aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/v850/v850.h
blob: 1d2b91c10f93e800de6a0b22d378b42eb3ea29c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
/* Definitions of target machine for GNU compiler. NEC V850 series
   Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
   Free Software Foundation, Inc.
   Contributed by Jeff Law (law@cygnus.com).

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2, or (at your option)
   any later version.

   GCC is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING.  If not, write to
   the Free Software Foundation, 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#ifndef GCC_V850_H
#define GCC_V850_H

/* These are defined in svr4.h but we want to override them.  */
#undef LIB_SPEC
#undef ENDFILE_SPEC
#undef LINK_SPEC
#undef STARTFILE_SPEC
#undef ASM_SPEC

#define TARGET_CPU_generic 	1
#define TARGET_CPU_v850e   	2
#define TARGET_CPU_v850e1  	3

#ifndef TARGET_CPU_DEFAULT
#define TARGET_CPU_DEFAULT	TARGET_CPU_generic
#endif

#define MASK_DEFAULT            MASK_V850
#define SUBTARGET_ASM_SPEC 	"%{!mv*:-mv850}"
#define SUBTARGET_CPP_SPEC 	"%{!mv*:-D__v850__}"
#define TARGET_VERSION 		fprintf (stderr, " (NEC V850)");

/* Choose which processor will be the default.
   We must pass a -mv850xx option to the assembler if no explicit -mv* option
   is given, because the assembler's processor default may not be correct.  */
#if TARGET_CPU_DEFAULT == TARGET_CPU_v850e
#undef  MASK_DEFAULT
#define MASK_DEFAULT            MASK_V850E
#undef  SUBTARGET_ASM_SPEC
#define SUBTARGET_ASM_SPEC 	"%{!mv*:-mv850e}"
#undef  SUBTARGET_CPP_SPEC
#define SUBTARGET_CPP_SPEC 	"%{!mv*:-D__v850e__}"
#undef  TARGET_VERSION
#define TARGET_VERSION 		fprintf (stderr, " (NEC V850E)");
#endif

#if TARGET_CPU_DEFAULT == TARGET_CPU_v850e1
#undef  MASK_DEFAULT
#define MASK_DEFAULT            MASK_V850E	/* No practical difference.  */
#undef  SUBTARGET_ASM_SPEC
#define SUBTARGET_ASM_SPEC 	"%{!mv*:-mv850e1}"
#undef  SUBTARGET_CPP_SPEC
#define SUBTARGET_CPP_SPEC 	"%{!mv*:-D__v850e1__} %{mv850e1:-D__v850e1__}"
#undef  TARGET_VERSION
#define TARGET_VERSION 		fprintf (stderr, " (NEC V850E1)");
#endif

#define ASM_SPEC "%{mv*:-mv%*}"
#define CPP_SPEC		"%{mv850e:-D__v850e__} %{mv850:-D__v850__} %(subtarget_cpp_spec)"

#define EXTRA_SPECS \
 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC } 

/* Names to predefine in the preprocessor for this target machine.  */
#define TARGET_CPU_CPP_BUILTINS() do {		\
  builtin_define( "__v851__" );			\
  builtin_define( "__v850" );			\
  builtin_assert( "machine=v850" );		\
  builtin_assert( "cpu=v850" );			\
} while(0)

/* Run-time compilation parameters selecting different hardware subsets.  */

extern int target_flags;

/* Target flags bits, see below for an explanation of the bits.  */
#define MASK_GHS		0x00000001
#define MASK_LONG_CALLS		0x00000002
#define MASK_EP			0x00000004
#define MASK_PROLOG_FUNCTION	0x00000008
#define MASK_DEBUG		0x40000000

#define MASK_CPU                0x00000030
#define MASK_V850               0x00000010
#define MASK_V850E              0x00000020
#define MASK_SMALL_SLD          0x00000040

#define MASK_BIG_SWITCH		0x00000100
#define MASK_NO_APP_REGS        0x00000200
#define MASK_DISABLE_CALLT      0x00000400
#define MASK_STRICT_ALIGN       0x00000800

#define MASK_US_BIT_SET         0x00001000
#define MASK_US_MASK_SET        0x00002000

/* Macros used in the machine description to test the flags.  */

/* The GHS calling convention support doesn't really work,
   mostly due to a lack of documentation.  Outstanding issues:

     * How do varargs & stdarg really work.  How to they handle
     passing structures (if at all).

     * Doubles are normally 4 byte aligned, except in argument
     lists where they are 8 byte aligned.  Is the alignment
     in the argument list based on the first parameter,
     first stack parameter, etc etc.

     * Passing/returning of large structures probably isn't the same
     as GHS.  We don't have enough documentation on their conventions
     to be compatible.

     * Tests of TARGET_SETUP_INCOMING_VARARGS need to be made runtime checks
     since it depends on TARGET_GHS.  */
#define TARGET_GHS (target_flags & MASK_GHS)
 
/* Don't do PC-relative calls, instead load the address of the target
   function into a register and perform a register indirect call.  */
#define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)

/* Whether to optimize space by using ep (r30) for pointers with small offsets
   in basic blocks.  */
#define TARGET_EP (target_flags & MASK_EP)

/* Whether to call out-of-line functions to save registers or not.  */
#define TARGET_PROLOG_FUNCTION (target_flags & MASK_PROLOG_FUNCTION)

#define TARGET_V850    		((target_flags & MASK_CPU) == MASK_V850)

/* Whether to emit 2 byte per entry or 4 byte per entry switch tables.  */
#define TARGET_BIG_SWITCH (target_flags & MASK_BIG_SWITCH)

/* General debug flag.  */
#define TARGET_DEBUG 		(target_flags & MASK_DEBUG)
#define TARGET_V850E   		((target_flags & MASK_V850E) == MASK_V850E)

#define TARGET_US_BIT_SET	(target_flags & MASK_US_BIT_SET)

/* Whether to assume that the SLD.B and SLD.H instructions only have small
   displacement fields, thus allowing the generated code to run on any of
   the V850 range of processors.  */
#define TARGET_SMALL_SLD 	(target_flags & MASK_SMALL_SLD)

/* True if callt will not be used for function prolog & epilog.  */
#define TARGET_DISABLE_CALLT 	(target_flags & MASK_DISABLE_CALLT)

/* False if r2 and r5 can be used by the compiler.  True if r2
   and r5 are to be fixed registers (for compatibility with GHS).  */
#define TARGET_NO_APP_REGS  	(target_flags & MASK_NO_APP_REGS)

#define TARGET_STRICT_ALIGN 	(target_flags & MASK_STRICT_ALIGN)

/* Macro to define tables used to set the flags.
   This is a list in braces of pairs in braces,
   each pair being { "NAME", VALUE }
   where VALUE is the bits to set or minus the bits to clear.
   An empty string NAME is used to identify the default VALUE.  */

#define TARGET_SWITCHES							\
  {{ "ghs",			 MASK_GHS, N_("Support Green Hills ABI") }, \
   { "no-ghs",			-MASK_GHS, "" },			\
   { "long-calls",		 MASK_LONG_CALLS, 			\
       				N_("Prohibit PC relative function calls") },\
   { "no-long-calls",		-MASK_LONG_CALLS, "" },			\
   { "ep",			 MASK_EP,				\
                                N_("Reuse r30 on a per function basis") }, \
   { "no-ep",			-MASK_EP, "" },				\
   { "prolog-function",		 MASK_PROLOG_FUNCTION, 			\
       				N_("Use stubs for function prologues") }, \
   { "no-prolog-function",	-MASK_PROLOG_FUNCTION, "" },		\
   { "space",			 MASK_EP | MASK_PROLOG_FUNCTION, 	\
       				N_("Same as: -mep -mprolog-function") }, \
   { "debug",			 MASK_DEBUG, N_("Enable backend debugging") }, \
   { "v850",		 	 MASK_V850,				\
                                N_("Compile for the v850 processor") },	\
   { "v850",		 	 -(MASK_V850 ^ MASK_CPU), "" },		\
   { "v850e1",			 MASK_V850E, N_("Compile for v850e1 processor") }, \
   { "v850e1",		        -(MASK_V850E ^ MASK_CPU), "" }, /* Make sure that the other bits are cleared.  */ \
   { "v850e",			 MASK_V850E, N_("Compile for v850e processor") }, \
   { "v850e",		        -(MASK_V850E ^ MASK_CPU), "" }, /* Make sure that the other bits are cleared.  */ \
   { "small-sld",		 MASK_SMALL_SLD, N_("Enable the use of the short load instructions") },	\
   { "no-small-sld",		-MASK_SMALL_SLD, "" },			\
   { "disable-callt",            MASK_DISABLE_CALLT, 			\
       				N_("Do not use the callt instruction") },   \
   { "no-disable-callt",        -MASK_DISABLE_CALLT, "" },             	\
   { "US-bit-set",		 (MASK_US_BIT_SET | MASK_US_MASK_SET), "" },	\
   { "no-US-bit-set",		-MASK_US_BIT_SET, "" },			\
   { "no-US-bit-set",		 MASK_US_MASK_SET, "" },		\
   { "app-regs",                -MASK_NO_APP_REGS, ""  },               \
   { "no-app-regs",              MASK_NO_APP_REGS, 			\
       				N_("Do not use registers r2 and r5") }, \
   { "strict-align",             MASK_STRICT_ALIGN,			\
				N_("Enforce strict alignment") },       \
   { "no-strict-align",         -MASK_STRICT_ALIGN, "" },		\
   { "big-switch",		 MASK_BIG_SWITCH, 			\
       				N_("Use 4 byte entries in switch tables") },\
   { "",			 MASK_DEFAULT, ""}}

/* Information about the various small memory areas.  */
struct small_memory_info {
  const char *name;
  const char *value;
  long max;
  long physical_max;
};

enum small_memory_type {
  /* tiny data area, using EP as base register */
  SMALL_MEMORY_TDA = 0,
  /* small data area using dp as base register */
  SMALL_MEMORY_SDA,
  /* zero data area using r0 as base register */
  SMALL_MEMORY_ZDA,
  SMALL_MEMORY_max
};

extern struct small_memory_info small_memory[(int)SMALL_MEMORY_max];

#define TARGET_OPTIONS							\
{									\
  { "tda=",	&small_memory[ (int)SMALL_MEMORY_TDA ].value,		\
      N_("Set the max size of data eligible for the TDA area"), 0},	\
  { "tda-",	&small_memory[ (int)SMALL_MEMORY_TDA ].value, "", 0},	\
  { "sda=",	&small_memory[ (int)SMALL_MEMORY_SDA ].value, 		\
      N_("Set the max size of data eligible for the SDA area"), 0},	\
  { "sda-",	&small_memory[ (int)SMALL_MEMORY_SDA ].value, "", 0},	\
  { "zda=",	&small_memory[ (int)SMALL_MEMORY_ZDA ].value, 		\
      N_("Set the max size of data eligible for the ZDA area"), 0},	\
  { "zda-",	&small_memory[ (int)SMALL_MEMORY_ZDA ].value, "", 0},	\
}

/* Sometimes certain combinations of command options do not make
   sense on a particular target machine.  You can define a macro
   `OVERRIDE_OPTIONS' to take account of this.  This macro, if
   defined, is executed once just after all the command options have
   been parsed.

   Don't use this macro to turn on various extra optimizations for
   `-O'.  That is what `OPTIMIZATION_OPTIONS' is for.  */
#define OVERRIDE_OPTIONS override_options ()


/* Show we can debug even without a frame pointer.  */
#define CAN_DEBUG_WITHOUT_FP

/* Some machines may desire to change what optimizations are
   performed for various optimization levels.   This macro, if
   defined, is executed once just after the optimization level is
   determined and before the remainder of the command options have
   been parsed.  Values set in this macro are used as the default
   values for the other command line options.

   LEVEL is the optimization level specified; 2 if `-O2' is
   specified, 1 if `-O' is specified, and 0 if neither is specified.

   SIZE is nonzero if `-Os' is specified, 0 otherwise.  

   You should not use this macro to change options that are not
   machine-specific.  These should uniformly selected by the same
   optimization level on all supported machines.  Use this macro to
   enable machine-specific optimizations.

   *Do not examine `write_symbols' in this macro!* The debugging
   options are not supposed to alter the generated code.  */

#define OPTIMIZATION_OPTIONS(LEVEL,SIZE)				\
{									\
  target_flags |= MASK_STRICT_ALIGN;					\
  if (LEVEL)								\
    target_flags |= (MASK_EP | MASK_PROLOG_FUNCTION);			\
}


/* Target machine storage layout */

/* Define this if most significant bit is lowest numbered
   in instructions that operate on numbered bit-fields.
   This is not true on the NEC V850.  */
#define BITS_BIG_ENDIAN 0

/* Define this if most significant byte of a word is the lowest numbered.  */
/* This is not true on the NEC V850.  */
#define BYTES_BIG_ENDIAN 0

/* Define this if most significant word of a multiword number is lowest
   numbered.
   This is not true on the NEC V850.  */
#define WORDS_BIG_ENDIAN 0

/* Width of a word, in units (bytes).  */
#define UNITS_PER_WORD		4

/* Define this macro if it is advisable to hold scalars in registers
   in a wider mode than that declared by the program.  In such cases,
   the value is constrained to be within the bounds of the declared
   type, but kept valid in the wider mode.  The signedness of the
   extension may differ from that of the type.

   Some simple experiments have shown that leaving UNSIGNEDP alone
   generates the best overall code.  */

#define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE)  \
  if (GET_MODE_CLASS (MODE) == MODE_INT \
      && GET_MODE_SIZE (MODE) < 4)      \
    { (MODE) = SImode; }

/* Allocation boundary (in *bits*) for storing arguments in argument list.  */
#define PARM_BOUNDARY		32

/* The stack goes in 32 bit lumps.  */
#define STACK_BOUNDARY 		32

/* Allocation boundary (in *bits*) for the code of a function.
   16 is the minimum boundary; 32 would give better performance.  */
#define FUNCTION_BOUNDARY 16

/* No data type wants to be aligned rounder than this.  */
#define BIGGEST_ALIGNMENT	32

/* Alignment of field after `int : 0' in a structure.  */
#define EMPTY_FIELD_BOUNDARY 32

/* No structure field wants to be aligned rounder than this.  */
#define BIGGEST_FIELD_ALIGNMENT 32

/* Define this if move instructions will actually fail to work
   when given unaligned data.  */
#define STRICT_ALIGNMENT  TARGET_STRICT_ALIGN

/* Define this as 1 if `char' should by default be signed; else as 0.

   On the NEC V850, loads do sign extension, so make this default.  */
#define DEFAULT_SIGNED_CHAR 1

/* Standard register usage.  */

/* Number of actual hardware registers.
   The hardware registers are assigned numbers for the compiler
   from 0 to just below FIRST_PSEUDO_REGISTER.

   All registers that the compiler knows about must be given numbers,
   even those that are not normally considered general registers.  */

#define FIRST_PSEUDO_REGISTER 34

/* 1 for registers that have pervasive standard uses
   and are not available for the register allocator.  */

#define FIXED_REGISTERS \
  { 1, 1, 0, 1, 1, 0, 0, 0, \
    0, 0, 0, 0, 0, 0, 0, 0, \
    0, 0, 0, 0, 0, 0, 0, 0, \
    0, 0, 0, 0, 0, 0, 1, 0, \
    1, 1}

/* 1 for registers not available across function calls.
   These must include the FIXED_REGISTERS and also any
   registers that can be used without being saved.
   The latter must include the registers where values are returned
   and the register where structure-value addresses are passed.
   Aside from that, you can include as many other registers as you
   like.  */

#define CALL_USED_REGISTERS \
  { 1, 1, 0, 1, 1, 1, 1, 1, \
    1, 1, 1, 1, 1, 1, 1, 1, \
    1, 1, 1, 1, 0, 0, 0, 0, \
    0, 0, 0, 0, 0, 0, 1, 1, \
    1, 1}

/* List the order in which to allocate registers.  Each register must be
   listed once, even those in FIXED_REGISTERS.

   On the 850, we make the return registers first, then all of the volatile
   registers, then the saved registers in reverse order to better save the
   registers with an out of line function, and finally the fixed
   registers.  */

#define REG_ALLOC_ORDER							\
{									\
  10, 11,				/* return registers */		\
  12, 13, 14, 15, 16, 17, 18, 19,	/* scratch registers */		\
   6,  7,  8,  9, 31,			/* argument registers */	\
  29, 28, 27, 26, 25, 24, 23, 22,	/* saved registers */		\
  21, 20,  2,								\
   0,  1,  3,  4,  5, 30, 32, 33	/* fixed registers */		\
}

/* If TARGET_NO_APP_REGS is not defined then add r2 and r5 to
   the pool of fixed registers. See PR 14505.  */
#define CONDITIONAL_REGISTER_USAGE  \
{                                                       \
  if (TARGET_NO_APP_REGS)                               \
    {                                                   \
     fixed_regs[2] = 1;  call_used_regs[2] = 1;         \
     fixed_regs[5] = 1;  call_used_regs[5] = 1;         \
    }                                                   \
}

/* Return number of consecutive hard regs needed starting at reg REGNO
   to hold something of mode MODE.

   This is ordinarily the length in words of a value of mode MODE
   but can be less for certain modes in special long registers.  */

#define HARD_REGNO_NREGS(REGNO, MODE)   \
  ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)

/* Value is 1 if hard register REGNO can hold a value of machine-mode
   MODE.  */

#define HARD_REGNO_MODE_OK(REGNO, MODE) \
 ((((REGNO) & 1) == 0) || (GET_MODE_SIZE (MODE) <= 4))

/* Value is 1 if it is a good idea to tie two pseudo registers
   when one has mode MODE1 and one has mode MODE2.
   If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
   for any hard reg, then this must be 0 for correct output.  */
#define MODES_TIEABLE_P(MODE1, MODE2) \
  (MODE1 == MODE2 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))


/* Define the classes of registers for register constraints in the
   machine description.  Also define ranges of constants.

   One of the classes must always be named ALL_REGS and include all hard regs.
   If there is more than one class, another class must be named NO_REGS
   and contain no registers.

   The name GENERAL_REGS must be the name of a class (or an alias for
   another name such as ALL_REGS).  This is the class of registers
   that is allowed by "g" or "r" in a register constraint.
   Also, registers outside this class are allocated only when
   instructions express preferences for them.

   The classes must be numbered in nondecreasing order; that is,
   a larger-numbered class must never be contained completely
   in a smaller-numbered class.

   For any two classes, it is very desirable that there be another
   class that represents their union.  */
   
enum reg_class
{
  NO_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
};

#define N_REG_CLASSES (int) LIM_REG_CLASSES

/* Give names of register classes as strings for dump file.  */

#define REG_CLASS_NAMES \
{ "NO_REGS", "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }

/* Define which registers fit in which classes.
   This is an initializer for a vector of HARD_REG_SET
   of length N_REG_CLASSES.  */

#define REG_CLASS_CONTENTS  		\
{					\
  { 0x00000000 }, /* NO_REGS      */	\
  { 0xffffffff }, /* GENERAL_REGS */   	\
  { 0xffffffff }, /* ALL_REGS 	*/	\
}

/* The same information, inverted:
   Return the class number of the smallest class containing
   reg number REGNO.  This could be a conditional expression
   or could index an array.  */

#define REGNO_REG_CLASS(REGNO)  GENERAL_REGS

/* The class value for index registers, and the one for base regs.  */

#define INDEX_REG_CLASS NO_REGS
#define BASE_REG_CLASS  GENERAL_REGS

/* Get reg_class from a letter such as appears in the machine description.  */

#define REG_CLASS_FROM_LETTER(C) (NO_REGS)

/* Macros to check register numbers against specific register classes.  */

/* These assume that REGNO is a hard or pseudo reg number.
   They give nonzero only if REGNO is a hard reg of the suitable class
   or a pseudo reg currently allocated to a suitable hard reg.
   Since they use reg_renumber, they are safe only once reg_renumber
   has been allocated, which happens in local-alloc.c.  */
 
#define REGNO_OK_FOR_BASE_P(regno) \
  ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)

#define REGNO_OK_FOR_INDEX_P(regno) 0

/* Given an rtx X being reloaded into a reg required to be
   in class CLASS, return the class of reg to actually use.
   In general this is just CLASS; but on some machines
   in some cases it is preferable to use a more restrictive class.  */

#define PREFERRED_RELOAD_CLASS(X,CLASS)  (CLASS)

/* Return the maximum number of consecutive registers
   needed to represent mode MODE in a register of class CLASS.  */

#define CLASS_MAX_NREGS(CLASS, MODE)	\
  ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)

/* The letters I, J, K, L, M, N, O, P in a register constraint string
   can be used to stand for particular ranges of immediate operands.
   This macro defines what the ranges are.
   C is the letter, and VALUE is a constant value.
   Return 1 if VALUE is in the range specified by C.  */

#define INT_7_BITS(VALUE) ((unsigned) (VALUE) + 0x40 < 0x80)
#define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
/* zero */
#define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
/* 5 bit signed immediate */
#define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) + 0x10 < 0x20)
/* 16 bit signed immediate */
#define CONST_OK_FOR_K(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
/* valid constant for movhi instruction.  */
#define CONST_OK_FOR_L(VALUE) \
  (((unsigned) ((int) (VALUE) >> 16) + 0x8000 < 0x10000) \
   && CONST_OK_FOR_I ((VALUE & 0xffff)))
/* 16 bit unsigned immediate */
#define CONST_OK_FOR_M(VALUE) ((unsigned)(VALUE) < 0x10000)
/* 5 bit unsigned immediate in shift instructions */
#define CONST_OK_FOR_N(VALUE) ((unsigned) (VALUE) <= 31)
/* 9 bit signed immediate for word multiply instruction.  */
#define CONST_OK_FOR_O(VALUE) ((unsigned) (VALUE) + 0x100 < 0x200)

#define CONST_OK_FOR_P(VALUE) 0

#define CONST_OK_FOR_LETTER_P(VALUE, C)  \
  ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
   (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
   (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
   (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
   (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
   (C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
   (C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
   (C) == 'P' ? CONST_OK_FOR_P (VALUE) : \
   0)

/* Similar, but for floating constants, and defining letters G and H.
   Here VALUE is the CONST_DOUBLE rtx itself. 
     
  `G' is a zero of some form.  */

#define CONST_DOUBLE_OK_FOR_G(VALUE)					\
  ((GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT			\
    && (VALUE) == CONST0_RTX (GET_MODE (VALUE)))			\
   || (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_INT			\
       && CONST_DOUBLE_LOW (VALUE) == 0					\
       && CONST_DOUBLE_HIGH (VALUE) == 0))

#define CONST_DOUBLE_OK_FOR_H(VALUE) 0

#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)				\
  ((C) == 'G'   ? CONST_DOUBLE_OK_FOR_G (VALUE)				\
   : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE)				\
   : 0)


/* Stack layout; function entry, exit and calling.  */

/* Define this if pushing a word on the stack
   makes the stack pointer a smaller address.  */

#define STACK_GROWS_DOWNWARD

/* Define this if the nominal address of the stack frame
   is at the high-address end of the local variables;
   that is, each additional local variable allocated
   goes at a more negative offset in the frame.  */

#define FRAME_GROWS_DOWNWARD

/* Offset within stack frame to start allocating local variables at.
   If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
   first local allocated.  Otherwise, it is the offset to the BEGINNING
   of the first local allocated.  */

#define STARTING_FRAME_OFFSET 0

/* Offset of first parameter from the argument pointer register value.  */
/* Is equal to the size of the saved fp + pc, even if an fp isn't
   saved since the value is used before we know.  */

#define FIRST_PARM_OFFSET(FNDECL) 0

/* Specify the registers used for certain standard purposes.
   The values of these macros are register numbers.  */

/* Register to use for pushing function arguments.  */
#define STACK_POINTER_REGNUM 3

/* Base register for access to local variables of the function.  */
#define FRAME_POINTER_REGNUM 32

/* Register containing return address from latest function call.  */
#define LINK_POINTER_REGNUM 31
     
/* On some machines the offset between the frame pointer and starting
   offset of the automatic variables is not known until after register
   allocation has been done (for example, because the saved registers
   are between these two locations).  On those machines, define
   `FRAME_POINTER_REGNUM' the number of a special, fixed register to
   be used internally until the offset is known, and define
   `HARD_FRAME_POINTER_REGNUM' to be actual the hard register number
   used for the frame pointer.

   You should define this macro only in the very rare circumstances
   when it is not possible to calculate the offset between the frame
   pointer and the automatic variables until after register
   allocation has been completed.  When this macro is defined, you
   must also indicate in your definition of `ELIMINABLE_REGS' how to
   eliminate `FRAME_POINTER_REGNUM' into either
   `HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'.

   Do not define this macro if it would be the same as
   `FRAME_POINTER_REGNUM'.  */
#undef  HARD_FRAME_POINTER_REGNUM 
#define HARD_FRAME_POINTER_REGNUM 29

/* Base register for access to arguments of the function.  */
#define ARG_POINTER_REGNUM 33

/* Register in which static-chain is passed to a function.  */
#define STATIC_CHAIN_REGNUM 20

/* Value should be nonzero if functions must have frame pointers.
   Zero means the frame pointer need not be set up (and parms
   may be accessed via the stack pointer) in functions that seem suitable.
   This is computed in `reload', in reload1.c.  */
#define FRAME_POINTER_REQUIRED 0

/* If defined, this macro specifies a table of register pairs used to
   eliminate unneeded registers that point into the stack frame.  If
   it is not defined, the only elimination attempted by the compiler
   is to replace references to the frame pointer with references to
   the stack pointer.

   The definition of this macro is a list of structure
   initializations, each of which specifies an original and
   replacement register.

   On some machines, the position of the argument pointer is not
   known until the compilation is completed.  In such a case, a
   separate hard register must be used for the argument pointer.
   This register can be eliminated by replacing it with either the
   frame pointer or the argument pointer, depending on whether or not
   the frame pointer has been eliminated.

   In this case, you might specify:
        #define ELIMINABLE_REGS  \
        {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
         {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
         {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}

   Note that the elimination of the argument pointer with the stack
   pointer is specified first since that is the preferred elimination.  */

#define ELIMINABLE_REGS							\
{{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },			\
 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM },			\
 { ARG_POINTER_REGNUM,	 STACK_POINTER_REGNUM },			\
 { ARG_POINTER_REGNUM,   HARD_FRAME_POINTER_REGNUM }}			\

/* A C expression that returns nonzero if the compiler is allowed to
   try to replace register number FROM-REG with register number
   TO-REG.  This macro need only be defined if `ELIMINABLE_REGS' is
   defined, and will usually be the constant 1, since most of the
   cases preventing register elimination are things that the compiler
   already knows about.  */

#define CAN_ELIMINATE(FROM, TO) \
 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)

/* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'.  It
   specifies the initial difference between the specified pair of
   registers.  This macro must be defined if `ELIMINABLE_REGS' is
   defined.  */

#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET)			\
{									\
  if ((FROM) == FRAME_POINTER_REGNUM)					\
    (OFFSET) = get_frame_size () + current_function_outgoing_args_size;	\
  else if ((FROM) == ARG_POINTER_REGNUM)				\
   (OFFSET) = compute_frame_size (get_frame_size (), (long *)0);	\
  else									\
    abort ();								\
}

/* Keep the stack pointer constant throughout the function.  */
#define ACCUMULATE_OUTGOING_ARGS 1

/* Value is the number of bytes of arguments automatically
   popped when returning from a subroutine call.
   FUNDECL is the declaration node of the function (as a tree),
   FUNTYPE is the data type of the function (as a tree),
   or for a library call it is an identifier node for the subroutine name.
   SIZE is the number of bytes of arguments passed on the stack.  */

#define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0

#define RETURN_ADDR_RTX(COUNT, FP) v850_return_addr (COUNT)

/* Define a data type for recording info about an argument list
   during the scan of that argument list.  This data type should
   hold all necessary information about the function itself
   and about the args processed so far, enough to enable macros
   such as FUNCTION_ARG to determine where the next arg should go.  */

#define CUMULATIVE_ARGS struct cum_arg
struct cum_arg { int nbytes; int anonymous_args; };

/* Define where to put the arguments to a function.
   Value is zero to push the argument on the stack,
   or a hard register in which to store the argument.

   MODE is the argument's machine mode.
   TYPE is the data type of the argument (as a tree).
    This is null for libcalls where that information may
    not be available.
   CUM is a variable of type CUMULATIVE_ARGS which gives info about
    the preceding args and about the function being called.
   NAMED is nonzero if this argument is a named parameter
    (otherwise it is an extra parameter matching an ellipsis).  */

#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
  function_arg (&CUM, MODE, TYPE, NAMED)

/* Initialize a variable CUM of type CUMULATIVE_ARGS
   for a call to a function whose data type is FNTYPE.
   For a library call, FNTYPE is 0.  */

#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
 ((CUM).nbytes = 0, (CUM).anonymous_args = 0)

/* Update the data in CUM to advance over an argument
   of mode MODE and data type TYPE.
   (TYPE is null for libcalls where that information may not be available.)  */

#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED)	\
 ((CUM).nbytes += ((MODE) != BLKmode			\
  ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD	\
  : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))

/* When a parameter is passed in a register, stack space is still
   allocated for it.  */
#define REG_PARM_STACK_SPACE(DECL) (!TARGET_GHS ? 16 : 0)

/* Define this if the above stack space is to be considered part of the
   space allocated by the caller.  */
#define OUTGOING_REG_PARM_STACK_SPACE

/* 1 if N is a possible register number for function argument passing.  */

#define FUNCTION_ARG_REGNO_P(N) (N >= 6 && N <= 9)

/* Define how to find the value returned by a function.
   VALTYPE is the data type of the value (as a tree).
   If the precise function being called is known, FUNC is its FUNCTION_DECL;
   otherwise, FUNC is 0.  */
   
#define FUNCTION_VALUE(VALTYPE, FUNC) \
  gen_rtx_REG (TYPE_MODE (VALTYPE), 10)

/* Define how to find the value returned by a library function
   assuming the value has mode MODE.  */

#define LIBCALL_VALUE(MODE) \
  gen_rtx_REG (MODE, 10)

/* 1 if N is a possible register number for a function value.  */

#define FUNCTION_VALUE_REGNO_P(N) ((N) == 10)

#define DEFAULT_PCC_STRUCT_RETURN 0

/* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
   the stack pointer does not matter.  The value is tested only in
   functions that have frame pointers.
   No definition is equivalent to always zero.  */

#define EXIT_IGNORE_STACK 1

/* Define this macro as a C expression that is nonzero for registers
   used by the epilogue or the `return' pattern.  */

#define EPILOGUE_USES(REGNO) \
  (reload_completed && (REGNO) == LINK_POINTER_REGNUM)

/* Output assembler code to FILE to increment profiler label # LABELNO
   for profiling a function entry.  */

#define FUNCTION_PROFILER(FILE, LABELNO) ;

#define TRAMPOLINE_TEMPLATE(FILE)			\
  do {							\
    fprintf (FILE, "\tjarl .+4,r12\n");			\
    fprintf (FILE, "\tld.w 12[r12],r20\n");		\
    fprintf (FILE, "\tld.w 16[r12],r12\n");		\
    fprintf (FILE, "\tjmp [r12]\n");			\
    fprintf (FILE, "\tnop\n");				\
    fprintf (FILE, "\t.long 0\n");			\
    fprintf (FILE, "\t.long 0\n");			\
  } while (0)

/* Length in units of the trampoline for entering a nested function.  */

#define TRAMPOLINE_SIZE 24

/* Emit RTL insns to initialize the variable parts of a trampoline.
   FNADDR is an RTX for the address of the function's pure code.
   CXT is an RTX for the static chain value for the function.  */

#define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT)			\
{									\
  emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 16)),	\
 		 (CXT));						\
  emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 20)),	\
		 (FNADDR));						\
}

/* Addressing modes, and classification of registers for them.  */


/* 1 if X is an rtx for a constant that is a valid address.  */

/* ??? This seems too exclusive.  May get better code by accepting more
   possibilities here, in particular, should accept ZDA_NAME SYMBOL_REFs.  */

#define CONSTANT_ADDRESS_P(X)   \
  (GET_CODE (X) == CONST_INT				\
   && CONST_OK_FOR_K (INTVAL (X)))

/* Maximum number of registers that can appear in a valid memory address.  */

#define MAX_REGS_PER_ADDRESS 1

/* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
   and check its validity for a certain class.
   We have two alternate definitions for each of them.
   The usual definition accepts all pseudo regs; the other rejects
   them unless they have been allocated suitable hard regs.
   The symbol REG_OK_STRICT causes the latter definition to be used.

   Most source files want to accept pseudo regs in the hope that
   they will get allocated to the class that the insn wants them to be in.
   Source files for reload pass need to be strict.
   After reload, it makes no difference, since pseudo regs have
   been eliminated by then.  */

#ifndef REG_OK_STRICT

/* Nonzero if X is a hard reg that can be used as an index
   or if it is a pseudo reg.  */
#define REG_OK_FOR_INDEX_P(X) 0
/* Nonzero if X is a hard reg that can be used as a base reg
   or if it is a pseudo reg.  */
#define REG_OK_FOR_BASE_P(X) 1
#define REG_OK_FOR_INDEX_P_STRICT(X) 0
#define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#define STRICT 0

#else

/* Nonzero if X is a hard reg that can be used as an index.  */
#define REG_OK_FOR_INDEX_P(X) 0
/* Nonzero if X is a hard reg that can be used as a base reg.  */
#define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
#define STRICT 1

#endif

/* A C expression that defines the optional machine-dependent
   constraint letters that can be used to segregate specific types of
   operands, usually memory references, for the target machine.
   Normally this macro will not be defined.  If it is required for a
   particular target machine, it should return 1 if VALUE corresponds
   to the operand type represented by the constraint letter C.  If C
   is not defined as an extra constraint, the value returned should
   be 0 regardless of VALUE.

   For example, on the ROMP, load instructions cannot have their
   output in r0 if the memory reference contains a symbolic address.
   Constraint letter `Q' is defined as representing a memory address
   that does *not* contain a symbolic address.  An alternative is
   specified with a `Q' constraint on the input and `r' on the
   output.  The next alternative specifies `m' on the input and a
   register class that does not include r0 on the output.  */

#define EXTRA_CONSTRAINT(OP, C)						\
 ((C) == 'Q'   ? ep_memory_operand (OP, GET_MODE (OP), 0)		\
  : (C) == 'R' ? special_symbolref_operand (OP, VOIDmode)		\
  : (C) == 'S' ? (GET_CODE (OP) == SYMBOL_REF				\
		  && !SYMBOL_REF_ZDA_P (OP))				\
  : (C) == 'T' ? ep_memory_operand(OP,GET_MODE(OP),TRUE)		\
  : (C) == 'U' ? ((GET_CODE (OP) == SYMBOL_REF				\
		   && SYMBOL_REF_ZDA_P (OP))				\
		  || (GET_CODE (OP) == CONST				\
		      && GET_CODE (XEXP (OP, 0)) == PLUS		\
		      && GET_CODE (XEXP (XEXP (OP, 0), 0)) == SYMBOL_REF \
		      && SYMBOL_REF_ZDA_P (XEXP (XEXP (OP, 0), 0))))	\
  : 0)

/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
   that is a valid memory address for an instruction.
   The MODE argument is the machine mode for the MEM expression
   that wants to use this address.

   The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
   except for CONSTANT_ADDRESS_P which is actually
   machine-independent.  */

/* Accept either REG or SUBREG where a register is valid.  */
  
#define RTX_OK_FOR_BASE_P(X)						\
  ((REG_P (X) && REG_OK_FOR_BASE_P (X))					\
   || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X))			\
       && REG_OK_FOR_BASE_P (SUBREG_REG (X))))

#define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR)				\
do {									\
  if (RTX_OK_FOR_BASE_P (X)) goto ADDR;					\
  if (CONSTANT_ADDRESS_P (X)						\
      && (MODE == QImode || INTVAL (X) % 2 == 0)			\
      && (GET_MODE_SIZE (MODE) <= 4 || INTVAL (X) % 4 == 0))		\
    goto ADDR;								\
  if (GET_CODE (X) == LO_SUM						\
      && GET_CODE (XEXP (X, 0)) == REG					\
      && REG_OK_FOR_BASE_P (XEXP (X, 0))				\
      && CONSTANT_P (XEXP (X, 1))					\
      && (GET_CODE (XEXP (X, 1)) != CONST_INT				\
	  || ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0)		\
	      && CONST_OK_FOR_K (INTVAL (XEXP (X, 1)))))		\
      && GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode))		\
    goto ADDR;								\
  if (special_symbolref_operand (X, MODE)				\
      && (GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode)))		\
     goto ADDR;								\
  if (GET_CODE (X) == PLUS						\
      && CONSTANT_ADDRESS_P (XEXP (X, 1))				\
      && (MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0)		\
      && RTX_OK_FOR_BASE_P (XEXP (X, 0))) goto ADDR;			\
} while (0)


/* Go to LABEL if ADDR (a legitimate address expression)
   has an effect that depends on the machine mode it is used for.  */

#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)  {}

/* Nonzero if the constant value X is a legitimate general operand.
   It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.  */

#define LEGITIMATE_CONSTANT_P(X)					\
  (GET_CODE (X) == CONST_DOUBLE						\
   || !(GET_CODE (X) == CONST						\
	&& GET_CODE (XEXP (X, 0)) == PLUS				\
	&& GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF		\
	&& GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT		\
	&& ! CONST_OK_FOR_K (INTVAL (XEXP (XEXP (X, 0), 1)))))

/* Tell final.c how to eliminate redundant test instructions.  */

/* Here we define machine-dependent flags and fields in cc_status
   (see `conditions.h').  No extra ones are needed for the VAX.  */

/* Store in cc_status the expressions
   that the condition codes will describe
   after execution of an instruction whose pattern is EXP.
   Do not alter them if the instruction would not alter the cc's.  */

#define CC_OVERFLOW_UNUSABLE 0x200
#define CC_NO_CARRY CC_NO_OVERFLOW
#define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)

/* Nonzero if access to memory by bytes or half words is no faster
   than accessing full words.  */
#define SLOW_BYTE_ACCESS 1

/* According expr.c, a value of around 6 should minimize code size, and
   for the V850 series, that's our primary concern.  */
#define MOVE_RATIO 6

/* Indirect calls are expensive, never turn a direct call
   into an indirect call.  */
#define NO_FUNCTION_CSE

/* The four different data regions on the v850.  */
typedef enum 
{
  DATA_AREA_NORMAL,
  DATA_AREA_SDA,
  DATA_AREA_TDA,
  DATA_AREA_ZDA
} v850_data_area;

/* A list of names for sections other than the standard two, which are
   `in_text' and `in_data'.  You need not define this macro on a
   system with no other sections (that GCC needs to use).  */
#undef	EXTRA_SECTIONS
#define EXTRA_SECTIONS in_tdata, in_sdata, in_zdata, \
 in_rozdata, in_rosdata, in_sbss, in_zbss, in_zcommon, in_scommon

/* One or more functions to be defined in `varasm.c'.  These
   functions should do jobs analogous to those of `text_section' and
   `data_section', for your additional sections.  Do not define this
   macro if you do not define `EXTRA_SECTIONS'.  */
#undef	EXTRA_SECTION_FUNCTIONS

/* This could be done a lot more cleanly using ANSI C....  */
#define EXTRA_SECTION_FUNCTIONS						\
void									\
sdata_section ()							\
{									\
  if (in_section != in_sdata)						\
    {									\
      fprintf (asm_out_file, "%s\n", SDATA_SECTION_ASM_OP);		\
      in_section = in_sdata;						\
    }									\
}									\
									\
void									\
rosdata_section ()							\
{									\
  if (in_section != in_rosdata)						\
    {									\
      fprintf (asm_out_file, "%s\n", ROSDATA_SECTION_ASM_OP);		\
      in_section = in_sdata;						\
    }									\
}									\
									\
void									\
sbss_section ()								\
{									\
  if (in_section != in_sbss)						\
    {									\
      fprintf (asm_out_file, "%s\n", SBSS_SECTION_ASM_OP);		\
      in_section = in_sbss;						\
    }									\
}									\
									\
void									\
tdata_section ()							\
{									\
  if (in_section != in_tdata)						\
    {									\
      fprintf (asm_out_file, "%s\n", TDATA_SECTION_ASM_OP);		\
      in_section = in_tdata;						\
    }									\
}									\
									\
void									\
zdata_section ()							\
{									\
  if (in_section != in_zdata)						\
    {									\
      fprintf (asm_out_file, "%s\n", ZDATA_SECTION_ASM_OP);		\
      in_section = in_zdata;						\
    }									\
}									\
									\
void									\
rozdata_section ()							\
{									\
  if (in_section != in_rozdata)						\
    {									\
      fprintf (asm_out_file, "%s\n", ROZDATA_SECTION_ASM_OP);		\
      in_section = in_rozdata;						\
    }									\
}									\
									\
void									\
zbss_section ()								\
{									\
  if (in_section != in_zbss)						\
    {									\
      fprintf (asm_out_file, "%s\n", ZBSS_SECTION_ASM_OP);		\
      in_section = in_zbss;						\
    }									\
}

#define TEXT_SECTION_ASM_OP  "\t.section .text"
#define DATA_SECTION_ASM_OP  "\t.section .data"
#define BSS_SECTION_ASM_OP   "\t.section .bss"
#define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
#define SBSS_SECTION_ASM_OP  "\t.section .sbss,\"aw\""
#define ZDATA_SECTION_ASM_OP "\t.section .zdata,\"aw\""
#define ZBSS_SECTION_ASM_OP  "\t.section .zbss,\"aw\""
#define TDATA_SECTION_ASM_OP "\t.section .tdata,\"aw\""
#define ROSDATA_SECTION_ASM_OP "\t.section .rosdata,\"a\""
#define ROZDATA_SECTION_ASM_OP "\t.section .rozdata,\"a\""

#define SCOMMON_ASM_OP 	       "\t.scomm\t"
#define ZCOMMON_ASM_OP 	       "\t.zcomm\t"
#define TCOMMON_ASM_OP 	       "\t.tcomm\t"

#define ASM_COMMENT_START "#"

/* Output to assembler file text saying following lines
   may contain character constants, extra white space, comments, etc.  */

#define ASM_APP_ON "#APP\n"

/* Output to assembler file text saying following lines
   no longer contain unusual constructs.  */

#define ASM_APP_OFF "#NO_APP\n"

#undef  USER_LABEL_PREFIX
#define USER_LABEL_PREFIX "_"

#define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL)  \
  if (! v850_output_addr_const_extra (FILE, X)) \
     goto FAIL

/* This says how to output the assembler to define a global
   uninitialized but not common symbol.  */

#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
  asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))

#undef  ASM_OUTPUT_ALIGNED_BSS 
#define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
  v850_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)

/* This says how to output the assembler to define a global
   uninitialized, common symbol.  */
#undef  ASM_OUTPUT_ALIGNED_COMMON
#undef  ASM_OUTPUT_COMMON
#define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \
     v850_output_common (FILE, DECL, NAME, SIZE, ALIGN)

/* This says how to output the assembler to define a local
   uninitialized symbol.  */
#undef  ASM_OUTPUT_ALIGNED_LOCAL
#undef  ASM_OUTPUT_LOCAL
#define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \
     v850_output_local (FILE, DECL, NAME, SIZE, ALIGN)
     
/* Globalizing directive for a label.  */
#define GLOBAL_ASM_OP "\t.global "

#define ASM_PN_FORMAT "%s___%lu"

/* This is how we tell the assembler that two symbols have the same value.  */

#define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
  do { assemble_name(FILE, NAME1); 	 \
       fputs(" = ", FILE);		 \
       assemble_name(FILE, NAME2);	 \
       fputc('\n', FILE); } while (0)


/* How to refer to registers in assembler output.
   This sequence is indexed by compiler's hard-register-number (see above).  */

#define REGISTER_NAMES							\
{  "r0",  "r1",  "r2",  "sp",  "gp",  "r5",  "r6" , "r7",		\
   "r8",  "r9", "r10", "r11", "r12", "r13", "r14", "r15",		\
  "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",		\
  "r24", "r25", "r26", "r27", "r28", "r29",  "ep", "r31",		\
  ".fp", ".ap"}

#define ADDITIONAL_REGISTER_NAMES					\
{ { "zero",	0 },							\
  { "hp",	2 },							\
  { "r3",	3 },							\
  { "r4",	4 },							\
  { "tp",	5 },							\
  { "fp",	29 },							\
  { "r30",	30 },							\
  { "lp",	31} }

/* Print an instruction operand X on file FILE.
   look in v850.c for details */

#define PRINT_OPERAND(FILE, X, CODE)  print_operand (FILE, X, CODE)

#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
  ((CODE) == '.')

/* Print a memory operand whose address is X, on file FILE.
   This uses a function in output-vax.c.  */

#define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)

#define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
#define ASM_OUTPUT_REG_POP(FILE,REGNO)

/* This is how to output an element of a case-vector that is absolute.  */

#define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
  fprintf (FILE, "\t%s .L%d\n",					\
	   (TARGET_BIG_SWITCH ? ".long" : ".short"), VALUE)

/* This is how to output an element of a case-vector that is relative.  */

#define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) 		\
  fprintf (FILE, "\t%s %s.L%d-.L%d%s\n",				\
	   (TARGET_BIG_SWITCH ? ".long" : ".short"),			\
	   (! TARGET_BIG_SWITCH && TARGET_V850E ? "(" : ""),		\
	   VALUE, REL,							\
	   (! TARGET_BIG_SWITCH && TARGET_V850E ? ")>>1" : ""))

#define ASM_OUTPUT_ALIGN(FILE, LOG)	\
  if ((LOG) != 0)			\
    fprintf (FILE, "\t.align %d\n", (LOG))

/* We don't have to worry about dbx compatibility for the v850.  */
#define DEFAULT_GDB_EXTENSIONS 1

/* Use stabs debugging info by default.  */
#undef PREFERRED_DEBUGGING_TYPE
#define PREFERRED_DEBUGGING_TYPE DBX_DEBUG

/* Specify the machine mode that this machine uses
   for the index in the tablejump instruction.  */
#define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : HImode)

/* Define as C expression which evaluates to nonzero if the tablejump
   instruction expects the table to contain offsets from the address of the
   table.
   Do not define this if the table should contain absolute addresses.  */
#define CASE_VECTOR_PC_RELATIVE 1

/* The switch instruction requires that the jump table immediately follow
   it.  */
#define JUMP_TABLES_IN_TEXT_SECTION 1

/* svr4.h defines this assuming that 4 byte alignment is required.  */
#undef ASM_OUTPUT_BEFORE_CASE_LABEL
#define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
  ASM_OUTPUT_ALIGN ((FILE), (TARGET_BIG_SWITCH ? 2 : 1));

#define WORD_REGISTER_OPERATIONS

/* Byte and short loads sign extend the value to a word.  */
#define LOAD_EXTEND_OP(MODE) SIGN_EXTEND

/* This flag, if defined, says the same insns that convert to a signed fixnum
   also convert validly to an unsigned one.  */
#define FIXUNS_TRUNC_LIKE_FIX_TRUNC

/* Max number of bytes we can move from memory to memory
   in one reasonably fast instruction.  */
#define MOVE_MAX	4

/* Define if shifts truncate the shift count
   which implies one can omit a sign-extension or zero-extension
   of a shift count.  */
#define SHIFT_COUNT_TRUNCATED 1

/* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
   is done just by pretending it is already truncated.  */
#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1

/* Specify the machine mode that pointers have.
   After generation of rtl, the compiler makes no further distinction
   between pointers and any other objects of this machine mode.  */
#define Pmode SImode

/* A function address in a call instruction
   is a byte address (for indexing purposes)
   so give the MEM rtx a byte's mode.  */
#define FUNCTION_MODE QImode

/* Tell compiler we want to support GHS pragmas */
#define REGISTER_TARGET_PRAGMAS() do {				\
  c_register_pragma ("ghs", "interrupt", ghs_pragma_interrupt);	\
  c_register_pragma ("ghs", "section",   ghs_pragma_section);	\
  c_register_pragma ("ghs", "starttda",  ghs_pragma_starttda);	\
  c_register_pragma ("ghs", "startsda",  ghs_pragma_startsda);	\
  c_register_pragma ("ghs", "startzda",  ghs_pragma_startzda);	\
  c_register_pragma ("ghs", "endtda",    ghs_pragma_endtda);	\
  c_register_pragma ("ghs", "endsda",    ghs_pragma_endsda);	\
  c_register_pragma ("ghs", "endzda",    ghs_pragma_endzda);	\
} while (0)

/* enum GHS_SECTION_KIND is an enumeration of the kinds of sections that
   can appear in the "ghs section" pragma.  These names are used to index
   into the GHS_default_section_names[] and GHS_current_section_names[]
   that are defined in v850.c, and so the ordering of each must remain
   consistent. 

   These arrays give the default and current names for each kind of 
   section defined by the GHS pragmas.  The current names can be changed
   by the "ghs section" pragma.  If the current names are null, use 
   the default names.  Note that the two arrays have different types.

   For the *normal* section kinds (like .data, .text, etc.) we do not
   want to explicitly force the name of these sections, but would rather
   let the linker (or at least the back end) choose the name of the 
   section, UNLESS the user has force a specific name for these section
   kinds.  To accomplish this set the name in ghs_default_section_names
   to null.  */

enum GHS_section_kind
{ 
  GHS_SECTION_KIND_DEFAULT,

  GHS_SECTION_KIND_TEXT,
  GHS_SECTION_KIND_DATA, 
  GHS_SECTION_KIND_RODATA,
  GHS_SECTION_KIND_BSS,
  GHS_SECTION_KIND_SDATA,
  GHS_SECTION_KIND_ROSDATA,
  GHS_SECTION_KIND_TDATA,
  GHS_SECTION_KIND_ZDATA,
  GHS_SECTION_KIND_ROZDATA,

  COUNT_OF_GHS_SECTION_KINDS  /* must be last */
};

/* The following code is for handling pragmas supported by the
   v850 compiler produced by Green Hills Software.  This is at
   the specific request of a customer.  */

typedef struct data_area_stack_element
{
  struct data_area_stack_element * prev;
  v850_data_area                   data_area; /* Current default data area.  */
} data_area_stack_element;

/* Track the current data area set by the
   data area pragma (which can be nested).  */
extern data_area_stack_element * data_area_stack;

/* Names of the various data areas used on the v850.  */
extern union tree_node * GHS_default_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
extern union tree_node * GHS_current_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];

/* The assembler op to start the file.  */

#define FILE_ASM_OP "\t.file\n"

/* Enable the register move pass to improve code.  */
#define ENABLE_REGMOVE_PASS


/* Implement ZDA, TDA, and SDA */

#define EP_REGNUM 30	/* ep register number */

#define SYMBOL_FLAG_ZDA		(SYMBOL_FLAG_MACH_DEP << 0)
#define SYMBOL_FLAG_TDA		(SYMBOL_FLAG_MACH_DEP << 1)
#define SYMBOL_FLAG_SDA		(SYMBOL_FLAG_MACH_DEP << 2)
#define SYMBOL_REF_ZDA_P(X)	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ZDA) != 0)
#define SYMBOL_REF_TDA_P(X)	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_TDA) != 0)
#define SYMBOL_REF_SDA_P(X)	((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SDA) != 0)

#endif /* ! GCC_V850_H */