aboutsummaryrefslogtreecommitdiff
path: root/gcc/config/v850/v850.cc
blob: 2ac58c08691ce4e06e5d268463ce60bb66518136 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
/* Subroutines for insn-output.cc for NEC V850 series
   Copyright (C) 1996-2024 Free Software Foundation, Inc.
   Contributed by Jeff Law (law@cygnus.com).

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify it
   under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   any later version.

   GCC is distributed in the hope that it will be useful, but WITHOUT
   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
   for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#define IN_TARGET_CODE 1

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "stringpool.h"
#include "attribs.h"
#include "insn-config.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "diagnostic-core.h"
#include "stor-layout.h"
#include "varasm.h"
#include "calls.h"
#include "conditions.h"
#include "output.h"
#include "insn-attr.h"
#include "expr.h"
#include "cfgrtl.h"
#include "builtins.h"

/* This file should be included last.  */
#include "target-def.h"

#ifndef streq
#define streq(a,b) (strcmp (a, b) == 0)
#endif

static void v850_print_operand_address (FILE *, machine_mode, rtx);

/* Names of the various data areas used on the v850.  */
const char * GHS_default_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
const char * GHS_current_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];

/* Track the current data area set by the data area pragma (which
   can be nested).  Tested by check_default_data_area.  */
data_area_stack_element * data_area_stack = NULL;

/* True if we don't need to check any more if the current
   function is an interrupt handler.  */
static int v850_interrupt_cache_p = FALSE;

/* Whether current function is an interrupt handler.  */
static int v850_interrupt_p = FALSE;

static GTY(()) section * rosdata_section;
static GTY(()) section * rozdata_section;
static GTY(()) section * tdata_section;
static GTY(()) section * zdata_section;
static GTY(()) section * zbss_section;

/* We use this to wrap all emitted insns in the prologue.  */
static rtx
F (rtx x)
{
  if (GET_CODE (x) != CLOBBER)
    RTX_FRAME_RELATED_P (x) = 1;
  return x;
}

/* Mark all the subexpressions of the PARALLEL rtx PAR as
   frame-related.  Return PAR.

   dwarf2out.cc:dwarf2out_frame_debug_expr ignores sub-expressions of a
   PARALLEL rtx other than the first if they do not have the
   FRAME_RELATED flag set on them.  */

static rtx
v850_all_frame_related (rtx par)
{
  int len = XVECLEN (par, 0);
  int i;

  gcc_assert (GET_CODE (par) == PARALLEL);
  for (i = 0; i < len; i++)
    F (XVECEXP (par, 0, i));

  return par;
}

/* Handle the TARGET_PASS_BY_REFERENCE target hook.
   Specify whether to pass the argument by reference.  */

static bool
v850_pass_by_reference (cumulative_args_t, const function_arg_info &arg)
{
  if (!TARGET_GCC_ABI)
    return 0;

  unsigned HOST_WIDE_INT size = arg.type_size_in_bytes ();
  return size > 8;
}

/* Return an RTX to represent where argument ARG will be passed to a function.
   If the result is NULL_RTX, the argument will be pushed.  */

static rtx
v850_function_arg (cumulative_args_t cum_v, const function_arg_info &arg)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
  rtx result = NULL_RTX;
  int size, align;

  if (!arg.named)
    return NULL_RTX;

  size = arg.promoted_size_in_bytes ();
  size = (size + UNITS_PER_WORD -1) & ~(UNITS_PER_WORD -1);

  if (size < 1)
    {
      /* Once we have stopped using argument registers, do not start up again.  */
      cum->nbytes = 4 * UNITS_PER_WORD;
      return NULL_RTX;
    }

  if (!TARGET_GCC_ABI)
    align = UNITS_PER_WORD;
  else if (size <= UNITS_PER_WORD && arg.type)
    align = TYPE_ALIGN (arg.type) / BITS_PER_UNIT;
  else
    align = size;

  cum->nbytes = (cum->nbytes + align - 1) &~(align - 1);

  if (cum->nbytes > 4 * UNITS_PER_WORD)
    return NULL_RTX;

  if (arg.type == NULL_TREE
      && cum->nbytes + size > 4 * UNITS_PER_WORD)
    return NULL_RTX;

  switch (cum->nbytes / UNITS_PER_WORD)
    {
    case 0:
      result = gen_rtx_REG (arg.mode, 6);
      break;
    case 1:
      result = gen_rtx_REG (arg.mode, 7);
      break;
    case 2:
      result = gen_rtx_REG (arg.mode, 8);
      break;
    case 3:
      result = gen_rtx_REG (arg.mode, 9);
      break;
    default:
      result = NULL_RTX;
    }

  return result;
}

/* Return the number of bytes which must be put into registers
   for values which are part in registers and part in memory.  */
static int
v850_arg_partial_bytes (cumulative_args_t cum_v, const function_arg_info &arg)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
  int size, align;

  if (!arg.named)
    return 0;

  size = arg.promoted_size_in_bytes ();
  if (size < 1)
    size = 1;

  if (!TARGET_GCC_ABI)
    align = UNITS_PER_WORD;
  else if (arg.type)
    align = TYPE_ALIGN (arg.type) / BITS_PER_UNIT;
  else
    align = size;

  cum->nbytes = (cum->nbytes + align - 1) & ~ (align - 1);

  if (cum->nbytes > 4 * UNITS_PER_WORD)
    return 0;

  if (cum->nbytes + size <= 4 * UNITS_PER_WORD)
    return 0;

  if (arg.type == NULL_TREE
      && cum->nbytes + size > 4 * UNITS_PER_WORD)
    return 0;

  return 4 * UNITS_PER_WORD - cum->nbytes;
}

/* Update the data in CUM to advance over argument ARG.  */

static void
v850_function_arg_advance (cumulative_args_t cum_v,
			   const function_arg_info &arg)
{
  CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);

  if (!TARGET_GCC_ABI)
    cum->nbytes += ((arg.promoted_size_in_bytes () + UNITS_PER_WORD - 1)
		    & -UNITS_PER_WORD);
  else
    cum->nbytes += (((arg.type && int_size_in_bytes (arg.type) > 8
		      ? GET_MODE_SIZE (Pmode)
		      : (HOST_WIDE_INT) arg.promoted_size_in_bytes ())
		     + UNITS_PER_WORD - 1)
		    & -UNITS_PER_WORD);
}

/* Return the high and low words of a CONST_DOUBLE */

static void
const_double_split (rtx x, HOST_WIDE_INT * p_high, HOST_WIDE_INT * p_low)
{
  if (GET_CODE (x) == CONST_DOUBLE)
    {
      long t[2];

      switch (GET_MODE (x))
	{
	case E_DFmode:
	  REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (x), t);
	  *p_high = t[1];	/* since v850 is little endian */
	  *p_low = t[0];	/* high is second word */
	  return;

	case E_SFmode:
	  REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (x), *p_high);
	  *p_low = 0;
	  return;

	case E_VOIDmode:
	case E_DImode:
	  *p_high = CONST_DOUBLE_HIGH (x);
	  *p_low  = CONST_DOUBLE_LOW (x);
	  return;

	default:
	  break;
	}
    }

  fatal_insn ("const_double_split got a bad insn:", x);
}


/* Return the cost of the rtx R with code CODE.  */

static int
const_costs_int (HOST_WIDE_INT value, int zero_cost)
{
  if (CONST_OK_FOR_I (value))
      return zero_cost;
  else if (CONST_OK_FOR_J (value))
    return 1;
  else if (CONST_OK_FOR_K (value))
    return 2;
  else
    return 4;
}

static int
const_costs (rtx r, enum rtx_code c)
{
  HOST_WIDE_INT high, low;

  switch (c)
    {
    case CONST_INT:
      return const_costs_int (INTVAL (r), 0);

    case CONST_DOUBLE:
      const_double_split (r, &high, &low);
      if (GET_MODE (r) == SFmode)
	return const_costs_int (high, 1);
      else
	return const_costs_int (high, 1) + const_costs_int (low, 1);

    case SYMBOL_REF:
    case LABEL_REF:
    case CONST:
      return 2;

    case HIGH:
      return 1;

    default:
      return 4;
    }
}

static bool
v850_rtx_costs (rtx x, machine_mode mode, int outer_code,
		int opno ATTRIBUTE_UNUSED, int *total, bool speed)
{
  enum rtx_code code = GET_CODE (x);

  switch (code)
    {
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
      *total = COSTS_N_INSNS (const_costs (x, code));
      return true;

    case MOD:
    case DIV:
    case UMOD:
    case UDIV:
      if (TARGET_V850E && !speed)
        *total = 6;
      else
	*total = 60;
      return true;

    case MULT:
      if (TARGET_V850E
	  && (mode == SImode || mode == HImode || mode == QImode))
        {
	  if (GET_CODE (XEXP (x, 1)) == REG)
	    *total = 4;
	  else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
	    {
	      if (CONST_OK_FOR_O (INTVAL (XEXP (x, 1))))
	        *total = 6;
	      else if (CONST_OK_FOR_K (INTVAL (XEXP (x, 1))))
	        *total = 10;
	    }
        }
      else
	*total = 20;
      return true;

    case ZERO_EXTRACT:
      if (outer_code == COMPARE)
	*total = 0;
      return false;

    default:
      return false;
    }
}

/* Print operand X using operand code CODE to assembly language output file
   FILE.  */

static void
v850_print_operand (FILE * file, rtx x, int code)
{
  HOST_WIDE_INT high, low;

  switch (code)
    {
    case 'c':
      /* We use 'c' operands with symbols for .vtinherit.  */
      if (GET_CODE (x) == SYMBOL_REF)
        {
          output_addr_const(file, x);
          break;
        }
      /* Fall through.  */
    case 'b':
    case 'B':
    case 'C':
    case 'd':
    case 'D':
      switch ((code == 'B' || code == 'C' || code == 'D')
	      ? reverse_condition (GET_CODE (x)) : GET_CODE (x))
	{
	  case NE:
	    if (code == 'c' || code == 'C')
	      fprintf (file, "nz");
	    else
	      fprintf (file, "ne");
	    break;
	  case EQ:
	    if (code == 'c' || code == 'C')
	      fprintf (file, "z");
	    else
	      fprintf (file, "e");
	    break;
	  case GE:
	    if (code == 'D' || code == 'd')
	      fprintf (file, "p");
	    else
	      fprintf (file, "ge");
	    break;
	  case GT:
	    fprintf (file, "gt");
	    break;
	  case LE:
	    fprintf (file, "le");
	    break;
	  case LT:
	    if (code == 'D' || code == 'd')
	      fprintf (file, "n");
	    else
	      fprintf (file, "lt");
	    break;
	  case GEU:
	    fprintf (file, "nl");
	    break;
	  case GTU:
	    fprintf (file, "h");
	    break;
	  case LEU:
	    fprintf (file, "nh");
	    break;
	  case LTU:
	    fprintf (file, "l");
	    break;
	  default:
	    gcc_unreachable ();
	}
      break;
    case 'F':			/* High word of CONST_DOUBLE.  */
      switch (GET_CODE (x))
	{
	case CONST_INT:
	  fprintf (file, "%d", (INTVAL (x) >= 0) ? 0 : -1);
	  break;

	case CONST_DOUBLE:
	  const_double_split (x, &high, &low);
	  fprintf (file, "%ld", (long) high);
	  break;

	default:
	  gcc_unreachable ();
	}
      break;
    case 'G':			/* Low word of CONST_DOUBLE.  */
      switch (GET_CODE (x))
	{
	case CONST_INT:
	  fprintf (file, "%ld", (long) INTVAL (x));
	  break;

	case CONST_DOUBLE:
	  const_double_split (x, &high, &low);
	  fprintf (file, "%ld", (long) low);
	  break;

	default:
	  gcc_unreachable ();
	}
      break;
    case 'L':
      fprintf (file, "%d\n", (int)(INTVAL (x) & 0xffff));
      break;
    case 'M':
      fprintf (file, "%d", exact_log2 (INTVAL (x)));
      break;
    case 'O':
      gcc_assert (special_symbolref_operand (x, VOIDmode));

      if (GET_CODE (x) == CONST)
	x = XEXP (XEXP (x, 0), 0);
      else
	gcc_assert (GET_CODE (x) == SYMBOL_REF);

      if (SYMBOL_REF_ZDA_P (x))
	fprintf (file, "zdaoff");
      else if (SYMBOL_REF_SDA_P (x))
	fprintf (file, "sdaoff");
      else if (SYMBOL_REF_TDA_P (x))
	fprintf (file, "tdaoff");
      else
	gcc_unreachable ();
      break;
    case 'P':
      gcc_assert (special_symbolref_operand (x, VOIDmode));
      output_addr_const (file, x);
      break;
    case 'Q':
      gcc_assert (special_symbolref_operand (x, VOIDmode));

      if (GET_CODE (x) == CONST)
	x = XEXP (XEXP (x, 0), 0);
      else
	gcc_assert (GET_CODE (x) == SYMBOL_REF);

      if (SYMBOL_REF_ZDA_P (x))
	fprintf (file, "r0");
      else if (SYMBOL_REF_SDA_P (x))
	fprintf (file, "gp");
      else if (SYMBOL_REF_TDA_P (x))
	fprintf (file, "ep");
      else
	gcc_unreachable ();
      break;
    case 'R':		/* 2nd word of a double.  */
      switch (GET_CODE (x))
	{
	case REG:
	  fprintf (file, reg_names[REGNO (x) + 1]);
	  break;
	case MEM:
	  {
	    machine_mode mode = GET_MODE (x);
	    x = XEXP (adjust_address (x, SImode, 4), 0);
	    v850_print_operand_address (file, mode, x);
	    if (GET_CODE (x) == CONST_INT)
	      fprintf (file, "[r0]");
	  }
	  break;

	case CONST_INT:
	  {
	    unsigned HOST_WIDE_INT v = INTVAL (x);

	    /* Trickery to avoid problems with shifting
	       32-bits at a time on a 32-bit host.  */
	    v = v >> 16;
	    v = v >> 16;
	    fprintf (file, HOST_WIDE_INT_PRINT_HEX, v);
	    break;
	  }

	case CONST_DOUBLE:
	  fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_HIGH (x));
	  break;

	default:
	  debug_rtx (x);
	  gcc_unreachable ();
	}
      break;
    case 'S':
      {
        /* If it's a reference to a TDA variable, use sst/sld vs. st/ld.  */
        if (GET_CODE (x) == MEM && ep_memory_operand (x, GET_MODE (x), FALSE))
          fputs ("s", file);

        break;
      }
    case 'T':
      {
	/* Like an 'S' operand above, but for unsigned loads only.  */
        if (GET_CODE (x) == MEM && ep_memory_operand (x, GET_MODE (x), TRUE))
          fputs ("s", file);

        break;
      }
    case 'W':			/* Print the instruction suffix.  */
      switch (GET_MODE (x))
	{
	default:
	  gcc_unreachable ();

	case E_QImode: fputs (".b", file); break;
	case E_HImode: fputs (".h", file); break;
	case E_SImode: fputs (".w", file); break;
	case E_SFmode: fputs (".w", file); break;
	}
      break;
    case '.':			/* Register r0.  */
      fputs (reg_names[0], file);
      break;
    case 'z':			/* Reg or zero.  */
      if (REG_P (x))
	fputs (reg_names[REGNO (x)], file);
      else if ((GET_MODE(x) == SImode
		|| GET_MODE(x) == DFmode
		|| GET_MODE(x) == SFmode)
		&& x == CONST0_RTX(GET_MODE(x)))
      fputs (reg_names[0], file);
      else
	{
	  gcc_assert (x == const0_rtx);
	  fputs (reg_names[0], file);
	}
      break;
    default:
      switch (GET_CODE (x))
	{
	case MEM:
	  if (GET_CODE (XEXP (x, 0)) == CONST_INT)
	    output_address (GET_MODE (x),
			    gen_rtx_PLUS (SImode, gen_rtx_REG (SImode, 0),
					  XEXP (x, 0)));
	  else
	    output_address (GET_MODE (x), XEXP (x, 0));
	  break;

	case REG:
	  fputs (reg_names[REGNO (x)], file);
	  break;
	case SUBREG:
	  fputs (reg_names[subreg_regno (x)], file);
	  break;
	case CONST_DOUBLE:
	  fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
	  break;

	case CONST_INT:
	case SYMBOL_REF:
	case CONST:
	case LABEL_REF:
	case CODE_LABEL:
	  v850_print_operand_address (file, VOIDmode, x);
	  break;
	default:
	  gcc_unreachable ();
	}
      break;

    }
}


/* Output assembly language output for the address ADDR to FILE.  */

static void
v850_print_operand_address (FILE * file, machine_mode /*mode*/, rtx addr)
{
  switch (GET_CODE (addr))
    {
    case REG:
      fprintf (file, "0[");
      v850_print_operand (file, addr, 0);
      fprintf (file, "]");
      break;
    case LO_SUM:
      if (GET_CODE (XEXP (addr, 0)) == REG)
	{
	  /* reg,foo */
	  fprintf (file, "lo(");
	  v850_print_operand (file, XEXP (addr, 1), 0);
	  fprintf (file, ")[");
	  v850_print_operand (file, XEXP (addr, 0), 0);
	  fprintf (file, "]");
	}
      break;
    case PLUS:
      if (GET_CODE (XEXP (addr, 0)) == REG
	  || GET_CODE (XEXP (addr, 0)) == SUBREG)
	{
	  /* reg,foo */
	  v850_print_operand (file, XEXP (addr, 1), 0);
	  fprintf (file, "[");
	  v850_print_operand (file, XEXP (addr, 0), 0);
	  fprintf (file, "]");
	}
      else
	{
	  v850_print_operand (file, XEXP (addr, 0), 0);
	  fprintf (file, "+");
	  v850_print_operand (file, XEXP (addr, 1), 0);
	}
      break;
    case SYMBOL_REF:
      {
        const char *off_name = NULL;
        const char *reg_name = NULL;

	if (SYMBOL_REF_ZDA_P (addr))
          {
            off_name = "zdaoff";
            reg_name = "r0";
          }
        else if (SYMBOL_REF_SDA_P (addr))
          {
            off_name = "sdaoff";
            reg_name = "gp";
          }
        else if (SYMBOL_REF_TDA_P (addr))
          {
            off_name = "tdaoff";
            reg_name = "ep";
          }

	if (off_name)
          fprintf (file, "%s(", off_name);
        output_addr_const (file, addr);
	if (reg_name)
          fprintf (file, ")[%s]", reg_name);
      }
      break;
    case CONST:
      if (special_symbolref_operand (addr, VOIDmode))
        {
	  rtx x = XEXP (XEXP (addr, 0), 0);
          const char *off_name;
          const char *reg_name;

          if (SYMBOL_REF_ZDA_P (x))
            {
              off_name = "zdaoff";
              reg_name = "r0";
            }
          else if (SYMBOL_REF_SDA_P (x))
            {
              off_name = "sdaoff";
              reg_name = "gp";
            }
          else if (SYMBOL_REF_TDA_P (x))
            {
              off_name = "tdaoff";
              reg_name = "ep";
            }
          else
            gcc_unreachable ();

          fprintf (file, "%s(", off_name);
          output_addr_const (file, addr);
          fprintf (file, ")[%s]", reg_name);
        }
      else
        output_addr_const (file, addr);
      break;
    default:
      output_addr_const (file, addr);
      break;
    }
}

static bool
v850_print_operand_punct_valid_p (unsigned char code)
{
  return code == '.';
}

/* When assemble_integer is used to emit the offsets for a switch
   table it can encounter (TRUNCATE:HI (MINUS:SI (LABEL_REF:SI) (LABEL_REF:SI))).
   output_addr_const will normally barf at this, but it is OK to omit
   the truncate and just emit the difference of the two labels.  The
   .hword directive will automatically handle the truncation for us.

   Returns true if rtx was handled, false otherwise.  */

static bool
v850_output_addr_const_extra (FILE * file, rtx x)
{
  if (GET_CODE (x) != TRUNCATE)
    return false;

  x = XEXP (x, 0);

  /* We must also handle the case where the switch table was passed a
     constant value and so has been collapsed.  In this case the first
     label will have been deleted.  In such a case it is OK to emit
     nothing, since the table will not be used.
     (cf gcc.c-torture/compile/990801-1.c).  */
  if (GET_CODE (x) == MINUS
      && GET_CODE (XEXP (x, 0)) == LABEL_REF)
    {
      rtx_code_label *label
	= dyn_cast<rtx_code_label *> (XEXP (XEXP (x, 0), 0));
      if (label && label->deleted ())
	return true;
    }

  output_addr_const (file, x);
  return true;
}

/* Return appropriate code to load up a 1, 2, or 4 integer/floating
   point value.  */

const char *
output_move_single (rtx * operands)
{
  rtx dst = operands[0];
  rtx src = operands[1];

  if (REG_P (dst))
    {
      if (REG_P (src))
	return "mov %1,%0";

      else if (GET_CODE (src) == CONST_INT)
	{
	  HOST_WIDE_INT value = INTVAL (src);

	  if (CONST_OK_FOR_J (value))		/* Signed 5-bit immediate.  */
	    return "mov %1,%0";

	  else if (CONST_OK_FOR_K (value))	/* Signed 16-bit immediate.  */
	    return "movea %1,%.,%0";

	  else if (CONST_OK_FOR_L (value))	/* Upper 16 bits were set.  */
	    return "movhi hi0(%1),%.,%0";

	  /* A random constant.  */
	  else if (TARGET_V850E_UP)
	      return "mov %1,%0";
	  else
	    return "movhi hi(%1),%.,%0\n\tmovea lo(%1),%0,%0";
	}

      else if (GET_CODE (src) == CONST_DOUBLE && GET_MODE (src) == SFmode)
	{
	  HOST_WIDE_INT high, low;

	  const_double_split (src, &high, &low);

	  if (CONST_OK_FOR_J (high))		/* Signed 5-bit immediate.  */
	    return "mov %F1,%0";

	  else if (CONST_OK_FOR_K (high))	/* Signed 16-bit immediate.  */
	    return "movea %F1,%.,%0";

	  else if (CONST_OK_FOR_L (high))	/* Upper 16 bits were set.  */
	    return "movhi hi0(%F1),%.,%0";

	  /* A random constant.  */
	else if (TARGET_V850E_UP)
	      return "mov %F1,%0";

	  else
	    return "movhi hi(%F1),%.,%0\n\tmovea lo(%F1),%0,%0";
	}

      else if (GET_CODE (src) == MEM)
	return "%S1ld%W1 %1,%0";

      else if (special_symbolref_operand (src, VOIDmode))
	return "movea %O1(%P1),%Q1,%0";

      else if (GET_CODE (src) == LABEL_REF
	       || GET_CODE (src) == SYMBOL_REF
	       || GET_CODE (src) == CONST)
	{
	  if (TARGET_V850E_UP)
	    return "mov hilo(%1),%0";
	  else
	    return "movhi hi(%1),%.,%0\n\tmovea lo(%1),%0,%0";
	}

      else if (GET_CODE (src) == HIGH)
	return "movhi hi(%1),%.,%0";

      else if (GET_CODE (src) == LO_SUM)
	{
	  operands[2] = XEXP (src, 0);
	  operands[3] = XEXP (src, 1);
	  return "movea lo(%3),%2,%0";
	}
    }

  else if (GET_CODE (dst) == MEM)
    {
      if (REG_P (src))
	return "%S0st%W0 %1,%0";

      else if (GET_CODE (src) == CONST_INT && INTVAL (src) == 0)
	return "%S0st%W0 %.,%0";

      else if (GET_CODE (src) == CONST_DOUBLE
	       && CONST0_RTX (GET_MODE (dst)) == src)
	return "%S0st%W0 %.,%0";
    }

  fatal_insn ("output_move_single:", gen_rtx_SET (dst, src));
  return "";
}

machine_mode
v850_select_cc_mode (enum rtx_code cond, rtx op0, rtx op1)
{
  if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
    {
      switch (cond)
	{
	case LE:
	  return CC_FPU_LEmode;
	case GE:
	  return CC_FPU_GEmode;
	case LT:
	  return CC_FPU_LTmode;
	case GT:
	  return CC_FPU_GTmode;
	case EQ:
	  return CC_FPU_EQmode;
	case NE:
	  return CC_FPU_NEmode;
	default:
	  gcc_unreachable ();
	}
    }

  if (op1 == const0_rtx
      && (cond == EQ || cond == NE || cond == LT || cond == GE)
      && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
	  || GET_CODE (op0) == NEG || GET_CODE (op0) == AND
	  || GET_CODE (op0) == IOR || GET_CODE (op0) == XOR
	  || GET_CODE (op0) == NOT || GET_CODE (op0) == ASHIFT))
    return CCNZmode;

  return CCmode;
}

machine_mode
v850_gen_float_compare (enum rtx_code cond, machine_mode mode, rtx op0, rtx op1)
{
  if (GET_MODE (op0) == DFmode)
    {
      switch (cond)
	{
	case LE:
	  emit_insn (gen_cmpdf_le_insn (op0, op1));
	  break;
	case GE:
	  emit_insn (gen_cmpdf_ge_insn (op0, op1));
	  break;
	case LT:
	  emit_insn (gen_cmpdf_lt_insn (op0, op1));
	  break;
	case GT:
	  emit_insn (gen_cmpdf_gt_insn (op0, op1));
	  break;
	case NE:
	  /* Note: There is no NE comparison operator. So we
	     perform an EQ comparison and invert the branch.
	     See v850_float_nz_comparison for how this is done.  */
	case EQ:
	  emit_insn (gen_cmpdf_eq_insn (op0, op1));
	  break;
	default:
	  gcc_unreachable ();
	}
    }
  else if (mode == SFmode)
    {
      switch (cond)
	{
	case LE:
	  emit_insn (gen_cmpsf_le_insn(op0, op1));
	  break;
	case GE:
	  emit_insn (gen_cmpsf_ge_insn(op0, op1));
	  break;
	case LT:
	  emit_insn (gen_cmpsf_lt_insn(op0, op1));
	  break;
	case GT:
	  emit_insn (gen_cmpsf_gt_insn(op0, op1));
	  break;
	case NE:
	  /* Note: There is no NE comparison operator. So we
	     perform an EQ comparison and invert the branch.
	     See v850_float_nz_comparison for how this is done.  */
	case EQ:
	  emit_insn (gen_cmpsf_eq_insn(op0, op1));
	  break;
	default:
	  gcc_unreachable ();
	}
    }
  else
    gcc_unreachable ();

  return v850_select_cc_mode (cond, op0, op1);
}

/* Return maximum offset supported for a short EP memory reference of mode
   MODE and signedness UNSIGNEDP.  */

static int
ep_memory_offset (machine_mode mode, int unsignedp ATTRIBUTE_UNUSED)
{
  int max_offset = 0;

  switch (mode)
    {
    case E_QImode:
      if (TARGET_SMALL_SLD)
	max_offset = (1 << 4);
      else if ((TARGET_V850E_UP)
		&& unsignedp)
	max_offset = (1 << 4);
      else
	max_offset = (1 << 7);
      break;

    case E_HImode:
      if (TARGET_SMALL_SLD)
	max_offset = (1 << 5);
      else if ((TARGET_V850E_UP)
		&& unsignedp)
	max_offset = (1 << 5);
      else
	max_offset = (1 << 8);
      break;

    case E_SImode:
    case E_SFmode:
      max_offset = (1 << 8);
      break;

    default:
      break;
    }

  return max_offset;
}

/* Return true if OP is a valid short EP memory reference */

int
ep_memory_operand (rtx op, machine_mode mode, int unsigned_load)
{
  rtx addr, op0, op1;
  int max_offset;
  int mask;

  /* If we are not using the EP register on a per-function basis
     then do not allow this optimization at all.  This is to
     prevent the use of the SLD/SST instructions which cannot be
     guaranteed to work properly due to a hardware bug.  */
  if (!TARGET_EP)
    return FALSE;

  if (GET_CODE (op) != MEM)
    return FALSE;

  max_offset = ep_memory_offset (mode, unsigned_load);

  mask = GET_MODE_SIZE (mode) - 1;

  addr = XEXP (op, 0);
  if (GET_CODE (addr) == CONST)
    addr = XEXP (addr, 0);

  switch (GET_CODE (addr))
    {
    default:
      break;

    case SYMBOL_REF:
      return SYMBOL_REF_TDA_P (addr);

    case REG:
      return REGNO (addr) == EP_REGNUM;

    case PLUS:
      op0 = XEXP (addr, 0);
      op1 = XEXP (addr, 1);
      if (GET_CODE (op1) == CONST_INT
	  && INTVAL (op1) < max_offset
	  && INTVAL (op1) >= 0
	  && (INTVAL (op1) & mask) == 0)
	{
	  if (GET_CODE (op0) == REG && REGNO (op0) == EP_REGNUM)
	    return TRUE;

	  if (GET_CODE (op0) == SYMBOL_REF && SYMBOL_REF_TDA_P (op0))
	    return TRUE;
	}
      break;
    }

  return FALSE;
}

/* Substitute memory references involving a pointer, to use the ep pointer,
   taking care to save and preserve the ep.  */

static void
substitute_ep_register (rtx_insn *first_insn,
                        rtx_insn *last_insn,
                        int uses,
                        int regno,
                        rtx * p_r1,
                        rtx * p_ep)
{
  rtx reg = gen_rtx_REG (Pmode, regno);
  rtx_insn *insn;

  if (!*p_r1)
    {
      df_set_regs_ever_live (1, true);
      *p_r1 = gen_rtx_REG (Pmode, 1);
      *p_ep = gen_rtx_REG (Pmode, 30);
    }

  if (TARGET_DEBUG)
    fprintf (stderr, "\
Saved %d bytes (%d uses of register %s) in function %s, starting as insn %d, ending at %d\n",
	     2 * (uses - 3), uses, reg_names[regno],
	     IDENTIFIER_POINTER (DECL_NAME (current_function_decl)),
	     INSN_UID (first_insn), INSN_UID (last_insn));

  if (NOTE_P (first_insn))
    first_insn = next_nonnote_insn (first_insn);

  last_insn = next_nonnote_insn (last_insn);
  for (insn = first_insn; insn && insn != last_insn; insn = NEXT_INSN (insn))
    {
      if (NONJUMP_INSN_P (insn))
	{
	  rtx pattern = single_set (insn);

	  /* Replace the memory references.  */
	  if (pattern)
	    {
	      rtx *p_mem;
	      /* Memory operands are signed by default.  */
	      int unsignedp = FALSE;

	      if (GET_CODE (SET_DEST (pattern)) == MEM
		  && GET_CODE (SET_SRC (pattern)) == MEM)
		p_mem = (rtx *)0;

	      else if (GET_CODE (SET_DEST (pattern)) == MEM)
		p_mem = &SET_DEST (pattern);

	      else if (GET_CODE (SET_SRC (pattern)) == MEM)
		p_mem = &SET_SRC (pattern);

	      else if (GET_CODE (SET_SRC (pattern)) == SIGN_EXTEND
		       && GET_CODE (XEXP (SET_SRC (pattern), 0)) == MEM)
		p_mem = &XEXP (SET_SRC (pattern), 0);

	      else if (GET_CODE (SET_SRC (pattern)) == ZERO_EXTEND
		       && GET_CODE (XEXP (SET_SRC (pattern), 0)) == MEM)
		{
		  p_mem = &XEXP (SET_SRC (pattern), 0);
		  unsignedp = TRUE;
		}
	      else
		p_mem = (rtx *)0;

	      if (p_mem)
		{
		  rtx addr = XEXP (*p_mem, 0);

		  if (GET_CODE (addr) == REG && REGNO (addr) == (unsigned) regno)
		    *p_mem = change_address (*p_mem, VOIDmode, *p_ep);

		  else if (GET_CODE (addr) == PLUS
			   && GET_CODE (XEXP (addr, 0)) == REG
			   && REGNO (XEXP (addr, 0)) == (unsigned) regno
			   && GET_CODE (XEXP (addr, 1)) == CONST_INT
			   && ((INTVAL (XEXP (addr, 1)))
			       < ep_memory_offset (GET_MODE (*p_mem),
						   unsignedp))
			   && ((INTVAL (XEXP (addr, 1))) >= 0))
		    *p_mem = change_address (*p_mem, VOIDmode,
					     gen_rtx_PLUS (Pmode,
							   *p_ep,
							   XEXP (addr, 1)));
		}
	    }
	}
    }

  /* Optimize back to back cases of ep <- r1 & r1 <- ep.  */
  insn = prev_nonnote_insn (first_insn);
  if (insn && NONJUMP_INSN_P (insn)
      && GET_CODE (PATTERN (insn)) == SET
      && SET_DEST (PATTERN (insn)) == *p_ep
      && SET_SRC (PATTERN (insn)) == *p_r1)
    delete_insn (insn);
  else
    emit_insn_before (gen_rtx_SET (*p_r1, *p_ep), first_insn);

  emit_insn_before (gen_rtx_SET (*p_ep, reg), first_insn);
  emit_insn_before (gen_rtx_SET (*p_ep, *p_r1), last_insn);
}


/* TARGET_MACHINE_DEPENDENT_REORG.  On the 850, we use it to implement
   the -mep mode to copy heavily used pointers to ep to use the implicit
   addressing.  */

static void
v850_reorg (void)
{
  struct
  {
    int uses;
    rtx_insn *first_insn;
    rtx_insn *last_insn;
  }
  regs[FIRST_PSEUDO_REGISTER];

  int i;
  int use_ep = FALSE;
  rtx r1 = NULL_RTX;
  rtx ep = NULL_RTX;
  rtx_insn *insn;
  rtx pattern;

  /* If not ep mode, just return now.  */
  if (!TARGET_EP)
    return;

  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
    {
      regs[i].uses = 0;
      regs[i].first_insn = NULL;
      regs[i].last_insn = NULL;
    }

  for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
    {
      switch (GET_CODE (insn))
	{
	  /* End of basic block */
	default:
	  if (!use_ep)
	    {
	      int max_uses = -1;
	      int max_regno = -1;

	      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
		{
		  if (max_uses < regs[i].uses)
		    {
		      max_uses = regs[i].uses;
		      max_regno = i;
		    }
		}

	      if (max_uses > 3)
		substitute_ep_register (regs[max_regno].first_insn,
					regs[max_regno].last_insn,
					max_uses, max_regno, &r1, &ep);
	    }

	  use_ep = FALSE;
	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
	    {
	      regs[i].uses = 0;
	      regs[i].first_insn = NULL;
	      regs[i].last_insn = NULL;
	    }
	  break;

	case NOTE:
	  break;

	case INSN:
	  pattern = single_set (insn);

	  /* See if there are any memory references we can shorten.  */
	  if (pattern)
	    {
	      rtx src = SET_SRC (pattern);
	      rtx dest = SET_DEST (pattern);
	      rtx mem;
	      /* Memory operands are signed by default.  */
	      int unsignedp = FALSE;

	      /* We might have (SUBREG (MEM)) here, so just get rid of the
		 subregs to make this code simpler.  */
	      if (GET_CODE (dest) == SUBREG
		  && (GET_CODE (SUBREG_REG (dest)) == MEM
		      || GET_CODE (SUBREG_REG (dest)) == REG))
		alter_subreg (&dest, false);
	      if (GET_CODE (src) == SUBREG
		  && (GET_CODE (SUBREG_REG (src)) == MEM
		      || GET_CODE (SUBREG_REG (src)) == REG))
		alter_subreg (&src, false);

	      if (GET_CODE (dest) == MEM && GET_CODE (src) == MEM)
		mem = NULL_RTX;

	      else if (GET_CODE (dest) == MEM)
		mem = dest;

	      else if (GET_CODE (src) == MEM)
		mem = src;

	      else if (GET_CODE (src) == SIGN_EXTEND
		       && GET_CODE (XEXP (src, 0)) == MEM)
		mem = XEXP (src, 0);

	      else if (GET_CODE (src) == ZERO_EXTEND
		       && GET_CODE (XEXP (src, 0)) == MEM)
		{
		  mem = XEXP (src, 0);
		  unsignedp = TRUE;
		}
	      else
		mem = NULL_RTX;

	      if (mem && ep_memory_operand (mem, GET_MODE (mem), unsignedp))
		use_ep = TRUE;

	      else if (!use_ep && mem
		       && GET_MODE_SIZE (GET_MODE (mem)) <= UNITS_PER_WORD)
		{
		  rtx addr = XEXP (mem, 0);
		  int regno = -1;
		  int short_p;

		  if (GET_CODE (addr) == REG)
		    {
		      short_p = TRUE;
		      regno = REGNO (addr);
		    }

		  else if (GET_CODE (addr) == PLUS
			   && GET_CODE (XEXP (addr, 0)) == REG
			   && GET_CODE (XEXP (addr, 1)) == CONST_INT
			   && ((INTVAL (XEXP (addr, 1)))
			       < ep_memory_offset (GET_MODE (mem), unsignedp))
			   && ((INTVAL (XEXP (addr, 1))) >= 0))
		    {
		      short_p = TRUE;
		      regno = REGNO (XEXP (addr, 0));
		    }

		  else
		    short_p = FALSE;

		  if (short_p)
		    {
		      regs[regno].uses++;
		      regs[regno].last_insn = insn;
		      if (!regs[regno].first_insn)
			regs[regno].first_insn = insn;
		    }
		}

	      /* Loading up a register in the basic block zaps any savings
		 for the register */
	      if (GET_CODE (dest) == REG)
		{
		  int regno;
		  int endregno;

		  regno = REGNO (dest);
		  endregno = END_REGNO (dest);

		  if (!use_ep)
		    {
		      /* See if we can use the pointer before this
			 modification.  */
		      int max_uses = -1;
		      int max_regno = -1;

		      for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
			{
			  if (max_uses < regs[i].uses)
			    {
			      max_uses = regs[i].uses;
			      max_regno = i;
			    }
			}

		      if (max_uses > 3
			  && max_regno >= regno
			  && max_regno < endregno)
			{
			  substitute_ep_register (regs[max_regno].first_insn,
						  regs[max_regno].last_insn,
						  max_uses, max_regno, &r1,
						  &ep);

			  /* Since we made a substitution, zap all remembered
			     registers.  */
			  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
			    {
			      regs[i].uses = 0;
			      regs[i].first_insn = NULL;
			      regs[i].last_insn = NULL;
			    }
			}
		    }

		  for (i = regno; i < endregno; i++)
		    {
		      regs[i].uses = 0;
		      regs[i].first_insn = NULL;
		      regs[i].last_insn = NULL;
		    }
		}
	    }
	}
    }
}

/* # of registers saved by the interrupt handler.  */
#define INTERRUPT_FIXED_NUM 5

/* # of bytes for registers saved by the interrupt handler.  */
#define INTERRUPT_FIXED_SAVE_SIZE (4 * INTERRUPT_FIXED_NUM)

/* # of words saved for other registers.  */
#define INTERRUPT_ALL_SAVE_NUM \
  (30 - INTERRUPT_FIXED_NUM)

#define INTERRUPT_ALL_SAVE_SIZE (4 * INTERRUPT_ALL_SAVE_NUM)

int
compute_register_save_size (long * p_reg_saved)
{
  int size = 0;
  int i;
  int interrupt_handler = v850_interrupt_function_p (current_function_decl);
  int call_p = df_regs_ever_live_p (LINK_POINTER_REGNUM);
  long reg_saved = 0;

  /* Count space for the register saves.  */
  if (interrupt_handler)
    {
      for (i = 0; i <= 31; i++)
	switch (i)
	  {
	  default:
	    if (df_regs_ever_live_p (i) || call_p)
	      {
		size += 4;
		reg_saved |= 1L << i;
	      }
	    break;

	    /* We don't save/restore r0 or the stack pointer */
	  case 0:
	  case STACK_POINTER_REGNUM:
	    break;

	    /* For registers with fixed use, we save them, set them to the
	       appropriate value, and then restore them.
	       These registers are handled specially, so don't list them
	       on the list of registers to save in the prologue.  */
	  case 1:		/* temp used to hold ep */
	  case 4:		/* gp */
	  case 10:		/* temp used to call interrupt save/restore */
	  case 11:		/* temp used to call interrupt save/restore (long call) */
	  case EP_REGNUM:	/* ep */
	    size += 4;
	    break;
	  }
    }
  else
    {
      /* Find the first register that needs to be saved.  */
      for (i = 0; i <= 31; i++)
	if (df_regs_ever_live_p (i) && ((! call_used_or_fixed_reg_p (i))
				  || i == LINK_POINTER_REGNUM))
	  break;

      /* If it is possible that an out-of-line helper function might be
	 used to generate the prologue for the current function, then we
	 need to cover the possibility that such a helper function will
	 be used, despite the fact that there might be gaps in the list of
	 registers that need to be saved.  To detect this we note that the
	 helper functions always push at least register r29 (provided
	 that the function is not an interrupt handler).  */

      if (TARGET_PROLOG_FUNCTION
          && (i == 2 || ((i >= 20) && (i < 30))))
	{
	  if (i == 2)
	    {
	      size += 4;
	      reg_saved |= 1L << i;

	      i = 20;
	    }

	  /* Helper functions save all registers between the starting
	     register and the last register, regardless of whether they
	     are actually used by the function or not.  */
	  for (; i <= 29; i++)
	    {
	      size += 4;
	      reg_saved |= 1L << i;
	    }

	  if (df_regs_ever_live_p (LINK_POINTER_REGNUM))
	    {
	      size += 4;
	      reg_saved |= 1L << LINK_POINTER_REGNUM;
	    }
	}
      else
	{
	  for (; i <= 31; i++)
	    if (df_regs_ever_live_p (i) && ((! call_used_or_fixed_reg_p (i))
				      || i == LINK_POINTER_REGNUM))
	      {
		size += 4;
		reg_saved |= 1L << i;
	      }
	}
    }

  if (p_reg_saved)
    *p_reg_saved = reg_saved;

  return size;
}

/* Typical stack layout should looks like this after the function's prologue:

                            |    |
                              --                       ^
                            |    | \                   |
                            |    |   arguments saved   | Increasing
                            |    |   on the stack      |  addresses
    PARENT   arg pointer -> |    | /
  -------------------------- ---- -------------------
                            |    | - space for argument split between regs & stack
			      --
    CHILD                   |    | \    <-- (return address here)
                            |    |   other call
                            |    |   saved registers
                            |    | /
                              --
        frame pointer ->    |    | \             ___
                            |    |   local        |
                            |    |   variables    |f
                            |    | /              |r
                              --                  |a
                            |    | \              |m
                            |    |   outgoing     |e
                            |    |   arguments    |    | Decreasing
    (hard) frame pointer    |    |  /             |    |  addresses
       and stack pointer -> |    | /             _|_   |
  -------------------------- ---- ------------------   V */

int
compute_frame_size (poly_int64 size, long * p_reg_saved)
{
  return (size
	  + compute_register_save_size (p_reg_saved)
	  + crtl->outgoing_args_size);
}

static int
use_prolog_function (int num_save, int frame_size)
{
  int alloc_stack = (4 * num_save);
  int unalloc_stack = frame_size - alloc_stack;
  int save_func_len, restore_func_len;
  int save_normal_len, restore_normal_len;

  if (! TARGET_DISABLE_CALLT)
      save_func_len = restore_func_len = 2;
  else
      save_func_len = restore_func_len = TARGET_LONG_CALLS ? (4+4+4+2+2) : 4;

  if (unalloc_stack)
    {
      save_func_len += CONST_OK_FOR_J (-unalloc_stack) ? 2 : 4;
      restore_func_len += CONST_OK_FOR_J (-unalloc_stack) ? 2 : 4;
    }

  /* See if we would have used ep to save the stack.  */
  if (TARGET_EP && num_save > 3 && (unsigned)frame_size < 255)
    save_normal_len = restore_normal_len = (3 * 2) + (2 * num_save);
  else
    save_normal_len = restore_normal_len = 4 * num_save;

  save_normal_len += CONST_OK_FOR_J (-frame_size) ? 2 : 4;
  restore_normal_len += (CONST_OK_FOR_J (frame_size) ? 2 : 4) + 2;

  /* Don't bother checking if we don't actually save any space.
     This happens for instance if one register is saved and additional
     stack space is allocated.  */
  return ((save_func_len + restore_func_len) < (save_normal_len + restore_normal_len));
}

static void
increment_stack (signed int amount, bool in_prologue)
{
  rtx inc;

  if (amount == 0)
    return;

  inc = GEN_INT (amount);

  if (! CONST_OK_FOR_K (amount))
    {
      rtx reg = gen_rtx_REG (Pmode, 12);

      inc = emit_move_insn (reg, inc);
      if (in_prologue)
	F (inc);
      inc = reg;
    }

  inc = emit_insn (gen_addsi3_clobber_flags (stack_pointer_rtx, stack_pointer_rtx, inc));
  if (in_prologue)
    F (inc);
}

void
expand_prologue (void)
{
  unsigned int i;
  unsigned int size = get_frame_size ();
  unsigned int actual_fsize;
  unsigned int init_stack_alloc = 0;
  rtx save_regs[32];
  rtx save_all;
  unsigned int num_save;
  int code;
  int interrupt_handler = v850_interrupt_function_p (current_function_decl);
  long reg_saved = 0;

  actual_fsize = compute_frame_size (size, &reg_saved);

  if (flag_stack_usage_info)
    current_function_static_stack_size = actual_fsize;

  /* Save/setup global registers for interrupt functions right now.  */
  if (interrupt_handler)
    {
      if (! TARGET_DISABLE_CALLT && (TARGET_V850E_UP))
	emit_insn (gen_callt_save_interrupt ());
      else
	emit_insn (gen_save_interrupt ());

      actual_fsize -= INTERRUPT_FIXED_SAVE_SIZE;

      if (((1L << LINK_POINTER_REGNUM) & reg_saved) != 0)
	actual_fsize -= INTERRUPT_ALL_SAVE_SIZE;

      /* Interrupt functions are not passed arguments, so no need to
	 allocate space for split structure arguments.  */
      gcc_assert (crtl->args.pretend_args_size == 0);
    }

  /* Identify all of the saved registers.  */
  num_save = 0;
  for (i = 1; i < 32; i++)
    {
      if (((1L << i) & reg_saved) != 0)
	save_regs[num_save++] = gen_rtx_REG (Pmode, i);
    }

  if (crtl->args.pretend_args_size)
    {
      if (num_save == 0)
	{
	  increment_stack (- (actual_fsize + crtl->args.pretend_args_size), true);
	  actual_fsize = 0;
	}
      else
	increment_stack (- crtl->args.pretend_args_size, true);
    }

  /* See if we have an insn that allocates stack space and saves the particular
     registers we want to.  Note that the helpers won't
     allocate additional space for registers GCC saves to complete a
     "split" structure argument.  */
  save_all = NULL_RTX;
  if (TARGET_PROLOG_FUNCTION
      && !crtl->args.pretend_args_size
      && num_save > 0)
    {
      if (use_prolog_function (num_save, actual_fsize))
	{
	  int alloc_stack = 4 * num_save;
	  int offset = 0;

	  save_all = gen_rtx_PARALLEL
	    (VOIDmode,
	     rtvec_alloc (num_save + 2
			  + (TARGET_DISABLE_CALLT ? (TARGET_LONG_CALLS ? 2 : 1) : 0)));

	  XVECEXP (save_all, 0, 0)
	    = gen_rtx_SET (stack_pointer_rtx,
			   gen_rtx_PLUS (Pmode,
					 stack_pointer_rtx,
					 GEN_INT(-alloc_stack)));
	  for (i = 0; i < num_save; i++)
	    {
	      offset -= 4;
	      XVECEXP (save_all, 0, i+1)
		= gen_rtx_SET (gen_rtx_MEM (Pmode,
					    gen_rtx_PLUS (Pmode,
							  stack_pointer_rtx,
							  GEN_INT(offset))),
			       save_regs[i]);
	    }

	  XVECEXP (save_all, 0, num_save + 1)
	    = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, CC_REGNUM));

	  if (TARGET_DISABLE_CALLT)
	    {
	      XVECEXP (save_all, 0, num_save + 2)
		= gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 10));

	      if (TARGET_LONG_CALLS)
		XVECEXP (save_all, 0, num_save + 3)
		  = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 11));
	    }

	  v850_all_frame_related (save_all);

	  code = recog (save_all, NULL, NULL);
	  if (code >= 0)
	    {
	      rtx insn = emit_insn (save_all);
	      INSN_CODE (insn) = code;
	      actual_fsize -= alloc_stack;

	    }
	  else
	    save_all = NULL_RTX;
	}
    }

  /* If no prolog save function is available, store the registers the old
     fashioned way (one by one).  */
  if (!save_all)
    {
      /* Special case interrupt functions that save all registers for a call.  */
      if (interrupt_handler && ((1L << LINK_POINTER_REGNUM) & reg_saved) != 0)
	{
	  if (! TARGET_DISABLE_CALLT && (TARGET_V850E_UP))
	    emit_insn (gen_callt_save_all_interrupt ());
	  else
	    emit_insn (gen_save_all_interrupt ());
	}
      else
	{
	  int offset;
	  /* If the stack is too big, allocate it in chunks so we can do the
	     register saves.  We use the register save size so we use the ep
	     register.  */
	  if (actual_fsize && !CONST_OK_FOR_K (-actual_fsize))
	    init_stack_alloc = compute_register_save_size (NULL);
	  else
	    init_stack_alloc = actual_fsize;

	  /* Save registers at the beginning of the stack frame.  */
	  offset = init_stack_alloc - 4;

	  if (init_stack_alloc)
	    increment_stack (- (signed) init_stack_alloc, true);

	  /* Save the return pointer first.  */
	  if (num_save > 0 && REGNO (save_regs[num_save-1]) == LINK_POINTER_REGNUM)
	    {
	      F (emit_move_insn (gen_rtx_MEM (SImode,
					      plus_constant (Pmode,
							     stack_pointer_rtx,
							     offset)),
				 save_regs[--num_save]));
	      offset -= 4;
	    }

	  for (i = 0; i < num_save; i++)
	    {
	      F (emit_move_insn (gen_rtx_MEM (SImode,
					      plus_constant (Pmode,
							     stack_pointer_rtx,
							     offset)),
				 save_regs[i]));
	      offset -= 4;
	    }
	}
    }

  /* Allocate the rest of the stack that was not allocated above (either it is
     > 32K or we just called a function to save the registers and needed more
     stack.  */
  if (actual_fsize > init_stack_alloc)
    increment_stack (init_stack_alloc - actual_fsize, true);

  /* If we need a frame pointer, set it up now.  */
  if (frame_pointer_needed)
    F (emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx));
}


void
expand_epilogue (void)
{
  unsigned int i;
  unsigned int size = get_frame_size ();
  long reg_saved = 0;
  int actual_fsize = compute_frame_size (size, &reg_saved);
  rtx restore_regs[32];
  rtx restore_all;
  unsigned int num_restore;
  int code;
  int interrupt_handler = v850_interrupt_function_p (current_function_decl);

  /* Eliminate the initial stack stored by interrupt functions.  */
  if (interrupt_handler)
    {
      actual_fsize -= INTERRUPT_FIXED_SAVE_SIZE;
      if (((1L << LINK_POINTER_REGNUM) & reg_saved) != 0)
	actual_fsize -= INTERRUPT_ALL_SAVE_SIZE;
    }

  /* Cut off any dynamic stack created.  */
  if (frame_pointer_needed)
    emit_move_insn (stack_pointer_rtx, hard_frame_pointer_rtx);

  /* Identify all of the saved registers.  */
  num_restore = 0;
  for (i = 1; i < 32; i++)
    {
      if (((1L << i) & reg_saved) != 0)
	restore_regs[num_restore++] = gen_rtx_REG (Pmode, i);
    }

  /* See if we have an insn that restores the particular registers we
     want to.  */
  restore_all = NULL_RTX;

  if (TARGET_PROLOG_FUNCTION
      && num_restore > 0
      && !crtl->args.pretend_args_size
      && !interrupt_handler)
    {
      int alloc_stack = (4 * num_restore);

      /* Don't bother checking if we don't actually save any space.  */
      if (use_prolog_function (num_restore, actual_fsize))
	{
	  int offset;
	  restore_all = gen_rtx_PARALLEL (VOIDmode,
					  rtvec_alloc (num_restore + 2));
	  XVECEXP (restore_all, 0, 0) = ret_rtx;
	  XVECEXP (restore_all, 0, 1)
	    = gen_rtx_SET (stack_pointer_rtx,
			   gen_rtx_PLUS (Pmode,
					 stack_pointer_rtx,
					 GEN_INT (alloc_stack)));

	  offset = alloc_stack - 4;
	  for (i = 0; i < num_restore; i++)
	    {
	      XVECEXP (restore_all, 0, i+2)
		= gen_rtx_SET (restore_regs[i],
			       gen_rtx_MEM (Pmode,
                                            gen_rtx_PLUS (Pmode,
                                                          stack_pointer_rtx,
                                                          GEN_INT(offset))));
	      offset -= 4;
	    }

	  code = recog (restore_all, NULL, NULL);

	  if (code >= 0)
	    {
	      rtx insn;

	      actual_fsize -= alloc_stack;
	      increment_stack (actual_fsize, false);

	      insn = emit_jump_insn (restore_all);
	      INSN_CODE (insn) = code;
	    }
	  else
	    restore_all = NULL_RTX;
	}
    }

  /* If no epilogue save function is available, restore the registers the
     old fashioned way (one by one).  */
  if (!restore_all)
    {
      unsigned int init_stack_free;

      /* If the stack is large, we need to cut it down in 2 pieces.  */
      if (interrupt_handler)
       init_stack_free = 0;
      else if (actual_fsize && !CONST_OK_FOR_K (-actual_fsize))
	init_stack_free = 4 * num_restore;
      else
	init_stack_free = (signed) actual_fsize;

      /* Deallocate the rest of the stack if it is > 32K.  */
      if ((unsigned int) actual_fsize > init_stack_free)
	increment_stack (actual_fsize - init_stack_free, false);

      /* Special case interrupt functions that save all registers
	 for a call.  */
      if (interrupt_handler && ((1L << LINK_POINTER_REGNUM) & reg_saved) != 0)
	{
	  if (! TARGET_DISABLE_CALLT)
	    emit_insn (gen_callt_restore_all_interrupt ());
	  else
	    emit_insn (gen_restore_all_interrupt ());
	}
      else
	{
	  /* Restore registers from the beginning of the stack frame.  */
	  int offset = init_stack_free - 4;

	  /* Restore the return pointer first.  */
	  if (num_restore > 0
	      && REGNO (restore_regs [num_restore - 1]) == LINK_POINTER_REGNUM)
	    {
	      emit_move_insn (restore_regs[--num_restore],
			      gen_rtx_MEM (SImode,
					   plus_constant (Pmode,
							  stack_pointer_rtx,
							  offset)));
	      offset -= 4;
	    }

	  for (i = 0; i < num_restore; i++)
	    {
	      emit_move_insn (restore_regs[i],
			      gen_rtx_MEM (SImode,
					   plus_constant (Pmode,
							  stack_pointer_rtx,
							  offset)));

	      emit_use (restore_regs[i]);
	      offset -= 4;
	    }

	  /* Cut back the remainder of the stack.  */
	  increment_stack (init_stack_free + crtl->args.pretend_args_size,
			   false);
	}

      /* And return or use reti for interrupt handlers.  */
      if (interrupt_handler)
        {
          if (! TARGET_DISABLE_CALLT && (TARGET_V850E_UP))
            emit_insn (gen_callt_return_interrupt ());
          else
            emit_jump_insn (gen_return_interrupt ());
	 }
      else if (actual_fsize)
	emit_jump_insn (gen_return_internal ());
      else
	emit_jump_insn (gen_return_simple ());
    }

  v850_interrupt_cache_p = FALSE;
  v850_interrupt_p = FALSE;
}

/* Retrieve the data area that has been chosen for the given decl.  */

v850_data_area
v850_get_data_area (tree decl)
{
  if (lookup_attribute ("sda", DECL_ATTRIBUTES (decl)) != NULL_TREE)
    return DATA_AREA_SDA;

  if (lookup_attribute ("tda", DECL_ATTRIBUTES (decl)) != NULL_TREE)
    return DATA_AREA_TDA;

  if (lookup_attribute ("zda", DECL_ATTRIBUTES (decl)) != NULL_TREE)
    return DATA_AREA_ZDA;

  return DATA_AREA_NORMAL;
}

/* Store the indicated data area in the decl's attributes.  */

static void
v850_set_data_area (tree decl, v850_data_area data_area)
{
  tree name;

  switch (data_area)
    {
    case DATA_AREA_SDA: name = get_identifier ("sda"); break;
    case DATA_AREA_TDA: name = get_identifier ("tda"); break;
    case DATA_AREA_ZDA: name = get_identifier ("zda"); break;
    default:
      return;
    }

  DECL_ATTRIBUTES (decl) = tree_cons
    (name, NULL, DECL_ATTRIBUTES (decl));
}

/* Handle an "interrupt" attribute; arguments as in
   struct attribute_spec.handler.  */
static tree
v850_handle_interrupt_attribute (tree *node, tree name,
                                 tree args ATTRIBUTE_UNUSED,
                                 int flags ATTRIBUTE_UNUSED,
                                 bool * no_add_attrs)
{
  if (TREE_CODE (*node) != FUNCTION_DECL)
    {
      warning (OPT_Wattributes, "%qE attribute only applies to functions",
	       name);
      *no_add_attrs = true;
    }

  return NULL_TREE;
}

/* Handle a "sda", "tda" or "zda" attribute; arguments as in
   struct attribute_spec.handler.  */
static tree
v850_handle_data_area_attribute (tree *node, tree name,
                                 tree args ATTRIBUTE_UNUSED,
                                 int flags ATTRIBUTE_UNUSED,
                                 bool * no_add_attrs)
{
  v850_data_area data_area;
  v850_data_area area;
  tree decl = *node;

  /* Implement data area attribute.  */
  if (is_attribute_p ("sda", name))
    data_area = DATA_AREA_SDA;
  else if (is_attribute_p ("tda", name))
    data_area = DATA_AREA_TDA;
  else if (is_attribute_p ("zda", name))
    data_area = DATA_AREA_ZDA;
  else
    gcc_unreachable ();

  switch (TREE_CODE (decl))
    {
    case VAR_DECL:
      if (current_function_decl != NULL_TREE)
	{
          error_at (DECL_SOURCE_LOCATION (decl),
		    "data area attributes cannot be specified for "
		    "local variables");
	  *no_add_attrs = true;
	}

      /* FALLTHRU */

    case FUNCTION_DECL:
      area = v850_get_data_area (decl);
      if (area != DATA_AREA_NORMAL && data_area != area)
	{
	  error ("data area of %q+D conflicts with previous declaration",
                 decl);
	  *no_add_attrs = true;
	}
      break;

    default:
      break;
    }

  return NULL_TREE;
}


/* Return nonzero if FUNC is an interrupt function as specified
   by the "interrupt" attribute.  */

int
v850_interrupt_function_p (tree func)
{
  tree a;
  int ret = 0;

  if (v850_interrupt_cache_p)
    return v850_interrupt_p;

  if (TREE_CODE (func) != FUNCTION_DECL)
    return 0;

  a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
  if (a != NULL_TREE)
    ret = 1;

  else
    {
      a = lookup_attribute ("interrupt", DECL_ATTRIBUTES (func));
      ret = a != NULL_TREE;
    }

  /* Its not safe to trust global variables until after function inlining has
     been done.  */
  if (reload_completed | reload_in_progress)
    v850_interrupt_p = ret;

  return ret;
}


static void
v850_encode_data_area (tree decl, rtx symbol)
{
  int flags;

  /* Map explicit sections into the appropriate attribute */
  if (v850_get_data_area (decl) == DATA_AREA_NORMAL)
    {
      if (DECL_SECTION_NAME (decl))
	{
	  const char *name = DECL_SECTION_NAME (decl);

	  if (streq (name, ".zdata") || streq (name, ".zbss"))
	    v850_set_data_area (decl, DATA_AREA_ZDA);

	  else if (streq (name, ".sdata") || streq (name, ".sbss"))
	    v850_set_data_area (decl, DATA_AREA_SDA);

	  else if (streq (name, ".tdata"))
	    v850_set_data_area (decl, DATA_AREA_TDA);
	}

      /* If no attribute, support -m{zda,sda,tda}=n */
      else
	{
	  int size = int_size_in_bytes (TREE_TYPE (decl));
	  if (size <= 0)
	    ;

	  else if (size <= small_memory_max [(int) SMALL_MEMORY_TDA])
	    v850_set_data_area (decl, DATA_AREA_TDA);

	  else if (size <= small_memory_max [(int) SMALL_MEMORY_SDA])
	    v850_set_data_area (decl, DATA_AREA_SDA);

	  else if (size <= small_memory_max [(int) SMALL_MEMORY_ZDA])
	    v850_set_data_area (decl, DATA_AREA_ZDA);
	}

      if (v850_get_data_area (decl) == DATA_AREA_NORMAL)
	return;
    }

  flags = SYMBOL_REF_FLAGS (symbol);
  switch (v850_get_data_area (decl))
    {
    case DATA_AREA_ZDA: flags |= SYMBOL_FLAG_ZDA; break;
    case DATA_AREA_TDA: flags |= SYMBOL_FLAG_TDA; break;
    case DATA_AREA_SDA: flags |= SYMBOL_FLAG_SDA; break;
    default: gcc_unreachable ();
    }
  SYMBOL_REF_FLAGS (symbol) = flags;
}

static void
v850_encode_section_info (tree decl, rtx rtl, int first)
{
  default_encode_section_info (decl, rtl, first);

  if (VAR_P (decl)
      && (TREE_STATIC (decl) || DECL_EXTERNAL (decl)))
    v850_encode_data_area (decl, XEXP (rtl, 0));
}

/* Construct a JR instruction to a routine that will perform the equivalent of
   the RTL passed in as an argument.  This RTL is a function epilogue that
   pops registers off the stack and possibly releases some extra stack space
   as well.  The code has already verified that the RTL matches these
   requirements.  */

char *
construct_restore_jr (rtx op)
{
  int count = XVECLEN (op, 0);
  int stack_bytes;
  unsigned long int mask;
  unsigned long int first;
  unsigned long int last;
  int i;
  static char buff [256]; /* XXX */

  if (count <= 2)
    {
      error ("bogus JR construction: %d", count);
      return NULL;
    }

  /* Work out how many bytes to pop off the stack before retrieving
     registers.  */
  gcc_assert (GET_CODE (XVECEXP (op, 0, 1)) == SET);
  gcc_assert (GET_CODE (SET_SRC (XVECEXP (op, 0, 1))) == PLUS);
  gcc_assert (GET_CODE (XEXP (SET_SRC (XVECEXP (op, 0, 1)), 1)) == CONST_INT);

  stack_bytes = INTVAL (XEXP (SET_SRC (XVECEXP (op, 0, 1)), 1));

  /* Each pop will remove 4 bytes from the stack....  */
  stack_bytes -= (count - 2) * 4;

  /* Make sure that the amount we are popping either 0 or 16 bytes.  */
  if (stack_bytes != 0)
    {
      error ("bad amount of stack space removal: %d", stack_bytes);
      return NULL;
    }

  /* Now compute the bit mask of registers to push.  */
  mask = 0;
  for (i = 2; i < count; i++)
    {
      rtx vector_element = XVECEXP (op, 0, i);

      gcc_assert (GET_CODE (vector_element) == SET);
      gcc_assert (GET_CODE (SET_DEST (vector_element)) == REG);
      gcc_assert (register_is_ok_for_epilogue (SET_DEST (vector_element),
					       SImode));

      mask |= 1 << REGNO (SET_DEST (vector_element));
    }

  /* Scan for the first register to pop.  */
  for (first = 0; first < 32; first++)
    {
      if (mask & (1 << first))
	break;
    }

  gcc_assert (first < 32);

  /* Discover the last register to pop.  */
  if (mask & (1 << LINK_POINTER_REGNUM))
    {
      last = LINK_POINTER_REGNUM;
    }
  else
    {
      gcc_assert (!stack_bytes);
      gcc_assert (mask & (1 << 29));

      last = 29;
    }

  /* Note, it is possible to have gaps in the register mask.
     We ignore this here, and generate a JR anyway.  We will
     be popping more registers than is strictly necessary, but
     it does save code space.  */

  if (TARGET_LONG_CALLS)
    {
      char name[40];

      if (first == last)
	sprintf (name, "__return_%s", reg_names [first]);
      else
	sprintf (name, "__return_%s_%s", reg_names [first], reg_names [last]);

      sprintf (buff, "movhi hi(%s), r0, r6\n\tmovea lo(%s), r6, r6\n\tjmp r6",
	       name, name);
    }
  else
    {
      if (first == last)
	sprintf (buff, "jr __return_%s", reg_names [first]);
      else
	sprintf (buff, "jr __return_%s_%s", reg_names [first], reg_names [last]);
    }

  return buff;
}


/* Construct a JARL instruction to a routine that will perform the equivalent
   of the RTL passed as a parameter.  This RTL is a function prologue that
   saves some of the registers r20 - r31 onto the stack, and possibly acquires
   some stack space as well.  The code has already verified that the RTL
   matches these requirements.  */
char *
construct_save_jarl (rtx op)
{
  int count = XVECLEN (op, 0);
  int stack_bytes;
  unsigned long int mask;
  unsigned long int first;
  unsigned long int last;
  int i;
  static char buff [255]; /* XXX */

  if (count <= (TARGET_LONG_CALLS ? 3 : 2))
    {
      error ("bogus JARL construction: %d", count);
      return NULL;
    }

  /* Paranoia.  */
  gcc_assert (GET_CODE (XVECEXP (op, 0, 0)) == SET);
  gcc_assert (GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) == PLUS);
  gcc_assert (GET_CODE (XEXP (SET_SRC (XVECEXP (op, 0, 0)), 0)) == REG);
  gcc_assert (GET_CODE (XEXP (SET_SRC (XVECEXP (op, 0, 0)), 1)) == CONST_INT);

  /* Work out how many bytes to push onto the stack after storing the
     registers.  */
  stack_bytes = INTVAL (XEXP (SET_SRC (XVECEXP (op, 0, 0)), 1));

  /* Each push will put 4 bytes from the stack....  */
  stack_bytes += (count - (TARGET_LONG_CALLS ? 4 : 3)) * 4;

  /* Make sure that the amount we are popping either 0 or 16 bytes.  */
  if (stack_bytes != 0)
    {
      error ("bad amount of stack space removal: %d", stack_bytes);
      return NULL;
    }

  /* Now compute the bit mask of registers to push.  */
  mask = 0;
  for (i = 1; i < count - (TARGET_LONG_CALLS ? 3 : 2); i++)
    {
      rtx vector_element = XVECEXP (op, 0, i);

      gcc_assert (GET_CODE (vector_element) == SET);
      gcc_assert (GET_CODE (SET_SRC (vector_element)) == REG);
      gcc_assert (register_is_ok_for_epilogue (SET_SRC (vector_element),
					       SImode));

      mask |= 1 << REGNO (SET_SRC (vector_element));
    }

  /* Scan for the first register to push.  */
  for (first = 0; first < 32; first++)
    {
      if (mask & (1 << first))
	break;
    }

  gcc_assert (first < 32);

  /* Discover the last register to push.  */
  if (mask & (1 << LINK_POINTER_REGNUM))
    {
      last = LINK_POINTER_REGNUM;
    }
  else
    {
      gcc_assert (!stack_bytes);
      gcc_assert (mask & (1 << 29));

      last = 29;
    }

  /* Note, it is possible to have gaps in the register mask.
     We ignore this here, and generate a JARL anyway.  We will
     be pushing more registers than is strictly necessary, but
     it does save code space.  */

  if (TARGET_LONG_CALLS)
    {
      char name[40];

      if (first == last)
	sprintf (name, "__save_%s", reg_names [first]);
      else
	sprintf (name, "__save_%s_%s", reg_names [first], reg_names [last]);

      if (TARGET_V850E3V5_UP)
	sprintf (buff, "mov hilo(%s), r11\n\tjarl [r11], r10", name);
      else
	sprintf (buff, "movhi hi(%s), r0, r11\n\tmovea lo(%s), r11, r11\n\tjarl .+4, r10\n\tadd 4, r10\n\tjmp r11",
		 name, name);
    }
  else
    {
      if (first == last)
	sprintf (buff, "jarl __save_%s, r10", reg_names [first]);
      else
	sprintf (buff, "jarl __save_%s_%s, r10", reg_names [first],
		 reg_names [last]);
    }

  return buff;
}

/* A version of asm_output_aligned_bss() that copes with the special
   data areas of the v850.  */
void
v850_output_aligned_bss (FILE * file,
                         tree decl,
                         const char * name,
                         unsigned HOST_WIDE_INT size,
                         int align)
{
  switch (v850_get_data_area (decl))
    {
    case DATA_AREA_ZDA:
      switch_to_section (zbss_section);
      break;

    case DATA_AREA_SDA:
      switch_to_section (sbss_section);
      break;

    case DATA_AREA_TDA:
      switch_to_section (tdata_section);
      break;

    default:
      switch_to_section (bss_section);
      break;
    }

  ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
#ifdef ASM_DECLARE_OBJECT_NAME
  last_assemble_variable_decl = decl;
  ASM_DECLARE_OBJECT_NAME (file, name, decl);
#else
  /* Standard thing is just output label for the object.  */
  ASM_OUTPUT_LABEL (file, name);
#endif /* ASM_DECLARE_OBJECT_NAME */
  ASM_OUTPUT_SKIP (file, size ? size : 1);
}

/* Called via the macro ASM_OUTPUT_DECL_COMMON */
void
v850_output_common (FILE * file,
                    tree decl,
                    const char * name,
                    int size,
                    int align)
{
  if (decl == NULL_TREE)
    {
      fprintf (file, "%s", COMMON_ASM_OP);
    }
  else
    {
      switch (v850_get_data_area (decl))
	{
	case DATA_AREA_ZDA:
	  fprintf (file, "%s", ZCOMMON_ASM_OP);
	  break;

	case DATA_AREA_SDA:
	  fprintf (file, "%s", SCOMMON_ASM_OP);
	  break;

	case DATA_AREA_TDA:
	  fprintf (file, "%s", TCOMMON_ASM_OP);
	  break;

	default:
	  fprintf (file, "%s", COMMON_ASM_OP);
	  break;
	}
    }

  assemble_name (file, name);
  fprintf (file, ",%u,%u\n", size, align / BITS_PER_UNIT);
}

/* Called via the macro ASM_OUTPUT_DECL_LOCAL */
void
v850_output_local (FILE * file,
                   tree decl,
                   const char * name,
                   int size,
                   int align)
{
  fprintf (file, "%s", LOCAL_ASM_OP);
  assemble_name (file, name);
  fprintf (file, "\n");

  ASM_OUTPUT_ALIGNED_DECL_COMMON (file, decl, name, size, align);
}

/* Add data area to the given declaration if a ghs data area pragma is
   currently in effect (#pragma ghs startXXX/endXXX).  */
static void
v850_insert_attributes (tree decl, tree * attr_ptr ATTRIBUTE_UNUSED )
{
  if (data_area_stack
      && data_area_stack->data_area
      && current_function_decl == NULL_TREE
      && (VAR_P (decl) || TREE_CODE (decl) == CONST_DECL)
      && v850_get_data_area (decl) == DATA_AREA_NORMAL)
    v850_set_data_area (decl, data_area_stack->data_area);

  /* Initialize the default names of the v850 specific sections,
     if this has not been done before.  */

  if (GHS_default_section_names [(int) GHS_SECTION_KIND_SDATA] == NULL)
    {
      GHS_default_section_names [(int) GHS_SECTION_KIND_SDATA]
	= ".sdata";

      GHS_default_section_names [(int) GHS_SECTION_KIND_ROSDATA]
	= ".rosdata";

      GHS_default_section_names [(int) GHS_SECTION_KIND_TDATA]
	= ".tdata";

      GHS_default_section_names [(int) GHS_SECTION_KIND_ZDATA]
	= ".zdata";

      GHS_default_section_names [(int) GHS_SECTION_KIND_ROZDATA]
	= ".rozdata";
    }

  if (current_function_decl == NULL_TREE
      && (VAR_P (decl)
	  || TREE_CODE (decl) == CONST_DECL
	  || TREE_CODE (decl) == FUNCTION_DECL)
      && (!DECL_EXTERNAL (decl) || DECL_INITIAL (decl))
      && !DECL_SECTION_NAME (decl))
    {
      enum GHS_section_kind kind = GHS_SECTION_KIND_DEFAULT;
      const char * chosen_section;

      if (TREE_CODE (decl) == FUNCTION_DECL)
	kind = GHS_SECTION_KIND_TEXT;
      else
	{
	  /* First choose a section kind based on the data area of the decl.  */
	  switch (v850_get_data_area (decl))
	    {
	    default:
	      gcc_unreachable ();

	    case DATA_AREA_SDA:
	      kind = ((TREE_READONLY (decl))
		      ? GHS_SECTION_KIND_ROSDATA
		      : GHS_SECTION_KIND_SDATA);
	      break;

	    case DATA_AREA_TDA:
	      kind = GHS_SECTION_KIND_TDATA;
	      break;

	    case DATA_AREA_ZDA:
	      kind = ((TREE_READONLY (decl))
		      ? GHS_SECTION_KIND_ROZDATA
		      : GHS_SECTION_KIND_ZDATA);
	      break;

	    case DATA_AREA_NORMAL:		 /* default data area */
	      if (TREE_READONLY (decl))
		kind = GHS_SECTION_KIND_RODATA;
	      else if (DECL_INITIAL (decl))
		kind = GHS_SECTION_KIND_DATA;
	      else
		kind = GHS_SECTION_KIND_BSS;
	    }
	}

      /* Now, if the section kind has been explicitly renamed,
         then attach a section attribute.  */
      chosen_section = GHS_current_section_names [(int) kind];

      /* Otherwise, if this kind of section needs an explicit section
         attribute, then also attach one.  */
      if (chosen_section == NULL)
        chosen_section = GHS_default_section_names [(int) kind];

      if (chosen_section)
	{
	  /* Only set the section name if specified by a pragma, because
	     otherwise it will force those variables to get allocated storage
	     in this module, rather than by the linker.  */
	  set_decl_section_name (decl, chosen_section);
	}
    }
}

/* Construct a DISPOSE instruction that is the equivalent of
   the given RTX.  We have already verified that this should
   be possible.  */

char *
construct_dispose_instruction (rtx op)
{
  int                count = XVECLEN (op, 0);
  int                stack_bytes;
  unsigned long int  mask;
  int		     i;
  static char        buff[ 120 ]; /* XXX */
  int                use_callt = 0;

  if (count <= 2)
    {
      error ("bogus DISPOSE construction: %d", count);
      return NULL;
    }

  /* Work out how many bytes to pop off the
     stack before retrieving registers.  */
  gcc_assert (GET_CODE (XVECEXP (op, 0, 1)) == SET);
  gcc_assert (GET_CODE (SET_SRC (XVECEXP (op, 0, 1))) == PLUS);
  gcc_assert (GET_CODE (XEXP (SET_SRC (XVECEXP (op, 0, 1)), 1)) == CONST_INT);

  stack_bytes = INTVAL (XEXP (SET_SRC (XVECEXP (op, 0, 1)), 1));

  /* Each pop will remove 4 bytes from the stack....  */
  stack_bytes -= (count - 2) * 4;

  /* Make sure that the amount we are popping
     will fit into the DISPOSE instruction.  */
  if (stack_bytes > 128)
    {
      error ("too much stack space to dispose of: %d", stack_bytes);
      return NULL;
    }

  /* Now compute the bit mask of registers to push.  */
  mask = 0;

  for (i = 2; i < count; i++)
    {
      rtx vector_element = XVECEXP (op, 0, i);

      gcc_assert (GET_CODE (vector_element) == SET);
      gcc_assert (GET_CODE (SET_DEST (vector_element)) == REG);
      gcc_assert (register_is_ok_for_epilogue (SET_DEST (vector_element),
					       SImode));

      if (REGNO (SET_DEST (vector_element)) == 2)
	use_callt = 1;
      else
        mask |= 1 << REGNO (SET_DEST (vector_element));
    }

  if (! TARGET_DISABLE_CALLT
      && (use_callt || stack_bytes == 0))
    {
      if (use_callt)
	{
	  sprintf (buff, "callt ctoff(__callt_return_r2_r%d)", (mask & (1 << 31)) ? 31 : 29);
	  return buff;
	}
      else
	{
	  for (i = 20; i < 32; i++)
	    if (mask & (1 << i))
	      break;

	  if (i == 31)
	    sprintf (buff, "callt ctoff(__callt_return_r31c)");
	  else
	    sprintf (buff, "callt ctoff(__callt_return_r%d_r%s)",
		     i, (mask & (1 << 31)) ? "31c" : "29");
	}
    }
  else
    {
      static char        regs [100]; /* XXX */
      int                done_one;

      /* Generate the DISPOSE instruction.  Note we could just issue the
	 bit mask as a number as the assembler can cope with this, but for
	 the sake of our readers we turn it into a textual description.  */
      regs[0] = 0;
      done_one = 0;

      for (i = 20; i < 32; i++)
	{
	  if (mask & (1 << i))
	    {
	      int first;

	      if (done_one)
		strcat (regs, ", ");
	      else
		done_one = 1;

	      first = i;
	      strcat (regs, reg_names[ first ]);

	      for (i++; i < 32; i++)
		if ((mask & (1 << i)) == 0)
		  break;

	      if (i > first + 1)
		{
		  strcat (regs, " - ");
		  strcat (regs, reg_names[ i - 1 ] );
		}
	    }
	}

      sprintf (buff, "dispose %d {%s}, r31", stack_bytes / 4, regs);
    }

  return buff;
}

/* Construct a PREPARE instruction that is the equivalent of
   the given RTL.  We have already verified that this should
   be possible.  */

char *
construct_prepare_instruction (rtx op)
{
  int                count;
  int                stack_bytes;
  unsigned long int  mask;
  int		     i;
  static char        buff[ 120 ]; /* XXX */
  int		     use_callt = 0;

  if (XVECLEN (op, 0) <= 1)
    {
      error ("bogus PREPEARE construction: %d", XVECLEN (op, 0));
      return NULL;
    }

  /* Work out how many bytes to push onto
     the stack after storing the registers.  */
  gcc_assert (GET_CODE (XVECEXP (op, 0, 0)) == SET);
  gcc_assert (GET_CODE (SET_SRC (XVECEXP (op, 0, 0))) == PLUS);
  gcc_assert (GET_CODE (XEXP (SET_SRC (XVECEXP (op, 0, 0)), 1)) == CONST_INT);

  stack_bytes = INTVAL (XEXP (SET_SRC (XVECEXP (op, 0, 0)), 1));


  /* Make sure that the amount we are popping
     will fit into the DISPOSE instruction.  */
  if (stack_bytes < -128)
    {
      error ("too much stack space to prepare: %d", stack_bytes);
      return NULL;
    }

  /* Now compute the bit mask of registers to push.  */
  count = 0;
  mask = 0;
  for (i = 1; i < XVECLEN (op, 0); i++)
    {
      rtx vector_element = XVECEXP (op, 0, i);

      if (GET_CODE (vector_element) == CLOBBER)
	continue;

      gcc_assert (GET_CODE (vector_element) == SET);
      gcc_assert (GET_CODE (SET_SRC (vector_element)) == REG);
      gcc_assert (register_is_ok_for_epilogue (SET_SRC (vector_element),
					       SImode));

      if (REGNO (SET_SRC (vector_element)) == 2)
	use_callt = 1;
      else
	mask |= 1 << REGNO (SET_SRC (vector_element));
      count++;
    }

  stack_bytes += count * 4;

  if ((! TARGET_DISABLE_CALLT)
      && (use_callt || stack_bytes == 0))
    {
      if (use_callt)
	{
	  sprintf (buff, "callt ctoff(__callt_save_r2_r%d)", (mask & (1 << 31)) ? 31 : 29 );
	  return buff;
	}

      for (i = 20; i < 32; i++)
	if (mask & (1 << i))
	  break;

      if (i == 31)
	sprintf (buff, "callt ctoff(__callt_save_r31c)");
      else
	sprintf (buff, "callt ctoff(__callt_save_r%d_r%s)",
		 i, (mask & (1 << 31)) ? "31c" : "29");
    }
  else
    {
      static char        regs [100]; /* XXX */
      int                done_one;


      /* Generate the PREPARE instruction.  Note we could just issue the
	 bit mask as a number as the assembler can cope with this, but for
	 the sake of our readers we turn it into a textual description.  */
      regs[0] = 0;
      done_one = 0;

      for (i = 20; i < 32; i++)
	{
	  if (mask & (1 << i))
	    {
	      int first;

	      if (done_one)
		strcat (regs, ", ");
	      else
		done_one = 1;

	      first = i;
	      strcat (regs, reg_names[ first ]);

	      for (i++; i < 32; i++)
		if ((mask & (1 << i)) == 0)
		  break;

	      if (i > first + 1)
		{
		  strcat (regs, " - ");
		  strcat (regs, reg_names[ i - 1 ] );
		}
	    }
	}

      sprintf (buff, "prepare {%s}, %d", regs, (- stack_bytes) / 4);
    }

  return buff;
}

/* Return an RTX indicating where the return address to the
   calling function can be found.  */

rtx
v850_return_addr (int count)
{
  if (count != 0)
    return const0_rtx;

  return get_hard_reg_initial_val (Pmode, LINK_POINTER_REGNUM);
}

/* Implement TARGET_ASM_INIT_SECTIONS.  */

static void
v850_asm_init_sections (void)
{
  rosdata_section
    = get_unnamed_section (0, output_section_asm_op,
			   "\t.section .rosdata,\"a\"");

  rozdata_section
    = get_unnamed_section (0, output_section_asm_op,
			   "\t.section .rozdata,\"a\"");

  tdata_section
    = get_unnamed_section (SECTION_WRITE, output_section_asm_op,
			   "\t.section .tdata,\"aw\"");

  zdata_section
    = get_unnamed_section (SECTION_WRITE, output_section_asm_op,
			   "\t.section .zdata,\"aw\"");

  zbss_section
    = get_unnamed_section (SECTION_WRITE | SECTION_BSS,
			   output_section_asm_op,
			   "\t.section .zbss,\"aw\"");
}

static section *
v850_select_section (tree exp,
                     int reloc ATTRIBUTE_UNUSED,
                     unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
{
  if (TREE_CODE (exp) == VAR_DECL)
    {
      int is_const;
      if (!TREE_READONLY (exp)
	  || !DECL_INITIAL (exp)
	  || (DECL_INITIAL (exp) != error_mark_node
	      && !TREE_CONSTANT (DECL_INITIAL (exp))))
        is_const = FALSE;
      else
        is_const = TRUE;

      switch (v850_get_data_area (exp))
        {
        case DATA_AREA_ZDA:
	  return is_const ? rozdata_section : zdata_section;

        case DATA_AREA_TDA:
	  return tdata_section;

        case DATA_AREA_SDA:
	  return is_const ? rosdata_section : sdata_section;

        default:
	  return is_const ? readonly_data_section : data_section;
        }
    }
  return readonly_data_section;
}

/* Worker function for TARGET_FUNCTION_VALUE_REGNO_P.  */

static bool
v850_function_value_regno_p (const unsigned int regno)
{
  return (regno == RV_REGNUM);
}

/* Worker function for TARGET_RETURN_IN_MEMORY.  */

static bool
v850_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
{
  /* Return values > 8 bytes in length in memory.  */
  return int_size_in_bytes (type) > 8
    || TYPE_MODE (type) == BLKmode
    /* With the rh850 ABI return all aggregates in memory.  */
    || ((! TARGET_GCC_ABI) && AGGREGATE_TYPE_P (type))
    ;
}

/* Worker function for TARGET_FUNCTION_VALUE.  */

static rtx
v850_function_value (const_tree valtype,
                    const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
                    bool outgoing ATTRIBUTE_UNUSED)
{
  return gen_rtx_REG (TYPE_MODE (valtype), RV_REGNUM);
}

/* Implement TARGET_LIBCALL_VALUE.  */

static rtx
v850_libcall_value (machine_mode mode,
		    const_rtx func ATTRIBUTE_UNUSED)
{
  return gen_rtx_REG (mode, RV_REGNUM);
}


/* Worker function for TARGET_CAN_ELIMINATE.  */

static bool
v850_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
{
  return (to == STACK_POINTER_REGNUM ? ! frame_pointer_needed : true);
}

/* Worker function for TARGET_CONDITIONAL_REGISTER_USAGE.

   If TARGET_APP_REGS is not defined then add r2 and r5 to
   the pool of fixed registers. See PR 14505.  */

static void
v850_conditional_register_usage (void)
{
  if (TARGET_APP_REGS)
    {
     fixed_regs[2] = 0;  call_used_regs[2] = 0;
     fixed_regs[5] = 0;  call_used_regs[5] = 1;
    }
}

/* Worker function for TARGET_ASM_TRAMPOLINE_TEMPLATE.  */

static void
v850_asm_trampoline_template (FILE *f)
{
  fprintf (f, "\tjarl .+4,r12\n");
  fprintf (f, "\tld.w 12[r12],r19\n");
  fprintf (f, "\tld.w 16[r12],r12\n");
  fprintf (f, "\tjmp [r12]\n");
  fprintf (f, "\tnop\n");
  fprintf (f, "\t.long 0\n");
  fprintf (f, "\t.long 0\n");
}

/* Worker function for TARGET_TRAMPOLINE_INIT.  */

static void
v850_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
{
  rtx mem, fnaddr = XEXP (DECL_RTL (fndecl), 0);

  emit_block_move (m_tramp, assemble_trampoline_template (),
		   GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);

  mem = adjust_address (m_tramp, SImode, 16);
  emit_move_insn (mem, chain_value);
  mem = adjust_address (m_tramp, SImode, 20);
  emit_move_insn (mem, fnaddr);
}

static int
v850_issue_rate (void)
{
  return (TARGET_V850E2_UP ? 2 : 1);
}

/* Implement TARGET_LEGITIMATE_CONSTANT_P.  */

static bool
v850_legitimate_constant_p (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
{
  return (GET_CODE (x) == CONST_DOUBLE
	  || !(GET_CODE (x) == CONST
	       && GET_CODE (XEXP (x, 0)) == PLUS
	       && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
	       && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
	       && !CONST_OK_FOR_K (INTVAL (XEXP (XEXP (x, 0), 1)))));
}

/* Helper function for `v850_legitimate_address_p'.  */

static bool
v850_reg_ok_for_base_p (const_rtx reg, bool strict_p)
{
  if (strict_p)
  {
    return REGNO_OK_FOR_BASE_P (REGNO (reg));
  } else {
    return true;
  }
}

/* Accept either REG or SUBREG where a register is valid.  */

static bool
v850_rtx_ok_for_base_p (const_rtx x, bool strict_p)
{
  return ((REG_P (x) && v850_reg_ok_for_base_p  (x, strict_p))
	  || (SUBREG_P (x) && REG_P (SUBREG_REG (x))
	      && v850_reg_ok_for_base_p (SUBREG_REG (x), strict_p)));
}

/* Implement TARGET_LEGITIMATE_ADDRESS_P.  */

static bool
v850_legitimate_address_p (machine_mode mode, rtx x, bool strict_p,
			   addr_space_t as ATTRIBUTE_UNUSED,
			   code_helper = ERROR_MARK)
{
  gcc_assert (ADDR_SPACE_GENERIC_P (as));

  if (v850_rtx_ok_for_base_p (x, strict_p))
    return true;
  if (CONSTANT_ADDRESS_P (x)
      && (mode == QImode || INTVAL (x) % 2 == 0)
      && (GET_MODE_SIZE (mode) <= 4 || INTVAL (x) % 4 == 0))
    return true;
  if (GET_CODE (x) == LO_SUM
      && REG_P (XEXP (x, 0))
      && v850_reg_ok_for_base_p (XEXP (x, 0), strict_p)
      && CONSTANT_P (XEXP (x, 1))
      && (!CONST_INT_P (XEXP (x, 1))
	  || ((mode == QImode || INTVAL (XEXP (x, 1)) % 2 == 0)
	      && constraint_satisfied_p (XEXP (x, 1), CONSTRAINT_K)))
      && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (word_mode))
    return true;
  if (special_symbolref_operand (x, mode)
      && (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (word_mode)))
    return true;
  if (GET_CODE (x) == PLUS
      && v850_rtx_ok_for_base_p (XEXP (x, 0), strict_p)
      && (constraint_satisfied_p (XEXP (x, 1), CONSTRAINT_K)
	  || (TARGET_V850E2V3_UP
	      && (mode == SImode || mode == HImode || mode == QImode)
	      && constraint_satisfied_p (XEXP (x, 1), CONSTRAINT_W)))
      && ((mode == QImode || INTVAL (XEXP (x, 1)) % 2 == 0)
	   && CONST_OK_FOR_K (INTVAL (XEXP (x, 1))
			      + (GET_MODE_NUNITS (mode) * UNITS_PER_WORD))))
    return true;

  return false;
}

static int
v850_memory_move_cost (machine_mode mode,
		       reg_class_t reg_class ATTRIBUTE_UNUSED,
		       bool in)
{
  switch (GET_MODE_SIZE (mode))
    {
    case 0:
      return in ? 24 : 8;
    case 1:
    case 2:
    case 3:
    case 4:
      return in ? 6 : 2;
    default:
      return (GET_MODE_SIZE (mode) / 2) * (in ? 3 : 1);
    }
}

int
v850_adjust_insn_length (rtx_insn *insn, int length)
{
  if (TARGET_V850E3V5_UP)
    {
      if (CALL_P (insn))
	{
	  if (TARGET_LONG_CALLS)
	    {
	      /* call_internal_long, call_value_internal_long.  */
	      if (length == 8)
		length = 4;
	      if (length == 16)
		length = 10;
	    }
	  else
	    {
	      /* call_internal_short, call_value_internal_short.  */
	      if (length == 8)
		length = 4;
	    }
	}
    }
  return length;
}

/* V850 specific attributes.  */

TARGET_GNU_ATTRIBUTES (v850_attribute_table,
{
  /* { name, min_len, max_len, decl_req, type_req, fn_type_req,
       affects_type_identity, handler, exclude } */
  { "interrupt_handler", 0, 0, true,  false, false, false,
    v850_handle_interrupt_attribute, NULL },
  { "interrupt",         0, 0, true,  false, false, false,
    v850_handle_interrupt_attribute, NULL },
  { "sda",               0, 0, true,  false, false, false,
    v850_handle_data_area_attribute, NULL },
  { "tda",               0, 0, true,  false, false, false,
    v850_handle_data_area_attribute, NULL },
  { "zda",               0, 0, true,  false, false, false,
    v850_handle_data_area_attribute, NULL }
});

static void
v850_option_override (void)
{
  if (flag_exceptions || flag_non_call_exceptions)
    flag_omit_frame_pointer = 0;

  /* The RH850 ABI does not (currently) support the use of the CALLT instruction.  */
  if (! TARGET_GCC_ABI)
    target_flags |= MASK_DISABLE_CALLT;

  /* Save the initial options in case the user does function specific
     options.  */
  target_option_default_node = target_option_current_node
    = build_target_option_node (&global_options, &global_options_set);
}

const char *
v850_gen_movdi (rtx * operands)
{
  if (REG_P (operands[0]))
    {
      if (REG_P (operands[1]))
	{
	  if (REGNO (operands[0]) == (REGNO (operands[1]) - 1))
	    return "mov %1, %0; mov %R1, %R0";

	  return "mov %R1, %R0; mov %1, %0";
	}

      if (MEM_P (operands[1]))
	{
	  if (REGNO (operands[0]) & 1)
	    /* Use two load word instructions to synthesise a load double.  */
	    return "ld.w %1, %0 ; ld.w %R1, %R0" ;

	  return "ld.dw %1, %0";
	}

      return "mov %1, %0; mov %R1, %R0";
    }

  gcc_assert (REG_P (operands[1]));

  if (REGNO (operands[1]) & 1)
    /* Use two store word instructions to synthesise a store double.  */
    return "st.w %1, %0 ; st.w %R1, %R0 ";

  return "st.dw %1, %0";
}

/* Implement TARGET_HARD_REGNO_MODE_OK.  */

static bool
v850_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
{
  return GET_MODE_SIZE (mode) <= 4 || ((regno & 1) == 0 && regno != 0);
}

/* Implement TARGET_MODES_TIEABLE_P.  */

static bool
v850_modes_tieable_p (machine_mode mode1, machine_mode mode2)
{
  return (mode1 == mode2
	  || (GET_MODE_SIZE (mode1) <= 4 && GET_MODE_SIZE (mode2) <= 4));
}

static bool
v850_can_inline_p (tree caller, tree callee)
{
  tree caller_tree = DECL_FUNCTION_SPECIFIC_TARGET (caller);
  tree callee_tree = DECL_FUNCTION_SPECIFIC_TARGET (callee);

  const unsigned HOST_WIDE_INT safe_flags = MASK_PROLOG_FUNCTION;

  if (!callee_tree)
    callee_tree = target_option_default_node;
  if (!caller_tree)
    caller_tree = target_option_default_node;
  if (callee_tree == caller_tree)
    return true;

  cl_target_option *caller_opts = TREE_TARGET_OPTION (caller_tree);
  cl_target_option *callee_opts = TREE_TARGET_OPTION (callee_tree);

  return ((caller_opts->x_target_flags & ~safe_flags)
	  == (callee_opts->x_target_flags & ~safe_flags));
}


/* Initialize the GCC target structure.  */

#undef  TARGET_OPTION_OVERRIDE
#define TARGET_OPTION_OVERRIDE		v850_option_override

#undef  TARGET_MEMORY_MOVE_COST
#define TARGET_MEMORY_MOVE_COST 	v850_memory_move_cost

#undef  TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t"

#undef  TARGET_PRINT_OPERAND
#define TARGET_PRINT_OPERAND 		v850_print_operand
#undef  TARGET_PRINT_OPERAND_ADDRESS
#define TARGET_PRINT_OPERAND_ADDRESS 		v850_print_operand_address
#undef  TARGET_PRINT_OPERAND_PUNCT_VALID_P
#define TARGET_PRINT_OPERAND_PUNCT_VALID_P 	v850_print_operand_punct_valid_p

#undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
#define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA v850_output_addr_const_extra

#undef  TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE v850_attribute_table

#undef  TARGET_INSERT_ATTRIBUTES
#define TARGET_INSERT_ATTRIBUTES v850_insert_attributes

#undef  TARGET_ASM_SELECT_SECTION
#define TARGET_ASM_SELECT_SECTION  v850_select_section

/* The assembler supports switchable .bss sections, but
   v850_select_section doesn't yet make use of them.  */
#undef  TARGET_HAVE_SWITCHABLE_BSS_SECTIONS
#define TARGET_HAVE_SWITCHABLE_BSS_SECTIONS false

#undef  TARGET_ENCODE_SECTION_INFO
#define TARGET_ENCODE_SECTION_INFO v850_encode_section_info

#undef  TARGET_ASM_FILE_START_FILE_DIRECTIVE
#define TARGET_ASM_FILE_START_FILE_DIRECTIVE true

#undef  TARGET_RTX_COSTS
#define TARGET_RTX_COSTS v850_rtx_costs

#undef  TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST hook_int_rtx_mode_as_bool_0

#undef  TARGET_MACHINE_DEPENDENT_REORG
#define TARGET_MACHINE_DEPENDENT_REORG v850_reorg

#undef  TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE v850_issue_rate

#undef  TARGET_FUNCTION_VALUE_REGNO_P
#define TARGET_FUNCTION_VALUE_REGNO_P v850_function_value_regno_p
#undef  TARGET_FUNCTION_VALUE
#define TARGET_FUNCTION_VALUE v850_function_value
#undef  TARGET_LIBCALL_VALUE
#define TARGET_LIBCALL_VALUE v850_libcall_value

#undef  TARGET_PROMOTE_PROTOTYPES
#define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true

#undef  TARGET_RETURN_IN_MEMORY
#define TARGET_RETURN_IN_MEMORY v850_return_in_memory

#undef  TARGET_PASS_BY_REFERENCE
#define TARGET_PASS_BY_REFERENCE v850_pass_by_reference

#undef  TARGET_CALLEE_COPIES
#define TARGET_CALLEE_COPIES hook_bool_CUMULATIVE_ARGS_arg_info_true

#undef  TARGET_ARG_PARTIAL_BYTES
#define TARGET_ARG_PARTIAL_BYTES v850_arg_partial_bytes

#undef  TARGET_FUNCTION_ARG
#define TARGET_FUNCTION_ARG v850_function_arg

#undef  TARGET_FUNCTION_ARG_ADVANCE
#define TARGET_FUNCTION_ARG_ADVANCE v850_function_arg_advance

#undef  TARGET_CAN_ELIMINATE
#define TARGET_CAN_ELIMINATE v850_can_eliminate

#undef  TARGET_CONDITIONAL_REGISTER_USAGE
#define TARGET_CONDITIONAL_REGISTER_USAGE v850_conditional_register_usage

#undef  TARGET_ASM_TRAMPOLINE_TEMPLATE
#define TARGET_ASM_TRAMPOLINE_TEMPLATE v850_asm_trampoline_template
#undef  TARGET_TRAMPOLINE_INIT
#define TARGET_TRAMPOLINE_INIT v850_trampoline_init

#undef  TARGET_LEGITIMATE_CONSTANT_P
#define TARGET_LEGITIMATE_CONSTANT_P v850_legitimate_constant_p

#undef  TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P
#define TARGET_ADDR_SPACE_LEGITIMATE_ADDRESS_P v850_legitimate_address_p

#undef  TARGET_CAN_USE_DOLOOP_P
#define TARGET_CAN_USE_DOLOOP_P can_use_doloop_if_innermost

#undef  TARGET_HARD_REGNO_MODE_OK
#define TARGET_HARD_REGNO_MODE_OK v850_hard_regno_mode_ok

#undef  TARGET_MODES_TIEABLE_P
#define TARGET_MODES_TIEABLE_P v850_modes_tieable_p

#undef TARGET_FLAGS_REGNUM
#define TARGET_FLAGS_REGNUM 32

#undef  TARGET_HAVE_SPECULATION_SAFE_VALUE
#define TARGET_HAVE_SPECULATION_SAFE_VALUE speculation_safe_value_not_needed

#undef TARGET_CAN_INLINE_P
#define TARGET_CAN_INLINE_P v850_can_inline_p

#undef TARGET_DOCUMENTATION_NAME
#define TARGET_DOCUMENTATION_NAME "V850"

struct gcc_target targetm = TARGET_INITIALIZER;

#include "gt-v850.h"