aboutsummaryrefslogtreecommitdiff
path: root/gcc/cp/class.c
blob: f41033c007beee2149933c35d2ad646fbf182252 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
/* Functions related to building classes and their related objects.
   Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
   1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
   Free Software Foundation, Inc.
   Contributed by Michael Tiemann (tiemann@cygnus.com)

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */


/* High-level class interface.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "cp-tree.h"
#include "flags.h"
#include "rtl.h"
#include "output.h"
#include "toplev.h"
#include "target.h"
#include "convert.h"
#include "cgraph.h"
#include "tree-dump.h"

/* The number of nested classes being processed.  If we are not in the
   scope of any class, this is zero.  */

int current_class_depth;

/* In order to deal with nested classes, we keep a stack of classes.
   The topmost entry is the innermost class, and is the entry at index
   CURRENT_CLASS_DEPTH  */

typedef struct class_stack_node {
  /* The name of the class.  */
  tree name;

  /* The _TYPE node for the class.  */
  tree type;

  /* The access specifier pending for new declarations in the scope of
     this class.  */
  tree access;

  /* If were defining TYPE, the names used in this class.  */
  splay_tree names_used;

  /* Nonzero if this class is no longer open, because of a call to
     push_to_top_level.  */
  size_t hidden;
}* class_stack_node_t;

typedef struct vtbl_init_data_s
{
  /* The base for which we're building initializers.  */
  tree binfo;
  /* The type of the most-derived type.  */
  tree derived;
  /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
     unless ctor_vtbl_p is true.  */
  tree rtti_binfo;
  /* The negative-index vtable initializers built up so far.  These
     are in order from least negative index to most negative index.  */
  tree inits;
  /* The last (i.e., most negative) entry in INITS.  */
  tree* last_init;
  /* The binfo for the virtual base for which we're building
     vcall offset initializers.  */
  tree vbase;
  /* The functions in vbase for which we have already provided vcall
     offsets.  */
  VEC(tree,gc) *fns;
  /* The vtable index of the next vcall or vbase offset.  */
  tree index;
  /* Nonzero if we are building the initializer for the primary
     vtable.  */
  int primary_vtbl_p;
  /* Nonzero if we are building the initializer for a construction
     vtable.  */
  int ctor_vtbl_p;
  /* True when adding vcall offset entries to the vtable.  False when
     merely computing the indices.  */
  bool generate_vcall_entries;
} vtbl_init_data;

/* The type of a function passed to walk_subobject_offsets.  */
typedef int (*subobject_offset_fn) (tree, tree, splay_tree);

/* The stack itself.  This is a dynamically resized array.  The
   number of elements allocated is CURRENT_CLASS_STACK_SIZE.  */
static int current_class_stack_size;
static class_stack_node_t current_class_stack;

/* The size of the largest empty class seen in this translation unit.  */
static GTY (()) tree sizeof_biggest_empty_class;

/* An array of all local classes present in this translation unit, in
   declaration order.  */
VEC(tree,gc) *local_classes;

static tree get_vfield_name (tree);
static void finish_struct_anon (tree);
static tree get_vtable_name (tree);
static tree get_basefndecls (tree, tree);
static int build_primary_vtable (tree, tree);
static int build_secondary_vtable (tree);
static void finish_vtbls (tree);
static void modify_vtable_entry (tree, tree, tree, tree, tree *);
static void finish_struct_bits (tree);
static int alter_access (tree, tree, tree);
static void handle_using_decl (tree, tree);
static tree dfs_modify_vtables (tree, void *);
static tree modify_all_vtables (tree, tree);
static void determine_primary_bases (tree);
static void finish_struct_methods (tree);
static void maybe_warn_about_overly_private_class (tree);
static int method_name_cmp (const void *, const void *);
static int resort_method_name_cmp (const void *, const void *);
static void add_implicitly_declared_members (tree, int, int);
static tree fixed_type_or_null (tree, int *, int *);
static tree build_simple_base_path (tree expr, tree binfo);
static tree build_vtbl_ref_1 (tree, tree);
static tree build_vtbl_initializer (tree, tree, tree, tree, int *);
static int count_fields (tree);
static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
static void check_bitfield_decl (tree);
static void check_field_decl (tree, tree, int *, int *, int *);
static void check_field_decls (tree, tree *, int *, int *);
static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
static void build_base_fields (record_layout_info, splay_tree, tree *);
static void check_methods (tree);
static void remove_zero_width_bit_fields (tree);
static void check_bases (tree, int *, int *);
static void check_bases_and_members (tree);
static tree create_vtable_ptr (tree, tree *);
static void include_empty_classes (record_layout_info);
static void layout_class_type (tree, tree *);
static void fixup_pending_inline (tree);
static void fixup_inline_methods (tree);
static void propagate_binfo_offsets (tree, tree);
static void layout_virtual_bases (record_layout_info, splay_tree);
static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
static void add_vcall_offset (tree, tree, vtbl_init_data *);
static void layout_vtable_decl (tree, int);
static tree dfs_find_final_overrider_pre (tree, void *);
static tree dfs_find_final_overrider_post (tree, void *);
static tree find_final_overrider (tree, tree, tree);
static int make_new_vtable (tree, tree);
static tree get_primary_binfo (tree);
static int maybe_indent_hierarchy (FILE *, int, int);
static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
static void dump_class_hierarchy (tree);
static void dump_class_hierarchy_1 (FILE *, int, tree);
static void dump_array (FILE *, tree);
static void dump_vtable (tree, tree, tree);
static void dump_vtt (tree, tree);
static void dump_thunk (FILE *, int, tree);
static tree build_vtable (tree, tree, tree);
static void initialize_vtable (tree, tree);
static void layout_nonempty_base_or_field (record_layout_info,
					   tree, tree, splay_tree);
static tree end_of_class (tree, int);
static bool layout_empty_base (tree, tree, splay_tree);
static void accumulate_vtbl_inits (tree, tree, tree, tree, tree);
static tree dfs_accumulate_vtbl_inits (tree, tree, tree, tree,
					       tree);
static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
static void clone_constructors_and_destructors (tree);
static tree build_clone (tree, tree);
static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
static void build_ctor_vtbl_group (tree, tree);
static void build_vtt (tree);
static tree binfo_ctor_vtable (tree);
static tree *build_vtt_inits (tree, tree, tree *, tree *);
static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
static tree dfs_fixup_binfo_vtbls (tree, void *);
static int record_subobject_offset (tree, tree, splay_tree);
static int check_subobject_offset (tree, tree, splay_tree);
static int walk_subobject_offsets (tree, subobject_offset_fn,
				   tree, splay_tree, tree, int);
static void record_subobject_offsets (tree, tree, splay_tree, bool);
static int layout_conflict_p (tree, tree, splay_tree, int);
static int splay_tree_compare_integer_csts (splay_tree_key k1,
					    splay_tree_key k2);
static void warn_about_ambiguous_bases (tree);
static bool type_requires_array_cookie (tree);
static bool contains_empty_class_p (tree);
static bool base_derived_from (tree, tree);
static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
static tree end_of_base (tree);
static tree get_vcall_index (tree, tree);

/* Variables shared between class.c and call.c.  */

#ifdef GATHER_STATISTICS
int n_vtables = 0;
int n_vtable_entries = 0;
int n_vtable_searches = 0;
int n_vtable_elems = 0;
int n_convert_harshness = 0;
int n_compute_conversion_costs = 0;
int n_inner_fields_searched = 0;
#endif

/* Convert to or from a base subobject.  EXPR is an expression of type
   `A' or `A*', an expression of type `B' or `B*' is returned.  To
   convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
   the B base instance within A.  To convert base A to derived B, CODE
   is MINUS_EXPR and BINFO is the binfo for the A instance within B.
   In this latter case, A must not be a morally virtual base of B.
   NONNULL is true if EXPR is known to be non-NULL (this is only
   needed when EXPR is of pointer type).  CV qualifiers are preserved
   from EXPR.  */

tree
build_base_path (enum tree_code code,
		 tree expr,
		 tree binfo,
		 int nonnull)
{
  tree v_binfo = NULL_TREE;
  tree d_binfo = NULL_TREE;
  tree probe;
  tree offset;
  tree target_type;
  tree null_test = NULL;
  tree ptr_target_type;
  int fixed_type_p;
  int want_pointer = TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE;
  bool has_empty = false;
  bool virtual_access;

  if (expr == error_mark_node || binfo == error_mark_node || !binfo)
    return error_mark_node;

  for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
    {
      d_binfo = probe;
      if (is_empty_class (BINFO_TYPE (probe)))
	has_empty = true;
      if (!v_binfo && BINFO_VIRTUAL_P (probe))
	v_binfo = probe;
    }

  probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
  if (want_pointer)
    probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));

  gcc_assert ((code == MINUS_EXPR
	       && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
	      || (code == PLUS_EXPR
		  && SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe)));

  if (binfo == d_binfo)
    /* Nothing to do.  */
    return expr;

  if (code == MINUS_EXPR && v_binfo)
    {
      error ("cannot convert from base %qT to derived type %qT via virtual base %qT",
	     BINFO_TYPE (binfo), BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
      return error_mark_node;
    }

  if (!want_pointer)
    /* This must happen before the call to save_expr.  */
    expr = build_unary_op (ADDR_EXPR, expr, 0);

  offset = BINFO_OFFSET (binfo);
  fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
  target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);

  /* Do we need to look in the vtable for the real offset?  */
  virtual_access = (v_binfo && fixed_type_p <= 0);

  /* Do we need to check for a null pointer?  */
  if (want_pointer && !nonnull)
    {
      /* If we know the conversion will not actually change the value
	 of EXPR, then we can avoid testing the expression for NULL.
	 We have to avoid generating a COMPONENT_REF for a base class
	 field, because other parts of the compiler know that such
	 expressions are always non-NULL.  */
      if (!virtual_access && integer_zerop (offset))
	{
	  tree class_type;
	  /* TARGET_TYPE has been extracted from BINFO, and, is
	     therefore always cv-unqualified.  Extract the
	     cv-qualifiers from EXPR so that the expression returned
	     matches the input.  */
	  class_type = TREE_TYPE (TREE_TYPE (expr));
	  target_type
	    = cp_build_qualified_type (target_type,
				       cp_type_quals (class_type));
	  return build_nop (build_pointer_type (target_type), expr);
	}
      null_test = error_mark_node;
    }

  /* Protect against multiple evaluation if necessary.  */
  if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
    expr = save_expr (expr);

  /* Now that we've saved expr, build the real null test.  */
  if (null_test)
    {
      tree zero = cp_convert (TREE_TYPE (expr), integer_zero_node);
      null_test = fold_build2 (NE_EXPR, boolean_type_node,
			       expr, zero);
    }

  /* If this is a simple base reference, express it as a COMPONENT_REF.  */
  if (code == PLUS_EXPR && !virtual_access
      /* We don't build base fields for empty bases, and they aren't very
	 interesting to the optimizers anyway.  */
      && !has_empty)
    {
      expr = build_indirect_ref (expr, NULL);
      expr = build_simple_base_path (expr, binfo);
      if (want_pointer)
	expr = build_address (expr);
      target_type = TREE_TYPE (expr);
      goto out;
    }

  if (virtual_access)
    {
      /* Going via virtual base V_BINFO.  We need the static offset
	 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
	 V_BINFO.  That offset is an entry in D_BINFO's vtable.  */
      tree v_offset;

      if (fixed_type_p < 0 && in_base_initializer)
	{
	  /* In a base member initializer, we cannot rely on the
	     vtable being set up.  We have to indirect via the
	     vtt_parm.  */
	  tree t;

	  t = TREE_TYPE (TYPE_VFIELD (current_class_type));
	  t = build_pointer_type (t);
	  v_offset = convert (t, current_vtt_parm);
	  v_offset = build_indirect_ref (v_offset, NULL);
	}
      else
	v_offset = build_vfield_ref (build_indirect_ref (expr, NULL),
				     TREE_TYPE (TREE_TYPE (expr)));

      v_offset = build2 (POINTER_PLUS_EXPR, TREE_TYPE (v_offset),
			 v_offset, fold_convert (sizetype, BINFO_VPTR_FIELD (v_binfo)));
      v_offset = build1 (NOP_EXPR,
			 build_pointer_type (ptrdiff_type_node),
			 v_offset);
      v_offset = build_indirect_ref (v_offset, NULL);
      TREE_CONSTANT (v_offset) = 1;
      TREE_INVARIANT (v_offset) = 1;

      offset = convert_to_integer (ptrdiff_type_node,
				   size_diffop (offset,
						BINFO_OFFSET (v_binfo)));

      if (!integer_zerop (offset))
	v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);

      if (fixed_type_p < 0)
	/* Negative fixed_type_p means this is a constructor or destructor;
	   virtual base layout is fixed in in-charge [cd]tors, but not in
	   base [cd]tors.  */
	offset = build3 (COND_EXPR, ptrdiff_type_node,
			 build2 (EQ_EXPR, boolean_type_node,
				 current_in_charge_parm, integer_zero_node),
			 v_offset,
			 convert_to_integer (ptrdiff_type_node,
					     BINFO_OFFSET (binfo)));
      else
	offset = v_offset;
    }

  target_type = cp_build_qualified_type
    (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
  ptr_target_type = build_pointer_type (target_type);
  if (want_pointer)
    target_type = ptr_target_type;

  expr = build1 (NOP_EXPR, ptr_target_type, expr);

  if (!integer_zerop (offset))
    {
      offset = fold_convert (sizetype, offset);
      if (code == MINUS_EXPR)
	offset = fold_build1 (NEGATE_EXPR, sizetype, offset);
      expr = build2 (POINTER_PLUS_EXPR, ptr_target_type, expr, offset);
    }
  else
    null_test = NULL;

  if (!want_pointer)
    expr = build_indirect_ref (expr, NULL);

 out:
  if (null_test)
    expr = fold_build3 (COND_EXPR, target_type, null_test, expr,
			fold_build1 (NOP_EXPR, target_type,
				     integer_zero_node));

  return expr;
}

/* Subroutine of build_base_path; EXPR and BINFO are as in that function.
   Perform a derived-to-base conversion by recursively building up a
   sequence of COMPONENT_REFs to the appropriate base fields.  */

static tree
build_simple_base_path (tree expr, tree binfo)
{
  tree type = BINFO_TYPE (binfo);
  tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
  tree field;

  if (d_binfo == NULL_TREE)
    {
      tree temp;

      gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);

      /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
	 into `(*(a ?  &b : &c)).x', and so on.  A COND_EXPR is only
	 an lvalue in the front end; only _DECLs and _REFs are lvalues
	 in the back end.  */
      temp = unary_complex_lvalue (ADDR_EXPR, expr);
      if (temp)
	expr = build_indirect_ref (temp, NULL);

      return expr;
    }

  /* Recurse.  */
  expr = build_simple_base_path (expr, d_binfo);

  for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
       field; field = TREE_CHAIN (field))
    /* Is this the base field created by build_base_field?  */
    if (TREE_CODE (field) == FIELD_DECL
	&& DECL_FIELD_IS_BASE (field)
	&& TREE_TYPE (field) == type)
      {
	/* We don't use build_class_member_access_expr here, as that
	   has unnecessary checks, and more importantly results in
	   recursive calls to dfs_walk_once.  */
	int type_quals = cp_type_quals (TREE_TYPE (expr));

	expr = build3 (COMPONENT_REF,
		       cp_build_qualified_type (type, type_quals),
		       expr, field, NULL_TREE);
	expr = fold_if_not_in_template (expr);

	/* Mark the expression const or volatile, as appropriate.
	   Even though we've dealt with the type above, we still have
	   to mark the expression itself.  */
	if (type_quals & TYPE_QUAL_CONST)
	  TREE_READONLY (expr) = 1;
	if (type_quals & TYPE_QUAL_VOLATILE)
	  TREE_THIS_VOLATILE (expr) = 1;

	return expr;
      }

  /* Didn't find the base field?!?  */
  gcc_unreachable ();
}

/* Convert OBJECT to the base TYPE.  OBJECT is an expression whose
   type is a class type or a pointer to a class type.  In the former
   case, TYPE is also a class type; in the latter it is another
   pointer type.  If CHECK_ACCESS is true, an error message is emitted
   if TYPE is inaccessible.  If OBJECT has pointer type, the value is
   assumed to be non-NULL.  */

tree
convert_to_base (tree object, tree type, bool check_access, bool nonnull)
{
  tree binfo;
  tree object_type;

  if (TYPE_PTR_P (TREE_TYPE (object)))
    {
      object_type = TREE_TYPE (TREE_TYPE (object));
      type = TREE_TYPE (type);
    }
  else
    object_type = TREE_TYPE (object);

  binfo = lookup_base (object_type, type,
		       check_access ? ba_check : ba_unique,
		       NULL);
  if (!binfo || binfo == error_mark_node)
    return error_mark_node;

  return build_base_path (PLUS_EXPR, object, binfo, nonnull);
}

/* EXPR is an expression with unqualified class type.  BASE is a base
   binfo of that class type.  Returns EXPR, converted to the BASE
   type.  This function assumes that EXPR is the most derived class;
   therefore virtual bases can be found at their static offsets.  */

tree
convert_to_base_statically (tree expr, tree base)
{
  tree expr_type;

  expr_type = TREE_TYPE (expr);
  if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
    {
      tree pointer_type;

      pointer_type = build_pointer_type (expr_type);

      /* We use fold_build2 and fold_convert below to simplify the trees
	 provided to the optimizers.  It is not safe to call these functions
	 when processing a template because they do not handle C++-specific
	 trees.  */
      gcc_assert (!processing_template_decl);
      expr = build_unary_op (ADDR_EXPR, expr, /*noconvert=*/1);
      if (!integer_zerop (BINFO_OFFSET (base)))
        expr = fold_build2 (POINTER_PLUS_EXPR, pointer_type, expr,
			    fold_convert (sizetype, BINFO_OFFSET (base)));
      expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
      expr = build_fold_indirect_ref (expr);
    }

  return expr;
}


tree
build_vfield_ref (tree datum, tree type)
{
  tree vfield, vcontext;

  if (datum == error_mark_node)
    return error_mark_node;

  /* First, convert to the requested type.  */
  if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
    datum = convert_to_base (datum, type, /*check_access=*/false,
			     /*nonnull=*/true);

  /* Second, the requested type may not be the owner of its own vptr.
     If not, convert to the base class that owns it.  We cannot use
     convert_to_base here, because VCONTEXT may appear more than once
     in the inheritance hierarchy of TYPE, and thus direct conversion
     between the types may be ambiguous.  Following the path back up
     one step at a time via primary bases avoids the problem.  */
  vfield = TYPE_VFIELD (type);
  vcontext = DECL_CONTEXT (vfield);
  while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
    {
      datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
      type = TREE_TYPE (datum);
    }

  return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
}

/* Given an object INSTANCE, return an expression which yields the
   vtable element corresponding to INDEX.  There are many special
   cases for INSTANCE which we take care of here, mainly to avoid
   creating extra tree nodes when we don't have to.  */

static tree
build_vtbl_ref_1 (tree instance, tree idx)
{
  tree aref;
  tree vtbl = NULL_TREE;

  /* Try to figure out what a reference refers to, and
     access its virtual function table directly.  */

  int cdtorp = 0;
  tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);

  tree basetype = non_reference (TREE_TYPE (instance));

  if (fixed_type && !cdtorp)
    {
      tree binfo = lookup_base (fixed_type, basetype,
				ba_unique | ba_quiet, NULL);
      if (binfo)
	vtbl = unshare_expr (BINFO_VTABLE (binfo));
    }

  if (!vtbl)
    vtbl = build_vfield_ref (instance, basetype);

  assemble_external (vtbl);

  aref = build_array_ref (vtbl, idx);
  TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
  TREE_INVARIANT (aref) = TREE_CONSTANT (aref);

  return aref;
}

tree
build_vtbl_ref (tree instance, tree idx)
{
  tree aref = build_vtbl_ref_1 (instance, idx);

  return aref;
}

/* Given a stable object pointer INSTANCE_PTR, return an expression which
   yields a function pointer corresponding to vtable element INDEX.  */

tree
build_vfn_ref (tree instance_ptr, tree idx)
{
  tree aref;

  aref = build_vtbl_ref_1 (build_indirect_ref (instance_ptr, 0), idx);

  /* When using function descriptors, the address of the
     vtable entry is treated as a function pointer.  */
  if (TARGET_VTABLE_USES_DESCRIPTORS)
    aref = build1 (NOP_EXPR, TREE_TYPE (aref),
		   build_unary_op (ADDR_EXPR, aref, /*noconvert=*/1));

  /* Remember this as a method reference, for later devirtualization.  */
  aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);

  return aref;
}

/* Return the name of the virtual function table (as an IDENTIFIER_NODE)
   for the given TYPE.  */

static tree
get_vtable_name (tree type)
{
  return mangle_vtbl_for_type (type);
}

/* DECL is an entity associated with TYPE, like a virtual table or an
   implicitly generated constructor.  Determine whether or not DECL
   should have external or internal linkage at the object file
   level.  This routine does not deal with COMDAT linkage and other
   similar complexities; it simply sets TREE_PUBLIC if it possible for
   entities in other translation units to contain copies of DECL, in
   the abstract.  */

void
set_linkage_according_to_type (tree type, tree decl)
{
  /* If TYPE involves a local class in a function with internal
     linkage, then DECL should have internal linkage too.  Other local
     classes have no linkage -- but if their containing functions
     have external linkage, it makes sense for DECL to have external
     linkage too.  That will allow template definitions to be merged,
     for example.  */
  if (no_linkage_check (type, /*relaxed_p=*/true))
    {
      TREE_PUBLIC (decl) = 0;
      DECL_INTERFACE_KNOWN (decl) = 1;
    }
  else
    TREE_PUBLIC (decl) = 1;
}

/* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
   (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
   Use NAME for the name of the vtable, and VTABLE_TYPE for its type.  */

static tree
build_vtable (tree class_type, tree name, tree vtable_type)
{
  tree decl;

  decl = build_lang_decl (VAR_DECL, name, vtable_type);
  /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
     now to avoid confusion in mangle_decl.  */
  SET_DECL_ASSEMBLER_NAME (decl, name);
  DECL_CONTEXT (decl) = class_type;
  DECL_ARTIFICIAL (decl) = 1;
  TREE_STATIC (decl) = 1;
  TREE_READONLY (decl) = 1;
  DECL_VIRTUAL_P (decl) = 1;
  DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
  DECL_VTABLE_OR_VTT_P (decl) = 1;
  /* At one time the vtable info was grabbed 2 words at a time.  This
     fails on sparc unless you have 8-byte alignment.  (tiemann) */
  DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
			   DECL_ALIGN (decl));
  set_linkage_according_to_type (class_type, decl);
  /* The vtable has not been defined -- yet.  */
  DECL_EXTERNAL (decl) = 1;
  DECL_NOT_REALLY_EXTERN (decl) = 1;

  /* Mark the VAR_DECL node representing the vtable itself as a
     "gratuitous" one, thereby forcing dwarfout.c to ignore it.  It
     is rather important that such things be ignored because any
     effort to actually generate DWARF for them will run into
     trouble when/if we encounter code like:

     #pragma interface
     struct S { virtual void member (); };

     because the artificial declaration of the vtable itself (as
     manufactured by the g++ front end) will say that the vtable is
     a static member of `S' but only *after* the debug output for
     the definition of `S' has already been output.  This causes
     grief because the DWARF entry for the definition of the vtable
     will try to refer back to an earlier *declaration* of the
     vtable as a static member of `S' and there won't be one.  We
     might be able to arrange to have the "vtable static member"
     attached to the member list for `S' before the debug info for
     `S' get written (which would solve the problem) but that would
     require more intrusive changes to the g++ front end.  */
  DECL_IGNORED_P (decl) = 1;

  return decl;
}

/* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
   or even complete.  If this does not exist, create it.  If COMPLETE is
   nonzero, then complete the definition of it -- that will render it
   impossible to actually build the vtable, but is useful to get at those
   which are known to exist in the runtime.  */

tree
get_vtable_decl (tree type, int complete)
{
  tree decl;

  if (CLASSTYPE_VTABLES (type))
    return CLASSTYPE_VTABLES (type);

  decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
  CLASSTYPE_VTABLES (type) = decl;

  if (complete)
    {
      DECL_EXTERNAL (decl) = 1;
      finish_decl (decl, NULL_TREE, NULL_TREE);
    }

  return decl;
}

/* Build the primary virtual function table for TYPE.  If BINFO is
   non-NULL, build the vtable starting with the initial approximation
   that it is the same as the one which is the head of the association
   list.  Returns a nonzero value if a new vtable is actually
   created.  */

static int
build_primary_vtable (tree binfo, tree type)
{
  tree decl;
  tree virtuals;

  decl = get_vtable_decl (type, /*complete=*/0);

  if (binfo)
    {
      if (BINFO_NEW_VTABLE_MARKED (binfo))
	/* We have already created a vtable for this base, so there's
	   no need to do it again.  */
	return 0;

      virtuals = copy_list (BINFO_VIRTUALS (binfo));
      TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
      DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
      DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
    }
  else
    {
      gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
      virtuals = NULL_TREE;
    }

#ifdef GATHER_STATISTICS
  n_vtables += 1;
  n_vtable_elems += list_length (virtuals);
#endif

  /* Initialize the association list for this type, based
     on our first approximation.  */
  BINFO_VTABLE (TYPE_BINFO (type)) = decl;
  BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
  SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
  return 1;
}

/* Give BINFO a new virtual function table which is initialized
   with a skeleton-copy of its original initialization.  The only
   entry that changes is the `delta' entry, so we can really
   share a lot of structure.

   FOR_TYPE is the most derived type which caused this table to
   be needed.

   Returns nonzero if we haven't met BINFO before.

   The order in which vtables are built (by calling this function) for
   an object must remain the same, otherwise a binary incompatibility
   can result.  */

static int
build_secondary_vtable (tree binfo)
{
  if (BINFO_NEW_VTABLE_MARKED (binfo))
    /* We already created a vtable for this base.  There's no need to
       do it again.  */
    return 0;

  /* Remember that we've created a vtable for this BINFO, so that we
     don't try to do so again.  */
  SET_BINFO_NEW_VTABLE_MARKED (binfo);

  /* Make fresh virtual list, so we can smash it later.  */
  BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));

  /* Secondary vtables are laid out as part of the same structure as
     the primary vtable.  */
  BINFO_VTABLE (binfo) = NULL_TREE;
  return 1;
}

/* Create a new vtable for BINFO which is the hierarchy dominated by
   T. Return nonzero if we actually created a new vtable.  */

static int
make_new_vtable (tree t, tree binfo)
{
  if (binfo == TYPE_BINFO (t))
    /* In this case, it is *type*'s vtable we are modifying.  We start
       with the approximation that its vtable is that of the
       immediate base class.  */
    return build_primary_vtable (binfo, t);
  else
    /* This is our very own copy of `basetype' to play with.  Later,
       we will fill in all the virtual functions that override the
       virtual functions in these base classes which are not defined
       by the current type.  */
    return build_secondary_vtable (binfo);
}

/* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
   (which is in the hierarchy dominated by T) list FNDECL as its
   BV_FN.  DELTA is the required constant adjustment from the `this'
   pointer where the vtable entry appears to the `this' required when
   the function is actually called.  */

static void
modify_vtable_entry (tree t,
		     tree binfo,
		     tree fndecl,
		     tree delta,
		     tree *virtuals)
{
  tree v;

  v = *virtuals;

  if (fndecl != BV_FN (v)
      || !tree_int_cst_equal (delta, BV_DELTA (v)))
    {
      /* We need a new vtable for BINFO.  */
      if (make_new_vtable (t, binfo))
	{
	  /* If we really did make a new vtable, we also made a copy
	     of the BINFO_VIRTUALS list.  Now, we have to find the
	     corresponding entry in that list.  */
	  *virtuals = BINFO_VIRTUALS (binfo);
	  while (BV_FN (*virtuals) != BV_FN (v))
	    *virtuals = TREE_CHAIN (*virtuals);
	  v = *virtuals;
	}

      BV_DELTA (v) = delta;
      BV_VCALL_INDEX (v) = NULL_TREE;
      BV_FN (v) = fndecl;
    }
}


/* Add method METHOD to class TYPE.  If USING_DECL is non-null, it is
   the USING_DECL naming METHOD.  Returns true if the method could be
   added to the method vec.  */

bool
add_method (tree type, tree method, tree using_decl)
{
  unsigned slot;
  tree overload;
  bool template_conv_p = false;
  bool conv_p;
  VEC(tree,gc) *method_vec;
  bool complete_p;
  bool insert_p = false;
  tree current_fns;
  tree fns;

  if (method == error_mark_node)
    return false;

  complete_p = COMPLETE_TYPE_P (type);
  conv_p = DECL_CONV_FN_P (method);
  if (conv_p)
    template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
		       && DECL_TEMPLATE_CONV_FN_P (method));

  method_vec = CLASSTYPE_METHOD_VEC (type);
  if (!method_vec)
    {
      /* Make a new method vector.  We start with 8 entries.  We must
	 allocate at least two (for constructors and destructors), and
	 we're going to end up with an assignment operator at some
	 point as well.  */
      method_vec = VEC_alloc (tree, gc, 8);
      /* Create slots for constructors and destructors.  */
      VEC_quick_push (tree, method_vec, NULL_TREE);
      VEC_quick_push (tree, method_vec, NULL_TREE);
      CLASSTYPE_METHOD_VEC (type) = method_vec;
    }

  /* Maintain TYPE_HAS_CONSTRUCTOR, etc.  */
  grok_special_member_properties (method);

  /* Constructors and destructors go in special slots.  */
  if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
    slot = CLASSTYPE_CONSTRUCTOR_SLOT;
  else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
    {
      slot = CLASSTYPE_DESTRUCTOR_SLOT;

      if (TYPE_FOR_JAVA (type))
	{
	  if (!DECL_ARTIFICIAL (method))
	    error ("Java class %qT cannot have a destructor", type);
	  else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
	    error ("Java class %qT cannot have an implicit non-trivial "
		   "destructor",
		   type);
	}
    }
  else
    {
      tree m;

      insert_p = true;
      /* See if we already have an entry with this name.  */
      for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
	   VEC_iterate (tree, method_vec, slot, m);
	   ++slot)
	{
	  m = OVL_CURRENT (m);
	  if (template_conv_p)
	    {
	      if (TREE_CODE (m) == TEMPLATE_DECL
		  && DECL_TEMPLATE_CONV_FN_P (m))
		insert_p = false;
	      break;
	    }
	  if (conv_p && !DECL_CONV_FN_P (m))
	    break;
	  if (DECL_NAME (m) == DECL_NAME (method))
	    {
	      insert_p = false;
	      break;
	    }
	  if (complete_p
	      && !DECL_CONV_FN_P (m)
	      && DECL_NAME (m) > DECL_NAME (method))
	    break;
	}
    }
  current_fns = insert_p ? NULL_TREE : VEC_index (tree, method_vec, slot);

  /* Check to see if we've already got this method.  */
  for (fns = current_fns; fns; fns = OVL_NEXT (fns))
    {
      tree fn = OVL_CURRENT (fns);
      tree fn_type;
      tree method_type;
      tree parms1;
      tree parms2;

      if (TREE_CODE (fn) != TREE_CODE (method))
	continue;

      /* [over.load] Member function declarations with the
	 same name and the same parameter types cannot be
	 overloaded if any of them is a static member
	 function declaration.

	 [namespace.udecl] When a using-declaration brings names
	 from a base class into a derived class scope, member
	 functions in the derived class override and/or hide member
	 functions with the same name and parameter types in a base
	 class (rather than conflicting).  */
      fn_type = TREE_TYPE (fn);
      method_type = TREE_TYPE (method);
      parms1 = TYPE_ARG_TYPES (fn_type);
      parms2 = TYPE_ARG_TYPES (method_type);

      /* Compare the quals on the 'this' parm.  Don't compare
	 the whole types, as used functions are treated as
	 coming from the using class in overload resolution.  */
      if (! DECL_STATIC_FUNCTION_P (fn)
	  && ! DECL_STATIC_FUNCTION_P (method)
	  && (TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms1)))
	      != TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms2)))))
	continue;

      /* For templates, the return type and template parameters
	 must be identical.  */
      if (TREE_CODE (fn) == TEMPLATE_DECL
	  && (!same_type_p (TREE_TYPE (fn_type),
			    TREE_TYPE (method_type))
	      || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
				       DECL_TEMPLATE_PARMS (method))))
	continue;

      if (! DECL_STATIC_FUNCTION_P (fn))
	parms1 = TREE_CHAIN (parms1);
      if (! DECL_STATIC_FUNCTION_P (method))
	parms2 = TREE_CHAIN (parms2);

      if (compparms (parms1, parms2)
	  && (!DECL_CONV_FN_P (fn)
	      || same_type_p (TREE_TYPE (fn_type),
			      TREE_TYPE (method_type))))
	{
	  if (using_decl)
	    {
	      if (DECL_CONTEXT (fn) == type)
		/* Defer to the local function.  */
		return false;
	      if (DECL_CONTEXT (fn) == DECL_CONTEXT (method))
		error ("repeated using declaration %q+D", using_decl);
	      else
		error ("using declaration %q+D conflicts with a previous using declaration",
		       using_decl);
	    }
	  else
	    {
	      error ("%q+#D cannot be overloaded", method);
	      error ("with %q+#D", fn);
	    }

	  /* We don't call duplicate_decls here to merge the
	     declarations because that will confuse things if the
	     methods have inline definitions.  In particular, we
	     will crash while processing the definitions.  */
	  return false;
	}
    }

  /* A class should never have more than one destructor.  */
  if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
    return false;

  /* Add the new binding.  */
  overload = build_overload (method, current_fns);

  if (conv_p)
    TYPE_HAS_CONVERSION (type) = 1;
  else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
    push_class_level_binding (DECL_NAME (method), overload);

  if (insert_p)
    {
      bool reallocated;

      /* We only expect to add few methods in the COMPLETE_P case, so
	 just make room for one more method in that case.  */
      if (complete_p)
	reallocated = VEC_reserve_exact (tree, gc, method_vec, 1);
      else
	reallocated = VEC_reserve (tree, gc, method_vec, 1);
      if (reallocated)
	CLASSTYPE_METHOD_VEC (type) = method_vec;
      if (slot == VEC_length (tree, method_vec))
	VEC_quick_push (tree, method_vec, overload);
      else
	VEC_quick_insert (tree, method_vec, slot, overload);
    }
  else
    /* Replace the current slot.  */
    VEC_replace (tree, method_vec, slot, overload);
  return true;
}

/* Subroutines of finish_struct.  */

/* Change the access of FDECL to ACCESS in T.  Return 1 if change was
   legit, otherwise return 0.  */

static int
alter_access (tree t, tree fdecl, tree access)
{
  tree elem;

  if (!DECL_LANG_SPECIFIC (fdecl))
    retrofit_lang_decl (fdecl);

  gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));

  elem = purpose_member (t, DECL_ACCESS (fdecl));
  if (elem)
    {
      if (TREE_VALUE (elem) != access)
	{
	  if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
	    error ("conflicting access specifications for method"
		   " %q+D, ignored", TREE_TYPE (fdecl));
	  else
	    error ("conflicting access specifications for field %qE, ignored",
		   DECL_NAME (fdecl));
	}
      else
	{
	  /* They're changing the access to the same thing they changed
	     it to before.  That's OK.  */
	  ;
	}
    }
  else
    {
      perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl);
      DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
      return 1;
    }
  return 0;
}

/* Process the USING_DECL, which is a member of T.  */

static void
handle_using_decl (tree using_decl, tree t)
{
  tree decl = USING_DECL_DECLS (using_decl);
  tree name = DECL_NAME (using_decl);
  tree access
    = TREE_PRIVATE (using_decl) ? access_private_node
    : TREE_PROTECTED (using_decl) ? access_protected_node
    : access_public_node;
  tree flist = NULL_TREE;
  tree old_value;

  gcc_assert (!processing_template_decl && decl);

  old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false);
  if (old_value)
    {
      if (is_overloaded_fn (old_value))
	old_value = OVL_CURRENT (old_value);

      if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
	/* OK */;
      else
	old_value = NULL_TREE;
    }

  cp_emit_debug_info_for_using (decl, USING_DECL_SCOPE (using_decl));

  if (is_overloaded_fn (decl))
    flist = decl;

  if (! old_value)
    ;
  else if (is_overloaded_fn (old_value))
    {
      if (flist)
	/* It's OK to use functions from a base when there are functions with
	   the same name already present in the current class.  */;
      else
	{
	  error ("%q+D invalid in %q#T", using_decl, t);
	  error ("  because of local method %q+#D with same name",
		 OVL_CURRENT (old_value));
	  return;
	}
    }
  else if (!DECL_ARTIFICIAL (old_value))
    {
      error ("%q+D invalid in %q#T", using_decl, t);
      error ("  because of local member %q+#D with same name", old_value);
      return;
    }

  /* Make type T see field decl FDECL with access ACCESS.  */
  if (flist)
    for (; flist; flist = OVL_NEXT (flist))
      {
	add_method (t, OVL_CURRENT (flist), using_decl);
	alter_access (t, OVL_CURRENT (flist), access);
      }
  else
    alter_access (t, decl, access);
}

/* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
   and NO_CONST_ASN_REF_P.  Also set flag bits in T based on
   properties of the bases.  */

static void
check_bases (tree t,
	     int* cant_have_const_ctor_p,
	     int* no_const_asn_ref_p)
{
  int i;
  int seen_non_virtual_nearly_empty_base_p;
  tree base_binfo;
  tree binfo;

  seen_non_virtual_nearly_empty_base_p = 0;

  for (binfo = TYPE_BINFO (t), i = 0;
       BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
    {
      tree basetype = TREE_TYPE (base_binfo);

      gcc_assert (COMPLETE_TYPE_P (basetype));

      /* Effective C++ rule 14.  We only need to check TYPE_POLYMORPHIC_P
	 here because the case of virtual functions but non-virtual
	 dtor is handled in finish_struct_1.  */
      if (!TYPE_POLYMORPHIC_P (basetype))
	warning (OPT_Weffc__,
		 "base class %q#T has a non-virtual destructor", basetype);

      /* If the base class doesn't have copy constructors or
	 assignment operators that take const references, then the
	 derived class cannot have such a member automatically
	 generated.  */
      if (! TYPE_HAS_CONST_INIT_REF (basetype))
	*cant_have_const_ctor_p = 1;
      if (TYPE_HAS_ASSIGN_REF (basetype)
	  && !TYPE_HAS_CONST_ASSIGN_REF (basetype))
	*no_const_asn_ref_p = 1;

      if (BINFO_VIRTUAL_P (base_binfo))
	/* A virtual base does not effect nearly emptiness.  */
	;
      else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
	{
	  if (seen_non_virtual_nearly_empty_base_p)
	    /* And if there is more than one nearly empty base, then the
	       derived class is not nearly empty either.  */
	    CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
	  else
	    /* Remember we've seen one.  */
	    seen_non_virtual_nearly_empty_base_p = 1;
	}
      else if (!is_empty_class (basetype))
	/* If the base class is not empty or nearly empty, then this
	   class cannot be nearly empty.  */
	CLASSTYPE_NEARLY_EMPTY_P (t) = 0;

      /* A lot of properties from the bases also apply to the derived
	 class.  */
      TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
      TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
	|= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
      TYPE_HAS_COMPLEX_ASSIGN_REF (t)
	|= TYPE_HAS_COMPLEX_ASSIGN_REF (basetype);
      TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (basetype);
      TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
      CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
	|= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
      TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_HAS_COMPLEX_DFLT (basetype);      
    }
}

/* Determine all the primary bases within T.  Sets BINFO_PRIMARY_BASE_P for
   those that are primaries.  Sets BINFO_LOST_PRIMARY_P for those
   that have had a nearly-empty virtual primary base stolen by some
   other base in the hierarchy.  Determines CLASSTYPE_PRIMARY_BASE for
   T.  */

static void
determine_primary_bases (tree t)
{
  unsigned i;
  tree primary = NULL_TREE;
  tree type_binfo = TYPE_BINFO (t);
  tree base_binfo;

  /* Determine the primary bases of our bases.  */
  for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
       base_binfo = TREE_CHAIN (base_binfo))
    {
      tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));

      /* See if we're the non-virtual primary of our inheritance
	 chain.  */
      if (!BINFO_VIRTUAL_P (base_binfo))
	{
	  tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
	  tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));

	  if (parent_primary
	      && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
				    BINFO_TYPE (parent_primary)))
	    /* We are the primary binfo.  */
	    BINFO_PRIMARY_P (base_binfo) = 1;
	}
      /* Determine if we have a virtual primary base, and mark it so.
       */
      if (primary && BINFO_VIRTUAL_P (primary))
	{
	  tree this_primary = copied_binfo (primary, base_binfo);

	  if (BINFO_PRIMARY_P (this_primary))
	    /* Someone already claimed this base.  */
	    BINFO_LOST_PRIMARY_P (base_binfo) = 1;
	  else
	    {
	      tree delta;

	      BINFO_PRIMARY_P (this_primary) = 1;
	      BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;

	      /* A virtual binfo might have been copied from within
		 another hierarchy. As we're about to use it as a
		 primary base, make sure the offsets match.  */
	      delta = size_diffop (convert (ssizetype,
					    BINFO_OFFSET (base_binfo)),
				   convert (ssizetype,
					    BINFO_OFFSET (this_primary)));

	      propagate_binfo_offsets (this_primary, delta);
	    }
	}
    }

  /* First look for a dynamic direct non-virtual base.  */
  for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
    {
      tree basetype = BINFO_TYPE (base_binfo);

      if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
	{
	  primary = base_binfo;
	  goto found;
	}
    }

  /* A "nearly-empty" virtual base class can be the primary base
     class, if no non-virtual polymorphic base can be found.  Look for
     a nearly-empty virtual dynamic base that is not already a primary
     base of something in the hierarchy.  If there is no such base,
     just pick the first nearly-empty virtual base.  */

  for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
       base_binfo = TREE_CHAIN (base_binfo))
    if (BINFO_VIRTUAL_P (base_binfo)
	&& CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
      {
	if (!BINFO_PRIMARY_P (base_binfo))
	  {
	    /* Found one that is not primary.  */
	    primary = base_binfo;
	    goto found;
	  }
	else if (!primary)
	  /* Remember the first candidate.  */
	  primary = base_binfo;
      }

 found:
  /* If we've got a primary base, use it.  */
  if (primary)
    {
      tree basetype = BINFO_TYPE (primary);

      CLASSTYPE_PRIMARY_BINFO (t) = primary;
      if (BINFO_PRIMARY_P (primary))
	/* We are stealing a primary base.  */
	BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
      BINFO_PRIMARY_P (primary) = 1;
      if (BINFO_VIRTUAL_P (primary))
	{
	  tree delta;

	  BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
	  /* A virtual binfo might have been copied from within
	     another hierarchy. As we're about to use it as a primary
	     base, make sure the offsets match.  */
	  delta = size_diffop (ssize_int (0),
			       convert (ssizetype, BINFO_OFFSET (primary)));

	  propagate_binfo_offsets (primary, delta);
	}

      primary = TYPE_BINFO (basetype);

      TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
      BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
      BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
    }
}

/* Set memoizing fields and bits of T (and its variants) for later
   use.  */

static void
finish_struct_bits (tree t)
{
  tree variants;

  /* Fix up variants (if any).  */
  for (variants = TYPE_NEXT_VARIANT (t);
       variants;
       variants = TYPE_NEXT_VARIANT (variants))
    {
      /* These fields are in the _TYPE part of the node, not in
	 the TYPE_LANG_SPECIFIC component, so they are not shared.  */
      TYPE_HAS_CONSTRUCTOR (variants) = TYPE_HAS_CONSTRUCTOR (t);
      TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
      TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
	= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);

      TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);

      TYPE_BINFO (variants) = TYPE_BINFO (t);

      /* Copy whatever these are holding today.  */
      TYPE_VFIELD (variants) = TYPE_VFIELD (t);
      TYPE_METHODS (variants) = TYPE_METHODS (t);
      TYPE_FIELDS (variants) = TYPE_FIELDS (t);
    }

  if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
    /* For a class w/o baseclasses, 'finish_struct' has set
       CLASSTYPE_PURE_VIRTUALS correctly (by definition).
       Similarly for a class whose base classes do not have vtables.
       When neither of these is true, we might have removed abstract
       virtuals (by providing a definition), added some (by declaring
       new ones), or redeclared ones from a base class.  We need to
       recalculate what's really an abstract virtual at this point (by
       looking in the vtables).  */
    get_pure_virtuals (t);

  /* If this type has a copy constructor or a destructor, force its
     mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
     nonzero.  This will cause it to be passed by invisible reference
     and prevent it from being returned in a register.  */
  if (! TYPE_HAS_TRIVIAL_INIT_REF (t) || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
    {
      tree variants;
      DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
      for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
	{
	  TYPE_MODE (variants) = BLKmode;
	  TREE_ADDRESSABLE (variants) = 1;
	}
    }
}

/* Issue warnings about T having private constructors, but no friends,
   and so forth.

   HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
   static members.  HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
   non-private static member functions.  */

static void
maybe_warn_about_overly_private_class (tree t)
{
  int has_member_fn = 0;
  int has_nonprivate_method = 0;
  tree fn;

  if (!warn_ctor_dtor_privacy
      /* If the class has friends, those entities might create and
	 access instances, so we should not warn.  */
      || (CLASSTYPE_FRIEND_CLASSES (t)
	  || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
      /* We will have warned when the template was declared; there's
	 no need to warn on every instantiation.  */
      || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
    /* There's no reason to even consider warning about this
       class.  */
    return;

  /* We only issue one warning, if more than one applies, because
     otherwise, on code like:

     class A {
       // Oops - forgot `public:'
       A();
       A(const A&);
       ~A();
     };

     we warn several times about essentially the same problem.  */

  /* Check to see if all (non-constructor, non-destructor) member
     functions are private.  (Since there are no friends or
     non-private statics, we can't ever call any of the private member
     functions.)  */
  for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
    /* We're not interested in compiler-generated methods; they don't
       provide any way to call private members.  */
    if (!DECL_ARTIFICIAL (fn))
      {
	if (!TREE_PRIVATE (fn))
	  {
	    if (DECL_STATIC_FUNCTION_P (fn))
	      /* A non-private static member function is just like a
		 friend; it can create and invoke private member
		 functions, and be accessed without a class
		 instance.  */
	      return;

	    has_nonprivate_method = 1;
	    /* Keep searching for a static member function.  */
	  }
	else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
	  has_member_fn = 1;
      }

  if (!has_nonprivate_method && has_member_fn)
    {
      /* There are no non-private methods, and there's at least one
	 private member function that isn't a constructor or
	 destructor.  (If all the private members are
	 constructors/destructors we want to use the code below that
	 issues error messages specifically referring to
	 constructors/destructors.)  */
      unsigned i;
      tree binfo = TYPE_BINFO (t);

      for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
	if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
	  {
	    has_nonprivate_method = 1;
	    break;
	  }
      if (!has_nonprivate_method)
	{
	  warning (OPT_Wctor_dtor_privacy,
		   "all member functions in class %qT are private", t);
	  return;
	}
    }

  /* Even if some of the member functions are non-private, the class
     won't be useful for much if all the constructors or destructors
     are private: such an object can never be created or destroyed.  */
  fn = CLASSTYPE_DESTRUCTORS (t);
  if (fn && TREE_PRIVATE (fn))
    {
      warning (OPT_Wctor_dtor_privacy,
	       "%q#T only defines a private destructor and has no friends",
	       t);
      return;
    }

  if (TYPE_HAS_CONSTRUCTOR (t)
      /* Implicitly generated constructors are always public.  */
      && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
	  || !CLASSTYPE_LAZY_COPY_CTOR (t)))
    {
      int nonprivate_ctor = 0;

      /* If a non-template class does not define a copy
	 constructor, one is defined for it, enabling it to avoid
	 this warning.  For a template class, this does not
	 happen, and so we would normally get a warning on:

	   template <class T> class C { private: C(); };

	 To avoid this asymmetry, we check TYPE_HAS_INIT_REF.  All
	 complete non-template or fully instantiated classes have this
	 flag set.  */
      if (!TYPE_HAS_INIT_REF (t))
	nonprivate_ctor = 1;
      else
	for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
	  {
	    tree ctor = OVL_CURRENT (fn);
	    /* Ideally, we wouldn't count copy constructors (or, in
	       fact, any constructor that takes an argument of the
	       class type as a parameter) because such things cannot
	       be used to construct an instance of the class unless
	       you already have one.  But, for now at least, we're
	       more generous.  */
	    if (! TREE_PRIVATE (ctor))
	      {
		nonprivate_ctor = 1;
		break;
	      }
	  }

      if (nonprivate_ctor == 0)
	{
	  warning (OPT_Wctor_dtor_privacy,
		   "%q#T only defines private constructors and has no friends",
		   t);
	  return;
	}
    }
}

static struct {
  gt_pointer_operator new_value;
  void *cookie;
} resort_data;

/* Comparison function to compare two TYPE_METHOD_VEC entries by name.  */

static int
method_name_cmp (const void* m1_p, const void* m2_p)
{
  const tree *const m1 = (const tree *) m1_p;
  const tree *const m2 = (const tree *) m2_p;

  if (*m1 == NULL_TREE && *m2 == NULL_TREE)
    return 0;
  if (*m1 == NULL_TREE)
    return -1;
  if (*m2 == NULL_TREE)
    return 1;
  if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
    return -1;
  return 1;
}

/* This routine compares two fields like method_name_cmp but using the
   pointer operator in resort_field_decl_data.  */

static int
resort_method_name_cmp (const void* m1_p, const void* m2_p)
{
  const tree *const m1 = (const tree *) m1_p;
  const tree *const m2 = (const tree *) m2_p;
  if (*m1 == NULL_TREE && *m2 == NULL_TREE)
    return 0;
  if (*m1 == NULL_TREE)
    return -1;
  if (*m2 == NULL_TREE)
    return 1;
  {
    tree d1 = DECL_NAME (OVL_CURRENT (*m1));
    tree d2 = DECL_NAME (OVL_CURRENT (*m2));
    resort_data.new_value (&d1, resort_data.cookie);
    resort_data.new_value (&d2, resort_data.cookie);
    if (d1 < d2)
      return -1;
  }
  return 1;
}

/* Resort TYPE_METHOD_VEC because pointers have been reordered.  */

void
resort_type_method_vec (void* obj,
			void* orig_obj ATTRIBUTE_UNUSED ,
			gt_pointer_operator new_value,
			void* cookie)
{
  VEC(tree,gc) *method_vec = (VEC(tree,gc) *) obj;
  int len = VEC_length (tree, method_vec);
  size_t slot;
  tree fn;

  /* The type conversion ops have to live at the front of the vec, so we
     can't sort them.  */
  for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
       VEC_iterate (tree, method_vec, slot, fn);
       ++slot)
    if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
      break;

  if (len - slot > 1)
    {
      resort_data.new_value = new_value;
      resort_data.cookie = cookie;
      qsort (VEC_address (tree, method_vec) + slot, len - slot, sizeof (tree),
	     resort_method_name_cmp);
    }
}

/* Warn about duplicate methods in fn_fields.

   Sort methods that are not special (i.e., constructors, destructors,
   and type conversion operators) so that we can find them faster in
   search.  */

static void
finish_struct_methods (tree t)
{
  tree fn_fields;
  VEC(tree,gc) *method_vec;
  int slot, len;

  method_vec = CLASSTYPE_METHOD_VEC (t);
  if (!method_vec)
    return;

  len = VEC_length (tree, method_vec);

  /* Clear DECL_IN_AGGR_P for all functions.  */
  for (fn_fields = TYPE_METHODS (t); fn_fields;
       fn_fields = TREE_CHAIN (fn_fields))
    DECL_IN_AGGR_P (fn_fields) = 0;

  /* Issue warnings about private constructors and such.  If there are
     no methods, then some public defaults are generated.  */
  maybe_warn_about_overly_private_class (t);

  /* The type conversion ops have to live at the front of the vec, so we
     can't sort them.  */
  for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
       VEC_iterate (tree, method_vec, slot, fn_fields);
       ++slot)
    if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
      break;
  if (len - slot > 1)
    qsort (VEC_address (tree, method_vec) + slot,
	   len-slot, sizeof (tree), method_name_cmp);
}

/* Make BINFO's vtable have N entries, including RTTI entries,
   vbase and vcall offsets, etc.  Set its type and call the back end
   to lay it out.  */

static void
layout_vtable_decl (tree binfo, int n)
{
  tree atype;
  tree vtable;

  atype = build_cplus_array_type (vtable_entry_type,
				  build_index_type (size_int (n - 1)));
  layout_type (atype);

  /* We may have to grow the vtable.  */
  vtable = get_vtbl_decl_for_binfo (binfo);
  if (!same_type_p (TREE_TYPE (vtable), atype))
    {
      TREE_TYPE (vtable) = atype;
      DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
      layout_decl (vtable, 0);
    }
}

/* True iff FNDECL and BASE_FNDECL (both non-static member functions)
   have the same signature.  */

int
same_signature_p (tree fndecl, tree base_fndecl)
{
  /* One destructor overrides another if they are the same kind of
     destructor.  */
  if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
      && special_function_p (base_fndecl) == special_function_p (fndecl))
    return 1;
  /* But a non-destructor never overrides a destructor, nor vice
     versa, nor do different kinds of destructors override
     one-another.  For example, a complete object destructor does not
     override a deleting destructor.  */
  if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
    return 0;

  if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
      || (DECL_CONV_FN_P (fndecl)
	  && DECL_CONV_FN_P (base_fndecl)
	  && same_type_p (DECL_CONV_FN_TYPE (fndecl),
			  DECL_CONV_FN_TYPE (base_fndecl))))
    {
      tree types, base_types;
      types = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
      base_types = TYPE_ARG_TYPES (TREE_TYPE (base_fndecl));
      if ((TYPE_QUALS (TREE_TYPE (TREE_VALUE (base_types)))
	   == TYPE_QUALS (TREE_TYPE (TREE_VALUE (types))))
	  && compparms (TREE_CHAIN (base_types), TREE_CHAIN (types)))
	return 1;
    }
  return 0;
}

/* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
   subobject.  */

static bool
base_derived_from (tree derived, tree base)
{
  tree probe;

  for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
    {
      if (probe == derived)
	return true;
      else if (BINFO_VIRTUAL_P (probe))
	/* If we meet a virtual base, we can't follow the inheritance
	   any more.  See if the complete type of DERIVED contains
	   such a virtual base.  */
	return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
		!= NULL_TREE);
    }
  return false;
}

typedef struct find_final_overrider_data_s {
  /* The function for which we are trying to find a final overrider.  */
  tree fn;
  /* The base class in which the function was declared.  */
  tree declaring_base;
  /* The candidate overriders.  */
  tree candidates;
  /* Path to most derived.  */
  VEC(tree,heap) *path;
} find_final_overrider_data;

/* Add the overrider along the current path to FFOD->CANDIDATES.
   Returns true if an overrider was found; false otherwise.  */

static bool
dfs_find_final_overrider_1 (tree binfo,
			    find_final_overrider_data *ffod,
			    unsigned depth)
{
  tree method;

  /* If BINFO is not the most derived type, try a more derived class.
     A definition there will overrider a definition here.  */
  if (depth)
    {
      depth--;
      if (dfs_find_final_overrider_1
	  (VEC_index (tree, ffod->path, depth), ffod, depth))
	return true;
    }

  method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
  if (method)
    {
      tree *candidate = &ffod->candidates;

      /* Remove any candidates overridden by this new function.  */
      while (*candidate)
	{
	  /* If *CANDIDATE overrides METHOD, then METHOD
	     cannot override anything else on the list.  */
	  if (base_derived_from (TREE_VALUE (*candidate), binfo))
	    return true;
	  /* If METHOD overrides *CANDIDATE, remove *CANDIDATE.  */
	  if (base_derived_from (binfo, TREE_VALUE (*candidate)))
	    *candidate = TREE_CHAIN (*candidate);
	  else
	    candidate = &TREE_CHAIN (*candidate);
	}

      /* Add the new function.  */
      ffod->candidates = tree_cons (method, binfo, ffod->candidates);
      return true;
    }

  return false;
}

/* Called from find_final_overrider via dfs_walk.  */

static tree
dfs_find_final_overrider_pre (tree binfo, void *data)
{
  find_final_overrider_data *ffod = (find_final_overrider_data *) data;

  if (binfo == ffod->declaring_base)
    dfs_find_final_overrider_1 (binfo, ffod, VEC_length (tree, ffod->path));
  VEC_safe_push (tree, heap, ffod->path, binfo);

  return NULL_TREE;
}

static tree
dfs_find_final_overrider_post (tree binfo ATTRIBUTE_UNUSED, void *data)
{
  find_final_overrider_data *ffod = (find_final_overrider_data *) data;
  VEC_pop (tree, ffod->path);

  return NULL_TREE;
}

/* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
   FN and whose TREE_VALUE is the binfo for the base where the
   overriding occurs.  BINFO (in the hierarchy dominated by the binfo
   DERIVED) is the base object in which FN is declared.  */

static tree
find_final_overrider (tree derived, tree binfo, tree fn)
{
  find_final_overrider_data ffod;

  /* Getting this right is a little tricky.  This is valid:

       struct S { virtual void f (); };
       struct T { virtual void f (); };
       struct U : public S, public T { };

     even though calling `f' in `U' is ambiguous.  But,

       struct R { virtual void f(); };
       struct S : virtual public R { virtual void f (); };
       struct T : virtual public R { virtual void f (); };
       struct U : public S, public T { };

     is not -- there's no way to decide whether to put `S::f' or
     `T::f' in the vtable for `R'.

     The solution is to look at all paths to BINFO.  If we find
     different overriders along any two, then there is a problem.  */
  if (DECL_THUNK_P (fn))
    fn = THUNK_TARGET (fn);

  /* Determine the depth of the hierarchy.  */
  ffod.fn = fn;
  ffod.declaring_base = binfo;
  ffod.candidates = NULL_TREE;
  ffod.path = VEC_alloc (tree, heap, 30);

  dfs_walk_all (derived, dfs_find_final_overrider_pre,
		dfs_find_final_overrider_post, &ffod);

  VEC_free (tree, heap, ffod.path);

  /* If there was no winner, issue an error message.  */
  if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
    return error_mark_node;

  return ffod.candidates;
}

/* Return the index of the vcall offset for FN when TYPE is used as a
   virtual base.  */

static tree
get_vcall_index (tree fn, tree type)
{
  VEC(tree_pair_s,gc) *indices = CLASSTYPE_VCALL_INDICES (type);
  tree_pair_p p;
  unsigned ix;

  for (ix = 0; VEC_iterate (tree_pair_s, indices, ix, p); ix++)
    if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
	|| same_signature_p (fn, p->purpose))
      return p->value;

  /* There should always be an appropriate index.  */
  gcc_unreachable ();
}

/* Update an entry in the vtable for BINFO, which is in the hierarchy
   dominated by T.  FN has been overridden in BINFO; VIRTUALS points to the
   corresponding position in the BINFO_VIRTUALS list.  */

static void
update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
			    unsigned ix)
{
  tree b;
  tree overrider;
  tree delta;
  tree virtual_base;
  tree first_defn;
  tree overrider_fn, overrider_target;
  tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
  tree over_return, base_return;
  bool lost = false;

  /* Find the nearest primary base (possibly binfo itself) which defines
     this function; this is the class the caller will convert to when
     calling FN through BINFO.  */
  for (b = binfo; ; b = get_primary_binfo (b))
    {
      gcc_assert (b);
      if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
	break;

      /* The nearest definition is from a lost primary.  */
      if (BINFO_LOST_PRIMARY_P (b))
	lost = true;
    }
  first_defn = b;

  /* Find the final overrider.  */
  overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
  if (overrider == error_mark_node)
    {
      error ("no unique final overrider for %qD in %qT", target_fn, t);
      return;
    }
  overrider_target = overrider_fn = TREE_PURPOSE (overrider);

  /* Check for adjusting covariant return types.  */
  over_return = TREE_TYPE (TREE_TYPE (overrider_target));
  base_return = TREE_TYPE (TREE_TYPE (target_fn));

  if (POINTER_TYPE_P (over_return)
      && TREE_CODE (over_return) == TREE_CODE (base_return)
      && CLASS_TYPE_P (TREE_TYPE (over_return))
      && CLASS_TYPE_P (TREE_TYPE (base_return))
      /* If the overrider is invalid, don't even try.  */
      && !DECL_INVALID_OVERRIDER_P (overrider_target))
    {
      /* If FN is a covariant thunk, we must figure out the adjustment
	 to the final base FN was converting to. As OVERRIDER_TARGET might
	 also be converting to the return type of FN, we have to
	 combine the two conversions here.  */
      tree fixed_offset, virtual_offset;

      over_return = TREE_TYPE (over_return);
      base_return = TREE_TYPE (base_return);

      if (DECL_THUNK_P (fn))
	{
	  gcc_assert (DECL_RESULT_THUNK_P (fn));
	  fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
	  virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
	}
      else
	fixed_offset = virtual_offset = NULL_TREE;

      if (virtual_offset)
	/* Find the equivalent binfo within the return type of the
	   overriding function. We will want the vbase offset from
	   there.  */
	virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
					  over_return);
      else if (!same_type_ignoring_top_level_qualifiers_p
	       (over_return, base_return))
	{
	  /* There was no existing virtual thunk (which takes
	     precedence).  So find the binfo of the base function's
	     return type within the overriding function's return type.
	     We cannot call lookup base here, because we're inside a
	     dfs_walk, and will therefore clobber the BINFO_MARKED
	     flags.  Fortunately we know the covariancy is valid (it
	     has already been checked), so we can just iterate along
	     the binfos, which have been chained in inheritance graph
	     order.  Of course it is lame that we have to repeat the
	     search here anyway -- we should really be caching pieces
	     of the vtable and avoiding this repeated work.  */
	  tree thunk_binfo, base_binfo;

	  /* Find the base binfo within the overriding function's
	     return type.  We will always find a thunk_binfo, except
	     when the covariancy is invalid (which we will have
	     already diagnosed).  */
	  for (base_binfo = TYPE_BINFO (base_return),
	       thunk_binfo = TYPE_BINFO (over_return);
	       thunk_binfo;
	       thunk_binfo = TREE_CHAIN (thunk_binfo))
	    if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
				   BINFO_TYPE (base_binfo)))
	      break;

	  /* See if virtual inheritance is involved.  */
	  for (virtual_offset = thunk_binfo;
	       virtual_offset;
	       virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
	    if (BINFO_VIRTUAL_P (virtual_offset))
	      break;

	  if (virtual_offset
	      || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
	    {
	      tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));

	      if (virtual_offset)
		{
		  /* We convert via virtual base.  Adjust the fixed
		     offset to be from there.  */
		  offset = size_diffop
		    (offset, convert
		     (ssizetype, BINFO_OFFSET (virtual_offset)));
		}
	      if (fixed_offset)
		/* There was an existing fixed offset, this must be
		   from the base just converted to, and the base the
		   FN was thunking to.  */
		fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
	      else
		fixed_offset = offset;
	    }
	}

      if (fixed_offset || virtual_offset)
	/* Replace the overriding function with a covariant thunk.  We
	   will emit the overriding function in its own slot as
	   well.  */
	overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
				   fixed_offset, virtual_offset);
    }
  else
    gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
		!DECL_THUNK_P (fn));

  /* Assume that we will produce a thunk that convert all the way to
     the final overrider, and not to an intermediate virtual base.  */
  virtual_base = NULL_TREE;

  /* See if we can convert to an intermediate virtual base first, and then
     use the vcall offset located there to finish the conversion.  */
  for (; b; b = BINFO_INHERITANCE_CHAIN (b))
    {
      /* If we find the final overrider, then we can stop
	 walking.  */
      if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
			     BINFO_TYPE (TREE_VALUE (overrider))))
	break;

      /* If we find a virtual base, and we haven't yet found the
	 overrider, then there is a virtual base between the
	 declaring base (first_defn) and the final overrider.  */
      if (BINFO_VIRTUAL_P (b))
	{
	  virtual_base = b;
	  break;
	}
    }

  if (overrider_fn != overrider_target && !virtual_base)
    {
      /* The ABI specifies that a covariant thunk includes a mangling
	 for a this pointer adjustment.  This-adjusting thunks that
	 override a function from a virtual base have a vcall
	 adjustment.  When the virtual base in question is a primary
	 virtual base, we know the adjustments are zero, (and in the
	 non-covariant case, we would not use the thunk).
	 Unfortunately we didn't notice this could happen, when
	 designing the ABI and so never mandated that such a covariant
	 thunk should be emitted.  Because we must use the ABI mandated
	 name, we must continue searching from the binfo where we
	 found the most recent definition of the function, towards the
	 primary binfo which first introduced the function into the
	 vtable.  If that enters a virtual base, we must use a vcall
	 this-adjusting thunk.  Bleah! */
      tree probe = first_defn;

      while ((probe = get_primary_binfo (probe))
	     && (unsigned) list_length (BINFO_VIRTUALS (probe)) > ix)
	if (BINFO_VIRTUAL_P (probe))
	  virtual_base = probe;

      if (virtual_base)
	/* Even if we find a virtual base, the correct delta is
	   between the overrider and the binfo we're building a vtable
	   for.  */
	goto virtual_covariant;
    }

  /* Compute the constant adjustment to the `this' pointer.  The
     `this' pointer, when this function is called, will point at BINFO
     (or one of its primary bases, which are at the same offset).  */
  if (virtual_base)
    /* The `this' pointer needs to be adjusted from the declaration to
       the nearest virtual base.  */
    delta = size_diffop (convert (ssizetype, BINFO_OFFSET (virtual_base)),
			 convert (ssizetype, BINFO_OFFSET (first_defn)));
  else if (lost)
    /* If the nearest definition is in a lost primary, we don't need an
       entry in our vtable.  Except possibly in a constructor vtable,
       if we happen to get our primary back.  In that case, the offset
       will be zero, as it will be a primary base.  */
    delta = size_zero_node;
  else
    /* The `this' pointer needs to be adjusted from pointing to
       BINFO to pointing at the base where the final overrider
       appears.  */
    virtual_covariant:
    delta = size_diffop (convert (ssizetype,
				  BINFO_OFFSET (TREE_VALUE (overrider))),
			 convert (ssizetype, BINFO_OFFSET (binfo)));

  modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);

  if (virtual_base)
    BV_VCALL_INDEX (*virtuals)
      = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
  else
    BV_VCALL_INDEX (*virtuals) = NULL_TREE;
}

/* Called from modify_all_vtables via dfs_walk.  */

static tree
dfs_modify_vtables (tree binfo, void* data)
{
  tree t = (tree) data;
  tree virtuals;
  tree old_virtuals;
  unsigned ix;

  if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
    /* A base without a vtable needs no modification, and its bases
       are uninteresting.  */
    return dfs_skip_bases;

  if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
      && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
    /* Don't do the primary vtable, if it's new.  */
    return NULL_TREE;

  if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
    /* There's no need to modify the vtable for a non-virtual primary
       base; we're not going to use that vtable anyhow.  We do still
       need to do this for virtual primary bases, as they could become
       non-primary in a construction vtable.  */
    return NULL_TREE;

  make_new_vtable (t, binfo);

  /* Now, go through each of the virtual functions in the virtual
     function table for BINFO.  Find the final overrider, and update
     the BINFO_VIRTUALS list appropriately.  */
  for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
	 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
       virtuals;
       ix++, virtuals = TREE_CHAIN (virtuals),
	 old_virtuals = TREE_CHAIN (old_virtuals))
    update_vtable_entry_for_fn (t,
				binfo,
				BV_FN (old_virtuals),
				&virtuals, ix);

  return NULL_TREE;
}

/* Update all of the primary and secondary vtables for T.  Create new
   vtables as required, and initialize their RTTI information.  Each
   of the functions in VIRTUALS is declared in T and may override a
   virtual function from a base class; find and modify the appropriate
   entries to point to the overriding functions.  Returns a list, in
   declaration order, of the virtual functions that are declared in T,
   but do not appear in the primary base class vtable, and which
   should therefore be appended to the end of the vtable for T.  */

static tree
modify_all_vtables (tree t, tree virtuals)
{
  tree binfo = TYPE_BINFO (t);
  tree *fnsp;

  /* Update all of the vtables.  */
  dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);

  /* Add virtual functions not already in our primary vtable. These
     will be both those introduced by this class, and those overridden
     from secondary bases.  It does not include virtuals merely
     inherited from secondary bases.  */
  for (fnsp = &virtuals; *fnsp; )
    {
      tree fn = TREE_VALUE (*fnsp);

      if (!value_member (fn, BINFO_VIRTUALS (binfo))
	  || DECL_VINDEX (fn) == error_mark_node)
	{
	  /* We don't need to adjust the `this' pointer when
	     calling this function.  */
	  BV_DELTA (*fnsp) = integer_zero_node;
	  BV_VCALL_INDEX (*fnsp) = NULL_TREE;

	  /* This is a function not already in our vtable.  Keep it.  */
	  fnsp = &TREE_CHAIN (*fnsp);
	}
      else
	/* We've already got an entry for this function.  Skip it.  */
	*fnsp = TREE_CHAIN (*fnsp);
    }

  return virtuals;
}

/* Get the base virtual function declarations in T that have the
   indicated NAME.  */

static tree
get_basefndecls (tree name, tree t)
{
  tree methods;
  tree base_fndecls = NULL_TREE;
  int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
  int i;

  /* Find virtual functions in T with the indicated NAME.  */
  i = lookup_fnfields_1 (t, name);
  if (i != -1)
    for (methods = VEC_index (tree, CLASSTYPE_METHOD_VEC (t), i);
	 methods;
	 methods = OVL_NEXT (methods))
      {
	tree method = OVL_CURRENT (methods);

	if (TREE_CODE (method) == FUNCTION_DECL
	    && DECL_VINDEX (method))
	  base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
      }

  if (base_fndecls)
    return base_fndecls;

  for (i = 0; i < n_baseclasses; i++)
    {
      tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
      base_fndecls = chainon (get_basefndecls (name, basetype),
			      base_fndecls);
    }

  return base_fndecls;
}

/* If this declaration supersedes the declaration of
   a method declared virtual in the base class, then
   mark this field as being virtual as well.  */

void
check_for_override (tree decl, tree ctype)
{
  if (TREE_CODE (decl) == TEMPLATE_DECL)
    /* In [temp.mem] we have:

	 A specialization of a member function template does not
	 override a virtual function from a base class.  */
    return;
  if ((DECL_DESTRUCTOR_P (decl)
       || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
       || DECL_CONV_FN_P (decl))
      && look_for_overrides (ctype, decl)
      && !DECL_STATIC_FUNCTION_P (decl))
    /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
       the error_mark_node so that we know it is an overriding
       function.  */
    DECL_VINDEX (decl) = decl;

  if (DECL_VIRTUAL_P (decl))
    {
      if (!DECL_VINDEX (decl))
	DECL_VINDEX (decl) = error_mark_node;
      IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
    }
}

/* Warn about hidden virtual functions that are not overridden in t.
   We know that constructors and destructors don't apply.  */

static void
warn_hidden (tree t)
{
  VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (t);
  tree fns;
  size_t i;

  /* We go through each separately named virtual function.  */
  for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
       VEC_iterate (tree, method_vec, i, fns);
       ++i)
    {
      tree fn;
      tree name;
      tree fndecl;
      tree base_fndecls;
      tree base_binfo;
      tree binfo;
      int j;

      /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
	 have the same name.  Figure out what name that is.  */
      name = DECL_NAME (OVL_CURRENT (fns));
      /* There are no possibly hidden functions yet.  */
      base_fndecls = NULL_TREE;
      /* Iterate through all of the base classes looking for possibly
	 hidden functions.  */
      for (binfo = TYPE_BINFO (t), j = 0;
	   BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
	{
	  tree basetype = BINFO_TYPE (base_binfo);
	  base_fndecls = chainon (get_basefndecls (name, basetype),
				  base_fndecls);
	}

      /* If there are no functions to hide, continue.  */
      if (!base_fndecls)
	continue;

      /* Remove any overridden functions.  */
      for (fn = fns; fn; fn = OVL_NEXT (fn))
	{
	  fndecl = OVL_CURRENT (fn);
	  if (DECL_VINDEX (fndecl))
	    {
	      tree *prev = &base_fndecls;

	      while (*prev)
		/* If the method from the base class has the same
		   signature as the method from the derived class, it
		   has been overridden.  */
		if (same_signature_p (fndecl, TREE_VALUE (*prev)))
		  *prev = TREE_CHAIN (*prev);
		else
		  prev = &TREE_CHAIN (*prev);
	    }
	}

      /* Now give a warning for all base functions without overriders,
	 as they are hidden.  */
      while (base_fndecls)
	{
	  /* Here we know it is a hider, and no overrider exists.  */
	  warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls));
	  warning (OPT_Woverloaded_virtual, "  by %q+D", fns);
	  base_fndecls = TREE_CHAIN (base_fndecls);
	}
    }
}

/* Check for things that are invalid.  There are probably plenty of other
   things we should check for also.  */

static void
finish_struct_anon (tree t)
{
  tree field;

  for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
    {
      if (TREE_STATIC (field))
	continue;
      if (TREE_CODE (field) != FIELD_DECL)
	continue;

      if (DECL_NAME (field) == NULL_TREE
	  && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
	{
	  tree elt = TYPE_FIELDS (TREE_TYPE (field));
	  for (; elt; elt = TREE_CHAIN (elt))
	    {
	      /* We're generally only interested in entities the user
		 declared, but we also find nested classes by noticing
		 the TYPE_DECL that we create implicitly.  You're
		 allowed to put one anonymous union inside another,
		 though, so we explicitly tolerate that.  We use
		 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
		 we also allow unnamed types used for defining fields.  */
	      if (DECL_ARTIFICIAL (elt)
		  && (!DECL_IMPLICIT_TYPEDEF_P (elt)
		      || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
		continue;

	      if (TREE_CODE (elt) != FIELD_DECL)
		{
		  pedwarn ("%q+#D invalid; an anonymous union can "
			   "only have non-static data members", elt);
		  continue;
		}

	      if (TREE_PRIVATE (elt))
		pedwarn ("private member %q+#D in anonymous union", elt);
	      else if (TREE_PROTECTED (elt))
		pedwarn ("protected member %q+#D in anonymous union", elt);

	      TREE_PRIVATE (elt) = TREE_PRIVATE (field);
	      TREE_PROTECTED (elt) = TREE_PROTECTED (field);
	    }
	}
    }
}

/* Add T to CLASSTYPE_DECL_LIST of current_class_type which
   will be used later during class template instantiation.
   When FRIEND_P is zero, T can be a static member data (VAR_DECL),
   a non-static member data (FIELD_DECL), a member function
   (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
   a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
   When FRIEND_P is nonzero, T is either a friend class
   (RECORD_TYPE, TEMPLATE_DECL) or a friend function
   (FUNCTION_DECL, TEMPLATE_DECL).  */

void
maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
{
  /* Save some memory by not creating TREE_LIST if TYPE is not template.  */
  if (CLASSTYPE_TEMPLATE_INFO (type))
    CLASSTYPE_DECL_LIST (type)
      = tree_cons (friend_p ? NULL_TREE : type,
		   t, CLASSTYPE_DECL_LIST (type));
}

/* Create default constructors, assignment operators, and so forth for
   the type indicated by T, if they are needed.  CANT_HAVE_CONST_CTOR,
   and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
   the class cannot have a default constructor, copy constructor
   taking a const reference argument, or an assignment operator taking
   a const reference, respectively.  */

static void
add_implicitly_declared_members (tree t,
				 int cant_have_const_cctor,
				 int cant_have_const_assignment)
{
  /* Destructor.  */
  if (!CLASSTYPE_DESTRUCTORS (t))
    {
      /* In general, we create destructors lazily.  */
      CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
      /* However, if the implicit destructor is non-trivial
	 destructor, we sometimes have to create it at this point.  */
      if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
	{
	  bool lazy_p = true;

	  if (TYPE_FOR_JAVA (t))
	    /* If this a Java class, any non-trivial destructor is
	       invalid, even if compiler-generated.  Therefore, if the
	       destructor is non-trivial we create it now.  */
	    lazy_p = false;
	  else
	    {
	      tree binfo;
	      tree base_binfo;
	      int ix;

	      /* If the implicit destructor will be virtual, then we must
		 generate it now because (unfortunately) we do not
		 generate virtual tables lazily.  */
	      binfo = TYPE_BINFO (t);
	      for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
		{
		  tree base_type;
		  tree dtor;

		  base_type = BINFO_TYPE (base_binfo);
		  dtor = CLASSTYPE_DESTRUCTORS (base_type);
		  if (dtor && DECL_VIRTUAL_P (dtor))
		    {
		      lazy_p = false;
		      break;
		    }
		}
	    }

	  /* If we can't get away with being lazy, generate the destructor
	     now.  */
	  if (!lazy_p)
	    lazily_declare_fn (sfk_destructor, t);
	}
    }

  /* Default constructor.  */
  if (! TYPE_HAS_CONSTRUCTOR (t))
    {
      TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
      CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
    }

  /* Copy constructor.  */
  if (! TYPE_HAS_INIT_REF (t) && ! TYPE_FOR_JAVA (t))
    {
      TYPE_HAS_INIT_REF (t) = 1;
      TYPE_HAS_CONST_INIT_REF (t) = !cant_have_const_cctor;
      CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
      TYPE_HAS_CONSTRUCTOR (t) = 1;
    }

  /* If there is no assignment operator, one will be created if and
     when it is needed.  For now, just record whether or not the type
     of the parameter to the assignment operator will be a const or
     non-const reference.  */
  if (!TYPE_HAS_ASSIGN_REF (t) && !TYPE_FOR_JAVA (t))
    {
      TYPE_HAS_ASSIGN_REF (t) = 1;
      TYPE_HAS_CONST_ASSIGN_REF (t) = !cant_have_const_assignment;
      CLASSTYPE_LAZY_ASSIGNMENT_OP (t) = 1;
    }
}

/* Subroutine of finish_struct_1.  Recursively count the number of fields
   in TYPE, including anonymous union members.  */

static int
count_fields (tree fields)
{
  tree x;
  int n_fields = 0;
  for (x = fields; x; x = TREE_CHAIN (x))
    {
      if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
	n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
      else
	n_fields += 1;
    }
  return n_fields;
}

/* Subroutine of finish_struct_1.  Recursively add all the fields in the
   TREE_LIST FIELDS to the SORTED_FIELDS_TYPE elts, starting at offset IDX.  */

static int
add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
{
  tree x;
  for (x = fields; x; x = TREE_CHAIN (x))
    {
      if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
	idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
      else
	field_vec->elts[idx++] = x;
    }
  return idx;
}

/* FIELD is a bit-field.  We are finishing the processing for its
   enclosing type.  Issue any appropriate messages and set appropriate
   flags.  */

static void
check_bitfield_decl (tree field)
{
  tree type = TREE_TYPE (field);
  tree w;

  /* Extract the declared width of the bitfield, which has been
     temporarily stashed in DECL_INITIAL.  */
  w = DECL_INITIAL (field);
  gcc_assert (w != NULL_TREE);
  /* Remove the bit-field width indicator so that the rest of the
     compiler does not treat that value as an initializer.  */
  DECL_INITIAL (field) = NULL_TREE;

  /* Detect invalid bit-field type.  */
  if (!INTEGRAL_TYPE_P (type))
    {
      error ("bit-field %q+#D with non-integral type", field);
      TREE_TYPE (field) = error_mark_node;
      w = error_mark_node;
    }
  else
    {
      /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs.  */
      STRIP_NOPS (w);

      /* detect invalid field size.  */
      w = integral_constant_value (w);

      if (TREE_CODE (w) != INTEGER_CST)
	{
	  error ("bit-field %q+D width not an integer constant", field);
	  w = error_mark_node;
	}
      else if (tree_int_cst_sgn (w) < 0)
	{
	  error ("negative width in bit-field %q+D", field);
	  w = error_mark_node;
	}
      else if (integer_zerop (w) && DECL_NAME (field) != 0)
	{
	  error ("zero width for bit-field %q+D", field);
	  w = error_mark_node;
	}
      else if (compare_tree_int (w, TYPE_PRECISION (type)) > 0
	       && TREE_CODE (type) != ENUMERAL_TYPE
	       && TREE_CODE (type) != BOOLEAN_TYPE)
	warning (0, "width of %q+D exceeds its type", field);
      else if (TREE_CODE (type) == ENUMERAL_TYPE
	       && (0 > compare_tree_int (w,
					 min_precision (TYPE_MIN_VALUE (type),
							TYPE_UNSIGNED (type)))
		   ||  0 > compare_tree_int (w,
					     min_precision
					     (TYPE_MAX_VALUE (type),
					      TYPE_UNSIGNED (type)))))
	warning (0, "%q+D is too small to hold all values of %q#T", field, type);
    }

  if (w != error_mark_node)
    {
      DECL_SIZE (field) = convert (bitsizetype, w);
      DECL_BIT_FIELD (field) = 1;
    }
  else
    {
      /* Non-bit-fields are aligned for their type.  */
      DECL_BIT_FIELD (field) = 0;
      CLEAR_DECL_C_BIT_FIELD (field);
    }
}

/* FIELD is a non bit-field.  We are finishing the processing for its
   enclosing type T.  Issue any appropriate messages and set appropriate
   flags.  */

static void
check_field_decl (tree field,
		  tree t,
		  int* cant_have_const_ctor,
		  int* no_const_asn_ref,
		  int* any_default_members)
{
  tree type = strip_array_types (TREE_TYPE (field));

  /* An anonymous union cannot contain any fields which would change
     the settings of CANT_HAVE_CONST_CTOR and friends.  */
  if (ANON_UNION_TYPE_P (type))
    ;
  /* And, we don't set TYPE_HAS_CONST_INIT_REF, etc., for anonymous
     structs.  So, we recurse through their fields here.  */
  else if (ANON_AGGR_TYPE_P (type))
    {
      tree fields;

      for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
	if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
	  check_field_decl (fields, t, cant_have_const_ctor,
			    no_const_asn_ref, any_default_members);
    }
  /* Check members with class type for constructors, destructors,
     etc.  */
  else if (CLASS_TYPE_P (type))
    {
      /* Never let anything with uninheritable virtuals
	 make it through without complaint.  */
      abstract_virtuals_error (field, type);

      if (TREE_CODE (t) == UNION_TYPE)
	{
	  if (TYPE_NEEDS_CONSTRUCTING (type))
	    error ("member %q+#D with constructor not allowed in union",
		   field);
	  if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
	    error ("member %q+#D with destructor not allowed in union", field);
	  if (TYPE_HAS_COMPLEX_ASSIGN_REF (type))
	    error ("member %q+#D with copy assignment operator not allowed in union",
		   field);
	}
      else
	{
	  TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
	  TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
	    |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
	  TYPE_HAS_COMPLEX_ASSIGN_REF (t) |= TYPE_HAS_COMPLEX_ASSIGN_REF (type);
	  TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (type);
	  TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_HAS_COMPLEX_DFLT (type);
	}

      if (!TYPE_HAS_CONST_INIT_REF (type))
	*cant_have_const_ctor = 1;

      if (!TYPE_HAS_CONST_ASSIGN_REF (type))
	*no_const_asn_ref = 1;
    }
  if (DECL_INITIAL (field) != NULL_TREE)
    {
      /* `build_class_init_list' does not recognize
	 non-FIELD_DECLs.  */
      if (TREE_CODE (t) == UNION_TYPE && any_default_members != 0)
	error ("multiple fields in union %qT initialized", t);
      *any_default_members = 1;
    }
}

/* Check the data members (both static and non-static), class-scoped
   typedefs, etc., appearing in the declaration of T.  Issue
   appropriate diagnostics.  Sets ACCESS_DECLS to a list (in
   declaration order) of access declarations; each TREE_VALUE in this
   list is a USING_DECL.

   In addition, set the following flags:

     EMPTY_P
       The class is empty, i.e., contains no non-static data members.

     CANT_HAVE_CONST_CTOR_P
       This class cannot have an implicitly generated copy constructor
       taking a const reference.

     CANT_HAVE_CONST_ASN_REF
       This class cannot have an implicitly generated assignment
       operator taking a const reference.

   All of these flags should be initialized before calling this
   function.

   Returns a pointer to the end of the TYPE_FIELDs chain; additional
   fields can be added by adding to this chain.  */

static void
check_field_decls (tree t, tree *access_decls,
		   int *cant_have_const_ctor_p,
		   int *no_const_asn_ref_p)
{
  tree *field;
  tree *next;
  bool has_pointers;
  int any_default_members;
  int cant_pack = 0;

  /* Assume there are no access declarations.  */
  *access_decls = NULL_TREE;
  /* Assume this class has no pointer members.  */
  has_pointers = false;
  /* Assume none of the members of this class have default
     initializations.  */
  any_default_members = 0;

  for (field = &TYPE_FIELDS (t); *field; field = next)
    {
      tree x = *field;
      tree type = TREE_TYPE (x);

      next = &TREE_CHAIN (x);

      if (TREE_CODE (x) == USING_DECL)
	{
	  /* Prune the access declaration from the list of fields.  */
	  *field = TREE_CHAIN (x);

	  /* Save the access declarations for our caller.  */
	  *access_decls = tree_cons (NULL_TREE, x, *access_decls);

	  /* Since we've reset *FIELD there's no reason to skip to the
	     next field.  */
	  next = field;
	  continue;
	}

      if (TREE_CODE (x) == TYPE_DECL
	  || TREE_CODE (x) == TEMPLATE_DECL)
	continue;

      /* If we've gotten this far, it's a data member, possibly static,
	 or an enumerator.  */
      DECL_CONTEXT (x) = t;

      /* When this goes into scope, it will be a non-local reference.  */
      DECL_NONLOCAL (x) = 1;

      if (TREE_CODE (t) == UNION_TYPE)
	{
	  /* [class.union]

	     If a union contains a static data member, or a member of
	     reference type, the program is ill-formed.  */
	  if (TREE_CODE (x) == VAR_DECL)
	    {
	      error ("%q+D may not be static because it is a member of a union", x);
	      continue;
	    }
	  if (TREE_CODE (type) == REFERENCE_TYPE)
	    {
	      error ("%q+D may not have reference type %qT because"
		     " it is a member of a union",
		     x, type);
	      continue;
	    }
	}

      /* Perform error checking that did not get done in
	 grokdeclarator.  */
      if (TREE_CODE (type) == FUNCTION_TYPE)
	{
	  error ("field %q+D invalidly declared function type", x);
	  type = build_pointer_type (type);
	  TREE_TYPE (x) = type;
	}
      else if (TREE_CODE (type) == METHOD_TYPE)
	{
	  error ("field %q+D invalidly declared method type", x);
	  type = build_pointer_type (type);
	  TREE_TYPE (x) = type;
	}

      if (type == error_mark_node)
	continue;

      if (TREE_CODE (x) == CONST_DECL || TREE_CODE (x) == VAR_DECL)
	continue;

      /* Now it can only be a FIELD_DECL.  */

      if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
	CLASSTYPE_NON_AGGREGATE (t) = 1;

      /* If this is of reference type, check if it needs an init.
	 Also do a little ANSI jig if necessary.  */
      if (TREE_CODE (type) == REFERENCE_TYPE)
	{
	  CLASSTYPE_NON_POD_P (t) = 1;
	  if (DECL_INITIAL (x) == NULL_TREE)
	    SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);

	  /* ARM $12.6.2: [A member initializer list] (or, for an
	     aggregate, initialization by a brace-enclosed list) is the
	     only way to initialize nonstatic const and reference
	     members.  */
	  TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;

	  if (! TYPE_HAS_CONSTRUCTOR (t) && CLASSTYPE_NON_AGGREGATE (t)
	      && extra_warnings)
	    warning (OPT_Wextra, "non-static reference %q+#D in class without a constructor", x);
	}

      type = strip_array_types (type);

      if (TYPE_PACKED (t))
	{
	  if (!pod_type_p (type) && !TYPE_PACKED (type))
	    {
	      warning
		(0,
		 "ignoring packed attribute because of unpacked non-POD field %q+#D",
		 x);
	      cant_pack = 1;
	    }
	  else if (TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
	    DECL_PACKED (x) = 1;
	}

      if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
	/* We don't treat zero-width bitfields as making a class
	   non-empty.  */
	;
      else
	{
	  /* The class is non-empty.  */
	  CLASSTYPE_EMPTY_P (t) = 0;
	  /* The class is not even nearly empty.  */
	  CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
	  /* If one of the data members contains an empty class,
	     so does T.  */
	  if (CLASS_TYPE_P (type)
	      && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
	    CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
	}

      /* This is used by -Weffc++ (see below). Warn only for pointers
	 to members which might hold dynamic memory. So do not warn
	 for pointers to functions or pointers to members.  */
      if (TYPE_PTR_P (type)
	  && !TYPE_PTRFN_P (type)
	  && !TYPE_PTR_TO_MEMBER_P (type))
	has_pointers = true;

      if (CLASS_TYPE_P (type))
	{
	  if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
	    SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
	  if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
	    SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
	}

      if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
	CLASSTYPE_HAS_MUTABLE (t) = 1;

      if (! pod_type_p (type))
	/* DR 148 now allows pointers to members (which are POD themselves),
	   to be allowed in POD structs.  */
	CLASSTYPE_NON_POD_P (t) = 1;

      if (! zero_init_p (type))
	CLASSTYPE_NON_ZERO_INIT_P (t) = 1;

      /* If any field is const, the structure type is pseudo-const.  */
      if (CP_TYPE_CONST_P (type))
	{
	  C_TYPE_FIELDS_READONLY (t) = 1;
	  if (DECL_INITIAL (x) == NULL_TREE)
	    SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);

	  /* ARM $12.6.2: [A member initializer list] (or, for an
	     aggregate, initialization by a brace-enclosed list) is the
	     only way to initialize nonstatic const and reference
	     members.  */
	  TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;

	  if (! TYPE_HAS_CONSTRUCTOR (t) && CLASSTYPE_NON_AGGREGATE (t)
	      && extra_warnings)
	    warning (OPT_Wextra, "non-static const member %q+#D in class without a constructor", x);
	}
      /* A field that is pseudo-const makes the structure likewise.  */
      else if (CLASS_TYPE_P (type))
	{
	  C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
	  SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
	    CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
	    | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
	}

      /* Core issue 80: A nonstatic data member is required to have a
	 different name from the class iff the class has a
	 user-defined constructor.  */
      if (constructor_name_p (DECL_NAME (x), t) && TYPE_HAS_CONSTRUCTOR (t))
	pedwarn ("field %q+#D with same name as class", x);

      /* We set DECL_C_BIT_FIELD in grokbitfield.
	 If the type and width are valid, we'll also set DECL_BIT_FIELD.  */
      if (DECL_C_BIT_FIELD (x))
	check_bitfield_decl (x);
      else
	check_field_decl (x, t,
			  cant_have_const_ctor_p,
			  no_const_asn_ref_p,
			  &any_default_members);
    }

  /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
     it should also define a copy constructor and an assignment operator to
     implement the correct copy semantic (deep vs shallow, etc.). As it is
     not feasible to check whether the constructors do allocate dynamic memory
     and store it within members, we approximate the warning like this:

     -- Warn only if there are members which are pointers
     -- Warn only if there is a non-trivial constructor (otherwise,
	there cannot be memory allocated).
     -- Warn only if there is a non-trivial destructor. We assume that the
	user at least implemented the cleanup correctly, and a destructor
	is needed to free dynamic memory.

     This seems enough for practical purposes.  */
  if (warn_ecpp
      && has_pointers
      && TYPE_HAS_CONSTRUCTOR (t)
      && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
      && !(TYPE_HAS_INIT_REF (t) && TYPE_HAS_ASSIGN_REF (t)))
    {
      warning (OPT_Weffc__, "%q#T has pointer data members", t);

      if (! TYPE_HAS_INIT_REF (t))
	{
	  warning (OPT_Weffc__,
		   "  but does not override %<%T(const %T&)%>", t, t);
	  if (!TYPE_HAS_ASSIGN_REF (t))
	    warning (OPT_Weffc__, "  or %<operator=(const %T&)%>", t);
	}
      else if (! TYPE_HAS_ASSIGN_REF (t))
	warning (OPT_Weffc__,
		 "  but does not override %<operator=(const %T&)%>", t);
    }

  /* If any of the fields couldn't be packed, unset TYPE_PACKED.  */
  if (cant_pack)
    TYPE_PACKED (t) = 0;

  /* Check anonymous struct/anonymous union fields.  */
  finish_struct_anon (t);

  /* We've built up the list of access declarations in reverse order.
     Fix that now.  */
  *access_decls = nreverse (*access_decls);
}

/* If TYPE is an empty class type, records its OFFSET in the table of
   OFFSETS.  */

static int
record_subobject_offset (tree type, tree offset, splay_tree offsets)
{
  splay_tree_node n;

  if (!is_empty_class (type))
    return 0;

  /* Record the location of this empty object in OFFSETS.  */
  n = splay_tree_lookup (offsets, (splay_tree_key) offset);
  if (!n)
    n = splay_tree_insert (offsets,
			   (splay_tree_key) offset,
			   (splay_tree_value) NULL_TREE);
  n->value = ((splay_tree_value)
	      tree_cons (NULL_TREE,
			 type,
			 (tree) n->value));

  return 0;
}

/* Returns nonzero if TYPE is an empty class type and there is
   already an entry in OFFSETS for the same TYPE as the same OFFSET.  */

static int
check_subobject_offset (tree type, tree offset, splay_tree offsets)
{
  splay_tree_node n;
  tree t;

  if (!is_empty_class (type))
    return 0;

  /* Record the location of this empty object in OFFSETS.  */
  n = splay_tree_lookup (offsets, (splay_tree_key) offset);
  if (!n)
    return 0;

  for (t = (tree) n->value; t; t = TREE_CHAIN (t))
    if (same_type_p (TREE_VALUE (t), type))
      return 1;

  return 0;
}

/* Walk through all the subobjects of TYPE (located at OFFSET).  Call
   F for every subobject, passing it the type, offset, and table of
   OFFSETS.  If VBASES_P is one, then virtual non-primary bases should
   be traversed.

   If MAX_OFFSET is non-NULL, then subobjects with an offset greater
   than MAX_OFFSET will not be walked.

   If F returns a nonzero value, the traversal ceases, and that value
   is returned.  Otherwise, returns zero.  */

static int
walk_subobject_offsets (tree type,
			subobject_offset_fn f,
			tree offset,
			splay_tree offsets,
			tree max_offset,
			int vbases_p)
{
  int r = 0;
  tree type_binfo = NULL_TREE;

  /* If this OFFSET is bigger than the MAX_OFFSET, then we should
     stop.  */
  if (max_offset && INT_CST_LT (max_offset, offset))
    return 0;

  if (type == error_mark_node)
    return 0;

  if (!TYPE_P (type))
    {
      if (abi_version_at_least (2))
	type_binfo = type;
      type = BINFO_TYPE (type);
    }

  if (CLASS_TYPE_P (type))
    {
      tree field;
      tree binfo;
      int i;

      /* Avoid recursing into objects that are not interesting.  */
      if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
	return 0;

      /* Record the location of TYPE.  */
      r = (*f) (type, offset, offsets);
      if (r)
	return r;

      /* Iterate through the direct base classes of TYPE.  */
      if (!type_binfo)
	type_binfo = TYPE_BINFO (type);
      for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
	{
	  tree binfo_offset;

	  if (abi_version_at_least (2)
	      && BINFO_VIRTUAL_P (binfo))
	    continue;

	  if (!vbases_p
	      && BINFO_VIRTUAL_P (binfo)
	      && !BINFO_PRIMARY_P (binfo))
	    continue;

	  if (!abi_version_at_least (2))
	    binfo_offset = size_binop (PLUS_EXPR,
				       offset,
				       BINFO_OFFSET (binfo));
	  else
	    {
	      tree orig_binfo;
	      /* We cannot rely on BINFO_OFFSET being set for the base
		 class yet, but the offsets for direct non-virtual
		 bases can be calculated by going back to the TYPE.  */
	      orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
	      binfo_offset = size_binop (PLUS_EXPR,
					 offset,
					 BINFO_OFFSET (orig_binfo));
	    }

	  r = walk_subobject_offsets (binfo,
				      f,
				      binfo_offset,
				      offsets,
				      max_offset,
				      (abi_version_at_least (2)
				       ? /*vbases_p=*/0 : vbases_p));
	  if (r)
	    return r;
	}

      if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type))
	{
	  unsigned ix;
	  VEC(tree,gc) *vbases;

	  /* Iterate through the virtual base classes of TYPE.  In G++
	     3.2, we included virtual bases in the direct base class
	     loop above, which results in incorrect results; the
	     correct offsets for virtual bases are only known when
	     working with the most derived type.  */
	  if (vbases_p)
	    for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
		 VEC_iterate (tree, vbases, ix, binfo); ix++)
	      {
		r = walk_subobject_offsets (binfo,
					    f,
					    size_binop (PLUS_EXPR,
							offset,
							BINFO_OFFSET (binfo)),
					    offsets,
					    max_offset,
					    /*vbases_p=*/0);
		if (r)
		  return r;
	      }
	  else
	    {
	      /* We still have to walk the primary base, if it is
		 virtual.  (If it is non-virtual, then it was walked
		 above.)  */
	      tree vbase = get_primary_binfo (type_binfo);

	      if (vbase && BINFO_VIRTUAL_P (vbase)
		  && BINFO_PRIMARY_P (vbase)
		  && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
		{
		  r = (walk_subobject_offsets
		       (vbase, f, offset,
			offsets, max_offset, /*vbases_p=*/0));
		  if (r)
		    return r;
		}
	    }
	}

      /* Iterate through the fields of TYPE.  */
      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
	if (TREE_CODE (field) == FIELD_DECL && !DECL_ARTIFICIAL (field))
	  {
	    tree field_offset;

	    if (abi_version_at_least (2))
	      field_offset = byte_position (field);
	    else
	      /* In G++ 3.2, DECL_FIELD_OFFSET was used.  */
	      field_offset = DECL_FIELD_OFFSET (field);

	    r = walk_subobject_offsets (TREE_TYPE (field),
					f,
					size_binop (PLUS_EXPR,
						    offset,
						    field_offset),
					offsets,
					max_offset,
					/*vbases_p=*/1);
	    if (r)
	      return r;
	  }
    }
  else if (TREE_CODE (type) == ARRAY_TYPE)
    {
      tree element_type = strip_array_types (type);
      tree domain = TYPE_DOMAIN (type);
      tree index;

      /* Avoid recursing into objects that are not interesting.  */
      if (!CLASS_TYPE_P (element_type)
	  || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
	return 0;

      /* Step through each of the elements in the array.  */
      for (index = size_zero_node;
	   /* G++ 3.2 had an off-by-one error here.  */
	   (abi_version_at_least (2)
	    ? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
	    : INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
	   index = size_binop (PLUS_EXPR, index, size_one_node))
	{
	  r = walk_subobject_offsets (TREE_TYPE (type),
				      f,
				      offset,
				      offsets,
				      max_offset,
				      /*vbases_p=*/1);
	  if (r)
	    return r;
	  offset = size_binop (PLUS_EXPR, offset,
			       TYPE_SIZE_UNIT (TREE_TYPE (type)));
	  /* If this new OFFSET is bigger than the MAX_OFFSET, then
	     there's no point in iterating through the remaining
	     elements of the array.  */
	  if (max_offset && INT_CST_LT (max_offset, offset))
	    break;
	}
    }

  return 0;
}

/* Record all of the empty subobjects of TYPE (either a type or a
   binfo).  If IS_DATA_MEMBER is true, then a non-static data member
   is being placed at OFFSET; otherwise, it is a base class that is
   being placed at OFFSET.  */

static void
record_subobject_offsets (tree type,
			  tree offset,
			  splay_tree offsets,
			  bool is_data_member)
{
  tree max_offset;
  /* If recording subobjects for a non-static data member or a
     non-empty base class , we do not need to record offsets beyond
     the size of the biggest empty class.  Additional data members
     will go at the end of the class.  Additional base classes will go
     either at offset zero (if empty, in which case they cannot
     overlap with offsets past the size of the biggest empty class) or
     at the end of the class.

     However, if we are placing an empty base class, then we must record
     all offsets, as either the empty class is at offset zero (where
     other empty classes might later be placed) or at the end of the
     class (where other objects might then be placed, so other empty
     subobjects might later overlap).  */
  if (is_data_member
      || !is_empty_class (BINFO_TYPE (type)))
    max_offset = sizeof_biggest_empty_class;
  else
    max_offset = NULL_TREE;
  walk_subobject_offsets (type, record_subobject_offset, offset,
			  offsets, max_offset, is_data_member);
}

/* Returns nonzero if any of the empty subobjects of TYPE (located at
   OFFSET) conflict with entries in OFFSETS.  If VBASES_P is nonzero,
   virtual bases of TYPE are examined.  */

static int
layout_conflict_p (tree type,
		   tree offset,
		   splay_tree offsets,
		   int vbases_p)
{
  splay_tree_node max_node;

  /* Get the node in OFFSETS that indicates the maximum offset where
     an empty subobject is located.  */
  max_node = splay_tree_max (offsets);
  /* If there aren't any empty subobjects, then there's no point in
     performing this check.  */
  if (!max_node)
    return 0;

  return walk_subobject_offsets (type, check_subobject_offset, offset,
				 offsets, (tree) (max_node->key),
				 vbases_p);
}

/* DECL is a FIELD_DECL corresponding either to a base subobject of a
   non-static data member of the type indicated by RLI.  BINFO is the
   binfo corresponding to the base subobject, OFFSETS maps offsets to
   types already located at those offsets.  This function determines
   the position of the DECL.  */

static void
layout_nonempty_base_or_field (record_layout_info rli,
			       tree decl,
			       tree binfo,
			       splay_tree offsets)
{
  tree offset = NULL_TREE;
  bool field_p;
  tree type;

  if (binfo)
    {
      /* For the purposes of determining layout conflicts, we want to
	 use the class type of BINFO; TREE_TYPE (DECL) will be the
	 CLASSTYPE_AS_BASE version, which does not contain entries for
	 zero-sized bases.  */
      type = TREE_TYPE (binfo);
      field_p = false;
    }
  else
    {
      type = TREE_TYPE (decl);
      field_p = true;
    }

  /* Try to place the field.  It may take more than one try if we have
     a hard time placing the field without putting two objects of the
     same type at the same address.  */
  while (1)
    {
      struct record_layout_info_s old_rli = *rli;

      /* Place this field.  */
      place_field (rli, decl);
      offset = byte_position (decl);

      /* We have to check to see whether or not there is already
	 something of the same type at the offset we're about to use.
	 For example, consider:

	   struct S {};
	   struct T : public S { int i; };
	   struct U : public S, public T {};

	 Here, we put S at offset zero in U.  Then, we can't put T at
	 offset zero -- its S component would be at the same address
	 as the S we already allocated.  So, we have to skip ahead.
	 Since all data members, including those whose type is an
	 empty class, have nonzero size, any overlap can happen only
	 with a direct or indirect base-class -- it can't happen with
	 a data member.  */
      /* In a union, overlap is permitted; all members are placed at
	 offset zero.  */
      if (TREE_CODE (rli->t) == UNION_TYPE)
	break;
      /* G++ 3.2 did not check for overlaps when placing a non-empty
	 virtual base.  */
      if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo))
	break;
      if (layout_conflict_p (field_p ? type : binfo, offset,
			     offsets, field_p))
	{
	  /* Strip off the size allocated to this field.  That puts us
	     at the first place we could have put the field with
	     proper alignment.  */
	  *rli = old_rli;

	  /* Bump up by the alignment required for the type.  */
	  rli->bitpos
	    = size_binop (PLUS_EXPR, rli->bitpos,
			  bitsize_int (binfo
				       ? CLASSTYPE_ALIGN (type)
				       : TYPE_ALIGN (type)));
	  normalize_rli (rli);
	}
      else
	/* There was no conflict.  We're done laying out this field.  */
	break;
    }

  /* Now that we know where it will be placed, update its
     BINFO_OFFSET.  */
  if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
    /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
       this point because their BINFO_OFFSET is copied from another
       hierarchy.  Therefore, we may not need to add the entire
       OFFSET.  */
    propagate_binfo_offsets (binfo,
			     size_diffop (convert (ssizetype, offset),
					  convert (ssizetype,
						   BINFO_OFFSET (binfo))));
}

/* Returns true if TYPE is empty and OFFSET is nonzero.  */

static int
empty_base_at_nonzero_offset_p (tree type,
				tree offset,
				splay_tree offsets ATTRIBUTE_UNUSED)
{
  return is_empty_class (type) && !integer_zerop (offset);
}

/* Layout the empty base BINFO.  EOC indicates the byte currently just
   past the end of the class, and should be correctly aligned for a
   class of the type indicated by BINFO; OFFSETS gives the offsets of
   the empty bases allocated so far. T is the most derived
   type.  Return nonzero iff we added it at the end.  */

static bool
layout_empty_base (tree binfo, tree eoc, splay_tree offsets)
{
  tree alignment;
  tree basetype = BINFO_TYPE (binfo);
  bool atend = false;

  /* This routine should only be used for empty classes.  */
  gcc_assert (is_empty_class (basetype));
  alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));

  if (!integer_zerop (BINFO_OFFSET (binfo)))
    {
      if (abi_version_at_least (2))
	propagate_binfo_offsets
	  (binfo, size_diffop (size_zero_node, BINFO_OFFSET (binfo)));
      else
	warning (OPT_Wabi,
		 "offset of empty base %qT may not be ABI-compliant and may"
		 "change in a future version of GCC",
		 BINFO_TYPE (binfo));
    }

  /* This is an empty base class.  We first try to put it at offset
     zero.  */
  if (layout_conflict_p (binfo,
			 BINFO_OFFSET (binfo),
			 offsets,
			 /*vbases_p=*/0))
    {
      /* That didn't work.  Now, we move forward from the next
	 available spot in the class.  */
      atend = true;
      propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
      while (1)
	{
	  if (!layout_conflict_p (binfo,
				  BINFO_OFFSET (binfo),
				  offsets,
				  /*vbases_p=*/0))
	    /* We finally found a spot where there's no overlap.  */
	    break;

	  /* There's overlap here, too.  Bump along to the next spot.  */
	  propagate_binfo_offsets (binfo, alignment);
	}
    }
  return atend;
}

/* Layout the base given by BINFO in the class indicated by RLI.
   *BASE_ALIGN is a running maximum of the alignments of
   any base class.  OFFSETS gives the location of empty base
   subobjects.  T is the most derived type.  Return nonzero if the new
   object cannot be nearly-empty.  A new FIELD_DECL is inserted at
   *NEXT_FIELD, unless BINFO is for an empty base class.

   Returns the location at which the next field should be inserted.  */

static tree *
build_base_field (record_layout_info rli, tree binfo,
		  splay_tree offsets, tree *next_field)
{
  tree t = rli->t;
  tree basetype = BINFO_TYPE (binfo);

  if (!COMPLETE_TYPE_P (basetype))
    /* This error is now reported in xref_tag, thus giving better
       location information.  */
    return next_field;

  /* Place the base class.  */
  if (!is_empty_class (basetype))
    {
      tree decl;

      /* The containing class is non-empty because it has a non-empty
	 base class.  */
      CLASSTYPE_EMPTY_P (t) = 0;

      /* Create the FIELD_DECL.  */
      decl = build_decl (FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
      DECL_ARTIFICIAL (decl) = 1;
      DECL_IGNORED_P (decl) = 1;
      DECL_FIELD_CONTEXT (decl) = t;
      DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
      DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
      DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
      DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
      DECL_MODE (decl) = TYPE_MODE (basetype);
      DECL_FIELD_IS_BASE (decl) = 1;

      /* Try to place the field.  It may take more than one try if we
	 have a hard time placing the field without putting two
	 objects of the same type at the same address.  */
      layout_nonempty_base_or_field (rli, decl, binfo, offsets);
      /* Add the new FIELD_DECL to the list of fields for T.  */
      TREE_CHAIN (decl) = *next_field;
      *next_field = decl;
      next_field = &TREE_CHAIN (decl);
    }
  else
    {
      tree eoc;
      bool atend;

      /* On some platforms (ARM), even empty classes will not be
	 byte-aligned.  */
      eoc = round_up (rli_size_unit_so_far (rli),
		      CLASSTYPE_ALIGN_UNIT (basetype));
      atend = layout_empty_base (binfo, eoc, offsets);
      /* A nearly-empty class "has no proper base class that is empty,
	 not morally virtual, and at an offset other than zero."  */
      if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
	{
	  if (atend)
	    CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
	  /* The check above (used in G++ 3.2) is insufficient because
	     an empty class placed at offset zero might itself have an
	     empty base at a nonzero offset.  */
	  else if (walk_subobject_offsets (basetype,
					   empty_base_at_nonzero_offset_p,
					   size_zero_node,
					   /*offsets=*/NULL,
					   /*max_offset=*/NULL_TREE,
					   /*vbases_p=*/true))
	    {
	      if (abi_version_at_least (2))
		CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
	      else
		warning (OPT_Wabi,
			 "class %qT will be considered nearly empty in a "
			 "future version of GCC", t);
	    }
	}

      /* We do not create a FIELD_DECL for empty base classes because
	 it might overlap some other field.  We want to be able to
	 create CONSTRUCTORs for the class by iterating over the
	 FIELD_DECLs, and the back end does not handle overlapping
	 FIELD_DECLs.  */

      /* An empty virtual base causes a class to be non-empty
	 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
	 here because that was already done when the virtual table
	 pointer was created.  */
    }

  /* Record the offsets of BINFO and its base subobjects.  */
  record_subobject_offsets (binfo,
			    BINFO_OFFSET (binfo),
			    offsets,
			    /*is_data_member=*/false);

  return next_field;
}

/* Layout all of the non-virtual base classes.  Record empty
   subobjects in OFFSETS.  T is the most derived type.  Return nonzero
   if the type cannot be nearly empty.  The fields created
   corresponding to the base classes will be inserted at
   *NEXT_FIELD.  */

static void
build_base_fields (record_layout_info rli,
		   splay_tree offsets, tree *next_field)
{
  /* Chain to hold all the new FIELD_DECLs which stand in for base class
     subobjects.  */
  tree t = rli->t;
  int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
  int i;

  /* The primary base class is always allocated first.  */
  if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
    next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
				   offsets, next_field);

  /* Now allocate the rest of the bases.  */
  for (i = 0; i < n_baseclasses; ++i)
    {
      tree base_binfo;

      base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);

      /* The primary base was already allocated above, so we don't
	 need to allocate it again here.  */
      if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
	continue;

      /* Virtual bases are added at the end (a primary virtual base
	 will have already been added).  */
      if (BINFO_VIRTUAL_P (base_binfo))
	continue;

      next_field = build_base_field (rli, base_binfo,
				     offsets, next_field);
    }
}

/* Go through the TYPE_METHODS of T issuing any appropriate
   diagnostics, figuring out which methods override which other
   methods, and so forth.  */

static void
check_methods (tree t)
{
  tree x;

  for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
    {
      check_for_override (x, t);
      if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
	error ("initializer specified for non-virtual method %q+D", x);
      /* The name of the field is the original field name
	 Save this in auxiliary field for later overloading.  */
      if (DECL_VINDEX (x))
	{
	  TYPE_POLYMORPHIC_P (t) = 1;
	  if (DECL_PURE_VIRTUAL_P (x))
	    VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
	}
      /* All user-declared destructors are non-trivial.  */
      if (DECL_DESTRUCTOR_P (x))
	TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
    }
}

/* FN is a constructor or destructor.  Clone the declaration to create
   a specialized in-charge or not-in-charge version, as indicated by
   NAME.  */

static tree
build_clone (tree fn, tree name)
{
  tree parms;
  tree clone;

  /* Copy the function.  */
  clone = copy_decl (fn);
  /* Remember where this function came from.  */
  DECL_CLONED_FUNCTION (clone) = fn;
  DECL_ABSTRACT_ORIGIN (clone) = fn;
  /* Reset the function name.  */
  DECL_NAME (clone) = name;
  SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
  /* There's no pending inline data for this function.  */
  DECL_PENDING_INLINE_INFO (clone) = NULL;
  DECL_PENDING_INLINE_P (clone) = 0;
  /* And it hasn't yet been deferred.  */
  DECL_DEFERRED_FN (clone) = 0;

  /* The base-class destructor is not virtual.  */
  if (name == base_dtor_identifier)
    {
      DECL_VIRTUAL_P (clone) = 0;
      if (TREE_CODE (clone) != TEMPLATE_DECL)
	DECL_VINDEX (clone) = NULL_TREE;
    }

  /* If there was an in-charge parameter, drop it from the function
     type.  */
  if (DECL_HAS_IN_CHARGE_PARM_P (clone))
    {
      tree basetype;
      tree parmtypes;
      tree exceptions;

      exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
      basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
      parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
      /* Skip the `this' parameter.  */
      parmtypes = TREE_CHAIN (parmtypes);
      /* Skip the in-charge parameter.  */
      parmtypes = TREE_CHAIN (parmtypes);
      /* And the VTT parm, in a complete [cd]tor.  */
      if (DECL_HAS_VTT_PARM_P (fn)
	  && ! DECL_NEEDS_VTT_PARM_P (clone))
	parmtypes = TREE_CHAIN (parmtypes);
       /* If this is subobject constructor or destructor, add the vtt
	 parameter.  */
      TREE_TYPE (clone)
	= build_method_type_directly (basetype,
				      TREE_TYPE (TREE_TYPE (clone)),
				      parmtypes);
      if (exceptions)
	TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
						     exceptions);
      TREE_TYPE (clone)
	= cp_build_type_attribute_variant (TREE_TYPE (clone),
					   TYPE_ATTRIBUTES (TREE_TYPE (fn)));
    }

  /* Copy the function parameters.  But, DECL_ARGUMENTS on a TEMPLATE_DECL
     aren't function parameters; those are the template parameters.  */
  if (TREE_CODE (clone) != TEMPLATE_DECL)
    {
      DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
      /* Remove the in-charge parameter.  */
      if (DECL_HAS_IN_CHARGE_PARM_P (clone))
	{
	  TREE_CHAIN (DECL_ARGUMENTS (clone))
	    = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
	  DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
	}
      /* And the VTT parm, in a complete [cd]tor.  */
      if (DECL_HAS_VTT_PARM_P (fn))
	{
	  if (DECL_NEEDS_VTT_PARM_P (clone))
	    DECL_HAS_VTT_PARM_P (clone) = 1;
	  else
	    {
	      TREE_CHAIN (DECL_ARGUMENTS (clone))
		= TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
	      DECL_HAS_VTT_PARM_P (clone) = 0;
	    }
	}

      for (parms = DECL_ARGUMENTS (clone); parms; parms = TREE_CHAIN (parms))
	{
	  DECL_CONTEXT (parms) = clone;
	  cxx_dup_lang_specific_decl (parms);
	}
    }

  /* Create the RTL for this function.  */
  SET_DECL_RTL (clone, NULL_RTX);
  rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);

  /* Make it easy to find the CLONE given the FN.  */
  TREE_CHAIN (clone) = TREE_CHAIN (fn);
  TREE_CHAIN (fn) = clone;

  /* If this is a template, handle the DECL_TEMPLATE_RESULT as well.  */
  if (TREE_CODE (clone) == TEMPLATE_DECL)
    {
      tree result;

      DECL_TEMPLATE_RESULT (clone)
	= build_clone (DECL_TEMPLATE_RESULT (clone), name);
      result = DECL_TEMPLATE_RESULT (clone);
      DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
      DECL_TI_TEMPLATE (result) = clone;
    }
  else if (pch_file)
    note_decl_for_pch (clone);

  return clone;
}

/* Produce declarations for all appropriate clones of FN.  If
   UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
   CLASTYPE_METHOD_VEC as well.  */

void
clone_function_decl (tree fn, int update_method_vec_p)
{
  tree clone;

  /* Avoid inappropriate cloning.  */
  if (TREE_CHAIN (fn)
      && DECL_CLONED_FUNCTION (TREE_CHAIN (fn)))
    return;

  if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
    {
      /* For each constructor, we need two variants: an in-charge version
	 and a not-in-charge version.  */
      clone = build_clone (fn, complete_ctor_identifier);
      if (update_method_vec_p)
	add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
      clone = build_clone (fn, base_ctor_identifier);
      if (update_method_vec_p)
	add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
    }
  else
    {
      gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));

      /* For each destructor, we need three variants: an in-charge
	 version, a not-in-charge version, and an in-charge deleting
	 version.  We clone the deleting version first because that
	 means it will go second on the TYPE_METHODS list -- and that
	 corresponds to the correct layout order in the virtual
	 function table.

	 For a non-virtual destructor, we do not build a deleting
	 destructor.  */
      if (DECL_VIRTUAL_P (fn))
	{
	  clone = build_clone (fn, deleting_dtor_identifier);
	  if (update_method_vec_p)
	    add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
	}
      clone = build_clone (fn, complete_dtor_identifier);
      if (update_method_vec_p)
	add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
      clone = build_clone (fn, base_dtor_identifier);
      if (update_method_vec_p)
	add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
    }

  /* Note that this is an abstract function that is never emitted.  */
  DECL_ABSTRACT (fn) = 1;
}

/* DECL is an in charge constructor, which is being defined. This will
   have had an in class declaration, from whence clones were
   declared. An out-of-class definition can specify additional default
   arguments. As it is the clones that are involved in overload
   resolution, we must propagate the information from the DECL to its
   clones.  */

void
adjust_clone_args (tree decl)
{
  tree clone;

  for (clone = TREE_CHAIN (decl); clone && DECL_CLONED_FUNCTION (clone);
       clone = TREE_CHAIN (clone))
    {
      tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
      tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
      tree decl_parms, clone_parms;

      clone_parms = orig_clone_parms;

      /* Skip the 'this' parameter.  */
      orig_clone_parms = TREE_CHAIN (orig_clone_parms);
      orig_decl_parms = TREE_CHAIN (orig_decl_parms);

      if (DECL_HAS_IN_CHARGE_PARM_P (decl))
	orig_decl_parms = TREE_CHAIN (orig_decl_parms);
      if (DECL_HAS_VTT_PARM_P (decl))
	orig_decl_parms = TREE_CHAIN (orig_decl_parms);

      clone_parms = orig_clone_parms;
      if (DECL_HAS_VTT_PARM_P (clone))
	clone_parms = TREE_CHAIN (clone_parms);

      for (decl_parms = orig_decl_parms; decl_parms;
	   decl_parms = TREE_CHAIN (decl_parms),
	     clone_parms = TREE_CHAIN (clone_parms))
	{
	  gcc_assert (same_type_p (TREE_TYPE (decl_parms),
				   TREE_TYPE (clone_parms)));

	  if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
	    {
	      /* A default parameter has been added. Adjust the
		 clone's parameters.  */
	      tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
	      tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
	      tree type;

	      clone_parms = orig_decl_parms;

	      if (DECL_HAS_VTT_PARM_P (clone))
		{
		  clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
					   TREE_VALUE (orig_clone_parms),
					   clone_parms);
		  TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
		}
	      type = build_method_type_directly (basetype,
						 TREE_TYPE (TREE_TYPE (clone)),
						 clone_parms);
	      if (exceptions)
		type = build_exception_variant (type, exceptions);
	      TREE_TYPE (clone) = type;

	      clone_parms = NULL_TREE;
	      break;
	    }
	}
      gcc_assert (!clone_parms);
    }
}

/* For each of the constructors and destructors in T, create an
   in-charge and not-in-charge variant.  */

static void
clone_constructors_and_destructors (tree t)
{
  tree fns;

  /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
     out now.  */
  if (!CLASSTYPE_METHOD_VEC (t))
    return;

  for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
    clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
  for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
    clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
}

/* Remove all zero-width bit-fields from T.  */

static void
remove_zero_width_bit_fields (tree t)
{
  tree *fieldsp;

  fieldsp = &TYPE_FIELDS (t);
  while (*fieldsp)
    {
      if (TREE_CODE (*fieldsp) == FIELD_DECL
	  && DECL_C_BIT_FIELD (*fieldsp)
	  && DECL_INITIAL (*fieldsp))
	*fieldsp = TREE_CHAIN (*fieldsp);
      else
	fieldsp = &TREE_CHAIN (*fieldsp);
    }
}

/* Returns TRUE iff we need a cookie when dynamically allocating an
   array whose elements have the indicated class TYPE.  */

static bool
type_requires_array_cookie (tree type)
{
  tree fns;
  bool has_two_argument_delete_p = false;

  gcc_assert (CLASS_TYPE_P (type));

  /* If there's a non-trivial destructor, we need a cookie.  In order
     to iterate through the array calling the destructor for each
     element, we'll have to know how many elements there are.  */
  if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
    return true;

  /* If the usual deallocation function is a two-argument whose second
     argument is of type `size_t', then we have to pass the size of
     the array to the deallocation function, so we will need to store
     a cookie.  */
  fns = lookup_fnfields (TYPE_BINFO (type),
			 ansi_opname (VEC_DELETE_EXPR),
			 /*protect=*/0);
  /* If there are no `operator []' members, or the lookup is
     ambiguous, then we don't need a cookie.  */
  if (!fns || fns == error_mark_node)
    return false;
  /* Loop through all of the functions.  */
  for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
    {
      tree fn;
      tree second_parm;

      /* Select the current function.  */
      fn = OVL_CURRENT (fns);
      /* See if this function is a one-argument delete function.  If
	 it is, then it will be the usual deallocation function.  */
      second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
      if (second_parm == void_list_node)
	return false;
      /* Otherwise, if we have a two-argument function and the second
	 argument is `size_t', it will be the usual deallocation
	 function -- unless there is one-argument function, too.  */
      if (TREE_CHAIN (second_parm) == void_list_node
	  && same_type_p (TREE_VALUE (second_parm), size_type_node))
	has_two_argument_delete_p = true;
    }

  return has_two_argument_delete_p;
}

/* Check the validity of the bases and members declared in T.  Add any
   implicitly-generated functions (like copy-constructors and
   assignment operators).  Compute various flag bits (like
   CLASSTYPE_NON_POD_T) for T.  This routine works purely at the C++
   level: i.e., independently of the ABI in use.  */

static void
check_bases_and_members (tree t)
{
  /* Nonzero if the implicitly generated copy constructor should take
     a non-const reference argument.  */
  int cant_have_const_ctor;
  /* Nonzero if the implicitly generated assignment operator
     should take a non-const reference argument.  */
  int no_const_asn_ref;
  tree access_decls;

  /* By default, we use const reference arguments and generate default
     constructors.  */
  cant_have_const_ctor = 0;
  no_const_asn_ref = 0;

  /* Check all the base-classes.  */
  check_bases (t, &cant_have_const_ctor,
	       &no_const_asn_ref);

  /* Check all the method declarations.  */
  check_methods (t);

  /* Check all the data member declarations.  We cannot call
     check_field_decls until we have called check_bases check_methods,
     as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
     being set appropriately.  */
  check_field_decls (t, &access_decls,
		     &cant_have_const_ctor,
		     &no_const_asn_ref);

  /* A nearly-empty class has to be vptr-containing; a nearly empty
     class contains just a vptr.  */
  if (!TYPE_CONTAINS_VPTR_P (t))
    CLASSTYPE_NEARLY_EMPTY_P (t) = 0;

  /* Do some bookkeeping that will guide the generation of implicitly
     declared member functions.  */
  TYPE_HAS_COMPLEX_INIT_REF (t)
    |= (TYPE_HAS_INIT_REF (t) || TYPE_CONTAINS_VPTR_P (t));
  TYPE_NEEDS_CONSTRUCTING (t)
    |= (TYPE_HAS_CONSTRUCTOR (t) || TYPE_CONTAINS_VPTR_P (t));
  CLASSTYPE_NON_AGGREGATE (t)
    |= (TYPE_HAS_CONSTRUCTOR (t) || TYPE_POLYMORPHIC_P (t));
  CLASSTYPE_NON_POD_P (t)
    |= (CLASSTYPE_NON_AGGREGATE (t)
	|| TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
	|| TYPE_HAS_ASSIGN_REF (t));
  TYPE_HAS_COMPLEX_ASSIGN_REF (t)
    |= TYPE_HAS_ASSIGN_REF (t) || TYPE_CONTAINS_VPTR_P (t);
  TYPE_HAS_COMPLEX_DFLT (t)
    |= (TYPE_HAS_DEFAULT_CONSTRUCTOR (t) || TYPE_CONTAINS_VPTR_P (t));

  /* Synthesize any needed methods.  */
  add_implicitly_declared_members (t,
				   cant_have_const_ctor,
				   no_const_asn_ref);

  /* Create the in-charge and not-in-charge variants of constructors
     and destructors.  */
  clone_constructors_and_destructors (t);

  /* Process the using-declarations.  */
  for (; access_decls; access_decls = TREE_CHAIN (access_decls))
    handle_using_decl (TREE_VALUE (access_decls), t);

  /* Build and sort the CLASSTYPE_METHOD_VEC.  */
  finish_struct_methods (t);

  /* Figure out whether or not we will need a cookie when dynamically
     allocating an array of this type.  */
  TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
    = type_requires_array_cookie (t);
}

/* If T needs a pointer to its virtual function table, set TYPE_VFIELD
   accordingly.  If a new vfield was created (because T doesn't have a
   primary base class), then the newly created field is returned.  It
   is not added to the TYPE_FIELDS list; it is the caller's
   responsibility to do that.  Accumulate declared virtual functions
   on VIRTUALS_P.  */

static tree
create_vtable_ptr (tree t, tree* virtuals_p)
{
  tree fn;

  /* Collect the virtual functions declared in T.  */
  for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
    if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
	&& TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
      {
	tree new_virtual = make_node (TREE_LIST);

	BV_FN (new_virtual) = fn;
	BV_DELTA (new_virtual) = integer_zero_node;
	BV_VCALL_INDEX (new_virtual) = NULL_TREE;

	TREE_CHAIN (new_virtual) = *virtuals_p;
	*virtuals_p = new_virtual;
      }

  /* If we couldn't find an appropriate base class, create a new field
     here.  Even if there weren't any new virtual functions, we might need a
     new virtual function table if we're supposed to include vptrs in
     all classes that need them.  */
  if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
    {
      /* We build this decl with vtbl_ptr_type_node, which is a
	 `vtable_entry_type*'.  It might seem more precise to use
	 `vtable_entry_type (*)[N]' where N is the number of virtual
	 functions.  However, that would require the vtable pointer in
	 base classes to have a different type than the vtable pointer
	 in derived classes.  We could make that happen, but that
	 still wouldn't solve all the problems.  In particular, the
	 type-based alias analysis code would decide that assignments
	 to the base class vtable pointer can't alias assignments to
	 the derived class vtable pointer, since they have different
	 types.  Thus, in a derived class destructor, where the base
	 class constructor was inlined, we could generate bad code for
	 setting up the vtable pointer.

	 Therefore, we use one type for all vtable pointers.  We still
	 use a type-correct type; it's just doesn't indicate the array
	 bounds.  That's better than using `void*' or some such; it's
	 cleaner, and it let's the alias analysis code know that these
	 stores cannot alias stores to void*!  */
      tree field;

      field = build_decl (FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
      DECL_VIRTUAL_P (field) = 1;
      DECL_ARTIFICIAL (field) = 1;
      DECL_FIELD_CONTEXT (field) = t;
      DECL_FCONTEXT (field) = t;

      TYPE_VFIELD (t) = field;

      /* This class is non-empty.  */
      CLASSTYPE_EMPTY_P (t) = 0;

      return field;
    }

  return NULL_TREE;
}

/* Fixup the inline function given by INFO now that the class is
   complete.  */

static void
fixup_pending_inline (tree fn)
{
  if (DECL_PENDING_INLINE_INFO (fn))
    {
      tree args = DECL_ARGUMENTS (fn);
      while (args)
	{
	  DECL_CONTEXT (args) = fn;
	  args = TREE_CHAIN (args);
	}
    }
}

/* Fixup the inline methods and friends in TYPE now that TYPE is
   complete.  */

static void
fixup_inline_methods (tree type)
{
  tree method = TYPE_METHODS (type);
  VEC(tree,gc) *friends;
  unsigned ix;

  if (method && TREE_CODE (method) == TREE_VEC)
    {
      if (TREE_VEC_ELT (method, 1))
	method = TREE_VEC_ELT (method, 1);
      else if (TREE_VEC_ELT (method, 0))
	method = TREE_VEC_ELT (method, 0);
      else
	method = TREE_VEC_ELT (method, 2);
    }

  /* Do inline member functions.  */
  for (; method; method = TREE_CHAIN (method))
    fixup_pending_inline (method);

  /* Do friends.  */
  for (friends = CLASSTYPE_INLINE_FRIENDS (type), ix = 0;
       VEC_iterate (tree, friends, ix, method); ix++)
    fixup_pending_inline (method);
  CLASSTYPE_INLINE_FRIENDS (type) = NULL;
}

/* Add OFFSET to all base types of BINFO which is a base in the
   hierarchy dominated by T.

   OFFSET, which is a type offset, is number of bytes.  */

static void
propagate_binfo_offsets (tree binfo, tree offset)
{
  int i;
  tree primary_binfo;
  tree base_binfo;

  /* Update BINFO's offset.  */
  BINFO_OFFSET (binfo)
    = convert (sizetype,
	       size_binop (PLUS_EXPR,
			   convert (ssizetype, BINFO_OFFSET (binfo)),
			   offset));

  /* Find the primary base class.  */
  primary_binfo = get_primary_binfo (binfo);

  if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
    propagate_binfo_offsets (primary_binfo, offset);

  /* Scan all of the bases, pushing the BINFO_OFFSET adjust
     downwards.  */
  for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
    {
      /* Don't do the primary base twice.  */
      if (base_binfo == primary_binfo)
	continue;

      if (BINFO_VIRTUAL_P (base_binfo))
	continue;

      propagate_binfo_offsets (base_binfo, offset);
    }
}

/* Set BINFO_OFFSET for all of the virtual bases for RLI->T.  Update
   TYPE_ALIGN and TYPE_SIZE for T.  OFFSETS gives the location of
   empty subobjects of T.  */

static void
layout_virtual_bases (record_layout_info rli, splay_tree offsets)
{
  tree vbase;
  tree t = rli->t;
  bool first_vbase = true;
  tree *next_field;

  if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
    return;

  if (!abi_version_at_least(2))
    {
      /* In G++ 3.2, we incorrectly rounded the size before laying out
	 the virtual bases.  */
      finish_record_layout (rli, /*free_p=*/false);
#ifdef STRUCTURE_SIZE_BOUNDARY
      /* Packed structures don't need to have minimum size.  */
      if (! TYPE_PACKED (t))
	TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
#endif
      rli->offset = TYPE_SIZE_UNIT (t);
      rli->bitpos = bitsize_zero_node;
      rli->record_align = TYPE_ALIGN (t);
    }

  /* Find the last field.  The artificial fields created for virtual
     bases will go after the last extant field to date.  */
  next_field = &TYPE_FIELDS (t);
  while (*next_field)
    next_field = &TREE_CHAIN (*next_field);

  /* Go through the virtual bases, allocating space for each virtual
     base that is not already a primary base class.  These are
     allocated in inheritance graph order.  */
  for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
    {
      if (!BINFO_VIRTUAL_P (vbase))
	continue;

      if (!BINFO_PRIMARY_P (vbase))
	{
	  tree basetype = TREE_TYPE (vbase);

	  /* This virtual base is not a primary base of any class in the
	     hierarchy, so we have to add space for it.  */
	  next_field = build_base_field (rli, vbase,
					 offsets, next_field);

	  /* If the first virtual base might have been placed at a
	     lower address, had we started from CLASSTYPE_SIZE, rather
	     than TYPE_SIZE, issue a warning.  There can be both false
	     positives and false negatives from this warning in rare
	     cases; to deal with all the possibilities would probably
	     require performing both layout algorithms and comparing
	     the results which is not particularly tractable.  */
	  if (warn_abi
	      && first_vbase
	      && (tree_int_cst_lt
		  (size_binop (CEIL_DIV_EXPR,
			       round_up (CLASSTYPE_SIZE (t),
					 CLASSTYPE_ALIGN (basetype)),
			       bitsize_unit_node),
		   BINFO_OFFSET (vbase))))
	    warning (OPT_Wabi,
		     "offset of virtual base %qT is not ABI-compliant and "
		     "may change in a future version of GCC",
		     basetype);

	  first_vbase = false;
	}
    }
}

/* Returns the offset of the byte just past the end of the base class
   BINFO.  */

static tree
end_of_base (tree binfo)
{
  tree size;

  if (is_empty_class (BINFO_TYPE (binfo)))
    /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
       allocate some space for it. It cannot have virtual bases, so
       TYPE_SIZE_UNIT is fine.  */
    size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
  else
    size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));

  return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
}

/* Returns the offset of the byte just past the end of the base class
   with the highest offset in T.  If INCLUDE_VIRTUALS_P is zero, then
   only non-virtual bases are included.  */

static tree
end_of_class (tree t, int include_virtuals_p)
{
  tree result = size_zero_node;
  VEC(tree,gc) *vbases;
  tree binfo;
  tree base_binfo;
  tree offset;
  int i;

  for (binfo = TYPE_BINFO (t), i = 0;
       BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
    {
      if (!include_virtuals_p
	  && BINFO_VIRTUAL_P (base_binfo)
	  && (!BINFO_PRIMARY_P (base_binfo)
	      || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
	continue;

      offset = end_of_base (base_binfo);
      if (INT_CST_LT_UNSIGNED (result, offset))
	result = offset;
    }

  /* G++ 3.2 did not check indirect virtual bases.  */
  if (abi_version_at_least (2) && include_virtuals_p)
    for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
	 VEC_iterate (tree, vbases, i, base_binfo); i++)
      {
	offset = end_of_base (base_binfo);
	if (INT_CST_LT_UNSIGNED (result, offset))
	  result = offset;
      }

  return result;
}

/* Warn about bases of T that are inaccessible because they are
   ambiguous.  For example:

     struct S {};
     struct T : public S {};
     struct U : public S, public T {};

   Here, `(S*) new U' is not allowed because there are two `S'
   subobjects of U.  */

static void
warn_about_ambiguous_bases (tree t)
{
  int i;
  VEC(tree,gc) *vbases;
  tree basetype;
  tree binfo;
  tree base_binfo;

  /* If there are no repeated bases, nothing can be ambiguous.  */
  if (!CLASSTYPE_REPEATED_BASE_P (t))
    return;

  /* Check direct bases.  */
  for (binfo = TYPE_BINFO (t), i = 0;
       BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
    {
      basetype = BINFO_TYPE (base_binfo);

      if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
	warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
		 basetype, t);
    }

  /* Check for ambiguous virtual bases.  */
  if (extra_warnings)
    for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
	 VEC_iterate (tree, vbases, i, binfo); i++)
      {
	basetype = BINFO_TYPE (binfo);

	if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
	  warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due to ambiguity",
		   basetype, t);
      }
}

/* Compare two INTEGER_CSTs K1 and K2.  */

static int
splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
{
  return tree_int_cst_compare ((tree) k1, (tree) k2);
}

/* Increase the size indicated in RLI to account for empty classes
   that are "off the end" of the class.  */

static void
include_empty_classes (record_layout_info rli)
{
  tree eoc;
  tree rli_size;

  /* It might be the case that we grew the class to allocate a
     zero-sized base class.  That won't be reflected in RLI, yet,
     because we are willing to overlay multiple bases at the same
     offset.  However, now we need to make sure that RLI is big enough
     to reflect the entire class.  */
  eoc = end_of_class (rli->t,
		      CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
  rli_size = rli_size_unit_so_far (rli);
  if (TREE_CODE (rli_size) == INTEGER_CST
      && INT_CST_LT_UNSIGNED (rli_size, eoc))
    {
      if (!abi_version_at_least (2))
	/* In version 1 of the ABI, the size of a class that ends with
	   a bitfield was not rounded up to a whole multiple of a
	   byte.  Because rli_size_unit_so_far returns only the number
	   of fully allocated bytes, any extra bits were not included
	   in the size.  */
	rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
      else
	/* The size should have been rounded to a whole byte.  */
	gcc_assert (tree_int_cst_equal
		    (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
      rli->bitpos
	= size_binop (PLUS_EXPR,
		      rli->bitpos,
		      size_binop (MULT_EXPR,
				  convert (bitsizetype,
					   size_binop (MINUS_EXPR,
						       eoc, rli_size)),
				  bitsize_int (BITS_PER_UNIT)));
      normalize_rli (rli);
    }
}

/* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T.  Calculate
   BINFO_OFFSETs for all of the base-classes.  Position the vtable
   pointer.  Accumulate declared virtual functions on VIRTUALS_P.  */

static void
layout_class_type (tree t, tree *virtuals_p)
{
  tree non_static_data_members;
  tree field;
  tree vptr;
  record_layout_info rli;
  /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
     types that appear at that offset.  */
  splay_tree empty_base_offsets;
  /* True if the last field layed out was a bit-field.  */
  bool last_field_was_bitfield = false;
  /* The location at which the next field should be inserted.  */
  tree *next_field;
  /* T, as a base class.  */
  tree base_t;

  /* Keep track of the first non-static data member.  */
  non_static_data_members = TYPE_FIELDS (t);

  /* Start laying out the record.  */
  rli = start_record_layout (t);

  /* Mark all the primary bases in the hierarchy.  */
  determine_primary_bases (t);

  /* Create a pointer to our virtual function table.  */
  vptr = create_vtable_ptr (t, virtuals_p);

  /* The vptr is always the first thing in the class.  */
  if (vptr)
    {
      TREE_CHAIN (vptr) = TYPE_FIELDS (t);
      TYPE_FIELDS (t) = vptr;
      next_field = &TREE_CHAIN (vptr);
      place_field (rli, vptr);
    }
  else
    next_field = &TYPE_FIELDS (t);

  /* Build FIELD_DECLs for all of the non-virtual base-types.  */
  empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
				       NULL, NULL);
  build_base_fields (rli, empty_base_offsets, next_field);

  /* Layout the non-static data members.  */
  for (field = non_static_data_members; field; field = TREE_CHAIN (field))
    {
      tree type;
      tree padding;

      /* We still pass things that aren't non-static data members to
	 the back end, in case it wants to do something with them.  */
      if (TREE_CODE (field) != FIELD_DECL)
	{
	  place_field (rli, field);
	  /* If the static data member has incomplete type, keep track
	     of it so that it can be completed later.  (The handling
	     of pending statics in finish_record_layout is
	     insufficient; consider:

	       struct S1;
	       struct S2 { static S1 s1; };

	     At this point, finish_record_layout will be called, but
	     S1 is still incomplete.)  */
	  if (TREE_CODE (field) == VAR_DECL)
	    {
	      maybe_register_incomplete_var (field);
	      /* The visibility of static data members is determined
		 at their point of declaration, not their point of
		 definition.  */
	      determine_visibility (field);
	    }
	  continue;
	}

      type = TREE_TYPE (field);
      if (type == error_mark_node)
	continue;

      padding = NULL_TREE;

      /* If this field is a bit-field whose width is greater than its
	 type, then there are some special rules for allocating
	 it.  */
      if (DECL_C_BIT_FIELD (field)
	  && INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
	{
	  integer_type_kind itk;
	  tree integer_type;
	  bool was_unnamed_p = false;
	  /* We must allocate the bits as if suitably aligned for the
	     longest integer type that fits in this many bits.  type
	     of the field.  Then, we are supposed to use the left over
	     bits as additional padding.  */
	  for (itk = itk_char; itk != itk_none; ++itk)
	    if (INT_CST_LT (DECL_SIZE (field),
			    TYPE_SIZE (integer_types[itk])))
	      break;

	  /* ITK now indicates a type that is too large for the
	     field.  We have to back up by one to find the largest
	     type that fits.  */
	  integer_type = integer_types[itk - 1];

	  /* Figure out how much additional padding is required.  GCC
	     3.2 always created a padding field, even if it had zero
	     width.  */
	  if (!abi_version_at_least (2)
	      || INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
	    {
	      if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
		/* In a union, the padding field must have the full width
		   of the bit-field; all fields start at offset zero.  */
		padding = DECL_SIZE (field);
	      else
		{
		  if (TREE_CODE (t) == UNION_TYPE)
		    warning (OPT_Wabi, "size assigned to %qT may not be "
			     "ABI-compliant and may change in a future "
			     "version of GCC",
			     t);
		  padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
					TYPE_SIZE (integer_type));
		}
	    }
#ifdef PCC_BITFIELD_TYPE_MATTERS
	  /* An unnamed bitfield does not normally affect the
	     alignment of the containing class on a target where
	     PCC_BITFIELD_TYPE_MATTERS.  But, the C++ ABI does not
	     make any exceptions for unnamed bitfields when the
	     bitfields are longer than their types.  Therefore, we
	     temporarily give the field a name.  */
	  if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
	    {
	      was_unnamed_p = true;
	      DECL_NAME (field) = make_anon_name ();
	    }
#endif
	  DECL_SIZE (field) = TYPE_SIZE (integer_type);
	  DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
	  DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
	  layout_nonempty_base_or_field (rli, field, NULL_TREE,
					 empty_base_offsets);
	  if (was_unnamed_p)
	    DECL_NAME (field) = NULL_TREE;
	  /* Now that layout has been performed, set the size of the
	     field to the size of its declared type; the rest of the
	     field is effectively invisible.  */
	  DECL_SIZE (field) = TYPE_SIZE (type);
	  /* We must also reset the DECL_MODE of the field.  */
	  if (abi_version_at_least (2))
	    DECL_MODE (field) = TYPE_MODE (type);
	  else if (warn_abi
		   && DECL_MODE (field) != TYPE_MODE (type))
	    /* Versions of G++ before G++ 3.4 did not reset the
	       DECL_MODE.  */
	    warning (OPT_Wabi,
		     "the offset of %qD may not be ABI-compliant and may "
		     "change in a future version of GCC", field);
	}
      else
	layout_nonempty_base_or_field (rli, field, NULL_TREE,
				       empty_base_offsets);

      /* Remember the location of any empty classes in FIELD.  */
      if (abi_version_at_least (2))
	record_subobject_offsets (TREE_TYPE (field),
				  byte_position(field),
				  empty_base_offsets,
				  /*is_data_member=*/true);

      /* If a bit-field does not immediately follow another bit-field,
	 and yet it starts in the middle of a byte, we have failed to
	 comply with the ABI.  */
      if (warn_abi
	  && DECL_C_BIT_FIELD (field)
	  /* The TREE_NO_WARNING flag gets set by Objective-C when
	     laying out an Objective-C class.  The ObjC ABI differs
	     from the C++ ABI, and so we do not want a warning
	     here.  */
	  && !TREE_NO_WARNING (field)
	  && !last_field_was_bitfield
	  && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
					 DECL_FIELD_BIT_OFFSET (field),
					 bitsize_unit_node)))
	warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
		 "change in a future version of GCC", field);

      /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
	 offset of the field.  */
      if (warn_abi
	  && !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
				  byte_position (field))
	  && contains_empty_class_p (TREE_TYPE (field)))
	warning (OPT_Wabi, "%q+D contains empty classes which may cause base "
		 "classes to be placed at different locations in a "
		 "future version of GCC", field);

      /* The middle end uses the type of expressions to determine the
	 possible range of expression values.  In order to optimize
	 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
	 must be made aware of the width of "i", via its type.

	 Because C++ does not have integer types of arbitrary width,
	 we must (for the purposes of the front end) convert from the
	 type assigned here to the declared type of the bitfield
	 whenever a bitfield expression is used as an rvalue.
	 Similarly, when assigning a value to a bitfield, the value
	 must be converted to the type given the bitfield here.  */
      if (DECL_C_BIT_FIELD (field))
	{
	  tree ftype;
	  unsigned HOST_WIDE_INT width;
	  ftype = TREE_TYPE (field);
	  width = tree_low_cst (DECL_SIZE (field), /*unsignedp=*/1);
	  if (width != TYPE_PRECISION (ftype))
	    TREE_TYPE (field)
	      = c_build_bitfield_integer_type (width,
					       TYPE_UNSIGNED (ftype));
	}

      /* If we needed additional padding after this field, add it
	 now.  */
      if (padding)
	{
	  tree padding_field;

	  padding_field = build_decl (FIELD_DECL,
				      NULL_TREE,
				      char_type_node);
	  DECL_BIT_FIELD (padding_field) = 1;
	  DECL_SIZE (padding_field) = padding;
	  DECL_CONTEXT (padding_field) = t;
	  DECL_ARTIFICIAL (padding_field) = 1;
	  DECL_IGNORED_P (padding_field) = 1;
	  layout_nonempty_base_or_field (rli, padding_field,
					 NULL_TREE,
					 empty_base_offsets);
	}

      last_field_was_bitfield = DECL_C_BIT_FIELD (field);
    }

  if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
    {
      /* Make sure that we are on a byte boundary so that the size of
	 the class without virtual bases will always be a round number
	 of bytes.  */
      rli->bitpos = round_up (rli->bitpos, BITS_PER_UNIT);
      normalize_rli (rli);
    }

  /* G++ 3.2 does not allow virtual bases to be overlaid with tail
     padding.  */
  if (!abi_version_at_least (2))
    include_empty_classes(rli);

  /* Delete all zero-width bit-fields from the list of fields.  Now
     that the type is laid out they are no longer important.  */
  remove_zero_width_bit_fields (t);

  /* Create the version of T used for virtual bases.  We do not use
     make_aggr_type for this version; this is an artificial type.  For
     a POD type, we just reuse T.  */
  if (CLASSTYPE_NON_POD_P (t) || CLASSTYPE_EMPTY_P (t))
    {
      base_t = make_node (TREE_CODE (t));

      /* Set the size and alignment for the new type.  In G++ 3.2, all
	 empty classes were considered to have size zero when used as
	 base classes.  */
      if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
	{
	  TYPE_SIZE (base_t) = bitsize_zero_node;
	  TYPE_SIZE_UNIT (base_t) = size_zero_node;
	  if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
	    warning (OPT_Wabi,
		     "layout of classes derived from empty class %qT "
		     "may change in a future version of GCC",
		     t);
	}
      else
	{
	  tree eoc;

	  /* If the ABI version is not at least two, and the last
	     field was a bit-field, RLI may not be on a byte
	     boundary.  In particular, rli_size_unit_so_far might
	     indicate the last complete byte, while rli_size_so_far
	     indicates the total number of bits used.  Therefore,
	     rli_size_so_far, rather than rli_size_unit_so_far, is
	     used to compute TYPE_SIZE_UNIT.  */
	  eoc = end_of_class (t, /*include_virtuals_p=*/0);
	  TYPE_SIZE_UNIT (base_t)
	    = size_binop (MAX_EXPR,
			  convert (sizetype,
				   size_binop (CEIL_DIV_EXPR,
					       rli_size_so_far (rli),
					       bitsize_int (BITS_PER_UNIT))),
			  eoc);
	  TYPE_SIZE (base_t)
	    = size_binop (MAX_EXPR,
			  rli_size_so_far (rli),
			  size_binop (MULT_EXPR,
				      convert (bitsizetype, eoc),
				      bitsize_int (BITS_PER_UNIT)));
	}
      TYPE_ALIGN (base_t) = rli->record_align;
      TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);

      /* Copy the fields from T.  */
      next_field = &TYPE_FIELDS (base_t);
      for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
	if (TREE_CODE (field) == FIELD_DECL)
	  {
	    *next_field = build_decl (FIELD_DECL,
				      DECL_NAME (field),
				      TREE_TYPE (field));
	    DECL_CONTEXT (*next_field) = base_t;
	    DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
	    DECL_FIELD_BIT_OFFSET (*next_field)
	      = DECL_FIELD_BIT_OFFSET (field);
	    DECL_SIZE (*next_field) = DECL_SIZE (field);
	    DECL_MODE (*next_field) = DECL_MODE (field);
	    next_field = &TREE_CHAIN (*next_field);
	  }

      /* Record the base version of the type.  */
      CLASSTYPE_AS_BASE (t) = base_t;
      TYPE_CONTEXT (base_t) = t;
    }
  else
    CLASSTYPE_AS_BASE (t) = t;

  /* Every empty class contains an empty class.  */
  if (CLASSTYPE_EMPTY_P (t))
    CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;

  /* Set the TYPE_DECL for this type to contain the right
     value for DECL_OFFSET, so that we can use it as part
     of a COMPONENT_REF for multiple inheritance.  */
  layout_decl (TYPE_MAIN_DECL (t), 0);

  /* Now fix up any virtual base class types that we left lying
     around.  We must get these done before we try to lay out the
     virtual function table.  As a side-effect, this will remove the
     base subobject fields.  */
  layout_virtual_bases (rli, empty_base_offsets);

  /* Make sure that empty classes are reflected in RLI at this
     point.  */
  include_empty_classes(rli);

  /* Make sure not to create any structures with zero size.  */
  if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
    place_field (rli,
		 build_decl (FIELD_DECL, NULL_TREE, char_type_node));

  /* Let the back end lay out the type.  */
  finish_record_layout (rli, /*free_p=*/true);

  /* Warn about bases that can't be talked about due to ambiguity.  */
  warn_about_ambiguous_bases (t);

  /* Now that we're done with layout, give the base fields the real types.  */
  for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
    if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
      TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));

  /* Clean up.  */
  splay_tree_delete (empty_base_offsets);

  if (CLASSTYPE_EMPTY_P (t)
      && tree_int_cst_lt (sizeof_biggest_empty_class,
			  TYPE_SIZE_UNIT (t)))
    sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
}

/* Determine the "key method" for the class type indicated by TYPE,
   and set CLASSTYPE_KEY_METHOD accordingly.  */

void
determine_key_method (tree type)
{
  tree method;

  if (TYPE_FOR_JAVA (type)
      || processing_template_decl
      || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
      || CLASSTYPE_INTERFACE_KNOWN (type))
    return;

  /* The key method is the first non-pure virtual function that is not
     inline at the point of class definition.  On some targets the
     key function may not be inline; those targets should not call
     this function until the end of the translation unit.  */
  for (method = TYPE_METHODS (type); method != NULL_TREE;
       method = TREE_CHAIN (method))
    if (DECL_VINDEX (method) != NULL_TREE
	&& ! DECL_DECLARED_INLINE_P (method)
	&& ! DECL_PURE_VIRTUAL_P (method))
      {
	CLASSTYPE_KEY_METHOD (type) = method;
	break;
      }

  return;
}

/* Perform processing required when the definition of T (a class type)
   is complete.  */

void
finish_struct_1 (tree t)
{
  tree x;
  /* A TREE_LIST.  The TREE_VALUE of each node is a FUNCTION_DECL.  */
  tree virtuals = NULL_TREE;
  int n_fields = 0;

  if (COMPLETE_TYPE_P (t))
    {
      gcc_assert (IS_AGGR_TYPE (t));
      error ("redefinition of %q#T", t);
      popclass ();
      return;
    }

  /* If this type was previously laid out as a forward reference,
     make sure we lay it out again.  */
  TYPE_SIZE (t) = NULL_TREE;
  CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;

  fixup_inline_methods (t);

  /* Make assumptions about the class; we'll reset the flags if
     necessary.  */
  CLASSTYPE_EMPTY_P (t) = 1;
  CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
  CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;

  /* Do end-of-class semantic processing: checking the validity of the
     bases and members and add implicitly generated methods.  */
  check_bases_and_members (t);

  /* Find the key method.  */
  if (TYPE_CONTAINS_VPTR_P (t))
    {
      /* The Itanium C++ ABI permits the key method to be chosen when
	 the class is defined -- even though the key method so
	 selected may later turn out to be an inline function.  On
	 some systems (such as ARM Symbian OS) the key method cannot
	 be determined until the end of the translation unit.  On such
	 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
	 will cause the class to be added to KEYED_CLASSES.  Then, in
	 finish_file we will determine the key method.  */
      if (targetm.cxx.key_method_may_be_inline ())
	determine_key_method (t);

      /* If a polymorphic class has no key method, we may emit the vtable
	 in every translation unit where the class definition appears.  */
      if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
	keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
    }

  /* Layout the class itself.  */
  layout_class_type (t, &virtuals);
  if (CLASSTYPE_AS_BASE (t) != t)
    /* We use the base type for trivial assignments, and hence it
       needs a mode.  */
    compute_record_mode (CLASSTYPE_AS_BASE (t));

  virtuals = modify_all_vtables (t, nreverse (virtuals));

  /* If necessary, create the primary vtable for this class.  */
  if (virtuals || TYPE_CONTAINS_VPTR_P (t))
    {
      /* We must enter these virtuals into the table.  */
      if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
	build_primary_vtable (NULL_TREE, t);
      else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
	/* Here we know enough to change the type of our virtual
	   function table, but we will wait until later this function.  */
	build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
    }

  if (TYPE_CONTAINS_VPTR_P (t))
    {
      int vindex;
      tree fn;

      if (BINFO_VTABLE (TYPE_BINFO (t)))
	gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
      if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
	gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);

      /* Add entries for virtual functions introduced by this class.  */
      BINFO_VIRTUALS (TYPE_BINFO (t))
	= chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);

      /* Set DECL_VINDEX for all functions declared in this class.  */
      for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
	   fn;
	   fn = TREE_CHAIN (fn),
	     vindex += (TARGET_VTABLE_USES_DESCRIPTORS
			? TARGET_VTABLE_USES_DESCRIPTORS : 1))
	{
	  tree fndecl = BV_FN (fn);

	  if (DECL_THUNK_P (fndecl))
	    /* A thunk. We should never be calling this entry directly
	       from this vtable -- we'd use the entry for the non
	       thunk base function.  */
	    DECL_VINDEX (fndecl) = NULL_TREE;
	  else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
	    DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
	}
    }

  finish_struct_bits (t);

  /* Complete the rtl for any static member objects of the type we're
     working on.  */
  for (x = TYPE_FIELDS (t); x; x = TREE_CHAIN (x))
    if (TREE_CODE (x) == VAR_DECL && TREE_STATIC (x)
        && TREE_TYPE (x) != error_mark_node
	&& same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
      DECL_MODE (x) = TYPE_MODE (t);

  /* Done with FIELDS...now decide whether to sort these for
     faster lookups later.

     We use a small number because most searches fail (succeeding
     ultimately as the search bores through the inheritance
     hierarchy), and we want this failure to occur quickly.  */

  n_fields = count_fields (TYPE_FIELDS (t));
  if (n_fields > 7)
    {
      struct sorted_fields_type *field_vec = GGC_NEWVAR
	 (struct sorted_fields_type,
	  sizeof (struct sorted_fields_type) + n_fields * sizeof (tree));
      field_vec->len = n_fields;
      add_fields_to_record_type (TYPE_FIELDS (t), field_vec, 0);
      qsort (field_vec->elts, n_fields, sizeof (tree),
	     field_decl_cmp);
      if (! DECL_LANG_SPECIFIC (TYPE_MAIN_DECL (t)))
	retrofit_lang_decl (TYPE_MAIN_DECL (t));
      DECL_SORTED_FIELDS (TYPE_MAIN_DECL (t)) = field_vec;
    }

  /* Complain if one of the field types requires lower visibility.  */
  constrain_class_visibility (t);

  /* Make the rtl for any new vtables we have created, and unmark
     the base types we marked.  */
  finish_vtbls (t);

  /* Build the VTT for T.  */
  build_vtt (t);

  /* This warning does not make sense for Java classes, since they
     cannot have destructors.  */
  if (!TYPE_FOR_JAVA (t) && warn_nonvdtor && TYPE_POLYMORPHIC_P (t))
    {
      tree dtor;

      dtor = CLASSTYPE_DESTRUCTORS (t);
      /* Warn only if the dtor is non-private or the class has
	 friends.  */
      if (/* An implicitly declared destructor is always public.  And,
	     if it were virtual, we would have created it by now.  */
	  !dtor
	  || (!DECL_VINDEX (dtor)
	      && (!TREE_PRIVATE (dtor)
		  || CLASSTYPE_FRIEND_CLASSES (t)
		  || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))))
	warning (0, "%q#T has virtual functions but non-virtual destructor",
		 t);
    }

  complete_vars (t);

  if (warn_overloaded_virtual)
    warn_hidden (t);

  /* Class layout, assignment of virtual table slots, etc., is now
     complete.  Give the back end a chance to tweak the visibility of
     the class or perform any other required target modifications.  */
  targetm.cxx.adjust_class_at_definition (t);

  maybe_suppress_debug_info (t);

  dump_class_hierarchy (t);

  /* Finish debugging output for this type.  */
  rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
}

/* When T was built up, the member declarations were added in reverse
   order.  Rearrange them to declaration order.  */

void
unreverse_member_declarations (tree t)
{
  tree next;
  tree prev;
  tree x;

  /* The following lists are all in reverse order.  Put them in
     declaration order now.  */
  TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
  CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));

  /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
     reverse order, so we can't just use nreverse.  */
  prev = NULL_TREE;
  for (x = TYPE_FIELDS (t);
       x && TREE_CODE (x) != TYPE_DECL;
       x = next)
    {
      next = TREE_CHAIN (x);
      TREE_CHAIN (x) = prev;
      prev = x;
    }
  if (prev)
    {
      TREE_CHAIN (TYPE_FIELDS (t)) = x;
      if (prev)
	TYPE_FIELDS (t) = prev;
    }
}

tree
finish_struct (tree t, tree attributes)
{
  location_t saved_loc = input_location;

  /* Now that we've got all the field declarations, reverse everything
     as necessary.  */
  unreverse_member_declarations (t);

  cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);

  /* Nadger the current location so that diagnostics point to the start of
     the struct, not the end.  */
  input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));

  if (processing_template_decl)
    {
      tree x;

      finish_struct_methods (t);
      TYPE_SIZE (t) = bitsize_zero_node;
      TYPE_SIZE_UNIT (t) = size_zero_node;

      /* We need to emit an error message if this type was used as a parameter
	 and it is an abstract type, even if it is a template. We construct
	 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
	 account and we call complete_vars with this type, which will check
	 the PARM_DECLS. Note that while the type is being defined,
	 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
	 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it.  */
      CLASSTYPE_PURE_VIRTUALS (t) = NULL;
      for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
	if (DECL_PURE_VIRTUAL_P (x))
	  VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
      complete_vars (t);
    }
  else
    finish_struct_1 (t);

  input_location = saved_loc;

  TYPE_BEING_DEFINED (t) = 0;

  if (current_class_type)
    popclass ();
  else
    error ("trying to finish struct, but kicked out due to previous parse errors");

  if (processing_template_decl && at_function_scope_p ())
    add_stmt (build_min (TAG_DEFN, t));

  return t;
}

/* Return the dynamic type of INSTANCE, if known.
   Used to determine whether the virtual function table is needed
   or not.

   *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
   of our knowledge of its type.  *NONNULL should be initialized
   before this function is called.  */

static tree
fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
{
#define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)

  switch (TREE_CODE (instance))
    {
    case INDIRECT_REF:
      if (POINTER_TYPE_P (TREE_TYPE (instance)))
	return NULL_TREE;
      else
	return RECUR (TREE_OPERAND (instance, 0));

    case CALL_EXPR:
      /* This is a call to a constructor, hence it's never zero.  */
      if (TREE_HAS_CONSTRUCTOR (instance))
	{
	  if (nonnull)
	    *nonnull = 1;
	  return TREE_TYPE (instance);
	}
      return NULL_TREE;

    case SAVE_EXPR:
      /* This is a call to a constructor, hence it's never zero.  */
      if (TREE_HAS_CONSTRUCTOR (instance))
	{
	  if (nonnull)
	    *nonnull = 1;
	  return TREE_TYPE (instance);
	}
      return RECUR (TREE_OPERAND (instance, 0));

    case POINTER_PLUS_EXPR:
    case PLUS_EXPR:
    case MINUS_EXPR:
      if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
	return RECUR (TREE_OPERAND (instance, 0));
      if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
	/* Propagate nonnull.  */
	return RECUR (TREE_OPERAND (instance, 0));

      return NULL_TREE;

    case NOP_EXPR:
    case CONVERT_EXPR:
      return RECUR (TREE_OPERAND (instance, 0));

    case ADDR_EXPR:
      instance = TREE_OPERAND (instance, 0);
      if (nonnull)
	{
	  /* Just because we see an ADDR_EXPR doesn't mean we're dealing
	     with a real object -- given &p->f, p can still be null.  */
	  tree t = get_base_address (instance);
	  /* ??? Probably should check DECL_WEAK here.  */
	  if (t && DECL_P (t))
	    *nonnull = 1;
	}
      return RECUR (instance);

    case COMPONENT_REF:
      /* If this component is really a base class reference, then the field
	 itself isn't definitive.  */
      if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
	return RECUR (TREE_OPERAND (instance, 0));
      return RECUR (TREE_OPERAND (instance, 1));

    case VAR_DECL:
    case FIELD_DECL:
      if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
	  && IS_AGGR_TYPE (TREE_TYPE (TREE_TYPE (instance))))
	{
	  if (nonnull)
	    *nonnull = 1;
	  return TREE_TYPE (TREE_TYPE (instance));
	}
      /* fall through...  */
    case TARGET_EXPR:
    case PARM_DECL:
    case RESULT_DECL:
      if (IS_AGGR_TYPE (TREE_TYPE (instance)))
	{
	  if (nonnull)
	    *nonnull = 1;
	  return TREE_TYPE (instance);
	}
      else if (instance == current_class_ptr)
	{
	  if (nonnull)
	    *nonnull = 1;

	  /* if we're in a ctor or dtor, we know our type.  */
	  if (DECL_LANG_SPECIFIC (current_function_decl)
	      && (DECL_CONSTRUCTOR_P (current_function_decl)
		  || DECL_DESTRUCTOR_P (current_function_decl)))
	    {
	      if (cdtorp)
		*cdtorp = 1;
	      return TREE_TYPE (TREE_TYPE (instance));
	    }
	}
      else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
	{
	  /* We only need one hash table because it is always left empty.  */
	  static htab_t ht;
	  if (!ht)
	    ht = htab_create (37, 
			      htab_hash_pointer,
			      htab_eq_pointer,
			      /*htab_del=*/NULL);

	  /* Reference variables should be references to objects.  */
	  if (nonnull)
	    *nonnull = 1;

	  /* Enter the INSTANCE in a table to prevent recursion; a
	     variable's initializer may refer to the variable
	     itself.  */
	  if (TREE_CODE (instance) == VAR_DECL
	      && DECL_INITIAL (instance)
	      && !htab_find (ht, instance))
	    {
	      tree type;
	      void **slot;

	      slot = htab_find_slot (ht, instance, INSERT);
	      *slot = instance;
	      type = RECUR (DECL_INITIAL (instance));
	      htab_remove_elt (ht, instance);

	      return type;
	    }
	}
      return NULL_TREE;

    default:
      return NULL_TREE;
    }
#undef RECUR
}

/* Return nonzero if the dynamic type of INSTANCE is known, and
   equivalent to the static type.  We also handle the case where
   INSTANCE is really a pointer. Return negative if this is a
   ctor/dtor. There the dynamic type is known, but this might not be
   the most derived base of the original object, and hence virtual
   bases may not be layed out according to this type.

   Used to determine whether the virtual function table is needed
   or not.

   *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
   of our knowledge of its type.  *NONNULL should be initialized
   before this function is called.  */

int
resolves_to_fixed_type_p (tree instance, int* nonnull)
{
  tree t = TREE_TYPE (instance);
  int cdtorp = 0;
  tree fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
  if (fixed == NULL_TREE)
    return 0;
  if (POINTER_TYPE_P (t))
    t = TREE_TYPE (t);
  if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
    return 0;
  return cdtorp ? -1 : 1;
}


void
init_class_processing (void)
{
  current_class_depth = 0;
  current_class_stack_size = 10;
  current_class_stack
    = XNEWVEC (struct class_stack_node, current_class_stack_size);
  local_classes = VEC_alloc (tree, gc, 8);
  sizeof_biggest_empty_class = size_zero_node;

  ridpointers[(int) RID_PUBLIC] = access_public_node;
  ridpointers[(int) RID_PRIVATE] = access_private_node;
  ridpointers[(int) RID_PROTECTED] = access_protected_node;
}

/* Restore the cached PREVIOUS_CLASS_LEVEL.  */

static void
restore_class_cache (void)
{
  tree type;

  /* We are re-entering the same class we just left, so we don't
     have to search the whole inheritance matrix to find all the
     decls to bind again.  Instead, we install the cached
     class_shadowed list and walk through it binding names.  */
  push_binding_level (previous_class_level);
  class_binding_level = previous_class_level;
  /* Restore IDENTIFIER_TYPE_VALUE.  */
  for (type = class_binding_level->type_shadowed;
       type;
       type = TREE_CHAIN (type))
    SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
}

/* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
   appropriate for TYPE.

   So that we may avoid calls to lookup_name, we cache the _TYPE
   nodes of local TYPE_DECLs in the TREE_TYPE field of the name.

   For multiple inheritance, we perform a two-pass depth-first search
   of the type lattice.  */

void
pushclass (tree type)
{
  class_stack_node_t csn;

  type = TYPE_MAIN_VARIANT (type);

  /* Make sure there is enough room for the new entry on the stack.  */
  if (current_class_depth + 1 >= current_class_stack_size)
    {
      current_class_stack_size *= 2;
      current_class_stack
	= XRESIZEVEC (struct class_stack_node, current_class_stack,
		      current_class_stack_size);
    }

  /* Insert a new entry on the class stack.  */
  csn = current_class_stack + current_class_depth;
  csn->name = current_class_name;
  csn->type = current_class_type;
  csn->access = current_access_specifier;
  csn->names_used = 0;
  csn->hidden = 0;
  current_class_depth++;

  /* Now set up the new type.  */
  current_class_name = TYPE_NAME (type);
  if (TREE_CODE (current_class_name) == TYPE_DECL)
    current_class_name = DECL_NAME (current_class_name);
  current_class_type = type;

  /* By default, things in classes are private, while things in
     structures or unions are public.  */
  current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
			      ? access_private_node
			      : access_public_node);

  if (previous_class_level
      && type != previous_class_level->this_entity
      && current_class_depth == 1)
    {
      /* Forcibly remove any old class remnants.  */
      invalidate_class_lookup_cache ();
    }

  if (!previous_class_level
      || type != previous_class_level->this_entity
      || current_class_depth > 1)
    pushlevel_class ();
  else
    restore_class_cache ();
}

/* When we exit a toplevel class scope, we save its binding level so
   that we can restore it quickly.  Here, we've entered some other
   class, so we must invalidate our cache.  */

void
invalidate_class_lookup_cache (void)
{
  previous_class_level = NULL;
}

/* Get out of the current class scope. If we were in a class scope
   previously, that is the one popped to.  */

void
popclass (void)
{
  poplevel_class ();

  current_class_depth--;
  current_class_name = current_class_stack[current_class_depth].name;
  current_class_type = current_class_stack[current_class_depth].type;
  current_access_specifier = current_class_stack[current_class_depth].access;
  if (current_class_stack[current_class_depth].names_used)
    splay_tree_delete (current_class_stack[current_class_depth].names_used);
}

/* Mark the top of the class stack as hidden.  */

void
push_class_stack (void)
{
  if (current_class_depth)
    ++current_class_stack[current_class_depth - 1].hidden;
}

/* Mark the top of the class stack as un-hidden.  */

void
pop_class_stack (void)
{
  if (current_class_depth)
    --current_class_stack[current_class_depth - 1].hidden;
}

/* Returns 1 if the class type currently being defined is either T or
   a nested type of T.  */

bool
currently_open_class (tree t)
{
  int i;

  /* We start looking from 1 because entry 0 is from global scope,
     and has no type.  */
  for (i = current_class_depth; i > 0; --i)
    {
      tree c;
      if (i == current_class_depth)
	c = current_class_type;
      else
	{
	  if (current_class_stack[i].hidden)
	    break;
	  c = current_class_stack[i].type;
	}
      if (!c)
	continue;
      if (same_type_p (c, t))
	return true;
    }
  return false;
}

/* If either current_class_type or one of its enclosing classes are derived
   from T, return the appropriate type.  Used to determine how we found
   something via unqualified lookup.  */

tree
currently_open_derived_class (tree t)
{
  int i;

  /* The bases of a dependent type are unknown.  */
  if (dependent_type_p (t))
    return NULL_TREE;

  if (!current_class_type)
    return NULL_TREE;

  if (DERIVED_FROM_P (t, current_class_type))
    return current_class_type;

  for (i = current_class_depth - 1; i > 0; --i)
    {
      if (current_class_stack[i].hidden)
	break;
      if (DERIVED_FROM_P (t, current_class_stack[i].type))
	return current_class_stack[i].type;
    }

  return NULL_TREE;
}

/* When entering a class scope, all enclosing class scopes' names with
   static meaning (static variables, static functions, types and
   enumerators) have to be visible.  This recursive function calls
   pushclass for all enclosing class contexts until global or a local
   scope is reached.  TYPE is the enclosed class.  */

void
push_nested_class (tree type)
{
  tree context;

  /* A namespace might be passed in error cases, like A::B:C.  */
  if (type == NULL_TREE
      || type == error_mark_node
      || TREE_CODE (type) == NAMESPACE_DECL
      || ! IS_AGGR_TYPE (type)
      || TREE_CODE (type) == TEMPLATE_TYPE_PARM
      || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM)
    return;

  context = DECL_CONTEXT (TYPE_MAIN_DECL (type));

  if (context && CLASS_TYPE_P (context))
    push_nested_class (context);
  pushclass (type);
}

/* Undoes a push_nested_class call.  */

void
pop_nested_class (void)
{
  tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));

  popclass ();
  if (context && CLASS_TYPE_P (context))
    pop_nested_class ();
}

/* Returns the number of extern "LANG" blocks we are nested within.  */

int
current_lang_depth (void)
{
  return VEC_length (tree, current_lang_base);
}

/* Set global variables CURRENT_LANG_NAME to appropriate value
   so that behavior of name-mangling machinery is correct.  */

void
push_lang_context (tree name)
{
  VEC_safe_push (tree, gc, current_lang_base, current_lang_name);

  if (name == lang_name_cplusplus)
    {
      current_lang_name = name;
    }
  else if (name == lang_name_java)
    {
      current_lang_name = name;
      /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
	 (See record_builtin_java_type in decl.c.)  However, that causes
	 incorrect debug entries if these types are actually used.
	 So we re-enable debug output after extern "Java".  */
      DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
      DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
      DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
      DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
      DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
      DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
      DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
      DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
    }
  else if (name == lang_name_c)
    {
      current_lang_name = name;
    }
  else
    error ("language string %<\"%E\"%> not recognized", name);
}

/* Get out of the current language scope.  */

void
pop_lang_context (void)
{
  current_lang_name = VEC_pop (tree, current_lang_base);
}

/* Type instantiation routines.  */

/* Given an OVERLOAD and a TARGET_TYPE, return the function that
   matches the TARGET_TYPE.  If there is no satisfactory match, return
   error_mark_node, and issue an error & warning messages under
   control of FLAGS.  Permit pointers to member function if FLAGS
   permits.  If TEMPLATE_ONLY, the name of the overloaded function was
   a template-id, and EXPLICIT_TARGS are the explicitly provided
   template arguments.  If OVERLOAD is for one or more member
   functions, then ACCESS_PATH is the base path used to reference
   those member functions.  */

static tree
resolve_address_of_overloaded_function (tree target_type,
					tree overload,
					tsubst_flags_t flags,
					bool template_only,
					tree explicit_targs,
					tree access_path)
{
  /* Here's what the standard says:

       [over.over]

       If the name is a function template, template argument deduction
       is done, and if the argument deduction succeeds, the deduced
       arguments are used to generate a single template function, which
       is added to the set of overloaded functions considered.

       Non-member functions and static member functions match targets of
       type "pointer-to-function" or "reference-to-function."  Nonstatic
       member functions match targets of type "pointer-to-member
       function;" the function type of the pointer to member is used to
       select the member function from the set of overloaded member
       functions.  If a nonstatic member function is selected, the
       reference to the overloaded function name is required to have the
       form of a pointer to member as described in 5.3.1.

       If more than one function is selected, any template functions in
       the set are eliminated if the set also contains a non-template
       function, and any given template function is eliminated if the
       set contains a second template function that is more specialized
       than the first according to the partial ordering rules 14.5.5.2.
       After such eliminations, if any, there shall remain exactly one
       selected function.  */

  int is_ptrmem = 0;
  int is_reference = 0;
  /* We store the matches in a TREE_LIST rooted here.  The functions
     are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
     interoperability with most_specialized_instantiation.  */
  tree matches = NULL_TREE;
  tree fn;

  /* By the time we get here, we should be seeing only real
     pointer-to-member types, not the internal POINTER_TYPE to
     METHOD_TYPE representation.  */
  gcc_assert (TREE_CODE (target_type) != POINTER_TYPE
	      || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);

  gcc_assert (is_overloaded_fn (overload));

  /* Check that the TARGET_TYPE is reasonable.  */
  if (TYPE_PTRFN_P (target_type))
    /* This is OK.  */;
  else if (TYPE_PTRMEMFUNC_P (target_type))
    /* This is OK, too.  */
    is_ptrmem = 1;
  else if (TREE_CODE (target_type) == FUNCTION_TYPE)
    {
      /* This is OK, too.  This comes from a conversion to reference
	 type.  */
      target_type = build_reference_type (target_type);
      is_reference = 1;
    }
  else
    {
      if (flags & tf_error)
	error ("cannot resolve overloaded function %qD based on"
	       " conversion to type %qT",
	       DECL_NAME (OVL_FUNCTION (overload)), target_type);
      return error_mark_node;
    }

  /* If we can find a non-template function that matches, we can just
     use it.  There's no point in generating template instantiations
     if we're just going to throw them out anyhow.  But, of course, we
     can only do this when we don't *need* a template function.  */
  if (!template_only)
    {
      tree fns;

      for (fns = overload; fns; fns = OVL_NEXT (fns))
	{
	  tree fn = OVL_CURRENT (fns);
	  tree fntype;

	  if (TREE_CODE (fn) == TEMPLATE_DECL)
	    /* We're not looking for templates just yet.  */
	    continue;

	  if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
	      != is_ptrmem)
	    /* We're looking for a non-static member, and this isn't
	       one, or vice versa.  */
	    continue;

	  /* Ignore functions which haven't been explicitly
	     declared.  */
	  if (DECL_ANTICIPATED (fn))
	    continue;

	  /* See if there's a match.  */
	  fntype = TREE_TYPE (fn);
	  if (is_ptrmem)
	    fntype = build_ptrmemfunc_type (build_pointer_type (fntype));
	  else if (!is_reference)
	    fntype = build_pointer_type (fntype);

	  if (can_convert_arg (target_type, fntype, fn, LOOKUP_NORMAL))
	    matches = tree_cons (fn, NULL_TREE, matches);
	}
    }

  /* Now, if we've already got a match (or matches), there's no need
     to proceed to the template functions.  But, if we don't have a
     match we need to look at them, too.  */
  if (!matches)
    {
      tree target_fn_type;
      tree target_arg_types;
      tree target_ret_type;
      tree fns;

      if (is_ptrmem)
	target_fn_type
	  = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (target_type));
      else
	target_fn_type = TREE_TYPE (target_type);
      target_arg_types = TYPE_ARG_TYPES (target_fn_type);
      target_ret_type = TREE_TYPE (target_fn_type);

      /* Never do unification on the 'this' parameter.  */
      if (TREE_CODE (target_fn_type) == METHOD_TYPE)
	target_arg_types = TREE_CHAIN (target_arg_types);

      for (fns = overload; fns; fns = OVL_NEXT (fns))
	{
	  tree fn = OVL_CURRENT (fns);
	  tree instantiation;
	  tree instantiation_type;
	  tree targs;

	  if (TREE_CODE (fn) != TEMPLATE_DECL)
	    /* We're only looking for templates.  */
	    continue;

	  if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
	      != is_ptrmem)
	    /* We're not looking for a non-static member, and this is
	       one, or vice versa.  */
	    continue;

	  /* Try to do argument deduction.  */
	  targs = make_tree_vec (DECL_NTPARMS (fn));
	  if (fn_type_unification (fn, explicit_targs, targs,
				   target_arg_types, target_ret_type,
				   DEDUCE_EXACT, LOOKUP_NORMAL))
	    /* Argument deduction failed.  */
	    continue;

	  /* Instantiate the template.  */
	  instantiation = instantiate_template (fn, targs, flags);
	  if (instantiation == error_mark_node)
	    /* Instantiation failed.  */
	    continue;

	  /* See if there's a match.  */
	  instantiation_type = TREE_TYPE (instantiation);
	  if (is_ptrmem)
	    instantiation_type =
	      build_ptrmemfunc_type (build_pointer_type (instantiation_type));
	  else if (!is_reference)
	    instantiation_type = build_pointer_type (instantiation_type);
	  if (can_convert_arg (target_type, instantiation_type, instantiation,
			       LOOKUP_NORMAL))
	    matches = tree_cons (instantiation, fn, matches);
	}

      /* Now, remove all but the most specialized of the matches.  */
      if (matches)
	{
	  tree match = most_specialized_instantiation (matches);

	  if (match != error_mark_node)
	    matches = tree_cons (TREE_PURPOSE (match),
				 NULL_TREE,
				 NULL_TREE);
	}
    }

  /* Now we should have exactly one function in MATCHES.  */
  if (matches == NULL_TREE)
    {
      /* There were *no* matches.  */
      if (flags & tf_error)
	{
	  error ("no matches converting function %qD to type %q#T",
		 DECL_NAME (OVL_FUNCTION (overload)),
		 target_type);

	  /* print_candidates expects a chain with the functions in
	     TREE_VALUE slots, so we cons one up here (we're losing anyway,
	     so why be clever?).  */
	  for (; overload; overload = OVL_NEXT (overload))
	    matches = tree_cons (NULL_TREE, OVL_CURRENT (overload),
				 matches);

	  print_candidates (matches);
	}
      return error_mark_node;
    }
  else if (TREE_CHAIN (matches))
    {
      /* There were too many matches.  */

      if (flags & tf_error)
	{
	  tree match;

	  error ("converting overloaded function %qD to type %q#T is ambiguous",
		    DECL_NAME (OVL_FUNCTION (overload)),
		    target_type);

	  /* Since print_candidates expects the functions in the
	     TREE_VALUE slot, we flip them here.  */
	  for (match = matches; match; match = TREE_CHAIN (match))
	    TREE_VALUE (match) = TREE_PURPOSE (match);

	  print_candidates (matches);
	}

      return error_mark_node;
    }

  /* Good, exactly one match.  Now, convert it to the correct type.  */
  fn = TREE_PURPOSE (matches);

  if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
      && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
    {
      static int explained;

      if (!(flags & tf_error))
	return error_mark_node;

      pedwarn ("assuming pointer to member %qD", fn);
      if (!explained)
	{
	  pedwarn ("(a pointer to member can only be formed with %<&%E%>)", fn);
	  explained = 1;
	}
    }

  /* If we're doing overload resolution purely for the purpose of
     determining conversion sequences, we should not consider the
     function used.  If this conversion sequence is selected, the
     function will be marked as used at this point.  */
  if (!(flags & tf_conv))
    {
      mark_used (fn);
      /* We could not check access when this expression was originally
	 created since we did not know at that time to which function
	 the expression referred.  */
      if (DECL_FUNCTION_MEMBER_P (fn))
	{
	  gcc_assert (access_path);
	  perform_or_defer_access_check (access_path, fn, fn);
	}
    }

  if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
    return build_unary_op (ADDR_EXPR, fn, 0);
  else
    {
      /* The target must be a REFERENCE_TYPE.  Above, build_unary_op
	 will mark the function as addressed, but here we must do it
	 explicitly.  */
      cxx_mark_addressable (fn);

      return fn;
    }
}

/* This function will instantiate the type of the expression given in
   RHS to match the type of LHSTYPE.  If errors exist, then return
   error_mark_node. FLAGS is a bit mask.  If TF_ERROR is set, then
   we complain on errors.  If we are not complaining, never modify rhs,
   as overload resolution wants to try many possible instantiations, in
   the hope that at least one will work.

   For non-recursive calls, LHSTYPE should be a function, pointer to
   function, or a pointer to member function.  */

tree
instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
{
  tsubst_flags_t flags_in = flags;
  tree access_path = NULL_TREE;

  flags &= ~tf_ptrmem_ok;

  if (TREE_CODE (lhstype) == UNKNOWN_TYPE)
    {
      if (flags & tf_error)
	error ("not enough type information");
      return error_mark_node;
    }

  if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
    {
      if (same_type_p (lhstype, TREE_TYPE (rhs)))
	return rhs;
      if (flag_ms_extensions
	  && TYPE_PTRMEMFUNC_P (lhstype)
	  && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
	/* Microsoft allows `A::f' to be resolved to a
	   pointer-to-member.  */
	;
      else
	{
	  if (flags & tf_error)
	    error ("argument of type %qT does not match %qT",
		   TREE_TYPE (rhs), lhstype);
	  return error_mark_node;
	}
    }

  if (TREE_CODE (rhs) == BASELINK)
    {
      access_path = BASELINK_ACCESS_BINFO (rhs);
      rhs = BASELINK_FUNCTIONS (rhs);
    }

  /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
     deduce any type information.  */
  if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
    {
      if (flags & tf_error)
	error ("not enough type information");
      return error_mark_node;
    }

  /* There only a few kinds of expressions that may have a type
     dependent on overload resolution.  */
  gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
	      || TREE_CODE (rhs) == COMPONENT_REF
	      || TREE_CODE (rhs) == COMPOUND_EXPR
	      || really_overloaded_fn (rhs));

  /* We don't overwrite rhs if it is an overloaded function.
     Copying it would destroy the tree link.  */
  if (TREE_CODE (rhs) != OVERLOAD)
    rhs = copy_node (rhs);

  /* This should really only be used when attempting to distinguish
     what sort of a pointer to function we have.  For now, any
     arithmetic operation which is not supported on pointers
     is rejected as an error.  */

  switch (TREE_CODE (rhs))
    {
    case COMPONENT_REF:
      {
	tree member = TREE_OPERAND (rhs, 1);

	member = instantiate_type (lhstype, member, flags);
	if (member != error_mark_node
	    && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
	  /* Do not lose object's side effects.  */
	  return build2 (COMPOUND_EXPR, TREE_TYPE (member),
			 TREE_OPERAND (rhs, 0), member);
	return member;
      }

    case OFFSET_REF:
      rhs = TREE_OPERAND (rhs, 1);
      if (BASELINK_P (rhs))
	return instantiate_type (lhstype, rhs, flags_in);

      /* This can happen if we are forming a pointer-to-member for a
	 member template.  */
      gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);

      /* Fall through.  */

    case TEMPLATE_ID_EXPR:
      {
	tree fns = TREE_OPERAND (rhs, 0);
	tree args = TREE_OPERAND (rhs, 1);

	return
	  resolve_address_of_overloaded_function (lhstype, fns, flags_in,
						  /*template_only=*/true,
						  args, access_path);
      }

    case OVERLOAD:
    case FUNCTION_DECL:
      return
	resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
						/*template_only=*/false,
						/*explicit_targs=*/NULL_TREE,
						access_path);

    case COMPOUND_EXPR:
      TREE_OPERAND (rhs, 0)
	= instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
      if (TREE_OPERAND (rhs, 0) == error_mark_node)
	return error_mark_node;
      TREE_OPERAND (rhs, 1)
	= instantiate_type (lhstype, TREE_OPERAND (rhs, 1), flags);
      if (TREE_OPERAND (rhs, 1) == error_mark_node)
	return error_mark_node;

      TREE_TYPE (rhs) = lhstype;
      return rhs;

    case ADDR_EXPR:
    {
      if (PTRMEM_OK_P (rhs))
	flags |= tf_ptrmem_ok;

      return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
    }

    case ERROR_MARK:
      return error_mark_node;

    default:
      gcc_unreachable ();
    }
  return error_mark_node;
}

/* Return the name of the virtual function pointer field
   (as an IDENTIFIER_NODE) for the given TYPE.  Note that
   this may have to look back through base types to find the
   ultimate field name.  (For single inheritance, these could
   all be the same name.  Who knows for multiple inheritance).  */

static tree
get_vfield_name (tree type)
{
  tree binfo, base_binfo;
  char *buf;

  for (binfo = TYPE_BINFO (type);
       BINFO_N_BASE_BINFOS (binfo);
       binfo = base_binfo)
    {
      base_binfo = BINFO_BASE_BINFO (binfo, 0);

      if (BINFO_VIRTUAL_P (base_binfo)
	  || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
	break;
    }

  type = BINFO_TYPE (binfo);
  buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
			 + TYPE_NAME_LENGTH (type) + 2);
  sprintf (buf, VFIELD_NAME_FORMAT,
	   IDENTIFIER_POINTER (constructor_name (type)));
  return get_identifier (buf);
}

void
print_class_statistics (void)
{
#ifdef GATHER_STATISTICS
  fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
  fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
  if (n_vtables)
    {
      fprintf (stderr, "vtables = %d; vtable searches = %d\n",
	       n_vtables, n_vtable_searches);
      fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
	       n_vtable_entries, n_vtable_elems);
    }
#endif
}

/* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
   according to [class]:
					  The class-name is also inserted
   into  the scope of the class itself.  For purposes of access checking,
   the inserted class name is treated as if it were a public member name.  */

void
build_self_reference (void)
{
  tree name = constructor_name (current_class_type);
  tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
  tree saved_cas;

  DECL_NONLOCAL (value) = 1;
  DECL_CONTEXT (value) = current_class_type;
  DECL_ARTIFICIAL (value) = 1;
  SET_DECL_SELF_REFERENCE_P (value);

  if (processing_template_decl)
    value = push_template_decl (value);

  saved_cas = current_access_specifier;
  current_access_specifier = access_public_node;
  finish_member_declaration (value);
  current_access_specifier = saved_cas;
}

/* Returns 1 if TYPE contains only padding bytes.  */

int
is_empty_class (tree type)
{
  if (type == error_mark_node)
    return 0;

  if (! IS_AGGR_TYPE (type))
    return 0;

  /* In G++ 3.2, whether or not a class was empty was determined by
     looking at its size.  */
  if (abi_version_at_least (2))
    return CLASSTYPE_EMPTY_P (type);
  else
    return integer_zerop (CLASSTYPE_SIZE (type));
}

/* Returns true if TYPE contains an empty class.  */

static bool
contains_empty_class_p (tree type)
{
  if (is_empty_class (type))
    return true;
  if (CLASS_TYPE_P (type))
    {
      tree field;
      tree binfo;
      tree base_binfo;
      int i;

      for (binfo = TYPE_BINFO (type), i = 0;
	   BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
	if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
	  return true;
      for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
	if (TREE_CODE (field) == FIELD_DECL
	    && !DECL_ARTIFICIAL (field)
	    && is_empty_class (TREE_TYPE (field)))
	  return true;
    }
  else if (TREE_CODE (type) == ARRAY_TYPE)
    return contains_empty_class_p (TREE_TYPE (type));
  return false;
}

/* Note that NAME was looked up while the current class was being
   defined and that the result of that lookup was DECL.  */

void
maybe_note_name_used_in_class (tree name, tree decl)
{
  splay_tree names_used;

  /* If we're not defining a class, there's nothing to do.  */
  if (!(innermost_scope_kind() == sk_class
	&& TYPE_BEING_DEFINED (current_class_type)))
    return;

  /* If there's already a binding for this NAME, then we don't have
     anything to worry about.  */
  if (lookup_member (current_class_type, name,
		     /*protect=*/0, /*want_type=*/false))
    return;

  if (!current_class_stack[current_class_depth - 1].names_used)
    current_class_stack[current_class_depth - 1].names_used
      = splay_tree_new (splay_tree_compare_pointers, 0, 0);
  names_used = current_class_stack[current_class_depth - 1].names_used;

  splay_tree_insert (names_used,
		     (splay_tree_key) name,
		     (splay_tree_value) decl);
}

/* Note that NAME was declared (as DECL) in the current class.  Check
   to see that the declaration is valid.  */

void
note_name_declared_in_class (tree name, tree decl)
{
  splay_tree names_used;
  splay_tree_node n;

  /* Look to see if we ever used this name.  */
  names_used
    = current_class_stack[current_class_depth - 1].names_used;
  if (!names_used)
    return;

  n = splay_tree_lookup (names_used, (splay_tree_key) name);
  if (n)
    {
      /* [basic.scope.class]

	 A name N used in a class S shall refer to the same declaration
	 in its context and when re-evaluated in the completed scope of
	 S.  */
      pedwarn ("declaration of %q#D", decl);
      pedwarn ("changes meaning of %qD from %q+#D",
	       DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
    }
}

/* Returns the VAR_DECL for the complete vtable associated with BINFO.
   Secondary vtables are merged with primary vtables; this function
   will return the VAR_DECL for the primary vtable.  */

tree
get_vtbl_decl_for_binfo (tree binfo)
{
  tree decl;

  decl = BINFO_VTABLE (binfo);
  if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
    {
      gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
      decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
    }
  if (decl)
    gcc_assert (TREE_CODE (decl) == VAR_DECL);
  return decl;
}


/* Returns the binfo for the primary base of BINFO.  If the resulting
   BINFO is a virtual base, and it is inherited elsewhere in the
   hierarchy, then the returned binfo might not be the primary base of
   BINFO in the complete object.  Check BINFO_PRIMARY_P or
   BINFO_LOST_PRIMARY_P to be sure.  */

static tree
get_primary_binfo (tree binfo)
{
  tree primary_base;

  primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
  if (!primary_base)
    return NULL_TREE;

  return copied_binfo (primary_base, binfo);
}

/* If INDENTED_P is zero, indent to INDENT. Return nonzero.  */

static int
maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
{
  if (!indented_p)
    fprintf (stream, "%*s", indent, "");
  return 1;
}

/* Dump the offsets of all the bases rooted at BINFO to STREAM.
   INDENT should be zero when called from the top level; it is
   incremented recursively.  IGO indicates the next expected BINFO in
   inheritance graph ordering.  */

static tree
dump_class_hierarchy_r (FILE *stream,
			int flags,
			tree binfo,
			tree igo,
			int indent)
{
  int indented = 0;
  tree base_binfo;
  int i;

  indented = maybe_indent_hierarchy (stream, indent, 0);
  fprintf (stream, "%s (0x%lx) ",
	   type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
	   (unsigned long) binfo);
  if (binfo != igo)
    {
      fprintf (stream, "alternative-path\n");
      return igo;
    }
  igo = TREE_CHAIN (binfo);

  fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
	   tree_low_cst (BINFO_OFFSET (binfo), 0));
  if (is_empty_class (BINFO_TYPE (binfo)))
    fprintf (stream, " empty");
  else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
    fprintf (stream, " nearly-empty");
  if (BINFO_VIRTUAL_P (binfo))
    fprintf (stream, " virtual");
  fprintf (stream, "\n");

  indented = 0;
  if (BINFO_PRIMARY_P (binfo))
    {
      indented = maybe_indent_hierarchy (stream, indent + 3, indented);
      fprintf (stream, " primary-for %s (0x%lx)",
	       type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
			       TFF_PLAIN_IDENTIFIER),
	       (unsigned long)BINFO_INHERITANCE_CHAIN (binfo));
    }
  if (BINFO_LOST_PRIMARY_P (binfo))
    {
      indented = maybe_indent_hierarchy (stream, indent + 3, indented);
      fprintf (stream, " lost-primary");
    }
  if (indented)
    fprintf (stream, "\n");

  if (!(flags & TDF_SLIM))
    {
      int indented = 0;

      if (BINFO_SUBVTT_INDEX (binfo))
	{
	  indented = maybe_indent_hierarchy (stream, indent + 3, indented);
	  fprintf (stream, " subvttidx=%s",
		   expr_as_string (BINFO_SUBVTT_INDEX (binfo),
				   TFF_PLAIN_IDENTIFIER));
	}
      if (BINFO_VPTR_INDEX (binfo))
	{
	  indented = maybe_indent_hierarchy (stream, indent + 3, indented);
	  fprintf (stream, " vptridx=%s",
		   expr_as_string (BINFO_VPTR_INDEX (binfo),
				   TFF_PLAIN_IDENTIFIER));
	}
      if (BINFO_VPTR_FIELD (binfo))
	{
	  indented = maybe_indent_hierarchy (stream, indent + 3, indented);
	  fprintf (stream, " vbaseoffset=%s",
		   expr_as_string (BINFO_VPTR_FIELD (binfo),
				   TFF_PLAIN_IDENTIFIER));
	}
      if (BINFO_VTABLE (binfo))
	{
	  indented = maybe_indent_hierarchy (stream, indent + 3, indented);
	  fprintf (stream, " vptr=%s",
		   expr_as_string (BINFO_VTABLE (binfo),
				   TFF_PLAIN_IDENTIFIER));
	}

      if (indented)
	fprintf (stream, "\n");
    }

  for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
    igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);

  return igo;
}

/* Dump the BINFO hierarchy for T.  */

static void
dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
{
  fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
  fprintf (stream, "   size=%lu align=%lu\n",
	   (unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
	   (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
  fprintf (stream, "   base size=%lu base align=%lu\n",
	   (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
			   / BITS_PER_UNIT),
	   (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
			   / BITS_PER_UNIT));
  dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
  fprintf (stream, "\n");
}

/* Debug interface to hierarchy dumping.  */

void
debug_class (tree t)
{
  dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
}

static void
dump_class_hierarchy (tree t)
{
  int flags;
  FILE *stream = dump_begin (TDI_class, &flags);

  if (stream)
    {
      dump_class_hierarchy_1 (stream, flags, t);
      dump_end (TDI_class, stream);
    }
}

static void
dump_array (FILE * stream, tree decl)
{
  tree value;
  unsigned HOST_WIDE_INT ix;
  HOST_WIDE_INT elt;
  tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));

  elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
	 / BITS_PER_UNIT);
  fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
  fprintf (stream, " %s entries",
	   expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
			   TFF_PLAIN_IDENTIFIER));
  fprintf (stream, "\n");

  FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
			      ix, value)
    fprintf (stream, "%-4ld  %s\n", (long)(ix * elt),
	     expr_as_string (value, TFF_PLAIN_IDENTIFIER));
}

static void
dump_vtable (tree t, tree binfo, tree vtable)
{
  int flags;
  FILE *stream = dump_begin (TDI_class, &flags);

  if (!stream)
    return;

  if (!(flags & TDF_SLIM))
    {
      int ctor_vtbl_p = TYPE_BINFO (t) != binfo;

      fprintf (stream, "%s for %s",
	       ctor_vtbl_p ? "Construction vtable" : "Vtable",
	       type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
      if (ctor_vtbl_p)
	{
	  if (!BINFO_VIRTUAL_P (binfo))
	    fprintf (stream, " (0x%lx instance)", (unsigned long)binfo);
	  fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
	}
      fprintf (stream, "\n");
      dump_array (stream, vtable);
      fprintf (stream, "\n");
    }

  dump_end (TDI_class, stream);
}

static void
dump_vtt (tree t, tree vtt)
{
  int flags;
  FILE *stream = dump_begin (TDI_class, &flags);

  if (!stream)
    return;

  if (!(flags & TDF_SLIM))
    {
      fprintf (stream, "VTT for %s\n",
	       type_as_string (t, TFF_PLAIN_IDENTIFIER));
      dump_array (stream, vtt);
      fprintf (stream, "\n");
    }

  dump_end (TDI_class, stream);
}

/* Dump a function or thunk and its thunkees.  */

static void
dump_thunk (FILE *stream, int indent, tree thunk)
{
  static const char spaces[] = "        ";
  tree name = DECL_NAME (thunk);
  tree thunks;

  fprintf (stream, "%.*s%p %s %s", indent, spaces,
	   (void *)thunk,
	   !DECL_THUNK_P (thunk) ? "function"
	   : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
	   name ? IDENTIFIER_POINTER (name) : "<unset>");
  if (DECL_THUNK_P (thunk))
    {
      HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
      tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);

      fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
      if (!virtual_adjust)
	/*NOP*/;
      else if (DECL_THIS_THUNK_P (thunk))
	fprintf (stream, " vcall="  HOST_WIDE_INT_PRINT_DEC,
		 tree_low_cst (virtual_adjust, 0));
      else
	fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
		 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
		 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
      if (THUNK_ALIAS (thunk))
	fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
    }
  fprintf (stream, "\n");
  for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
    dump_thunk (stream, indent + 2, thunks);
}

/* Dump the thunks for FN.  */

void
debug_thunks (tree fn)
{
  dump_thunk (stderr, 0, fn);
}

/* Virtual function table initialization.  */

/* Create all the necessary vtables for T and its base classes.  */

static void
finish_vtbls (tree t)
{
  tree list;
  tree vbase;

  /* We lay out the primary and secondary vtables in one contiguous
     vtable.  The primary vtable is first, followed by the non-virtual
     secondary vtables in inheritance graph order.  */
  list = build_tree_list (BINFO_VTABLE (TYPE_BINFO (t)), NULL_TREE);
  accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t),
			 TYPE_BINFO (t), t, list);

  /* Then come the virtual bases, also in inheritance graph order.  */
  for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
    {
      if (!BINFO_VIRTUAL_P (vbase))
	continue;
      accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), t, list);
    }

  if (BINFO_VTABLE (TYPE_BINFO (t)))
    initialize_vtable (TYPE_BINFO (t), TREE_VALUE (list));
}

/* Initialize the vtable for BINFO with the INITS.  */

static void
initialize_vtable (tree binfo, tree inits)
{
  tree decl;

  layout_vtable_decl (binfo, list_length (inits));
  decl = get_vtbl_decl_for_binfo (binfo);
  initialize_artificial_var (decl, inits);
  dump_vtable (BINFO_TYPE (binfo), binfo, decl);
}

/* Build the VTT (virtual table table) for T.
   A class requires a VTT if it has virtual bases.

   This holds
   1 - primary virtual pointer for complete object T
   2 - secondary VTTs for each direct non-virtual base of T which requires a
       VTT
   3 - secondary virtual pointers for each direct or indirect base of T which
       has virtual bases or is reachable via a virtual path from T.
   4 - secondary VTTs for each direct or indirect virtual base of T.

   Secondary VTTs look like complete object VTTs without part 4.  */

static void
build_vtt (tree t)
{
  tree inits;
  tree type;
  tree vtt;
  tree index;

  /* Build up the initializers for the VTT.  */
  inits = NULL_TREE;
  index = size_zero_node;
  build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);

  /* If we didn't need a VTT, we're done.  */
  if (!inits)
    return;

  /* Figure out the type of the VTT.  */
  type = build_index_type (size_int (list_length (inits) - 1));
  type = build_cplus_array_type (const_ptr_type_node, type);

  /* Now, build the VTT object itself.  */
  vtt = build_vtable (t, mangle_vtt_for_type (t), type);
  initialize_artificial_var (vtt, inits);
  /* Add the VTT to the vtables list.  */
  TREE_CHAIN (vtt) = TREE_CHAIN (CLASSTYPE_VTABLES (t));
  TREE_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;

  dump_vtt (t, vtt);
}

/* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
   PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
   and CHAIN the vtable pointer for this binfo after construction is
   complete.  VALUE can also be another BINFO, in which case we recurse.  */

static tree
binfo_ctor_vtable (tree binfo)
{
  tree vt;

  while (1)
    {
      vt = BINFO_VTABLE (binfo);
      if (TREE_CODE (vt) == TREE_LIST)
	vt = TREE_VALUE (vt);
      if (TREE_CODE (vt) == TREE_BINFO)
	binfo = vt;
      else
	break;
    }

  return vt;
}

/* Data for secondary VTT initialization.  */
typedef struct secondary_vptr_vtt_init_data_s
{
  /* Is this the primary VTT? */
  bool top_level_p;

  /* Current index into the VTT.  */
  tree index;

  /* TREE_LIST of initializers built up.  */
  tree inits;

  /* The type being constructed by this secondary VTT.  */
  tree type_being_constructed;
} secondary_vptr_vtt_init_data;

/* Recursively build the VTT-initializer for BINFO (which is in the
   hierarchy dominated by T).  INITS points to the end of the initializer
   list to date.  INDEX is the VTT index where the next element will be
   replaced.  Iff BINFO is the binfo for T, this is the top level VTT (i.e.
   not a subvtt for some base of T).  When that is so, we emit the sub-VTTs
   for virtual bases of T. When it is not so, we build the constructor
   vtables for the BINFO-in-T variant.  */

static tree *
build_vtt_inits (tree binfo, tree t, tree *inits, tree *index)
{
  int i;
  tree b;
  tree init;
  tree secondary_vptrs;
  secondary_vptr_vtt_init_data data;
  int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);

  /* We only need VTTs for subobjects with virtual bases.  */
  if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
    return inits;

  /* We need to use a construction vtable if this is not the primary
     VTT.  */
  if (!top_level_p)
    {
      build_ctor_vtbl_group (binfo, t);

      /* Record the offset in the VTT where this sub-VTT can be found.  */
      BINFO_SUBVTT_INDEX (binfo) = *index;
    }

  /* Add the address of the primary vtable for the complete object.  */
  init = binfo_ctor_vtable (binfo);
  *inits = build_tree_list (NULL_TREE, init);
  inits = &TREE_CHAIN (*inits);
  if (top_level_p)
    {
      gcc_assert (!BINFO_VPTR_INDEX (binfo));
      BINFO_VPTR_INDEX (binfo) = *index;
    }
  *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));

  /* Recursively add the secondary VTTs for non-virtual bases.  */
  for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
    if (!BINFO_VIRTUAL_P (b))
      inits = build_vtt_inits (b, t, inits, index);

  /* Add secondary virtual pointers for all subobjects of BINFO with
     either virtual bases or reachable along a virtual path, except
     subobjects that are non-virtual primary bases.  */
  data.top_level_p = top_level_p;
  data.index = *index;
  data.inits = NULL;
  data.type_being_constructed = BINFO_TYPE (binfo);

  dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);

  *index = data.index;

  /* The secondary vptrs come back in reverse order.  After we reverse
     them, and add the INITS, the last init will be the first element
     of the chain.  */
  secondary_vptrs = data.inits;
  if (secondary_vptrs)
    {
      *inits = nreverse (secondary_vptrs);
      inits = &TREE_CHAIN (secondary_vptrs);
      gcc_assert (*inits == NULL_TREE);
    }

  if (top_level_p)
    /* Add the secondary VTTs for virtual bases in inheritance graph
       order.  */
    for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
      {
	if (!BINFO_VIRTUAL_P (b))
	  continue;

	inits = build_vtt_inits (b, t, inits, index);
      }
  else
    /* Remove the ctor vtables we created.  */
    dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);

  return inits;
}

/* Called from build_vtt_inits via dfs_walk.  BINFO is the binfo for the base
   in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure.  */

static tree
dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
{
  secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;

  /* We don't care about bases that don't have vtables.  */
  if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
    return dfs_skip_bases;

  /* We're only interested in proper subobjects of the type being
     constructed.  */
  if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
    return NULL_TREE;

  /* We're only interested in bases with virtual bases or reachable
     via a virtual path from the type being constructed.  */
  if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
	|| binfo_via_virtual (binfo, data->type_being_constructed)))
    return dfs_skip_bases;

  /* We're not interested in non-virtual primary bases.  */
  if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
    return NULL_TREE;

  /* Record the index where this secondary vptr can be found.  */
  if (data->top_level_p)
    {
      gcc_assert (!BINFO_VPTR_INDEX (binfo));
      BINFO_VPTR_INDEX (binfo) = data->index;

      if (BINFO_VIRTUAL_P (binfo))
	{
	  /* It's a primary virtual base, and this is not a
	     construction vtable.  Find the base this is primary of in
	     the inheritance graph, and use that base's vtable
	     now.  */
	  while (BINFO_PRIMARY_P (binfo))
	    binfo = BINFO_INHERITANCE_CHAIN (binfo);
	}
    }

  /* Add the initializer for the secondary vptr itself.  */
  data->inits = tree_cons (NULL_TREE, binfo_ctor_vtable (binfo), data->inits);

  /* Advance the vtt index.  */
  data->index = size_binop (PLUS_EXPR, data->index,
			    TYPE_SIZE_UNIT (ptr_type_node));

  return NULL_TREE;
}

/* Called from build_vtt_inits via dfs_walk. After building
   constructor vtables and generating the sub-vtt from them, we need
   to restore the BINFO_VTABLES that were scribbled on.  DATA is the
   binfo of the base whose sub vtt was generated.  */

static tree
dfs_fixup_binfo_vtbls (tree binfo, void* data)
{
  tree vtable = BINFO_VTABLE (binfo);

  if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
    /* If this class has no vtable, none of its bases do.  */
    return dfs_skip_bases;

  if (!vtable)
    /* This might be a primary base, so have no vtable in this
       hierarchy.  */
    return NULL_TREE;

  /* If we scribbled the construction vtable vptr into BINFO, clear it
     out now.  */
  if (TREE_CODE (vtable) == TREE_LIST
      && (TREE_PURPOSE (vtable) == (tree) data))
    BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);

  return NULL_TREE;
}

/* Build the construction vtable group for BINFO which is in the
   hierarchy dominated by T.  */

static void
build_ctor_vtbl_group (tree binfo, tree t)
{
  tree list;
  tree type;
  tree vtbl;
  tree inits;
  tree id;
  tree vbase;

  /* See if we've already created this construction vtable group.  */
  id = mangle_ctor_vtbl_for_type (t, binfo);
  if (IDENTIFIER_GLOBAL_VALUE (id))
    return;

  gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
  /* Build a version of VTBL (with the wrong type) for use in
     constructing the addresses of secondary vtables in the
     construction vtable group.  */
  vtbl = build_vtable (t, id, ptr_type_node);
  DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
  list = build_tree_list (vtbl, NULL_TREE);
  accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
			 binfo, t, list);

  /* Add the vtables for each of our virtual bases using the vbase in T
     binfo.  */
  for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
       vbase;
       vbase = TREE_CHAIN (vbase))
    {
      tree b;

      if (!BINFO_VIRTUAL_P (vbase))
	continue;
      b = copied_binfo (vbase, binfo);

      accumulate_vtbl_inits (b, vbase, binfo, t, list);
    }
  inits = TREE_VALUE (list);

  /* Figure out the type of the construction vtable.  */
  type = build_index_type (size_int (list_length (inits) - 1));
  type = build_cplus_array_type (vtable_entry_type, type);
  TREE_TYPE (vtbl) = type;

  /* Initialize the construction vtable.  */
  CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
  initialize_artificial_var (vtbl, inits);
  dump_vtable (t, binfo, vtbl);
}

/* Add the vtbl initializers for BINFO (and its bases other than
   non-virtual primaries) to the list of INITS.  BINFO is in the
   hierarchy dominated by T.  RTTI_BINFO is the binfo within T of
   the constructor the vtbl inits should be accumulated for. (If this
   is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
   ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
   BINFO is the active base equivalent of ORIG_BINFO in the inheritance
   graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
   but are not necessarily the same in terms of layout.  */

static void
accumulate_vtbl_inits (tree binfo,
		       tree orig_binfo,
		       tree rtti_binfo,
		       tree t,
		       tree inits)
{
  int i;
  tree base_binfo;
  int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);

  gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));

  /* If it doesn't have a vptr, we don't do anything.  */
  if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
    return;

  /* If we're building a construction vtable, we're not interested in
     subobjects that don't require construction vtables.  */
  if (ctor_vtbl_p
      && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
      && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
    return;

  /* Build the initializers for the BINFO-in-T vtable.  */
  TREE_VALUE (inits)
    = chainon (TREE_VALUE (inits),
	       dfs_accumulate_vtbl_inits (binfo, orig_binfo,
					  rtti_binfo, t, inits));

  /* Walk the BINFO and its bases.  We walk in preorder so that as we
     initialize each vtable we can figure out at what offset the
     secondary vtable lies from the primary vtable.  We can't use
     dfs_walk here because we need to iterate through bases of BINFO
     and RTTI_BINFO simultaneously.  */
  for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
    {
      /* Skip virtual bases.  */
      if (BINFO_VIRTUAL_P (base_binfo))
	continue;
      accumulate_vtbl_inits (base_binfo,
			     BINFO_BASE_BINFO (orig_binfo, i),
			     rtti_binfo, t,
			     inits);
    }
}

/* Called from accumulate_vtbl_inits.  Returns the initializers for
   the BINFO vtable.  */

static tree
dfs_accumulate_vtbl_inits (tree binfo,
			   tree orig_binfo,
			   tree rtti_binfo,
			   tree t,
			   tree l)
{
  tree inits = NULL_TREE;
  tree vtbl = NULL_TREE;
  int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);

  if (ctor_vtbl_p
      && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
    {
      /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
	 primary virtual base.  If it is not the same primary in
	 the hierarchy of T, we'll need to generate a ctor vtable
	 for it, to place at its location in T.  If it is the same
	 primary, we still need a VTT entry for the vtable, but it
	 should point to the ctor vtable for the base it is a
	 primary for within the sub-hierarchy of RTTI_BINFO.

	 There are three possible cases:

	 1) We are in the same place.
	 2) We are a primary base within a lost primary virtual base of
	 RTTI_BINFO.
	 3) We are primary to something not a base of RTTI_BINFO.  */

      tree b;
      tree last = NULL_TREE;

      /* First, look through the bases we are primary to for RTTI_BINFO
	 or a virtual base.  */
      b = binfo;
      while (BINFO_PRIMARY_P (b))
	{
	  b = BINFO_INHERITANCE_CHAIN (b);
	  last = b;
	  if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
	    goto found;
	}
      /* If we run out of primary links, keep looking down our
	 inheritance chain; we might be an indirect primary.  */
      for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
	if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
	  break;
    found:

      /* If we found RTTI_BINFO, this is case 1.  If we found a virtual
	 base B and it is a base of RTTI_BINFO, this is case 2.  In
	 either case, we share our vtable with LAST, i.e. the
	 derived-most base within B of which we are a primary.  */
      if (b == rtti_binfo
	  || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
	/* Just set our BINFO_VTABLE to point to LAST, as we may not have
	   set LAST's BINFO_VTABLE yet.  We'll extract the actual vptr in
	   binfo_ctor_vtable after everything's been set up.  */
	vtbl = last;

      /* Otherwise, this is case 3 and we get our own.  */
    }
  else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
    return inits;

  if (!vtbl)
    {
      tree index;
      int non_fn_entries;

      /* Compute the initializer for this vtable.  */
      inits = build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
				      &non_fn_entries);

      /* Figure out the position to which the VPTR should point.  */
      vtbl = TREE_PURPOSE (l);
      vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, vtbl);
      index = size_binop (PLUS_EXPR,
			  size_int (non_fn_entries),
			  size_int (list_length (TREE_VALUE (l))));
      index = size_binop (MULT_EXPR,
			  TYPE_SIZE_UNIT (vtable_entry_type),
			  index);
      vtbl = build2 (POINTER_PLUS_EXPR, TREE_TYPE (vtbl), vtbl, index);
    }

  if (ctor_vtbl_p)
    /* For a construction vtable, we can't overwrite BINFO_VTABLE.
       So, we make a TREE_LIST.  Later, dfs_fixup_binfo_vtbls will
       straighten this out.  */
    BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
  else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
    inits = NULL_TREE;
  else
     /* For an ordinary vtable, set BINFO_VTABLE.  */
    BINFO_VTABLE (binfo) = vtbl;

  return inits;
}

static GTY(()) tree abort_fndecl_addr;

/* Construct the initializer for BINFO's virtual function table.  BINFO
   is part of the hierarchy dominated by T.  If we're building a
   construction vtable, the ORIG_BINFO is the binfo we should use to
   find the actual function pointers to put in the vtable - but they
   can be overridden on the path to most-derived in the graph that
   ORIG_BINFO belongs.  Otherwise,
   ORIG_BINFO should be the same as BINFO.  The RTTI_BINFO is the
   BINFO that should be indicated by the RTTI information in the
   vtable; it will be a base class of T, rather than T itself, if we
   are building a construction vtable.

   The value returned is a TREE_LIST suitable for wrapping in a
   CONSTRUCTOR to use as the DECL_INITIAL for a vtable.  If
   NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
   number of non-function entries in the vtable.

   It might seem that this function should never be called with a
   BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
   base is always subsumed by a derived class vtable.  However, when
   we are building construction vtables, we do build vtables for
   primary bases; we need these while the primary base is being
   constructed.  */

static tree
build_vtbl_initializer (tree binfo,
			tree orig_binfo,
			tree t,
			tree rtti_binfo,
			int* non_fn_entries_p)
{
  tree v, b;
  tree vfun_inits;
  vtbl_init_data vid;
  unsigned ix;
  tree vbinfo;
  VEC(tree,gc) *vbases;

  /* Initialize VID.  */
  memset (&vid, 0, sizeof (vid));
  vid.binfo = binfo;
  vid.derived = t;
  vid.rtti_binfo = rtti_binfo;
  vid.last_init = &vid.inits;
  vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
  vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
  vid.generate_vcall_entries = true;
  /* The first vbase or vcall offset is at index -3 in the vtable.  */
  vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);

  /* Add entries to the vtable for RTTI.  */
  build_rtti_vtbl_entries (binfo, &vid);

  /* Create an array for keeping track of the functions we've
     processed.  When we see multiple functions with the same
     signature, we share the vcall offsets.  */
  vid.fns = VEC_alloc (tree, gc, 32);
  /* Add the vcall and vbase offset entries.  */
  build_vcall_and_vbase_vtbl_entries (binfo, &vid);

  /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
     build_vbase_offset_vtbl_entries.  */
  for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
       VEC_iterate (tree, vbases, ix, vbinfo); ix++)
    BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;

  /* If the target requires padding between data entries, add that now.  */
  if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
    {
      tree cur, *prev;

      for (prev = &vid.inits; (cur = *prev); prev = &TREE_CHAIN (cur))
	{
	  tree add = cur;
	  int i;

	  for (i = 1; i < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++i)
	    add = tree_cons (NULL_TREE,
			     build1 (NOP_EXPR, vtable_entry_type,
				     null_pointer_node),
			     add);
	  *prev = add;
	}
    }

  if (non_fn_entries_p)
    *non_fn_entries_p = list_length (vid.inits);

  /* Go through all the ordinary virtual functions, building up
     initializers.  */
  vfun_inits = NULL_TREE;
  for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
    {
      tree delta;
      tree vcall_index;
      tree fn, fn_original;
      tree init = NULL_TREE;

      fn = BV_FN (v);
      fn_original = fn;
      if (DECL_THUNK_P (fn))
	{
	  if (!DECL_NAME (fn))
	    finish_thunk (fn);
	  if (THUNK_ALIAS (fn))
	    {
	      fn = THUNK_ALIAS (fn);
	      BV_FN (v) = fn;
	    }
	  fn_original = THUNK_TARGET (fn);
	}

      /* If the only definition of this function signature along our
	 primary base chain is from a lost primary, this vtable slot will
	 never be used, so just zero it out.  This is important to avoid
	 requiring extra thunks which cannot be generated with the function.

	 We first check this in update_vtable_entry_for_fn, so we handle
	 restored primary bases properly; we also need to do it here so we
	 zero out unused slots in ctor vtables, rather than filling themff
	 with erroneous values (though harmless, apart from relocation
	 costs).  */
      for (b = binfo; ; b = get_primary_binfo (b))
	{
	  /* We found a defn before a lost primary; go ahead as normal.  */
	  if (look_for_overrides_here (BINFO_TYPE (b), fn_original))
	    break;

	  /* The nearest definition is from a lost primary; clear the
	     slot.  */
	  if (BINFO_LOST_PRIMARY_P (b))
	    {
	      init = size_zero_node;
	      break;
	    }
	}

      if (! init)
	{
	  /* Pull the offset for `this', and the function to call, out of
	     the list.  */
	  delta = BV_DELTA (v);
	  vcall_index = BV_VCALL_INDEX (v);

	  gcc_assert (TREE_CODE (delta) == INTEGER_CST);
	  gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);

	  /* You can't call an abstract virtual function; it's abstract.
	     So, we replace these functions with __pure_virtual.  */
	  if (DECL_PURE_VIRTUAL_P (fn_original))
	    {
	      fn = abort_fndecl;
	      if (abort_fndecl_addr == NULL)
		abort_fndecl_addr = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
	      init = abort_fndecl_addr;
	    }
	  else
	    {
	      if (!integer_zerop (delta) || vcall_index)
		{
		  fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
		  if (!DECL_NAME (fn))
		    finish_thunk (fn);
		}
	      /* Take the address of the function, considering it to be of an
		 appropriate generic type.  */
	      init = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
	    }
	}

      /* And add it to the chain of initializers.  */
      if (TARGET_VTABLE_USES_DESCRIPTORS)
	{
	  int i;
	  if (init == size_zero_node)
	    for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
	      vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
	  else
	    for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
	      {
		tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
				     TREE_OPERAND (init, 0),
				     build_int_cst (NULL_TREE, i));
		TREE_CONSTANT (fdesc) = 1;
		TREE_INVARIANT (fdesc) = 1;

		vfun_inits = tree_cons (NULL_TREE, fdesc, vfun_inits);
	      }
	}
      else
	vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
    }

  /* The initializers for virtual functions were built up in reverse
     order; straighten them out now.  */
  vfun_inits = nreverse (vfun_inits);

  /* The negative offset initializers are also in reverse order.  */
  vid.inits = nreverse (vid.inits);

  /* Chain the two together.  */
  return chainon (vid.inits, vfun_inits);
}

/* Adds to vid->inits the initializers for the vbase and vcall
   offsets in BINFO, which is in the hierarchy dominated by T.  */

static void
build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
{
  tree b;

  /* If this is a derived class, we must first create entries
     corresponding to the primary base class.  */
  b = get_primary_binfo (binfo);
  if (b)
    build_vcall_and_vbase_vtbl_entries (b, vid);

  /* Add the vbase entries for this base.  */
  build_vbase_offset_vtbl_entries (binfo, vid);
  /* Add the vcall entries for this base.  */
  build_vcall_offset_vtbl_entries (binfo, vid);
}

/* Returns the initializers for the vbase offset entries in the vtable
   for BINFO (which is part of the class hierarchy dominated by T), in
   reverse order.  VBASE_OFFSET_INDEX gives the vtable index
   where the next vbase offset will go.  */

static void
build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
{
  tree vbase;
  tree t;
  tree non_primary_binfo;

  /* If there are no virtual baseclasses, then there is nothing to
     do.  */
  if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
    return;

  t = vid->derived;

  /* We might be a primary base class.  Go up the inheritance hierarchy
     until we find the most derived class of which we are a primary base:
     it is the offset of that which we need to use.  */
  non_primary_binfo = binfo;
  while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
    {
      tree b;

      /* If we have reached a virtual base, then it must be a primary
	 base (possibly multi-level) of vid->binfo, or we wouldn't
	 have called build_vcall_and_vbase_vtbl_entries for it.  But it
	 might be a lost primary, so just skip down to vid->binfo.  */
      if (BINFO_VIRTUAL_P (non_primary_binfo))
	{
	  non_primary_binfo = vid->binfo;
	  break;
	}

      b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
      if (get_primary_binfo (b) != non_primary_binfo)
	break;
      non_primary_binfo = b;
    }

  /* Go through the virtual bases, adding the offsets.  */
  for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
       vbase;
       vbase = TREE_CHAIN (vbase))
    {
      tree b;
      tree delta;

      if (!BINFO_VIRTUAL_P (vbase))
	continue;

      /* Find the instance of this virtual base in the complete
	 object.  */
      b = copied_binfo (vbase, binfo);

      /* If we've already got an offset for this virtual base, we
	 don't need another one.  */
      if (BINFO_VTABLE_PATH_MARKED (b))
	continue;
      BINFO_VTABLE_PATH_MARKED (b) = 1;

      /* Figure out where we can find this vbase offset.  */
      delta = size_binop (MULT_EXPR,
			  vid->index,
			  convert (ssizetype,
				   TYPE_SIZE_UNIT (vtable_entry_type)));
      if (vid->primary_vtbl_p)
	BINFO_VPTR_FIELD (b) = delta;

      if (binfo != TYPE_BINFO (t))
	/* The vbase offset had better be the same.  */
	gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));

      /* The next vbase will come at a more negative offset.  */
      vid->index = size_binop (MINUS_EXPR, vid->index,
			       ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));

      /* The initializer is the delta from BINFO to this virtual base.
	 The vbase offsets go in reverse inheritance-graph order, and
	 we are walking in inheritance graph order so these end up in
	 the right order.  */
      delta = size_diffop (BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));

      *vid->last_init
	= build_tree_list (NULL_TREE,
			   fold_build1 (NOP_EXPR,
					vtable_entry_type,
					delta));
      vid->last_init = &TREE_CHAIN (*vid->last_init);
    }
}

/* Adds the initializers for the vcall offset entries in the vtable
   for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
   to VID->INITS.  */

static void
build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
{
  /* We only need these entries if this base is a virtual base.  We
     compute the indices -- but do not add to the vtable -- when
     building the main vtable for a class.  */
  if (binfo == TYPE_BINFO (vid->derived)
      || (BINFO_VIRTUAL_P (binfo) 
	  /* If BINFO is RTTI_BINFO, then (since BINFO does not
	     correspond to VID->DERIVED), we are building a primary
	     construction virtual table.  Since this is a primary
	     virtual table, we do not need the vcall offsets for
	     BINFO.  */
	  && binfo != vid->rtti_binfo))
    {
      /* We need a vcall offset for each of the virtual functions in this
	 vtable.  For example:

	   class A { virtual void f (); };
	   class B1 : virtual public A { virtual void f (); };
	   class B2 : virtual public A { virtual void f (); };
	   class C: public B1, public B2 { virtual void f (); };

	 A C object has a primary base of B1, which has a primary base of A.  A
	 C also has a secondary base of B2, which no longer has a primary base
	 of A.  So the B2-in-C construction vtable needs a secondary vtable for
	 A, which will adjust the A* to a B2* to call f.  We have no way of
	 knowing what (or even whether) this offset will be when we define B2,
	 so we store this "vcall offset" in the A sub-vtable and look it up in
	 a "virtual thunk" for B2::f.

	 We need entries for all the functions in our primary vtable and
	 in our non-virtual bases' secondary vtables.  */
      vid->vbase = binfo;
      /* If we are just computing the vcall indices -- but do not need
	 the actual entries -- not that.  */
      if (!BINFO_VIRTUAL_P (binfo))
	vid->generate_vcall_entries = false;
      /* Now, walk through the non-virtual bases, adding vcall offsets.  */
      add_vcall_offset_vtbl_entries_r (binfo, vid);
    }
}

/* Build vcall offsets, starting with those for BINFO.  */

static void
add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
{
  int i;
  tree primary_binfo;
  tree base_binfo;

  /* Don't walk into virtual bases -- except, of course, for the
     virtual base for which we are building vcall offsets.  Any
     primary virtual base will have already had its offsets generated
     through the recursion in build_vcall_and_vbase_vtbl_entries.  */
  if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
    return;

  /* If BINFO has a primary base, process it first.  */
  primary_binfo = get_primary_binfo (binfo);
  if (primary_binfo)
    add_vcall_offset_vtbl_entries_r (primary_binfo, vid);

  /* Add BINFO itself to the list.  */
  add_vcall_offset_vtbl_entries_1 (binfo, vid);

  /* Scan the non-primary bases of BINFO.  */
  for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
    if (base_binfo != primary_binfo)
      add_vcall_offset_vtbl_entries_r (base_binfo, vid);
}

/* Called from build_vcall_offset_vtbl_entries_r.  */

static void
add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
{
  /* Make entries for the rest of the virtuals.  */
  if (abi_version_at_least (2))
    {
      tree orig_fn;

      /* The ABI requires that the methods be processed in declaration
	 order.  G++ 3.2 used the order in the vtable.  */
      for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
	   orig_fn;
	   orig_fn = TREE_CHAIN (orig_fn))
	if (DECL_VINDEX (orig_fn))
	  add_vcall_offset (orig_fn, binfo, vid);
    }
  else
    {
      tree derived_virtuals;
      tree base_virtuals;
      tree orig_virtuals;
      /* If BINFO is a primary base, the most derived class which has
	 BINFO as a primary base; otherwise, just BINFO.  */
      tree non_primary_binfo;

      /* We might be a primary base class.  Go up the inheritance hierarchy
	 until we find the most derived class of which we are a primary base:
	 it is the BINFO_VIRTUALS there that we need to consider.  */
      non_primary_binfo = binfo;
      while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
	{
	  tree b;

	  /* If we have reached a virtual base, then it must be vid->vbase,
	     because we ignore other virtual bases in
	     add_vcall_offset_vtbl_entries_r.  In turn, it must be a primary
	     base (possibly multi-level) of vid->binfo, or we wouldn't
	     have called build_vcall_and_vbase_vtbl_entries for it.  But it
	     might be a lost primary, so just skip down to vid->binfo.  */
	  if (BINFO_VIRTUAL_P (non_primary_binfo))
	    {
	      gcc_assert (non_primary_binfo == vid->vbase);
	      non_primary_binfo = vid->binfo;
	      break;
	    }

	  b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
	  if (get_primary_binfo (b) != non_primary_binfo)
	    break;
	  non_primary_binfo = b;
	}

      if (vid->ctor_vtbl_p)
	/* For a ctor vtable we need the equivalent binfo within the hierarchy
	   where rtti_binfo is the most derived type.  */
	non_primary_binfo
	  = original_binfo (non_primary_binfo, vid->rtti_binfo);

      for (base_virtuals = BINFO_VIRTUALS (binfo),
	     derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
	     orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
	   base_virtuals;
	   base_virtuals = TREE_CHAIN (base_virtuals),
	     derived_virtuals = TREE_CHAIN (derived_virtuals),
	     orig_virtuals = TREE_CHAIN (orig_virtuals))
	{
	  tree orig_fn;

	  /* Find the declaration that originally caused this function to
	     be present in BINFO_TYPE (binfo).  */
	  orig_fn = BV_FN (orig_virtuals);

	  /* When processing BINFO, we only want to generate vcall slots for
	     function slots introduced in BINFO.  So don't try to generate
	     one if the function isn't even defined in BINFO.  */
	  if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn)))
	    continue;

	  add_vcall_offset (orig_fn, binfo, vid);
	}
    }
}

/* Add a vcall offset entry for ORIG_FN to the vtable.  */

static void
add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
{
  size_t i;
  tree vcall_offset;
  tree derived_entry;

  /* If there is already an entry for a function with the same
     signature as FN, then we do not need a second vcall offset.
     Check the list of functions already present in the derived
     class vtable.  */
  for (i = 0; VEC_iterate (tree, vid->fns, i, derived_entry); ++i)
    {
      if (same_signature_p (derived_entry, orig_fn)
	  /* We only use one vcall offset for virtual destructors,
	     even though there are two virtual table entries.  */
	  || (DECL_DESTRUCTOR_P (derived_entry)
	      && DECL_DESTRUCTOR_P (orig_fn)))
	return;
    }

  /* If we are building these vcall offsets as part of building
     the vtable for the most derived class, remember the vcall
     offset.  */
  if (vid->binfo == TYPE_BINFO (vid->derived))
    {
      tree_pair_p elt = VEC_safe_push (tree_pair_s, gc,
				       CLASSTYPE_VCALL_INDICES (vid->derived),
				       NULL);
      elt->purpose = orig_fn;
      elt->value = vid->index;
    }

  /* The next vcall offset will be found at a more negative
     offset.  */
  vid->index = size_binop (MINUS_EXPR, vid->index,
			   ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));

  /* Keep track of this function.  */
  VEC_safe_push (tree, gc, vid->fns, orig_fn);

  if (vid->generate_vcall_entries)
    {
      tree base;
      tree fn;

      /* Find the overriding function.  */
      fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
      if (fn == error_mark_node)
	vcall_offset = build1 (NOP_EXPR, vtable_entry_type,
			       integer_zero_node);
      else
	{
	  base = TREE_VALUE (fn);

	  /* The vbase we're working on is a primary base of
	     vid->binfo.  But it might be a lost primary, so its
	     BINFO_OFFSET might be wrong, so we just use the
	     BINFO_OFFSET from vid->binfo.  */
	  vcall_offset = size_diffop (BINFO_OFFSET (base),
				      BINFO_OFFSET (vid->binfo));
	  vcall_offset = fold_build1 (NOP_EXPR, vtable_entry_type,
				      vcall_offset);
	}
      /* Add the initializer to the vtable.  */
      *vid->last_init = build_tree_list (NULL_TREE, vcall_offset);
      vid->last_init = &TREE_CHAIN (*vid->last_init);
    }
}

/* Return vtbl initializers for the RTTI entries corresponding to the
   BINFO's vtable.  The RTTI entries should indicate the object given
   by VID->rtti_binfo.  */

static void
build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
{
  tree b;
  tree t;
  tree basetype;
  tree offset;
  tree decl;
  tree init;

  basetype = BINFO_TYPE (binfo);
  t = BINFO_TYPE (vid->rtti_binfo);

  /* To find the complete object, we will first convert to our most
     primary base, and then add the offset in the vtbl to that value.  */
  b = binfo;
  while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
	 && !BINFO_LOST_PRIMARY_P (b))
    {
      tree primary_base;

      primary_base = get_primary_binfo (b);
      gcc_assert (BINFO_PRIMARY_P (primary_base)
		  && BINFO_INHERITANCE_CHAIN (primary_base) == b);
      b = primary_base;
    }
  offset = size_diffop (BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));

  /* The second entry is the address of the typeinfo object.  */
  if (flag_rtti)
    decl = build_address (get_tinfo_decl (t));
  else
    decl = integer_zero_node;

  /* Convert the declaration to a type that can be stored in the
     vtable.  */
  init = build_nop (vfunc_ptr_type_node, decl);
  *vid->last_init = build_tree_list (NULL_TREE, init);
  vid->last_init = &TREE_CHAIN (*vid->last_init);

  /* Add the offset-to-top entry.  It comes earlier in the vtable than
     the typeinfo entry.  Convert the offset to look like a
     function pointer, so that we can put it in the vtable.  */
  init = build_nop (vfunc_ptr_type_node, offset);
  *vid->last_init = build_tree_list (NULL_TREE, init);
  vid->last_init = &TREE_CHAIN (*vid->last_init);
}

/* Fold a OBJ_TYPE_REF expression to the address of a function.
   KNOWN_TYPE carries the true type of OBJ_TYPE_REF_OBJECT(REF).  */

tree
cp_fold_obj_type_ref (tree ref, tree known_type)
{
  HOST_WIDE_INT index = tree_low_cst (OBJ_TYPE_REF_TOKEN (ref), 1);
  HOST_WIDE_INT i = 0;
  tree v = BINFO_VIRTUALS (TYPE_BINFO (known_type));
  tree fndecl;

  while (i != index)
    {
      i += (TARGET_VTABLE_USES_DESCRIPTORS
	    ? TARGET_VTABLE_USES_DESCRIPTORS : 1);
      v = TREE_CHAIN (v);
    }

  fndecl = BV_FN (v);

#ifdef ENABLE_CHECKING
  gcc_assert (tree_int_cst_equal (OBJ_TYPE_REF_TOKEN (ref),
				  DECL_VINDEX (fndecl)));
#endif

  cgraph_node (fndecl)->local.vtable_method = true;

  return build_address (fndecl);
}

#include "gt-cp-class.h"