aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/xtensa/xtensa.cc
blob: 43b1332d42b38e85181c9e0fb0972f219c1a76f6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
/* Subroutines for insn-output.cc for Tensilica's Xtensa architecture.
   Copyright (C) 2001-2024 Free Software Foundation, Inc.
   Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#define IN_TARGET_CODE 1

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "stringpool.h"
#include "attribs.h"
#include "optabs.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "diagnostic-core.h"
#include "cfgrtl.h"
#include "output.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "calls.h"
#include "varasm.h"
#include "alias.h"
#include "explow.h"
#include "expr.h"
#include "reload.h"
#include "langhooks.h"
#include "gimplify.h"
#include "builtins.h"
#include "dumpfile.h"
#include "hw-doloop.h"
#include "rtl-iter.h"
#include "insn-attr.h"
#include "tree-pass.h"
#include "print-rtl.h"
#include "context.h"
#include "pass_manager.h"
#include <math.h>
#include "opts.h"

/* This file should be included last.  */
#include "target-def.h"

/* Enumeration for all of the relational tests, so that we can build
   arrays indexed by the test type, and not worry about the order
   of EQ, NE, etc.  */

enum internal_test
{
  ITEST_EQ,
  ITEST_NE,
  ITEST_GT,
  ITEST_GE,
  ITEST_LT,
  ITEST_LE,
  ITEST_GTU,
  ITEST_GEU,
  ITEST_LTU,
  ITEST_LEU,
  ITEST_MAX
};

/* Array giving truth value on whether or not a given hard register
   can support a given mode.  */
static char xtensa_hard_regno_mode_ok_p
  [(int) MAX_MACHINE_MODE][FIRST_PSEUDO_REGISTER];

/* Largest block move to handle in-line.  */
#define LARGEST_MOVE_RATIO 15

/* Define the structure for the machine field in struct function.  */
struct GTY(()) machine_function
{
  int accesses_prev_frame;
  bool need_a7_copy;
  bool vararg_a7;
  rtx vararg_a7_copy;
  rtx_insn *set_frame_ptr_insn;
  /* Current frame size calculated by compute_frame_size.  */
  unsigned current_frame_size;
  /* Callee-save area size in the current frame calculated by
     compute_frame_size.  */
  int callee_save_size;
  bool frame_laid_out;
  bool inhibit_logues_a1_adjusts;
  rtx last_logues_a9_content;
  HARD_REG_SET eliminated_callee_saved;
  hash_map<rtx, int> *litpool_usage;
};

static void xtensa_option_override (void);
static void xtensa_option_override_after_change (void);
static enum internal_test map_test_to_internal_test (enum rtx_code);
static rtx gen_int_relational (enum rtx_code, rtx, rtx);
static rtx gen_float_relational (enum rtx_code, rtx, rtx);
static rtx gen_conditional_move (enum rtx_code, machine_mode, rtx, rtx);
static struct machine_function * xtensa_init_machine_status (void);
static rtx xtensa_legitimize_tls_address (rtx);
static rtx xtensa_legitimize_address (rtx, rtx, machine_mode);
static bool xtensa_mode_dependent_address_p (const_rtx, addr_space_t);
static bool xtensa_return_in_msb (const_tree);
static void printx (FILE *, signed int);
static rtx xtensa_builtin_saveregs (void);
static bool xtensa_legitimate_address_p (machine_mode, rtx, bool,
					 code_helper = ERROR_MARK);
static unsigned int xtensa_multibss_section_type_flags (tree, const char *,
							int) ATTRIBUTE_UNUSED;
static section *xtensa_select_rtx_section (machine_mode, rtx,
					   unsigned HOST_WIDE_INT);
static bool xtensa_rtx_costs (rtx, machine_mode, int, int, int *, bool);
static int xtensa_insn_cost (rtx_insn *, bool);
static int xtensa_register_move_cost (machine_mode, reg_class_t,
				      reg_class_t);
static tree xtensa_build_builtin_va_list (void);
static bool xtensa_return_in_memory (const_tree, const_tree);
static tree xtensa_gimplify_va_arg_expr (tree, tree, gimple_seq *,
					 gimple_seq *);
static void xtensa_function_arg_advance (cumulative_args_t,
					 const function_arg_info &);
static rtx xtensa_function_arg (cumulative_args_t, const function_arg_info &);
static rtx xtensa_function_incoming_arg (cumulative_args_t,
					 const function_arg_info &);
static rtx xtensa_function_value (const_tree, const_tree, bool);
static rtx xtensa_libcall_value (machine_mode, const_rtx);
static bool xtensa_function_value_regno_p (const unsigned int);
static unsigned int xtensa_function_arg_boundary (machine_mode,
						  const_tree);
static void xtensa_init_builtins (void);
static tree xtensa_fold_builtin (tree, int, tree *, bool);
static rtx xtensa_expand_builtin (tree, rtx, rtx, machine_mode, int);
static void xtensa_va_start (tree, rtx);
static bool xtensa_frame_pointer_required (void);
static rtx xtensa_static_chain (const_tree, bool);
static void xtensa_asm_trampoline_template (FILE *);
static void xtensa_trampoline_init (rtx, tree, rtx);
static bool xtensa_output_addr_const_extra (FILE *, rtx);
static bool xtensa_cannot_force_const_mem (machine_mode, rtx);

static reg_class_t xtensa_preferred_reload_class (rtx, reg_class_t);
static reg_class_t xtensa_preferred_output_reload_class (rtx, reg_class_t);
static reg_class_t xtensa_secondary_reload (bool, rtx, reg_class_t,
					    machine_mode,
					    struct secondary_reload_info *);

static bool constantpool_address_p (const_rtx addr);
static bool xtensa_legitimate_constant_p (machine_mode, rtx);
static void xtensa_reorg (void);
static bool xtensa_can_use_doloop_p (const widest_int &, const widest_int &,
				     unsigned int, bool);
static const char *xtensa_invalid_within_doloop (const rtx_insn *);

static bool xtensa_member_type_forces_blk (const_tree,
					   machine_mode mode);

static void xtensa_conditional_register_usage (void);
static unsigned int xtensa_hard_regno_nregs (unsigned int, machine_mode);
static bool xtensa_hard_regno_mode_ok (unsigned int, machine_mode);
static bool xtensa_modes_tieable_p (machine_mode, machine_mode);
static HOST_WIDE_INT xtensa_constant_alignment (const_tree, HOST_WIDE_INT);
static bool xtensa_can_eliminate (const int from ATTRIBUTE_UNUSED,
				  const int to);
static HOST_WIDE_INT xtensa_starting_frame_offset (void);
static unsigned HOST_WIDE_INT xtensa_asan_shadow_offset (void);
static bool xtensa_function_ok_for_sibcall (tree, tree);
static bool xtensa_can_output_mi_thunk (const_tree thunk_fndecl ATTRIBUTE_UNUSED,
					HOST_WIDE_INT delta ATTRIBUTE_UNUSED,
					HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
					const_tree function ATTRIBUTE_UNUSED);
static void xtensa_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
				    HOST_WIDE_INT delta,
				    HOST_WIDE_INT vcall_offset,
				    tree function);

static rtx xtensa_delegitimize_address (rtx);



/* These hooks specify assembly directives for creating certain kinds
   of integer object.  */

#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"

#undef TARGET_ASM_SELECT_RTX_SECTION
#define TARGET_ASM_SELECT_RTX_SECTION  xtensa_select_rtx_section

#undef TARGET_LEGITIMIZE_ADDRESS
#define TARGET_LEGITIMIZE_ADDRESS xtensa_legitimize_address
#undef TARGET_MODE_DEPENDENT_ADDRESS_P
#define TARGET_MODE_DEPENDENT_ADDRESS_P xtensa_mode_dependent_address_p

#undef TARGET_REGISTER_MOVE_COST
#define TARGET_REGISTER_MOVE_COST xtensa_register_move_cost
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS xtensa_rtx_costs
#undef TARGET_INSN_COST
#define TARGET_INSN_COST xtensa_insn_cost
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST hook_int_rtx_mode_as_bool_0

#undef TARGET_MEMBER_TYPE_FORCES_BLK
#define TARGET_MEMBER_TYPE_FORCES_BLK xtensa_member_type_forces_blk

#undef TARGET_BUILD_BUILTIN_VA_LIST
#define TARGET_BUILD_BUILTIN_VA_LIST xtensa_build_builtin_va_list

#undef TARGET_EXPAND_BUILTIN_VA_START
#define TARGET_EXPAND_BUILTIN_VA_START xtensa_va_start

#undef TARGET_PROMOTE_FUNCTION_MODE
#define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true

#undef TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY xtensa_return_in_memory
#undef TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE xtensa_function_value
#undef TARGET_LIBCALL_VALUE
#define TARGET_LIBCALL_VALUE xtensa_libcall_value
#undef TARGET_FUNCTION_VALUE_REGNO_P
#define TARGET_FUNCTION_VALUE_REGNO_P xtensa_function_value_regno_p

#undef TARGET_SPLIT_COMPLEX_ARG
#define TARGET_SPLIT_COMPLEX_ARG hook_bool_const_tree_true
#undef TARGET_MUST_PASS_IN_STACK
#define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
#undef TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE xtensa_function_arg_advance
#undef TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG xtensa_function_arg
#undef TARGET_FUNCTION_INCOMING_ARG
#define TARGET_FUNCTION_INCOMING_ARG xtensa_function_incoming_arg
#undef TARGET_FUNCTION_ARG_BOUNDARY
#define TARGET_FUNCTION_ARG_BOUNDARY xtensa_function_arg_boundary

#undef TARGET_EXPAND_BUILTIN_SAVEREGS
#define TARGET_EXPAND_BUILTIN_SAVEREGS xtensa_builtin_saveregs
#undef TARGET_GIMPLIFY_VA_ARG_EXPR
#define TARGET_GIMPLIFY_VA_ARG_EXPR xtensa_gimplify_va_arg_expr

#undef TARGET_RETURN_IN_MSB
#define TARGET_RETURN_IN_MSB xtensa_return_in_msb

#undef  TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS xtensa_init_builtins
#undef  TARGET_FOLD_BUILTIN
#define TARGET_FOLD_BUILTIN xtensa_fold_builtin
#undef  TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN xtensa_expand_builtin

#undef  TARGET_PREFERRED_RELOAD_CLASS
#define TARGET_PREFERRED_RELOAD_CLASS xtensa_preferred_reload_class
#undef  TARGET_PREFERRED_OUTPUT_RELOAD_CLASS
#define TARGET_PREFERRED_OUTPUT_RELOAD_CLASS xtensa_preferred_output_reload_class

#undef TARGET_SECONDARY_RELOAD
#define TARGET_SECONDARY_RELOAD xtensa_secondary_reload

#undef TARGET_HAVE_TLS
#define TARGET_HAVE_TLS HAVE_AS_TLS

#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM xtensa_cannot_force_const_mem

#undef TARGET_LEGITIMATE_ADDRESS_P
#define TARGET_LEGITIMATE_ADDRESS_P	xtensa_legitimate_address_p

#undef TARGET_FRAME_POINTER_REQUIRED
#define TARGET_FRAME_POINTER_REQUIRED xtensa_frame_pointer_required

#undef TARGET_STATIC_CHAIN
#define TARGET_STATIC_CHAIN xtensa_static_chain
#undef TARGET_ASM_TRAMPOLINE_TEMPLATE
#define TARGET_ASM_TRAMPOLINE_TEMPLATE xtensa_asm_trampoline_template
#undef TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT xtensa_trampoline_init

#undef TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE xtensa_option_override

#undef TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE
#define TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE xtensa_option_override_after_change

#undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
#define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA xtensa_output_addr_const_extra

#undef TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P xtensa_legitimate_constant_p

#undef TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG xtensa_reorg

#undef TARGET_CAN_USE_DOLOOP_P
#define TARGET_CAN_USE_DOLOOP_P xtensa_can_use_doloop_p

#undef TARGET_INVALID_WITHIN_DOLOOP
#define TARGET_INVALID_WITHIN_DOLOOP xtensa_invalid_within_doloop

#undef TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE xtensa_conditional_register_usage

#undef TARGET_HARD_REGNO_NREGS
#define TARGET_HARD_REGNO_NREGS xtensa_hard_regno_nregs
#undef TARGET_HARD_REGNO_MODE_OK
#define TARGET_HARD_REGNO_MODE_OK xtensa_hard_regno_mode_ok

#undef TARGET_MODES_TIEABLE_P
#define TARGET_MODES_TIEABLE_P xtensa_modes_tieable_p

#undef TARGET_CONSTANT_ALIGNMENT
#define TARGET_CONSTANT_ALIGNMENT xtensa_constant_alignment

#undef TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE xtensa_can_eliminate

#undef TARGET_STARTING_FRAME_OFFSET
#define TARGET_STARTING_FRAME_OFFSET xtensa_starting_frame_offset

#undef TARGET_ASAN_SHADOW_OFFSET
#define TARGET_ASAN_SHADOW_OFFSET xtensa_asan_shadow_offset

#undef TARGET_HAVE_SPECULATION_SAFE_VALUE
#define TARGET_HAVE_SPECULATION_SAFE_VALUE speculation_safe_value_not_needed

#undef TARGET_DELEGITIMIZE_ADDRESS
#define TARGET_DELEGITIMIZE_ADDRESS xtensa_delegitimize_address

#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL xtensa_function_ok_for_sibcall

#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK xtensa_can_output_mi_thunk

#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK xtensa_output_mi_thunk

#undef TARGET_MAX_ANCHOR_OFFSET
#define TARGET_MAX_ANCHOR_OFFSET 1020

struct gcc_target targetm = TARGET_INITIALIZER;


/* Functions to test Xtensa immediate operand validity.  */

bool
xtensa_simm8 (HOST_WIDE_INT v)
{
  return IN_RANGE (v, -128, 127);
}


bool
xtensa_simm8x256 (HOST_WIDE_INT v)
{
  return (v & 255) == 0 && IN_RANGE (v, -32768, 32512);
}


bool
xtensa_simm12b (HOST_WIDE_INT v)
{
  return IN_RANGE (v, -2048, 2047);
}


static bool
xtensa_uimm8 (HOST_WIDE_INT v)
{
  return IN_RANGE (v, 0, 255);
}


static bool
xtensa_uimm8x2 (HOST_WIDE_INT v)
{
  return (v & 1) == 0 && IN_RANGE (v, 0, 510);
}


static bool
xtensa_uimm8x4 (HOST_WIDE_INT v)
{
  return (v & 3) == 0 && IN_RANGE (v, 0, 1020);
}


static bool
xtensa_b4const (HOST_WIDE_INT v)
{
  switch (v)
    {
    case -1:
    case 1:
    case 2:
    case 3:
    case 4:
    case 5:
    case 6:
    case 7:
    case 8:
    case 10:
    case 12:
    case 16:
    case 32:
    case 64:
    case 128:
    case 256:
      return true;
    }
  return false;
}


bool
xtensa_b4const_or_zero (HOST_WIDE_INT v)
{
  if (v == 0)
    return true;
  return xtensa_b4const (v);
}


bool
xtensa_b4constu (HOST_WIDE_INT v)
{
  switch (v)
    {
    case 32768:
    case 65536:
    case 2:
    case 3:
    case 4:
    case 5:
    case 6:
    case 7:
    case 8:
    case 10:
    case 12:
    case 16:
    case 32:
    case 64:
    case 128:
    case 256:
      return true;
    }
  return false;
}


bool
xtensa_m1_or_1_thru_15 (HOST_WIDE_INT v)
{
  return v == -1 || IN_RANGE (v, 1, 15);
}


bool
xtensa_mask_immediate (HOST_WIDE_INT v)
{
  return IN_RANGE (exact_log2 (v + 1), 1, 16);
}


/* This is just like the standard true_regnum() function except that it
   works even when reg_renumber is not initialized.  */

int
xt_true_regnum (rtx x)
{
  if (REG_P (x))
    {
      if (! HARD_REGISTER_P (x)
	  && reg_renumber
	  && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
	return reg_renumber[REGNO (x)];
      return REGNO (x);
    }
  if (SUBREG_P (x))
    {
      int base = xt_true_regnum (SUBREG_REG (x));

      if (base >= 0
	  && HARD_REGISTER_NUM_P (base))
	{
	  struct subreg_info info;

	  subreg_get_info (lra_in_progress
			   ? (unsigned) base : REGNO (SUBREG_REG (x)),
			   GET_MODE (SUBREG_REG (x)),
			   SUBREG_BYTE (x), GET_MODE (x), &info);
	  if (info.representable_p)
	    return base + info.offset;
	}
    }
  return -1;
}


int
xtensa_valid_move (machine_mode mode, rtx *operands)
{
  /* Either the destination or source must be a register, and the
     MAC16 accumulator doesn't count.  */

  if (register_operand (operands[0], mode))
    {
      int dst_regnum = xt_true_regnum (operands[0]);

      if (xtensa_tls_referenced_p (operands[1]))
	return FALSE;

      /* The stack pointer can only be assigned with a MOVSP opcode.  */
      if (dst_regnum == STACK_POINTER_REGNUM)
	return !TARGET_WINDOWED_ABI
	  || (mode == SImode
	      && register_operand (operands[1], mode)
	      && !ACC_REG_P (xt_true_regnum (operands[1])));

      if (!ACC_REG_P (dst_regnum))
	return true;
    }
  if (register_operand (operands[1], mode))
    {
      int src_regnum = xt_true_regnum (operands[1]);
      if (!ACC_REG_P (src_regnum))
	return true;
    }
  return FALSE;
}


int
smalloffset_mem_p (rtx op)
{
  if (MEM_P (op))
    {
      rtx addr = XEXP (op, 0);
      if (REG_P (addr))
	return BASE_REG_P (addr, 0);
      if (GET_CODE (addr) == PLUS)
	{
	  rtx offset = XEXP (addr, 0);
	  HOST_WIDE_INT val;
	  if (! CONST_INT_P (offset))
	    offset = XEXP (addr, 1);
	  if (! CONST_INT_P (offset))
	    return FALSE;

	  val = INTVAL (offset);
	  return (val & 3) == 0 && IN_RANGE (val, 0, 60);
	}
    }
  return FALSE;
}


static bool
constantpool_address_p (const_rtx addr)
{
  const_rtx sym = addr;

  if (GET_CODE (addr) == CONST)
    {
      rtx offset;

      /* Only handle (PLUS (SYM, OFFSET)) form.  */
      addr = XEXP (addr, 0);
      if (GET_CODE (addr) != PLUS)
	return false;

      /* Make sure the address is word aligned.  */
      offset = XEXP (addr, 1);
      if ((!CONST_INT_P (offset))
	  || ((INTVAL (offset) & 3) != 0))
	return false;

      sym = XEXP (addr, 0);
    }

  if (SYMBOL_REF_P (sym)
      && CONSTANT_POOL_ADDRESS_P (sym))
    return true;
  return false;
}


int
constantpool_mem_p (rtx op)
{
  if (SUBREG_P (op))
    op = SUBREG_REG (op);
  if (MEM_P (op))
    return constantpool_address_p (XEXP (op, 0));
  return FALSE;
}


/* Return TRUE if X is a thread-local symbol.  */

static bool
xtensa_tls_symbol_p (rtx x)
{
  if (! targetm.have_tls)
    return false;

  return SYMBOL_REF_P (x) && SYMBOL_REF_TLS_MODEL (x) != 0;
}


void
xtensa_extend_reg (rtx dst, rtx src)
{
  rtx temp = gen_reg_rtx (SImode);
  rtx shift = GEN_INT (BITS_PER_WORD - GET_MODE_BITSIZE (GET_MODE (src)));

  /* Generate paradoxical subregs as needed so that the modes match.  */
  src = simplify_gen_subreg (SImode, src, GET_MODE (src), 0);
  dst = simplify_gen_subreg (SImode, dst, GET_MODE (dst), 0);

  emit_insn (gen_ashlsi3 (temp, src, shift));
  emit_insn (gen_ashrsi3 (dst, temp, shift));
}


bool
xtensa_mem_offset (unsigned v, machine_mode mode)
{
  switch (mode)
    {
    case E_BLKmode:
      /* Handle the worst case for block moves.  See xtensa_expand_block_move
	 where we emit an optimized block move operation if the block can be
	 moved in < "move_ratio" pieces.  The worst case is when the block is
	 aligned but has a size of (3 mod 4) (does this happen?) so that the
	 last piece requires a byte load/store.  */
      return (xtensa_uimm8 (v)
	      && xtensa_uimm8 (v + MOVE_MAX * LARGEST_MOVE_RATIO));

    case E_QImode:
      return xtensa_uimm8 (v);

    case E_HImode:
      return xtensa_uimm8x2 (v);

    case E_DImode:
    case E_DFmode:
      return (xtensa_uimm8x4 (v) && xtensa_uimm8x4 (v + 4));

    default:
      break;
    }

  return xtensa_uimm8x4 (v);
}


/* Make normal rtx_code into something we can index from an array.  */

static enum internal_test
map_test_to_internal_test (enum rtx_code test_code)
{
  enum internal_test test = ITEST_MAX;

  switch (test_code)
    {
    default:			break;
    case EQ:  test = ITEST_EQ;  break;
    case NE:  test = ITEST_NE;  break;
    case GT:  test = ITEST_GT;  break;
    case GE:  test = ITEST_GE;  break;
    case LT:  test = ITEST_LT;  break;
    case LE:  test = ITEST_LE;  break;
    case GTU: test = ITEST_GTU; break;
    case GEU: test = ITEST_GEU; break;
    case LTU: test = ITEST_LTU; break;
    case LEU: test = ITEST_LEU; break;
    }

  return test;
}


/* Generate the code to compare two integer values.  The return value is
   the comparison expression.  */

static rtx
gen_int_relational (enum rtx_code test_code, /* relational test (EQ, etc) */
		    rtx cmp0, /* first operand to compare */
		    rtx cmp1 /* second operand to compare */)
{
  struct cmp_info
  {
    enum rtx_code test_code;	/* test code to use in insn */
    bool (*const_range_p) (HOST_WIDE_INT); /* range check function */
    int const_add;		/* constant to add (convert LE -> LT) */
    int reverse_regs;		/* reverse registers in test */
    int invert_const;		/* != 0 if invert value if cmp1 is constant */
    int invert_reg;		/* != 0 if invert value if cmp1 is register */
    int unsignedp;		/* != 0 for unsigned comparisons.  */
  };

  static struct cmp_info info[ (int)ITEST_MAX ] = {

    { EQ,	xtensa_b4const_or_zero,	0, 0, 0, 0, 0 },	/* EQ  */
    { NE,	xtensa_b4const_or_zero,	0, 0, 0, 0, 0 },	/* NE  */

    { LT,	xtensa_b4const_or_zero,	1, 1, 1, 0, 0 },	/* GT  */
    { GE,	xtensa_b4const_or_zero,	0, 0, 0, 0, 0 },	/* GE  */
    { LT,	xtensa_b4const_or_zero,	0, 0, 0, 0, 0 },	/* LT  */
    { GE,	xtensa_b4const_or_zero,	1, 1, 1, 0, 0 },	/* LE  */

    { LTU,	xtensa_b4constu,	1, 1, 1, 0, 1 },	/* GTU */
    { GEU,	xtensa_b4constu,	0, 0, 0, 0, 1 },	/* GEU */
    { LTU,	xtensa_b4constu,	0, 0, 0, 0, 1 },	/* LTU */
    { GEU,	xtensa_b4constu,	1, 1, 1, 0, 1 },	/* LEU */
  };

  enum internal_test test;
  machine_mode mode;
  struct cmp_info *p_info;
  int invert;

  test = map_test_to_internal_test (test_code);
  gcc_assert (test != ITEST_MAX);

  p_info = &info[ (int)test ];

  mode = GET_MODE (cmp0);
  if (mode == VOIDmode)
    mode = GET_MODE (cmp1);

  /* Make sure we can handle any constants given to us.  */
  if (CONST_INT_P (cmp1))
    {
      HOST_WIDE_INT value = INTVAL (cmp1);
      unsigned HOST_WIDE_INT uvalue = (unsigned HOST_WIDE_INT)value;

      /* if the immediate overflows or does not fit in the immediate field,
	 spill it to a register */

      if ((p_info->unsignedp ?
	   (uvalue + p_info->const_add > uvalue) :
	   (value + p_info->const_add > value)) != (p_info->const_add > 0))
	{
	  cmp1 = force_reg (mode, cmp1);
	}
      else if (!(p_info->const_range_p) (value + p_info->const_add))
	{
	  cmp1 = force_reg (mode, cmp1);
	}
    }
  else if (! REG_P (cmp1) && ! SUBREG_P (cmp1))
    {
      cmp1 = force_reg (mode, cmp1);
    }

  /* See if we need to invert the result.  */
  invert = (CONST_INT_P (cmp1)
	    ? p_info->invert_const
	    : p_info->invert_reg);

  /* Comparison to constants, may involve adding 1 to change a LT into LE.
     Comparison between two registers, may involve switching operands.  */
  if (CONST_INT_P (cmp1))
    {
      if (p_info->const_add != 0)
	cmp1 = GEN_INT (INTVAL (cmp1) + p_info->const_add);

    }
  else if (p_info->reverse_regs)
    std::swap (cmp0, cmp1);

  return gen_rtx_fmt_ee (invert ? reverse_condition (p_info->test_code)
				: p_info->test_code,
			 VOIDmode, cmp0, cmp1);
}


/* Generate the code to compare two float values.  The return value is
   the comparison expression.  */

static rtx
gen_float_relational (enum rtx_code test_code, /* relational test (EQ, etc) */
		      rtx cmp0, /* first operand to compare */
		      rtx cmp1 /* second operand to compare */)
{
  rtx (*gen_fn) (rtx, rtx, rtx);
  rtx brtmp;
  int reverse_regs, invert;

  switch (test_code)
    {
    case EQ: reverse_regs = 0; invert = 0; gen_fn = gen_seq_sf; break;
    case NE: reverse_regs = 0; invert = 1; gen_fn = gen_seq_sf; break;
    case LE: reverse_regs = 0; invert = 0; gen_fn = gen_sle_sf; break;
    case GT: reverse_regs = 1; invert = 0; gen_fn = gen_slt_sf; break;
    case LT: reverse_regs = 0; invert = 0; gen_fn = gen_slt_sf; break;
    case GE: reverse_regs = 1; invert = 0; gen_fn = gen_sle_sf; break;
    case UNEQ: reverse_regs = 0; invert = 0; gen_fn = gen_suneq_sf; break;
    case LTGT: reverse_regs = 0; invert = 1; gen_fn = gen_suneq_sf; break;
    case UNLE: reverse_regs = 0; invert = 0; gen_fn = gen_sunle_sf; break;
    case UNGT: reverse_regs = 1; invert = 0; gen_fn = gen_sunlt_sf; break;
    case UNLT: reverse_regs = 0; invert = 0; gen_fn = gen_sunlt_sf; break;
    case UNGE: reverse_regs = 1; invert = 0; gen_fn = gen_sunle_sf; break;
    case UNORDERED:
      reverse_regs = 0; invert = 0; gen_fn = gen_sunordered_sf; break;
    case ORDERED:
      reverse_regs = 0; invert = 1; gen_fn = gen_sunordered_sf; break;
    default:
      fatal_insn ("bad test", gen_rtx_fmt_ee (test_code, VOIDmode, cmp0, cmp1));
      reverse_regs = 0; invert = 0; gen_fn = 0; /* avoid compiler warnings */
    }

  if (reverse_regs)
    std::swap (cmp0, cmp1);

  brtmp = gen_rtx_REG (CCmode, FPCC_REGNUM);
  emit_insn (gen_fn (brtmp, cmp0, cmp1));

  return gen_rtx_fmt_ee (invert ? EQ : NE, VOIDmode, brtmp, const0_rtx);
}


void
xtensa_expand_conditional_branch (rtx *operands, machine_mode mode)
{
  enum rtx_code test_code = GET_CODE (operands[0]);
  rtx cmp0 = operands[1];
  rtx cmp1 = operands[2];
  rtx cmp, label;

  switch (mode)
    {
    case E_SFmode:
      if (TARGET_HARD_FLOAT)
	{
	  cmp = gen_float_relational (test_code, cmp0, cmp1);
	  break;
	}
      /* FALLTHRU */

    case E_DFmode:
    default:
      fatal_insn ("bad test", gen_rtx_fmt_ee (test_code, VOIDmode, cmp0, cmp1));

    case E_SImode:
      cmp = gen_int_relational (test_code, cmp0, cmp1);
      break;
    }

  /* Generate the branch.  */
  label = gen_rtx_LABEL_REF (VOIDmode, operands[3]);
  emit_jump_insn (gen_rtx_SET (pc_rtx,
			       gen_rtx_IF_THEN_ELSE (VOIDmode, cmp,
						     label,
						     pc_rtx)));
}


static rtx
gen_conditional_move (enum rtx_code code, machine_mode mode,
		      rtx op0, rtx op1)
{
  if (mode == SImode)
    {
      rtx cmp;

      /* Jump optimization calls get_condition() which canonicalizes
	 comparisons like (GE x <const>) to (GT x <const-1>).
	 Transform those comparisons back to GE, since that is the
	 comparison supported in Xtensa.  We shouldn't have to
	 transform <LE x const> comparisons, because neither
	 xtensa_expand_conditional_branch() nor get_condition() will
	 produce them.  */

      if ((code == GT) && (op1 == constm1_rtx))
	{
	  code = GE;
	  op1 = const0_rtx;
	}
      cmp = gen_rtx_fmt_ee (code, VOIDmode, pc_rtx, const0_rtx);

      if (boolean_operator (cmp, VOIDmode))
	{
	  /* Swap the operands to make const0 second.  */
	  if (op0 == const0_rtx)
	    {
	      op0 = op1;
	      op1 = const0_rtx;
	    }

	  /* If not comparing against zero, emit a comparison (subtract).  */
	  if (op1 != const0_rtx)
	    {
	      op0 = expand_binop (SImode, sub_optab, op0, op1,
				  0, 0, OPTAB_LIB_WIDEN);
	      op1 = const0_rtx;
	    }
	}
      else if (branch_operator (cmp, VOIDmode))
	{
	  /* Swap the operands to make const0 second.  */
	  if (op0 == const0_rtx)
	    {
	      op0 = op1;
	      op1 = const0_rtx;

	      switch (code)
		{
		case LT: code = GE; break;
		case GE: code = LT; break;
		default: gcc_unreachable ();
		}
	    }

	  if (op1 != const0_rtx)
	    return 0;
	}
      else
	return 0;

      return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
    }

  if (TARGET_HARD_FLOAT && mode == SFmode)
    return gen_float_relational (code, op0, op1);

  return 0;
}


int
xtensa_expand_conditional_move (rtx *operands, int isflt)
{
  rtx dest = operands[0];
  rtx cmp = operands[1];
  machine_mode cmp_mode = GET_MODE (XEXP (cmp, 0));
  rtx (*gen_fn) (rtx, rtx, rtx, rtx, rtx);

  if (!(cmp = gen_conditional_move (GET_CODE (cmp), cmp_mode,
				    XEXP (cmp, 0), XEXP (cmp, 1))))
    return 0;

  if (isflt)
    gen_fn = (cmp_mode == SImode
	      ? gen_movsfcc_internal0
	      : gen_movsfcc_internal1);
  else
    gen_fn = (cmp_mode == SImode
	      ? gen_movsicc_internal0
	      : gen_movsicc_internal1);

  emit_insn (gen_fn (dest, XEXP (cmp, 0), operands[2], operands[3], cmp));
  return 1;
}


int
xtensa_expand_scc (rtx operands[4], machine_mode cmp_mode)
{
  rtx dest = operands[0];
  rtx cmp;
  rtx one_tmp, zero_tmp;
  rtx (*gen_fn) (rtx, rtx, rtx, rtx, rtx);

  if (cmp_mode == SImode && TARGET_SALT)
    {
      rtx a = operands[2], b = force_reg (SImode, operands[3]);
      enum rtx_code code = GET_CODE (operands[1]);
      bool invert_res = false;

      switch (code)
	{
	case GE:
	case GEU:
	  invert_res = true;
	  break;
	case GT:
	case GTU:
	  std::swap (a, b);
	  break;
	case LE:
	case LEU:
	  invert_res = true;
	  std::swap (a, b);
	  break;
	default:
	  break;
	}

      switch (code)
	{
	case GE:
	case GT:
	case LE:
	case LT:
	  emit_insn (gen_salt (dest, a, b));
	  if (!invert_res)
	    return 1;
	  break;
	case GEU:
	case GTU:
	case LEU:
	case LTU:
	  emit_insn (gen_saltu (dest, a, b));
	  if (!invert_res)
	    return 1;
	  break;
	default:
	  break;
	}

      if (invert_res)
	{
	  emit_insn (gen_negsi2 (dest, dest));
	  emit_insn (gen_addsi3 (dest, dest, const1_rtx));
	  return 1;
	}
    }

  if (! (cmp = gen_conditional_move (GET_CODE (operands[1]), cmp_mode,
				     operands[2], operands[3])))
    return 0;

  one_tmp = force_reg (SImode, const1_rtx);
  zero_tmp = force_reg (SImode, const0_rtx);

  gen_fn = (cmp_mode == SImode
	    ? gen_movsicc_internal0
	    : gen_movsicc_internal1);
  emit_insn (gen_fn (dest, XEXP (cmp, 0), one_tmp, zero_tmp, cmp));
  return 1;
}


/* Split OP[1] into OP[2,3] and likewise for OP[0] into OP[0,1].  MODE is
   for the output, i.e., the input operands are twice as big as MODE.  */

void
xtensa_split_operand_pair (rtx operands[4], machine_mode mode)
{
  switch (GET_CODE (operands[1]))
    {
    case REG:
      operands[3] = gen_rtx_REG (mode, REGNO (operands[1]) + 1);
      operands[2] = gen_rtx_REG (mode, REGNO (operands[1]));
      break;

    case MEM:
      operands[3] = adjust_address (operands[1], mode, GET_MODE_SIZE (mode));
      operands[2] = adjust_address (operands[1], mode, 0);
      break;

    case CONST_INT:
    case CONST_DOUBLE:
      split_double (operands[1], &operands[2], &operands[3]);
      break;

    default:
      gcc_unreachable ();
    }

  switch (GET_CODE (operands[0]))
    {
    case REG:
      operands[1] = gen_rtx_REG (mode, REGNO (operands[0]) + 1);
      operands[0] = gen_rtx_REG (mode, REGNO (operands[0]));
      break;

    case MEM:
      operands[1] = adjust_address (operands[0], mode, GET_MODE_SIZE (mode));
      operands[0] = adjust_address (operands[0], mode, 0);
      break;

    default:
      gcc_unreachable ();
    }
}


/* Try to emit insns to load src (either naked or pooled SI/SF constant)
   into dst with synthesizing a such constant value from a sequence of
   load-immediate / arithmetic ones, instead of a L32R instruction
   (plus a constant in litpool).  */

static int
xtensa_constantsynth_2insn (rtx dst, HOST_WIDE_INT srcval,
			    rtx (*gen_op)(rtx, HOST_WIDE_INT),
			    HOST_WIDE_INT op_imm)
{
  HOST_WIDE_INT imm = INT_MAX;
  rtx x = NULL_RTX;
  int shift, sqr;

  gcc_assert (REG_P (dst));

  shift = exact_log2 (srcval + 1);
  if (IN_RANGE (shift, 1, 31))
    {
      imm = -1;
      x = gen_lshrsi3 (dst, dst, GEN_INT (32 - shift));
    }

  shift = ctz_hwi (srcval);
  if ((!x || (TARGET_DENSITY && ! IN_RANGE (imm, -32, 95)))
      && xtensa_simm12b (srcval >> shift))
    {
      imm = srcval >> shift;
      x = gen_ashlsi3 (dst, dst, GEN_INT (shift));
    }

  if ((!x || (TARGET_DENSITY && ! IN_RANGE (imm, -32, 95)))
      && IN_RANGE (srcval, (-2048 - 32768), (2047 + 32512)))
    {
      HOST_WIDE_INT imm0, imm1;

      if (srcval < -32768)
	imm1 = -32768;
      else if (srcval > 32512)
	imm1 = 32512;
      else
	imm1 = srcval & ~255;
      imm0 = srcval - imm1;
      if (TARGET_DENSITY && imm1 < 32512 && IN_RANGE (imm0, 224, 255))
	imm0 -= 256, imm1 += 256;
      imm = imm0;
      x = gen_addsi3 (dst, dst, GEN_INT (imm1));
    }

  sqr = (int) floorf (sqrtf (srcval));
  if (TARGET_MUL32 && optimize_size
      && !x && IN_RANGE (srcval, 0, (2047 * 2047)) && sqr * sqr == srcval)
    {
      imm = sqr;
      x = gen_mulsi3 (dst, dst, dst);
    }

  if (!x)
    return 0;

  emit_move_insn (dst, GEN_INT (imm));
  emit_insn (x);
  if (gen_op)
    emit_move_insn (dst, gen_op (dst, op_imm));

  return 1;
}

static rtx
xtensa_constantsynth_rtx_SLLI (rtx reg, HOST_WIDE_INT imm)
{
  return gen_rtx_ASHIFT (SImode, reg, GEN_INT (imm));
}

static rtx
xtensa_constantsynth_rtx_ADDSUBX (rtx reg, HOST_WIDE_INT imm)
{
  return imm == 7
	 ? gen_rtx_MINUS (SImode, gen_rtx_ASHIFT (SImode, reg, GEN_INT (3)),
			  reg)
	 : gen_rtx_PLUS (SImode, gen_rtx_ASHIFT (SImode, reg,
						 GEN_INT (floor_log2 (imm - 1))),
			 reg);
}

int
xtensa_constantsynth (rtx dst, rtx src)
{
  HOST_WIDE_INT srcval;
  static opt_pass *pass_rtl_split2;
  int *pv;

  /* Derefer if src is litpool entry, and get integer constant value.  */
  src = avoid_constant_pool_reference (src);
  if (CONST_INT_P (src))
    srcval = INTVAL (src);
  else if (CONST_DOUBLE_P (src) && GET_MODE (src) == SFmode)
    {
      long l;

      REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (src), l);
      srcval = (int32_t)l, src = GEN_INT (srcval);
    }
  else
    return 0;

  /* Force dst as SImode.  */
  gcc_assert (REG_P (dst));
  if (GET_MODE (dst) != SImode)
    dst = gen_rtx_REG (SImode, REGNO (dst));

  if (optimize_size)
    {
      /* During the first split pass after register allocation (rtl-split2),
	 record the occurrence of integer src value and do nothing.  */
      if (!pass_rtl_split2)
	pass_rtl_split2 = g->get_passes ()->get_pass_by_name ("rtl-split2");
      if (current_pass == pass_rtl_split2)
	{
	  if (!cfun->machine->litpool_usage)
	    cfun->machine->litpool_usage = hash_map<rtx, int>::create_ggc ();
	  if ((pv = cfun->machine->litpool_usage->get (src)))
	    ++*pv;
	  else
	    cfun->machine->litpool_usage->put (src, 1);
	  return 0;
	}

      /* If two or more identical integer constants appear in the function,
	 the code size can be reduced by re-emitting a "move" (load from an
	 either litpool entry or relaxed immediate) instruction in SImode
	 to increase the chances that the litpool entry will be shared.  */
      if (cfun->machine->litpool_usage
	  && (pv = cfun->machine->litpool_usage->get (src))
	  && *pv > 1)
	{
	  emit_move_insn (dst, src);
	  return 1;
	}
    }

  /* No need for synthesizing for what fits into MOVI instruction.  */
  if (xtensa_simm12b (srcval))
    {
      emit_move_insn (dst, src);
      return 1;
    }

  /* 2-insns substitution.  */
  if ((optimize_size || (optimize && xtensa_extra_l32r_costs >= 1))
      && xtensa_constantsynth_2insn (dst, srcval, NULL, 0))
    return 1;

  /* 3-insns substitution.  */
  if (optimize > 1 && !optimize_size && xtensa_extra_l32r_costs >= 2)
    {
      int shift, divisor;

      /* 2-insns substitution followed by SLLI.  */
      shift = ctz_hwi (srcval);
      if (IN_RANGE (shift, 1, 31) &&
	  xtensa_constantsynth_2insn (dst, srcval >> shift,
				      xtensa_constantsynth_rtx_SLLI,
				      shift))
	return 1;

      /* 2-insns substitution followed by ADDX[248] or SUBX8.  */
      if (TARGET_ADDX)
	for (divisor = 3; divisor <= 9; divisor += 2)
	  if (srcval % divisor == 0 &&
	      xtensa_constantsynth_2insn (dst, srcval / divisor,
					  xtensa_constantsynth_rtx_ADDSUBX,
					  divisor))
	    return 1;

      /* loading simm12 followed by left/right bitwise rotation:
	 MOVI + SSAI + SRC.  */
      if ((srcval & 0x001FF800) == 0
	  || (srcval & 0x001FF800) == 0x001FF800)
	{
	  int32_t v;

	  for (shift = 1; shift < 12; ++shift)
	    {
	      v = (int32_t)(((uint32_t)srcval >> shift)
			    | ((uint32_t)srcval << (32 - shift)));
	      if (xtensa_simm12b(v))
		{
		  emit_move_insn (dst, GEN_INT (v));
		  emit_insn (gen_rotlsi3 (dst, dst, GEN_INT (shift)));
		  return 1;
		}
	      v = (int32_t)(((uint32_t)srcval << shift)
			    | ((uint32_t)srcval >> (32 - shift)));
	      if (xtensa_simm12b(v))
		{
		  emit_move_insn (dst, GEN_INT (v));
		  emit_insn (gen_rotrsi3 (dst, dst, GEN_INT (shift)));
		  return 1;
		}
	    }
	}
    }

  /* If cannot synthesize the value and also cannot fit into MOVI instruc-
     tion, re-emit a "move" (load from an either litpool entry or relaxed
     immediate) instruction in SImode in order to increase the chances that
     the litpool entry will be shared.  */
  emit_move_insn (dst, src);
  return 1;
}


/* Emit insns to move operands[1] into operands[0].
   Return 1 if we have written out everything that needs to be done to
   do the move.  Otherwise, return 0 and the caller will emit the move
   normally.  */

int
xtensa_emit_move_sequence (rtx *operands, machine_mode mode)
{
  rtx src = operands[1];

  if (CONSTANT_P (src)
      && (! CONST_INT_P (src) || ! xtensa_simm12b (INTVAL (src))))
    {
      rtx dst = operands[0];

      if (xtensa_tls_referenced_p (src))
	{
	  rtx addend = NULL;

	  if (GET_CODE (src) == CONST && GET_CODE (XEXP (src, 0)) == PLUS)
	    {
	      addend = XEXP (XEXP (src, 0), 1);
	      src = XEXP (XEXP (src, 0), 0);
	    }

	  src = xtensa_legitimize_tls_address (src);
	  if (addend)
	    {
	      src = gen_rtx_PLUS (mode, src, addend);
	      src = force_operand (src, dst);
	    }
	  emit_move_insn (dst, src);
	  return 1;
	}

      if (! TARGET_AUTO_LITPOOLS && ! TARGET_CONST16
	  && ! (CONST_INT_P (src) && can_create_pseudo_p ()))
	{
	  src = force_const_mem (SImode, src);
	  operands[1] = src;
	}

      /* PC-relative loads are always SImode, and CONST16 is only
	 supported in the movsi pattern, so add a SUBREG for any other
	 (smaller) mode.  */

      if (mode != SImode)
	{
	  if (register_operand (dst, mode))
	    {
	      emit_move_insn (simplify_gen_subreg (SImode, dst, mode, 0), src);
	      return 1;
	    }
	  else
	    {
	      src = force_reg (SImode, src);
	      src = gen_lowpart_SUBREG (mode, src);
	      operands[1] = src;
	    }
	}
    }

  if (can_create_pseudo_p ()
      && !xtensa_valid_move (mode, operands))
    operands[1] = force_reg (mode, operands[1]);

  operands[1] = xtensa_copy_incoming_a7 (operands[1]);

  return 0;
}


/* Check if an incoming argument in a7 is expected to be used soon and
   if OPND is a register or register pair that includes a7.  If so,
   create a new pseudo and copy a7 into that pseudo at the very
   beginning of the function, followed by the special "set_frame_ptr"
   unspec_volatile insn.  The return value is either the original
   operand, if it is not a7, or the new pseudo containing a copy of
   the incoming argument.  This is necessary because the register
   allocator will ignore conflicts with a7 and may either assign some
   other pseudo to a7 or use a7 as the hard_frame_pointer, clobbering
   the incoming argument in a7.  By copying the argument out of a7 as
   the very first thing, and then immediately following that with an
   unspec_volatile to keep the scheduler away, we should avoid any
   problems.  Putting the set_frame_ptr insn at the beginning, with
   only the a7 copy before it, also makes it easier for the prologue
   expander to initialize the frame pointer after the a7 copy and to
   fix up the a7 copy to use the stack pointer instead of the frame
   pointer.  */

rtx
xtensa_copy_incoming_a7 (rtx opnd)
{
  rtx entry_insns = 0;
  rtx reg, tmp;
  machine_mode mode;

  if (!cfun->machine->need_a7_copy)
    return opnd;

  /* This function should never be called again once a7 has been copied.  */
  gcc_assert (!cfun->machine->set_frame_ptr_insn);

  mode = GET_MODE (opnd);

  /* The operand using a7 may come in a later instruction, so just return
     the original operand if it doesn't use a7.  */
  reg = opnd;
  if (SUBREG_P (reg))
    {
      gcc_assert (SUBREG_BYTE (reg) == 0);
      reg = SUBREG_REG (reg);
    }
  if (! REG_P (reg)
      || REGNO (reg) > A7_REG
      || REGNO (reg) + hard_regno_nregs (A7_REG, mode) <= A7_REG)
    return opnd;

  /* 1-word args will always be in a7; 2-word args in a6/a7.  */
  gcc_assert (REGNO (reg) + hard_regno_nregs (A7_REG, mode) - 1 == A7_REG);

  cfun->machine->need_a7_copy = false;

  /* Copy a7 to a new pseudo at the function entry.  Use gen_raw_REG to
     create the REG for a7 so that hard_frame_pointer_rtx is not used.  */

  start_sequence ();
  tmp = gen_reg_rtx (mode);

  switch (mode)
    {
    case E_DFmode:
    case E_DImode:
      /* Copy the value out of A7 here but keep the first word in A6 until
	 after the set_frame_ptr insn.  Otherwise, the register allocator
	 may decide to put "subreg (tmp, 0)" in A7 and clobber the incoming
	 value.  */
      emit_insn (gen_movsi_internal (gen_rtx_SUBREG (SImode, tmp, 4),
				     gen_raw_REG (SImode, A7_REG)));
      break;
    case E_SFmode:
      emit_insn (gen_movsf_internal (tmp, gen_raw_REG (mode, A7_REG)));
      break;
    case E_SImode:
      emit_insn (gen_movsi_internal (tmp, gen_raw_REG (mode, A7_REG)));
      break;
    case E_HImode:
      emit_insn (gen_movhi_internal (tmp, gen_raw_REG (mode, A7_REG)));
      break;
    case E_QImode:
      emit_insn (gen_movqi_internal (tmp, gen_raw_REG (mode, A7_REG)));
      break;
    default:
      gcc_unreachable ();
    }

  cfun->machine->set_frame_ptr_insn = emit_insn (gen_set_frame_ptr ());

  /* For DF and DI mode arguments, copy the incoming value in A6 now.  */
  if (mode == DFmode || mode == DImode)
    emit_insn (gen_movsi_internal (gen_rtx_SUBREG (SImode, tmp, 0),
				   gen_rtx_REG (SImode, A7_REG - 1)));
  entry_insns = get_insns ();
  end_sequence ();

  if (cfun->machine->vararg_a7)
    {
      /* This is called from within builtin_saveregs, which will insert the
	 saveregs code at the function entry, ahead of anything placed at
	 the function entry now.  Instead, save the sequence to be inserted
	 at the beginning of the saveregs code.  */
      cfun->machine->vararg_a7_copy = entry_insns;
    }
  else
    {
      /* Put entry_insns after the NOTE that starts the function.  If
	 this is inside a start_sequence, make the outer-level insn
	 chain current, so the code is placed at the start of the
	 function.  */
      push_topmost_sequence ();
      /* Do not use entry_of_function() here.  This is called from within
	 expand_function_start, when the CFG still holds GIMPLE.  */
      emit_insn_after (entry_insns, get_insns ());
      pop_topmost_sequence ();
    }

  return tmp;
}


/* Try to expand a block move operation to a sequence of RTL move
   instructions.  If not optimizing, or if the block size is not a
   constant, or if the block is too large, the expansion fails and GCC
   falls back to calling memcpy().

   operands[0] is the destination
   operands[1] is the source
   operands[2] is the length
   operands[3] is the alignment */

int
xtensa_expand_block_move (rtx *operands)
{
  static const machine_mode mode_from_align[] =
  {
    VOIDmode, QImode, HImode, VOIDmode, SImode,
  };

  rtx dst_mem = operands[0];
  rtx src_mem = operands[1];
  HOST_WIDE_INT bytes, align;
  int num_pieces, move_ratio;
  rtx temp[2];
  machine_mode mode[2];
  int amount[2];
  bool active[2];
  int phase = 0;
  int next;
  int offset_ld = 0;
  int offset_st = 0;
  rtx x;

  /* If this is not a fixed size move, just call memcpy.  */
  if (!optimize || ! CONST_INT_P (operands[2]))
    return 0;

  bytes = INTVAL (operands[2]);
  align = INTVAL (operands[3]);

  /* Anything to move?  */
  if (bytes <= 0)
    return 0;

  if (align > MOVE_MAX)
    align = MOVE_MAX;

  /* Decide whether to expand inline based on the optimization level.  */
  move_ratio = 4;
  if (optimize > 2)
    move_ratio = LARGEST_MOVE_RATIO;
  num_pieces = (bytes / align) + ((bytes % align + 1) / 2);
  if (num_pieces > move_ratio)
    return 0;

  x = XEXP (dst_mem, 0);
  if (!REG_P (x))
    {
      x = force_reg (Pmode, x);
      dst_mem = replace_equiv_address (dst_mem, x);
    }

  x = XEXP (src_mem, 0);
  if (!REG_P (x))
    {
      x = force_reg (Pmode, x);
      src_mem = replace_equiv_address (src_mem, x);
    }

  active[0] = active[1] = false;

  do
    {
      next = phase;
      phase ^= 1;

      if (bytes > 0)
	{
	  int next_amount;

	  next_amount = (bytes >= 4 ? 4 : (bytes >= 2 ? 2 : 1));
	  next_amount = MIN (next_amount, align);

	  amount[next] = next_amount;
	  mode[next] = mode_from_align[next_amount];
	  temp[next] = gen_reg_rtx (mode[next]);

	  x = adjust_address (src_mem, mode[next], offset_ld);
	  emit_move_insn (temp[next], x);

	  offset_ld += next_amount;
	  bytes -= next_amount;
	  active[next] = true;
	}

      if (active[phase])
	{
	  active[phase] = false;

	  x = adjust_address (dst_mem, mode[phase], offset_st);
	  emit_move_insn (x, temp[phase]);

	  offset_st += amount[phase];
	}
    }
  while (active[next]);

  return 1;
}


/* Worker function for xtensa_expand_block_set().

   Expand into an insn sequence that calls the "memset" function.  */

static rtx_insn *
xtensa_expand_block_set_libcall (rtx dst_mem,
				 HOST_WIDE_INT value,
				 HOST_WIDE_INT bytes)
{
  rtx reg;
  rtx_insn *seq;

  start_sequence ();

  reg = XEXP (dst_mem, 0);
  if (! REG_P (reg))
    reg = XEXP (replace_equiv_address (dst_mem,
				       force_reg (Pmode, reg)), 0);
  emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "memset"),
		     LCT_NORMAL, VOIDmode,
		     reg, SImode,
		     GEN_INT (value), SImode,
		     GEN_INT (bytes), SImode);

  seq = get_insns ();
  end_sequence ();

  return seq;
}

/* Worker function for xtensa_expand_block_set().

   Expand into an insn sequence of one constant load followed by multiple
   memory stores.  Returns NULL if the conditions for expansion are not
   met.  */

static rtx_insn *
xtensa_expand_block_set_unrolled_loop (rtx dst_mem,
				       HOST_WIDE_INT value,
				       HOST_WIDE_INT bytes,
				       HOST_WIDE_INT align)
{
  rtx reg;
  int offset;
  rtx_insn *seq;

  if (bytes > 64)
    return NULL;

  start_sequence ();

  reg = XEXP (dst_mem, 0);
  if (! REG_P (reg))
    dst_mem = replace_equiv_address (dst_mem,
				     force_reg (Pmode, reg));
  switch (align)
    {
    case 1:
      break;
    case 2:
      value = (int16_t)((uint8_t)value * 0x0101U);
      break;
    case 4:
      value = (int32_t)((uint8_t)value * 0x01010101U);
      break;
    default:
      gcc_unreachable ();
    }
  reg = force_reg (SImode, GEN_INT (value));

  offset = 0;
  do
    {
      int unit_size = MIN (bytes, align);
      machine_mode unit_mode = (unit_size >= 4 ? SImode :
			       (unit_size >= 2 ? HImode : QImode));

      unit_size = GET_MODE_SIZE (unit_mode);
      emit_move_insn (adjust_address (dst_mem, unit_mode, offset),
		      (unit_mode == SImode) ? reg
		       : convert_to_mode (unit_mode, reg, true));
      offset += unit_size;
      bytes -= unit_size;
    }
  while (bytes > 0);

  seq = get_insns ();
  end_sequence ();

  return seq;
}

/* Worker function for xtensa_expand_block_set(),

   Expand into an insn sequence of a small loop that fill the memory
   range.  Returns NULL if the conditions for expansion are not met.  */

static rtx_insn *
xtensa_expand_block_set_small_loop (rtx dst_mem,
				    HOST_WIDE_INT value,
				    HOST_WIDE_INT bytes,
				    HOST_WIDE_INT align)
{
  HOST_WIDE_INT count;
  rtx reg, dst, end;
  machine_mode unit_mode;
  rtx_code_label *label;
  rtx_insn *seq;

  /* Totally-aligned block only.  */
  if (bytes % align != 0)
    return NULL;
  count = bytes / align;

  /* If the Loop Option (zero-overhead looping) is configured and active,
     almost no restrictions about the length of the block.  */
  if (! (TARGET_LOOPS && optimize))
    {
      /* If 4-byte aligned, small loop substitution is almost optimal,
	 thus limited to only offset to the end address for ADDI/ADDMI
	 instruction.  */
      if (align == 4
	  && ! (bytes <= 127 || xtensa_simm8x256 (bytes)))
	return NULL;

      /* If no 4-byte aligned, loop count should be treated as the
	 constraint.  */
      if (align != 4
	  && count > ((optimize > 1 && !optimize_size) ? 8 : 15))
	return NULL;
    }

  start_sequence ();

  reg = XEXP (dst_mem, 0);
  if (REG_P (reg))
    emit_move_insn (dst = gen_reg_rtx (SImode), reg);
  else
    dst = XEXP (replace_equiv_address (dst_mem,
				       force_reg (Pmode, reg)), 0);
  emit_insn (gen_addsi3 (end = gen_reg_rtx (SImode),
			 dst,
			 (TARGET_LOOPS && optimize)
			  ? force_reg (SImode, GEN_INT (bytes))
			  : GEN_INT (bytes)));
  switch (align)
    {
    case 1:
      unit_mode = QImode;
      break;
    case 2:
      value = (int16_t)((uint8_t)value * 0x0101U);
      unit_mode = HImode;
      break;
    case 4:
      value = (int32_t)((uint8_t)value * 0x01010101U);
      unit_mode = SImode;
      break;
    default:
      gcc_unreachable ();
    }
  reg = force_reg (unit_mode, GEN_INT (value));

  emit_label (label = gen_label_rtx ());
  emit_move_insn (gen_rtx_MEM (unit_mode, dst), reg);
  emit_insn (gen_addsi3 (dst, dst, GEN_INT (align)));
  emit_cmp_and_jump_insns (dst, end, NE, const0_rtx, SImode, true, label);

  seq = get_insns ();
  end_sequence ();

  return seq;
}


/* Try to expand a block set operation to a sequence of RTL move
   instructions.  If not optimizing, or if the block size is not a
   constant, or if the block is too large, or if the value to
   initialize the block with is not a constant, the expansion
   fails and GCC falls back to calling memset().

   operands[0] is the destination
   operands[1] is the length
   operands[2] is the initialization value
   operands[3] is the alignment */

int
xtensa_expand_block_set (rtx *operands)
{
  rtx dst_mem = operands[0];
  HOST_WIDE_INT bytes, value, align;
  rtx_insn *seq[3];
  int min_cost, min_index, i, n, cost;
  rtx_insn *insn;

  if (! CONST_INT_P (operands[1])
      || ! CONST_INT_P (operands[2])
      || (bytes = INTVAL (operands[1])) <= 0)
    return 0;

  value = (int8_t)INTVAL (operands[2]);
  align = INTVAL (operands[3]);
  if (align > MOVE_MAX)
    align = MOVE_MAX;

  /* Try to generate three equivalent insn sequences but method and
     size.  */
  seq[0] = xtensa_expand_block_set_libcall (dst_mem, value, bytes);
  seq[1] = xtensa_expand_block_set_unrolled_loop (dst_mem, value,
						  bytes, align);
  seq[2] = xtensa_expand_block_set_small_loop (dst_mem, value,
					       bytes, align);

  /* Find the sequence that has minimum size-basis insn costs.  */
  if (dump_file)
    fprintf (dump_file, "xtensa_expand_block_set:\n");
  min_cost = INT_MAX, min_index = 0;
  for (i = 0; i < 3; ++i)
    if ((insn = seq[i]))
      {
	if (dump_file)
	  fprintf (dump_file, " method %d...\n", i);

	for (n = 0, cost = 0; insn; insn = NEXT_INSN (insn))
	  {
	    if (active_insn_p (insn))
	      ++n, cost += xtensa_insn_cost (insn, false);
	    if (dump_file)
	      dump_insn_slim (dump_file, insn);
	  }

	/* Apply expansion bonus if -O2 or -O3 by discounting the cost
	   other than libcall.  */
	if (i > 0)
	  {
	    if (optimize == 2 && !optimize_size)
	      cost = (cost + 1) / 2;
	    else if (optimize >= 3)
	      cost = (cost + 2) / 4;
	  }

	if (dump_file)
	  fprintf (dump_file, "\t%d active insns, %d cost.\n", n, cost);

	if (cost < min_cost)
	  min_cost = cost, min_index = i;
      }
  if (dump_file)
    fprintf (dump_file, " choose method %d.\n", min_index);

  /* Fall back if libcall is minimum.  */
  if (min_index == 0)
    return 0;

  emit_insn (seq[min_index]);

  return 1;
}


void
xtensa_expand_nonlocal_goto (rtx *operands)
{
  rtx goto_handler = operands[1];
  rtx containing_fp = operands[3];

  /* Generate a call to "__xtensa_nonlocal_goto" (in libgcc); the code
     is too big to generate in-line.  */

  if (! REG_P (containing_fp))
    containing_fp = force_reg (Pmode, containing_fp);

  emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_nonlocal_goto"),
		     LCT_NORMAL, VOIDmode,
		     containing_fp, Pmode,
		     goto_handler, Pmode);
}


static struct machine_function *
xtensa_init_machine_status (void)
{
  return ggc_cleared_alloc<machine_function> ();
}


/* Shift VAL of mode MODE left by COUNT bits.  */

static inline rtx
xtensa_expand_mask_and_shift (rtx val, machine_mode mode, rtx count)
{
  val = expand_simple_binop (SImode, AND, val, GEN_INT (GET_MODE_MASK (mode)),
			     NULL_RTX, 1, OPTAB_DIRECT);
  return expand_simple_binop (SImode, ASHIFT, val, count,
			      NULL_RTX, 1, OPTAB_DIRECT);
}


/* Structure to hold the initial parameters for a compare_and_swap operation
   in HImode and QImode.  */

struct alignment_context
{
  rtx memsi;	  /* SI aligned memory location.  */
  rtx shift;	  /* Bit offset with regard to lsb.  */
  rtx modemask;	  /* Mask of the HQImode shifted by SHIFT bits.  */
  rtx modemaski;  /* ~modemask */
};


/* Initialize structure AC for word access to HI and QI mode memory.  */

static void
init_alignment_context (struct alignment_context *ac, rtx mem)
{
  machine_mode mode = GET_MODE (mem);
  rtx byteoffset = NULL_RTX;
  bool aligned = (MEM_ALIGN (mem) >= GET_MODE_BITSIZE (SImode));

  if (aligned)
    ac->memsi = adjust_address (mem, SImode, 0); /* Memory is aligned.  */
  else
    {
      /* Alignment is unknown.  */
      rtx addr, align;

      /* Force the address into a register.  */
      addr = force_reg (Pmode, XEXP (mem, 0));

      /* Align it to SImode.  */
      align = expand_simple_binop (Pmode, AND, addr,
				   GEN_INT (-GET_MODE_SIZE (SImode)),
				   NULL_RTX, 1, OPTAB_DIRECT);
      /* Generate MEM.  */
      ac->memsi = gen_rtx_MEM (SImode, align);
      MEM_VOLATILE_P (ac->memsi) = MEM_VOLATILE_P (mem);
      set_mem_alias_set (ac->memsi, ALIAS_SET_MEMORY_BARRIER);
      set_mem_align (ac->memsi, GET_MODE_BITSIZE (SImode));

      byteoffset = expand_simple_binop (Pmode, AND, addr,
					GEN_INT (GET_MODE_SIZE (SImode) - 1),
					NULL_RTX, 1, OPTAB_DIRECT);
    }

  /* Calculate shiftcount.  */
  if (TARGET_BIG_ENDIAN)
    {
      ac->shift = GEN_INT (GET_MODE_SIZE (SImode) - GET_MODE_SIZE (mode));
      if (!aligned)
	ac->shift = expand_simple_binop (SImode, MINUS, ac->shift, byteoffset,
					 NULL_RTX, 1, OPTAB_DIRECT);
    }
  else
    {
      if (aligned)
	ac->shift = NULL_RTX;
      else
	ac->shift = byteoffset;
    }

  if (ac->shift != NULL_RTX)
    {
      /* Shift is the byte count, but we need the bitcount.  */
      gcc_assert (exact_log2 (BITS_PER_UNIT) >= 0);
      ac->shift = expand_simple_binop (SImode, ASHIFT, ac->shift,
				       GEN_INT (exact_log2 (BITS_PER_UNIT)),
				       NULL_RTX, 1, OPTAB_DIRECT);
      ac->modemask = expand_simple_binop (SImode, ASHIFT,
					  GEN_INT (GET_MODE_MASK (mode)),
					  ac->shift,
					  NULL_RTX, 1, OPTAB_DIRECT);
    }
  else
    ac->modemask = GEN_INT (GET_MODE_MASK (mode));

  ac->modemaski = expand_simple_unop (SImode, NOT, ac->modemask, NULL_RTX, 1);
}


/* Expand an atomic compare and swap operation for HImode and QImode.
   MEM is the memory location, CMP the old value to compare MEM with
   and NEW_RTX the value to set if CMP == MEM.  */

void
xtensa_expand_compare_and_swap (rtx target, rtx mem, rtx cmp, rtx new_rtx)
{
  machine_mode mode = GET_MODE (mem);
  struct alignment_context ac;
  rtx tmp, cmpv, newv, val;
  rtx oldval = gen_reg_rtx (SImode);
  rtx res = gen_reg_rtx (SImode);
  rtx_code_label *csloop = gen_label_rtx ();
  rtx_code_label *csend = gen_label_rtx ();

  init_alignment_context (&ac, mem);

  if (ac.shift != NULL_RTX)
    {
      cmp = xtensa_expand_mask_and_shift (cmp, mode, ac.shift);
      new_rtx = xtensa_expand_mask_and_shift (new_rtx, mode, ac.shift);
    }

  /* Load the surrounding word into VAL with the MEM value masked out.  */
  val = force_reg (SImode, expand_simple_binop (SImode, AND, ac.memsi,
						ac.modemaski, NULL_RTX, 1,
						OPTAB_DIRECT));
  emit_label (csloop);

  /* Patch CMP and NEW_RTX into VAL at correct position.  */
  cmpv = force_reg (SImode, expand_simple_binop (SImode, IOR, cmp, val,
						 NULL_RTX, 1, OPTAB_DIRECT));
  newv = force_reg (SImode, expand_simple_binop (SImode, IOR, new_rtx, val,
						 NULL_RTX, 1, OPTAB_DIRECT));

  /* Jump to end if we're done.  */
  emit_insn (gen_sync_compare_and_swapsi (res, ac.memsi, cmpv, newv));
  emit_cmp_and_jump_insns (res, cmpv, EQ, const0_rtx, SImode, true, csend);

  /* Check for changes outside mode.  */
  emit_move_insn (oldval, val);
  tmp = expand_simple_binop (SImode, AND, res, ac.modemaski,
			     val, 1, OPTAB_DIRECT);
  if (tmp != val)
    emit_move_insn (val, tmp);

  /* Loop internal if so.  */
  emit_cmp_and_jump_insns (oldval, val, NE, const0_rtx, SImode, true, csloop);

  emit_label (csend);

  /* Return the correct part of the bitfield.  */
  convert_move (target,
		(ac.shift == NULL_RTX ? res
		 : expand_simple_binop (SImode, LSHIFTRT, res, ac.shift,
					NULL_RTX, 1, OPTAB_DIRECT)),
		1);
}


/* Expand an atomic operation CODE of mode MODE (either HImode or QImode --
   the default expansion works fine for SImode).  MEM is the memory location
   and VAL the value to play with.  If AFTER is true then store the value
   MEM holds after the operation, if AFTER is false then store the value MEM
   holds before the operation.  If TARGET is zero then discard that value, else
   store it to TARGET.  */

void
xtensa_expand_atomic (enum rtx_code code, rtx target, rtx mem, rtx val,
		      bool after)
{
  machine_mode mode = GET_MODE (mem);
  struct alignment_context ac;
  rtx_code_label *csloop = gen_label_rtx ();
  rtx cmp, tmp;
  rtx old = gen_reg_rtx (SImode);
  rtx new_rtx = gen_reg_rtx (SImode);
  rtx orig = NULL_RTX;

  init_alignment_context (&ac, mem);

  /* Prepare values before the compare-and-swap loop.  */
  if (ac.shift != NULL_RTX)
    val = xtensa_expand_mask_and_shift (val, mode, ac.shift);
  switch (code)
    {
    case PLUS:
    case MINUS:
      orig = gen_reg_rtx (SImode);
      convert_move (orig, val, 1);
      break;

    case SET:
    case IOR:
    case XOR:
      break;

    case MULT: /* NAND */
    case AND:
      /* val = "11..1<val>11..1" */
      val = expand_simple_binop (SImode, XOR, val, ac.modemaski,
				 NULL_RTX, 1, OPTAB_DIRECT);
      break;

    default:
      gcc_unreachable ();
    }

  /* Load full word.  Subsequent loads are performed by S32C1I.  */
  cmp = force_reg (SImode, ac.memsi);

  emit_label (csloop);
  emit_move_insn (old, cmp);

  switch (code)
    {
    case PLUS:
    case MINUS:
      val = expand_simple_binop (SImode, code, old, orig,
				 NULL_RTX, 1, OPTAB_DIRECT);
      val = expand_simple_binop (SImode, AND, val, ac.modemask,
				 NULL_RTX, 1, OPTAB_DIRECT);
      /* FALLTHRU */
    case SET:
      tmp = expand_simple_binop (SImode, AND, old, ac.modemaski,
				 NULL_RTX, 1, OPTAB_DIRECT);
      tmp = expand_simple_binop (SImode, IOR, tmp, val,
				 new_rtx, 1, OPTAB_DIRECT);
      break;

    case AND:
    case IOR:
    case XOR:
      tmp = expand_simple_binop (SImode, code, old, val,
				 new_rtx, 1, OPTAB_DIRECT);
      break;

    case MULT: /* NAND */
      tmp = expand_simple_binop (SImode, AND, old, val,
				 NULL_RTX, 1, OPTAB_DIRECT);
      tmp = expand_simple_binop (SImode, XOR, tmp, ac.modemask,
				 new_rtx, 1, OPTAB_DIRECT);
      break;

    default:
      gcc_unreachable ();
    }

  if (tmp != new_rtx)
    emit_move_insn (new_rtx, tmp);
  emit_insn (gen_sync_compare_and_swapsi (cmp, ac.memsi, old, new_rtx));
  emit_cmp_and_jump_insns (cmp, old, NE, const0_rtx, SImode, true, csloop);

  if (target)
    {
      tmp = (after ? new_rtx : cmp);
      convert_move (target,
		    (ac.shift == NULL_RTX ? tmp
		     : expand_simple_binop (SImode, LSHIFTRT, tmp, ac.shift,
					    NULL_RTX, 1, OPTAB_DIRECT)),
		    1);
    }
}


void
xtensa_setup_frame_addresses (void)
{
  /* Set flag to cause TARGET_FRAME_POINTER_REQUIRED to return true.  */
  cfun->machine->accesses_prev_frame = 1;

  if (TARGET_WINDOWED_ABI)
    emit_library_call
      (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_libgcc_window_spill"),
       LCT_NORMAL, VOIDmode);
}


/* Emit the assembly for the end of a zero-cost loop.  Normally we just emit
   a comment showing where the end of the loop is.  However, if there is a
   label or a branch at the end of the loop then we need to place a nop
   there.  If the loop ends with a label we need the nop so that branches
   targeting that label will target the nop (and thus remain in the loop),
   instead of targeting the instruction after the loop (and thus exiting
   the loop).  If the loop ends with a branch, we need the nop in case the
   branch is targeting a location inside the loop.  When the branch
   executes it will cause the loop count to be decremented even if it is
   taken (because it is the last instruction in the loop), so we need to
   nop after the branch to prevent the loop count from being decremented
   when the branch is taken.  */

void
xtensa_emit_loop_end (rtx_insn *insn, rtx *operands)
{
  char done = 0;

  for (insn = PREV_INSN (insn); insn && !done; insn = PREV_INSN (insn))
    {
      switch (GET_CODE (insn))
	{
	case NOTE:
	case BARRIER:
	  break;

	case CODE_LABEL:
	  output_asm_insn (TARGET_DENSITY ? "nop.n" : "nop", operands);
	  done = 1;
	  break;

	default:
	  {
	    rtx body = PATTERN (insn);

	    if (JUMP_P (body))
	      {
		output_asm_insn (TARGET_DENSITY ? "nop.n" : "nop", operands);
		done = 1;
	      }
	    else if ((GET_CODE (body) != USE)
		     && (GET_CODE (body) != CLOBBER))
	      done = 1;
	  }
	  break;
	}
    }

  output_asm_insn ("%1_LEND:", operands);
}


char *
xtensa_emit_branch (bool immed, rtx *operands)
{
  static char result[64];
  enum rtx_code code = GET_CODE (operands[3]);
  const char *op;

  switch (code)
    {
    case EQ:	op = "eq"; break;
    case NE:	op = "ne"; break;
    case LT:	op = "lt"; break;
    case GE:	op = "ge"; break;
    case LTU:	op = "ltu"; break;
    case GEU:	op = "geu"; break;
    default:	gcc_unreachable ();
    }

  if (immed)
    {
      if (INTVAL (operands[1]) == 0)
	sprintf (result, "b%sz%s\t%%0, %%2", op,
		 (TARGET_DENSITY && (code == EQ || code == NE)) ? ".n" : "");
      else
	sprintf (result, "b%si\t%%0, %%d1, %%2", op);
    }
  else
    sprintf (result, "b%s\t%%0, %%1, %%2", op);

  return result;
}


char *
xtensa_emit_movcc (bool inverted, bool isfp, bool isbool, rtx *operands)
{
  static char result[64];
  enum rtx_code code;
  const char *op;

  code = GET_CODE (operands[4]);
  if (inverted)
    code = reverse_condition (code);
  if (isbool)
    {
      switch (code)
	{
	case EQ:	op = "f"; break;
	case NE:	op = "t"; break;
	default:	gcc_unreachable ();
	}
    }
  else
    {
      switch (code)
	{
	case EQ:	op = "eqz"; break;
	case NE:	op = "nez"; break;
	case LT:	op = "ltz"; break;
	case GE:	op = "gez"; break;
	default:	gcc_unreachable ();
	}
    }

  sprintf (result, "mov%s%s\t%%0, %%%d, %%1",
	   op, isfp ? ".s" : "", inverted ? 3 : 2);
  return result;
}


void
xtensa_expand_call (int callop, rtx *operands)
{
  rtx call;
  rtx_insn *call_insn;
  rtx addr = XEXP (operands[callop], 0);

  if (flag_pic && SYMBOL_REF_P (addr)
      && (!SYMBOL_REF_LOCAL_P (addr) || SYMBOL_REF_EXTERNAL_P (addr)))
    addr = gen_sym_PLT (addr);

  if (!call_insn_operand (addr, VOIDmode))
    {
      /* This may be called while generating MI thunk when we pretend
	 that reload is over.  Use a8 as a temporary register in that case.  */
      rtx reg = can_create_pseudo_p ()
	? copy_to_mode_reg (Pmode, addr)
	: copy_to_suggested_reg (addr,
				 gen_rtx_REG (Pmode, A8_REG),
				 Pmode);
      XEXP (operands[callop], 0) = reg;
    }

  call = gen_rtx_CALL (VOIDmode, operands[callop], operands[callop + 1]);

  if (callop)
    call = gen_rtx_SET (operands[0], call);

  call_insn = emit_call_insn (call);

  if (TARGET_WINDOWED_ABI)
    {
      /*
       * Windowed xtensa ABI specifies that static chain pointer is passed
       * in memory below the caller's stack pointer, which means that the
       * callee may clobber it if it's a non-leaf function.
       * Add the clobber expression for the static chain to the function call
       * expression list so that it is not assumed to be live across the call.
       */
      rtx clob = gen_rtx_CLOBBER (Pmode, xtensa_static_chain (NULL, false));
      CALL_INSN_FUNCTION_USAGE (call_insn) =
	gen_rtx_EXPR_LIST (Pmode, clob, CALL_INSN_FUNCTION_USAGE (call_insn));
    }
}


char *
xtensa_emit_call (int callop, rtx *operands)
{
  static char result[64];
  rtx tgt = operands[callop];

  if (CONST_INT_P (tgt))
    sprintf (result, "call%d\t" HOST_WIDE_INT_PRINT_HEX,
	     WINDOW_SIZE, INTVAL (tgt));
  else if (register_operand (tgt, VOIDmode))
    sprintf (result, "callx%d\t%%%d", WINDOW_SIZE, callop);
  else
    sprintf (result, "call%d\t%%%d", WINDOW_SIZE, callop);

  return result;
}


char *
xtensa_emit_sibcall (int callop, rtx *operands)
{
  static char result[64];
  rtx tgt = operands[callop];

  if (CONST_INT_P (tgt))
    sprintf (result, "j.l\t" HOST_WIDE_INT_PRINT_HEX ", a9",
	     INTVAL (tgt));
  else if (register_operand (tgt, VOIDmode))
    sprintf (result, "jx\t%%%d", callop);
  else
    sprintf (result, "j.l\t%%%d, a9", callop);

  return result;
}

bool
xtensa_legitimate_address_p (machine_mode mode, rtx addr, bool strict,
			     code_helper)
{
  /* Allow constant pool addresses.  */
  if (mode != BLKmode
      && ! TARGET_CONST16 && constantpool_address_p (addr)
      && ! xtensa_tls_referenced_p (addr))
    return true;

  while (SUBREG_P (addr))
    addr = SUBREG_REG (addr);

  /* Allow base registers.  */
  if (REG_P (addr) && BASE_REG_P (addr, strict))
    return true;

  /* Check for "register + offset" addressing.  */
  if (GET_CODE (addr) == PLUS)
    {
      rtx xplus0 = XEXP (addr, 0);
      rtx xplus1 = XEXP (addr, 1);
      enum rtx_code code0;
      enum rtx_code code1;

      while (SUBREG_P (xplus0))
	xplus0 = SUBREG_REG (xplus0);
      code0 = GET_CODE (xplus0);

      while (SUBREG_P (xplus1))
	xplus1 = SUBREG_REG (xplus1);
      code1 = GET_CODE (xplus1);

      /* Swap operands if necessary so the register is first.  */
      if (code0 != REG && code1 == REG)
	{
	  xplus0 = XEXP (addr, 1);
	  xplus1 = XEXP (addr, 0);
	  code0 = GET_CODE (xplus0);
	  code1 = GET_CODE (xplus1);
	}

      if (code0 == REG && BASE_REG_P (xplus0, strict)
	  && code1 == CONST_INT
	  && xtensa_mem_offset (INTVAL (xplus1), mode))
	return true;
    }

  return false;
}


/* Construct the SYMBOL_REF for the _TLS_MODULE_BASE_ symbol.  */

static GTY(()) rtx xtensa_tls_module_base_symbol;

static rtx
xtensa_tls_module_base (void)
{
  if (! xtensa_tls_module_base_symbol)
    {
      xtensa_tls_module_base_symbol =
	gen_rtx_SYMBOL_REF (Pmode, "_TLS_MODULE_BASE_");
      SYMBOL_REF_FLAGS (xtensa_tls_module_base_symbol)
	|= TLS_MODEL_GLOBAL_DYNAMIC << SYMBOL_FLAG_TLS_SHIFT;
    }

  return xtensa_tls_module_base_symbol;
}


static rtx_insn *
xtensa_call_tls_desc (rtx sym, rtx *retp)
{
  rtx fn, arg, a_io;
  rtx_insn *call_insn, *insns;

  start_sequence ();
  fn = gen_reg_rtx (Pmode);
  arg = gen_reg_rtx (Pmode);
  a_io = gen_rtx_REG (Pmode, WINDOW_SIZE + 2);

  emit_insn (gen_tls_func (fn, sym));
  emit_insn (gen_tls_arg (arg, sym));
  emit_move_insn (a_io, arg);
  call_insn = emit_call_insn (gen_tls_call (a_io, fn, sym, const1_rtx));
  use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn), a_io);
  insns = get_insns ();
  end_sequence ();

  *retp = a_io;
  return insns;
}


static rtx
xtensa_legitimize_tls_address (rtx x)
{
  unsigned int model = SYMBOL_REF_TLS_MODEL (x);
  rtx dest, tp, ret, modbase, base, addend;
  rtx_insn *insns;

  dest = gen_reg_rtx (Pmode);
  switch (model)
    {
    case TLS_MODEL_GLOBAL_DYNAMIC:
      insns = xtensa_call_tls_desc (x, &ret);
      emit_libcall_block (insns, dest, ret, x);
      break;

    case TLS_MODEL_LOCAL_DYNAMIC:
      base = gen_reg_rtx (Pmode);
      modbase = xtensa_tls_module_base ();
      insns = xtensa_call_tls_desc (modbase, &ret);
      emit_libcall_block (insns, base, ret, modbase);
      addend = force_reg (SImode, gen_sym_DTPOFF (x));
      emit_insn (gen_addsi3 (dest, base, addend));
      break;

    case TLS_MODEL_INITIAL_EXEC:
    case TLS_MODEL_LOCAL_EXEC:
      tp = gen_reg_rtx (SImode);
      emit_insn (gen_get_thread_pointersi (tp));
      addend = force_reg (SImode, gen_sym_TPOFF (x));
      emit_insn (gen_addsi3 (dest, tp, addend));
      break;

    default:
      gcc_unreachable ();
    }

  return dest;
}


rtx
xtensa_legitimize_address (rtx x,
			   rtx oldx ATTRIBUTE_UNUSED,
			   machine_mode mode)
{
  if (xtensa_tls_symbol_p (x))
    return xtensa_legitimize_tls_address (x);

  if (GET_CODE (x) == PLUS)
    {
      rtx plus0 = XEXP (x, 0);
      rtx plus1 = XEXP (x, 1);

      if (! REG_P (plus0) && REG_P (plus1))
	{
	  plus0 = XEXP (x, 1);
	  plus1 = XEXP (x, 0);
	}

      /* Try to split up the offset to use an ADDMI instruction.  */
      if (REG_P (plus0) && CONST_INT_P (plus1)
	  && !xtensa_mem_offset (INTVAL (plus1), mode)
	  && !xtensa_simm8 (INTVAL (plus1))
	  && xtensa_mem_offset (INTVAL (plus1) & 0xff, mode)
	  && xtensa_simm8x256 (INTVAL (plus1) & ~0xff))
	{
	  rtx temp = gen_reg_rtx (Pmode);
	  rtx addmi_offset = GEN_INT (INTVAL (plus1) & ~0xff);
	  emit_insn (gen_rtx_SET (temp, gen_rtx_PLUS (Pmode, plus0,
						      addmi_offset)));
	  return gen_rtx_PLUS (Pmode, temp, GEN_INT (INTVAL (plus1) & 0xff));
	}
    }

  return x;
}

/* Worker function for TARGET_MODE_DEPENDENT_ADDRESS_P.

   Treat constant-pool references as "mode dependent" since they can
   only be accessed with SImode loads.  This works around a bug in the
   combiner where a constant pool reference is temporarily converted
   to an HImode load, which is then assumed to zero-extend based on
   our definition of LOAD_EXTEND_OP.  This is wrong because the high
   bits of a 16-bit value in the constant pool are now sign-extended
   by default.  */

static bool
xtensa_mode_dependent_address_p (const_rtx addr,
				 addr_space_t as ATTRIBUTE_UNUSED)
{
  return constantpool_address_p (addr);
}

/* Return TRUE if X contains any TLS symbol references.  */

bool
xtensa_tls_referenced_p (rtx x)
{
  if (! targetm.have_tls)
    return false;

  subrtx_iterator::array_type array;
  FOR_EACH_SUBRTX (iter, array, x, ALL)
    {
      const_rtx x = *iter;
      if (SYMBOL_REF_P (x) && SYMBOL_REF_TLS_MODEL (x) != 0)
	return true;

      /* Ignore TLS references that have already been legitimized.  */
      if (GET_CODE (x) == UNSPEC)
	switch (XINT (x, 1))
	  {
	  case UNSPEC_TPOFF:
	  case UNSPEC_DTPOFF:
	  case UNSPEC_TLS_FUNC:
	  case UNSPEC_TLS_ARG:
	  case UNSPEC_TLS_CALL:
	    iter.skip_subrtxes ();
	    break;
	  default:
	    break;
	  }
    }
  return false;
}


/* Helper function for "*shlrd_..." patterns.  */

enum rtx_code
xtensa_shlrd_which_direction (rtx op0, rtx op1)
{
  if (GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
    return ASHIFT;	/* shld  */
  if (GET_CODE (op0) == LSHIFTRT && GET_CODE (op1) == ASHIFT)
    return LSHIFTRT;	/* shrd  */

  return UNKNOWN;
}


/* Return true after "split1" pass has been finished.  */

bool
xtensa_split1_finished_p (void)
{
  return cfun && (cfun->curr_properties & PROP_rtl_split_insns);
}


/* Split a DImode pair of reg (operand[0]) and const_int (operand[1]) into
   two SImode pairs, the low-part (operands[0] and [1]) and the high-part
   (operands[2] and [3]).  */

void
xtensa_split_DI_reg_imm (rtx *operands)
{
  rtx lowpart, highpart;

  if (WORDS_BIG_ENDIAN)
    split_double (operands[1], &highpart, &lowpart);
  else
    split_double (operands[1], &lowpart, &highpart);

  operands[3] = highpart;
  operands[2] = gen_highpart (SImode, operands[0]);
  operands[1] = lowpart;
  operands[0] = gen_lowpart (SImode, operands[0]);
}


/* Try to split an integer value into what are suitable for two consecutive
   immediate addition instructions, ADDI or ADDMI.  */

static bool
xtensa_split_imm_two_addends (HOST_WIDE_INT imm, HOST_WIDE_INT v[2])
{
  HOST_WIDE_INT v0, v1;

  if (imm < -32768)
    v0 = -32768, v1 = imm + 32768;
  else if (imm > 32512)
    v0 = 32512, v1 = imm - 32512;
  else if (TARGET_DENSITY && xtensa_simm12b (imm))
    /* A pair of MOVI(.N) and ADD.N is one or two bytes less than two
       immediate additions if TARGET_DENSITY.  */
    return false;
  else
    v0 = (imm + 128) & ~255L, v1 = imm - v0;

  if (xtensa_simm8 (v1) || xtensa_simm8x256 (v1))
    {
      v[0] = v0, v[1] = v1;
      return true;
    }

  return false;
}


/* Helper function for integer immediate addition with scratch register
   as needed, that splits and emits either up to two ADDI/ADDMI machine
   instructions or an addition by register following an integer immediate
   load (which may later be transformed by constantsynth).

   If 'scratch' is NULL_RTX but still needed, a new pseudo-register will
   be allocated.  Thus, after the reload/LRA pass, the specified scratch
   register must be a hard one.  */

static bool
xtensa_emit_add_imm (rtx dst, rtx src, HOST_WIDE_INT imm, rtx scratch,
		     bool need_note)
{
  bool retval = false;
  HOST_WIDE_INT v[2];
  rtx_insn *insn;

  if (imm == 0)
    return false;

  if (xtensa_simm8 (imm) || xtensa_simm8x256 (imm))
    insn = emit_insn (gen_addsi3 (dst, src, GEN_INT (imm)));
  else if (xtensa_split_imm_two_addends (imm, v))
    {
      if (!scratch)
	scratch = gen_reg_rtx (SImode);
      emit_insn (gen_addsi3 (scratch, src, GEN_INT (v[0])));
      insn = emit_insn (gen_addsi3 (dst, scratch, GEN_INT (v[1])));
    }
  else
    {
      if (scratch)
	emit_move_insn (scratch, GEN_INT (imm));
      else
	scratch = force_reg (SImode, GEN_INT (imm));
      retval = true;
      insn = emit_insn (gen_addsi3 (dst, src, scratch));
    }

  if (need_note)
    {
      rtx note_rtx = gen_rtx_SET (dst, plus_constant (Pmode, src, imm));

      RTX_FRAME_RELATED_P (insn) = 1;
      add_reg_note (insn, REG_FRAME_RELATED_EXPR, note_rtx);
    }

  return retval;
}


/* Implement TARGET_CANNOT_FORCE_CONST_MEM.  */

static bool
xtensa_cannot_force_const_mem (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
{
  return xtensa_tls_referenced_p (x);
}


/* Return the debugger register number to use for 'regno'.  */

int
xtensa_debugger_regno (int regno)
{
  int first = -1;

  if (GP_REG_P (regno))
    {
      regno -= GP_REG_FIRST;
      first = 0;
    }
  else if (BR_REG_P (regno))
    {
      regno -= BR_REG_FIRST;
      first = 16;
    }
  else if (FP_REG_P (regno))
    {
      regno -= FP_REG_FIRST;
      first = 48;
    }
  else if (ACC_REG_P (regno))
    {
      first = 0x200;	/* Start of Xtensa special registers.  */
      regno = 16;	/* ACCLO is special register 16.  */
    }

  /* When optimizing, we sometimes get asked about pseudo-registers
     that don't represent hard registers.  Return 0 for these.  */
  if (first == -1)
    return 0;

  return first + regno;
}


/* Argument support functions.  */

/* Initialize CUMULATIVE_ARGS for a function.  */

void
init_cumulative_args (CUMULATIVE_ARGS *cum, int incoming)
{
  cum->arg_words = 0;
  cum->incoming = incoming;
}


/* Advance the argument to the next argument position.  */

static void
xtensa_function_arg_advance (cumulative_args_t cum,
			     const function_arg_info &arg)
{
  int words, max;
  int *arg_words;

  arg_words = &get_cumulative_args (cum)->arg_words;
  max = MAX_ARGS_IN_REGISTERS;

  words = ((arg.promoted_size_in_bytes () + UNITS_PER_WORD - 1)
	   / UNITS_PER_WORD);

  if (*arg_words < max
      && (targetm.calls.must_pass_in_stack (arg)
	  || *arg_words + words > max))
    *arg_words = max;

  *arg_words += words;
}


/* Return an RTL expression containing the register for the given argument,
   or 0 if the argument is to be passed on the stack.  INCOMING_P is nonzero
   if this is an incoming argument to the current function.  */

static rtx
xtensa_function_arg_1 (cumulative_args_t cum_v, const function_arg_info &arg,
		       bool incoming_p)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
  int regbase, words, max;
  int *arg_words;
  int regno;

  arg_words = &cum->arg_words;
  regbase = (incoming_p ? GP_ARG_FIRST : GP_OUTGOING_ARG_FIRST);
  max = MAX_ARGS_IN_REGISTERS;

  words = ((arg.promoted_size_in_bytes () + UNITS_PER_WORD - 1)
	   / UNITS_PER_WORD);

  if (arg.type && (TYPE_ALIGN (arg.type) > BITS_PER_WORD))
    {
      int align = MIN (TYPE_ALIGN (arg.type), STACK_BOUNDARY) / BITS_PER_WORD;
      *arg_words = (*arg_words + align - 1) & -align;
    }

  if (*arg_words + words > max)
    return (rtx)0;

  regno = regbase + *arg_words;

  if (cum->incoming && regno <= A7_REG && regno + words > A7_REG)
    cfun->machine->need_a7_copy = TARGET_WINDOWED_ABI;

  return gen_rtx_REG (arg.mode, regno);
}

/* Implement TARGET_FUNCTION_ARG.  */

static rtx
xtensa_function_arg (cumulative_args_t cum, const function_arg_info &arg)
{
  return xtensa_function_arg_1 (cum, arg, false);
}

/* Implement TARGET_FUNCTION_INCOMING_ARG.  */

static rtx
xtensa_function_incoming_arg (cumulative_args_t cum,
			      const function_arg_info &arg)
{
  return xtensa_function_arg_1 (cum, arg, true);
}

static unsigned int
xtensa_function_arg_boundary (machine_mode mode, const_tree type)
{
  unsigned int alignment;

  alignment = type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode);
  if (alignment < PARM_BOUNDARY)
    alignment = PARM_BOUNDARY;
  if (alignment > STACK_BOUNDARY)
    alignment = STACK_BOUNDARY;
  return alignment;
}


static bool
xtensa_return_in_msb (const_tree valtype)
{
  return (TARGET_BIG_ENDIAN
	  && AGGREGATE_TYPE_P (valtype)
	  && int_size_in_bytes (valtype) >= UNITS_PER_WORD);
}


static void
xtensa_option_override (void)
{
  int regno;
  machine_mode mode;

  if (xtensa_windowed_abi == -1)
    xtensa_windowed_abi = TARGET_WINDOWED_ABI_DEFAULT;

  if (xtensa_strict_alignment == XTENSA_STRICT_ALIGNMENT_UNDEFINED)
    xtensa_strict_alignment = !XCHAL_UNALIGNED_LOAD_HW
      || !XCHAL_UNALIGNED_STORE_HW;

  if (! TARGET_THREADPTR)
    targetm.have_tls = false;

  /* Use CONST16 in the absence of L32R.
     Set it in the TARGET_OPTION_OVERRIDE to avoid dependency on xtensa
     configuration in the xtensa-common.cc  */

  if (!TARGET_L32R)
    target_flags |= MASK_CONST16;

  if (!TARGET_BOOLEANS && TARGET_HARD_FLOAT)
    error ("boolean registers required for the floating-point option");

  /* Set up array giving whether a given register can hold a given mode.  */
  for (mode = VOIDmode;
       mode != MAX_MACHINE_MODE;
       mode = (machine_mode) ((int) mode + 1))
    {
      int size = GET_MODE_SIZE (mode);
      enum mode_class mclass = GET_MODE_CLASS (mode);

      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
	{
	  int temp;

	  if (ACC_REG_P (regno))
	    temp = (TARGET_MAC16
		    && (mclass == MODE_INT) && (size <= UNITS_PER_WORD));
	  else if (GP_REG_P (regno))
	    temp = ((regno & 1) == 0 || (size <= UNITS_PER_WORD));
	  else if (FP_REG_P (regno))
	    temp = (TARGET_HARD_FLOAT && (mode == SFmode));
	  else if (BR_REG_P (regno))
	    temp = (TARGET_BOOLEANS && (mode == CCmode));
	  else
	    temp = FALSE;

	  xtensa_hard_regno_mode_ok_p[(int) mode][regno] = temp;
	}
    }

  init_machine_status = xtensa_init_machine_status;

  /* Check PIC settings.  PIC is only supported when using L32R
     instructions, and some targets need to always use PIC.  */
  if (flag_pic && TARGET_CONST16)
    error ("%<-f%s%> is not supported with CONST16 instructions",
	   (flag_pic > 1 ? "PIC" : "pic"));
  else if (TARGET_FORCE_NO_PIC)
    flag_pic = 0;
  else if (XTENSA_ALWAYS_PIC)
    {
      if (TARGET_CONST16)
	error ("PIC is required but not supported with CONST16 instructions");
      flag_pic = 1;
    }
  /* There's no need for -fPIC (as opposed to -fpic) on Xtensa.  */
  if (flag_pic > 1)
    flag_pic = 1;
  if (flag_pic && !flag_pie)
    flag_shlib = 1;

  /* Hot/cold partitioning does not work on this architecture, because of
     constant pools (the load instruction cannot necessarily reach that far).
     Therefore disable it on this architecture.  */
  if (flag_reorder_blocks_and_partition)
    {
      flag_reorder_blocks_and_partition = 0;
      flag_reorder_blocks = 1;
    }

  /* One of the late-combine passes runs after register allocation
     and can match define_insn_and_splits that were previously used
     only before register allocation.  Some of those define_insn_and_splits
     require the split to take place, but have a split condition of
     can_create_pseudo_p, and so matching after RA will give an
     unsplittable instruction.  Disable late-combine by default until
     the define_insn_and_splits are fixed.  */
  if (!OPTION_SET_P (flag_late_combine_instructions))
    flag_late_combine_instructions = 0;

  xtensa_option_override_after_change ();
}

static void
xtensa_option_override_after_change (void)
{
  if (!OPTION_SET_P (flag_late_combine_instructions))
    flag_late_combine_instructions = 0;
}

/* Implement TARGET_HARD_REGNO_NREGS.  */

static unsigned int
xtensa_hard_regno_nregs (unsigned int regno, machine_mode mode)
{
  if (FP_REG_P (regno))
    return CEIL (GET_MODE_SIZE (mode), UNITS_PER_FPREG);
  return CEIL (GET_MODE_SIZE (mode), UNITS_PER_WORD);
}

/* Implement TARGET_HARD_REGNO_MODE_OK.  */

static bool
xtensa_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
{
  return xtensa_hard_regno_mode_ok_p[mode][regno];
}

/* Implement TARGET_MODES_TIEABLE_P.  */

static bool
xtensa_modes_tieable_p (machine_mode mode1, machine_mode mode2)
{
  return ((GET_MODE_CLASS (mode1) == MODE_FLOAT
	   || GET_MODE_CLASS (mode1) == MODE_COMPLEX_FLOAT)
	  == (GET_MODE_CLASS (mode2) == MODE_FLOAT
	      || GET_MODE_CLASS (mode2) == MODE_COMPLEX_FLOAT));
}

/* A C compound statement to output to stdio stream STREAM the
   assembler syntax for an instruction operand X.  X is an RTL
   expression.

   CODE is a value that can be used to specify one of several ways
   of printing the operand.  It is used when identical operands
   must be printed differently depending on the context.  CODE
   comes from the '%' specification that was used to request
   printing of the operand.  If the specification was just '%DIGIT'
   then CODE is 0; if the specification was '%LTR DIGIT' then CODE
   is the ASCII code for LTR.

   If X is a register, this macro should print the register's name.
   The names can be found in an array 'reg_names' whose type is
   'char *[]'.  'reg_names' is initialized from 'REGISTER_NAMES'.

   When the machine description has a specification '%PUNCT' (a '%'
   followed by a punctuation character), this macro is called with
   a null pointer for X and the punctuation character for CODE.

   'a', 'c', 'l', and 'n' are reserved.

   The Xtensa specific codes are:

   'd'  CONST_INT, print as signed decimal
   'x'  CONST_INT, print as signed hexadecimal
   'K'  CONST_INT, print number of bits in mask for EXTUI
   'R'  CONST_INT, print (X & 0x1f)
   'L'  CONST_INT, print ((32 - X) & 0x1f)
   'D'  REG, print second register of double-word register operand
   'N'  MEM, print address of next word following a memory operand
   'v'  MEM, if memory reference is volatile, output a MEMW before it
   't'  any constant, add "@h" suffix for top 16 bits
   'b'  any constant, add "@l" suffix for bottom 16 bits
*/

static void
printx (FILE *file, signed int val)
{
  /* Print a hexadecimal value in a nice way.  */
  if (IN_RANGE (val, -9, 9))
    fprintf (file, "%d", val);
  else if (val < 0)
    fprintf (file, "-0x%x", -val);
  else
    fprintf (file, "0x%x", val);
}


void
print_operand (FILE *file, rtx x, int letter)
{
  if (!x)
    error ("%<PRINT_OPERAND%> null pointer");

  switch (letter)
    {
    case 'D':
      if (REG_P (x) || SUBREG_P (x))
	fprintf (file, "%s", reg_names[xt_true_regnum (x) + 1]);
      else
	output_operand_lossage ("invalid %%D value");
      break;

    case 'v':
      if (MEM_P (x))
	{
	  /* For a volatile memory reference, emit a MEMW before the
	     load or store.  */
	  if (MEM_VOLATILE_P (x) && TARGET_SERIALIZE_VOLATILE)
	    {
	      rtx_insn *prev_insn
			= prev_nonnote_nondebug_insn (current_output_insn);
	      rtx pat, src;

	      if (! (prev_insn && NONJUMP_INSN_P (prev_insn)
		     && GET_CODE (pat = PATTERN (prev_insn)) == SET
		     && GET_CODE (src = SET_SRC (pat)) == UNSPEC
		     && XINT (src, 1) == UNSPEC_MEMW))
		fprintf (file, "memw\n\t");
	    }
	}
      else
	output_operand_lossage ("invalid %%v value");
      break;

    case 'N':
      if (MEM_P (x)
	  && (GET_MODE (x) == DFmode || GET_MODE (x) == DImode))
	{
	  x = adjust_address (x, GET_MODE (x) == DFmode ? E_SFmode : E_SImode,
			      4);
	  output_address (GET_MODE (x), XEXP (x, 0));
	}
      else
	output_operand_lossage ("invalid %%N value");
      break;

    case 'K':
      if (CONST_INT_P (x))
	{
	  unsigned val = INTVAL (x);
	  if (!xtensa_mask_immediate (val))
	    fatal_insn ("invalid mask", x);

	  fprintf (file, "%d", floor_log2 (val + 1));
	}
      else
	output_operand_lossage ("invalid %%K value");
      break;

    case 'L':
      if (CONST_INT_P (x))
	fprintf (file, HOST_WIDE_INT_PRINT_DEC, (32 - INTVAL (x)) & 0x1f);
      else
	output_operand_lossage ("invalid %%L value");
      break;

    case 'R':
      if (CONST_INT_P (x))
	fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x) & 0x1f);
      else
	output_operand_lossage ("invalid %%R value");
      break;

    case 'x':
      if (CONST_INT_P (x))
	printx (file, INTVAL (x));
      else
	output_operand_lossage ("invalid %%x value");
      break;

    case 'd':
      if (CONST_INT_P (x))
	fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
      else
	output_operand_lossage ("invalid %%d value");
      break;

    case 't':
    case 'b':
      if (CONST_INT_P (x))
	{
	  printx (file, INTVAL (x));
	  fputs (letter == 't' ? "@h" : "@l", file);
	}
      else if (CONST_DOUBLE_P (x))
	{
	  if (GET_MODE (x) == SFmode)
	    {
	      long l;
	      REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (x), l);
	      fprintf (file, "0x%08lx@%c", l, letter == 't' ? 'h' : 'l');
	    }
	  else
	    output_operand_lossage ("invalid %%t/%%b value");
	}
      else if (GET_CODE (x) == CONST)
	{
	  /* X must be a symbolic constant on ELF.  Write an expression
	     suitable for 'const16' that sets the high or low 16 bits.  */
	  if (GET_CODE (XEXP (x, 0)) != PLUS
	      || (! SYMBOL_REF_P (XEXP (XEXP (x, 0), 0))
		  && ! LABEL_REF_P (XEXP (XEXP (x, 0), 0)))
	      || ! CONST_INT_P (XEXP (XEXP (x, 0), 1)))
	    output_operand_lossage ("invalid %%t/%%b value");
	  print_operand (file, XEXP (XEXP (x, 0), 0), 0);
	  fputs (letter == 't' ? "@h" : "@l", file);
	  /* There must be a non-alphanumeric character between 'h' or 'l'
	     and the number.  The '-' is added by print_operand() already.  */
	  if (INTVAL (XEXP (XEXP (x, 0), 1)) >= 0)
	    fputs ("+", file);
	  print_operand (file, XEXP (XEXP (x, 0), 1), 0);
	}
      else
	{
	  output_addr_const (file, x);
	  fputs (letter == 't' ? "@h" : "@l", file);
	}
      break;

    case 'y':
      if (CONST_DOUBLE_P (x) && GET_MODE (x) == SFmode)
	{
	  long l;
	  REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (x), l);
	  fprintf (file, "0x%08lx", l);
	  break;
	}

      /* fall through */

    default:
      if (REG_P (x) || SUBREG_P (x))
	fprintf (file, "%s", reg_names[xt_true_regnum (x)]);
      else if (MEM_P (x))
	output_address (GET_MODE (x), XEXP (x, 0));
      else if (CONST_INT_P (x))
	fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
      else
	output_addr_const (file, x);
    }
}


/* A C compound statement to output to stdio stream STREAM the
   assembler syntax for an instruction operand that is a memory
   reference whose address is ADDR.  ADDR is an RTL expression.  */

void
print_operand_address (FILE *file, rtx addr)
{
  if (!addr)
    error ("%<PRINT_OPERAND_ADDRESS%>, null pointer");

  switch (GET_CODE (addr))
    {
    default:
      fatal_insn ("invalid address", addr);
      break;

    case REG:
      fprintf (file, "%s, 0", reg_names [REGNO (addr)]);
      break;

    case PLUS:
      {
	rtx reg = (rtx)0;
	rtx offset = (rtx)0;
	rtx arg0 = XEXP (addr, 0);
	rtx arg1 = XEXP (addr, 1);

	if (REG_P (arg0))
	  {
	    reg = arg0;
	    offset = arg1;
	  }
	else if (REG_P (arg1))
	  {
	    reg = arg1;
	    offset = arg0;
	  }
	else
	  fatal_insn ("no register in address", addr);

	if (CONSTANT_P (offset))
	  {
	    fprintf (file, "%s, ", reg_names [REGNO (reg)]);
	    output_addr_const (file, offset);
	  }
	else
	  fatal_insn ("address offset not a constant", addr);
      }
      break;

    case LABEL_REF:
    case SYMBOL_REF:
    case CONST_INT:
    case CONST:
      output_addr_const (file, addr);
      break;
    }
}

/* Implement TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA.  */

static bool
xtensa_output_addr_const_extra (FILE *fp, rtx x)
{
  if (GET_CODE (x) == UNSPEC && XVECLEN (x, 0) == 1)
    {
      switch (XINT (x, 1))
	{
	case UNSPEC_TPOFF:
	  output_addr_const (fp, XVECEXP (x, 0, 0));
	  fputs ("@TPOFF", fp);
	  return true;
	case UNSPEC_DTPOFF:
	  output_addr_const (fp, XVECEXP (x, 0, 0));
	  fputs ("@DTPOFF", fp);
	  return true;
	case UNSPEC_PLT:
	  if (flag_pic)
	    {
	      output_addr_const (fp, XVECEXP (x, 0, 0));
	      fputs ("@PLT", fp);
	      return true;
	    }
	  break;
	default:
	  break;
	}
    }
  return false;
}

static void
xtensa_output_integer_literal_parts (FILE *file, rtx x, int size)
{
  if (size > 4 && !(size & (size - 1)))
    {
      rtx first, second;

      split_double (x, &first, &second);
      xtensa_output_integer_literal_parts (file, first, size / 2);
      fputs (", ", file);
      xtensa_output_integer_literal_parts (file, second, size / 2);
    }
  else if (size == 4 || size == 2)
    {
      output_addr_const (file, x);
    }
  else
    {
      gcc_unreachable();
    }
}

void
xtensa_output_literal (FILE *file, rtx x, machine_mode mode, int labelno)
{
  long value_long[2];

  fprintf (file, "\t.literal .LC%u, ", (unsigned) labelno);

  switch (GET_MODE_CLASS (mode))
    {
    case MODE_FLOAT:
      gcc_assert (CONST_DOUBLE_P (x));

      switch (mode)
	{
	case E_SFmode:
	  REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (x),
				       value_long[0]);
	  if (HOST_BITS_PER_LONG > 32)
	    value_long[0] &= 0xffffffff;
	  fprintf (file, "0x%08lx\n", value_long[0]);
	  break;

	case E_DFmode:
	  REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (x),
				       value_long);
	  if (HOST_BITS_PER_LONG > 32)
	    {
	      value_long[0] &= 0xffffffff;
	      value_long[1] &= 0xffffffff;
	    }
	  fprintf (file, "0x%08lx, 0x%08lx\n",
		   value_long[0], value_long[1]);
	  break;

	default:
	  gcc_unreachable ();
	}

      break;

    case MODE_INT:
    case MODE_PARTIAL_INT:
      xtensa_output_integer_literal_parts (file, x, GET_MODE_SIZE (mode));
      fputs ("\n", file);
      break;

    default:
      gcc_unreachable ();
    }
}

static bool
xtensa_call_save_reg (int regno)
{
  if (TARGET_WINDOWED_ABI)
    return false;

  if (regno == A0_REG)
    /* Ensure the return address to be saved to the stack slot in order
       to assist stack dump analysis when -Og is specified.  */
    return optimize_debug
	   || crtl->profile || !crtl->is_leaf || crtl->calls_eh_return
	   || df_regs_ever_live_p (regno);

  if (crtl->calls_eh_return && IN_RANGE (regno, 2, 3))
    return true;

  return !call_used_or_fixed_reg_p (regno) && df_regs_ever_live_p (regno);
}

/* Return the bytes needed to compute the frame pointer from the current
   stack pointer.  */

#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
#define XTENSA_STACK_ALIGN(LOC) (((LOC) + STACK_BYTES-1) & ~(STACK_BYTES-1))

long
compute_frame_size (poly_int64 size)
{
  int regno;

  if (reload_completed && cfun->machine->frame_laid_out)
    return cfun->machine->current_frame_size;

  /* Add space for the incoming static chain value.  */
  if (cfun->static_chain_decl != NULL)
    size += (1 * UNITS_PER_WORD);

  cfun->machine->callee_save_size = 0;
  for (regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
    {
      if (xtensa_call_save_reg (regno))
	cfun->machine->callee_save_size += UNITS_PER_WORD;
    }

  cfun->machine->current_frame_size =
    XTENSA_STACK_ALIGN (size
			+ cfun->machine->callee_save_size
			+ crtl->outgoing_args_size
			+ (WINDOW_SIZE * UNITS_PER_WORD));
  cfun->machine->callee_save_size =
    XTENSA_STACK_ALIGN (cfun->machine->callee_save_size);
  cfun->machine->frame_laid_out = true;
  return cfun->machine->current_frame_size;
}


bool
xtensa_frame_pointer_required (void)
{
  /* The code to expand builtin_frame_addr and builtin_return_addr
     currently uses the hard_frame_pointer instead of frame_pointer.
     This seems wrong but maybe it's necessary for other architectures.
     This function is derived from the i386 code.  */

  if (cfun->machine->accesses_prev_frame || cfun->has_nonlocal_label)
    return true;

  return false;
}

HOST_WIDE_INT
xtensa_initial_elimination_offset (int from, int to ATTRIBUTE_UNUSED)
{
  long frame_size = compute_frame_size (get_frame_size ());
  HOST_WIDE_INT offset;

  switch (from)
    {
    case FRAME_POINTER_REGNUM:
      if (FRAME_GROWS_DOWNWARD)
	offset = frame_size - (WINDOW_SIZE * UNITS_PER_WORD)
	  - cfun->machine->callee_save_size;
      else
	offset = 0;
      break;
    case ARG_POINTER_REGNUM:
      offset = frame_size;
      break;
    default:
      gcc_unreachable ();
    }

  return offset;
}

#define ADJUST_SP_NONE      0x0
#define ADJUST_SP_NEED_NOTE 0x1
#define ADJUST_SP_FRAME_PTR 0x2
static void
xtensa_emit_adjust_stack_ptr (HOST_WIDE_INT offset, int flags)
{
  rtx src, scratch;
  rtx_insn *insn;

  if (cfun->machine->inhibit_logues_a1_adjusts)
    return;

  src = (flags & ADJUST_SP_FRAME_PTR)
	 ? hard_frame_pointer_rtx : stack_pointer_rtx;
  scratch = gen_rtx_REG (Pmode, A9_REG);

  if (df && DF_REG_DEF_COUNT (A9_REG) == 0
      && cfun->machine->last_logues_a9_content
      && -INTVAL (cfun->machine->last_logues_a9_content) == offset)
    {
      insn = emit_insn (gen_subsi3 (stack_pointer_rtx, src, scratch));
      if (flags & ADJUST_SP_NEED_NOTE)
	{
	  rtx note_rtx = gen_rtx_SET (stack_pointer_rtx,
				      plus_constant (Pmode, src, offset));

	  RTX_FRAME_RELATED_P (insn) = 1;
	  add_reg_note (insn, REG_FRAME_RELATED_EXPR, note_rtx);
	}
    }
  else if (xtensa_emit_add_imm (stack_pointer_rtx, src, offset, scratch,
				(flags & ADJUST_SP_NEED_NOTE)))
    cfun->machine->last_logues_a9_content = GEN_INT (offset);
}

static bool
xtensa_can_eliminate_callee_saved_reg_p (unsigned int regno,
					 rtx_insn **p_insnS,
					 rtx_insn **p_insnR)
{
  df_ref ref;
  rtx_insn *insn, *insnS = NULL, *insnR = NULL;
  rtx pattern;

  if (!optimize || !df || call_used_or_fixed_reg_p (regno))
    return false;

  for (ref = DF_REG_DEF_CHAIN (regno);
       ref; ref = DF_REF_NEXT_REG (ref))
    if (DF_REF_CLASS (ref) != DF_REF_REGULAR
	|| DEBUG_INSN_P (insn = DF_REF_INSN (ref)))
      continue;
    else if (GET_CODE (pattern = PATTERN (insn)) == SET
	     && REG_P (SET_DEST (pattern))
	     && REGNO (SET_DEST (pattern)) == regno
	     && REG_NREGS (SET_DEST (pattern)) == 1
	     && REG_P (SET_SRC (pattern))
	     && REGNO (SET_SRC (pattern)) != A1_REG)
      {
	if (insnS)
	  return false;
	insnS = insn;
	continue;
      }
    else
      return false;

  for (ref = DF_REG_USE_CHAIN (regno);
       ref; ref = DF_REF_NEXT_REG (ref))
    if (DF_REF_CLASS (ref) != DF_REF_REGULAR
	|| DEBUG_INSN_P (insn = DF_REF_INSN (ref)))
      continue;
    else if (GET_CODE (pattern = PATTERN (insn)) == SET
	     && REG_P (SET_SRC (pattern))
	     && REGNO (SET_SRC (pattern)) == regno
	     && REG_NREGS (SET_SRC (pattern)) == 1
	     && REG_P (SET_DEST (pattern))
	     && REGNO (SET_DEST (pattern)) != A1_REG)
      {
	if (insnR)
	  return false;
	insnR = insn;
	continue;
      }
    else
      return false;

  if (!insnS || !insnR)
    return false;

  *p_insnS = insnS, *p_insnR = insnR;

  return true;
}

/* minimum frame = reg save area (4 words) plus static chain (1 word)
   and the total number of words must be a multiple of 128 bits.  */
#define MIN_FRAME_SIZE (8 * UNITS_PER_WORD)

void
xtensa_expand_prologue (void)
{
  HOST_WIDE_INT total_size;
  rtx_insn *insn = NULL;
  rtx note_rtx;

  total_size = compute_frame_size (get_frame_size ());

  if (flag_stack_usage_info)
    current_function_static_stack_size = total_size;

  if (TARGET_WINDOWED_ABI)
    {
      if (total_size < (1 << (12+3)))
	insn = emit_insn (gen_entry (GEN_INT (total_size)));
      else
	{
	  /* Use a8 as a temporary since a0-a7 may be live.  */
	  rtx tmp_reg = gen_rtx_REG (Pmode, A8_REG);
	  emit_insn (gen_entry (GEN_INT (MIN_FRAME_SIZE)));
	  xtensa_emit_add_imm (tmp_reg, stack_pointer_rtx,
			       MIN_FRAME_SIZE - total_size,
			       tmp_reg, false);
	  insn = emit_insn (gen_movsi (stack_pointer_rtx, tmp_reg));
	}
    }
  else
    {
      int regno;
      HOST_WIDE_INT offset = 0;
      int callee_save_size = cfun->machine->callee_save_size;
      df_ref ref;
      bool stack_pointer_needed = frame_pointer_needed
				  || crtl->calls_eh_return;
      bool large_stack_needed;

      /* Check if the function body really needs the stack pointer.  */
      if (!stack_pointer_needed && df)
	for (ref = DF_REG_USE_CHAIN (A1_REG);
	     ref; ref = DF_REF_NEXT_REG (ref))
	  if (DF_REF_CLASS (ref) == DF_REF_REGULAR
	      && NONJUMP_INSN_P (DF_REF_INSN (ref)))
	    {
	      stack_pointer_needed = true;
	      break;
	    }
      /* Check if callee-saved registers really need saving to the stack.  */
      if (!stack_pointer_needed)
	for (regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
	  if (xtensa_call_save_reg (regno))
	    {
	      stack_pointer_needed = true;
	      break;
	    }

      cfun->machine->inhibit_logues_a1_adjusts = !stack_pointer_needed;

      /* -128 is a limit of single addi instruction. */
      if (IN_RANGE (total_size, 1, 128))
	{
	  xtensa_emit_adjust_stack_ptr (-total_size,
					ADJUST_SP_NEED_NOTE);
	  offset = total_size - UNITS_PER_WORD;
	}
      else if (callee_save_size)
	{
	  /* 1020 is maximal s32i offset, if the frame is bigger than that
	   * we move sp to the end of callee-saved save area, save and then
	   * move it to its final location. */
	  if (total_size > 1024)
	    {
	      xtensa_emit_adjust_stack_ptr (-callee_save_size,
					    ADJUST_SP_NEED_NOTE);
	      offset = callee_save_size - UNITS_PER_WORD;
	    }
	  else
	    {
	      xtensa_emit_adjust_stack_ptr (-total_size,
					    ADJUST_SP_NEED_NOTE);
	      offset = total_size - UNITS_PER_WORD;
	    }
	}

      large_stack_needed = total_size > 1024
			   || (!callee_save_size && total_size > 128);
      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
	if (xtensa_call_save_reg(regno))
	  {
	    rtx x = gen_rtx_PLUS (Pmode,
				  stack_pointer_rtx, GEN_INT (offset));
	    rtx mem = gen_frame_mem (SImode, x);
	    rtx_insn *insnS, *insnR;

	    if (!large_stack_needed
		&& xtensa_can_eliminate_callee_saved_reg_p (regno,
							    &insnS, &insnR))
	      {
		if (frame_pointer_needed)
		  mem = replace_rtx (mem, stack_pointer_rtx,
				     hard_frame_pointer_rtx);
		SET_DEST (PATTERN (insnS)) = mem;
		df_insn_rescan (insnS);
		SET_SRC (PATTERN (insnR)) = copy_rtx (mem);
		df_insn_rescan (insnR);
		SET_HARD_REG_BIT (cfun->machine->eliminated_callee_saved,
				  regno);
	      }
	    else
	      {
		rtx reg = gen_rtx_REG (SImode, regno);

		insn = emit_move_insn (mem, reg);
		RTX_FRAME_RELATED_P (insn) = 1;
		add_reg_note (insn, REG_FRAME_RELATED_EXPR,
			      gen_rtx_SET (mem, reg));
	      }
	    offset -= UNITS_PER_WORD;
	  }
      if (large_stack_needed)
	xtensa_emit_adjust_stack_ptr (callee_save_size - total_size,
				      ADJUST_SP_NEED_NOTE);
    }

  if (frame_pointer_needed)
    {
      if (cfun->machine->set_frame_ptr_insn)
	{
	  rtx_insn *first;

	  push_topmost_sequence ();
	  first = get_insns ();
	  pop_topmost_sequence ();

	  /* For all instructions prior to set_frame_ptr_insn, replace
	     hard_frame_pointer references with stack_pointer.  */
	  for (insn = first;
	       insn != cfun->machine->set_frame_ptr_insn;
	       insn = NEXT_INSN (insn))
	    {
	      if (INSN_P (insn))
		{
		  PATTERN (insn) = replace_rtx (copy_rtx (PATTERN (insn)),
						hard_frame_pointer_rtx,
						stack_pointer_rtx);
		  df_insn_rescan (insn);
		}
	    }
	}
      else
	{
	  insn = emit_insn (gen_movsi (hard_frame_pointer_rtx,
				       stack_pointer_rtx));
	  if (!TARGET_WINDOWED_ABI)
	    {
	      note_rtx = gen_rtx_SET (hard_frame_pointer_rtx,
				      stack_pointer_rtx);
	      RTX_FRAME_RELATED_P (insn) = 1;
	      add_reg_note (insn, REG_FRAME_RELATED_EXPR, note_rtx);
	    }
	}
    }

  if (TARGET_WINDOWED_ABI)
    {
      /* Create a note to describe the CFA.  Because this is only used to set
	 DW_AT_frame_base for debug info, don't bother tracking changes through
	 each instruction in the prologue.  It just takes up space.  */
      note_rtx = gen_rtx_SET ((frame_pointer_needed
			       ? hard_frame_pointer_rtx
			       : stack_pointer_rtx),
			      plus_constant (Pmode, stack_pointer_rtx,
					     -total_size));
      RTX_FRAME_RELATED_P (insn) = 1;
      add_reg_note (insn, REG_FRAME_RELATED_EXPR, note_rtx);
    }
}

void
xtensa_expand_epilogue (void)
{
  if (!TARGET_WINDOWED_ABI)
    {
      int regno;
      HOST_WIDE_INT offset;

      if (cfun->machine->current_frame_size > (frame_pointer_needed ? 127 : 1024))
	{
	  xtensa_emit_adjust_stack_ptr (cfun->machine->current_frame_size -
					cfun->machine->callee_save_size,
					frame_pointer_needed
					? ADJUST_SP_FRAME_PTR
					: ADJUST_SP_NONE);
	  offset = cfun->machine->callee_save_size - UNITS_PER_WORD;
	}
      else
	{
	  if (frame_pointer_needed)
	    emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx);
	  offset = cfun->machine->current_frame_size - UNITS_PER_WORD;
	}

      /* Prevent reordering of saved a0 update and loading it back from
	 the save area.  */
      if (crtl->calls_eh_return)
	emit_insn (gen_blockage ());

      for (regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
	if (xtensa_call_save_reg(regno))
	  {
	    if (! TEST_HARD_REG_BIT (cfun->machine->eliminated_callee_saved,
				     regno))
	      {
		rtx x = gen_rtx_PLUS (Pmode,
				      stack_pointer_rtx, GEN_INT (offset));
		emit_move_insn (gen_rtx_REG (SImode, regno),
				gen_frame_mem (SImode, x));
	      }
	    offset -= UNITS_PER_WORD;
	  }

      if (cfun->machine->current_frame_size > 0)
	{
	  if (frame_pointer_needed || /* always reachable with addi */
	      cfun->machine->current_frame_size > 1024 ||
	      cfun->machine->current_frame_size <= 127)
	    {
	      if (cfun->machine->current_frame_size <= 127)
		offset = cfun->machine->current_frame_size;
	      else
		offset = cfun->machine->callee_save_size;
	      if (offset)
		xtensa_emit_adjust_stack_ptr (offset, ADJUST_SP_NONE);
	    }
	  else
	    xtensa_emit_adjust_stack_ptr (cfun->machine->current_frame_size,
					  ADJUST_SP_NONE);
	}

      if (crtl->calls_eh_return)
	emit_insn (gen_add3_insn (stack_pointer_rtx,
				  stack_pointer_rtx,
				  EH_RETURN_STACKADJ_RTX));
    }
}

void
xtensa_set_return_address (rtx address, rtx scratch)
{
  HOST_WIDE_INT total_size = compute_frame_size (get_frame_size ());
  rtx frame = frame_pointer_needed ?
    hard_frame_pointer_rtx : stack_pointer_rtx;
  rtx a0_addr = plus_constant (Pmode, frame,
			       total_size - UNITS_PER_WORD);
  rtx note = gen_rtx_SET (gen_frame_mem (SImode, a0_addr),
			  gen_rtx_REG (SImode, A0_REG));
  rtx insn;

  if (total_size > 1024)
    {
      xtensa_emit_add_imm (scratch, frame, total_size - UNITS_PER_WORD,
			   scratch, false);
      a0_addr = scratch;
    }

  insn = emit_move_insn (gen_frame_mem (SImode, a0_addr), address);
  RTX_FRAME_RELATED_P (insn) = 1;
  add_reg_note (insn, REG_FRAME_RELATED_EXPR, note);
}

rtx
xtensa_return_addr (int count, rtx frame)
{
  rtx result, retaddr, curaddr, label;

  if (!TARGET_WINDOWED_ABI)
    {
      if (count != 0)
	return const0_rtx;

      return get_hard_reg_initial_val (Pmode, A0_REG);
    }

  if (count == -1)
    retaddr = gen_rtx_REG (Pmode, A0_REG);
  else
    {
      rtx addr = plus_constant (Pmode, frame, -4 * UNITS_PER_WORD);
      addr = memory_address (Pmode, addr);
      retaddr = gen_reg_rtx (Pmode);
      emit_move_insn (retaddr, gen_rtx_MEM (Pmode, addr));
    }

  /* The 2 most-significant bits of the return address on Xtensa hold
     the register window size.  To get the real return address, these
     bits must be replaced with the high bits from some address in the
     code.  */

  /* Get the 2 high bits of a local label in the code.  */
  curaddr = gen_reg_rtx (Pmode);
  label = gen_label_rtx ();
  emit_label (label);
  LABEL_PRESERVE_P (label) = 1;
  emit_move_insn (curaddr, gen_rtx_LABEL_REF (Pmode, label));
  emit_insn (gen_lshrsi3 (curaddr, curaddr, GEN_INT (30)));
  emit_insn (gen_ashlsi3 (curaddr, curaddr, GEN_INT (30)));

  /* Clear the 2 high bits of the return address.  */
  result = gen_reg_rtx (Pmode);
  emit_insn (gen_ashlsi3 (result, retaddr, GEN_INT (2)));
  emit_insn (gen_lshrsi3 (result, result, GEN_INT (2)));

  /* Combine them to get the result.  */
  emit_insn (gen_iorsi3 (result, result, curaddr));
  return result;
}

/* Disable the use of word-sized or smaller complex modes for structures,
   and for function arguments in particular, where they cause problems with
   register a7.  The xtensa_copy_incoming_a7 function assumes that there is
   a single reference to an argument in a7, but with small complex modes the
   real and imaginary components may be extracted separately, leading to two
   uses of the register, only one of which would be replaced.  */

static bool
xtensa_member_type_forces_blk (const_tree, machine_mode mode)
{
  return mode == CQImode || mode == CHImode;
}

/* Create the va_list data type.

   This structure is set up by __builtin_saveregs.  The __va_reg field
   points to a stack-allocated region holding the contents of the
   incoming argument registers.  The __va_ndx field is an index
   initialized to the position of the first unnamed (variable)
   argument.  This same index is also used to address the arguments
   passed in memory.  Thus, the __va_stk field is initialized to point
   to the position of the first argument in memory offset to account
   for the arguments passed in registers and to account for the size
   of the argument registers not being 16-byte aligned.  E.G., there
   are 6 argument registers of 4 bytes each, but we want the __va_ndx
   for the first stack argument to have the maximal alignment of 16
   bytes, so we offset the __va_stk address by 32 bytes so that
   __va_stk[32] references the first argument on the stack.  */

static tree
xtensa_build_builtin_va_list (void)
{
  tree f_stk, f_reg, f_ndx, record, type_decl;

  record = (*lang_hooks.types.make_type) (RECORD_TYPE);
  type_decl = build_decl (BUILTINS_LOCATION,
			  TYPE_DECL, get_identifier ("__va_list_tag"), record);

  f_stk = build_decl (BUILTINS_LOCATION,
		      FIELD_DECL, get_identifier ("__va_stk"),
		      ptr_type_node);
  f_reg = build_decl (BUILTINS_LOCATION,
		      FIELD_DECL, get_identifier ("__va_reg"),
		      ptr_type_node);
  f_ndx = build_decl (BUILTINS_LOCATION,
		      FIELD_DECL, get_identifier ("__va_ndx"),
		      integer_type_node);

  DECL_FIELD_CONTEXT (f_stk) = record;
  DECL_FIELD_CONTEXT (f_reg) = record;
  DECL_FIELD_CONTEXT (f_ndx) = record;

  TYPE_STUB_DECL (record) = type_decl;
  TYPE_NAME (record) = type_decl;
  TYPE_FIELDS (record) = f_stk;
  DECL_CHAIN (f_stk) = f_reg;
  DECL_CHAIN (f_reg) = f_ndx;

  layout_type (record);
  return record;
}


/* Save the incoming argument registers on the stack.  Returns the
   address of the saved registers.  */

static rtx
xtensa_builtin_saveregs (void)
{
  rtx gp_regs;
  int arg_words = crtl->args.info.arg_words;
  int gp_left = MAX_ARGS_IN_REGISTERS - arg_words;

  if (gp_left <= 0)
    return const0_rtx;

  /* Allocate the general-purpose register space.  */
  gp_regs = assign_stack_local
    (BLKmode, MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD, -1);
  set_mem_alias_set (gp_regs, get_varargs_alias_set ());

  /* Now store the incoming registers.  */
  cfun->machine->need_a7_copy = TARGET_WINDOWED_ABI;
  cfun->machine->vararg_a7 = true;
  move_block_from_reg (GP_ARG_FIRST + arg_words,
		       adjust_address (gp_regs, BLKmode,
				       arg_words * UNITS_PER_WORD),
		       gp_left);
  if (cfun->machine->vararg_a7_copy != 0)
    emit_insn_before (cfun->machine->vararg_a7_copy, get_insns ());

  return XEXP (gp_regs, 0);
}


/* Implement `va_start' for varargs and stdarg.  We look at the
   current function to fill in an initial va_list.  */

static void
xtensa_va_start (tree valist, rtx nextarg ATTRIBUTE_UNUSED)
{
  tree f_stk, stk;
  tree f_reg, reg;
  tree f_ndx, ndx;
  tree t, u;
  int arg_words;

  arg_words = crtl->args.info.arg_words;

  f_stk = TYPE_FIELDS (va_list_type_node);
  f_reg = DECL_CHAIN (f_stk);
  f_ndx = DECL_CHAIN (f_reg);

  stk = build3 (COMPONENT_REF, TREE_TYPE (f_stk), valist, f_stk, NULL_TREE);
  reg = build3 (COMPONENT_REF, TREE_TYPE (f_reg), unshare_expr (valist),
		f_reg, NULL_TREE);
  ndx = build3 (COMPONENT_REF, TREE_TYPE (f_ndx), unshare_expr (valist),
		f_ndx, NULL_TREE);

  /* Call __builtin_saveregs; save the result in __va_reg */
  u = make_tree (sizetype, expand_builtin_saveregs ());
  u = fold_convert (ptr_type_node, u);
  t = build2 (MODIFY_EXPR, ptr_type_node, reg, u);
  TREE_SIDE_EFFECTS (t) = 1;
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

  /* Set the __va_stk member to ($arg_ptr - 32).  */
  u = make_tree (ptr_type_node, virtual_incoming_args_rtx);
  u = fold_build_pointer_plus_hwi (u, -32);
  t = build2 (MODIFY_EXPR, ptr_type_node, stk, u);
  TREE_SIDE_EFFECTS (t) = 1;
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);

  /* Set the __va_ndx member.  If the first variable argument is on
     the stack, adjust __va_ndx by 2 words to account for the extra
     alignment offset for __va_stk.  */
  if (arg_words >= MAX_ARGS_IN_REGISTERS)
    arg_words += 2;
  t = build2 (MODIFY_EXPR, integer_type_node, ndx,
	      build_int_cst (integer_type_node, arg_words * UNITS_PER_WORD));
  TREE_SIDE_EFFECTS (t) = 1;
  expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}


/* Implement `va_arg'.  */

static tree
xtensa_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p,
			     gimple_seq *post_p ATTRIBUTE_UNUSED)
{
  tree f_stk, stk;
  tree f_reg, reg;
  tree f_ndx, ndx;
  tree type_size, array, orig_ndx, addr, size, va_size, t;
  tree lab_false, lab_over, lab_false2;
  bool indirect;

  indirect = pass_va_arg_by_reference (type);
  if (indirect)
    type = build_pointer_type (type);

  /* Handle complex values as separate real and imaginary parts.  */
  if (TREE_CODE (type) == COMPLEX_TYPE)
    {
      tree real_part, imag_part;

      real_part = xtensa_gimplify_va_arg_expr (valist, TREE_TYPE (type),
					       pre_p, NULL);
      real_part = get_initialized_tmp_var (real_part, pre_p, NULL);

      imag_part = xtensa_gimplify_va_arg_expr (unshare_expr (valist),
					       TREE_TYPE (type),
					       pre_p, NULL);
      imag_part = get_initialized_tmp_var (imag_part, pre_p, NULL);

      return build2 (COMPLEX_EXPR, type, real_part, imag_part);
    }

  f_stk = TYPE_FIELDS (va_list_type_node);
  f_reg = DECL_CHAIN (f_stk);
  f_ndx = DECL_CHAIN (f_reg);

  stk = build3 (COMPONENT_REF, TREE_TYPE (f_stk), valist,
		f_stk, NULL_TREE);
  reg = build3 (COMPONENT_REF, TREE_TYPE (f_reg), unshare_expr (valist),
		f_reg, NULL_TREE);
  ndx = build3 (COMPONENT_REF, TREE_TYPE (f_ndx), unshare_expr (valist),
		f_ndx, NULL_TREE);

  type_size = size_in_bytes (type);
  va_size = round_up (type_size, UNITS_PER_WORD);
  gimplify_expr (&va_size, pre_p, NULL, is_gimple_val, fb_rvalue);


  /* First align __va_ndx if necessary for this arg:

     orig_ndx = (AP).__va_ndx;
     if (__alignof__ (TYPE) > 4 )
       orig_ndx = ((orig_ndx + __alignof__ (TYPE) - 1)
			& -__alignof__ (TYPE)); */

  orig_ndx = get_initialized_tmp_var (ndx, pre_p, NULL);

  if (TYPE_ALIGN (type) > BITS_PER_WORD)
    {
      int align = MIN (TYPE_ALIGN (type), STACK_BOUNDARY) / BITS_PER_UNIT;

      t = build2 (PLUS_EXPR, integer_type_node, unshare_expr (orig_ndx),
		  build_int_cst (integer_type_node, align - 1));
      t = build2 (BIT_AND_EXPR, integer_type_node, t,
		  build_int_cst (integer_type_node, -align));
      gimplify_assign (unshare_expr (orig_ndx), t, pre_p);
    }


  /* Increment __va_ndx to point past the argument:

     (AP).__va_ndx = orig_ndx + __va_size (TYPE); */

  t = fold_convert (integer_type_node, va_size);
  t = build2 (PLUS_EXPR, integer_type_node, orig_ndx, t);
  gimplify_assign (unshare_expr (ndx), t, pre_p);


  /* Check if the argument is in registers:

     if ((AP).__va_ndx <= __MAX_ARGS_IN_REGISTERS * 4
	 && !must_pass_in_stack (type))
	__array = (AP).__va_reg; */

  array = create_tmp_var (ptr_type_node);

  lab_over = NULL;
  if (!must_pass_va_arg_in_stack (type))
    {
      lab_false = create_artificial_label (UNKNOWN_LOCATION);
      lab_over = create_artificial_label (UNKNOWN_LOCATION);

      t = build2 (GT_EXPR, boolean_type_node, unshare_expr (ndx),
		  build_int_cst (integer_type_node,
				 MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD));
      t = build3 (COND_EXPR, void_type_node, t,
		  build1 (GOTO_EXPR, void_type_node, lab_false),
		  NULL_TREE);
      gimplify_and_add (t, pre_p);

      gimplify_assign (unshare_expr (array), reg, pre_p);

      t = build1 (GOTO_EXPR, void_type_node, lab_over);
      gimplify_and_add (t, pre_p);

      t = build1 (LABEL_EXPR, void_type_node, lab_false);
      gimplify_and_add (t, pre_p);
    }


  /* ...otherwise, the argument is on the stack (never split between
     registers and the stack -- change __va_ndx if necessary):

     else
       {
	 if (orig_ndx <= __MAX_ARGS_IN_REGISTERS * 4)
	     (AP).__va_ndx = 32 + __va_size (TYPE);
	 __array = (AP).__va_stk;
       } */

  lab_false2 = create_artificial_label (UNKNOWN_LOCATION);

  t = build2 (GT_EXPR, boolean_type_node, unshare_expr (orig_ndx),
	      build_int_cst (integer_type_node,
			     MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD));
  t = build3 (COND_EXPR, void_type_node, t,
	      build1 (GOTO_EXPR, void_type_node, lab_false2),
	      NULL_TREE);
  gimplify_and_add (t, pre_p);

  t = size_binop (PLUS_EXPR, unshare_expr (va_size), size_int (32));
  t = fold_convert (integer_type_node, t);
  gimplify_assign (unshare_expr (ndx), t, pre_p);

  t = build1 (LABEL_EXPR, void_type_node, lab_false2);
  gimplify_and_add (t, pre_p);

  gimplify_assign (array, stk, pre_p);

  if (lab_over)
    {
      t = build1 (LABEL_EXPR, void_type_node, lab_over);
      gimplify_and_add (t, pre_p);
    }


  /* Given the base array pointer (__array) and index to the subsequent
     argument (__va_ndx), find the address:

     __array + (AP).__va_ndx - (BYTES_BIG_ENDIAN && sizeof (TYPE) < 4
				? sizeof (TYPE)
				: __va_size (TYPE))

     The results are endian-dependent because values smaller than one word
     are aligned differently.  */


  if (BYTES_BIG_ENDIAN && TREE_CODE (type_size) == INTEGER_CST)
    {
      t = fold_build2 (GE_EXPR, boolean_type_node, unshare_expr (type_size),
		       size_int (PARM_BOUNDARY / BITS_PER_UNIT));
      t = fold_build3 (COND_EXPR, sizetype, t, unshare_expr (va_size),
		       unshare_expr (type_size));
      size = t;
    }
  else
    size = unshare_expr (va_size);

  t = fold_convert (sizetype, unshare_expr (ndx));
  t = build2 (MINUS_EXPR, sizetype, t, size);
  addr = fold_build_pointer_plus (unshare_expr (array), t);

  addr = fold_convert (build_pointer_type (type), addr);
  if (indirect)
    addr = build_va_arg_indirect_ref (addr);
  return build_va_arg_indirect_ref (addr);
}


/* Builtins.  */

enum xtensa_builtin
{
  XTENSA_BUILTIN_UMULSIDI3,
  XTENSA_BUILTIN_max
};


static void
xtensa_init_builtins (void)
{
  tree ftype, decl;

  ftype = build_function_type_list (unsigned_intDI_type_node,
				    unsigned_intSI_type_node,
				    unsigned_intSI_type_node, NULL_TREE);

  decl = add_builtin_function ("__builtin_umulsidi3", ftype,
			       XTENSA_BUILTIN_UMULSIDI3, BUILT_IN_MD,
			       "__umulsidi3", NULL_TREE);
  TREE_NOTHROW (decl) = 1;
  TREE_READONLY (decl) = 1;
}


static tree
xtensa_fold_builtin (tree fndecl, int n_args ATTRIBUTE_UNUSED, tree *args,
		     bool ignore ATTRIBUTE_UNUSED)
{
  unsigned int fcode = DECL_MD_FUNCTION_CODE (fndecl);
  tree arg0, arg1;

  switch (fcode)
    {
    case XTENSA_BUILTIN_UMULSIDI3:
      arg0 = args[0];
      arg1 = args[1];
      if ((TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
	  || TARGET_MUL32_HIGH)
	return fold_build2 (MULT_EXPR, unsigned_intDI_type_node,
			    fold_convert (unsigned_intDI_type_node, arg0),
			    fold_convert (unsigned_intDI_type_node, arg1));
      break;

    default:
      internal_error ("bad builtin code");
      break;
    }

  return NULL;
}


static rtx
xtensa_expand_builtin (tree exp, rtx target,
		       rtx subtarget ATTRIBUTE_UNUSED,
		       machine_mode mode ATTRIBUTE_UNUSED,
		       int ignore)
{
  tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
  unsigned int fcode = DECL_MD_FUNCTION_CODE (fndecl);

  switch (fcode)
    {
    case XTENSA_BUILTIN_UMULSIDI3:
      /* The umulsidi3 builtin is just a mechanism to avoid calling the real
	 __umulsidi3 function when the Xtensa configuration can directly
	 implement it.  If not, just call the function.  */
      return expand_call (exp, target, ignore);

    default:
      internal_error ("bad builtin code");
    }
  return NULL_RTX;
}

/* Worker function for TARGET_PREFERRED_RELOAD_CLASS.  */

static reg_class_t
xtensa_preferred_reload_class (rtx x, reg_class_t rclass)
{
  if (CONSTANT_P (x) && CONST_DOUBLE_P (x))
    return NO_REGS;

  /* Don't use the stack pointer or hard frame pointer for reloads!
     The hard frame pointer would normally be OK except that it may
     briefly hold an incoming argument in the prologue, and reload
     won't know that it is live because the hard frame pointer is
     treated specially.  */

  if (rclass == AR_REGS || rclass == GR_REGS)
    return RL_REGS;

  return rclass;
}

/* Worker function for TARGET_PREFERRED_OUTPUT_RELOAD_CLASS.  */

static reg_class_t
xtensa_preferred_output_reload_class (rtx x ATTRIBUTE_UNUSED,
				      reg_class_t rclass)
{
  /* Don't use the stack pointer or hard frame pointer for reloads!
     The hard frame pointer would normally be OK except that it may
     briefly hold an incoming argument in the prologue, and reload
     won't know that it is live because the hard frame pointer is
     treated specially.  */

  if (rclass == AR_REGS || rclass == GR_REGS)
    return RL_REGS;

  return rclass;
}

/* Worker function for TARGET_SECONDARY_RELOAD.  */

static reg_class_t
xtensa_secondary_reload (bool in_p, rtx x, reg_class_t rclass,
			 machine_mode mode, secondary_reload_info *sri)
{
  int regno;

  if (in_p && constantpool_mem_p (x))
    {
      if (rclass == FP_REGS)
	return RL_REGS;

      if (mode == QImode)
	sri->icode = CODE_FOR_reloadqi_literal;
      else if (mode == HImode)
	sri->icode = CODE_FOR_reloadhi_literal;
    }

  regno = xt_true_regnum (x);
  if (ACC_REG_P (regno))
    return ((rclass == GR_REGS || rclass == RL_REGS) ? NO_REGS : RL_REGS);
  if (rclass == ACC_REG)
    return (GP_REG_P (regno) ? NO_REGS : RL_REGS);

  return NO_REGS;
}

/* Called once at the start of IRA, by ADJUST_REG_ALLOC_ORDER.  */

void
xtensa_adjust_reg_alloc_order (void)
{
  static const int reg_windowed_alloc_order[FIRST_PSEUDO_REGISTER] =
	REG_ALLOC_ORDER;
  static const int reg_call0_alloc_order[FIRST_PSEUDO_REGISTER] =
  {
     9, 10, 11,  7,  6,  5,  4,  3,  2,  8,  0, 12, 13, 14, 15,
    18,
    19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
     1, 16, 17,
    35,
  };

  memcpy (reg_alloc_order, TARGET_WINDOWED_ABI ?
	  reg_windowed_alloc_order : reg_call0_alloc_order,
	  FIRST_PSEUDO_REGISTER * sizeof (int));
}


/* Some Xtensa targets support multiple bss sections.  If the section
   name ends with ".bss", add SECTION_BSS to the flags.  */

static unsigned int
xtensa_multibss_section_type_flags (tree decl, const char *name, int reloc)
{
  unsigned int flags = default_section_type_flags (decl, name, reloc);
  const char *suffix;

  suffix = strrchr (name, '.');
  if (suffix && strcmp (suffix, ".bss") == 0)
    {
      if (!decl || (VAR_P (decl)
		    && DECL_INITIAL (decl) == NULL_TREE))
	flags |= SECTION_BSS;  /* @nobits */
      else
	warning (0, "only uninitialized variables can be placed in a "
		 "%<.bss%> section");
    }

  return flags;
}


/* The literal pool stays with the function.  */

static section *
xtensa_select_rtx_section (machine_mode mode ATTRIBUTE_UNUSED,
			   rtx x ATTRIBUTE_UNUSED,
			   unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
{
  return function_section (current_function_decl);
}

/* Worker function for TARGET_REGISTER_MOVE_COST.  */

static int
xtensa_register_move_cost (machine_mode mode ATTRIBUTE_UNUSED,
			   reg_class_t from, reg_class_t to)
{
  if (from == to && from != BR_REGS && to != BR_REGS)
    return 2;
  else if (reg_class_subset_p (from, AR_REGS)
	   && reg_class_subset_p (to, AR_REGS))
    return 2;
  else if (reg_class_subset_p (from, AR_REGS) && to == ACC_REG)
    return 3;
  else if (from == ACC_REG && reg_class_subset_p (to, AR_REGS))
    return 3;
  else
    return 10;
}

/* Compute a (partial) cost for rtx X.  Return true if the complete
   cost has been computed, and false if subexpressions should be
   scanned.  In either case, *TOTAL contains the cost result.  */

static bool
xtensa_rtx_costs (rtx x, machine_mode mode, int outer_code,
		  int opno ATTRIBUTE_UNUSED,
		  int *total, bool speed)
{
  int code = GET_CODE (x);

  switch (code)
    {
    case CONST_INT:
      switch (outer_code)
	{
	case SET:
	  if (xtensa_simm12b (INTVAL (x))
	      || (current_pass && current_pass->tv_id == TV_IFCVT))
	    {
	      *total = speed ? COSTS_N_INSNS (1) : 0;
	      return true;
	    }
	  break;
	case PLUS:
	  if (xtensa_simm8 (INTVAL (x))
	      || xtensa_simm8x256 (INTVAL (x)))
	    {
	      *total = 0;
	      return true;
	    }
	  break;
	case AND:
	  if (xtensa_mask_immediate (INTVAL (x)))
	    {
	      *total = 0;
	      return true;
	    }
	  break;
	case COMPARE:
	  if ((INTVAL (x) == 0) || xtensa_b4const (INTVAL (x)))
	    {
	      *total = 0;
	      return true;
	    }
	  break;
	case ASHIFT:
	case ASHIFTRT:
	case LSHIFTRT:
	case ROTATE:
	case ROTATERT:
	  /* No way to tell if X is the 2nd operand so be conservative.  */
	default: break;
	}
      if (xtensa_simm12b (INTVAL (x)))
	*total = 5;
      else if (TARGET_CONST16)
	*total = COSTS_N_INSNS (2);
      else
	*total = 6;
      return true;

    case CONST:
    case LABEL_REF:
    case SYMBOL_REF:
      if (TARGET_CONST16)
	*total = COSTS_N_INSNS (2);
      else
	*total = 5;
      return true;

    case CONST_DOUBLE:
      if (TARGET_CONST16)
	*total = COSTS_N_INSNS (4);
      else
	*total = 7;
      return true;

    case MEM:
      {
	int num_words =
	  (GET_MODE_SIZE (mode) > UNITS_PER_WORD) ?  2 : 1;

	if (memory_address_p (mode, XEXP ((x), 0)))
	  *total = COSTS_N_INSNS (num_words);
	else
	  *total = COSTS_N_INSNS (2*num_words);
	return true;
      }

    case FFS:
    case CTZ:
      *total = COSTS_N_INSNS (TARGET_NSA ? 5 : 50);
      return true;

    case CLZ:
    case CLRSB:
      *total = COSTS_N_INSNS (TARGET_NSA ? 1 : 50);
      return true;

    case BSWAP:
      *total = COSTS_N_INSNS (mode == HImode ? 3 : 5);
      return true;

    case NOT:
      *total = COSTS_N_INSNS (mode == DImode ? 3 : 2);
      return true;

    case AND:
    case IOR:
    case XOR:
      if (mode == DImode)
	*total = COSTS_N_INSNS (2);
      else
	*total = COSTS_N_INSNS (1);
      return true;

    case ASHIFT:
    case ASHIFTRT:
    case LSHIFTRT:
      if (mode == DImode)
	*total = COSTS_N_INSNS (50);
      else
	*total = COSTS_N_INSNS (1);
      return true;

    case ABS:
    case NEG:
      {
	if (mode == SFmode)
	  *total = COSTS_N_INSNS (TARGET_HARD_FLOAT ? 1 : 50);
	else if (mode == DFmode)
	  *total = COSTS_N_INSNS (50);
	else if (mode == DImode)
	  *total = COSTS_N_INSNS (4);
	else
	  *total = COSTS_N_INSNS (1);
	return true;
      }

    case PLUS:
    case MINUS:
      {
	if (mode == SFmode)
	  *total = COSTS_N_INSNS (TARGET_HARD_FLOAT ? 1 : 50);
	else if (mode == DFmode || mode == DImode)
	  *total = COSTS_N_INSNS (50);
	else
	  *total = COSTS_N_INSNS (1);
	return true;
      }

    case MULT:
      {
	if (mode == SFmode)
	  *total = COSTS_N_INSNS (TARGET_HARD_FLOAT ? 4 : 50);
	else if (mode == DFmode)
	  *total = COSTS_N_INSNS (50);
	else if (mode == DImode)
	  *total = COSTS_N_INSNS (TARGET_MUL32_HIGH ? 10 : 50);
	else if (TARGET_MUL32)
	  *total = COSTS_N_INSNS (4);
	else if (TARGET_MAC16)
	  *total = COSTS_N_INSNS (16);
	else if (TARGET_MUL16)
	  *total = COSTS_N_INSNS (12);
	else
	  *total = COSTS_N_INSNS (50);
	return true;
      }

    case DIV:
    case MOD:
      {
	if (mode == SFmode)
	  {
	    *total = COSTS_N_INSNS (TARGET_HARD_FLOAT_DIV ? 8 : 50);
	    return true;
	  }
	else if (mode == DFmode)
	  {
	    *total = COSTS_N_INSNS (50);
	    return true;
	  }
      }
      /* Fall through.  */

    case UDIV:
    case UMOD:
      {
	if (mode == DImode)
	  *total = COSTS_N_INSNS (speed ? 100 : 50);
	else if (TARGET_DIV32)
	  *total = COSTS_N_INSNS (32);
	else
	  *total = COSTS_N_INSNS (speed ? 100 : 50);
	return true;
      }

    case SQRT:
      if (mode == SFmode)
	*total = COSTS_N_INSNS (TARGET_HARD_FLOAT_SQRT ? 8 : 50);
      else
	*total = COSTS_N_INSNS (50);
      return true;

    case SMIN:
    case UMIN:
    case SMAX:
    case UMAX:
      *total = COSTS_N_INSNS (TARGET_MINMAX ? 1 : 50);
      return true;

    case SIGN_EXTRACT:
    case SIGN_EXTEND:
      *total = COSTS_N_INSNS (TARGET_SEXT ? 1 : 2);
      return true;

    case ZERO_EXTRACT:
    case ZERO_EXTEND:
    case IF_THEN_ELSE:
      *total = COSTS_N_INSNS (1);
      return true;

    default:
      return false;
    }
}

static bool
xtensa_is_insn_L32R_p (const rtx_insn *insn)
{
  rtx x = PATTERN (insn);

  if (GET_CODE (x) != SET)
    return false;

  x = XEXP (x, 1);
  if (MEM_P (x))
    {
      x = XEXP (x, 0);
      return (SYMBOL_REF_P (x) || CONST_INT_P (x))
	     && CONSTANT_POOL_ADDRESS_P (x);
    }

  /* relaxed MOVI instructions, that will be converted to L32R by the
     assembler.  */
  if (CONST_INT_P (x)
      && ! xtensa_simm12b (INTVAL (x)))
    return true;

  return false;
}

/* Compute a relative costs of RTL insns.  This is necessary in order to
   achieve better RTL insn splitting/combination result.  */

static int
xtensa_insn_cost (rtx_insn *insn, bool speed)
{
  if (!(recog_memoized (insn) < 0))
    {
      int len = get_attr_length (insn);

      if (len == 0)
	return COSTS_N_INSNS (0);

      if (speed)  /* For speed cost.  */
	{
	  int n = (len + 2) / 3;

	  /* "L32R" may be particular slow (implementation-dependent).  */
	  if (xtensa_is_insn_L32R_p (insn))
	    return COSTS_N_INSNS (1 + xtensa_extra_l32r_costs);

	  /* Cost based on the pipeline model.  */
	  switch (get_attr_type (insn))
	    {
	    case TYPE_STORE:
	    case TYPE_MOVE:
	    case TYPE_ARITH:
	    case TYPE_MULTI:
	    case TYPE_NOP:
	    case TYPE_FARITH:
	    case TYPE_FSTORE:
	      return COSTS_N_INSNS (n);

	    case TYPE_LOAD:
	      return COSTS_N_INSNS (n - 1 + 2);

	    case TYPE_JUMP:
	    case TYPE_CALL:
	      return COSTS_N_INSNS (n - 1 + 3);

	    case TYPE_FCONV:
	    case TYPE_FLOAD:
	    case TYPE_MUL16:
	    case TYPE_MUL32:
	    case TYPE_RSR:
	      return COSTS_N_INSNS (n * 2);

	    case TYPE_FMADD:
	      return COSTS_N_INSNS (n * 4);

	    case TYPE_DIV32:
	      return COSTS_N_INSNS (n * 16);

	    default:
	      break;
	    }
	}
      else  /* For size cost.  */
	{
	  /* Cost based on the instruction length.  */
	  if (get_attr_type (insn) != TYPE_UNKNOWN)
	    {
	      /* "L32R" itself plus constant in litpool.  */
	      if (xtensa_is_insn_L32R_p (insn))
		len = 3 + 4;

	      /* Consider fractional instruction length (for example, ".n"
		 short instructions or "L32R" litpool constants.  */
	      return (COSTS_N_INSNS (len) + 1) / 3;
	    }
	}
    }

  /* Fall back.  */
  return pattern_cost (PATTERN (insn), speed);
}

/* Worker function for TARGET_RETURN_IN_MEMORY.  */

static bool
xtensa_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
{
  return ((unsigned HOST_WIDE_INT) int_size_in_bytes (type)
	  > (unsigned) (GP_RETURN_LAST - GP_RETURN_FIRST + 1) * UNITS_PER_WORD);
}

/* Worker function for TARGET_FUNCTION_VALUE.  */

rtx
xtensa_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED,
		       bool outgoing)
{
  return gen_rtx_REG ((INTEGRAL_TYPE_P (valtype)
		       && TYPE_PRECISION (valtype) < BITS_PER_WORD)
		      ? SImode : TYPE_MODE (valtype),
		      outgoing ? GP_OUTGOING_RETURN : GP_RETURN_FIRST);
}

/* Worker function for TARGET_LIBCALL_VALUE.  */

static rtx
xtensa_libcall_value (machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED)
{
  return gen_rtx_REG ((GET_MODE_CLASS (mode) == MODE_INT
		       && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
		      ? SImode : mode, GP_RETURN_FIRST);
}

/* Worker function TARGET_FUNCTION_VALUE_REGNO_P.  */

static bool
xtensa_function_value_regno_p (const unsigned int regno)
{
  return IN_RANGE (regno, GP_RETURN_FIRST, GP_RETURN_LAST);
}

/* The static chain is passed in memory.  Provide rtx giving 'mem'
   expressions that denote where they are stored.  */

static rtx
xtensa_static_chain (const_tree ARG_UNUSED (fndecl_or_type), bool incoming_p)
{
  if (TARGET_WINDOWED_ABI)
    {
      rtx base = incoming_p ? arg_pointer_rtx : stack_pointer_rtx;
      return gen_frame_mem (Pmode, plus_constant (Pmode, base,
						  -5 * UNITS_PER_WORD));
    }
  else
    return gen_rtx_REG (Pmode, A8_REG);
}


/* TRAMPOLINE_TEMPLATE: For Xtensa, the trampoline must perform an ENTRY
   instruction with a minimal stack frame in order to get some free
   registers.  Once the actual call target is known, the proper stack frame
   size is extracted from the ENTRY instruction at the target and the
   current frame is adjusted to match.  The trampoline then transfers
   control to the instruction following the ENTRY at the target.  Note:
   this assumes that the target begins with an ENTRY instruction.  */

static void
xtensa_asm_trampoline_template (FILE *stream)
{
  bool use_call0 = (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS);

  fprintf (stream, "\t.begin no-transform\n");

  if (TARGET_WINDOWED_ABI)
    {
      fprintf (stream, "\tentry\tsp, %d\n", MIN_FRAME_SIZE);

      if (use_call0)
	{
	  /* Save the return address.  */
	  fprintf (stream, "\tmov\ta10, a0\n");

	  /* Use a CALL0 instruction to skip past the constants and in the
	     process get the PC into A0.  This allows PC-relative access to
	     the constants without relying on L32R.  */
	  fprintf (stream, "\tcall0\t.Lskipconsts\n");
	}
      else
	fprintf (stream, "\tj\t.Lskipconsts\n");

      fprintf (stream, "\t.align\t4\n");
      fprintf (stream, ".Lchainval:%s0\n", integer_asm_op (4, TRUE));
      fprintf (stream, ".Lfnaddr:%s0\n", integer_asm_op (4, TRUE));
      fprintf (stream, ".Lskipconsts:\n");

      /* Load the static chain and function address from the trampoline.  */
      if (use_call0)
	{
	  fprintf (stream, "\taddi\ta0, a0, 3\n");
	  fprintf (stream, "\tl32i\ta9, a0, 0\n");
	  fprintf (stream, "\tl32i\ta8, a0, 4\n");
	}
      else
	{
	  fprintf (stream, "\tl32r\ta9, .Lchainval\n");
	  fprintf (stream, "\tl32r\ta8, .Lfnaddr\n");
	}

      /* Store the static chain.  */
      fprintf (stream, "\ts32i\ta9, sp, %d\n", MIN_FRAME_SIZE - 20);

      /* Set the proper stack pointer value.  */
      fprintf (stream, "\tl32i\ta9, a8, 0\n");
      fprintf (stream, "\textui\ta9, a9, %d, 12\n",
	       TARGET_BIG_ENDIAN ? 8 : 12);
      fprintf (stream, "\tslli\ta9, a9, 3\n");
      fprintf (stream, "\taddi\ta9, a9, %d\n", -MIN_FRAME_SIZE);
      fprintf (stream, "\tsub\ta9, sp, a9\n");
      fprintf (stream, "\tmovsp\tsp, a9\n");

      if (use_call0)
	/* Restore the return address.  */
	fprintf (stream, "\tmov\ta0, a10\n");

      /* Jump to the instruction following the ENTRY.  */
      fprintf (stream, "\taddi\ta8, a8, 3\n");
      fprintf (stream, "\tjx\ta8\n");

      /* Pad size to a multiple of TRAMPOLINE_ALIGNMENT.  */
      if (use_call0)
	fprintf (stream, "\t.byte\t0\n");
      else
	fprintf (stream, "\tnop\n");
    }
  else
    {
      if (use_call0)
	{
	  /* Save the return address.  */
	  fprintf (stream, "\tmov\ta10, a0\n");

	  /* Use a CALL0 instruction to skip past the constants and in the
	     process get the PC into A0.  This allows PC-relative access to
	     the constants without relying on L32R.  */
	  fprintf (stream, "\tcall0\t.Lskipconsts\n");
	}
      else
	fprintf (stream, "\tj\t.Lskipconsts\n");

      fprintf (stream, "\t.align\t4\n");
      fprintf (stream, ".Lchainval:%s0\n", integer_asm_op (4, TRUE));
      fprintf (stream, ".Lfnaddr:%s0\n", integer_asm_op (4, TRUE));
      fprintf (stream, ".Lskipconsts:\n");

      /* Load the static chain and function address from the trampoline.  */
      if (use_call0)
	{
	  fprintf (stream, "\taddi\ta0, a0, 3\n");
	  fprintf (stream, "\tl32i\ta8, a0, 0\n");
	  fprintf (stream, "\tl32i\ta9, a0, 4\n");
	  fprintf (stream, "\tmov\ta0, a10\n");
	}
      else
	{
	  fprintf (stream, "\tl32r\ta8, .Lchainval\n");
	  fprintf (stream, "\tl32r\ta9, .Lfnaddr\n");
	}
      fprintf (stream, "\tjx\ta9\n");

      /* Pad size to a multiple of TRAMPOLINE_ALIGNMENT.  */
      if (use_call0)
	fprintf (stream, "\t.byte\t0\n");
      else
	fprintf (stream, "\tnop\n");
    }
  fprintf (stream, "\t.end no-transform\n");
}

static void
xtensa_trampoline_init (rtx m_tramp, tree fndecl, rtx chain)
{
  rtx func = XEXP (DECL_RTL (fndecl), 0);
  bool use_call0 = (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS);
  int chain_off;
  int func_off;

  if (TARGET_WINDOWED_ABI)
    {
      chain_off = use_call0 ? 12 : 8;
      func_off = use_call0 ? 16 : 12;
    }
  else
    {
      chain_off = use_call0 ? 8 : 4;
      func_off = use_call0 ? 12 : 8;
    }

  emit_block_move (m_tramp, assemble_trampoline_template (),
		   GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);

  emit_move_insn (adjust_address (m_tramp, SImode, chain_off), chain);
  emit_move_insn (adjust_address (m_tramp, SImode, func_off), func);
  emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_sync_caches"),
		     LCT_NORMAL, VOIDmode, XEXP (m_tramp, 0), Pmode);
}

/* Implement TARGET_LEGITIMATE_CONSTANT_P.  */

static bool
xtensa_legitimate_constant_p (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
{
  if (CONST_INT_P (x))
    return TARGET_AUTO_LITPOOLS || TARGET_CONST16
	   || xtensa_simm12b (INTVAL (x));

  return !xtensa_tls_referenced_p (x);
}

/* Implement TARGET_CAN_USE_DOLOOP_P.  */

static bool
xtensa_can_use_doloop_p (const widest_int &, const widest_int &,
			 unsigned int loop_depth, bool entered_at_top)
{
  /* Considering limitations in the hardware, only use doloop
     for innermost loops which must be entered from the top.  */
  if (loop_depth > 1 || !entered_at_top)
    return false;

  return true;
}

/* NULL if INSN insn is valid within a low-overhead loop.
   Otherwise return why doloop cannot be applied.  */

static const char *
xtensa_invalid_within_doloop (const rtx_insn *insn)
{
  if (CALL_P (insn))
    return "Function call in the loop.";

  if (JUMP_P (insn) && INSN_CODE (insn) == CODE_FOR_return)
    return "Return from a call instruction in the loop.";

  return NULL;
}

/* Optimize LOOP.  */

static bool
hwloop_optimize (hwloop_info loop)
{
  int i;
  edge entry_edge;
  basic_block entry_bb;
  rtx iter_reg;
  rtx_insn *insn, *seq, *entry_after;

  if (loop->depth > 1)
    {
      if (dump_file)
	fprintf (dump_file, ";; loop %d is not innermost\n",
		 loop->loop_no);
      return false;
    }

  if (!loop->incoming_dest)
    {
      if (dump_file)
	fprintf (dump_file, ";; loop %d has more than one entry\n",
		 loop->loop_no);
      return false;
    }

  if (loop->incoming_dest != loop->head)
    {
      if (dump_file)
	fprintf (dump_file, ";; loop %d is not entered from head\n",
		 loop->loop_no);
      return false;
    }

  if (loop->has_call || loop->has_asm)
    {
      if (dump_file)
	fprintf (dump_file, ";; loop %d has invalid insn\n",
		 loop->loop_no);
      return false;
    }

  /* Scan all the blocks to make sure they don't use iter_reg.  */
  if (loop->iter_reg_used || loop->iter_reg_used_outside)
    {
      if (dump_file)
	fprintf (dump_file, ";; loop %d uses iterator\n",
		 loop->loop_no);
      return false;
    }

  /* Check if start_label appears before doloop_end.  */
  insn = loop->start_label;
  while (insn && insn != loop->loop_end)
    insn = NEXT_INSN (insn);

  if (!insn)
    {
      if (dump_file)
	fprintf (dump_file, ";; loop %d start_label not before loop_end\n",
		 loop->loop_no);
      return false;
    }

  /* Get the loop iteration register.  */
  iter_reg = loop->iter_reg;

  gcc_assert (REG_P (iter_reg));

  entry_edge = NULL;

  FOR_EACH_VEC_SAFE_ELT (loop->incoming, i, entry_edge)
    if (entry_edge->flags & EDGE_FALLTHRU)
      break;

  if (entry_edge == NULL)
    return false;

  /* Place the zero_cost_loop_start instruction before the loop.  */
  entry_bb = entry_edge->src;

  start_sequence ();

  insn = emit_insn (gen_zero_cost_loop_start (loop->iter_reg,
					      loop->start_label,
					      loop->iter_reg));

  seq = get_insns ();

  entry_after = BB_END (entry_bb);
  if (!single_succ_p (entry_bb) || vec_safe_length (loop->incoming) > 1
      || !entry_after)
    {
      basic_block new_bb;
      edge e;
      edge_iterator ei;

      emit_insn_before (seq, BB_HEAD (loop->head));
      seq = emit_label_before (gen_label_rtx (), seq);
      new_bb = create_basic_block (seq, insn, entry_bb);
      FOR_EACH_EDGE (e, ei, loop->incoming)
	{
	  if (!(e->flags & EDGE_FALLTHRU))
	    redirect_edge_and_branch_force (e, new_bb);
	  else
	    redirect_edge_succ (e, new_bb);
	}

      make_edge (new_bb, loop->head, 0);
    }
  else
    {
      while (DEBUG_INSN_P (entry_after)
	     || (NOTE_P (entry_after)
		 && NOTE_KIND (entry_after) != NOTE_INSN_BASIC_BLOCK))
	entry_after = PREV_INSN (entry_after);

      emit_insn_after (seq, entry_after);
    }

  end_sequence ();

  return true;
}

/* A callback for the hw-doloop pass.  Called when a loop we have discovered
   turns out not to be optimizable; we have to split the loop_end pattern into
   a subtract and a test.  */

static void
hwloop_fail (hwloop_info loop)
{
  rtx test;
  rtx_insn *insn = loop->loop_end;

  emit_insn_before (gen_addsi3 (loop->iter_reg,
				loop->iter_reg,
				constm1_rtx),
		    loop->loop_end);

  test = gen_rtx_NE (VOIDmode, loop->iter_reg, const0_rtx);
  insn = emit_jump_insn_before (gen_cbranchsi4 (test,
						loop->iter_reg, const0_rtx,
						loop->start_label),
				loop->loop_end);

  JUMP_LABEL (insn) = loop->start_label;
  LABEL_NUSES (loop->start_label)++;
  delete_insn (loop->loop_end);
}

/* A callback for the hw-doloop pass.  This function examines INSN; if
   it is a doloop_end pattern we recognize, return the reg rtx for the
   loop counter.  Otherwise, return NULL_RTX.  */

static rtx
hwloop_pattern_reg (rtx_insn *insn)
{
  rtx reg;

  if (!JUMP_P (insn) || recog_memoized (insn) != CODE_FOR_loop_end)
    return NULL_RTX;

  reg = SET_DEST (XVECEXP (PATTERN (insn), 0, 1));
  if (!REG_P (reg))
    return NULL_RTX;

  return reg;
}


static struct hw_doloop_hooks xtensa_doloop_hooks =
{
  hwloop_pattern_reg,
  hwloop_optimize,
  hwloop_fail
};

/* Run from machine_dependent_reorg, this pass looks for doloop_end insns
   and tries to rewrite the RTL of these loops so that proper Xtensa
   hardware loops are generated.  */

static void
xtensa_reorg_loops (void)
{
  if (TARGET_LOOPS)
    reorg_loops (false, &xtensa_doloop_hooks);
}

/* Implement the TARGET_MACHINE_DEPENDENT_REORG pass.  */

static void
xtensa_reorg (void)
{
  /* We are freeing block_for_insn in the toplev to keep compatibility
     with old MDEP_REORGS that are not CFG based.  Recompute it now.  */
  compute_bb_for_insn ();

  df_analyze ();

  /* Doloop optimization.  */
  xtensa_reorg_loops ();
}

/* Update register usage after having seen the compiler flags.  */

static void
xtensa_conditional_register_usage (void)
{
  unsigned i, c_mask;

  c_mask = TARGET_WINDOWED_ABI ? (1 << 1) : (1 << 2);

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
      /* Set/reset conditionally defined registers from
	 CALL_USED_REGISTERS initializer.  */
      if (call_used_regs[i] > 1)
	call_used_regs[i] = !!(call_used_regs[i] & c_mask);
    }

  /* Remove hard FP register from the preferred reload registers set.  */
  CLEAR_HARD_REG_BIT (reg_class_contents[(int)RL_REGS],
		      HARD_FRAME_POINTER_REGNUM);

  /* Register A0 holds the return address upon entry to a function
     for the CALL0 ABI, but unlike the windowed register ABI, it is
     not reserved for this purpose and may hold other values after
     the return address has been saved.  */
  if (!TARGET_WINDOWED_ABI)
    fixed_regs[A0_REG] = 0;
}

/* Map hard register number to register class */

enum reg_class xtensa_regno_to_class (int regno)
{
  static const enum reg_class regno_to_class[FIRST_PSEUDO_REGISTER] =
    {
      RL_REGS,	SP_REG,		RL_REGS,	RL_REGS,
      RL_REGS,	RL_REGS,	RL_REGS,	RL_REGS,
      RL_REGS,	RL_REGS,	RL_REGS,	RL_REGS,
      RL_REGS,	RL_REGS,	RL_REGS,	RL_REGS,
      AR_REGS,	AR_REGS,	BR_REGS,
      FP_REGS,	FP_REGS,	FP_REGS,	FP_REGS,
      FP_REGS,	FP_REGS,	FP_REGS,	FP_REGS,
      FP_REGS,	FP_REGS,	FP_REGS,	FP_REGS,
      FP_REGS,	FP_REGS,	FP_REGS,	FP_REGS,
      ACC_REG,
    };

  if (regno == HARD_FRAME_POINTER_REGNUM)
    return GR_REGS;
  else
    return regno_to_class[regno];
}

/* Implement TARGET_CONSTANT_ALIGNMENT.  Align string constants and
   constructors to at least a word boundary.  The typical use of this
   macro is to increase alignment for string constants to be word
   aligned so that 'strcpy' calls that copy constants can be done
   inline.  */

static HOST_WIDE_INT
xtensa_constant_alignment (const_tree exp, HOST_WIDE_INT align)
{
  if ((TREE_CODE (exp) == STRING_CST || TREE_CODE (exp) == CONSTRUCTOR)
      && !optimize_size)
    return MAX (align, BITS_PER_WORD);
  return align;
}

static bool
xtensa_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
{
  gcc_assert (from == ARG_POINTER_REGNUM || from == FRAME_POINTER_REGNUM);

  /* If we need a frame pointer, ARG_POINTER_REGNUM and FRAME_POINTER_REGNUM
     can only eliminate to HARD_FRAME_POINTER_REGNUM.  */
  return to == HARD_FRAME_POINTER_REGNUM
    || (!frame_pointer_needed && to == STACK_POINTER_REGNUM);
}

/* Implement TARGET_STARTING_FRAME_OFFSET.  */

static HOST_WIDE_INT
xtensa_starting_frame_offset (void)
{
  if (FRAME_GROWS_DOWNWARD)
    return 0;
  return crtl->outgoing_args_size;
}

/* Implement TARGET_ASAN_SHADOW_OFFSET.  */

static unsigned HOST_WIDE_INT
xtensa_asan_shadow_offset (void)
{
  return HOST_WIDE_INT_UC (0x10000000);
}

/* Implement TARGET_FUNCTION_OK_FOR_SIBCALL.  */
static bool
xtensa_function_ok_for_sibcall (tree decl ATTRIBUTE_UNUSED, tree exp ATTRIBUTE_UNUSED)
{
  /* Do not allow sibcalls when windowed registers ABI is in effect.  */
  if (TARGET_WINDOWED_ABI)
    return false;

  return true;
}

static bool
xtensa_can_output_mi_thunk (const_tree thunk_fndecl ATTRIBUTE_UNUSED,
			    HOST_WIDE_INT delta ATTRIBUTE_UNUSED,
			    HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
			    const_tree function ATTRIBUTE_UNUSED)
{
  if (TARGET_WINDOWED_ABI)
    return false;

  return true;
}

/* Output code to add DELTA to the first argument, and then jump
   to FUNCTION.  Used for C++ multiple inheritance.  */
static void
xtensa_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
			HOST_WIDE_INT delta,
			HOST_WIDE_INT vcall_offset,
			tree function)
{
  rtx this_rtx;
  rtx funexp;
  rtx_insn *insn;
  int this_reg_no;
  rtx temp0 = gen_rtx_REG (Pmode, A9_REG);
  const char *fnname = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (thunk));

  reload_completed = 1;

  if (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
    this_reg_no = 3;
  else
    this_reg_no = 2;

  this_rtx = gen_rtx_REG (Pmode, A0_REG + this_reg_no);

  if (delta)
    xtensa_emit_add_imm (this_rtx, this_rtx, delta, temp0, false);

  if (vcall_offset)
    {
      rtx temp1 = gen_rtx_REG (Pmode, A0_REG + 10);
      rtx addr = temp1;

      emit_move_insn (temp0, gen_rtx_MEM (Pmode, this_rtx));
      if (xtensa_uimm8x4 (vcall_offset))
	addr = plus_constant (Pmode, temp0, vcall_offset);
      else
	xtensa_emit_add_imm (temp1, temp0, vcall_offset, temp1, false);
      emit_move_insn (temp1, gen_rtx_MEM (Pmode, addr));
      emit_insn (gen_add2_insn (this_rtx, temp1));
    }

  /* Generate a tail call to the target function.  */
  if (!TREE_USED (function))
    {
      assemble_external (function);
      TREE_USED (function) = 1;
    }

  funexp = XEXP (DECL_RTL (function), 0);
  funexp = gen_rtx_MEM (FUNCTION_MODE, funexp);
  insn = emit_call_insn (gen_sibcall (funexp, const0_rtx));
  SIBLING_CALL_P (insn) = 1;

  insn = get_insns ();
  shorten_branches (insn);
  assemble_start_function (thunk, fnname);
  final_start_function (insn, file, 1);
  final (insn, file, 1);
  final_end_function ();
  assemble_end_function (thunk, fnname);

  /* Stop pretending to be a post-reload pass.  */
  reload_completed = 0;
}

static rtx
xtensa_delegitimize_address (rtx op)
{
  switch (GET_CODE (op))
    {
    case CONST:
      return xtensa_delegitimize_address (XEXP (op, 0));

    case UNSPEC:
      if (XINT (op, 1) == UNSPEC_PLT)
	return XVECEXP(op, 0, 0);
      break;

    default:
      break;
    }
  return op;
}

#include "gt-xtensa.h"