1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
|
/* Subroutines for insn-output.c for VAX.
Copyright (C) 1987, 1994, 1995, 1997, 1998, 1999, 2000, 2001, 2002,
2004, 2005
Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tree.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "function.h"
#include "output.h"
#include "insn-attr.h"
#include "recog.h"
#include "expr.h"
#include "optabs.h"
#include "flags.h"
#include "debug.h"
#include "toplev.h"
#include "tm_p.h"
#include "target.h"
#include "target-def.h"
static void vax_output_function_prologue (FILE *, HOST_WIDE_INT);
static void vax_file_start (void);
static void vax_init_libfuncs (void);
static void vax_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
HOST_WIDE_INT, tree);
static int vax_address_cost_1 (rtx);
static int vax_address_cost (rtx);
static bool vax_rtx_costs (rtx, int, int, int *);
static rtx vax_struct_value_rtx (tree, int);
/* Initialize the GCC target structure. */
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE vax_output_function_prologue
#undef TARGET_ASM_FILE_START
#define TARGET_ASM_FILE_START vax_file_start
#undef TARGET_ASM_FILE_START_APP_OFF
#define TARGET_ASM_FILE_START_APP_OFF true
#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS vax_init_libfuncs
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK vax_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
#undef TARGET_DEFAULT_TARGET_FLAGS
#define TARGET_DEFAULT_TARGET_FLAGS TARGET_DEFAULT
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS vax_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST vax_address_cost
#undef TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
#undef TARGET_STRUCT_VALUE_RTX
#define TARGET_STRUCT_VALUE_RTX vax_struct_value_rtx
struct gcc_target targetm = TARGET_INITIALIZER;
/* Set global variables as needed for the options enabled. */
void
override_options (void)
{
/* We're VAX floating point, not IEEE floating point. */
if (TARGET_G_FLOAT)
REAL_MODE_FORMAT (DFmode) = &vax_g_format;
}
/* Generate the assembly code for function entry. FILE is a stdio
stream to output the code to. SIZE is an int: how many units of
temporary storage to allocate.
Refer to the array `regs_ever_live' to determine which registers to
save; `regs_ever_live[I]' is nonzero if register number I is ever
used in the function. This function is responsible for knowing
which registers should not be saved even if used. */
static void
vax_output_function_prologue (FILE * file, HOST_WIDE_INT size)
{
int regno;
int mask = 0;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (regs_ever_live[regno] && !call_used_regs[regno])
mask |= 1 << regno;
fprintf (file, "\t.word 0x%x\n", mask);
if (dwarf2out_do_frame ())
{
const char *label = dwarf2out_cfi_label ();
int offset = 0;
for (regno = FIRST_PSEUDO_REGISTER-1; regno >= 0; --regno)
if (regs_ever_live[regno] && !call_used_regs[regno])
dwarf2out_reg_save (label, regno, offset -= 4);
dwarf2out_reg_save (label, PC_REGNUM, offset -= 4);
dwarf2out_reg_save (label, FRAME_POINTER_REGNUM, offset -= 4);
dwarf2out_reg_save (label, ARG_POINTER_REGNUM, offset -= 4);
dwarf2out_def_cfa (label, FRAME_POINTER_REGNUM, -(offset - 4));
}
size -= STARTING_FRAME_OFFSET;
if (size >= 64)
asm_fprintf (file, "\tmovab %wd(%Rsp),%Rsp\n", -size);
else if (size)
asm_fprintf (file, "\tsubl2 $%wd,%Rsp\n", size);
}
/* When debugging with stabs, we want to output an extra dummy label
so that gas can distinguish between D_float and G_float prior to
processing the .stabs directive identifying type double. */
static void
vax_file_start (void)
{
default_file_start ();
if (write_symbols == DBX_DEBUG)
fprintf (asm_out_file, "___vax_%c_doubles:\n", ASM_DOUBLE_CHAR);
}
/* We can use the BSD C library routines for the libgcc calls that are
still generated, since that's what they boil down to anyways. When
ELF, avoid the user's namespace. */
static void
vax_init_libfuncs (void)
{
set_optab_libfunc (udiv_optab, SImode, TARGET_ELF ? "*__udiv" : "*udiv");
set_optab_libfunc (umod_optab, SImode, TARGET_ELF ? "*__urem" : "*urem");
}
/* This is like nonimmediate_operand with a restriction on the type of MEM. */
void
split_quadword_operands (rtx * operands, rtx * low, int n ATTRIBUTE_UNUSED)
{
int i;
/* Split operands. */
low[0] = low[1] = low[2] = 0;
for (i = 0; i < 3; i++)
{
if (low[i])
/* it's already been figured out */;
else if (GET_CODE (operands[i]) == MEM
&& (GET_CODE (XEXP (operands[i], 0)) == POST_INC))
{
rtx addr = XEXP (operands[i], 0);
operands[i] = low[i] = gen_rtx_MEM (SImode, addr);
if (which_alternative == 0 && i == 0)
{
addr = XEXP (operands[i], 0);
operands[i+1] = low[i+1] = gen_rtx_MEM (SImode, addr);
}
}
else
{
low[i] = operand_subword (operands[i], 0, 0, DImode);
operands[i] = operand_subword (operands[i], 1, 0, DImode);
}
}
}
void
print_operand_address (FILE * file, rtx addr)
{
rtx reg1, breg, ireg;
rtx offset;
retry:
switch (GET_CODE (addr))
{
case MEM:
fprintf (file, "*");
addr = XEXP (addr, 0);
goto retry;
case REG:
fprintf (file, "(%s)", reg_names[REGNO (addr)]);
break;
case PRE_DEC:
fprintf (file, "-(%s)", reg_names[REGNO (XEXP (addr, 0))]);
break;
case POST_INC:
fprintf (file, "(%s)+", reg_names[REGNO (XEXP (addr, 0))]);
break;
case PLUS:
/* There can be either two or three things added here. One must be a
REG. One can be either a REG or a MULT of a REG and an appropriate
constant, and the third can only be a constant or a MEM.
We get these two or three things and put the constant or MEM in
OFFSET, the MULT or REG in IREG, and the REG in BREG. If we have
a register and can't tell yet if it is a base or index register,
put it into REG1. */
reg1 = 0; ireg = 0; breg = 0; offset = 0;
if (CONSTANT_ADDRESS_P (XEXP (addr, 0))
|| GET_CODE (XEXP (addr, 0)) == MEM)
{
offset = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
else if (CONSTANT_ADDRESS_P (XEXP (addr, 1))
|| GET_CODE (XEXP (addr, 1)) == MEM)
{
offset = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
else if (GET_CODE (XEXP (addr, 1)) == MULT)
{
ireg = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
else if (GET_CODE (XEXP (addr, 0)) == MULT)
{
ireg = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
else if (GET_CODE (XEXP (addr, 1)) == REG)
{
reg1 = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
else if (GET_CODE (XEXP (addr, 0)) == REG)
{
reg1 = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
else
gcc_unreachable ();
if (GET_CODE (addr) == REG)
{
if (reg1)
ireg = addr;
else
reg1 = addr;
}
else if (GET_CODE (addr) == MULT)
ireg = addr;
else
{
gcc_assert (GET_CODE (addr) == PLUS);
if (CONSTANT_ADDRESS_P (XEXP (addr, 0))
|| GET_CODE (XEXP (addr, 0)) == MEM)
{
if (offset)
{
if (GET_CODE (offset) == CONST_INT)
offset = plus_constant (XEXP (addr, 0), INTVAL (offset));
else
{
gcc_assert (GET_CODE (XEXP (addr, 0)) == CONST_INT);
offset = plus_constant (offset, INTVAL (XEXP (addr, 0)));
}
}
offset = XEXP (addr, 0);
}
else if (GET_CODE (XEXP (addr, 0)) == REG)
{
if (reg1)
ireg = reg1, breg = XEXP (addr, 0), reg1 = 0;
else
reg1 = XEXP (addr, 0);
}
else
{
gcc_assert (GET_CODE (XEXP (addr, 0)) == MULT);
gcc_assert (!ireg);
ireg = XEXP (addr, 0);
}
if (CONSTANT_ADDRESS_P (XEXP (addr, 1))
|| GET_CODE (XEXP (addr, 1)) == MEM)
{
if (offset)
{
if (GET_CODE (offset) == CONST_INT)
offset = plus_constant (XEXP (addr, 1), INTVAL (offset));
else
{
gcc_assert (GET_CODE (XEXP (addr, 1)) == CONST_INT);
offset = plus_constant (offset, INTVAL (XEXP (addr, 1)));
}
}
offset = XEXP (addr, 1);
}
else if (GET_CODE (XEXP (addr, 1)) == REG)
{
if (reg1)
ireg = reg1, breg = XEXP (addr, 1), reg1 = 0;
else
reg1 = XEXP (addr, 1);
}
else
{
gcc_assert (GET_CODE (XEXP (addr, 1)) == MULT);
gcc_assert (!ireg);
ireg = XEXP (addr, 1);
}
}
/* If REG1 is nonzero, figure out if it is a base or index register. */
if (reg1)
{
if (breg != 0 || (offset && GET_CODE (offset) == MEM))
{
gcc_assert (!ireg);
ireg = reg1;
}
else
breg = reg1;
}
if (offset != 0)
output_address (offset);
if (breg != 0)
fprintf (file, "(%s)", reg_names[REGNO (breg)]);
if (ireg != 0)
{
if (GET_CODE (ireg) == MULT)
ireg = XEXP (ireg, 0);
gcc_assert (GET_CODE (ireg) == REG);
fprintf (file, "[%s]", reg_names[REGNO (ireg)]);
}
break;
default:
output_addr_const (file, addr);
}
}
const char *
rev_cond_name (rtx op)
{
switch (GET_CODE (op))
{
case EQ:
return "neq";
case NE:
return "eql";
case LT:
return "geq";
case LE:
return "gtr";
case GT:
return "leq";
case GE:
return "lss";
case LTU:
return "gequ";
case LEU:
return "gtru";
case GTU:
return "lequ";
case GEU:
return "lssu";
default:
gcc_unreachable ();
}
}
int
vax_float_literal(rtx c)
{
enum machine_mode mode;
REAL_VALUE_TYPE r, s;
int i;
if (GET_CODE (c) != CONST_DOUBLE)
return 0;
mode = GET_MODE (c);
if (c == const_tiny_rtx[(int) mode][0]
|| c == const_tiny_rtx[(int) mode][1]
|| c == const_tiny_rtx[(int) mode][2])
return 1;
REAL_VALUE_FROM_CONST_DOUBLE (r, c);
for (i = 0; i < 7; i++)
{
int x = 1 << i;
bool ok;
REAL_VALUE_FROM_INT (s, x, 0, mode);
if (REAL_VALUES_EQUAL (r, s))
return 1;
ok = exact_real_inverse (mode, &s);
gcc_assert (ok);
if (REAL_VALUES_EQUAL (r, s))
return 1;
}
return 0;
}
/* Return the cost in cycles of a memory address, relative to register
indirect.
Each of the following adds the indicated number of cycles:
1 - symbolic address
1 - pre-decrement
1 - indexing and/or offset(register)
2 - indirect */
static int
vax_address_cost_1 (rtx addr)
{
int reg = 0, indexed = 0, indir = 0, offset = 0, predec = 0;
rtx plus_op0 = 0, plus_op1 = 0;
restart:
switch (GET_CODE (addr))
{
case PRE_DEC:
predec = 1;
case REG:
case SUBREG:
case POST_INC:
reg = 1;
break;
case MULT:
indexed = 1; /* 2 on VAX 2 */
break;
case CONST_INT:
/* byte offsets cost nothing (on a VAX 2, they cost 1 cycle) */
if (offset == 0)
offset = (unsigned HOST_WIDE_INT)(INTVAL(addr)+128) > 256;
break;
case CONST:
case SYMBOL_REF:
offset = 1; /* 2 on VAX 2 */
break;
case LABEL_REF: /* this is probably a byte offset from the pc */
if (offset == 0)
offset = 1;
break;
case PLUS:
if (plus_op0)
plus_op1 = XEXP (addr, 0);
else
plus_op0 = XEXP (addr, 0);
addr = XEXP (addr, 1);
goto restart;
case MEM:
indir = 2; /* 3 on VAX 2 */
addr = XEXP (addr, 0);
goto restart;
default:
break;
}
/* Up to 3 things can be added in an address. They are stored in
plus_op0, plus_op1, and addr. */
if (plus_op0)
{
addr = plus_op0;
plus_op0 = 0;
goto restart;
}
if (plus_op1)
{
addr = plus_op1;
plus_op1 = 0;
goto restart;
}
/* Indexing and register+offset can both be used (except on a VAX 2)
without increasing execution time over either one alone. */
if (reg && indexed && offset)
return reg + indir + offset + predec;
return reg + indexed + indir + offset + predec;
}
static int
vax_address_cost (rtx x)
{
return (1 + (GET_CODE (x) == REG ? 0 : vax_address_cost_1 (x)));
}
/* Cost of an expression on a VAX. This version has costs tuned for the
CVAX chip (found in the VAX 3 series) with comments for variations on
other models.
FIXME: The costs need review, particularly for TRUNCATE, FLOAT_EXTEND
and FLOAT_TRUNCATE. We need a -mcpu option to allow provision of
costs on a per cpu basis. */
static bool
vax_rtx_costs (rtx x, int code, int outer_code, int *total)
{
enum machine_mode mode = GET_MODE (x);
int i = 0; /* may be modified in switch */
const char *fmt = GET_RTX_FORMAT (code); /* may be modified in switch */
switch (code)
{
/* On a VAX, constants from 0..63 are cheap because they can use the
1 byte literal constant format. Compare to -1 should be made cheap
so that decrement-and-branch insns can be formed more easily (if
the value -1 is copied to a register some decrement-and-branch
patterns will not match). */
case CONST_INT:
if (INTVAL (x) == 0)
return true;
if (outer_code == AND)
{
*total = ((unsigned HOST_WIDE_INT) ~INTVAL (x) <= 077) ? 1 : 2;
return true;
}
if ((unsigned HOST_WIDE_INT) INTVAL (x) <= 077
|| (outer_code == COMPARE
&& INTVAL (x) == -1)
|| ((outer_code == PLUS || outer_code == MINUS)
&& (unsigned HOST_WIDE_INT) -INTVAL (x) <= 077))
{
*total = 1;
return true;
}
/* FALLTHRU */
case CONST:
case LABEL_REF:
case SYMBOL_REF:
*total = 3;
return true;
case CONST_DOUBLE:
if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
*total = vax_float_literal (x) ? 5 : 8;
else
*total = ((CONST_DOUBLE_HIGH (x) == 0
&& (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x) < 64)
|| (outer_code == PLUS
&& CONST_DOUBLE_HIGH (x) == -1
&& (unsigned HOST_WIDE_INT)-CONST_DOUBLE_LOW (x) < 64))
? 2 : 5;
return true;
case POST_INC:
*total = 2;
return true; /* Implies register operand. */
case PRE_DEC:
*total = 3;
return true; /* Implies register operand. */
case MULT:
switch (mode)
{
case DFmode:
*total = 16; /* 4 on VAX 9000 */
break;
case SFmode:
*total = 9; /* 4 on VAX 9000, 12 on VAX 2 */
break;
case DImode:
*total = 16; /* 6 on VAX 9000, 28 on VAX 2 */
break;
case SImode:
case HImode:
case QImode:
*total = 10; /* 3-4 on VAX 9000, 20-28 on VAX 2 */
break;
default:
*total = MAX_COST; /* Mode is not supported. */
return true;
}
break;
case UDIV:
if (mode != SImode)
{
*total = MAX_COST; /* Mode is not supported. */
return true;
}
*total = 17;
break;
case DIV:
if (mode == DImode)
*total = 30; /* Highly variable. */
else if (mode == DFmode)
/* divide takes 28 cycles if the result is not zero, 13 otherwise */
*total = 24;
else
*total = 11; /* 25 on VAX 2 */
break;
case MOD:
*total = 23;
break;
case UMOD:
if (mode != SImode)
{
*total = MAX_COST; /* Mode is not supported. */
return true;
}
*total = 29;
break;
case FLOAT:
*total = (6 /* 4 on VAX 9000 */
+ (mode == DFmode) + (GET_MODE (XEXP (x, 0)) != SImode));
break;
case FIX:
*total = 7; /* 17 on VAX 2 */
break;
case ASHIFT:
case LSHIFTRT:
case ASHIFTRT:
if (mode == DImode)
*total = 12;
else
*total = 10; /* 6 on VAX 9000 */
break;
case ROTATE:
case ROTATERT:
*total = 6; /* 5 on VAX 2, 4 on VAX 9000 */
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
fmt = "e"; /* all constant rotate counts are short */
break;
case PLUS:
case MINUS:
*total = (mode == DFmode) ? 13 : 8; /* 6/8 on VAX 9000, 16/15 on VAX 2 */
/* Small integer operands can use subl2 and addl2. */
if ((GET_CODE (XEXP (x, 1)) == CONST_INT)
&& (unsigned HOST_WIDE_INT)(INTVAL (XEXP (x, 1)) + 63) < 127)
fmt = "e";
break;
case IOR:
case XOR:
*total = 3;
break;
case AND:
/* AND is special because the first operand is complemented. */
*total = 3;
if (GET_CODE (XEXP (x, 0)) == CONST_INT)
{
if ((unsigned HOST_WIDE_INT)~INTVAL (XEXP (x, 0)) > 63)
*total = 4;
fmt = "e";
i = 1;
}
break;
case NEG:
if (mode == DFmode)
*total = 9;
else if (mode == SFmode)
*total = 6;
else if (mode == DImode)
*total = 4;
else
*total = 2;
break;
case NOT:
*total = 2;
break;
case ZERO_EXTRACT:
case SIGN_EXTRACT:
*total = 15;
break;
case MEM:
if (mode == DImode || mode == DFmode)
*total = 5; /* 7 on VAX 2 */
else
*total = 3; /* 4 on VAX 2 */
x = XEXP (x, 0);
if (GET_CODE (x) != REG && GET_CODE (x) != POST_INC)
*total += vax_address_cost_1 (x);
return true;
case FLOAT_EXTEND:
case FLOAT_TRUNCATE:
case TRUNCATE:
*total = 3; /* FIXME: Costs need to be checked */
break;
default:
return false;
}
/* Now look inside the expression. Operands which are not registers or
short constants add to the cost.
FMT and I may have been adjusted in the switch above for instructions
which require special handling. */
while (*fmt++ == 'e')
{
rtx op = XEXP (x, i);
i += 1;
code = GET_CODE (op);
/* A NOT is likely to be found as the first operand of an AND
(in which case the relevant cost is of the operand inside
the not) and not likely to be found anywhere else. */
if (code == NOT)
op = XEXP (op, 0), code = GET_CODE (op);
switch (code)
{
case CONST_INT:
if ((unsigned HOST_WIDE_INT)INTVAL (op) > 63
&& GET_MODE (x) != QImode)
*total += 1; /* 2 on VAX 2 */
break;
case CONST:
case LABEL_REF:
case SYMBOL_REF:
*total += 1; /* 2 on VAX 2 */
break;
case CONST_DOUBLE:
if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT)
{
/* Registers are faster than floating point constants -- even
those constants which can be encoded in a single byte. */
if (vax_float_literal (op))
*total += 1;
else
*total += (GET_MODE (x) == DFmode) ? 3 : 2;
}
else
{
if (CONST_DOUBLE_HIGH (op) != 0
|| (unsigned)CONST_DOUBLE_LOW (op) > 63)
*total += 2;
}
break;
case MEM:
*total += 1; /* 2 on VAX 2 */
if (GET_CODE (XEXP (op, 0)) != REG)
*total += vax_address_cost_1 (XEXP (op, 0));
break;
case REG:
case SUBREG:
break;
default:
*total += 1;
break;
}
}
return true;
}
/* Output code to add DELTA to the first argument, and then jump to FUNCTION.
Used for C++ multiple inheritance.
.mask ^m<r2,r3,r4,r5,r6,r7,r8,r9,r10,r11> #conservative entry mask
addl2 $DELTA, 4(ap) #adjust first argument
jmp FUNCTION+2 #jump beyond FUNCTION's entry mask
*/
static void
vax_output_mi_thunk (FILE * file,
tree thunk ATTRIBUTE_UNUSED,
HOST_WIDE_INT delta,
HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
tree function)
{
fprintf (file, "\t.word 0x0ffc\n\taddl2 $" HOST_WIDE_INT_PRINT_DEC, delta);
asm_fprintf (file, ",4(%Rap)\n");
fprintf (file, "\tjmp ");
assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0));
fprintf (file, "+2\n");
}
static rtx
vax_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
int incoming ATTRIBUTE_UNUSED)
{
return gen_rtx_REG (Pmode, VAX_STRUCT_VALUE_REGNUM);
}
/* Worker function for NOTICE_UPDATE_CC. */
void
vax_notice_update_cc (rtx exp, rtx insn ATTRIBUTE_UNUSED)
{
if (GET_CODE (exp) == SET)
{
if (GET_CODE (SET_SRC (exp)) == CALL)
CC_STATUS_INIT;
else if (GET_CODE (SET_DEST (exp)) != ZERO_EXTRACT
&& GET_CODE (SET_DEST (exp)) != PC)
{
cc_status.flags = 0;
/* The integer operations below don't set carry or
set it in an incompatible way. That's ok though
as the Z bit is all we need when doing unsigned
comparisons on the result of these insns (since
they're always with 0). Set CC_NO_OVERFLOW to
generate the correct unsigned branches. */
switch (GET_CODE (SET_SRC (exp)))
{
case NEG:
if (GET_MODE_CLASS (GET_MODE (exp)) == MODE_FLOAT)
break;
case AND:
case IOR:
case XOR:
case NOT:
case MEM:
case REG:
cc_status.flags = CC_NO_OVERFLOW;
break;
default:
break;
}
cc_status.value1 = SET_DEST (exp);
cc_status.value2 = SET_SRC (exp);
}
}
else if (GET_CODE (exp) == PARALLEL
&& GET_CODE (XVECEXP (exp, 0, 0)) == SET)
{
if (GET_CODE (SET_SRC (XVECEXP (exp, 0, 0))) == CALL)
CC_STATUS_INIT;
else if (GET_CODE (SET_DEST (XVECEXP (exp, 0, 0))) != PC)
{
cc_status.flags = 0;
cc_status.value1 = SET_DEST (XVECEXP (exp, 0, 0));
cc_status.value2 = SET_SRC (XVECEXP (exp, 0, 0));
}
else
/* PARALLELs whose first element sets the PC are aob,
sob insns. They do change the cc's. */
CC_STATUS_INIT;
}
else
CC_STATUS_INIT;
if (cc_status.value1 && GET_CODE (cc_status.value1) == REG
&& cc_status.value2
&& reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
cc_status.value2 = 0;
if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM
&& cc_status.value2
&& GET_CODE (cc_status.value2) == MEM)
cc_status.value2 = 0;
/* Actual condition, one line up, should be that value2's address
depends on value1, but that is too much of a pain. */
}
/* Output integer move instructions. */
const char *
vax_output_int_move (rtx insn ATTRIBUTE_UNUSED, rtx *operands,
enum machine_mode mode)
{
switch (mode)
{
case SImode:
if (GET_CODE (operands[1]) == SYMBOL_REF || GET_CODE (operands[1]) == CONST)
{
if (push_operand (operands[0], SImode))
return "pushab %a1";
return "movab %a1,%0";
}
if (operands[1] == const0_rtx)
return "clrl %0";
if (GET_CODE (operands[1]) == CONST_INT
&& (unsigned) INTVAL (operands[1]) >= 64)
{
int i = INTVAL (operands[1]);
if ((unsigned)(~i) < 64)
return "mcoml %N1,%0";
if ((unsigned)i < 0x100)
return "movzbl %1,%0";
if (i >= -0x80 && i < 0)
return "cvtbl %1,%0";
if ((unsigned)i < 0x10000)
return "movzwl %1,%0";
if (i >= -0x8000 && i < 0)
return "cvtwl %1,%0";
}
if (push_operand (operands[0], SImode))
return "pushl %1";
return "movl %1,%0";
case HImode:
if (GET_CODE (operands[1]) == CONST_INT)
{
int i = INTVAL (operands[1]);
if (i == 0)
return "clrw %0";
else if ((unsigned int)i < 64)
return "movw %1,%0";
else if ((unsigned int)~i < 64)
return "mcomw %H1,%0";
else if ((unsigned int)i < 256)
return "movzbw %1,%0";
}
return "movw %1,%0";
case QImode:
if (GET_CODE (operands[1]) == CONST_INT)
{
int i = INTVAL (operands[1]);
if (i == 0)
return "clrb %0";
else if ((unsigned int)~i < 64)
return "mcomb %B1,%0";
}
return "movb %1,%0";
default:
gcc_unreachable ();
}
}
/* Output integer add instructions.
The space-time-opcode tradeoffs for addition vary by model of VAX.
On a VAX 3 "movab (r1)[r2],r3" is faster than "addl3 r1,r2,r3",
but it not faster on other models.
"movab #(r1),r2" is usually shorter than "addl3 #,r1,r2", and is
faster on a VAX 3, but some VAXen (e.g. VAX 9000) will stall if
a register is used in an address too soon after it is set.
Compromise by using movab only when it is shorter than the add
or the base register in the address is one of sp, ap, and fp,
which are not modified very often. */
const char *
vax_output_int_add (rtx insn ATTRIBUTE_UNUSED, rtx *operands,
enum machine_mode mode)
{
switch (mode)
{
case SImode:
if (rtx_equal_p (operands[0], operands[1]))
{
if (operands[2] == const1_rtx)
return "incl %0";
if (operands[2] == constm1_rtx)
return "decl %0";
if (GET_CODE (operands[2]) == CONST_INT
&& (unsigned) (- INTVAL (operands[2])) < 64)
return "subl2 $%n2,%0";
if (GET_CODE (operands[2]) == CONST_INT
&& (unsigned) INTVAL (operands[2]) >= 64
&& GET_CODE (operands[1]) == REG
&& ((INTVAL (operands[2]) < 32767 && INTVAL (operands[2]) > -32768)
|| REGNO (operands[1]) > 11))
return "movab %c2(%1),%0";
return "addl2 %2,%0";
}
if (rtx_equal_p (operands[0], operands[2]))
return "addl2 %1,%0";
if (GET_CODE (operands[2]) == CONST_INT
&& INTVAL (operands[2]) < 32767
&& INTVAL (operands[2]) > -32768
&& GET_CODE (operands[1]) == REG
&& push_operand (operands[0], SImode))
return "pushab %c2(%1)";
if (GET_CODE (operands[2]) == CONST_INT
&& (unsigned) (- INTVAL (operands[2])) < 64)
return "subl3 $%n2,%1,%0";
if (GET_CODE (operands[2]) == CONST_INT
&& (unsigned) INTVAL (operands[2]) >= 64
&& GET_CODE (operands[1]) == REG
&& ((INTVAL (operands[2]) < 32767 && INTVAL (operands[2]) > -32768)
|| REGNO (operands[1]) > 11))
return "movab %c2(%1),%0";
/* Add this if using gcc on a VAX 3xxx:
if (REG_P (operands[1]) && REG_P (operands[2]))
return "movab (%1)[%2],%0";
*/
return "addl3 %1,%2,%0";
case HImode:
if (rtx_equal_p (operands[0], operands[1]))
{
if (operands[2] == const1_rtx)
return "incw %0";
if (operands[2] == constm1_rtx)
return "decw %0";
if (GET_CODE (operands[2]) == CONST_INT
&& (unsigned) (- INTVAL (operands[2])) < 64)
return "subw2 $%n2,%0";
return "addw2 %2,%0";
}
if (rtx_equal_p (operands[0], operands[2]))
return "addw2 %1,%0";
if (GET_CODE (operands[2]) == CONST_INT
&& (unsigned) (- INTVAL (operands[2])) < 64)
return "subw3 $%n2,%1,%0";
return "addw3 %1,%2,%0";
case QImode:
if (rtx_equal_p (operands[0], operands[1]))
{
if (operands[2] == const1_rtx)
return "incb %0";
if (operands[2] == constm1_rtx)
return "decb %0";
if (GET_CODE (operands[2]) == CONST_INT
&& (unsigned) (- INTVAL (operands[2])) < 64)
return "subb2 $%n2,%0";
return "addb2 %2,%0";
}
if (rtx_equal_p (operands[0], operands[2]))
return "addb2 %1,%0";
if (GET_CODE (operands[2]) == CONST_INT
&& (unsigned) (- INTVAL (operands[2])) < 64)
return "subb3 $%n2,%1,%0";
return "addb3 %1,%2,%0";
default:
gcc_unreachable ();
}
}
/* Output a conditional branch. */
const char *
vax_output_conditional_branch (enum rtx_code code)
{
switch (code)
{
case EQ: return "jeql %l0";
case NE: return "jneq %l0";
case GT: return "jgtr %l0";
case LT: return "jlss %l0";
case GTU: return "jgtru %l0";
case LTU: return "jlssu %l0";
case GE: return "jgeq %l0";
case LE: return "jleq %l0";
case GEU: return "jgequ %l0";
case LEU: return "jlequ %l0";
default:
gcc_unreachable ();
}
}
/* 1 if X is an rtx for a constant that is a valid address. */
int
legitimate_constant_address_p (rtx x)
{
return (GET_CODE (x) == LABEL_REF || GET_CODE (x) == SYMBOL_REF
|| GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST
|| GET_CODE (x) == HIGH);
}
/* Nonzero if the constant value X is a legitimate general operand.
It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
int
legitimate_constant_p (rtx x ATTRIBUTE_UNUSED)
{
return 1;
}
/* The other macros defined here are used only in legitimate_address_p (). */
/* Nonzero if X is a hard reg that can be used as an index
or, if not strict, if it is a pseudo reg. */
#define INDEX_REGISTER_P(X, STRICT) \
(GET_CODE (X) == REG && (!(STRICT) || REGNO_OK_FOR_INDEX_P (REGNO (X))))
/* Nonzero if X is a hard reg that can be used as a base reg
or, if not strict, if it is a pseudo reg. */
#define BASE_REGISTER_P(X, STRICT) \
(GET_CODE (X) == REG && (!(STRICT) || REGNO_OK_FOR_BASE_P (REGNO (X))))
#ifdef NO_EXTERNAL_INDIRECT_ADDRESS
/* Re-definition of CONSTANT_ADDRESS_P, which is true only when there
are no SYMBOL_REFs for external symbols present. */
static int
indirectable_constant_address_p (rtx x)
{
if (!CONSTANT_ADDRESS_P (x))
return 0;
if (GET_CODE (x) == CONST && GET_CODE (XEXP ((x), 0)) == PLUS)
x = XEXP (XEXP (x, 0), 0);
if (GET_CODE (x) == SYMBOL_REF && !SYMBOL_REF_LOCAL_P (x))
return 0;
return 1;
}
#else /* not NO_EXTERNAL_INDIRECT_ADDRESS */
static int
indirectable_constant_address_p (rtx x)
{
return CONSTANT_ADDRESS_P (x);
}
#endif /* not NO_EXTERNAL_INDIRECT_ADDRESS */
/* Nonzero if X is an address which can be indirected. External symbols
could be in a sharable image library, so we disallow those. */
static int
indirectable_address_p(rtx x, int strict)
{
if (indirectable_constant_address_p (x))
return 1;
if (BASE_REGISTER_P (x, strict))
return 1;
if (GET_CODE (x) == PLUS
&& BASE_REGISTER_P (XEXP (x, 0), strict)
&& indirectable_constant_address_p (XEXP (x, 1)))
return 1;
return 0;
}
/* Return 1 if x is a valid address not using indexing.
(This much is the easy part.) */
static int
nonindexed_address_p (rtx x, int strict)
{
rtx xfoo0;
if (GET_CODE (x) == REG)
{
extern rtx *reg_equiv_mem;
if (! reload_in_progress
|| reg_equiv_mem[REGNO (x)] == 0
|| indirectable_address_p (reg_equiv_mem[REGNO (x)], strict))
return 1;
}
if (indirectable_constant_address_p (x))
return 1;
if (indirectable_address_p (x, strict))
return 1;
xfoo0 = XEXP (x, 0);
if (GET_CODE (x) == MEM && indirectable_address_p (xfoo0, strict))
return 1;
if ((GET_CODE (x) == PRE_DEC || GET_CODE (x) == POST_INC)
&& BASE_REGISTER_P (xfoo0, strict))
return 1;
return 0;
}
/* 1 if PROD is either a reg times size of mode MODE and MODE is less
than or equal 8 bytes, or just a reg if MODE is one byte. */
static int
index_term_p (rtx prod, enum machine_mode mode, int strict)
{
rtx xfoo0, xfoo1;
if (GET_MODE_SIZE (mode) == 1)
return BASE_REGISTER_P (prod, strict);
if (GET_CODE (prod) != MULT || GET_MODE_SIZE (mode) > 8)
return 0;
xfoo0 = XEXP (prod, 0);
xfoo1 = XEXP (prod, 1);
if (GET_CODE (xfoo0) == CONST_INT
&& INTVAL (xfoo0) == (int)GET_MODE_SIZE (mode)
&& INDEX_REGISTER_P (xfoo1, strict))
return 1;
if (GET_CODE (xfoo1) == CONST_INT
&& INTVAL (xfoo1) == (int)GET_MODE_SIZE (mode)
&& INDEX_REGISTER_P (xfoo0, strict))
return 1;
return 0;
}
/* Return 1 if X is the sum of a register
and a valid index term for mode MODE. */
static int
reg_plus_index_p (rtx x, enum machine_mode mode, int strict)
{
rtx xfoo0, xfoo1;
if (GET_CODE (x) != PLUS)
return 0;
xfoo0 = XEXP (x, 0);
xfoo1 = XEXP (x, 1);
if (BASE_REGISTER_P (xfoo0, strict) && index_term_p (xfoo1, mode, strict))
return 1;
if (BASE_REGISTER_P (xfoo1, strict) && index_term_p (xfoo0, mode, strict))
return 1;
return 0;
}
/* legitimate_address_p returns 1 if it recognizes an RTL expression "x"
that is a valid memory address for an instruction.
The MODE argument is the machine mode for the MEM expression
that wants to use this address. */
int
legitimate_address_p (enum machine_mode mode, rtx x, int strict)
{
rtx xfoo0, xfoo1;
if (nonindexed_address_p (x, strict))
return 1;
if (GET_CODE (x) != PLUS)
return 0;
/* Handle <address>[index] represented with index-sum outermost */
xfoo0 = XEXP (x, 0);
xfoo1 = XEXP (x, 1);
if (index_term_p (xfoo0, mode, strict)
&& nonindexed_address_p (xfoo1, strict))
return 1;
if (index_term_p (xfoo1, mode, strict)
&& nonindexed_address_p (xfoo0, strict))
return 1;
/* Handle offset(reg)[index] with offset added outermost */
if (indirectable_constant_address_p (xfoo0)
&& (BASE_REGISTER_P (xfoo1, strict)
|| reg_plus_index_p (xfoo1, mode, strict)))
return 1;
if (indirectable_constant_address_p (xfoo1)
&& (BASE_REGISTER_P (xfoo0, strict)
|| reg_plus_index_p (xfoo0, mode, strict)))
return 1;
return 0;
}
/* Return 1 if x (a legitimate address expression) has an effect that
depends on the machine mode it is used for. On the VAX, the predecrement
and postincrement address depend thus (the amount of decrement or
increment being the length of the operand) and all indexed address depend
thus (because the index scale factor is the length of the operand). */
int
vax_mode_dependent_address_p (rtx x)
{
rtx xfoo0, xfoo1;
if (GET_CODE (x) == POST_INC || GET_CODE (x) == PRE_DEC)
return 1;
if (GET_CODE (x) != PLUS)
return 0;
xfoo0 = XEXP (x, 0);
xfoo1 = XEXP (x, 1);
if (CONSTANT_ADDRESS_P (xfoo0) && GET_CODE (xfoo1) == REG)
return 0;
if (CONSTANT_ADDRESS_P (xfoo1) && GET_CODE (xfoo0) == REG)
return 0;
return 1;
}
|