression that checks TARGET using ARGS.  */

tree
build_concept_check (tree target, tree args, tsubst_flags_t complain)
{
  return build_concept_check (target, NULL_TREE, args, complain);
}

/* Construct an expression that checks the concept given by DECL. If
   concept_definition_p (DECL) is false, this returns null.  */

tree
build_concept_check (tree decl, tree arg, tree rest, tsubst_flags_t complain)
{
  tree args = build_concept_check_arguments (arg, rest);

  if (standard_concept_p (decl))
    return build_standard_check (decl, args, complain);
  if (variable_concept_p (decl))
    return build_variable_check (decl, args, complain);
  if (function_concept_p (decl))
    return build_function_check (decl, args, complain);

  return error_mark_node;
}

/* Build a template-id that can participate in a concept check.  */

static tree
build_concept_id (tree decl, tree args)
{
  tree check = build_concept_check (decl, args, tf_warning_or_error);
  if (check == error_mark_node)
    return error_mark_node;
  return unpack_concept_check (check);
}

/* Build a template-id that can participate in a concept check, preserving
   the source location of the original template-id.  */

tree
build_concept_id (tree expr)
{
  gcc_assert (TREE_CODE (expr) == TEMPLATE_ID_EXPR);
  tree id = build_concept_id (TREE_OPERAND (expr, 0), TREE_OPERAND (expr, 1));
  protected_set_expr_location (id, cp_expr_location (expr));
  return id;
}

/* Build as template-id with a placeholder that can be used as a
   type constraint.

   Note that this will diagnose errors if the initial concept check
   cannot be built.  */

tree
build_type_constraint (tree decl, tree args, tsubst_flags_t complain)
{
  tree wildcard = build_nt (WILDCARD_DECL);
  ++processing_template_decl;
  tree check = build_concept_check (decl, wildcard, args, complain);
  --processing_template_decl;
  if (check == error_mark_node)
    return error_mark_node;
  return unpack_concept_check (check);
}

/* Returns a TYPE_DECL that contains sufficient information to
   build a template parameter of the same kind as PROTO and
   constrained by the concept declaration CNC.  Note that PROTO
   is the first template parameter of CNC.

   If specified, ARGS provides additional arguments to the
   constraint check.  */
tree
build_constrained_parameter (tree cnc, tree proto, tree args)
{
  tree name = DECL_NAME (cnc);
  tree type = TREE_TYPE (proto);
  tree decl = build_decl (input_location, TYPE_DECL, name, type);
  CONSTRAINED_PARM_PROTOTYPE (decl) = proto;
  CONSTRAINED_PARM_CONCEPT (decl) = cnc;
  CONSTRAINED_PARM_EXTRA_ARGS (decl) = args;
  return decl;
}

/* Create a constraint expression for the given DECL that evaluates the
   requirements specified by CONSTR, a TYPE_DECL that contains all the
   information necessary to build the requirements (see finish_concept_name
   for the layout of that TYPE_DECL).

   Note that the constraints are neither reduced nor decomposed. That is
   done only after the requires clause has been parsed (or not).  */

tree
finish_shorthand_constraint (tree decl, tree constr)
{
  /* No requirements means no constraints.  */
  if (!constr)
    return NULL_TREE;

  if (error_operand_p (constr))
    return NULL_TREE;

  tree proto = CONSTRAINED_PARM_PROTOTYPE (constr);
  tree con = CONSTRAINED_PARM_CONCEPT (constr);
  tree args = CONSTRAINED_PARM_EXTRA_ARGS (constr);

  /* The TS lets use shorthand to constrain a pack of arguments, but the
     standard does not.

     For the TS, consider:

	template<C... Ts> struct s;

     If C is variadic (and because Ts is a pack), we associate the
     constraint C<Ts...>. In all other cases, we associate
     the constraint (C<Ts> && ...).

     The standard behavior cannot be overridden by -fconcepts-ts.  */
  bool variadic_concept_p = template_parameter_pack_p (proto);
  bool declared_pack_p = template_parameter_pack_p (decl);
  bool apply_to_each_p = (cxx_dialect >= cxx20) ? true : !variadic_concept_p;

  /* Get the argument and overload used for the requirement
     and adjust it if we're going to expand later.  */
  tree arg = template_parm_to_arg (decl);
  if (apply_to_each_p && declared_pack_p)
    arg = PACK_EXPANSION_PATTERN (TREE_VEC_ELT (ARGUMENT_PACK_ARGS (arg), 0));

  /* Build the concept constraint-expression.  */
  tree tmpl = DECL_TI_TEMPLATE (con);
  tree check = tmpl;
  if (TREE_CODE (con) == FUNCTION_DECL)
    check = ovl_make (tmpl);
  check = build_concept_check (check, arg, args, tf_warning_or_error);

  /* Make the check a fold-expression if needed.  */
  if (apply_to_each_p && declared_pack_p)
    check = finish_left_unary_fold_expr (check, TRUTH_ANDIF_EXPR);

  return check;
}

/* Returns a conjunction of shorthand requirements for the template
   parameter list PARMS. Note that the requirements are stored in
   the TYPE of each tree node. */

tree
get_shorthand_constraints (tree parms)
{
  tree result = NULL_TREE;
  parms = INNERMOST_TEMPLATE_PARMS (parms);
  for (int i = 0; i < TREE_VEC_LENGTH (parms); ++i)
    {
      tree parm = TREE_VEC_ELT (parms, i);
      tree constr = TEMPLATE_PARM_CONSTRAINTS (parm);
      result = combine_constraint_expressions (result, constr);
    }
  return result;
}

/* Get the deduced wildcard from a DEDUCED placeholder.  If the deduced
   wildcard is a pack, return the first argument of that pack.  */

static tree
get_deduced_wildcard (tree wildcard)
{
  if (ARGUMENT_PACK_P (wildcard))
    wildcard = TREE_VEC_ELT (ARGUMENT_PACK_ARGS (wildcard), 0);
  gcc_assert (TREE_CODE (wildcard) == WILDCARD_DECL);
  return wildcard;
}

/* Returns the prototype parameter for the nth deduced wildcard.  */

static tree
get_introduction_prototype (tree wildcards, int index)
{
  return TREE_TYPE (get_deduced_wildcard (TREE_VEC_ELT (wildcards, index)));
}

/* Introduce a type template parameter.  */

static tree
introduce_type_template_parameter (tree wildcard, bool& non_type_p)
{
  non_type_p = false;
  return finish_template_type_parm (class_type_node, DECL_NAME (wildcard));
}

/* Introduce a template template parameter.  */

static tree
introduce_template_template_parameter (tree wildcard, bool& non_type_p)
{
  non_type_p = false;
  begin_template_parm_list ();
  current_template_parms = DECL_TEMPLATE_PARMS (TREE_TYPE (wildcard));
  end_template_parm_list ();
  return finish_template_template_parm (class_type_node, DECL_NAME (wildcard));
}

/* Introduce a template non-type parameter.  */

static tree
introduce_nontype_template_parameter (tree wildcard, bool& non_type_p)
{
  non_type_p = true;
  tree parm = copy_decl (TREE_TYPE (wildcard));
  DECL_NAME (parm) = DECL_NAME (wildcard);
  return parm;
}

/* Introduce a single template parameter.  */

static tree
build_introduced_template_parameter (tree wildcard, bool& non_type_p)
{
  tree proto = TREE_TYPE (wildcard);

  tree parm;
  if (TREE_CODE (proto) == TYPE_DECL)
    parm = introduce_type_template_parameter (wildcard, non_type_p);
  else if (TREE_CODE (proto) == TEMPLATE_DECL)
    parm = introduce_template_template_parameter (wildcard, non_type_p);
  else
    parm = introduce_nontype_template_parameter (wildcard, non_type_p);

  /* Wrap in a TREE_LIST for process_template_parm. Note that introduced
     parameters do not retain the defaults from the source parameter.  */
  return build_tree_list (NULL_TREE, parm);
}

/* Introduce a single template parameter.  */

static tree
introduce_template_parameter (tree parms, tree wildcard)
{
  gcc_assert (!ARGUMENT_PACK_P (wildcard));
  tree proto = TREE_TYPE (wildcard);
  location_t loc = DECL_SOURCE_LOCATION (wildcard);

  /* Diagnose the case where we have C{...Args}.  */
  if (WILDCARD_PACK_P (wildcard))
    {
      tree id = DECL_NAME (wildcard);
      error_at (loc, "%qE cannot be introduced with an ellipsis %<...%>", id);
      inform (DECL_SOURCE_LOCATION (proto), "prototype declared here");
    }

  bool non_type_p;
  tree parm = build_introduced_template_parameter (wildcard, non_type_p);
  return process_template_parm (parms, loc, parm, non_type_p, false);
}

/* Introduce a template parameter pack.  */

static tree
introduce_template_parameter_pack (tree parms, tree wildcard)
{
  bool non_type_p;
  tree parm = build_introduced_template_parameter (wildcard, non_type_p);
  location_t loc = DECL_SOURCE_LOCATION (wildcard);
  return process_template_parm (parms, loc, parm, non_type_p, true);
}

/* Introduce the nth template parameter.  */

static tree
introduce_template_parameter (tree parms, tree wildcards, int& index)
{
  tree deduced = TREE_VEC_ELT (wildcards, index++);
  return introduce_template_parameter (parms, deduced);
}

/* Introduce either a template parameter pack or a list of template
   parameters.  */

static tree
introduce_template_parameters (tree parms, tree wildcards, int& index)
{
  /* If the prototype was a parameter, we better have deduced an
     argument pack, and that argument must be the last deduced value
     in the wildcard vector.  */
  tree deduced = TREE_VEC_ELT (wildcards, index++);
  gcc_assert (ARGUMENT_PACK_P (deduced));
  gcc_assert (index == TREE_VEC_LENGTH (wildcards));

  /* Introduce each element in the pack.  */
  tree args = ARGUMENT_PACK_ARGS (deduced);
  for (int i = 0; i < TREE_VEC_LENGTH (args); ++i)
    {
      tree arg = TREE_VEC_ELT (args, i);
      if (WILDCARD_PACK_P (arg))
	parms = introduce_template_parameter_pack (parms, arg);
      else
	parms = introduce_template_parameter (parms, arg);
    }

  return parms;
}

/* Builds the template parameter list PARMS by chaining introduced
   parameters from the WILDCARD vector.  INDEX is the position of
   the current parameter.  */

static tree
process_introduction_parms (tree parms, tree wildcards, int& index)
{
  tree proto = get_introduction_prototype (wildcards, index);
  if (template_parameter_pack_p (proto))
    return introduce_template_parameters (parms, wildcards, index);
  else
    return introduce_template_parameter (parms, wildcards, index);
}

/* Ensure that all template parameters have been introduced for the concept
   named in CHECK.  If not, emit a diagnostic.

   Note that implicitly introducing a parameter with a default argument
     creates a case where a parameter is declared, but unnamed, making
     it unusable in the definition.  */

static bool
check_introduction_list (tree intros, tree check)
{
  check = unpack_concept_check (check);
  tree tmpl = TREE_OPERAND (check, 0);
  if (OVL_P (tmpl))
    tmpl = OVL_FIRST (tmpl);

  tree parms = DECL_INNERMOST_TEMPLATE_PARMS (tmpl);
  if (TREE_VEC_LENGTH (intros) < TREE_VEC_LENGTH (parms))
    {
      error_at (input_location, "all template parameters of %qD must "
				"be introduced", tmpl);
      return false;
    }

   return true;
}

/* Associates a constraint check to the current template based on the
   introduction parameters.  INTRO_LIST must be a TREE_VEC of WILDCARD_DECLs
   containing a chained PARM_DECL which contains the identifier as well as
   the source location. TMPL_DECL is the decl for the concept being used.
   If we take a concept, C, this will form a check in the form of
   C<INTRO_LIST> filling in any extra arguments needed by the defaults
   deduced.

   Returns NULL_TREE if no concept could be matched and error_mark_node if
   an error occurred when matching.  */

tree
finish_template_introduction (tree tmpl_decl,
			      tree intro_list,
			      location_t intro_loc)
{
  /* Build a concept check to deduce the actual parameters.  */
  tree expr = build_concept_check (tmpl_decl, intro_list, tf_none);
  if (expr == error_mark_node)
    {
      error_at (intro_loc, "cannot deduce template parameters from "
			   "introduction list");
      return error_mark_node;
    }

  if (!check_introduction_list (intro_list, expr))
    return error_mark_node;

  tree parms = deduce_concept_introduction (expr);
  if (!parms)
    return NULL_TREE;

  /* Build template parameter scope for introduction.  */
  tree parm_list = NULL_TREE;
  begin_template_parm_list ();
  int nargs = MIN (TREE_VEC_LENGTH (parms), TREE_VEC_LENGTH (intro_list));
  for (int n = 0; n < nargs; )
    parm_list = process_introduction_parms (parm_list, parms, n);
  parm_list = end_template_parm_list (parm_list);

  /* Update the number of arguments to reflect the number of deduced
     template parameter introductions.  */
  nargs = TREE_VEC_LENGTH (parm_list);

  /* Determine if any errors occurred during matching.  */
  for (int i = 0; i < TREE_VEC_LENGTH (parm_list); ++i)
    if (TREE_VALUE (TREE_VEC_ELT (parm_list, i)) == error_mark_node)
      {
        end_template_decl ();
        return error_mark_node;
      }

  /* Build a concept check for our constraint.  */
  tree check_args = make_tree_vec (nargs);
  int n = 0;
  for (; n < TREE_VEC_LENGTH (parm_list); ++n)
    {
      tree parm = TREE_VEC_ELT (parm_list, n);
      TREE_VEC_ELT (check_args, n) = template_parm_to_arg (parm);
    }
  SET_NON_DEFAULT_TEMPLATE_ARGS_COUNT (check_args, n);

  /* If the template expects more parameters we should be able
     to use the defaults from our deduced concept.  */
  for (; n < TREE_VEC_LENGTH (parms); ++n)
    TREE_VEC_ELT (check_args, n) = TREE_VEC_ELT (parms, n);

  /* Associate the constraint.  */
  tree check = build_concept_check (tmpl_decl,
				    check_args,
				    tf_warning_or_error);
  TEMPLATE_PARMS_CONSTRAINTS (current_template_parms) = check;

  return parm_list;
}


/* Given the concept check T from a constrained-type-specifier, extract
   its TMPL and ARGS.  FIXME why do we need two different forms of
   constrained-type-specifier?  */

void
placeholder_extract_concept_and_args (tree t, tree &tmpl, tree &args)
{
  if (concept_check_p (t))
    {
      t = unpack_concept_check (t);
      tmpl = TREE_OPERAND (t, 0);
      if (TREE_CODE (tmpl) == OVERLOAD)
        tmpl = OVL_FIRST (tmpl);
      args = TREE_OPERAND (t, 1);
      return;
    }

  if (TREE_CODE (t) == TYPE_DECL)
    {
      /* A constrained parameter.  Build a constraint check
         based on the prototype parameter and then extract the
         arguments from that.  */
      tree proto = CONSTRAINED_PARM_PROTOTYPE (t);
      tree check = finish_shorthand_constraint (proto, t);
      placeholder_extract_concept_and_args (check, tmpl, args);
      return;
    }
}

/* Returns true iff the placeholders C1 and C2 are equivalent.  C1
   and C2 can be either TEMPLATE_TYPE_PARM or template-ids.  */

bool
equivalent_placeholder_constraints (tree c1, tree c2)
{
  if (c1 && TREE_CODE (c1) == TEMPLATE_TYPE_PARM)
    /* A constrained auto.  */
    c1 = PLACEHOLDER_TYPE_CONSTRAINTS (c1);
  if (c2 && TREE_CODE (c2) == TEMPLATE_TYPE_PARM)
    c2 = PLACEHOLDER_TYPE_CONSTRAINTS (c2);

  if (c1 == c2)
    return true;
  if (!c1 || !c2)
    return false;
  if (c1 == error_mark_node || c2 == error_mark_node)
    /* We get here during satisfaction; when a deduction constraint
       fails, substitution can produce an error_mark_node for the
       placeholder constraints.  */
    return false;

  tree t1, t2, a1, a2;
  placeholder_extract_concept_and_args (c1, t1, a1);
  placeholder_extract_concept_and_args (c2, t2, a2);

  if (t1 != t2)
    return false;

  int len1 = TREE_VEC_LENGTH (a1);
  int len2 = TREE_VEC_LENGTH (a2);
  if (len1 != len2)
    return false;

  /* Skip the first argument so we don't infinitely recurse.
     Also, they may differ in template parameter index.  */
  for (int i = 1; i < len1; ++i)
    {
      tree t1 = TREE_VEC_ELT (a1, i);
      tree t2 = TREE_VEC_ELT (a2, i);
      if (!template_args_equal (t1, t2))
      return false;
    }
  return true;
}

/* Return a hash value for the placeholder ATOMIC_CONSTR C.  */

hashval_t
hash_placeholder_constraint (tree c)
{
  tree t, a;
  placeholder_extract_concept_and_args (c, t, a);

  /* Like hash_tmpl_and_args, but skip the first argument.  */
  hashval_t val = iterative_hash_object (DECL_UID (t), 0);

  for (int i = TREE_VEC_LENGTH (a)-1; i > 0; --i)
    val = iterative_hash_template_arg (TREE_VEC_ELT (a, i), val);

  return val;
}

/* Substitute through the expression of a simple requirement or
   compound requirement.  */

static tree
tsubst_valid_expression_requirement (tree t, tree args, sat_info info)
{
  tree r = tsubst_expr (t, args, tf_none, info.in_decl, false);
  if (convert_to_void (r, ICV_STATEMENT, tf_none) != error_mark_node)
    return r;

  if (info.diagnose_unsatisfaction_p ())
    {
      location_t loc = cp_expr_loc_or_input_loc (t);
      if (diagnosing_failed_constraint::replay_errors_p ())
	{
	  inform (loc, "the required expression %qE is invalid, because", t);
	  if (r == error_mark_node)
	    tsubst_expr (t, args, info.complain, info.in_decl, false);
	  else
	    convert_to_void (r, ICV_STATEMENT, info.complain);
	}
      else
	inform (loc, "the required expression %qE is invalid", t);
    }
  else if (info.noisy ())
    {
      r = tsubst_expr (t, args, info.complain, info.in_decl, false);
      convert_to_void (r, ICV_STATEMENT, info.complain);
    }

  return error_mark_node;
}


/* Substitute through the simple requirement.  */

static tree
tsubst_simple_requirement (tree t, tree args, sat_info info)
{
  tree t0 = TREE_OPERAND (t, 0);
  tree expr = tsubst_valid_expression_requirement (t0, args, info);
  if (expr == error_mark_node)
    return error_mark_node;
  return boolean_true_node;
}

/* Subroutine of tsubst_type_requirement that performs the actual substitution
   and diagnosing.  Also used by tsubst_compound_requirement.  */

static tree
tsubst_type_requirement_1 (tree t, tree args, sat_info info, location_t loc)
{
  tree r = tsubst (t, args, tf_none, info.in_decl);
  if (r != error_mark_node)
    return r;

  if (info.diagnose_unsatisfaction_p ())
    {
      if (diagnosing_failed_constraint::replay_errors_p ())
	{
	  /* Replay the substitution error.  */
	  inform (loc, "the required type %qT is invalid, because", t);
	  tsubst (t, args, info.complain, info.in_decl);
	}
      else
	inform (loc, "the required type %qT is invalid", t);
    }
  else if (info.noisy ())
    tsubst (t, args, info.complain, info.in_decl);

  return error_mark_node;
}


/* Substitute through the type requirement.  */

static tree
tsubst_type_requirement (tree t, tree args, sat_info info)
{
  tree t0 = TREE_OPERAND (t, 0);
  tree type = tsubst_type_requirement_1 (t0, args, info, EXPR_LOCATION (t));
  if (type == error_mark_node)
    return error_mark_node;
  return boolean_true_node;
}

/* True if TYPE can be deduced from EXPR.  */

static bool
type_deducible_p (tree expr, tree type, tree placeholder, tree args,
                  subst_info info)
{
  /* Make sure deduction is performed against ( EXPR ), so that
     references are preserved in the result.  */
  expr = force_paren_expr_uneval (expr);

  tree deduced_type = do_auto_deduction (type, expr, placeholder,
					 info.complain, adc_requirement,
					 /*outer_targs=*/args);

  return deduced_type != error_mark_node;
}

/* True if EXPR can not be converted to TYPE.  */

static bool
expression_convertible_p (tree expr, tree type, subst_info info)
{
  tree conv =
    perform_direct_initialization_if_possible (type, expr, false,
					       info.complain);
  if (conv == error_mark_node)
    return false;
  if (conv == NULL_TREE)
    {
      if (info.complain & tf_error)
        {
          location_t loc = EXPR_LOC_OR_LOC (expr, input_location);
          error_at (loc, "cannot convert %qE to %qT", expr, type);
        }
      return false;
    }
  return true;
}


/* Substitute through the compound requirement.  */

static tree
tsubst_compound_requirement (tree t, tree args, sat_info info)
{
  tree t0 = TREE_OPERAND (t, 0);
  tree t1 = TREE_OPERAND (t, 1);
  tree expr = tsubst_valid_expression_requirement (t0, args, info);
  if (expr == error_mark_node)
    return error_mark_node;

  location_t loc = cp_expr_loc_or_input_loc (expr);

  /* Check the noexcept condition.  */
  bool noexcept_p = COMPOUND_REQ_NOEXCEPT_P (t);
  if (noexcept_p && !expr_noexcept_p (expr, tf_none))
    {
      if (info.diagnose_unsatisfaction_p ())
	inform (loc, "%qE is not %<noexcept%>", expr);
      else
	return error_mark_node;
    }

  /* Substitute through the type expression, if any.  */
  tree type = tsubst_type_requirement_1 (t1, args, info, EXPR_LOCATION (t));
  if (type == error_mark_node)
    return error_mark_node;

  subst_info quiet (tf_none, info.in_decl);

  /* Check expression against the result type.  */
  if (type)
    {
      if (tree placeholder = type_uses_auto (type))
	{
	  if (!type_deducible_p (expr, type, placeholder, args, quiet))
	    {
	      if (info.diagnose_unsatisfaction_p ())
		{
		  if (diagnosing_failed_constraint::replay_errors_p ())
		    {
		      inform (loc,
			      "%qE does not satisfy return-type-requirement, "
			      "because", t0);
		      /* Further explain the reason for the error.  */
		      type_deducible_p (expr, type, placeholder, args, info);
		    }
		  else
		    inform (loc,
			    "%qE does not satisfy return-type-requirement", t0);
		}
	      return error_mark_node;
	    }
	}
      else if (!expression_convertible_p (expr, type, quiet))
	{
	  if (info.diagnose_unsatisfaction_p ())
	    {
	      if (diagnosing_failed_constraint::replay_errors_p ())
		{
		  inform (loc, "cannot convert %qE to %qT because", t0, type);
		  /* Further explain the reason for the error.  */
		  expression_convertible_p (expr, type, info);
		}
	      else
		inform (loc, "cannot convert %qE to %qT", t0, type);
	    }
	  return error_mark_node;
	}
    }

  return boolean_true_node;
}

/* Substitute through the nested requirement.  */

static tree
tsubst_nested_requirement (tree t, tree args, sat_info info)
{
  sat_info quiet (tf_none, info.in_decl);
  tree result = constraint_satisfaction_value (t, args, quiet);
  if (result == boolean_true_node)
    return boolean_true_node;

  if (result == boolean_false_node
      && info.diagnose_unsatisfaction_p ())
    {
      tree expr = TREE_OPERAND (t, 0);
      location_t loc = cp_expr_location (t);
      if (diagnosing_failed_constraint::replay_errors_p ())
	{
	  /* Replay the substitution error.  */
	  inform (loc, "nested requirement %qE is not satisfied, because", expr);
	  constraint_satisfaction_value (t, args, info);
	}
      else
	inform (loc, "nested requirement %qE is not satisfied", expr);
    }

  return error_mark_node;
}

/* Substitute ARGS into the requirement T.  */

static tree
tsubst_requirement (tree t, tree args, sat_info info)
{
  iloc_sentinel loc_s (cp_expr_location (t));
  switch (TREE_CODE (t))
    {
    case SIMPLE_REQ:
      return tsubst_simple_requirement (t, args, info);
    case TYPE_REQ:
      return tsubst_type_requirement (t, args, info);
    case COMPOUND_REQ:
      return tsubst_compound_requirement (t, args, info);
    case NESTED_REQ:
      return tsubst_nested_requirement (t, args, info);
    default:
      break;
    }
  gcc_unreachable ();
}

static tree
declare_constraint_vars (tree parms, tree vars)
{
  tree s = vars;
  for (tree t = parms; t; t = DECL_CHAIN (t))
    {
      if (DECL_PACK_P (t))
        {
          tree pack = extract_fnparm_pack (t, &s);
          register_local_specialization (pack, t);
        }
      else
        {
          register_local_specialization (s, t);
          s = DECL_CHAIN (s);
        }
    }
  return vars;
}

/* Substitute through as if checking function parameter types. This
   will diagnose common parameter type errors.  Returns error_mark_node
   if an error occurred.  */

static tree
check_constraint_variables (tree t, tree args, subst_info info)
{
  tree types = NULL_TREE;
  tree p = t;
  while (p && !VOID_TYPE_P (p))
    {
      types = tree_cons (NULL_TREE, TREE_TYPE (p), types);
      p = TREE_CHAIN (p);
    }
  types = chainon (nreverse (types), void_list_node);
  return tsubst_function_parms (types, args, info.complain, info.in_decl);
}

/* A subroutine of tsubst_parameterized_constraint. Substitute ARGS
   into the parameter list T, producing a sequence of constraint
   variables, declared in the current scope.

   Note that the caller must establish a local specialization stack
   prior to calling this function since this substitution will
   declare the substituted parameters. */

static tree
tsubst_constraint_variables (tree t, tree args, subst_info info)
{
  /* Perform a trial substitution to check for type errors.  */
  tree parms = check_constraint_variables (t, args, info);
  if (parms == error_mark_node)
    return error_mark_node;

  /* Clear cp_unevaluated_operand across tsubst so that we get a proper chain
     of PARM_DECLs.  */
  int saved_unevaluated_operand = cp_unevaluated_operand;
  cp_unevaluated_operand = 0;
  tree vars = tsubst (t, args, info.complain, info.in_decl);
  cp_unevaluated_operand = saved_unevaluated_operand;
  if (vars == error_mark_node)
    return error_mark_node;
  return declare_constraint_vars (t, vars);
}

/* Substitute ARGS into the requires-expression T. [8.4.7]p6. The
   substitution of template arguments into a requires-expression
   may result in the formation of invalid types or expressions
   in its requirements ... In such cases, the expression evaluates
   to false; it does not cause the program to be ill-formed.

   When substituting through a REQUIRES_EXPR as part of template
   instantiation, we call this routine with info.quiet() true.

   When evaluating a REQUIRES_EXPR that appears outside a template in
   cp_parser_requires_expression, we call this routine with
   info.noisy() true.

   Finally, when diagnosing unsatisfaction from diagnose_atomic_constraint
   and when diagnosing a false REQUIRES_EXPR via diagnose_constraints,
   we call this routine with info.diagnose_unsatisfaction_p() true.  */

static tree
tsubst_requires_expr (tree t, tree args, sat_info info)
{
  local_specialization_stack stack (lss_copy);

  /* A requires-expression is an unevaluated context.  */
  cp_unevaluated u;

  args = add_extra_args (REQUIRES_EXPR_EXTRA_ARGS (t), args,
			 info.complain, info.in_decl);
  if (processing_template_decl)
    {
      /* We're partially instantiating a generic lambda.  Substituting into
	 this requires-expression now may cause its requirements to get
	 checked out of order, so instead just remember the template
	 arguments and wait until we can substitute them all at once.  */
      t = copy_node (t);
      REQUIRES_EXPR_EXTRA_ARGS (t) = build_extra_args (t, args, info.complain);
      return t;
    }

  if (tree parms = REQUIRES_EXPR_PARMS (t))
    {
      parms = tsubst_constraint_variables (parms, args, info);
      if (parms == error_mark_node)
	return boolean_false_node;
    }

  tree result = boolean_true_node;
  for (tree reqs = REQUIRES_EXPR_REQS (t); reqs; reqs = TREE_CHAIN (reqs))
    {
      tree req = TREE_VALUE (reqs);
      if (tsubst_requirement (req, args, info) == error_mark_node)
	{
	  result = boolean_false_node;
	  if (info.diagnose_unsatisfaction_p ())
	    /* Keep going so that we diagnose all failed requirements.  */;
	  else
	    break;
	}
    }
  return result;
}

/* Public wrapper for the above.  */

tree
tsubst_requires_expr (tree t, tree args,
		      tsubst_flags_t complain, tree in_decl)
{
  sat_info info (complain, in_decl);
  return tsubst_requires_expr (t, args, info);
}

/* Substitute ARGS into the constraint information CI, producing a new
   constraint record.  */

tree
tsubst_constraint_info (tree t, tree args,
                        tsubst_flags_t complain, tree in_decl)
{
  if (!t || t == error_mark_node || !check_constraint_info (t))
    return NULL_TREE;

  tree tr = tsubst_constraint (CI_TEMPLATE_REQS (t), args, complain, in_decl);
  tree dr = tsubst_constraint (CI_DECLARATOR_REQS (t), args, complain, in_decl);
  return build_constraints (tr, dr);
}

/* Substitute through a parameter mapping, in order to get the actual
   arguments used to instantiate an atomic constraint.  This may fail
   if the substitution into arguments produces something ill-formed.  */

static tree
tsubst_parameter_mapping (tree map, tree args, subst_info info)
{
  if (!map)
    return NULL_TREE;

  tsubst_flags_t complain = info.complain;
  tree in_decl = info.in_decl;

  tree result = NULL_TREE;
  for (tree p = map; p; p = TREE_CHAIN (p))
    {
      if (p == error_mark_node)
        return error_mark_node;
      tree parm = TREE_VALUE (p);
      tree arg = TREE_PURPOSE (p);
      tree new_arg;
      if (ARGUMENT_PACK_P (arg))
	new_arg = tsubst_argument_pack (arg, args, complain, in_decl);
      else
	{
	  new_arg = tsubst_template_arg (arg, args, complain, in_decl);
	  if (TYPE_P (new_arg))
	    new_arg = canonicalize_type_argument (new_arg, complain);
	}
      if (TREE_CODE (new_arg) == TYPE_ARGUMENT_PACK)
	{
	  tree pack_args = ARGUMENT_PACK_ARGS (new_arg);
	  for (int i = 0; i < TREE_VEC_LENGTH (pack_args); i++)
	    {
	      tree& pack_arg = TREE_VEC_ELT (pack_args, i);
	      if (TYPE_P (pack_arg))
		pack_arg = canonicalize_type_argument (pack_arg, complain);
	    }
	}
      if (new_arg == error_mark_node)
	return error_mark_node;

      result = tree_cons (new_arg, parm, result);
    }
  return nreverse (result);
}

tree
tsubst_parameter_mapping (tree map, tree args, tsubst_flags_t complain, tree in_decl)
{
  return tsubst_parameter_mapping (map, args, subst_info (complain, in_decl));
}

/*---------------------------------------------------------------------------
                        Constraint satisfaction
---------------------------------------------------------------------------*/

/* True if we are currently satisfying a constraint.  */

static bool satisfying_constraint;

/* A vector of incomplete types (and of declarations with undeduced return type),
   appended to by note_failed_type_completion_for_satisfaction.  The
   satisfaction caches use this in order to keep track of "potentially unstable"
   satisfaction results.

   Since references to entries in this vector are stored only in the
   GC-deletable sat_cache, it's safe to make this deletable as well.  */

static GTY((deletable)) vec<tree, va_gc> *failed_type_completions;

/* Called whenever a type completion (or return type deduction) failure occurs
   that definitely affects the meaning of the program, by e.g. inducing
   substitution failure.  */

void
note_failed_type_completion_for_satisfaction (tree t)
{
  if (satisfying_constraint)
    {
      gcc_checking_assert ((TYPE_P (t) && !COMPLETE_TYPE_P (t))
			   || (DECL_P (t) && undeduced_auto_decl (t)));
      vec_safe_push (failed_type_completions, t);
    }
}

/* Returns true if the range [BEGIN, END) of elements within the
   failed_type_completions vector contains a complete type (or a
   declaration with a non-placeholder return type).  */

static bool
some_type_complete_p (int begin, int end)
{
  for (int i = begin; i < end; i++)
    {
      tree t = (*failed_type_completions)[i];
      if (TYPE_P (t) && COMPLETE_TYPE_P (t))
	return true;
      if (DECL_P (t) && !undeduced_auto_decl (t))
	return true;
    }
  return false;
}

/* Hash functions and data types for satisfaction cache entries.  */

struct GTY((for_user)) sat_entry
{
  /* The relevant ATOMIC_CONSTR.  */
  tree atom;

  /* The relevant template arguments.  */
  tree args;

  /* The result of satisfaction of ATOM+ARGS.
     This is either boolean_true_node, boolean_false_node or error_mark_node,
     where error_mark_node indicates ill-formed satisfaction.
     It's set to NULL_TREE while computing satisfaction of ATOM+ARGS for
     the first time.  */
  tree result;

  /* The value of input_location when satisfaction of ATOM+ARGS was first
     performed.  */
  location_t location;

  /* The range of elements appended to the failed_type_completions vector
     during computation of this satisfaction result, encoded as a begin/end
     pair of offsets.  */
  int ftc_begin, ftc_end;

  /* True if we want to diagnose the above instability when it's detected.
     We don't always want to do so, in order to avoid emitting duplicate
     diagnostics in some cases.  */
  bool diagnose_instability;

  /* True if we're in the middle of computing this satisfaction result.
     Used during both quiet and noisy satisfaction to detect self-recursive
     satisfaction.  */
  bool evaluating;
};

struct sat_hasher : ggc_ptr_hash<sat_entry>
{
  static hashval_t hash (sat_entry *e)
  {
    if (ATOMIC_CONSTR_MAP_INSTANTIATED_P (e->atom))
      {
	/* Atoms with instantiated mappings are built during satisfaction.
	   They live only inside the sat_cache, and we build one to query
	   the cache with each time we instantiate a mapping.  */
	gcc_assert (!e->args);
	return hash_atomic_constraint (e->atom);
      }

    /* Atoms with uninstantiated mappings are built during normalization.
       Since normalize_atom caches the atoms it returns, we can assume
       pointer-based identity for fast hashing and comparison.  Even if this
       assumption is violated, that's okay, we'll just get a cache miss.  */
    hashval_t value = htab_hash_pointer (e->atom);

    if (tree map = ATOMIC_CONSTR_MAP (e->atom))
      /* Only the parameters that are used in the targets of the mapping
	 affect the satisfaction value of the atom.  So we consider only
	 the arguments for these parameters, and ignore the rest.  */
      for (tree target_parms = TREE_TYPE (map);
	   target_parms;
	   target_parms = TREE_CHAIN (target_parms))
	{
	  int level, index;
	  tree parm = TREE_VALUE (target_parms);
	  template_parm_level_and_index (parm, &level, &index);
	  tree arg = TMPL_ARG (e->args, level, index);
	  value = iterative_hash_template_arg (arg, value);
	}
    return value;
  }

  static bool equal (sat_entry *e1, sat_entry *e2)
  {
    if (ATOMIC_CONSTR_MAP_INSTANTIATED_P (e1->atom)
	!= ATOMIC_CONSTR_MAP_INSTANTIATED_P (e2->atom))
      return false;

    /* See sat_hasher::hash.  */
    if (ATOMIC_CONSTR_MAP_INSTANTIATED_P (e1->atom))
      {
	gcc_assert (!e1->args && !e2->args);
	return atomic_constraints_identical_p (e1->atom, e2->atom);
      }

    if (e1->atom != e2->atom)
      return false;

    if (tree map = ATOMIC_CONSTR_MAP (e1->atom))
      for (tree target_parms = TREE_TYPE (map);
	   target_parms;
	   target_parms = TREE_CHAIN (target_parms))
	{
	  int level, index;
	  tree parm = TREE_VALUE (target_parms);
	  template_parm_level_and_index (parm, &level, &index);
	  tree arg1 = TMPL_ARG (e1->args, level, index);
	  tree arg2 = TMPL_ARG (e2->args, level, index);
	  if (!template_args_equal (arg1, arg2))
	    return false;
	}
    return true;
  }
};

/* Cache the result of satisfy_atom.  */
static GTY((deletable)) hash_table<sat_hasher> *sat_cache;

/* Cache the result of satisfy_declaration_constraints.  */
static GTY((deletable)) hash_map<tree, tree> *decl_satisfied_cache;

/* A tool used by satisfy_atom to help manage satisfaction caching and to
   diagnose "unstable" satisfaction values.  We insert into the cache only
   when performing satisfaction quietly.  */

struct satisfaction_cache
{
  satisfaction_cache (tree, tree, sat_info);
  tree get ();
  tree save (tree);

  sat_entry *entry;
  sat_info info;
  int ftc_begin;
};

/* Constructor for the satisfaction_cache class.  We're performing satisfaction
   of ATOM+ARGS according to INFO.  */

satisfaction_cache
::satisfaction_cache (tree atom, tree args, sat_info info)
  : entry(nullptr), info(info), ftc_begin(-1)
{
  if (!sat_cache)
    sat_cache = hash_table<sat_hasher>::create_ggc (31);

  /* When noisy, we query the satisfaction cache in order to diagnose
     "unstable" satisfaction values.  */
  if (info.noisy ())
    {
      /* When noisy, constraints have been re-normalized, and that breaks the
	 pointer-based identity assumption of sat_cache (for atoms with
	 uninstantiated mappings).  So undo this re-normalization by looking in
	 the atom_cache for the corresponding atom that was used during quiet
	 satisfaction.  */
      if (!ATOMIC_CONSTR_MAP_INSTANTIATED_P (atom))
	{
	  if (tree found = atom_cache->find (atom))
	    atom = found;
	  else
	    /* The lookup should always succeed, but if it fails then let's
	       just leave 'entry' empty, effectively disabling the cache.  */
	    return;
	}
    }

  /* Look up or create the corresponding satisfaction entry.  */
  sat_entry elt;
  elt.atom = atom;
  elt.args = args;
  sat_entry **slot = sat_cache->find_slot (&elt, INSERT);
  if (*slot)
    entry = *slot;
  else if (info.quiet ())
    {
      entry = ggc_alloc<sat_entry> ();
      entry->atom = atom;
      entry->args = args;
      entry->result = NULL_TREE;
      entry->location = input_location;
      entry->ftc_begin = entry->ftc_end = -1;
      entry->diagnose_instability = false;
      if (ATOMIC_CONSTR_MAP_INSTANTIATED_P (atom))
	/* We always want to diagnose instability of an atom with an
	   instantiated parameter mapping.  For atoms with an uninstantiated
	   mapping, we set this flag (in satisfy_atom) only if substitution
	   into its mapping previously failed.  */
	entry->diagnose_instability = true;
      entry->evaluating = false;
      *slot = entry;
    }
  else
    /* We shouldn't get here, but if we do, let's just leave 'entry'
       empty, effectively disabling the cache.  */
    return;
}

/* Returns the cached satisfaction result if we have one and we're not
   recomputing the satisfaction result from scratch.  Otherwise returns
   NULL_TREE.  */

tree
satisfaction_cache::get ()
{
  if (!entry)
    return NULL_TREE;

  if (entry->evaluating)
    {
      /* If we get here, it means satisfaction is self-recursive.  */
      gcc_checking_assert (!entry->result);
      if (info.noisy ())
	error_at (EXPR_LOCATION (ATOMIC_CONSTR_EXPR (entry->atom)),
		  "satisfaction of atomic constraint %qE depends on itself",
		  entry->atom);
      return error_mark_node;
    }

  /* This satisfaction result is "potentially unstable" if a type for which
     type completion failed during its earlier computation is now complete.  */
  bool maybe_unstable = some_type_complete_p (entry->ftc_begin,
					      entry->ftc_end);

  if (info.noisy () || maybe_unstable || !entry->result)
    {
      /* We're computing the satisfaction result from scratch.  */
      entry->evaluating = true;
      ftc_begin = vec_safe_length (failed_type_completions);
      return NULL_TREE;
    }
  else
    return entry->result;
}

/* RESULT is the computed satisfaction result.  If RESULT differs from the
   previously cached result, this routine issues an appropriate error.
   Otherwise, when evaluating quietly, updates the cache appropriately.  */

tree
satisfaction_cache::save (tree result)
{
  if (!entry)
    return result;

  gcc_checking_assert (entry->evaluating);
  entry->evaluating = false;

  if (entry->result && result != entry->result)
    {
      if (info.quiet ())
	/* Return error_mark_node to force satisfaction to get replayed
	   noisily.  */
	return error_mark_node;
      else
	{
	  if (entry->diagnose_instability)
	    {
	      auto_diagnostic_group d;
	      error_at (EXPR_LOCATION (ATOMIC_CONSTR_EXPR (entry->atom)),
			"satisfaction value of atomic constraint %qE changed "
			"from %qE to %qE", entry->atom, entry->result, result);
	      inform (entry->location,
		      "satisfaction value first evaluated to %qE from here",
		      entry->result);
	    }
	  /* For sake of error recovery, allow this latest satisfaction result
	     to prevail.  */
	  entry->result = result;
	  return result;
	}
    }

  if (info.quiet ())
    {
      entry->result = result;
      /* Store into this entry the list of relevant failed type completions
	 that occurred during (re)computation of the satisfaction result.  */
      gcc_checking_assert (ftc_begin != -1);
      entry->ftc_begin = ftc_begin;
      entry->ftc_end = vec_safe_length (failed_type_completions);
    }

  return result;
}

/* Substitute ARGS into constraint-expression T during instantiation of
   a member of a class template.  */

tree
tsubst_constraint (tree t, tree args, tsubst_flags_t complain, tree in_decl)
{
  /* We also don't want to evaluate concept-checks when substituting the
     constraint-expressions of a declaration.  */
  processing_constraint_expression_sentinel s;
  cp_unevaluated u;
  tree expr = tsubst_expr (t, args, complain, in_decl, false);
  return expr;
}

static tree satisfy_constraint_r (tree, tree, sat_info info);

/* Compute the satisfaction of a conjunction.  */

static tree
satisfy_conjunction (tree t, tree args, sat_info info)
{
  tree lhs = satisfy_constraint_r (TREE_OPERAND (t, 0), args, info);
  if (lhs == error_mark_node || lhs == boolean_false_node)
    return lhs;
  return satisfy_constraint_r (TREE_OPERAND (t, 1), args, info);
}

/* The current depth at which we're replaying an error during recursive
   diagnosis of a constraint satisfaction failure.  */

static int current_constraint_diagnosis_depth;

/* Whether CURRENT_CONSTRAINT_DIAGNOSIS_DEPTH has ever exceeded
   CONCEPTS_DIAGNOSTICS_MAX_DEPTH during recursive diagnosis of a constraint
   satisfaction error.  */

static bool concepts_diagnostics_max_depth_exceeded_p;

/* Recursive subroutine of collect_operands_of_disjunction.  T is a normalized
   subexpression of a constraint (composed of CONJ_CONSTRs and DISJ_CONSTRs)
   and E is the corresponding unnormalized subexpression (composed of
   TRUTH_ANDIF_EXPRs and TRUTH_ORIF_EXPRs).  */

static void
collect_operands_of_disjunction_r (tree t, tree e,
				   auto_vec<tree_pair> *operands)
{
  if (TREE_CODE (e) == TRUTH_ORIF_EXPR)
    {
      collect_operands_of_disjunction_r (TREE_OPERAND (t, 0),
					 TREE_OPERAND (e, 0), operands);
      collect_operands_of_disjunction_r (TREE_OPERAND (t, 1),
					 TREE_OPERAND (e, 1), operands);
    }
  else
    {
      tree_pair p = std::make_pair (t, e);
      operands->safe_push (p);
    }
}

/* Recursively collect the normalized and unnormalized operands of the
   disjunction T and append them to OPERANDS in order.  */

static void
collect_operands_of_disjunction (tree t, auto_vec<tree_pair> *operands)
{
  collect_operands_of_disjunction_r (t, CONSTR_EXPR (t), operands);
}

/* Compute the satisfaction of a disjunction.  */

static tree
satisfy_disjunction (tree t, tree args, sat_info info)
{
  /* Evaluate each operand with unsatisfaction diagnostics disabled.  */
  sat_info sub = info;
  sub.diagnose_unsatisfaction = false;

  tree lhs = satisfy_constraint_r (TREE_OPERAND (t, 0), args, sub);
  if (lhs == boolean_true_node || lhs == error_mark_node)
    return lhs;

  tree rhs = satisfy_constraint_r (TREE_OPERAND (t, 1), args, sub);
  if (rhs == boolean_true_node || rhs == error_mark_node)
    return rhs;

  /* Both branches evaluated to false.  Explain the satisfaction failure in
     each branch.  */
  if (info.diagnose_unsatisfaction_p ())
    {
      diagnosing_failed_constraint failure (t, args, info.noisy ());
      cp_expr disj_expr = CONSTR_EXPR (t);
      inform (disj_expr.get_location (),
	      "no operand of the disjunction is satisfied");
      if (diagnosing_failed_constraint::replay_errors_p ())
	{
	  /* Replay the error in each branch of the disjunction.  */
	  auto_vec<tree_pair> operands;
	  collect_operands_of_disjunction (t, &operands);
	  for (unsigned i = 0; i < operands.length (); i++)
	    {
	      tree norm_op = operands[i].first;
	      tree op = operands[i].second;
	      location_t loc = make_location (cp_expr_location (op),
					      disj_expr.get_start (),
					      disj_expr.get_finish ());
	      inform (loc, "the operand %qE is unsatisfied because", op);
	      satisfy_constraint_r (norm_op, args, info);
	    }
	}
    }

  return boolean_false_node;
}

/* Ensures that T is a truth value and not (accidentally, as sometimes
   happens) an integer value.  */

tree
satisfaction_value (tree t)
{
  if (t == error_mark_node || t == boolean_true_node || t == boolean_false_node)
    return t;

  gcc_assert (TREE_CODE (t) == INTEGER_CST
	      && same_type_p (TREE_TYPE (t), boolean_type_node));
  if (integer_zerop (t))
    return boolean_false_node;
  else
    return boolean_true_node;
}

/* Build a new template argument list with template arguments corresponding
   to the parameters used in an atomic constraint.  */

tree
get_mapped_args (tree map)
{
  /* No map, no arguments.  */
  if (!map)
    return NULL_TREE;

  /* Find the mapped parameter with the highest level.  */
  int count = 0;
  for (tree p = map; p; p = TREE_CHAIN (p))
    {
      int level;
      int index;
      template_parm_level_and_index (TREE_VALUE (p), &level, &index);
      if (level > count)
        count = level;
    }

  /* Place each argument at its corresponding position in the argument
     list. Note that the list will be sparse (not all arguments supplied),
     but instantiation is guaranteed to only use the parameters in the
     mapping, so null arguments would never be used.  */
  auto_vec< vec<tree> > lists (count);
  lists.quick_grow_cleared (count);
  for (tree p = map; p; p = TREE_CHAIN (p))
    {
      int level;
      int index;
      template_parm_level_and_index (TREE_VALUE (p), &level, &index);

      /* Insert the argument into its corresponding position.  */
      vec<tree> &list = lists[level - 1];
      if (index >= (int)list.length ())
	list.safe_grow_cleared (index + 1, true);
      list[index] = TREE_PURPOSE (p);
    }

  /* Build the new argument list.  */
  tree args = make_tree_vec (lists.length ());
  for (unsigned i = 0; i != lists.length (); ++i)
    {
      vec<tree> &list = lists[i];
      tree level = make_tree_vec (list.length ());
      for (unsigned j = 0; j < list.length(); ++j)
	TREE_VEC_ELT (level, j) = list[j];
      SET_TMPL_ARGS_LEVEL (args, i + 1, level);
      list.release ();
    }
  SET_NON_DEFAULT_TEMPLATE_ARGS_COUNT (args, 0);

  return args;
}

static void diagnose_atomic_constraint (tree, tree, tree, sat_info);

/* Compute the satisfaction of an atomic constraint.  */

static tree
satisfy_atom (tree t, tree args, sat_info info)
{
  /* In case there is a diagnostic, we want to establish the context
     prior to printing errors.  If no errors occur, this context is
     removed before returning.  */
  diagnosing_failed_constraint failure (t, args, info.noisy ());

  satisfaction_cache cache (t, args, info);
  if (tree r = cache.get ())
    return r;

  /* Perform substitution quietly.  */
  subst_info quiet (tf_none, NULL_TREE);

  /* Instantiate the parameter mapping.  */
  tree map = tsubst_parameter_mapping (ATOMIC_CONSTR_MAP (t), args, quiet);
  if (map == error_mark_node)
    {
      /* If instantiation of the parameter mapping fails, the constraint is
	 not satisfied.  Replay the substitution.  */
      if (info.diagnose_unsatisfaction_p ())
	tsubst_parameter_mapping (ATOMIC_CONSTR_MAP (t), args, info);
      if (info.quiet ())
	/* Since instantiation of the parameter mapping failed, we
	   want to diagnose potential instability of this satisfaction
	   result.  */
	cache.entry->diagnose_instability = true;
      return cache.save (boolean_false_node);
    }

  /* Now build a new atom using the instantiated mapping.  We use
     this atom as a second key to the satisfaction cache, and we
     also pass it to diagnose_atomic_constraint so that diagnostics
     which refer to the atom display the instantiated mapping.  */
  t = copy_node (t);
  ATOMIC_CONSTR_MAP (t) = map;
  gcc_assert (!ATOMIC_CONSTR_MAP_INSTANTIATED_P (t));
  ATOMIC_CONSTR_MAP_INSTANTIATED_P (t) = true;
  satisfaction_cache inst_cache (t, /*args=*/NULL_TREE, info);
  if (tree r = inst_cache.get ())
    {
      cache.entry->location = inst_cache.entry->location;
      return cache.save (r);
    }

  /* Rebuild the argument vector from the parameter mapping.  */
  args = get_mapped_args (map);

  /* Apply the parameter mapping (i.e., just substitute).  */
  tree expr = ATOMIC_CONSTR_EXPR (t);
  tree result = tsubst_expr (expr, args, quiet.complain, quiet.in_decl, false);
  if (result == error_mark_node)
    {
      /* If substitution results in an invalid type or expression, the constraint
	 is not satisfied. Replay the substitution.  */
      if (info.diagnose_unsatisfaction_p ())
	tsubst_expr (expr, args, info.complain, info.in_decl, false);
      return cache.save (inst_cache.save (boolean_false_node));
    }

  /* [17.4.1.2] ... lvalue-to-rvalue conversion is performed as necessary,
     and EXPR shall be a constant expression of type bool.  */
  result = force_rvalue (result, info.complain);
  if (result == error_mark_node)
    return cache.save (inst_cache.save (error_mark_node));
  if (!same_type_p (TREE_TYPE (result), boolean_type_node))
    {
      if (info.noisy ())
	diagnose_atomic_constraint (t, map, result, info);
      return cache.save (inst_cache.save (error_mark_node));
    }

  /* Compute the value of the constraint.  */
  if (info.noisy ())
    {
      iloc_sentinel ils (EXPR_LOCATION (result));
      result = cxx_constant_value (result);
    }
  else
    {
      result = maybe_constant_value (result, NULL_TREE,
				     /*manifestly_const_eval=*/true);
      if (!TREE_CONSTANT (result))
	result = error_mark_node;
    }
  result = satisfaction_value (result);
  if (result == boolean_false_node && info.diagnose_unsatisfaction_p ())
    diagnose_atomic_constraint (t, map, result, info);

  return cache.save (inst_cache.save (result));
}

/* Determine if the normalized constraint T is satisfied.
   Returns boolean_true_node if the expression/constraint is
   satisfied, boolean_false_node if not, and error_mark_node
   if the there was an error evaluating the constraint.

   The parameter mapping of atomic constraints is simply the
   set of template arguments that will be substituted into
   the expression, regardless of template parameters appearing
   withing. Whether a template argument is used in the atomic
   constraint only matters for subsumption.  */

static tree
satisfy_constraint_r (tree t, tree args, sat_info info)
{
  if (t == error_mark_node)
    return error_mark_node;

  switch (TREE_CODE (t))
    {
    case CONJ_CONSTR:
      return satisfy_conjunction (t, args, info);
    case DISJ_CONSTR:
      return satisfy_disjunction (t, args, info);
    case ATOMIC_CONSTR:
      return satisfy_atom (t, args, info);
    default:
      gcc_unreachable ();
    }
}

/* Check that the normalized constraint T is satisfied for ARGS.  */

static tree
satisfy_normalized_constraints (tree t, tree args, sat_info info)
{
  auto_timevar time (TV_CONSTRAINT_SAT);

  auto ovr = make_temp_override (satisfying_constraint, true);

  /* Turn off template processing. Constraint satisfaction only applies
     to non-dependent terms, so we want to ensure full checking here.  */
  processing_template_decl_sentinel proc (true);

  /* We need to check access during satisfaction.  */
  deferring_access_check_sentinel acs (dk_no_deferred);

  /* Constraints are unevaluated operands.  */
  cp_unevaluated u;

  return satisfy_constraint_r (t, args, info);
}

/* Return the normal form of the constraints on the placeholder 'auto'
   type T.  */

static tree
normalize_placeholder_type_constraints (tree t, bool diag)
{
  gcc_assert (is_auto (t));
  tree ci = PLACEHOLDER_TYPE_CONSTRAINTS_INFO (t);
  if (!ci)
    return NULL_TREE;

  tree constr = TREE_VALUE (ci);
  /* The TREE_PURPOSE contains the set of template parameters that were in
     scope for this placeholder type; use them as the initial template
     parameters for normalization.  */
  tree initial_parms = TREE_PURPOSE (ci);

  /* The 'auto' itself is used as the first argument in its own constraints,
     and its level is one greater than its template depth.  So in order to
     capture all used template parameters, we need to add an extra level of
     template parameters to the context; a dummy level suffices.  */
  initial_parms
    = tree_cons (size_int (initial_parms
			   ? TMPL_PARMS_DEPTH (initial_parms) + 1 : 1),
		 make_tree_vec (0), initial_parms);

  norm_info info (diag ? tf_norm : tf_none);
  info.initial_parms = initial_parms;
  return normalize_constraint_expression (constr, info);
}

/* Evaluate the constraints of T using ARGS, returning a satisfaction value.
   Here, T can be a concept-id, nested-requirement, placeholder 'auto', or
   requires-expression.  */

static tree
satisfy_nondeclaration_constraints (tree t, tree args, sat_info info)
{
  if (t == error_mark_node)
    return error_mark_node;

  /* Handle REQUIRES_EXPR directly, bypassing satisfaction.  */
  if (TREE_CODE (t) == REQUIRES_EXPR)
    {
      auto ovr = make_temp_override (current_constraint_diagnosis_depth);
      if (info.noisy ())
	++current_constraint_diagnosis_depth;
      return tsubst_requires_expr (t, args, info);
    }

  /* Get the normalized constraints.  */
  tree norm;
  if (concept_check_p (t))
    {
      gcc_assert (!args);
      tree id = unpack_concept_check (t);
      args = TREE_OPERAND (id, 1);
      tree tmpl = get_concept_check_template (id);
      norm = normalize_concept_definition (tmpl, info.noisy ());
    }
  else if (TREE_CODE (t) == NESTED_REQ)
    {
      norm_info ninfo (info.noisy () ? tf_norm : tf_none);
      /* The TREE_TYPE contains the set of template parameters that were in
	 scope for this nested requirement; use them as the initial template
	 parameters for normalization.  */
      ninfo.initial_parms = TREE_TYPE (t);
      norm = normalize_constraint_expression (TREE_OPERAND (t, 0), ninfo);
    }
  else if (is_auto (t))
    {
      norm = normalize_placeholder_type_constraints (t, info.noisy ());
      if (!norm)
	return boolean_true_node;
    }
  else
    gcc_unreachable ();

  /* Perform satisfaction.  */
  return satisfy_normalized_constraints (norm, args, info);
}

/* Evaluate the associated constraints of the template specialization T
   according to INFO, returning a satisfaction value.  */

static tree
satisfy_declaration_constraints (tree t, sat_info info)
{
  gcc_assert (DECL_P (t) && TREE_CODE (t) != TEMPLATE_DECL);
  const tree saved_t = t;

  /* For inherited constructors, consider the original declaration;
     it has the correct template information attached. */
  t = strip_inheriting_ctors (t);
  tree inh_ctor_targs = NULL_TREE;
  if (t != saved_t)
    if (tree ti = DECL_TEMPLATE_INFO (saved_t))
      /* The inherited constructor points to an instantiation of a constructor
	 template; remember its template arguments.  */
      inh_ctor_targs = TI_ARGS (ti);

  /* Update the declaration for diagnostics.  */
  info.in_decl = t;

  if (info.quiet ())
    if (tree *result = hash_map_safe_get (decl_satisfied_cache, saved_t))
      return *result;

  tree args = NULL_TREE;
  if (tree ti = DECL_TEMPLATE_INFO (t))
    {
      /* The initial parameter mapping is the complete set of
	 template arguments substituted into the declaration.  */
      args = TI_ARGS (ti);
      if (inh_ctor_targs)
	args = add_outermost_template_args (args, inh_ctor_targs);
    }

  if (regenerated_lambda_fn_p (t))
    {
      /* The TI_ARGS of a regenerated lambda contains only the innermost
	 set of template arguments.  Augment this with the outer template
	 arguments that were used to regenerate the lambda.  */
      gcc_assert (!args || TMPL_ARGS_DEPTH (args) == 1);
      tree lambda = CLASSTYPE_LAMBDA_EXPR (DECL_CONTEXT (t));
      tree outer_args = TI_ARGS (LAMBDA_EXPR_REGEN_INFO (lambda));
      if (args)
	args = add_to_template_args (outer_args, args);
      else
	args = outer_args;
    }

  /* If any arguments depend on template parameters, we can't
     check constraints. Pretend they're satisfied for now.  */
  if (uses_template_parms (args))
    return boolean_true_node;

  /* Get the normalized constraints.  */
  tree norm = get_normalized_constraints_from_decl (t, info.noisy ());

  unsigned ftc_count = vec_safe_length (failed_type_completions);

  tree result = boolean_true_node;
  if (norm)
    {
      if (!push_tinst_level (t))
	return result;
      push_to_top_level ();
      push_access_scope (t);
      result = satisfy_normalized_constraints (norm, args, info);
      pop_access_scope (t);
      pop_from_top_level ();
      pop_tinst_level ();
    }

  /* True if this satisfaction is (heuristically) potentially unstable, i.e.
     if its result may depend on where in the program it was performed.  */
  bool maybe_unstable_satisfaction = false;
  if (ftc_count != vec_safe_length (failed_type_completions))
    /* Type completion failure occurred during satisfaction.  The satisfaction
       result may (or may not) materially depend on the completeness of a type,
       so we consider it potentially unstable.   */
    maybe_unstable_satisfaction = true;

  if (maybe_unstable_satisfaction)
    /* Don't cache potentially unstable satisfaction, to allow satisfy_atom
       to check the stability the next time around.  */;
  else if (info.quiet ())
    hash_map_safe_put<hm_ggc> (decl_satisfied_cache, saved_t, result);

  return result;
}

/* Evaluate the associated constraints of the template T using ARGS as the
   innermost set of template arguments and according to INFO, returning a
   satisfaction value.  */

static tree
satisfy_declaration_constraints (tree t, tree args, sat_info info)
{
  /* Update the declaration for diagnostics.  */
  info.in_decl = t;

  gcc_assert (TREE_CODE (t) == TEMPLATE_DECL);

  if (regenerated_lambda_fn_p (t))
    {
      /* As in the two-parameter version of this function.  */
      gcc_assert (TMPL_ARGS_DEPTH (args) == 1);
      tree lambda = CLASSTYPE_LAMBDA_EXPR (DECL_CONTEXT (t));
      tree outer_args = TI_ARGS (LAMBDA_EXPR_REGEN_INFO (lambda));
      args = add_to_template_args (outer_args, args);
    }
  else
    args = add_outermost_template_args (t, args);

  /* If any arguments depend on template parameters, we can't
     check constraints. Pretend they're satisfied for now.  */
  if (uses_template_parms (args))
    return boolean_true_node;

  tree result = boolean_true_node;
  if (tree norm = get_normalized_constraints_from_decl (t, info.noisy ()))
    {
      if (!push_tinst_level (t, args))
	return result;
      tree pattern = DECL_TEMPLATE_RESULT (t);
      push_to_top_level ();
      push_access_scope (pattern);
      result = satisfy_normalized_constraints (norm, args, info);
      pop_access_scope (pattern);
      pop_from_top_level ();
      pop_tinst_level ();
    }

  return result;
}

/* A wrapper around satisfy_declaration_constraints and
   satisfy_nondeclaration_constraints which additionally replays
   quiet ill-formed satisfaction noisily, so that ill-formed
   satisfaction always gets diagnosed.  */

static tree
constraint_satisfaction_value (tree t, tree args, sat_info info)
{
  tree r;
  if (DECL_P (t))
    {
      if (args)
	r = satisfy_declaration_constraints (t, args, info);
      else
	r = satisfy_declaration_constraints (t, info);
    }
  else
    r = satisfy_nondeclaration_constraints (t, args, info);
  if (r == error_mark_node && info.quiet ()
      && !(DECL_P (t) && warning_suppressed_p (t)))
    {
      /* Replay the error noisily.  */
      sat_info noisy (tf_warning_or_error, info.in_decl);
      constraint_satisfaction_value (t, args, noisy);
      if (DECL_P (t) && !args)
	/* Avoid giving these errors again.  */
	suppress_warning (t);
    }
  return r;
}

/* True iff the result of satisfying T using ARGS is BOOLEAN_TRUE_NODE
   and false otherwise, even in the case of errors.

   Here, T can be:
     - a template declaration
     - a template specialization (in which case ARGS must be empty)
     - a concept-id (in which case ARGS must be empty)
     - a nested-requirement
     - a placeholder 'auto'
     - a requires-expression.  */

bool
constraints_satisfied_p (tree t, tree args/*= NULL_TREE */)
{
  if (!flag_concepts)
    return true;

  sat_info quiet (tf_none, NULL_TREE);
  return constraint_satisfaction_value (t, args, quiet) == boolean_true_node;
}

/* Evaluate a concept check of the form C<ARGS>. This is only used for the
   evaluation of template-ids as id-expressions.  */

tree
evaluate_concept_check (tree check)
{
  if (check == error_mark_node)
    return error_mark_node;

  gcc_assert (concept_check_p (check));

  /* Check for satisfaction without diagnostics.  */
  sat_info quiet (tf_none, NULL_TREE);
  return constraint_satisfaction_value (check, /*args=*/NULL_TREE, quiet);
}

/* Evaluate the requires-expression T, returning either boolean_true_node
   or boolean_false_node.  This is used during folding and constexpr
   evaluation.  */

tree
evaluate_requires_expr (tree t)
{
  gcc_assert (TREE_CODE (t) == REQUIRES_EXPR);
  sat_info quiet (tf_none, NULL_TREE);
  return constraint_satisfaction_value (t, /*args=*/NULL_TREE, quiet);
}

/*---------------------------------------------------------------------------
                Semantic analysis of requires-expressions
---------------------------------------------------------------------------*/

/* Finish a requires expression for the given PARMS (possibly
   null) and the non-empty sequence of requirements.  */

tree
finish_requires_expr (location_t loc, tree parms, tree reqs)
{
  /* Build the node. */
  tree r = build_min (REQUIRES_EXPR, boolean_type_node, parms, reqs, NULL_TREE);
  TREE_SIDE_EFFECTS (r) = false;
  TREE_CONSTANT (r) = true;
  SET_EXPR_LOCATION (r, loc);
  return r;
}

/* Construct a requirement for the validity of EXPR.   */

tree
finish_simple_requirement (location_t loc, tree expr)
{
  tree r = build_nt (SIMPLE_REQ, expr);
  SET_EXPR_LOCATION (r, loc);
  return r;
}

/* Construct a requirement for the validity of TYPE.  */

tree
finish_type_requirement (location_t loc, tree type)
{
  tree r = build_nt (TYPE_REQ, type);
  SET_EXPR_LOCATION (r, loc);
  return r;
}

/* Construct a requirement for the validity of EXPR, along with
   its properties. if TYPE is non-null, then it specifies either
   an implicit conversion or argument deduction constraint,
   depending on whether any placeholders occur in the type name.
   NOEXCEPT_P is true iff the noexcept keyword was specified.  */

tree
finish_compound_requirement (location_t loc, tree expr, tree type, bool noexcept_p)
{
  tree req = build_nt (COMPOUND_REQ, expr, type);
  SET_EXPR_LOCATION (req, loc);
  COMPOUND_REQ_NOEXCEPT_P (req) = noexcept_p;
  return req;
}

/* Finish a nested requirement.  */

tree
finish_nested_requirement (location_t loc, tree expr)
{
  /* Build the requirement, saving the set of in-scope template
     parameters as its type.  */
  tree r = build1 (NESTED_REQ, current_template_parms, expr);
  SET_EXPR_LOCATION (r, loc);
  return r;
}

/* Check that FN satisfies the structural requirements of a
   function concept definition.  */
tree
check_function_concept (tree fn)
{
  /* Check that the function is comprised of only a return statement.  */
  tree body = DECL_SAVED_TREE (fn);
  if (TREE_CODE (body) == BIND_EXPR)
    body = BIND_EXPR_BODY (body);

  /* Sometimes a function call results in the creation of clean up
     points. Allow these to be preserved in the body of the
     constraint, as we might actually need them for some constexpr
     evaluations.  */
  if (TREE_CODE (body) == CLEANUP_POINT_EXPR)
    body = TREE_OPERAND (body, 0);

  /* Check that the definition is written correctly.  */
  if (TREE_CODE (body) != RETURN_EXPR)
    {
      location_t loc = DECL_SOURCE_LOCATION (fn);
      if (TREE_CODE (body) == STATEMENT_LIST && !STATEMENT_LIST_HEAD (body))
	{
	  if (seen_error ())
	    /* The definition was probably erroneous, not empty.  */;
	  else
	    error_at (loc, "definition of concept %qD is empty", fn);
	}
      else
        error_at (loc, "definition of concept %qD has multiple statements", fn);
    }

  return NULL_TREE;
}

/*---------------------------------------------------------------------------
                        Equivalence of constraints
---------------------------------------------------------------------------*/

/* Returns true when A and B are equivalent constraints.  */
bool
equivalent_constraints (tree a, tree b)
{
  gcc_assert (!a || TREE_CODE (a) == CONSTRAINT_INFO);
  gcc_assert (!b || TREE_CODE (b) == CONSTRAINT_INFO);
  return cp_tree_equal (a, b);
}

/* Returns true if the template declarations A and B have equivalent
   constraints. This is the case when A's constraints subsume B's and
   when B's also constrain A's.  */
bool
equivalently_constrained (tree d1, tree d2)
{
  gcc_assert (TREE_CODE (d1) == TREE_CODE (d2));
  return equivalent_constraints (get_constraints (d1), get_constraints (d2));
}

/*---------------------------------------------------------------------------
                     Partial ordering of constraints
---------------------------------------------------------------------------*/

/* Returns true when the constraints in CI strictly subsume
   the associated constraints of TMPL.  */

bool
strictly_subsumes (tree ci, tree tmpl)
{
  tree n1 = get_normalized_constraints_from_info (ci, NULL_TREE);
  tree n2 = get_normalized_constraints_from_decl (tmpl);

  return subsumes (n1, n2) && !subsumes (n2, n1);
}

/* Returns true when the constraints in CI subsume the
   associated constraints of TMPL.  */

bool
weakly_subsumes (tree ci, tree tmpl)
{
  tree n1 = get_normalized_constraints_from_info (ci, NULL_TREE);
  tree n2 = get_normalized_constraints_from_decl (tmpl);

  return subsumes (n1, n2);
}

/* Determines which of the declarations, A or B, is more constrained.
   That is, which declaration's constraints subsume but are not subsumed
   by the other's?

   Returns 1 if D1 is more constrained than D2, -1 if D2 is more constrained
   than D1, and 0 otherwise. */

int
more_constrained (tree d1, tree d2)
{
  tree n1 = get_normalized_constraints_from_decl (d1);
  tree n2 = get_normalized_constraints_from_decl (d2);

  int winner = 0;
  if (subsumes (n1, n2))
    ++winner;
  if (subsumes (n2, n1))
    --winner;
  return winner;
}

/* Return whether D1 is at least as constrained as D2.  */

bool
at_least_as_constrained (tree d1, tree d2)
{
  tree n1 = get_normalized_constraints_from_decl (d1);
  tree n2 = get_normalized_constraints_from_decl (d2);

  return subsumes (n1, n2);
}

/*---------------------------------------------------------------------------
                        Constraint diagnostics
---------------------------------------------------------------------------*/

/* Returns the best location to diagnose a constraint error.  */

static location_t
get_constraint_error_location (tree t)
{
  if (location_t loc = cp_expr_location (t))
    return loc;

  /* If we have a specific location give it.  */
  tree expr = CONSTR_EXPR (t);
  if (location_t loc = cp_expr_location (expr))
    return loc;

  /* If the constraint is normalized from a requires-clause, give
     the location as that of the constrained declaration.  */
  tree cxt = CONSTR_CONTEXT (t);
  tree src = cxt ? TREE_VALUE (cxt) : NULL_TREE;
  if (!src)
    /* TODO: This only happens for constrained non-template declarations.  */
    ;
  else if (DECL_P (src))
    return DECL_SOURCE_LOCATION (src);
  /* Otherwise, give the location as the defining concept.  */
  else if (concept_check_p (src))
    {
      tree id = unpack_concept_check (src);
      tree tmpl = TREE_OPERAND (id, 0);
      if (OVL_P (tmpl))
	tmpl = OVL_FIRST (tmpl);
      return DECL_SOURCE_LOCATION (tmpl);
    }

  return input_location;
}

/* Emit a diagnostic for a failed trait.  */

static void
diagnose_trait_expr (tree expr, tree args)
{
  location_t loc = cp_expr_location (expr);

  /* Build a "fake" version of the instantiated trait, so we can
     get the instantiated types from result.  */
  ++processing_template_decl;
  expr = tsubst_expr (expr, args, tf_none, NULL_TREE, false);
  --processing_template_decl;

  tree t1 = TRAIT_EXPR_TYPE1 (expr);
  tree t2 = TRAIT_EXPR_TYPE2 (expr);
  switch (TRAIT_EXPR_KIND (expr))
    {
    case CPTK_HAS_NOTHROW_ASSIGN:
      inform (loc, "  %qT is not %<nothrow%> copy assignable", t1);
      break;
    case CPTK_HAS_NOTHROW_CONSTRUCTOR:
      inform (loc, "  %qT is not %<nothrow%> default constructible", t1);
      break;
    case CPTK_HAS_NOTHROW_COPY:
      inform (loc, "  %qT is not %<nothrow%> copy constructible", t1);
      break;
    case CPTK_HAS_TRIVIAL_ASSIGN:
      inform (loc, "  %qT is not trivially copy assignable", t1);
      break;
    case CPTK_HAS_TRIVIAL_CONSTRUCTOR:
      inform (loc, "  %qT is not trivially default constructible", t1);
      break;
    case CPTK_HAS_TRIVIAL_COPY:
      inform (loc, "  %qT is not trivially copy constructible", t1);
      break;
    case CPTK_HAS_TRIVIAL_DESTRUCTOR:
      inform (loc, "  %qT is not trivially destructible", t1);
      break;
    case CPTK_HAS_VIRTUAL_DESTRUCTOR:
      inform (loc, "  %qT does not have a virtual destructor", t1);
      break;
    case CPTK_IS_ABSTRACT:
      inform (loc, "  %qT is not an abstract class", t1);
      break;
    case CPTK_IS_BASE_OF:
      inform (loc, "  %qT is not a base of %qT", t1, t2);
      break;
    case CPTK_IS_CLASS:
      inform (loc, "  %qT is not a class", t1);
      break;
    case CPTK_IS_EMPTY:
      inform (loc, "  %qT is not an empty class", t1);
      break;
    case CPTK_IS_ENUM:
      inform (loc, "  %qT is not an enum", t1);
      break;
    case CPTK_IS_FINAL:
      inform (loc, "  %qT is not a final class", t1);
      break;
    case CPTK_IS_LAYOUT_COMPATIBLE:
      inform (loc, "  %qT is not layout compatible with %qT", t1, t2);
      break;
    case CPTK_IS_LITERAL_TYPE:
      inform (loc, "  %qT is not a literal type", t1);
      break;
    case CPTK_IS_POINTER_INTERCONVERTIBLE_BASE_OF:
      inform (loc, "  %qT is not pointer-interconvertible base of %qT",
	      t1, t2);
      break;
    case CPTK_IS_POD:
      inform (loc, "  %qT is not a POD type", t1);
      break;
    case CPTK_IS_POLYMORPHIC:
      inform (loc, "  %qT is not a polymorphic type", t1);
      break;
    case CPTK_IS_SAME_AS:
      inform (loc, "  %qT is not the same as %qT", t1, t2);
      break;
    case CPTK_IS_STD_LAYOUT:
      inform (loc, "  %qT is not an standard layout type", t1);
      break;
    case CPTK_IS_TRIVIAL:
      inform (loc, "  %qT is not a trivial type", t1);
      break;
    case CPTK_IS_UNION:
      inform (loc, "  %qT is not a union", t1);
      break;
    default:
      gcc_unreachable ();
    }
}

/* Diagnose a substitution failure in the atomic constraint T when applied
   with the instantiated parameter mapping MAP.  */

static void
diagnose_atomic_constraint (tree t, tree map, tree result, sat_info info)
{
  /* If the constraint is already ill-formed, we've previously diagnosed
     the reason. We should still say why the constraints aren't satisfied.  */
  if (t == error_mark_node)
    {
      location_t loc;
      if (info.in_decl)
        loc = DECL_SOURCE_LOCATION (info.in_decl);
      else
        loc = input_location;
      inform (loc, "invalid constraints");
      return;
    }

  location_t loc = get_constraint_error_location (t);
  iloc_sentinel loc_s (loc);

  /* Generate better diagnostics for certain kinds of expressions.  */
  tree expr = ATOMIC_CONSTR_EXPR (t);
  STRIP_ANY_LOCATION_WRAPPER (expr);
  tree args = get_mapped_args (map);
  switch (TREE_CODE (expr))
    {
    case TRAIT_EXPR:
      diagnose_trait_expr (expr, args);
      break;
    case REQUIRES_EXPR:
      gcc_checking_assert (info.diagnose_unsatisfaction_p ());
      /* Clear in_decl before replaying the substitution to avoid emitting
	 seemingly unhelpful "in declaration ..." notes that follow some
	 substitution failure error messages.  */
      info.in_decl = NULL_TREE;
      tsubst_requires_expr (expr, args, info);
      break;
    default:
      if (!same_type_p (TREE_TYPE (result), boolean_type_node))
	error_at (loc, "constraint %qE has type %qT, not %<bool%>",
		  t, TREE_TYPE (result));
      else
	inform (loc, "the expression %qE evaluated to %<false%>", t);
    }
}

GTY(()) tree current_failed_constraint;

diagnosing_failed_constraint::
diagnosing_failed_constraint (tree t, tree args, bool diag)
  : diagnosing_error (diag)
{
  if (diagnosing_error)
    {
      current_failed_constraint
	= tree_cons (args, t, current_failed_constraint);
      ++current_constraint_diagnosis_depth;
    }
}

diagnosing_failed_constraint::
~diagnosing_failed_constraint ()
{
  if (diagnosing_error)
    {
      --current_constraint_diagnosis_depth;
      if (current_failed_constraint)
	current_failed_constraint = TREE_CHAIN (current_failed_constraint);
    }

}

/* Whether we are allowed to replay an error that underlies a constraint failure
   at the current diagnosis depth.  */

bool
diagnosing_failed_constraint::replay_errors_p ()
{
  if (current_constraint_diagnosis_depth >= concepts_diagnostics_max_depth)
    {
      concepts_diagnostics_max_depth_exceeded_p = true;
      return false;
    }
  else
    return true;
}

/* Emit diagnostics detailing the failure ARGS to satisfy the constraints
   of T.  Here, T and ARGS are as in constraints_satisfied_p.  */

void
diagnose_constraints (location_t loc, tree t, tree args)
{
  inform (loc, "constraints not satisfied");

  if (concepts_diagnostics_max_depth == 0)
    return;

  /* Replay satisfaction, but diagnose unsatisfaction.  */
  sat_info noisy (tf_warning_or_error, NULL_TREE, /*diag_unsat=*/true);
  constraint_satisfaction_value (t, args, noisy);

  static bool suggested_p;
  if (concepts_diagnostics_max_depth_exceeded_p
      && current_constraint_diagnosis_depth == 0
      && !suggested_p)
    {
      inform (UNKNOWN_LOCATION,
	      "set %qs to at least %d for more detail",
	      "-fconcepts-diagnostics-depth=",
	      concepts_diagnostics_max_depth + 1);
      suggested_p = true;
    }
}

#include "gt-cp-constraint.h"